xref: /dflybsd-src/sys/vm/vm_fault.c (revision 38b5d46cbbb58bd340296ebede89d5f6b4838f4f)
1 /*
2  * Copyright (c) 2003-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98 
99 /*
100  *	Page fault handling module.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113 
114 #include <cpu/lwbuf.h>
115 
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
127 
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
130 
131 struct faultstate {
132 	vm_page_t m;
133 	vm_object_t object;
134 	vm_pindex_t pindex;
135 	vm_prot_t prot;
136 	vm_page_t first_m;
137 	vm_object_t first_object;
138 	vm_prot_t first_prot;
139 	vm_map_t map;
140 	vm_map_entry_t entry;
141 	int lookup_still_valid;
142 	int hardfault;
143 	int fault_flags;
144 	int map_generation;
145 	int shared;
146 	int first_shared;
147 	boolean_t wired;
148 	struct vnode *vp;
149 };
150 
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 int vm_shared_fault = 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
157 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
158 	   "Allow shared token on vm_object");
159 static long vm_shared_hit = 0;
160 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
161 	   "Successful shared faults");
162 static long vm_shared_count = 0;
163 SYSCTL_LONG(_vm, OID_AUTO, shared_count, CTLFLAG_RW, &vm_shared_count, 0,
164 	   "Shared fault attempts");
165 static long vm_shared_miss = 0;
166 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
167 	   "Unsuccessful shared faults");
168 
169 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
170 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
171 			vpte_t, int, int);
172 #if 0
173 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
174 #endif
175 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
176 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
177 			vm_map_entry_t entry, int prot, int fault_flags);
178 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
179 			vm_map_entry_t entry, int prot, int fault_flags);
180 
181 static __inline void
182 release_page(struct faultstate *fs)
183 {
184 	vm_page_deactivate(fs->m);
185 	vm_page_wakeup(fs->m);
186 	fs->m = NULL;
187 }
188 
189 /*
190  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
191  *	 requires relocking and then checking the timestamp.
192  *
193  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
194  *	 not have to update fs->map_generation here.
195  *
196  * NOTE: This function can fail due to a deadlock against the caller's
197  *	 holding of a vm_page BUSY.
198  */
199 static __inline int
200 relock_map(struct faultstate *fs)
201 {
202 	int error;
203 
204 	if (fs->lookup_still_valid == FALSE && fs->map) {
205 		error = vm_map_lock_read_to(fs->map);
206 		if (error == 0)
207 			fs->lookup_still_valid = TRUE;
208 	} else {
209 		error = 0;
210 	}
211 	return error;
212 }
213 
214 static __inline void
215 unlock_map(struct faultstate *fs)
216 {
217 	if (fs->lookup_still_valid && fs->map) {
218 		vm_map_lookup_done(fs->map, fs->entry, 0);
219 		fs->lookup_still_valid = FALSE;
220 	}
221 }
222 
223 /*
224  * Clean up after a successful call to vm_fault_object() so another call
225  * to vm_fault_object() can be made.
226  */
227 static void
228 _cleanup_successful_fault(struct faultstate *fs, int relock)
229 {
230 	/*
231 	 * We allocated a junk page for a COW operation that did
232 	 * not occur, the page must be freed.
233 	 */
234 	if (fs->object != fs->first_object) {
235 		KKASSERT(fs->first_shared == 0);
236 		vm_page_free(fs->first_m);
237 		vm_object_pip_wakeup(fs->object);
238 		fs->first_m = NULL;
239 	}
240 
241 	/*
242 	 * Reset fs->object.
243 	 */
244 	fs->object = fs->first_object;
245 	if (relock && fs->lookup_still_valid == FALSE) {
246 		if (fs->map)
247 			vm_map_lock_read(fs->map);
248 		fs->lookup_still_valid = TRUE;
249 	}
250 }
251 
252 static void
253 _unlock_things(struct faultstate *fs, int dealloc)
254 {
255 	_cleanup_successful_fault(fs, 0);
256 	if (dealloc) {
257 		/*vm_object_deallocate(fs->first_object);*/
258 		/*fs->first_object = NULL; drop used later on */
259 	}
260 	unlock_map(fs);
261 	if (fs->vp != NULL) {
262 		vput(fs->vp);
263 		fs->vp = NULL;
264 	}
265 }
266 
267 #define unlock_things(fs) _unlock_things(fs, 0)
268 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
269 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
270 
271 /*
272  * TRYPAGER
273  *
274  * Determine if the pager for the current object *might* contain the page.
275  *
276  * We only need to try the pager if this is not a default object (default
277  * objects are zero-fill and have no real pager), and if we are not taking
278  * a wiring fault or if the FS entry is wired.
279  */
280 #define TRYPAGER(fs)	\
281 		(fs->object->type != OBJT_DEFAULT && \
282 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
283 
284 /*
285  * vm_fault:
286  *
287  * Handle a page fault occuring at the given address, requiring the given
288  * permissions, in the map specified.  If successful, the page is inserted
289  * into the associated physical map.
290  *
291  * NOTE: The given address should be truncated to the proper page address.
292  *
293  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
294  * a standard error specifying why the fault is fatal is returned.
295  *
296  * The map in question must be referenced, and remains so.
297  * The caller may hold no locks.
298  * No other requirements.
299  */
300 int
301 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
302 {
303 	int result;
304 	vm_pindex_t first_pindex;
305 	struct faultstate fs;
306 	struct lwp *lp;
307 	struct proc *p;
308 	thread_t td;
309 	int growstack;
310 	int retry = 0;
311 	int inherit_prot;
312 
313 	inherit_prot = fault_type & VM_PROT_NOSYNC;
314 	fs.hardfault = 0;
315 	fs.fault_flags = fault_flags;
316 	fs.vp = NULL;
317 	fs.shared = vm_shared_fault;
318 	fs.first_shared = vm_shared_fault;
319 	growstack = 1;
320 	if (vm_shared_fault)
321 		++vm_shared_count;
322 
323 	/*
324 	 * vm_map interactions
325 	 */
326 	td = curthread;
327 	if ((lp = td->td_lwp) != NULL)
328 		lp->lwp_flags |= LWP_PAGING;
329 	lwkt_gettoken(&map->token);
330 
331 RetryFault:
332 	/*
333 	 * Find the vm_map_entry representing the backing store and resolve
334 	 * the top level object and page index.  This may have the side
335 	 * effect of executing a copy-on-write on the map entry and/or
336 	 * creating a shadow object, but will not COW any actual VM pages.
337 	 *
338 	 * On success fs.map is left read-locked and various other fields
339 	 * are initialized but not otherwise referenced or locked.
340 	 *
341 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
342 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
343 	 * writable, so we can set the 'A'accessed bit in the virtual page
344 	 * table entry.
345 	 */
346 	fs.map = map;
347 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
348 			       &fs.entry, &fs.first_object,
349 			       &first_pindex, &fs.first_prot, &fs.wired);
350 
351 	/*
352 	 * If the lookup failed or the map protections are incompatible,
353 	 * the fault generally fails.
354 	 *
355 	 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
356 	 * tried to do a COW fault.
357 	 *
358 	 * If the caller is trying to do a user wiring we have more work
359 	 * to do.
360 	 */
361 	if (result != KERN_SUCCESS) {
362 		if (result == KERN_FAILURE_NOFAULT) {
363 			result = KERN_FAILURE;
364 			goto done;
365 		}
366 		if (result != KERN_PROTECTION_FAILURE ||
367 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
368 		{
369 			if (result == KERN_INVALID_ADDRESS && growstack &&
370 			    map != &kernel_map && curproc != NULL) {
371 				result = vm_map_growstack(curproc, vaddr);
372 				if (result == KERN_SUCCESS) {
373 					growstack = 0;
374 					++retry;
375 					goto RetryFault;
376 				}
377 				result = KERN_FAILURE;
378 			}
379 			goto done;
380 		}
381 
382 		/*
383    		 * If we are user-wiring a r/w segment, and it is COW, then
384    		 * we need to do the COW operation.  Note that we don't
385 		 * currently COW RO sections now, because it is NOT desirable
386    		 * to COW .text.  We simply keep .text from ever being COW'ed
387    		 * and take the heat that one cannot debug wired .text sections.
388    		 */
389 		result = vm_map_lookup(&fs.map, vaddr,
390 				       VM_PROT_READ|VM_PROT_WRITE|
391 				        VM_PROT_OVERRIDE_WRITE,
392 				       &fs.entry, &fs.first_object,
393 				       &first_pindex, &fs.first_prot,
394 				       &fs.wired);
395 		if (result != KERN_SUCCESS) {
396 			/* could also be KERN_FAILURE_NOFAULT */
397 			result = KERN_FAILURE;
398 			goto done;
399 		}
400 
401 		/*
402 		 * If we don't COW now, on a user wire, the user will never
403 		 * be able to write to the mapping.  If we don't make this
404 		 * restriction, the bookkeeping would be nearly impossible.
405 		 *
406 		 * XXX We have a shared lock, this will have a MP race but
407 		 * I don't see how it can hurt anything.
408 		 */
409 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
410 			fs.entry->max_protection &= ~VM_PROT_WRITE;
411 	}
412 
413 	/*
414 	 * fs.map is read-locked
415 	 *
416 	 * Misc checks.  Save the map generation number to detect races.
