xref: /dflybsd-src/sys/vm/vm_fault.c (revision 67bf99c4e3c62e257027c8f0d3b312f44cfe622f)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74 
75 /*
76  *	Page fault handling module.
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89 
90 #include <cpu/lwbuf.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106 
107 struct faultstate {
108 	vm_page_t m;
109 	vm_object_t object;
110 	vm_pindex_t pindex;
111 	vm_prot_t prot;
112 	vm_page_t first_m;
113 	vm_object_t first_object;
114 	vm_prot_t first_prot;
115 	vm_map_t map;
116 	vm_map_entry_t entry;
117 	int lookup_still_valid;
118 	int didlimit;
119 	int hardfault;
120 	int fault_flags;
121 	int map_generation;
122 	boolean_t wired;
123 	struct vnode *vp;
124 };
125 
126 static int vm_fast_fault = 1;
127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
128 	   "Burst fault zero-fill regions");
129 static int debug_cluster = 0;
130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
131 
132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
134 #if 0
135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
136 #endif
137 static int vm_fault_ratelimit(struct vmspace *);
138 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
139 			int prot);
140 
141 /*
142  * The caller must hold vm_token.
143  */
144 static __inline void
145 release_page(struct faultstate *fs)
146 {
147 	vm_page_deactivate(fs->m);
148 	vm_page_wakeup(fs->m);
149 	fs->m = NULL;
150 }
151 
152 /*
153  * The caller must hold vm_token.
154  */
155 static __inline void
156 unlock_map(struct faultstate *fs)
157 {
158 	if (fs->lookup_still_valid && fs->map) {
159 		vm_map_lookup_done(fs->map, fs->entry, 0);
160 		fs->lookup_still_valid = FALSE;
161 	}
162 }
163 
164 /*
165  * Clean up after a successful call to vm_fault_object() so another call
166  * to vm_fault_object() can be made.
167  *
168  * The caller must hold vm_token.
169  */
170 static void
171 _cleanup_successful_fault(struct faultstate *fs, int relock)
172 {
173 	if (fs->object != fs->first_object) {
174 		vm_page_free(fs->first_m);
175 		vm_object_pip_wakeup(fs->object);
176 		fs->first_m = NULL;
177 	}
178 	fs->object = fs->first_object;
179 	if (relock && fs->lookup_still_valid == FALSE) {
180 		if (fs->map)
181 			vm_map_lock_read(fs->map);
182 		fs->lookup_still_valid = TRUE;
183 	}
184 }
185 
186 /*
187  * The caller must hold vm_token.
188  */
189 static void
190 _unlock_things(struct faultstate *fs, int dealloc)
191 {
192 	vm_object_pip_wakeup(fs->first_object);
193 	_cleanup_successful_fault(fs, 0);
194 	if (dealloc) {
195 		vm_object_deallocate(fs->first_object);
196 		fs->first_object = NULL;
197 	}
198 	unlock_map(fs);
199 	if (fs->vp != NULL) {
200 		vput(fs->vp);
201 		fs->vp = NULL;
202 	}
203 }
204 
205 #define unlock_things(fs) _unlock_things(fs, 0)
206 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
207 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
208 
209 /*
210  * TRYPAGER
211  *
212  * Determine if the pager for the current object *might* contain the page.
213  *
214  * We only need to try the pager if this is not a default object (default
215  * objects are zero-fill and have no real pager), and if we are not taking
216  * a wiring fault or if the FS entry is wired.
217  */
218 #define TRYPAGER(fs)	\
219 		(fs->object->type != OBJT_DEFAULT && \
220 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
221 
222 /*
223  * vm_fault:
224  *
225  * Handle a page fault occuring at the given address, requiring the given
226  * permissions, in the map specified.  If successful, the page is inserted
227  * into the associated physical map.
228  *
229  * NOTE: The given address should be truncated to the proper page address.
230  *
231  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
232  * a standard error specifying why the fault is fatal is returned.
233  *
234  * The map in question must be referenced, and remains so.
235  * The caller may hold no locks.
236  * No other requirements.
237  */
238 int
239 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
240 {
241 	int result;
242 	vm_pindex_t first_pindex;
243 	struct faultstate fs;
244 	int growstack;
245 
246 	mycpu->gd_cnt.v_vm_faults++;
247 
248 	fs.didlimit = 0;
249 	fs.hardfault = 0;
250 	fs.fault_flags = fault_flags;
251 	growstack = 1;
252 
253 RetryFault:
254 	/*
255 	 * Find the vm_map_entry representing the backing store and resolve
256 	 * the top level object and page index.  This may have the side
257 	 * effect of executing a copy-on-write on the map entry and/or
258 	 * creating a shadow object, but will not COW any actual VM pages.
259 	 *
260 	 * On success fs.map is left read-locked and various other fields
261 	 * are initialized but not otherwise referenced or locked.
262 	 *
263 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
264 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
265 	 * writable, so we can set the 'A'accessed bit in the virtual page
266 	 * table entry.
267 	 */
268 	fs.map = map;
269 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
270 			       &fs.entry, &fs.first_object,
271 			       &first_pindex, &fs.first_prot, &fs.wired);
272 
273 	/*
274 	 * If the lookup failed or the map protections are incompatible,
275 	 * the fault generally fails.  However, if the caller is trying
276 	 * to do a user wiring we have more work to do.
277 	 */
278 	if (result != KERN_SUCCESS) {
279 		if (result != KERN_PROTECTION_FAILURE ||
280 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
281 		{
282 			if (result == KERN_INVALID_ADDRESS && growstack &&
283 			    map != &kernel_map && curproc != NULL) {
284 				result = vm_map_growstack(curproc, vaddr);
285 				if (result != KERN_SUCCESS)
286 					return (KERN_FAILURE);
287 				growstack = 0;
288 				goto RetryFault;
289 			}
290 			return (result);
291 		}
292 
293 		/*
294    		 * If we are user-wiring a r/w segment, and it is COW, then
295    		 * we need to do the COW operation.  Note that we don't
296 		 * currently COW RO sections now, because it is NOT desirable
297    		 * to COW .text.  We simply keep .text from ever being COW'ed
298    		 * and take the heat that one cannot debug wired .text sections.
299    		 */
300 		result = vm_map_lookup(&fs.map, vaddr,
301 				       VM_PROT_READ|VM_PROT_WRITE|
302 				        VM_PROT_OVERRIDE_WRITE,
303 				       &fs.entry, &fs.first_object,
304 				       &first_pindex, &fs.first_prot,
305 				       &fs.wired);
306 		if (result != KERN_SUCCESS)
307 			return result;
308 
309 		/*
310 		 * If we don't COW now, on a user wire, the user will never
311 		 * be able to write to the mapping.  If we don't make this
312 		 * restriction, the bookkeeping would be nearly impossible.
313 		 */
314 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
315 			fs.entry->max_protection &= ~VM_PROT_WRITE;
316 	}
317 
318 	/*
319 	 * fs.map is read-locked
320 	 *
321 	 * Misc checks.  Save the map generation number to detect races.
322 	 */
323 	fs.map_generation = fs.map->timestamp;
324 
325 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
326 		panic("vm_fault: fault on nofault entry, addr: %lx",
327 		    (u_long)vaddr);
328 	}
329 
330 	/*
331 	 * A system map entry may return a NULL object.  No object means
332 	 * no pager means an unrecoverable kernel fault.
333 	 */
334 	if (fs.first_object == NULL) {
335 		panic("vm_fault: unrecoverable fault at %p in entry %p",
336 			(void *)vaddr, fs.entry);
337 	}
338 
339 	/*
340 	 * Make a reference to this object to prevent its disposal while we
341 	 * are messing with it.  Once we have the reference, the map is free
342 	 * to be diddled.  Since objects reference their shadows (and copies),
343 	 * they will stay around as well.
344 	 *
345 	 * Bump the paging-in-progress count to prevent size changes (e.g.
346 	 * truncation operations) during I/O.  This must be done after
347 	 * obtaining the vnode lock in order to avoid possible deadlocks.
348 	 *
349 	 * The vm_token is needed to manipulate the vm_object
350 	 */
351 	lwkt_gettoken(&vm_token);
352 	vm_object_reference(fs.first_object);
353 	fs.vp = vnode_pager_lock(fs.first_object);
354 	vm_object_pip_add(fs.first_object, 1);
355 	lwkt_reltoken(&vm_token);
356 
357 	fs.lookup_still_valid = TRUE;
358 	fs.first_m = NULL;
359 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
360 
361 	/*
362 	 * If the entry is wired we cannot change the page protection.