417 	 */
418 	fs.map_generation = fs.map->timestamp;
419 	fs.lookup_still_valid = TRUE;
420 	fs.first_m = NULL;
421 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
422 	fs.prot = fs.first_prot;	/* default (used by uksmap) */
423 
424 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
425 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
426 			panic("vm_fault: fault on nofault entry, addr: %p",
427 			      (void *)vaddr);
428 		}
429 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
430 		    vaddr >= fs.entry->start &&
431 		    vaddr < fs.entry->start + PAGE_SIZE) {
432 			panic("vm_fault: fault on stack guard, addr: %p",
433 			      (void *)vaddr);
434 		}
435 	}
436 
437 	/*
438 	 * A user-kernel shared map has no VM object and bypasses
439 	 * everything.  We execute the uksmap function with a temporary
440 	 * fictitious vm_page.  The address is directly mapped with no
441 	 * management.
442 	 */
443 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
444 		struct vm_page fakem;
445 
446 		bzero(&fakem, sizeof(fakem));
447 		fakem.pindex = first_pindex;
448 		fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
449 		fakem.valid = VM_PAGE_BITS_ALL;
450 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
451 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
452 			result = KERN_FAILURE;
453 			unlock_things(&fs);
454 			goto done2;
455 		}
456 		pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
457 			   fs.wired, fs.entry);
458 		goto done_success;
459 	}
460 
461 	/*
462 	 * A system map entry may return a NULL object.  No object means
463 	 * no pager means an unrecoverable kernel fault.
464 	 */
465 	if (fs.first_object == NULL) {
466 		panic("vm_fault: unrecoverable fault at %p in entry %p",
467 			(void *)vaddr, fs.entry);
468 	}
469 
470 	/*
471 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
472 	 * is set.
473 	 *
474 	 * Unfortunately a deadlock can occur if we are forced to page-in
475 	 * from swap, but diving all the way into the vm_pager_get_page()
476 	 * function to find out is too much.  Just check the object type.
477 	 *
478 	 * The deadlock is a CAM deadlock on a busy VM page when trying
479 	 * to finish an I/O if another process gets stuck in
480 	 * vop_helper_read_shortcut() due to a swap fault.
481 	 */
482 	if ((td->td_flags & TDF_NOFAULT) &&
483 	    (retry ||
484 	     fs.first_object->type == OBJT_VNODE ||
485 	     fs.first_object->type == OBJT_SWAP ||
486 	     fs.first_object->backing_object)) {
487 		result = KERN_FAILURE;
488 		unlock_things(&fs);
489 		goto done2;
490 	}
491 
492 	/*
493 	 * If the entry is wired we cannot change the page protection.
494 	 */
495 	if (fs.wired)
496 		fault_type = fs.first_prot;
497 
498 	/*
499 	 * We generally want to avoid unnecessary exclusive modes on backing
500 	 * and terminal objects because this can seriously interfere with
501 	 * heavily fork()'d processes (particularly /bin/sh scripts).
502 	 *
503 	 * However, we also want to avoid unnecessary retries due to needed
504 	 * shared->exclusive promotion for common faults.  Exclusive mode is
505 	 * always needed if any page insertion, rename, or free occurs in an
506 	 * object (and also indirectly if any I/O is done).
507 	 *
508 	 * The main issue here is going to be fs.first_shared.  If the
509 	 * first_object has a backing object which isn't shadowed and the
510 	 * process is single-threaded we might as well use an exclusive
511 	 * lock/chain right off the bat.
512 	 */
513 	if (fs.first_shared && fs.first_object->backing_object &&
514 	    LIST_EMPTY(&fs.first_object->shadow_head) &&
515 	    td->td_proc && td->td_proc->p_nthreads == 1) {
516 		fs.first_shared = 0;
517 	}
518 
519 	/*
520 	 * swap_pager_unswapped() needs an exclusive object
521 	 */
522 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
523 		fs.first_shared = 0;
524 	}
525 
526 	/*
527 	 * Obtain a top-level object lock, shared or exclusive depending
528 	 * on fs.first_shared.  If a shared lock winds up being insufficient
529 	 * we will retry with an exclusive lock.
530 	 *
531 	 * The vnode pager lock is always shared.
532 	 */
533 	if (fs.first_shared)
534 		vm_object_hold_shared(fs.first_object);
535 	else
536 		vm_object_hold(fs.first_object);
537 	if (fs.vp == NULL)
538 		fs.vp = vnode_pager_lock(fs.first_object);
539 
540 	/*
541 	 * The page we want is at (first_object, first_pindex), but if the
542 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
543 	 * page table to figure out the actual pindex.
544 	 *
545 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
546 	 * ONLY
547 	 */
548 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
549 		result = vm_fault_vpagetable(&fs, &first_pindex,
550 					     fs.entry->aux.master_pde,
551 					     fault_type, 1);
552 		if (result == KERN_TRY_AGAIN) {
553 			vm_object_drop(fs.first_object);
554 			++retry;
555 			goto RetryFault;
556 		}
557 		if (result != KERN_SUCCESS)
558 			goto done;
559 	}
560 
561 	/*
562 	 * Now we have the actual (object, pindex), fault in the page.  If
563 	 * vm_fault_object() fails it will unlock and deallocate the FS
564 	 * data.   If it succeeds everything remains locked and fs->object
565 	 * will have an additional PIP count if it is not equal to
566 	 * fs->first_object
567 	 *
568 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
569 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
570 	 * page can be safely written.  However, it will force a read-only
571 	 * mapping for a read fault if the memory is managed by a virtual
572 	 * page table.
573 	 *
574 	 * If the fault code uses the shared object lock shortcut
575 	 * we must not try to burst (we can't allocate VM pages).
576 	 */
577 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
578 
579 	if (debug_fault > 0) {
580 		--debug_fault;
581 		kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
582 			"fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
583 			result, (intmax_t)vaddr, fault_type, fault_flags,
584 			fs.m, fs.prot, fs.wired, fs.entry);
585 	}
586 
587 	if (result == KERN_TRY_AGAIN) {
588 		vm_object_drop(fs.first_object);
589 		++retry;
590 		goto RetryFault;
591 	}
592 	if (result != KERN_SUCCESS)
593 		goto done;
594 
595 	/*
596 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
597 	 * will contain a busied page.
598 	 *
599 	 * Enter the page into the pmap and do pmap-related adjustments.
600 	 */
601 	KKASSERT(fs.lookup_still_valid == TRUE);
602 	vm_page_flag_set(fs.m, PG_REFERENCED);
603 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
604 		   fs.wired, fs.entry);
605 
606 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
607 	KKASSERT(fs.m->flags & PG_BUSY);
608 
609 	/*
610 	 * If the page is not wired down, then put it where the pageout daemon
611 	 * can find it.
612 	 */
613 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
614 		if (fs.wired)
615 			vm_page_wire(fs.m);
616 		else
617 			vm_page_unwire(fs.m, 1);
618 	} else {
619 		vm_page_activate(fs.m);
620 	}
621 	vm_page_wakeup(fs.m);
622 
623 	/*
624 	 * Burst in a few more pages if possible.  The fs.map should still
625 	 * be locked.  To avoid interlocking against a vnode->getblk
626 	 * operation we had to be sure to unbusy our primary vm_page above
627 	 * first.
628 	 *
629 	 * A normal burst can continue down backing store, only execute
630 	 * if we are holding an exclusive lock, otherwise the exclusive
631 	 * locks the burst code gets might cause excessive SMP collisions.
632 	 *
633 	 * A quick burst can be utilized when there is no backing object
634 	 * (i.e. a shared file mmap).
635 	 */
636 	if ((fault_flags & VM_FAULT_BURST) &&
637 	    (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
638 	    fs.wired == 0) {
639 		if (fs.first_shared == 0 && fs.shared == 0) {
640 			vm_prefault(fs.map->pmap, vaddr,
641 				    fs.entry, fs.prot, fault_flags);
642 		} else {
643 			vm_prefault_quick(fs.map->pmap, vaddr,
644 					  fs.entry, fs.prot, fault_flags);
645 		}
646 	}
647 
648 done_success:
649 	mycpu->gd_cnt.v_vm_faults++;
650 	if (td->td_lwp)
651 		++td->td_lwp->lwp_ru.ru_minflt;
652 
653 	/*
654 	 * Unlock everything, and return
655 	 */
656 	unlock_things(&fs);
657 
658 	if (td->td_lwp) {
659 		if (fs.hardfault) {
660 			td->td_lwp->lwp_ru.ru_majflt++;
661 		} else {
662 			td->td_lwp->lwp_ru.ru_minflt++;
663 		}
664 	}
665 
666 	/*vm_object_deallocate(fs.first_object);*/
667 	/*fs.m = NULL; */
668 	/*fs.first_object = NULL; must still drop later */
669 
670 	result = KERN_SUCCESS;
671 done:
672 	if (fs.first_object)
673 		vm_object_drop(fs.first_object);
674 done2:
675 	lwkt_reltoken(&map->token);
676 	if (lp)
677 		lp->lwp_flags &= ~LWP_PAGING;
678 	if (vm_shared_fault && fs.shared == 0)
679 		++vm_shared_miss;
680 
681 #if !defined(NO_SWAPPING)
682 	/*
683 	 * Check the process RSS limit and force deactivation and
684 	 * (asynchronous) paging if necessary.  This is a complex operation,
685 	 * only do it for direct user-mode faults, for now.
686 	 *
687 	 * To reduce overhead implement approximately a ~16MB hysteresis.
688 	 */
689 	p = td->td_proc;
690 	if ((fault_flags & VM_FAULT_USERMODE) && lp &&
691 	    p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
692 	    map != &kernel_map) {
693 		vm_pindex_t limit;
694 		vm_pindex_t size;
695 
696 		limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
697 					p->p_rlimit[RLIMIT_RSS].rlim_max));
698 		size = pmap_resident_tlnw_count(map->pmap);
699 		if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
700 			vm_pageout_map_deactivate_pages(map, limit);
701 		}
702 	}
703 #endif
704 
705 	return (result);
706 }
707 
708 /*
709  * Fault in the specified virtual address in the current process map,
710  * returning a held VM page or NULL.  See vm_fault_page() for more
711  * information.
712  *
713  * No requirements.
714  */
715 vm_page_t
716 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
717 {
718 	struct lwp *lp = curthread->td_lwp;
719 	vm_page_t m;
720 
721 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
722 			  fault_type, VM_FAULT_NORMAL, errorp);
723 	return(m);
724 }
725 
726 /*
727  * Fault in the specified virtual address in the specified map, doing all
728  * necessary manipulation of the object store and all necessary I/O.  Return
729  * a held VM page or NULL, and set *errorp.  The related pmap is not
730  * updated.
731  *
732  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
733  * and marked PG_REFERENCED as well.
734  *
735  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
736  * error will be returned.
737  *
738  * No requirements.
739  */
740 vm_page_t
741 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
742 	      int fault_flags, int *errorp)
743 {
744 	vm_pindex_t first_pindex;
745 	struct faultstate fs;
746 	int result;
747 	int retry = 0;
748 	vm_prot_t orig_fault_type = fault_type;
749 
750 	fs.hardfault = 0;
751 	fs.fault_flags = fault_flags;
752 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
753 
754 	/*
755 	 * Dive the pmap (concurrency possible).  If we find the
756 	 * appropriate page we can terminate early and quickly.
757 	 */
758 	fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type);
759 	if (fs.m) {
760 		*errorp = 0;
761 		return(fs.m);
762 	}
763 
764 	/*
765 	 * Otherwise take a concurrency hit and do a formal page
766 	 * fault.
767 	 */
768 	fs.shared = vm_shared_fault;
769 	fs.first_shared = vm_shared_fault;
770 	fs.vp = NULL;
771 	lwkt_gettoken(&map->token);
772 
773 	/*
774 	 * swap_pager_unswapped() needs an exclusive object
775 	 */
776 	if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
777 		fs.first_shared = 0;
778 	}
779 
780 RetryFault:
781 	/*
782 	 * Find the vm_map_entry representing the backing store and resolve
783 	 * the top level object and page index.  This may have the side
784 	 * effect of executing a copy-on-write on the map entry and/or
785 	 * creating a shadow object, but will not COW any actual VM pages.
786 	 *
787 	 * On success fs.map is left read-locked and various other fields
788 	 * are initialized but not otherwise referenced or locked.
789 	 *
790 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
791 	 * if the map entry is a virtual page table and also writable,
792 	 * so we can set the 'A'accessed bit in the virtual page table entry.
793 	 */
794 	fs.map = map;
795 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
796 			       &fs.entry, &fs.first_object,
797 			       &first_pindex, &fs.first_prot, &fs.wired);
798 
799 	if (result != KERN_SUCCESS) {
800 		*errorp = result;
801 		fs.m = NULL;
802 		goto done;
803 	}
804 
805 	/*
806 	 * fs.map is read-locked
807 	 *
808 	 * Misc checks.  Save the map generation number to detect races.
809 	 */
810 	fs.map_generation = fs.map->timestamp;
811 	fs.lookup_still_valid = TRUE;
812 	fs.first_m = NULL;
813 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
814 
815 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
816 		panic("vm_fault: fault on nofault entry, addr: %lx",
817 		    (u_long)vaddr);
818 	}
819 
820 	/*
821 	 * A user-kernel shared map has no VM object and bypasses
822 	 * everything.  We execute the uksmap function with a temporary
823 	 * fictitious vm_page.  The address is directly mapped with no
824 	 * management.
825 	 */
826 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
827 		struct vm_page fakem;
828 
829 		bzero(&fakem, sizeof(fakem));
830 		fakem.pindex = first_pindex;
831 		fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
832 		fakem.valid = VM_PAGE_BITS_ALL;
833 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
834 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
835 			*errorp = KERN_FAILURE;
836 			fs.m = NULL;
837 			unlock_things(&fs);
838 			goto done2;
839 		}
840 		fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
841 		vm_page_hold(fs.m);
842 
843 		unlock_things(&fs);
844 		*errorp = 0;
845 		goto done;
846 	}
847 
848 
849 	/*
850 	 * A system map entry may return a NULL object.  No object means
851 	 * no pager means an unrecoverable kernel fault.
852 	 */
853 	if (fs.first_object == NULL) {
854 		panic("vm_fault: unrecoverable fault at %p in entry %p",
855 			(void *)vaddr, fs.entry);
856 	}
857 
858 	/*
859 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
860 	 * is set.
861 	 *
862 	 * Unfortunately a deadlock can occur if we are forced to page-in
863 	 * from swap, but diving all the way into the vm_pager_get_page()
864 	 * function to find out is too much.  Just check the object type.
865 	 */
866 	if ((curthread->td_flags & TDF_NOFAULT) &&
867 	    (retry ||
868 	     fs.first_object->type == OBJT_VNODE ||
869 	     fs.first_object->type == OBJT_SWAP ||
870 	     fs.first_object->backing_object)) {
871 		*errorp = KERN_FAILURE;
872 		unlock_things(&fs);
873 		goto done2;
874 	}
875 
876 	/*
877 	 * If the entry is wired we cannot change the page protection.
878 	 */
879 	if (fs.wired)
880 		fault_type = fs.first_prot;
881 
882 	/*
883 	 * Make a reference to this object to prevent its disposal while we
884 	 * are messing with it.  Once we have the reference, the map is free
885 	 * to be diddled.  Since objects reference their shadows (and copies),
886 	 * they will stay around as well.
887 	 *
888 	 * The reference should also prevent an unexpected collapse of the
889 	 * parent that might move pages from the current object into the
890 	 * parent unexpectedly, resulting in corruption.
891 	 *
892 	 * Bump the paging-in-progress count to prevent size changes (e.g.
893 	 * truncation operations) during I/O.  This must be done after
894 	 * obtaining the vnode lock in order to avoid possible deadlocks.
895 	 */
896 	if (fs.first_shared)
897 		vm_object_hold_shared(fs.first_object);
898 	else
899 		vm_object_hold(fs.first_object);
900 	if (fs.vp == NULL)
901 		fs.vp = vnode_pager_lock(fs.first_object);	/* shared */
902 
903 	/*
904 	 * The page we want is at (first_object, first_pindex), but if the
905 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
906 	 * page table to figure out the actual pindex.
907 	 *
908 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
909 	 * ONLY
910 	 */
911 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
912 		result = vm_fault_vpagetable(&fs, &first_pindex,
913 					     fs.entry->aux.master_pde,
914 					     fault_type, 1);
915 		if (result == KERN_TRY_AGAIN) {
916 			vm_object_drop(fs.first_object);
917 			++retry;
918 			goto RetryFault;
919 		}
920 		if (result != KERN_SUCCESS) {
921 			*errorp = result;
922 			fs.m = NULL;
923 			goto done;
924 		}
925 	}
926 
927 	/*
928 	 * Now we have the actual (object, pindex), fault in the page.  If
929 	 * vm_fault_object() fails it will unlock and deallocate the FS
930 	 * data.   If it succeeds everything remains locked and fs->object
931 	 * will have an additinal PIP count if it is not equal to
932 	 * fs->first_object
933 	 */
934 	fs.m = NULL;
935 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
936 
937 	if (result == KERN_TRY_AGAIN) {
938 		vm_object_drop(fs.first_object);
939 		++retry;
940 		goto RetryFault;
941 	}
942 	if (result != KERN_SUCCESS) {
943 		*errorp = result;
944 		fs.m = NULL;
945 		goto done;
946 	}
947 
948 	if ((orig_fault_type & VM_PROT_WRITE) &&
949 	    (fs.prot & VM_PROT_WRITE) == 0) {
950 		*errorp = KERN_PROTECTION_FAILURE;
951 		unlock_and_deallocate(&fs);
952 		fs.m = NULL;
953 		goto done;
954 	}
955 
956 	/*
957 	 * DO NOT UPDATE THE PMAP!!!  This function may be called for
958 	 * a pmap unrelated to the current process pmap, in which case
959 	 * the current cpu core will not be listed in the pmap's pm_active
960 	 * mask.  Thus invalidation interlocks will fail to work properly.
961 	 *
962 	 * (for example, 'ps' uses procfs to read program arguments from
963 	 * each process's stack).
964 	 *
965 	 * In addition to the above this function will be called to acquire
966 	 * a page that might already be faulted in, re-faulting it
967 	 * continuously is a waste of time.