363 	 */
364 	if (fs.wired)
365 		fault_type = fs.first_prot;
366 
367 	/*
368 	 * The page we want is at (first_object, first_pindex), but if the
369 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
370 	 * page table to figure out the actual pindex.
371 	 *
372 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
373 	 * ONLY
374 	 */
375 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
376 		result = vm_fault_vpagetable(&fs, &first_pindex,
377 					     fs.entry->aux.master_pde,
378 					     fault_type);
379 		if (result == KERN_TRY_AGAIN)
380 			goto RetryFault;
381 		if (result != KERN_SUCCESS)
382 			return (result);
383 	}
384 
385 	/*
386 	 * Now we have the actual (object, pindex), fault in the page.  If
387 	 * vm_fault_object() fails it will unlock and deallocate the FS
388 	 * data.   If it succeeds everything remains locked and fs->object
389 	 * will have an additional PIP count if it is not equal to
390 	 * fs->first_object
391 	 *
392 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
393 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
394 	 * page can be safely written.  However, it will force a read-only
395 	 * mapping for a read fault if the memory is managed by a virtual
396 	 * page table.
397 	 */
398 	result = vm_fault_object(&fs, first_pindex, fault_type);
399 
400 	if (result == KERN_TRY_AGAIN)
401 		goto RetryFault;
402 	if (result != KERN_SUCCESS)
403 		return (result);
404 
405 	/*
406 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
407 	 * will contain a busied page.
408 	 *
409 	 * Enter the page into the pmap and do pmap-related adjustments.
410 	 */
411 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
412 
413 	/*
414 	 * Burst in a few more pages if possible.  The fs.map should still
415 	 * be locked.
416 	 */
417 	if (fault_flags & VM_FAULT_BURST) {
418 		if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
419 		    fs.wired == 0) {
420 			vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
421 		}
422 	}
423 	unlock_things(&fs);
424 
425 	vm_page_flag_clear(fs.m, PG_ZERO);
426 	vm_page_flag_set(fs.m, PG_REFERENCED);
427 
428 	/*
429 	 * If the page is not wired down, then put it where the pageout daemon
430 	 * can find it.
431 	 *
432 	 * We do not really need to get vm_token here but since all the
433 	 * vm_*() calls have to doing it here improves efficiency.
434 	 */
435 	lwkt_gettoken(&vm_token);
436 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
437 		if (fs.wired)
438 			vm_page_wire(fs.m);
439 		else
440 			vm_page_unwire(fs.m, 1);
441 	} else {
442 		vm_page_activate(fs.m);
443 	}
444 
445 	if (curthread->td_lwp) {
446 		if (fs.hardfault) {
447 			curthread->td_lwp->lwp_ru.ru_majflt++;
448 		} else {
449 			curthread->td_lwp->lwp_ru.ru_minflt++;
450 		}
451 	}
452 
453 	/*
454 	 * Unlock everything, and return
455 	 */
456 	vm_page_wakeup(fs.m);
457 	vm_object_deallocate(fs.first_object);
458 	lwkt_reltoken(&vm_token);
459 
460 	return (KERN_SUCCESS);
461 }
462 
463 /*
464  * Fault in the specified virtual address in the current process map,
465  * returning a held VM page or NULL.  See vm_fault_page() for more
466  * information.
467  *
468  * No requirements.
469  */
470 vm_page_t
471 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
472 {
473 	struct lwp *lp = curthread->td_lwp;
474 	vm_page_t m;
475 
476 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
477 			  fault_type, VM_FAULT_NORMAL, errorp);
478 	return(m);
479 }
480 
481 /*
482  * Fault in the specified virtual address in the specified map, doing all
483  * necessary manipulation of the object store and all necessary I/O.  Return
484  * a held VM page or NULL, and set *errorp.  The related pmap is not
485  * updated.
486  *
487  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
488  * and marked PG_REFERENCED as well.
489  *
490  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
491  * error will be returned.
492  *
493  * No requirements.
494  */
495 vm_page_t
496 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
497 	      int fault_flags, int *errorp)
498 {
499 	vm_pindex_t first_pindex;
500 	struct faultstate fs;
501 	int result;
502 	vm_prot_t orig_fault_type = fault_type;
503 
504 	mycpu->gd_cnt.v_vm_faults++;
505 
506 	fs.didlimit = 0;
507 	fs.hardfault = 0;
508 	fs.fault_flags = fault_flags;
509 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
510 
511 RetryFault:
512 	/*
513 	 * Find the vm_map_entry representing the backing store and resolve
514 	 * the top level object and page index.  This may have the side
515 	 * effect of executing a copy-on-write on the map entry and/or
516 	 * creating a shadow object, but will not COW any actual VM pages.
517 	 *
518 	 * On success fs.map is left read-locked and various other fields
519 	 * are initialized but not otherwise referenced or locked.
520 	 *
521 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
522 	 * if the map entry is a virtual page table and also writable,
523 	 * so we can set the 'A'accessed bit in the virtual page table entry.
524 	 */
525 	fs.map = map;
526 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
527 			       &fs.entry, &fs.first_object,
528 			       &first_pindex, &fs.first_prot, &fs.wired);
529 
530 	if (result != KERN_SUCCESS) {
531 		*errorp = result;
532 		return (NULL);
533 	}
534 
535 	/*
536 	 * fs.map is read-locked
537 	 *
538 	 * Misc checks.  Save the map generation number to detect races.
539 	 */
540 	fs.map_generation = fs.map->timestamp;
541 
542 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
543 		panic("vm_fault: fault on nofault entry, addr: %lx",
544 		    (u_long)vaddr);
545 	}
546 
547 	/*
548 	 * A system map entry may return a NULL object.  No object means
549 	 * no pager means an unrecoverable kernel fault.
550 	 */
551 	if (fs.first_object == NULL) {
552 		panic("vm_fault: unrecoverable fault at %p in entry %p",
553 			(void *)vaddr, fs.entry);
554 	}
555 
556 	/*
557 	 * Make a reference to this object to prevent its disposal while we
558 	 * are messing with it.  Once we have the reference, the map is free
559 	 * to be diddled.  Since objects reference their shadows (and copies),
560 	 * they will stay around as well.
561 	 *
562 	 * Bump the paging-in-progress count to prevent size changes (e.g.
563 	 * truncation operations) during I/O.  This must be done after
564 	 * obtaining the vnode lock in order to avoid possible deadlocks.
565 	 *
566 	 * The vm_token is needed to manipulate the vm_object
567 	 */
568 	lwkt_gettoken(&vm_token);
569 	vm_object_reference(fs.first_object);
570 	fs.vp = vnode_pager_lock(fs.first_object);
571 	vm_object_pip_add(fs.first_object, 1);
572 	lwkt_reltoken(&vm_token);
573 
574 	fs.lookup_still_valid = TRUE;
575 	fs.first_m = NULL;
576 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
577 
578 	/*
579 	 * If the entry is wired we cannot change the page protection.
580 	 */
581 	if (fs.wired)
582 		fault_type = fs.first_prot;
583 
584 	/*
585 	 * The page we want is at (first_object, first_pindex), but if the
586 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
587 	 * page table to figure out the actual pindex.
588 	 *
589 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
590 	 * ONLY
591 	 */
592 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
593 		result = vm_fault_vpagetable(&fs, &first_pindex,
594 					     fs.entry->aux.master_pde,
595 					     fault_type);
596 		if (result == KERN_TRY_AGAIN)
597 			goto RetryFault;
598 		if (result != KERN_SUCCESS) {
599 			*errorp = result;
600 			return (NULL);
601 		}
602 	}
603 
604 	/*
605 	 * Now we have the actual (object, pindex), fault in the page.  If
606 	 * vm_fault_object() fails it will unlock and deallocate the FS
607 	 * data.   If it succeeds everything remains locked and fs->object
608 	 * will have an additinal PIP count if it is not equal to
609 	 * fs->first_object
610 	 */
611 	result = vm_fault_object(&fs, first_pindex, fault_type);
612 
613 	if (result == KERN_TRY_AGAIN)
614 		goto RetryFault;
615 	if (result != KERN_SUCCESS) {
616 		*errorp = result;
617 		return(NULL);
618 	}
619 
620 	if ((orig_fault_type & VM_PROT_WRITE) &&
621 	    (fs.prot & VM_PROT_WRITE) == 0) {
622 		*errorp = KERN_PROTECTION_FAILURE;
623 		unlock_and_deallocate(&fs);
624 		return(NULL);
625 	}
626 
627 	/*
628 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
629 	 * will contain a busied page.