968 	 *
969 	 * XXX could this have been the cause of our random seg-fault
970 	 *     issues?  procfs accesses user stacks.
971 	 */
972 	vm_page_flag_set(fs.m, PG_REFERENCED);
973 #if 0
974 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
975 	mycpu->gd_cnt.v_vm_faults++;
976 	if (curthread->td_lwp)
977 		++curthread->td_lwp->lwp_ru.ru_minflt;
978 #endif
979 
980 	/*
981 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
982 	 * will contain a busied page.  So we must unlock here after having
983 	 * messed with the pmap.
984 	 */
985 	unlock_things(&fs);
986 
987 	/*
988 	 * Return a held page.  We are not doing any pmap manipulation so do
989 	 * not set PG_MAPPED.  However, adjust the page flags according to
990 	 * the fault type because the caller may not use a managed pmapping
991 	 * (so we don't want to lose the fact that the page will be dirtied
992 	 * if a write fault was specified).
993 	 */
994 	vm_page_hold(fs.m);
995 	vm_page_activate(fs.m);
996 	if (fault_type & VM_PROT_WRITE)
997 		vm_page_dirty(fs.m);
998 
999 	if (curthread->td_lwp) {
1000 		if (fs.hardfault) {
1001 			curthread->td_lwp->lwp_ru.ru_majflt++;
1002 		} else {
1003 			curthread->td_lwp->lwp_ru.ru_minflt++;
1004 		}
1005 	}
1006 
1007 	/*
1008 	 * Unlock everything, and return the held page.
1009 	 */
1010 	vm_page_wakeup(fs.m);
1011 	/*vm_object_deallocate(fs.first_object);*/
1012 	/*fs.first_object = NULL; */
1013 	*errorp = 0;
1014 
1015 done:
1016 	if (fs.first_object)
1017 		vm_object_drop(fs.first_object);
1018 done2:
1019 	lwkt_reltoken(&map->token);
1020 	return(fs.m);
1021 }
1022 
1023 /*
1024  * Fault in the specified (object,offset), dirty the returned page as
1025  * needed.  If the requested fault_type cannot be done NULL and an
1026  * error is returned.
1027  *
1028  * A held (but not busied) page is returned.
1029  *
1030  * The passed in object must be held as specified by the shared
1031  * argument.
1032  */
1033 vm_page_t
1034 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1035 		     vm_prot_t fault_type, int fault_flags,
1036 		     int *sharedp, int *errorp)
1037 {
1038 	int result;
1039 	vm_pindex_t first_pindex;
1040 	struct faultstate fs;
1041 	struct vm_map_entry entry;
1042 
1043 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1044 	bzero(&entry, sizeof(entry));
1045 	entry.object.vm_object = object;
1046 	entry.maptype = VM_MAPTYPE_NORMAL;
1047 	entry.protection = entry.max_protection = fault_type;
1048 
1049 	fs.hardfault = 0;
1050 	fs.fault_flags = fault_flags;
1051 	fs.map = NULL;
1052 	fs.shared = vm_shared_fault;
1053 	fs.first_shared = *sharedp;
1054 	fs.vp = NULL;
1055 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1056 
1057 	/*
1058 	 * Might require swap block adjustments
1059 	 */
1060 	if (fs.first_shared && (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY))) {
1061 		fs.first_shared = 0;
1062 		vm_object_upgrade(object);
1063 	}
1064 
1065 	/*
1066 	 * Retry loop as needed (typically for shared->exclusive transitions)
1067 	 */
1068 RetryFault:
1069 	*sharedp = fs.first_shared;
1070 	first_pindex = OFF_TO_IDX(offset);
1071 	fs.first_object = object;
1072 	fs.entry = &entry;
1073 	fs.first_prot = fault_type;
1074 	fs.wired = 0;
1075 	/*fs.map_generation = 0; unused */
1076 
1077 	/*
1078 	 * Make a reference to this object to prevent its disposal while we
1079 	 * are messing with it.  Once we have the reference, the map is free
1080 	 * to be diddled.  Since objects reference their shadows (and copies),
1081 	 * they will stay around as well.
1082 	 *
1083 	 * The reference should also prevent an unexpected collapse of the
1084 	 * parent that might move pages from the current object into the
1085 	 * parent unexpectedly, resulting in corruption.
1086 	 *
1087 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1088 	 * truncation operations) during I/O.  This must be done after
1089 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1090 	 */
1091 	if (fs.vp == NULL)
1092 		fs.vp = vnode_pager_lock(fs.first_object);
1093 
1094 	fs.lookup_still_valid = TRUE;
1095 	fs.first_m = NULL;
1096 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
1097 
1098 #if 0
1099 	/* XXX future - ability to operate on VM object using vpagetable */
1100 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1101 		result = vm_fault_vpagetable(&fs, &first_pindex,
1102 					     fs.entry->aux.master_pde,
1103 					     fault_type, 0);
1104 		if (result == KERN_TRY_AGAIN) {
1105 			if (fs.first_shared == 0 && *sharedp)
1106 				vm_object_upgrade(object);
1107 			goto RetryFault;
1108 		}
1109 		if (result != KERN_SUCCESS) {
1110 			*errorp = result;
1111 			return (NULL);
1112 		}
1113 	}
1114 #endif
1115 
1116 	/*
1117 	 * Now we have the actual (object, pindex), fault in the page.  If
1118 	 * vm_fault_object() fails it will unlock and deallocate the FS
1119 	 * data.   If it succeeds everything remains locked and fs->object
1120 	 * will have an additinal PIP count if it is not equal to
1121 	 * fs->first_object
1122 	 *
1123 	 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1124 	 * We may have to upgrade its lock to handle the requested fault.
1125 	 */
1126 	result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1127 
1128 	if (result == KERN_TRY_AGAIN) {
1129 		if (fs.first_shared == 0 && *sharedp)
1130 			vm_object_upgrade(object);
1131 		goto RetryFault;
1132 	}
1133 	if (result != KERN_SUCCESS) {
1134 		*errorp = result;
1135 		return(NULL);
1136 	}
1137 
1138 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1139 		*errorp = KERN_PROTECTION_FAILURE;
1140 		unlock_and_deallocate(&fs);
1141 		return(NULL);
1142 	}
1143 
1144 	/*
1145 	 * On success vm_fault_object() does not unlock or deallocate, so we
1146 	 * do it here.  Note that the returned fs.m will be busied.
1147 	 */
1148 	unlock_things(&fs);
1149 
1150 	/*
1151 	 * Return a held page.  We are not doing any pmap manipulation so do
1152 	 * not set PG_MAPPED.  However, adjust the page flags according to
1153 	 * the fault type because the caller may not use a managed pmapping
1154 	 * (so we don't want to lose the fact that the page will be dirtied
1155 	 * if a write fault was specified).
1156 	 */
1157 	vm_page_hold(fs.m);
1158 	vm_page_activate(fs.m);
1159 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1160 		vm_page_dirty(fs.m);
1161 	if (fault_flags & VM_FAULT_UNSWAP)
1162 		swap_pager_unswapped(fs.m);
1163 
1164 	/*
1165 	 * Indicate that the page was accessed.
1166 	 */
1167 	vm_page_flag_set(fs.m, PG_REFERENCED);
1168 
1169 	if (curthread->td_lwp) {
1170 		if (fs.hardfault) {
1171 			curthread->td_lwp->lwp_ru.ru_majflt++;
1172 		} else {
1173 			curthread->td_lwp->lwp_ru.ru_minflt++;
1174 		}
1175 	}
1176 
1177 	/*
1178 	 * Unlock everything, and return the held page.
1179 	 */
1180 	vm_page_wakeup(fs.m);
1181 	/*vm_object_deallocate(fs.first_object);*/
1182 	/*fs.first_object = NULL; */
1183 
1184 	*errorp = 0;
1185 	return(fs.m);
1186 }
1187 
1188 /*
1189  * Translate the virtual page number (first_pindex) that is relative
1190  * to the address space into a logical page number that is relative to the
1191  * backing object.  Use the virtual page table pointed to by (vpte).
1192  *
1193  * This implements an N-level page table.  Any level can terminate the
1194  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1195  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1196  */
1197 static
1198 int
1199 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1200 		    vpte_t vpte, int fault_type, int allow_nofault)
1201 {
1202 	struct lwbuf *lwb;
1203 	struct lwbuf lwb_cache;
1204 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1205 	int result = KERN_SUCCESS;
1206 	vpte_t *ptep;
1207 
1208 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1209 	for (;;) {
1210 		/*
1211 		 * We cannot proceed if the vpte is not valid, not readable
1212 		 * for a read fault, or not writable for a write fault.
1213 		 */
1214 		if ((vpte & VPTE_V) == 0) {
1215 			unlock_and_deallocate(fs);
1216 			return (KERN_FAILURE);
1217 		}
1218 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1219 			unlock_and_deallocate(fs);
1220 			return (KERN_FAILURE);
1221 		}
1222 		if ((vpte & VPTE_PS) || vshift == 0)
1223 			break;
1224 		KKASSERT(vshift >= VPTE_PAGE_BITS);
1225 
1226 		/*
1227 		 * Get the page table page.  Nominally we only read the page
1228 		 * table, but since we are actively setting VPTE_M and VPTE_A,
1229 		 * tell vm_fault_object() that we are writing it.
1230 		 *
1231 		 * There is currently no real need to optimize this.
1232 		 */
1233 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1234 					 VM_PROT_READ|VM_PROT_WRITE,
1235 					 allow_nofault);
1236 		if (result != KERN_SUCCESS)
1237 			return (result);
1238 
1239 		/*
1240 		 * Process the returned fs.m and look up the page table
1241 		 * entry in the page table page.
1242 		 */
1243 		vshift -= VPTE_PAGE_BITS;
1244 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
1245 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
1246 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
1247 		vpte = *ptep;
1248 
1249 		/*
1250 		 * Page table write-back.  If the vpte is valid for the
1251 		 * requested operation, do a write-back to the page table.
1252 		 *
1253 		 * XXX VPTE_M is not set properly for page directory pages.
1254 		 * It doesn't get set in the page directory if the page table
1255 		 * is modified during a read access.
1256 		 */
1257 		vm_page_activate(fs->m);
1258 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1259 		    (vpte & VPTE_RW)) {
1260 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1261 				atomic_set_long(ptep, VPTE_M | VPTE_A);
1262 				vm_page_dirty(fs->m);
1263 			}
1264 		}
1265 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V)) {
1266 			if ((vpte & VPTE_A) == 0) {
1267 				atomic_set_long(ptep, VPTE_A);
1268 				vm_page_dirty(fs->m);
1269 			}
1270 		}
1271 		lwbuf_free(lwb);
1272 		vm_page_flag_set(fs->m, PG_REFERENCED);
1273 		vm_page_wakeup(fs->m);
1274 		fs->m = NULL;
1275 		cleanup_successful_fault(fs);
1276 	}
1277 	/*
1278 	 * Combine remaining address bits with the vpte.
1279 	 */
1280 	/* JG how many bits from each? */
1281 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1282 		  (*pindex & ((1L << vshift) - 1));
1283 	return (KERN_SUCCESS);
1284 }
1285 
1286 
1287 /*
1288  * This is the core of the vm_fault code.
1289  *
1290  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1291  * through the shadow chain as necessary and do required COW or virtual
1292  * copy operations.  The caller has already fully resolved the vm_map_entry
1293  * and, if appropriate, has created a copy-on-write layer.  All we need to
1294  * do is iterate the object chain.
1295  *
1296  * On failure (fs) is unlocked and deallocated and the caller may return or
1297  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1298  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1299  * will have an additional PIP count if it is not equal to fs.first_object.
1300  *
1301  * If locks based on fs->first_shared or fs->shared are insufficient,
1302  * clear the appropriate field(s) and return RETRY.  COWs require that
1303  * first_shared be 0, while page allocations (or frees) require that
1304  * shared be 0.  Renames require that both be 0.
1305  *
1306  * fs->first_object must be held on call.
1307  */
1308 static
1309 int
1310 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1311 		vm_prot_t fault_type, int allow_nofault)
1312 {
1313 	vm_object_t next_object;
1314 	vm_pindex_t pindex;
1315 	int error;
1316 
1317 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1318 	fs->prot = fs->first_prot;
1319 	fs->object = fs->first_object;
1320 	pindex = first_pindex;
1321 
1322 	vm_object_chain_acquire(fs->first_object, fs->shared);
1323 	vm_object_pip_add(fs->first_object, 1);
1324 
1325 	/*
1326 	 * If a read fault occurs we try to make the page writable if
1327 	 * possible.  There are three cases where we cannot make the
1328 	 * page mapping writable:
1329 	 *
1330 	 * (1) The mapping is read-only or the VM object is read-only,
1331 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1332 	 *
1333 	 * (2) If the mapping is a virtual page table we need to be able
1334 	 *     to detect writes so we can set VPTE_M in the virtual page
1335 	 *     table.
1336 	 *
1337 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
1338 	 *     just result in an unnecessary COW fault.
1339 	 *
1340 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
1341 	 * causes adjustments to the 'M'odify bit to also turn off write
1342 	 * access to force a re-fault.
1343 	 */
1344 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1345 		if ((fault_type & VM_PROT_WRITE) == 0)
1346 			fs->prot &= ~VM_PROT_WRITE;
1347 	}
1348 
1349 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1350 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1351 		if ((fault_type & VM_PROT_WRITE) == 0)
1352 			fs->prot &= ~VM_PROT_WRITE;
1353 	}
1354 
1355 	/* vm_object_hold(fs->object); implied b/c object == first_object */
1356 
1357 	for (;;) {
1358 		/*
1359 		 * The entire backing chain from first_object to object
1360 		 * inclusive is chainlocked.
1361 		 *
1362 		 * If the object is dead, we stop here
1363 		 */
1364 		if (fs->object->flags & OBJ_DEAD) {
1365 			vm_object_pip_wakeup(fs->first_object);
1366 			vm_object_chain_release_all(fs->first_object,
1367 						    fs->object);
1368 			if (fs->object != fs->first_object)
1369 				vm_object_drop(fs->object);
1370 			unlock_and_deallocate(fs);
1371 			return (KERN_PROTECTION_FAILURE);
1372 		}
1373 
1374 		/*
1375 		 * See if the page is resident.  Wait/Retry if the page is
1376 		 * busy (lots of stuff may have changed so we can't continue
1377 		 * in that case).
1378 		 *
1379 		 * We can theoretically allow the soft-busy case on a read
1380 		 * fault if the page is marked valid, but since such
1381 		 * pages are typically already pmap'd, putting that
1382 		 * special case in might be more effort then it is
1383 		 * worth.  We cannot under any circumstances mess
1384 		 * around with a vm_page_t->busy page except, perhaps,
1385 		 * to pmap it.
1386 		 */
1387 		fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1388 						TRUE, &error);
1389 		if (error) {
1390 			vm_object_pip_wakeup(fs->first_object);
1391 			vm_object_chain_release_all(fs->first_object,
1392 						    fs->object);
1393 			if (fs->object != fs->first_object)
1394 				vm_object_drop(fs->object);
1395 			unlock_things(fs);
1396 			vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1397 			mycpu->gd_cnt.v_intrans++;
1398 			/*vm_object_deallocate(fs->first_object);*/
1399 			/*fs->first_object = NULL;*/
1400 			fs->m = NULL;
1401 			return (KERN_TRY_AGAIN);
1402 		}
1403 		if (fs->m) {
1404 			/*
1405 			 * The page is busied for us.
1406 			 *
1407 			 * If reactivating a page from PQ_CACHE we may have
1408 			 * to rate-limit.
1409 			 */
1410 			int queue = fs->m->queue;
1411 			vm_page_unqueue_nowakeup(fs->m);
1412 
1413 			if ((queue - fs->m->pc) == PQ_CACHE &&
1414 			    vm_page_count_severe()) {
1415 				vm_page_activate(fs->m);
1416 				vm_page_wakeup(fs->m);
1417 				fs->m = NULL;
1418 				vm_object_pip_wakeup(fs->first_object);
1419 				vm_object_chain_release_all(fs->first_object,
1420 							    fs->object);
1421 				if (fs->object != fs->first_object)
1422 					vm_object_drop(fs->object);
1423 				unlock_and_deallocate(fs);
1424 				if (allow_nofault == 0 ||
1425 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1426 					thread_t td;
1427 
1428 					vm_wait_pfault();
1429 					td = curthread;
1430 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1431 						return (KERN_PROTECTION_FAILURE);
1432 				}
1433 				return (KERN_TRY_AGAIN);
1434 			}
1435 
1436 			/*
1437 			 * If it still isn't completely valid (readable),
1438 			 * or if a read-ahead-mark is set on the VM page,
1439 			 * jump to readrest, else we found the page and
1440 			 * can return.
1441 			 *
1442 			 * We can release the spl once we have marked the
1443 			 * page busy.
1444 			 */
1445 			if (fs->m->object != &kernel_object) {
1446 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1447 				    VM_PAGE_BITS_ALL) {
1448 					goto readrest;
1449 				}
1450 				if (fs->m->flags & PG_RAM) {
1451 					if (debug_cluster)
1452 						kprintf("R");
1453 					vm_page_flag_clear(fs->m, PG_RAM);
1454 					goto readrest;
1455 				}
1456 			}
1457 			break; /* break to PAGE HAS BEEN FOUND */
1458 		}
1459 
1460 		/*
1461 		 * Page is not resident, If this is the search termination
1462 		 * or the pager might contain the page, allocate a new page.
1463 		 */
1464 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1465 			/*
1466 			 * Allocating, must be exclusive.