630 	 */
631 	unlock_things(&fs);
632 
633 	/*
634 	 * Return a held page.  We are not doing any pmap manipulation so do
635 	 * not set PG_MAPPED.  However, adjust the page flags according to
636 	 * the fault type because the caller may not use a managed pmapping
637 	 * (so we don't want to lose the fact that the page will be dirtied
638 	 * if a write fault was specified).
639 	 */
640 	lwkt_gettoken(&vm_token);
641 	vm_page_hold(fs.m);
642 	vm_page_flag_clear(fs.m, PG_ZERO);
643 	if (fault_type & VM_PROT_WRITE)
644 		vm_page_dirty(fs.m);
645 
646 	/*
647 	 * Update the pmap.  We really only have to do this if a COW
648 	 * occured to replace the read-only page with the new page.  For
649 	 * now just do it unconditionally. XXX
650 	 */
651 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
652 	vm_page_flag_set(fs.m, PG_REFERENCED);
653 
654 	/*
655 	 * Unbusy the page by activating it.  It remains held and will not
656 	 * be reclaimed.
657 	 */
658 	vm_page_activate(fs.m);
659 
660 	if (curthread->td_lwp) {
661 		if (fs.hardfault) {
662 			curthread->td_lwp->lwp_ru.ru_majflt++;
663 		} else {
664 			curthread->td_lwp->lwp_ru.ru_minflt++;
665 		}
666 	}
667 
668 	/*
669 	 * Unlock everything, and return the held page.
670 	 */
671 	vm_page_wakeup(fs.m);
672 	vm_object_deallocate(fs.first_object);
673 	lwkt_reltoken(&vm_token);
674 
675 	*errorp = 0;
676 	return(fs.m);
677 }
678 
679 /*
680  * Fault in the specified (object,offset), dirty the returned page as
681  * needed.  If the requested fault_type cannot be done NULL and an
682  * error is returned.
683  *
684  * A held (but not busied) page is returned.
685  *
686  * No requirements.
687  */
688 vm_page_t
689 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
690 		     vm_prot_t fault_type, int fault_flags, int *errorp)
691 {
692 	int result;
693 	vm_pindex_t first_pindex;
694 	struct faultstate fs;
695 	struct vm_map_entry entry;
696 
697 	bzero(&entry, sizeof(entry));
698 	entry.object.vm_object = object;
699 	entry.maptype = VM_MAPTYPE_NORMAL;
700 	entry.protection = entry.max_protection = fault_type;
701 
702 	fs.didlimit = 0;
703 	fs.hardfault = 0;
704 	fs.fault_flags = fault_flags;
705 	fs.map = NULL;
706 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
707 
708 RetryFault:
709 
710 	fs.first_object = object;
711 	first_pindex = OFF_TO_IDX(offset);
712 	fs.entry = &entry;
713 	fs.first_prot = fault_type;
714 	fs.wired = 0;
715 	/*fs.map_generation = 0; unused */
716 
717 	/*
718 	 * Make a reference to this object to prevent its disposal while we
719 	 * are messing with it.  Once we have the reference, the map is free
720 	 * to be diddled.  Since objects reference their shadows (and copies),
721 	 * they will stay around as well.
722 	 *
723 	 * Bump the paging-in-progress count to prevent size changes (e.g.
724 	 * truncation operations) during I/O.  This must be done after
725 	 * obtaining the vnode lock in order to avoid possible deadlocks.
726 	 */
727 	lwkt_gettoken(&vm_token);
728 	vm_object_reference(fs.first_object);
729 	fs.vp = vnode_pager_lock(fs.first_object);
730 	vm_object_pip_add(fs.first_object, 1);
731 	lwkt_reltoken(&vm_token);
732 
733 	fs.lookup_still_valid = TRUE;
734 	fs.first_m = NULL;
735 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
736 
737 #if 0
738 	/* XXX future - ability to operate on VM object using vpagetable */
739 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
740 		result = vm_fault_vpagetable(&fs, &first_pindex,
741 					     fs.entry->aux.master_pde,
742 					     fault_type);
743 		if (result == KERN_TRY_AGAIN)
744 			goto RetryFault;
745 		if (result != KERN_SUCCESS) {
746 			*errorp = result;
747 			return (NULL);
748 		}
749 	}
750 #endif
751 
752 	/*
753 	 * Now we have the actual (object, pindex), fault in the page.  If
754 	 * vm_fault_object() fails it will unlock and deallocate the FS
755 	 * data.   If it succeeds everything remains locked and fs->object
756 	 * will have an additinal PIP count if it is not equal to
757 	 * fs->first_object
758 	 */
759 	result = vm_fault_object(&fs, first_pindex, fault_type);
760 
761 	if (result == KERN_TRY_AGAIN)
762 		goto RetryFault;
763 	if (result != KERN_SUCCESS) {
764 		*errorp = result;
765 		return(NULL);
766 	}
767 
768 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
769 		*errorp = KERN_PROTECTION_FAILURE;
770 		unlock_and_deallocate(&fs);
771 		return(NULL);
772 	}
773 
774 	/*
775 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
776 	 * will contain a busied page.
777 	 */
778 	unlock_things(&fs);
779 
780 	/*
781 	 * Return a held page.  We are not doing any pmap manipulation so do
782 	 * not set PG_MAPPED.  However, adjust the page flags according to
783 	 * the fault type because the caller may not use a managed pmapping
784 	 * (so we don't want to lose the fact that the page will be dirtied
785 	 * if a write fault was specified).
786 	 */
787 	lwkt_gettoken(&vm_token);
788 	vm_page_hold(fs.m);
789 	vm_page_flag_clear(fs.m, PG_ZERO);
790 	if (fault_type & VM_PROT_WRITE)
791 		vm_page_dirty(fs.m);
792 
793 	if (fault_flags & VM_FAULT_DIRTY)
794 		vm_page_dirty(fs.m);
795 	if (fault_flags & VM_FAULT_UNSWAP)
796 		swap_pager_unswapped(fs.m);
797 
798 	/*
799 	 * Indicate that the page was accessed.
800 	 */
801 	vm_page_flag_set(fs.m, PG_REFERENCED);
802 
803 	/*
804 	 * Unbusy the page by activating it.  It remains held and will not
805 	 * be reclaimed.
806 	 */
807 	vm_page_activate(fs.m);
808 
809 	if (curthread->td_lwp) {
810 		if (fs.hardfault) {
811 			mycpu->gd_cnt.v_vm_faults++;
812 			curthread->td_lwp->lwp_ru.ru_majflt++;
813 		} else {
814 			curthread->td_lwp->lwp_ru.ru_minflt++;
815 		}
816 	}
817 
818 	/*
819 	 * Unlock everything, and return the held page.
820 	 */
821 	vm_page_wakeup(fs.m);
822 	vm_object_deallocate(fs.first_object);
823 	lwkt_reltoken(&vm_token);
824 
825 	*errorp = 0;
826 	return(fs.m);
827 }
828 
829 /*
830  * Translate the virtual page number (first_pindex) that is relative
831  * to the address space into a logical page number that is relative to the
832  * backing object.  Use the virtual page table pointed to by (vpte).
833  *
834  * This implements an N-level page table.  Any level can terminate the
835  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
836  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
837  *
838  * No requirements (vm_token need not be held).
839  */
840 static
841 int
842 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
843 		    vpte_t vpte, int fault_type)
844 {
845 	struct lwbuf *lwb;
846 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
847 	int result = KERN_SUCCESS;
848 	vpte_t *ptep;
849 
850 	for (;;) {
851 		/*
852 		 * We cannot proceed if the vpte is not valid, not readable
853 		 * for a read fault, or not writable for a write fault.
854 		 */
855 		if ((vpte & VPTE_V) == 0) {
856 			unlock_and_deallocate(fs);
857 			return (KERN_FAILURE);
858 		}
859 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
860 			unlock_and_deallocate(fs);
861 			return (KERN_FAILURE);
862 		}
863 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
864 			unlock_and_deallocate(fs);
865 			return (KERN_FAILURE);
866 		}
867 		if ((vpte & VPTE_PS) || vshift == 0)
868 			break;
869 		KKASSERT(vshift >= VPTE_PAGE_BITS);
870 
871 		/*
872 		 * Get the page table page.  Nominally we only read the page
873 		 * table, but since we are actively setting VPTE_M and VPTE_A,
874 		 * tell vm_fault_object() that we are writing it.
875 		 *
876 		 * There is currently no real need to optimize this.
877 		 */
878 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
879 					 VM_PROT_READ|VM_PROT_WRITE);
880 		if (result != KERN_SUCCESS)
881 			return (result);
882 
883 		/*
884 		 * Process the returned fs.m and look up the page table
885 		 * entry in the page table page.
886 		 */
887 		vshift -= VPTE_PAGE_BITS;
888 		lwb = lwbuf_alloc(fs->m);
889 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
890 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
891 		vpte = *ptep;
892 
893 		/*
894 		 * Page table write-back.  If the vpte is valid for the
895 		 * requested operation, do a write-back to the page table.
896 		 *
897 		 * XXX VPTE_M is not set properly for page directory pages.
898 		 * It doesn't get set in the page directory if the page table
899 		 * is modified during a read access.
900 		 */
901 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
902 		    (vpte & VPTE_W)) {
903 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
904 				atomic_set_long(ptep, VPTE_M | VPTE_A);
905 				vm_page_dirty(fs->m);
906 			}
907 		}
908 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
909 		    (vpte & VPTE_R)) {
910 			if ((vpte & VPTE_A) == 0) {
911 				atomic_set_long(ptep, VPTE_A);
912 				vm_page_dirty(fs->m);
913 			}
914 		}
915 		lwbuf_free(lwb);
916 		vm_page_flag_set(fs->m, PG_REFERENCED);
917 		vm_page_activate(fs->m);
918 		vm_page_wakeup(fs->m);
919 		cleanup_successful_fault(fs);
920 	}
921 	/*
922 	 * Combine remaining address bits with the vpte.
923 	 */
924 	/* JG how many bits from each? */
925 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
926 		  (*pindex & ((1L << vshift) - 1));
927 	return (KERN_SUCCESS);
928 }
929 
930 
931 /*
932  * This is the core of the vm_fault code.
933  *
934  * Do all operations required to fault-in (fs.first_object, pindex).  Run
935  * through the shadow chain as necessary and do required COW or virtual
936  * copy operations.  The caller has already fully resolved the vm_map_entry
937  * and, if appropriate, has created a copy-on-write layer.  All we need to
938  * do is iterate the object chain.
939  *
940  * On failure (fs) is unlocked and deallocated and the caller may return or
941  * retry depending on the failure code.  On success (fs) is NOT unlocked or
942  * deallocated, fs.m will contained a resolved, busied page, and fs.object
943  * will have an additional PIP count if it is not equal to fs.first_object.
944  *
945  * No requirements.
946  */
947 static
948 int
949 vm_fault_object(struct faultstate *fs,
950 		vm_pindex_t first_pindex, vm_prot_t fault_type)
951 {
952 	vm_object_t next_object;
953 	vm_pindex_t pindex;
954 
955 	fs->prot = fs->first_prot;
956 	fs->object = fs->first_object;
957 	pindex = first_pindex;
958 
959 	/*
960 	 * If a read fault occurs we try to make the page writable if
961 	 * possible.  There are three cases where we cannot make the
962 	 * page mapping writable:
963 	 *
964 	 * (1) The mapping is read-only or the VM object is read-only,
965 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
966 	 *
967 	 * (2) If the mapping is a virtual page table we need to be able
968 	 *     to detect writes so we can set VPTE_M in the virtual page
969 	 *     table.
970 	 *
971 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
972 	 *     just result in an unnecessary COW fault.
973 	 *
974 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
975 	 * causes adjustments to the 'M'odify bit to also turn off write
976 	 * access to force a re-fault.
977 	 */
978 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
979 		if ((fault_type & VM_PROT_WRITE) == 0)
980 			fs->prot &= ~VM_PROT_WRITE;
981 	}
982 
983 	lwkt_gettoken(&vm_token);
984 
985 	for (;;) {
986 		/*
987 		 * If the object is dead, we stop here
988 		 */
989 		if (fs->object->flags & OBJ_DEAD) {
990 			unlock_and_deallocate(fs);
991 			lwkt_reltoken(&vm_token);
992 			return (KERN_PROTECTION_FAILURE);
993 		}
994 
995 		/*
996 		 * See if page is resident.  spl protection is required
997 		 * to avoid an interrupt unbusy/free race against our
998 		 * lookup.  We must hold the protection through a page
999 		 * allocation or busy.
1000 		 */
1001 		crit_enter();
1002 		fs->m = vm_page_lookup(fs->object, pindex);
1003 		if (fs->m != NULL) {
1004 			int queue;
1005 			/*
1006 			 * Wait/Retry if the page is busy.  We have to do this
1007 			 * if the page is busy via either PG_BUSY or
1008 			 * vm_page_t->busy because the vm_pager may be using
1009 			 * vm_page_t->busy for pageouts ( and even pageins if
1010 			 * it is the vnode pager ), and we could end up trying
1011 			 * to pagein and pageout the same page simultaneously.
1012 			 *
1013 			 * We can theoretically allow the busy case on a read
1014 			 * fault if the page is marked valid, but since such
1015 			 * pages are typically already pmap'd, putting that
1016 			 * special case in might be more effort then it is
1017 			 * worth.  We cannot under any circumstances mess
1018 			 * around with a vm_page_t->busy page except, perhaps,
1019 			 * to pmap it.
1020 			 */
1021 			if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
1022 				unlock_things(fs);
1023 				vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1024 				mycpu->gd_cnt.v_intrans++;
1025 				vm_object_deallocate(fs->first_object);
1026 				fs->first_object = NULL;
1027 				lwkt_reltoken(&vm_token);
1028 				crit_exit();
1029 				return (KERN_TRY_AGAIN);
1030 			}
1031 
1032 			/*
1033 			 * If reactivating a page from PQ_CACHE we may have
1034 			 * to rate-limit.
1035 			 */
1036 			queue = fs->m->queue;
1037 			vm_page_unqueue_nowakeup(fs->m);
1038 
1039 			if ((queue - fs->m->pc) == PQ_CACHE &&
1040 			    vm_page_count_severe()) {
1041 				vm_page_activate(fs->m);
1042 				unlock_and_deallocate(fs);
1043 				vm_waitpfault();
1044 				lwkt_reltoken(&vm_token);
1045 				crit_exit();
1046 				return (KERN_TRY_AGAIN);
1047 			}
1048 
1049 			/*
1050 			 * Mark page busy for other processes, and the
1051 			 * pagedaemon.  If it still isn't completely valid
1052 			 * (readable), or if a read-ahead-mark is set on
1053 			 * the VM page, jump to readrest, else we found the
1054 			 * page and can return.
1055 			 *
1056 			 * We can release the spl once we have marked the
1057 			 * page busy.
1058 			 */
1059 			vm_page_busy(fs->m);
1060 			crit_exit();
1061 
1062 			if (fs->m->object != &kernel_object) {
1063 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1064 				    VM_PAGE_BITS_ALL) {
1065 					goto readrest;
1066 				}
1067 				if (fs->m->flags & PG_RAM) {
1068 					if (debug_cluster)
1069 						kprintf("R");
1070 					vm_page_flag_clear(fs->m, PG_RAM);
1071 					goto readrest;
1072 				}
1073 			}
1074 			break; /* break to PAGE HAS BEEN FOUND */
1075 		}
1076 
1077 		/*
1078 		 * Page is not resident, If this is the search termination
1079 		 * or the pager might contain the page, allocate a new page.
1080 		 *
1081 		 * NOTE: We are still in a critical section.
1082 		 */
1083 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1084 			/*
1085 			 * If the page is beyond the object size we fail
1086 			 */
1087 			if (pindex >= fs->object->size) {
1088 				lwkt_reltoken(&vm_token);
1089 				crit_exit();
1090 				unlock_and_deallocate(fs);
1091 				return (KERN_PROTECTION_FAILURE);
1092 			}
1093 
1094 			/*
1095 			 * Ratelimit.
1096 			 */
1097 			if (fs->didlimit == 0 && curproc != NULL) {
1098 				int limticks;
1099 
1100 				limticks = vm_fault_ratelimit(curproc->p_vmspace);
1101 				if (limticks) {
1102 					lwkt_reltoken(&vm_token);
1103 					crit_exit();
1104 					unlock_and_deallocate(fs);
1105 					tsleep(curproc, 0, "vmrate", limticks);
1106 					fs->didlimit = 1;
1107 					return (KERN_TRY_AGAIN);
1108 				}
1109 			}
1110 
1111 			/*
1112 			 * Allocate a new page for this object/offset pair.