1467 			 */
1468 			if (fs->object == fs->first_object &&
1469 			    fs->first_shared) {
1470 				fs->first_shared = 0;
1471 				vm_object_pip_wakeup(fs->first_object);
1472 				vm_object_chain_release_all(fs->first_object,
1473 							    fs->object);
1474 				if (fs->object != fs->first_object)
1475 					vm_object_drop(fs->object);
1476 				unlock_and_deallocate(fs);
1477 				return (KERN_TRY_AGAIN);
1478 			}
1479 			if (fs->object != fs->first_object &&
1480 			    fs->shared) {
1481 				fs->first_shared = 0;
1482 				fs->shared = 0;
1483 				vm_object_pip_wakeup(fs->first_object);
1484 				vm_object_chain_release_all(fs->first_object,
1485 							    fs->object);
1486 				if (fs->object != fs->first_object)
1487 					vm_object_drop(fs->object);
1488 				unlock_and_deallocate(fs);
1489 				return (KERN_TRY_AGAIN);
1490 			}
1491 
1492 			/*
1493 			 * If the page is beyond the object size we fail
1494 			 */
1495 			if (pindex >= fs->object->size) {
1496 				vm_object_pip_wakeup(fs->first_object);
1497 				vm_object_chain_release_all(fs->first_object,
1498 							    fs->object);
1499 				if (fs->object != fs->first_object)
1500 					vm_object_drop(fs->object);
1501 				unlock_and_deallocate(fs);
1502 				return (KERN_PROTECTION_FAILURE);
1503 			}
1504 
1505 			/*
1506 			 * Allocate a new page for this object/offset pair.
1507 			 *
1508 			 * It is possible for the allocation to race, so
1509 			 * handle the case.
1510 			 */
1511 			fs->m = NULL;
1512 			if (!vm_page_count_severe()) {
1513 				fs->m = vm_page_alloc(fs->object, pindex,
1514 				    ((fs->vp || fs->object->backing_object) ?
1515 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1516 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1517 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1518 			}
1519 			if (fs->m == NULL) {
1520 				vm_object_pip_wakeup(fs->first_object);
1521 				vm_object_chain_release_all(fs->first_object,
1522 							    fs->object);
1523 				if (fs->object != fs->first_object)
1524 					vm_object_drop(fs->object);
1525 				unlock_and_deallocate(fs);
1526 				if (allow_nofault == 0 ||
1527 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1528 					thread_t td;
1529 
1530 					vm_wait_pfault();
1531 					td = curthread;
1532 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1533 						return (KERN_PROTECTION_FAILURE);
1534 				}
1535 				return (KERN_TRY_AGAIN);
1536 			}
1537 
1538 			/*
1539 			 * Fall through to readrest.  We have a new page which
1540 			 * will have to be paged (since m->valid will be 0).
1541 			 */
1542 		}
1543 
1544 readrest:
1545 		/*
1546 		 * We have found an invalid or partially valid page, a
1547 		 * page with a read-ahead mark which might be partially or
1548 		 * fully valid (and maybe dirty too), or we have allocated
1549 		 * a new page.
1550 		 *
1551 		 * Attempt to fault-in the page if there is a chance that the
1552 		 * pager has it, and potentially fault in additional pages
1553 		 * at the same time.
1554 		 *
1555 		 * If TRYPAGER is true then fs.m will be non-NULL and busied
1556 		 * for us.
1557 		 */
1558 		if (TRYPAGER(fs)) {
1559 			int rv;
1560 			int seqaccess;
1561 			u_char behavior = vm_map_entry_behavior(fs->entry);
1562 
1563 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1564 				seqaccess = 0;
1565 			else
1566 				seqaccess = -1;
1567 
1568 			/*
1569 			 * Doing I/O may synchronously insert additional
1570 			 * pages so we can't be shared at this point either.
1571 			 *
1572 			 * NOTE: We can't free fs->m here in the allocated
1573 			 *	 case (fs->object != fs->first_object) as
1574 			 *	 this would require an exclusively locked
1575 			 *	 VM object.
1576 			 */
1577 			if (fs->object == fs->first_object &&
1578 			    fs->first_shared) {
1579 				vm_page_deactivate(fs->m);
1580 				vm_page_wakeup(fs->m);
1581 				fs->m = NULL;
1582 				fs->first_shared = 0;
1583 				vm_object_pip_wakeup(fs->first_object);
1584 				vm_object_chain_release_all(fs->first_object,
1585 							    fs->object);
1586 				if (fs->object != fs->first_object)
1587 					vm_object_drop(fs->object);
1588 				unlock_and_deallocate(fs);
1589 				return (KERN_TRY_AGAIN);
1590 			}
1591 			if (fs->object != fs->first_object &&
1592 			    fs->shared) {
1593 				vm_page_deactivate(fs->m);
1594 				vm_page_wakeup(fs->m);
1595 				fs->m = NULL;
1596 				fs->first_shared = 0;
1597 				fs->shared = 0;
1598 				vm_object_pip_wakeup(fs->first_object);
1599 				vm_object_chain_release_all(fs->first_object,
1600 							    fs->object);
1601 				if (fs->object != fs->first_object)
1602 					vm_object_drop(fs->object);
1603 				unlock_and_deallocate(fs);
1604 				return (KERN_TRY_AGAIN);
1605 			}
1606 
1607 			/*
1608 			 * Avoid deadlocking against the map when doing I/O.
1609 			 * fs.object and the page is PG_BUSY'd.
1610 			 *
1611 			 * NOTE: Once unlocked, fs->entry can become stale
1612 			 *	 so this will NULL it out.
1613 			 *
1614 			 * NOTE: fs->entry is invalid until we relock the
1615 			 *	 map and verify that the timestamp has not
1616 			 *	 changed.
1617 			 */
1618 			unlock_map(fs);
1619 
1620 			/*
1621 			 * Acquire the page data.  We still hold a ref on
1622 			 * fs.object and the page has been PG_BUSY's.
1623 			 *
1624 			 * The pager may replace the page (for example, in
1625 			 * order to enter a fictitious page into the
1626 			 * object).  If it does so it is responsible for
1627 			 * cleaning up the passed page and properly setting
1628 			 * the new page PG_BUSY.
1629 			 *
1630 			 * If we got here through a PG_RAM read-ahead
1631 			 * mark the page may be partially dirty and thus
1632 			 * not freeable.  Don't bother checking to see
1633 			 * if the pager has the page because we can't free
1634 			 * it anyway.  We have to depend on the get_page
1635 			 * operation filling in any gaps whether there is
1636 			 * backing store or not.
1637 			 */
1638 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1639 
1640 			if (rv == VM_PAGER_OK) {
1641 				/*
1642 				 * Relookup in case pager changed page. Pager
1643 				 * is responsible for disposition of old page
1644 				 * if moved.
1645 				 *
1646 				 * XXX other code segments do relookups too.
1647 				 * It's a bad abstraction that needs to be
1648 				 * fixed/removed.
1649 				 */
1650 				fs->m = vm_page_lookup(fs->object, pindex);
1651 				if (fs->m == NULL) {
1652 					vm_object_pip_wakeup(fs->first_object);
1653 					vm_object_chain_release_all(
1654 						fs->first_object, fs->object);
1655 					if (fs->object != fs->first_object)
1656 						vm_object_drop(fs->object);
1657 					unlock_and_deallocate(fs);
1658 					return (KERN_TRY_AGAIN);
1659 				}
1660 				++fs->hardfault;
1661 				break; /* break to PAGE HAS BEEN FOUND */
1662 			}
1663 
1664 			/*
1665 			 * Remove the bogus page (which does not exist at this
1666 			 * object/offset); before doing so, we must get back
1667 			 * our object lock to preserve our invariant.
1668 			 *
1669 			 * Also wake up any other process that may want to bring
1670 			 * in this page.
1671 			 *
1672 			 * If this is the top-level object, we must leave the
1673 			 * busy page to prevent another process from rushing
1674 			 * past us, and inserting the page in that object at
1675 			 * the same time that we are.
1676 			 */
1677 			if (rv == VM_PAGER_ERROR) {
1678 				if (curproc) {
1679 					kprintf("vm_fault: pager read error, "
1680 						"pid %d (%s)\n",
1681 						curproc->p_pid,
1682 						curproc->p_comm);
1683 				} else {
1684 					kprintf("vm_fault: pager read error, "
1685 						"thread %p (%s)\n",
1686 						curthread,
1687 						curproc->p_comm);
1688 				}
1689 			}
1690 
1691 			/*
1692 			 * Data outside the range of the pager or an I/O error
1693 			 *
1694 			 * The page may have been wired during the pagein,
1695 			 * e.g. by the buffer cache, and cannot simply be
1696 			 * freed.  Call vnode_pager_freepage() to deal with it.
1697 			 *
1698 			 * Also note that we cannot free the page if we are
1699 			 * holding the related object shared. XXX not sure
1700 			 * what to do in that case.
1701 			 */
1702 			if (fs->object != fs->first_object) {
1703 				vnode_pager_freepage(fs->m);
1704 				fs->m = NULL;
1705 				/*
1706 				 * XXX - we cannot just fall out at this
1707 				 * point, m has been freed and is invalid!
1708 				 */
1709 			}
1710 			/*
1711 			 * XXX - the check for kernel_map is a kludge to work
1712 			 * around having the machine panic on a kernel space
1713 			 * fault w/ I/O error.
1714 			 */
1715 			if (((fs->map != &kernel_map) &&
1716 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1717 				if (fs->m) {
1718 					if (fs->first_shared) {
1719 						vm_page_deactivate(fs->m);
1720 						vm_page_wakeup(fs->m);
1721 					} else {
1722 						vnode_pager_freepage(fs->m);
1723 					}
1724 					fs->m = NULL;
1725 				}
1726 				vm_object_pip_wakeup(fs->first_object);
1727 				vm_object_chain_release_all(fs->first_object,
1728 							    fs->object);
1729 				if (fs->object != fs->first_object)
1730 					vm_object_drop(fs->object);
1731 				unlock_and_deallocate(fs);
1732 				if (rv == VM_PAGER_ERROR)
1733 					return (KERN_FAILURE);
1734 				else
1735 					return (KERN_PROTECTION_FAILURE);
1736 				/* NOT REACHED */
1737 			}
1738 		}
1739 
1740 		/*
1741 		 * We get here if the object has a default pager (or unwiring)
1742 		 * or the pager doesn't have the page.