1113 			 */
1114 			fs->m = NULL;
1115 			if (!vm_page_count_severe()) {
1116 				fs->m = vm_page_alloc(fs->object, pindex,
1117 				    (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1118 			}
1119 			if (fs->m == NULL) {
1120 				lwkt_reltoken(&vm_token);
1121 				crit_exit();
1122 				unlock_and_deallocate(fs);
1123 				vm_waitpfault();
1124 				return (KERN_TRY_AGAIN);
1125 			}
1126 		}
1127 		crit_exit();
1128 
1129 readrest:
1130 		/*
1131 		 * We have found an invalid or partially valid page, a
1132 		 * page with a read-ahead mark which might be partially or
1133 		 * fully valid (and maybe dirty too), or we have allocated
1134 		 * a new page.
1135 		 *
1136 		 * Attempt to fault-in the page if there is a chance that the
1137 		 * pager has it, and potentially fault in additional pages
1138 		 * at the same time.
1139 		 *
1140 		 * We are NOT in splvm here and if TRYPAGER is true then
1141 		 * fs.m will be non-NULL and will be PG_BUSY for us.
1142 		 */
1143 		if (TRYPAGER(fs)) {
1144 			int rv;
1145 			int seqaccess;
1146 			u_char behavior = vm_map_entry_behavior(fs->entry);
1147 
1148 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1149 				seqaccess = 0;
1150 			else
1151 				seqaccess = -1;
1152 
1153 			/*
1154 			 * If sequential access is detected then attempt
1155 			 * to deactivate/cache pages behind the scan to
1156 			 * prevent resource hogging.
1157 			 *
1158 			 * Use of PG_RAM to detect sequential access
1159 			 * also simulates multi-zone sequential access
1160 			 * detection for free.
1161 			 *
1162 			 * NOTE: Partially valid dirty pages cannot be
1163 			 *	 deactivated without causing NFS picemeal
1164 			 *	 writes to barf.
1165 			 */
1166 			if ((fs->first_object->type != OBJT_DEVICE) &&
1167 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1168                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1169 				 (fs->m->flags & PG_RAM)))
1170 			) {
1171 				vm_pindex_t scan_pindex;
1172 				int scan_count = 16;
1173 
1174 				if (first_pindex < 16) {
1175 					scan_pindex = 0;
1176 					scan_count = 0;
1177 				} else {
1178 					scan_pindex = first_pindex - 16;
1179 					if (scan_pindex < 16)
1180 						scan_count = scan_pindex;
1181 					else
1182 						scan_count = 16;
1183 				}
1184 
1185 				crit_enter();
1186 				while (scan_count) {
1187 					vm_page_t mt;
1188 
1189 					mt = vm_page_lookup(fs->first_object,
1190 							    scan_pindex);
1191 					if (mt == NULL ||
1192 					    (mt->valid != VM_PAGE_BITS_ALL)) {
1193 						break;
1194 					}
1195 					if (mt->busy ||
1196 					    (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1197 					    mt->hold_count ||
1198 					    mt->wire_count)  {
1199 						goto skip;
1200 					}
1201 					if (mt->dirty == 0)
1202 						vm_page_test_dirty(mt);
1203 					if (mt->dirty) {
1204 						vm_page_busy(mt);
1205 						vm_page_protect(mt,
1206 								VM_PROT_NONE);
1207 						vm_page_deactivate(mt);
1208 						vm_page_wakeup(mt);
1209 					} else {
1210 						vm_page_cache(mt);
1211 					}
1212 skip:
1213 					--scan_count;
1214 					--scan_pindex;
1215 				}
1216 				crit_exit();
1217 
1218 				seqaccess = 1;
1219 			}
1220 
1221 			/*
1222 			 * Avoid deadlocking against the map when doing I/O.
1223 			 * fs.object and the page is PG_BUSY'd.
1224 			 */
1225 			unlock_map(fs);
1226 
1227 			/*
1228 			 * Acquire the page data.  We still hold a ref on
1229 			 * fs.object and the page has been PG_BUSY's.
1230 			 *
1231 			 * The pager may replace the page (for example, in
1232 			 * order to enter a fictitious page into the
1233 			 * object).  If it does so it is responsible for
1234 			 * cleaning up the passed page and properly setting
1235 			 * the new page PG_BUSY.
1236 			 *
1237 			 * If we got here through a PG_RAM read-ahead
1238 			 * mark the page may be partially dirty and thus
1239 			 * not freeable.  Don't bother checking to see
1240 			 * if the pager has the page because we can't free
1241 			 * it anyway.  We have to depend on the get_page
1242 			 * operation filling in any gaps whether there is
1243 			 * backing store or not.
1244 			 */
1245 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1246 
1247 			if (rv == VM_PAGER_OK) {
1248 				/*
1249 				 * Relookup in case pager changed page. Pager
1250 				 * is responsible for disposition of old page
1251 				 * if moved.
1252 				 *
1253 				 * XXX other code segments do relookups too.
1254 				 * It's a bad abstraction that needs to be
1255 				 * fixed/removed.
1256 				 */
1257 				fs->m = vm_page_lookup(fs->object, pindex);
1258 				if (fs->m == NULL) {
1259 					lwkt_reltoken(&vm_token);
1260 					unlock_and_deallocate(fs);
1261 					return (KERN_TRY_AGAIN);
1262 				}
1263 
1264 				++fs->hardfault;
1265 				break; /* break to PAGE HAS BEEN FOUND */
1266 			}
1267 
1268 			/*
1269 			 * Remove the bogus page (which does not exist at this
1270 			 * object/offset); before doing so, we must get back
1271 			 * our object lock to preserve our invariant.
1272 			 *
1273 			 * Also wake up any other process that may want to bring
1274 			 * in this page.
1275 			 *
1276 			 * If this is the top-level object, we must leave the
1277 			 * busy page to prevent another process from rushing
1278 			 * past us, and inserting the page in that object at
1279 			 * the same time that we are.
1280 			 */
1281 			if (rv == VM_PAGER_ERROR) {
1282 				if (curproc)
1283 					kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1284 				else
1285 					kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1286 			}
1287 
1288 			/*
1289 			 * Data outside the range of the pager or an I/O error
1290 			 *
1291 			 * The page may have been wired during the pagein,
1292 			 * e.g. by the buffer cache, and cannot simply be
1293 			 * freed.  Call vnode_pager_freepage() to deal with it.
1294 			 */
1295 			/*
1296 			 * XXX - the check for kernel_map is a kludge to work
1297 			 * around having the machine panic on a kernel space
1298 			 * fault w/ I/O error.
1299 			 */
1300 			if (((fs->map != &kernel_map) &&
1301 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1302 				vnode_pager_freepage(fs->m);
1303 				lwkt_reltoken(&vm_token);
1304 				fs->m = NULL;
1305 				unlock_and_deallocate(fs);
1306 				if (rv == VM_PAGER_ERROR)
1307 					return (KERN_FAILURE);
1308 				else
1309 					return (KERN_PROTECTION_FAILURE);
1310 				/* NOT REACHED */
1311 			}
1312 			if (fs->object != fs->first_object) {
1313 				vnode_pager_freepage(fs->m);
1314 				fs->m = NULL;
1315 				/*
1316 				 * XXX - we cannot just fall out at this
1317 				 * point, m has been freed and is invalid!
1318 				 */
1319 			}
1320 		}
1321 
1322 		/*
1323 		 * We get here if the object has a default pager (or unwiring)
1324 		 * or the pager doesn't have the page.
1325 		 */
1326 		if (fs->object == fs->first_object)
1327 			fs->first_m = fs->m;
1328 
1329 		/*
1330 		 * Move on to the next object.  Lock the next object before
1331 		 * unlocking the current one.
1332 		 */
1333 		pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1334 		next_object = fs->object->backing_object;
1335 		if (next_object == NULL) {
1336 			/*
1337 			 * If there's no object left, fill the page in the top
1338 			 * object with zeros.
1339 			 */
1340 			if (fs->object != fs->first_object) {
1341 				vm_object_pip_wakeup(fs->object);
1342 
1343 				fs->object = fs->first_object;
1344 				pindex = first_pindex;
1345 				fs->m = fs->first_m;
1346 			}
1347 			fs->first_m = NULL;
1348 
1349 			/*
1350 			 * Zero the page if necessary and mark it valid.
1351 			 */
1352 			if ((fs->m->flags & PG_ZERO) == 0) {
1353 				vm_page_zero_fill(fs->m);
1354 			} else {
1355 				mycpu->gd_cnt.v_ozfod++;
1356 			}
1357 			mycpu->gd_cnt.v_zfod++;
1358 			fs->m->valid = VM_PAGE_BITS_ALL;
1359 			break;	/* break to PAGE HAS BEEN FOUND */
1360 		}
1361 		if (fs->object != fs->first_object) {
1362 			vm_object_pip_wakeup(fs->object);
1363 		}
1364 		KASSERT(fs->object != next_object,
1365 			("object loop %p", next_object));
1366 		fs->object = next_object;
1367 		vm_object_pip_add(fs->object, 1);
1368 	}
1369 
1370 	/*
1371 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1372 	 * is held.]
1373 	 *
1374 	 * vm_token is still held
1375 	 *
1376 	 * If the page is being written, but isn't already owned by the
1377 	 * top-level object, we have to copy it into a new page owned by the
1378 	 * top-level object.
1379 	 */
1380 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1381 		("vm_fault: not busy after main loop"));
1382 
1383 	if (fs->object != fs->first_object) {
1384 		/*
1385 		 * We only really need to copy if we want to write it.
1386 		 */
1387 		if (fault_type & VM_PROT_WRITE) {
1388 			/*
1389 			 * This allows pages to be virtually copied from a
1390 			 * backing_object into the first_object, where the
1391 			 * backing object has no other refs to it, and cannot
1392 			 * gain any more refs.  Instead of a bcopy, we just
1393 			 * move the page from the backing object to the
1394 			 * first object.  Note that we must mark the page
1395 			 * dirty in the first object so that it will go out
1396 			 * to swap when needed.
1397 			 */
1398 			if (
1399 				/*
1400 				 * Map, if present, has not changed
1401 				 */
1402 				(fs->map == NULL ||
1403 				fs->map_generation == fs->map->timestamp) &&
1404 				/*
1405 				 * Only one shadow object
1406 				 */
1407 				(fs->object->shadow_count == 1) &&
1408 				/*
1409 				 * No COW refs, except us
1410 				 */
1411 				(fs->object->ref_count == 1) &&
1412 				/*
1413 				 * No one else can look this object up
1414 				 */
1415 				(fs->object->handle == NULL) &&
1416 				/*
1417 				 * No other ways to look the object up
1418 				 */
1419 				((fs->object->type == OBJT_DEFAULT) ||
1420 				 (fs->object->type == OBJT_SWAP)) &&
1421 				/*
1422 				 * We don't chase down the shadow chain
1423 				 */
1424 				(fs->object == fs->first_object->backing_object) &&
1425 
1426 				/*
1427 				 * grab the lock if we need to
1428 				 */
1429 				(fs->lookup_still_valid ||
1430 				 fs->map == NULL ||
1431 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1432 			    ) {
1433 
1434 				fs->lookup_still_valid = 1;
1435 				/*
1436 				 * get rid of the unnecessary page
1437 				 */
1438 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1439 				vm_page_free(fs->first_m);
1440 				fs->first_m = NULL;
1441 
1442 				/*
1443 				 * grab the page and put it into the
1444 				 * process'es object.  The page is
1445 				 * automatically made dirty.
1446 				 */
1447 				vm_page_rename(fs->m, fs->first_object, first_pindex);
1448 				fs->first_m = fs->m;
1449 				vm_page_busy(fs->first_m);
1450 				fs->m = NULL;
1451 				mycpu->gd_cnt.v_cow_optim++;
1452 			} else {
1453 				/*
1454 				 * Oh, well, lets copy it.
1455 				 */
1456 				vm_page_copy(fs->m, fs->first_m);
1457 				vm_page_event(fs->m, VMEVENT_COW);
1458 			}
1459 
1460 			if (fs->m) {
1461 				/*
1462 				 * We no longer need the old page or object.
1463 				 */
1464 				release_page(fs);
1465 			}
1466 
1467 			/*
1468 			 * fs->object != fs->first_object due to above
1469 			 * conditional
1470 			 */
1471 			vm_object_pip_wakeup(fs->object);
1472 
1473 			/*
1474 			 * Only use the new page below...
1475 			 */
1476 
1477 			mycpu->gd_cnt.v_cow_faults++;
1478 			fs->m = fs->first_m;
1479 			fs->object = fs->first_object;
1480 			pindex = first_pindex;
1481 		} else {
1482 			/*
1483 			 * If it wasn't a write fault avoid having to copy
1484 			 * the page by mapping it read-only.
1485 			 */
1486 			fs->prot &= ~VM_PROT_WRITE;
1487 		}
1488 	}
1489 
1490 	/*
1491 	 * We may have had to unlock a map to do I/O.  If we did then
1492 	 * lookup_still_valid will be FALSE.  If the map generation count
1493 	 * also changed then all sorts of things could have happened while
1494 	 * we were doing the I/O and we need to retry.
1495 	 */
1496 
1497 	if (!fs->lookup_still_valid &&
1498 	    fs->map != NULL &&
1499 	    (fs->map->timestamp != fs->map_generation)) {
1500 		release_page(fs);
1501 		lwkt_reltoken(&vm_token);
1502 		unlock_and_deallocate(fs);
1503 		return (KERN_TRY_AGAIN);
1504 	}
1505 
1506 	/*
1507 	 * If the fault is a write, we know that this page is being
1508 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1509 	 * calls later.
1510 	 *
1511 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1512 	 * if the page is already dirty to prevent data written with
1513 	 * the expectation of being synced from not being synced.
1514 	 * Likewise if this entry does not request NOSYNC then make
1515 	 * sure the page isn't marked NOSYNC.  Applications sharing
1516 	 * data should use the same flags to avoid ping ponging.
1517 	 *
1518 	 * Also tell the backing pager, if any, that it should remove
1519 	 * any swap backing since the page is now dirty.
1520 	 */
1521 	if (fs->prot & VM_PROT_WRITE) {
1522 		vm_object_set_writeable_dirty(fs->m->object);
1523 		if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1524 			if (fs->m->dirty == 0)
1525 				vm_page_flag_set(fs->m, PG_NOSYNC);
1526 		} else {
1527 			vm_page_flag_clear(fs->m, PG_NOSYNC);
1528 		}
1529 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1530 			crit_enter();
1531 			vm_page_dirty(fs->m);
1532 			swap_pager_unswapped(fs->m);
1533 			crit_exit();
1534 		}
1535 	}
1536 
1537 	lwkt_reltoken(&vm_token);
1538 
1539 	/*
1540 	 * Page had better still be busy.  We are still locked up and
1541 	 * fs->object will have another PIP reference if it is not equal
1542 	 * to fs->first_object.
1543 	 */
1544 	KASSERT(fs->m->flags & PG_BUSY,
1545 		("vm_fault: page %p not busy!", fs->m));
1546 
1547 	/*
1548 	 * Sanity check: page must be completely valid or it is not fit to
1549 	 * map into user space.  vm_pager_get_pages() ensures this.
1550 	 */
1551 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1552 		vm_page_zero_invalid(fs->m, TRUE);
1553 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1554 	}
1555 
1556 	return (KERN_SUCCESS);
1557 }
1558 
1559 /*
1560  * Wire down a range of virtual addresses in a map.  The entry in question
1561  * should be marked in-transition and the map must be locked.  We must
1562  * release the map temporarily while faulting-in the page to avoid a
1563  * deadlock.  Note that the entry may be clipped while we are blocked but
1564  * will never be freed.
1565  *
1566  * No requirements.
1567  */
1568 int
1569 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1570 {
1571 	boolean_t fictitious;
1572 	vm_offset_t start;
1573 	vm_offset_t end;
1574 	vm_offset_t va;
1575 	vm_paddr_t pa;
1576 	pmap_t pmap;
1577 	int rv;
1578 
1579 	pmap = vm_map_pmap(map);
1580 	start = entry->start;
1581 	end = entry->end;
1582 	fictitious = entry->object.vm_object &&
1583 			(entry->object.vm_object->type == OBJT_DEVICE);
1584 
1585 	lwkt_gettoken(&vm_token);
1586 	vm_map_unlock(map);
1587 	map->timestamp++;
1588 
1589 	/*
1590 	 * We simulate a fault to get the page and enter it in the physical
1591 	 * map.
1592 	 */
1593 	for (va = start; va < end; va += PAGE_SIZE) {
1594 		if (user_wire) {
1595 			rv = vm_fault(map, va, VM_PROT_READ,
1596 					VM_FAULT_USER_WIRE);
1597 		} else {
1598 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1599 					VM_FAULT_CHANGE_WIRING);
1600 		}
1601 		if (rv) {
1602 			while (va > start) {
1603 				va -= PAGE_SIZE;
1604 				if ((pa = pmap_extract(pmap, va)) == 0)
1605 					continue;
1606 				pmap_change_wiring(pmap, va, FALSE);
1607 				if (!fictitious)
1608 					vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1609 			}
1610 			vm_map_lock(map);
1611 			lwkt_reltoken(&vm_token);
1612 			return (rv);
1613 		}
1614 	}
1615 	vm_map_lock(map);
1616 	lwkt_reltoken(&vm_token);
1617 	return (KERN_SUCCESS);
1618 }
1619 
1620 /*
1621  * Unwire a range of virtual addresses in a map.  The map should be
1622  * locked.