1743 		 *
1744 		 * fs->first_m will be used for the COW unless we find a
1745 		 * deeper page to be mapped read-only, in which case the
1746 		 * unlock*(fs) will free first_m.
1747 		 */
1748 		if (fs->object == fs->first_object)
1749 			fs->first_m = fs->m;
1750 
1751 		/*
1752 		 * Move on to the next object.  The chain lock should prevent
1753 		 * the backing_object from getting ripped out from under us.
1754 		 *
1755 		 * The object lock for the next object is governed by
1756 		 * fs->shared.
1757 		 */
1758 		if ((next_object = fs->object->backing_object) != NULL) {
1759 			if (fs->shared)
1760 				vm_object_hold_shared(next_object);
1761 			else
1762 				vm_object_hold(next_object);
1763 			vm_object_chain_acquire(next_object, fs->shared);
1764 			KKASSERT(next_object == fs->object->backing_object);
1765 			pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1766 		}
1767 
1768 		if (next_object == NULL) {
1769 			/*
1770 			 * If there's no object left, fill the page in the top
1771 			 * object with zeros.
1772 			 */
1773 			if (fs->object != fs->first_object) {
1774 #if 0
1775 				if (fs->first_object->backing_object !=
1776 				    fs->object) {
1777 					vm_object_hold(fs->first_object->backing_object);
1778 				}
1779 #endif
1780 				vm_object_chain_release_all(
1781 					fs->first_object->backing_object,
1782 					fs->object);
1783 #if 0
1784 				if (fs->first_object->backing_object !=
1785 				    fs->object) {
1786 					vm_object_drop(fs->first_object->backing_object);
1787 				}
1788 #endif
1789 				vm_object_pip_wakeup(fs->object);
1790 				vm_object_drop(fs->object);
1791 				fs->object = fs->first_object;
1792 				pindex = first_pindex;
1793 				fs->m = fs->first_m;
1794 			}
1795 			fs->first_m = NULL;
1796 
1797 			/*
1798 			 * Zero the page and mark it valid.
1799 			 */
1800 			vm_page_zero_fill(fs->m);
1801 			mycpu->gd_cnt.v_zfod++;
1802 			fs->m->valid = VM_PAGE_BITS_ALL;
1803 			break;	/* break to PAGE HAS BEEN FOUND */
1804 		}
1805 		if (fs->object != fs->first_object) {
1806 			vm_object_pip_wakeup(fs->object);
1807 			vm_object_lock_swap();
1808 			vm_object_drop(fs->object);
1809 		}
1810 		KASSERT(fs->object != next_object,
1811 			("object loop %p", next_object));
1812 		fs->object = next_object;
1813 		vm_object_pip_add(fs->object, 1);
1814 	}
1815 
1816 	/*
1817 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1818 	 * is held.]
1819 	 *
1820 	 * object still held.
1821 	 *
1822 	 * local shared variable may be different from fs->shared.
1823 	 *
1824 	 * If the page is being written, but isn't already owned by the
1825 	 * top-level object, we have to copy it into a new page owned by the
1826 	 * top-level object.
1827 	 */
1828 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1829 		("vm_fault: not busy after main loop"));
1830 
1831 	if (fs->object != fs->first_object) {
1832 		/*
1833 		 * We only really need to copy if we want to write it.
1834 		 */
1835 		if (fault_type & VM_PROT_WRITE) {
1836 			/*
1837 			 * This allows pages to be virtually copied from a
1838 			 * backing_object into the first_object, where the
1839 			 * backing object has no other refs to it, and cannot
1840 			 * gain any more refs.  Instead of a bcopy, we just
1841 			 * move the page from the backing object to the
1842 			 * first object.  Note that we must mark the page
1843 			 * dirty in the first object so that it will go out
1844 			 * to swap when needed.
1845 			 */
1846 			if (
1847 				/*
1848 				 * Must be holding exclusive locks
1849 				 */
1850 				fs->first_shared == 0 &&
1851 				fs->shared == 0 &&
1852 				/*
1853 				 * Map, if present, has not changed
1854 				 */
1855 				(fs->map == NULL ||
1856 				fs->map_generation == fs->map->timestamp) &&
1857 				/*
1858 				 * Only one shadow object
1859 				 */
1860 				(fs->object->shadow_count == 1) &&
1861 				/*
1862 				 * No COW refs, except us
1863 				 */
1864 				(fs->object->ref_count == 1) &&
1865 				/*
1866 				 * No one else can look this object up
1867 				 */
1868 				(fs->object->handle == NULL) &&
1869 				/*
1870 				 * No other ways to look the object up
1871 				 */
1872 				((fs->object->type == OBJT_DEFAULT) ||
1873 				 (fs->object->type == OBJT_SWAP)) &&
1874 				/*
1875 				 * We don't chase down the shadow chain
1876 				 */
1877 				(fs->object == fs->first_object->backing_object) &&
1878 
1879 				/*
1880 				 * grab the lock if we need to
1881 				 */
1882 				(fs->lookup_still_valid ||
1883 				 fs->map == NULL ||
1884 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1885 			    ) {
1886 				/*
1887 				 * (first_m) and (m) are both busied.  We have
1888 				 * move (m) into (first_m)'s object/pindex
1889 				 * in an atomic fashion, then free (first_m).
1890 				 *
1891 				 * first_object is held so second remove
1892 				 * followed by the rename should wind
1893 				 * up being atomic.  vm_page_free() might
1894 				 * block so we don't do it until after the
1895 				 * rename.
1896 				 */
1897 				fs->lookup_still_valid = 1;
1898 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1899 				vm_page_remove(fs->first_m);
1900 				vm_page_rename(fs->m, fs->first_object,
1901 					       first_pindex);
1902 				vm_page_free(fs->first_m);
1903 				fs->first_m = fs->m;
1904 				fs->m = NULL;
1905 				mycpu->gd_cnt.v_cow_optim++;
1906 			} else {
1907 				/*
1908 				 * Oh, well, lets copy it.
1909 				 *
1910 				 * Why are we unmapping the original page
1911 				 * here?  Well, in short, not all accessors
1912 				 * of user memory go through the pmap.  The
1913 				 * procfs code doesn't have access user memory
1914 				 * via a local pmap, so vm_fault_page*()
1915 				 * can't call pmap_enter().  And the umtx*()
1916 				 * code may modify the COW'd page via a DMAP
1917 				 * or kernel mapping and not via the pmap,
1918 				 * leaving the original page still mapped
1919 				 * read-only into the pmap.
1920 				 *
1921 				 * So we have to remove the page from at
1922 				 * least the current pmap if it is in it.
1923 				 * Just remove it from all pmaps.
1924 				 */
1925 				KKASSERT(fs->first_shared == 0);
1926 				vm_page_copy(fs->m, fs->first_m);
1927 				vm_page_protect(fs->m, VM_PROT_NONE);
1928 				vm_page_event(fs->m, VMEVENT_COW);
1929 			}
1930 
1931 			/*
1932 			 * We no longer need the old page or object.
1933 			 */
1934 			if (fs->m)
1935 				release_page(fs);
1936 
1937 			/*
1938 			 * We intend to revert to first_object, undo the
1939 			 * chain lock through to that.
1940 			 */
1941 #if 0
1942 			if (fs->first_object->backing_object != fs->object)
1943 				vm_object_hold(fs->first_object->backing_object);
1944 #endif
1945 			vm_object_chain_release_all(
1946 					fs->first_object->backing_object,
1947 					fs->object);
1948 #if 0
1949 			if (fs->first_object->backing_object != fs->object)
1950 				vm_object_drop(fs->first_object->backing_object);
1951 #endif
1952 
1953 			/*
1954 			 * fs->object != fs->first_object due to above
1955 			 * conditional
1956 			 */
1957 			vm_object_pip_wakeup(fs->object);
1958 			vm_object_drop(fs->object);
1959 
1960 			/*
1961 			 * Only use the new page below...
1962 			 */
1963 			mycpu->gd_cnt.v_cow_faults++;
1964 			fs->m = fs->first_m;
1965 			fs->object = fs->first_object;
1966 			pindex = first_pindex;
1967 		} else {
1968 			/*
1969 			 * If it wasn't a write fault avoid having to copy
1970 			 * the page by mapping it read-only.
1971 			 */
1972 			fs->prot &= ~VM_PROT_WRITE;
1973 		}
1974 	}
1975 
1976 	/*
1977 	 * Relock the map if necessary, then check the generation count.
1978 	 * relock_map() will update fs->timestamp to account for the
1979 	 * relocking if necessary.
1980 	 *
1981 	 * If the count has changed after relocking then all sorts of
1982 	 * crap may have happened and we have to retry.
1983 	 *
1984 	 * NOTE: The relock_map() can fail due to a deadlock against
1985 	 *	 the vm_page we are holding BUSY.