1623  */
1624 void
1625 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1626 {
1627 	boolean_t fictitious;
1628 	vm_offset_t start;
1629 	vm_offset_t end;
1630 	vm_offset_t va;
1631 	vm_paddr_t pa;
1632 	pmap_t pmap;
1633 
1634 	pmap = vm_map_pmap(map);
1635 	start = entry->start;
1636 	end = entry->end;
1637 	fictitious = entry->object.vm_object &&
1638 			(entry->object.vm_object->type == OBJT_DEVICE);
1639 
1640 	/*
1641 	 * Since the pages are wired down, we must be able to get their
1642 	 * mappings from the physical map system.
1643 	 */
1644 	lwkt_gettoken(&vm_token);
1645 	for (va = start; va < end; va += PAGE_SIZE) {
1646 		pa = pmap_extract(pmap, va);
1647 		if (pa != 0) {
1648 			pmap_change_wiring(pmap, va, FALSE);
1649 			if (!fictitious)
1650 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1651 		}
1652 	}
1653 	lwkt_reltoken(&vm_token);
1654 }
1655 
1656 /*
1657  * Reduce the rate at which memory is allocated to a process based
1658  * on the perceived load on the VM system. As the load increases
1659  * the allocation burst rate goes down and the delay increases.
1660  *
1661  * Rate limiting does not apply when faulting active or inactive
1662  * pages.  When faulting 'cache' pages, rate limiting only applies
1663  * if the system currently has a severe page deficit.
1664  *
1665  * XXX vm_pagesupply should be increased when a page is freed.
1666  *
1667  * We sleep up to 1/10 of a second.
1668  */
1669 static int
1670 vm_fault_ratelimit(struct vmspace *vmspace)
1671 {
1672 	if (vm_load_enable == 0)
1673 		return(0);
1674 	if (vmspace->vm_pagesupply > 0) {
1675 		--vmspace->vm_pagesupply;	/* SMP race ok */
1676 		return(0);
1677 	}
1678 #ifdef INVARIANTS
1679 	if (vm_load_debug) {
1680 		kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1681 			vm_load,
1682 			(1000 - vm_load ) / 10, vm_load * hz / 10000,
1683 			curproc->p_pid, curproc->p_comm);
1684 	}
1685 #endif
1686 	vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1687 	return(vm_load * hz / 10000);
1688 }
1689 
1690 /*
1691  * Copy all of the pages from a wired-down map entry to another.
1692  *
1693  * The source and destination maps must be locked for write.
1694  * The source map entry must be wired down (or be a sharing map
1695  * entry corresponding to a main map entry that is wired down).
1696  *
1697  * No other requirements.
1698  */
1699 void
1700 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1701 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1702 {
1703 	vm_object_t dst_object;
1704 	vm_object_t src_object;
1705 	vm_ooffset_t dst_offset;
1706 	vm_ooffset_t src_offset;
1707 	vm_prot_t prot;
1708 	vm_offset_t vaddr;
1709 	vm_page_t dst_m;
1710 	vm_page_t src_m;
1711 
1712 #ifdef	lint
1713 	src_map++;
1714 #endif	/* lint */
1715 
1716 	src_object = src_entry->object.vm_object;
1717 	src_offset = src_entry->offset;
1718 
1719 	/*
1720 	 * Create the top-level object for the destination entry. (Doesn't
1721 	 * actually shadow anything - we copy the pages directly.)
1722 	 */
1723 	vm_map_entry_allocate_object(dst_entry);
1724 	dst_object = dst_entry->object.vm_object;
1725 
1726 	prot = dst_entry->max_protection;
1727 
1728 	/*
1729 	 * Loop through all of the pages in the entry's range, copying each
1730 	 * one from the source object (it should be there) to the destination
1731 	 * object.
1732 	 */
1733 	for (vaddr = dst_entry->start, dst_offset = 0;
1734 	    vaddr < dst_entry->end;
1735 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1736 
1737 		/*
1738 		 * Allocate a page in the destination object
1739 		 */
1740 		do {
1741 			dst_m = vm_page_alloc(dst_object,
1742 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1743 			if (dst_m == NULL) {
1744 				vm_wait(0);
1745 			}
1746 		} while (dst_m == NULL);
1747 
1748 		/*
1749 		 * Find the page in the source object, and copy it in.
1750 		 * (Because the source is wired down, the page will be in
1751 		 * memory.)
1752 		 */
1753 		src_m = vm_page_lookup(src_object,
1754 			OFF_TO_IDX(dst_offset + src_offset));
1755 		if (src_m == NULL)
1756 			panic("vm_fault_copy_wired: page missing");
1757 
1758 		vm_page_copy(src_m, dst_m);
1759 		vm_page_event(src_m, VMEVENT_COW);
1760 
1761 		/*
1762 		 * Enter it in the pmap...
1763 		 */
1764 
1765 		vm_page_flag_clear(dst_m, PG_ZERO);
1766 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1767 
1768 		/*
1769 		 * Mark it no longer busy, and put it on the active list.
1770 		 */
1771 		vm_page_activate(dst_m);
1772 		vm_page_wakeup(dst_m);
1773 	}
1774 }
1775 
1776 #if 0
1777 
1778 /*
1779  * This routine checks around the requested page for other pages that
1780  * might be able to be faulted in.  This routine brackets the viable
1781  * pages for the pages to be paged in.
1782  *
1783  * Inputs:
1784  *	m, rbehind, rahead
1785  *
1786  * Outputs:
1787  *  marray (array of vm_page_t), reqpage (index of requested page)
1788  *
1789  * Return value:
1790  *  number of pages in marray
1791  */
1792 static int
1793 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1794 			  vm_page_t *marray, int *reqpage)
1795 {
1796 	int i,j;
1797 	vm_object_t object;
1798 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1799 	vm_page_t rtm;
1800 	int cbehind, cahead;
1801 
1802 	object = m->object;
1803 	pindex = m->pindex;
1804 
1805 	/*
1806 	 * we don't fault-ahead for device pager
1807 	 */
1808 	if (object->type == OBJT_DEVICE) {
1809 		*reqpage = 0;
1810 		marray[0] = m;
1811 		return 1;
1812 	}
1813 
1814 	/*
1815 	 * if the requested page is not available, then give up now
1816 	 */
1817 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1818 		*reqpage = 0;	/* not used by caller, fix compiler warn */
1819 		return 0;
1820 	}
1821 
1822 	if ((cbehind == 0) && (cahead == 0)) {
1823 		*reqpage = 0;
1824 		marray[0] = m;
1825 		return 1;
1826 	}
1827 
1828 	if (rahead > cahead) {
1829 		rahead = cahead;
1830 	}
1831 
1832 	if (rbehind > cbehind) {
1833 		rbehind = cbehind;
1834 	}
1835 
1836 	/*
1837 	 * Do not do any readahead if we have insufficient free memory.
1838 	 *
1839 	 * XXX code was broken disabled before and has instability
1840 	 * with this conditonal fixed, so shortcut for now.
1841 	 */
1842 	if (burst_fault == 0 || vm_page_count_severe()) {
1843 		marray[0] = m;
1844 		*reqpage = 0;
1845 		return 1;
1846 	}
1847 
1848 	/*
1849 	 * scan backward for the read behind pages -- in memory
1850 	 *
1851 	 * Assume that if the page is not found an interrupt will not
1852 	 * create it.  Theoretically interrupts can only remove (busy)
1853 	 * pages, not create new associations.
1854 	 */
1855 	if (pindex > 0) {
1856 		if (rbehind > pindex) {
1857 			rbehind = pindex;
1858 			startpindex = 0;
1859 		} else {
1860 			startpindex = pindex - rbehind;
1861 		}
1862 
1863 		crit_enter();
1864 		lwkt_gettoken(&vm_token);
1865 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1866 			if (vm_page_lookup(object, tpindex - 1))
1867 				break;
1868 		}
1869 
1870 		i = 0;
1871 		while (tpindex < pindex) {
1872 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1873 			if (rtm == NULL) {
1874 				lwkt_reltoken(&vm_token);
1875 				crit_exit();
1876 				for (j = 0; j < i; j++) {
1877 					vm_page_free(marray[j]);
1878 				}
1879 				marray[0] = m;
1880 				*reqpage = 0;
1881 				return 1;
1882 			}
1883 			marray[i] = rtm;
1884 			++i;
1885 			++tpindex;
1886 		}
1887 		lwkt_reltoken(&vm_token);
1888 		crit_exit();
1889 	} else {
1890 		i = 0;
1891 	}
1892 
1893 	/*
1894 	 * Assign requested page
1895 	 */
1896 	marray[i] = m;
1897 	*reqpage = i;
1898 	++i;
1899 
1900 	/*
1901 	 * Scan forwards for read-ahead pages
1902 	 */
1903 	tpindex = pindex + 1;
1904 	endpindex = tpindex + rahead;
1905 	if (endpindex > object->size)
1906 		endpindex = object->size;
1907 
1908 	crit_enter();
1909 	lwkt_gettoken(&vm_token);
1910 	while (tpindex < endpindex) {
1911 		if (vm_page_lookup(object, tpindex))
1912 			break;
1913 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1914 		if (rtm == NULL)
1915 			break;
1916 		marray[i] = rtm;
1917 		++i;
1918 		++tpindex;
1919 	}
1920 	lwkt_reltoken(&vm_token);
1921 	crit_exit();
1922 
1923 	return (i);
1924 }
1925 
1926 #endif
1927 
1928 /*
1929  * vm_prefault() provides a quick way of clustering pagefaults into a
1930  * processes address space.  It is a "cousin" of pmap_object_init_pt,
1931  * except it runs at page fault time instead of mmap time.
1932  *
1933  * This code used to be per-platform pmap_prefault().  It is now
1934  * machine-independent and enhanced to also pre-fault zero-fill pages
1935  * (see vm.fast_fault) as well as make them writable, which greatly
1936  * reduces the number of page faults programs incur.
1937  *
1938  * Application performance when pre-faulting zero-fill pages is heavily
1939  * dependent on the application.  Very tiny applications like /bin/echo
1940  * lose a little performance while applications of any appreciable size
1941  * gain performance.  Prefaulting multiple pages also reduces SMP
1942  * congestion and can improve SMP performance significantly.
1943  *
1944  * NOTE!  prot may allow writing but this only applies to the top level
1945  *	  object.  If we wind up mapping a page extracted from a backing
1946  *	  object we have to make sure it is read-only.
1947  *
1948  * NOTE!  The caller has already handled any COW operations on the
1949  *	  vm_map_entry via the normal fault code.  Do NOT call this
1950  *	  shortcut unless the normal fault code has run on this entry.
1951  *
1952  * No other requirements.
1953  */
1954 #define PFBAK 4
1955 #define PFFOR 4
1956 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1957 
1958 static int vm_prefault_pageorder[] = {
1959 	-PAGE_SIZE, PAGE_SIZE,
1960 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
1961 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
1962 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
1963 };
1964 
1965 static void
1966 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1967 {
1968 	struct lwp *lp;
1969 	vm_page_t m;
1970 	vm_offset_t starta;
1971 	vm_offset_t addr;
1972 	vm_pindex_t index;
1973 	vm_pindex_t pindex;
1974 	vm_object_t object;
1975 	int pprot;
1976 	int i;
1977 
1978 	/*
1979 	 * We do not currently prefault mappings that use virtual page
1980 	 * tables.  We do not prefault foreign pmaps.
1981 	 */
1982 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
1983 		return;
1984 	lp = curthread->td_lwp;
1985 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
1986 		return;
1987 
1988 	object = entry->object.vm_object;
1989 
1990 	starta = addra - PFBAK * PAGE_SIZE;
1991 	if (starta < entry->start)
1992 		starta = entry->start;
1993 	else if (starta > addra)
1994 		starta = 0;
1995 
1996 	/*
1997 	 * critical section protection is required to maintain the
1998 	 * page/object association, interrupts can free pages and remove
1999 	 * them from their objects.
2000 	 */
2001 	crit_enter();
2002 	lwkt_gettoken(&vm_token);
2003 	for (i = 0; i < PAGEORDER_SIZE; i++) {
2004 		vm_object_t lobject;
2005 		int allocated = 0;
2006 
2007 		addr = addra + vm_prefault_pageorder[i];
2008 		if (addr > addra + (PFFOR * PAGE_SIZE))
2009 			addr = 0;
2010 
2011 		if (addr < starta || addr >= entry->end)
2012 			continue;
2013 
2014 		if (pmap_prefault_ok(pmap, addr) == 0)
2015 			continue;
2016 
2017 		/*
2018 		 * Follow the VM object chain to obtain the page to be mapped
2019 		 * into the pmap.
2020 		 *
2021 		 * If we reach the terminal object without finding a page
2022 		 * and we determine it would be advantageous, then allocate
2023 		 * a zero-fill page for the base object.  The base object
2024 		 * is guaranteed to be OBJT_DEFAULT for this case.
2025 		 *
2026 		 * In order to not have to check the pager via *haspage*()
2027 		 * we stop if any non-default object is encountered.  e.g.
2028 		 * a vnode or swap object would stop the loop.
2029 		 */
2030 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2031 		lobject = object;
2032 		pindex = index;
2033 		pprot = prot;
2034 
2035 		while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
2036 			if (lobject->type != OBJT_DEFAULT)
2037 				break;
2038 			if (lobject->backing_object == NULL) {
2039 				if (vm_fast_fault == 0)
2040 					break;
2041 				if (vm_prefault_pageorder[i] < 0 ||
2042 				    (prot & VM_PROT_WRITE) == 0 ||
2043 				    vm_page_count_min(0)) {
2044 					break;
2045 				}
2046 				/* note: allocate from base object */
2047 				m = vm_page_alloc(object, index,
2048 					      VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
2049 
2050 				if ((m->flags & PG_ZERO) == 0) {
2051 					vm_page_zero_fill(m);
2052 				} else {
2053 					vm_page_flag_clear(m, PG_ZERO);
2054 					mycpu->gd_cnt.v_ozfod++;
2055 				}
2056 				mycpu->gd_cnt.v_zfod++;
2057 				m->valid = VM_PAGE_BITS_ALL;
2058 				allocated = 1;
2059 				pprot = prot;
2060 				/* lobject = object .. not needed */
2061 				break;
2062 			}
2063 			if (lobject->backing_object_offset & PAGE_MASK)
2064 				break;
2065 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2066 			lobject = lobject->backing_object;
2067 			pprot &= ~VM_PROT_WRITE;
2068 		}
2069 		/*
2070 		 * NOTE: lobject now invalid (if we did a zero-fill we didn't
2071 		 *	 bother assigning lobject = object).
2072 		 *
2073 		 * Give-up if the page is not available.
2074 		 */
2075 		if (m == NULL)
2076 			break;
2077 
2078 		/*
2079 		 * Do not conditionalize on PG_RAM.  If pages are present in
2080 		 * the VM system we assume optimal caching.  If caching is
2081 		 * not optimal the I/O gravy train will be restarted when we
2082 		 * hit an unavailable page.  We do not want to try to restart
2083 		 * the gravy train now because we really don't know how much
2084 		 * of the object has been cached.  The cost for restarting
2085 		 * the gravy train should be low (since accesses will likely
2086 		 * be I/O bound anyway).
2087 		 *
2088 		 * The object must be marked dirty if we are mapping a
2089 		 * writable page.
2090 		 */
2091 		if (pprot & VM_PROT_WRITE)
2092 			vm_object_set_writeable_dirty(m->object);
2093 
2094 		/*
2095 		 * Enter the page into the pmap if appropriate.  If we had
2096 		 * allocated the page we have to place it on a queue.  If not
2097 		 * we just have to make sure it isn't on the cache queue
2098 		 * (pages on the cache queue are not allowed to be mapped).
2099 		 */
2100 		if (allocated) {
2101 			pmap_enter(pmap, addr, m, pprot, 0);
2102 			vm_page_deactivate(m);
2103 			vm_page_wakeup(m);
2104 		} else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2105 		    (m->busy == 0) &&
2106 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2107 
2108 			if ((m->queue - m->pc) == PQ_CACHE) {
2109 				vm_page_deactivate(m);
2110 			}
2111 			vm_page_busy(m);
2112 			pmap_enter(pmap, addr, m, pprot, 0);
2113 			vm_page_wakeup(m);
2114 		}
2115 	}
2116 	lwkt_reltoken(&vm_token);
2117 	crit_exit();
2118 }
2119