1986 	 */
1987 	if (fs->lookup_still_valid == FALSE && fs->map) {
1988 		if (relock_map(fs) ||
1989 		    fs->map->timestamp != fs->map_generation) {
1990 			release_page(fs);
1991 			vm_object_pip_wakeup(fs->first_object);
1992 			vm_object_chain_release_all(fs->first_object,
1993 						    fs->object);
1994 			if (fs->object != fs->first_object)
1995 				vm_object_drop(fs->object);
1996 			unlock_and_deallocate(fs);
1997 			return (KERN_TRY_AGAIN);
1998 		}
1999 	}
2000 
2001 	/*
2002 	 * If the fault is a write, we know that this page is being
2003 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
2004 	 * calls later.
2005 	 *
2006 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2007 	 * if the page is already dirty to prevent data written with
2008 	 * the expectation of being synced from not being synced.
2009 	 * Likewise if this entry does not request NOSYNC then make
2010 	 * sure the page isn't marked NOSYNC.  Applications sharing
2011 	 * data should use the same flags to avoid ping ponging.
2012 	 *
2013 	 * Also tell the backing pager, if any, that it should remove
2014 	 * any swap backing since the page is now dirty.
2015 	 */
2016 	vm_page_activate(fs->m);
2017 	if (fs->prot & VM_PROT_WRITE) {
2018 		vm_object_set_writeable_dirty(fs->m->object);
2019 		vm_set_nosync(fs->m, fs->entry);
2020 		if (fs->fault_flags & VM_FAULT_DIRTY) {
2021 			vm_page_dirty(fs->m);
2022 			swap_pager_unswapped(fs->m);
2023 		}
2024 	}
2025 
2026 	vm_object_pip_wakeup(fs->first_object);
2027 	vm_object_chain_release_all(fs->first_object, fs->object);
2028 	if (fs->object != fs->first_object)
2029 		vm_object_drop(fs->object);
2030 
2031 	/*
2032 	 * Page had better still be busy.  We are still locked up and
2033 	 * fs->object will have another PIP reference if it is not equal
2034 	 * to fs->first_object.
2035 	 */
2036 	KASSERT(fs->m->flags & PG_BUSY,
2037 		("vm_fault: page %p not busy!", fs->m));
2038 
2039 	/*
2040 	 * Sanity check: page must be completely valid or it is not fit to
2041 	 * map into user space.  vm_pager_get_pages() ensures this.
2042 	 */
2043 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
2044 		vm_page_zero_invalid(fs->m, TRUE);
2045 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2046 	}
2047 
2048 	return (KERN_SUCCESS);
2049 }
2050 
2051 /*
2052  * Hold each of the physical pages that are mapped by the specified range of
2053  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2054  * and allow the specified types of access, "prot".  If all of the implied
2055  * pages are successfully held, then the number of held pages is returned
2056  * together with pointers to those pages in the array "ma".  However, if any
2057  * of the pages cannot be held, -1 is returned.
2058  */
2059 int
2060 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2061     vm_prot_t prot, vm_page_t *ma, int max_count)
2062 {
2063 	vm_offset_t start, end;
2064 	int i, npages, error;
2065 
2066 	start = trunc_page(addr);
2067 	end = round_page(addr + len);
2068 
2069 	npages = howmany(end - start, PAGE_SIZE);
2070 
2071 	if (npages > max_count)
2072 		return -1;
2073 
2074 	for (i = 0; i < npages; i++) {
2075 		// XXX error handling
2076 		ma[i] = vm_fault_page_quick(start + (i * PAGE_SIZE),
2077 			prot,
2078 			&error);
2079 	}
2080 
2081 	return npages;
2082 }
2083 
2084 /*
2085  * Wire down a range of virtual addresses in a map.  The entry in question
2086  * should be marked in-transition and the map must be locked.  We must
2087  * release the map temporarily while faulting-in the page to avoid a
2088  * deadlock.  Note that the entry may be clipped while we are blocked but
2089  * will never be freed.
2090  *
2091  * No requirements.
2092  */
2093 int
2094 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2095 	      boolean_t user_wire, int kmflags)
2096 {
2097 	boolean_t fictitious;
2098 	vm_offset_t start;
2099 	vm_offset_t end;
2100 	vm_offset_t va;
2101 	vm_paddr_t pa;
2102 	vm_page_t m;
2103 	pmap_t pmap;
2104 	int rv;
2105 	int wire_prot;
2106 	int fault_flags;
2107 
2108 	lwkt_gettoken(&map->token);
2109 
2110 	if (user_wire) {
2111 		wire_prot = VM_PROT_READ;
2112 		fault_flags = VM_FAULT_USER_WIRE;
2113 	} else {
2114 		wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2115 		fault_flags = VM_FAULT_CHANGE_WIRING;
2116 	}
2117 	if (kmflags & KM_NOTLBSYNC)
2118 		wire_prot |= VM_PROT_NOSYNC;
2119 
2120 	pmap = vm_map_pmap(map);
2121 	start = entry->start;
2122 	end = entry->end;
2123 	switch(entry->maptype) {
2124 	case VM_MAPTYPE_NORMAL:
2125 	case VM_MAPTYPE_VPAGETABLE:
2126 		fictitious = entry->object.vm_object &&
2127 			    ((entry->object.vm_object->type == OBJT_DEVICE) ||
2128 			     (entry->object.vm_object->type == OBJT_MGTDEVICE));
2129 		break;
2130 	case VM_MAPTYPE_UKSMAP:
2131 		fictitious = TRUE;
2132 		break;
2133 	default:
2134 		fictitious = FALSE;
2135 		break;
2136 	}
2137 
2138 	if (entry->eflags & MAP_ENTRY_KSTACK)
2139 		start += PAGE_SIZE;
2140 	map->timestamp++;
2141 	vm_map_unlock(map);
2142 
2143 	/*
2144 	 * We simulate a fault to get the page and enter it in the physical
2145 	 * map.
2146 	 */
2147 	for (va = start; va < end; va += PAGE_SIZE) {
2148 		rv = vm_fault(map, va, wire_prot, fault_flags);
2149 		if (rv) {
2150 			while (va > start) {
2151 				va -= PAGE_SIZE;
2152 				if ((pa = pmap_extract(pmap, va)) == 0)
2153 					continue;
2154 				pmap_change_wiring(pmap, va, FALSE, entry);
2155 				if (!fictitious) {
2156 					m = PHYS_TO_VM_PAGE(pa);
2157 					vm_page_busy_wait(m, FALSE, "vmwrpg");
2158 					vm_page_unwire(m, 1);
2159 					vm_page_wakeup(m);
2160 				}
2161 			}
2162 			goto done;
2163 		}
2164 	}
2165 	rv = KERN_SUCCESS;
2166 done:
2167 	vm_map_lock(map);
2168 	lwkt_reltoken(&map->token);
2169 	return (rv);
2170 }
2171 
2172 /*
2173  * Unwire a range of virtual addresses in a map.  The map should be
2174  * locked.
2175  */
2176 void
2177 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2178 {
2179 	boolean_t fictitious;
2180 	vm_offset_t start;
2181 	vm_offset_t end;
2182 	vm_offset_t va;
2183 	vm_paddr_t pa;
2184 	vm_page_t m;
2185 	pmap_t pmap;
2186 
2187 	lwkt_gettoken(&map->token);
2188 
2189 	pmap = vm_map_pmap(map);
2190 	start = entry->start;
2191 	end = entry->end;
2192 	fictitious = entry->object.vm_object &&
2193 			((entry->object.vm_object->type == OBJT_DEVICE) ||
2194 			 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2195 	if (entry->eflags & MAP_ENTRY_KSTACK)
2196 		start += PAGE_SIZE;
2197 
2198 	/*
2199 	 * Since the pages are wired down, we must be able to get their
2200 	 * mappings from the physical map system.
2201 	 */
2202 	for (va = start; va < end; va += PAGE_SIZE) {
2203 		pa = pmap_extract(pmap, va);
2204 		if (pa != 0) {
2205 			pmap_change_wiring(pmap, va, FALSE, entry);
2206 			if (!fictitious) {
2207 				m = PHYS_TO_VM_PAGE(pa);
2208 				vm_page_busy_wait(m, FALSE, "vmwupg");
2209 				vm_page_unwire(m, 1);
2210 				vm_page_wakeup(m);
2211 			}
2212 		}
2213 	}
2214 	lwkt_reltoken(&map->token);
2215 }
2216 
2217 /*
2218  * Copy all of the pages from a wired-down map entry to another.
2219  *
2220  * The source and destination maps must be locked for write.
2221  * The source and destination maps token must be held
2222  * The source map entry must be wired down (or be a sharing map
2223  * entry corresponding to a main map entry that is wired down).
2224  *
2225  * No other requirements.
2226  *
2227  * XXX do segment optimization
2228  */
2229 void
2230 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2231 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2232 {
2233 	vm_object_t dst_object;
2234 	vm_object_t src_object;
2235 	vm_ooffset_t dst_offset;
2236 	vm_ooffset_t src_offset;
2237 	vm_prot_t prot;
2238 	vm_offset_t vaddr;
2239 	vm_page_t dst_m;
2240 	vm_page_t src_m;
2241 
2242 	src_object = src_entry->object.vm_object;
2243 	src_offset = src_entry->offset;
2244 
2245 	/*
2246 	 * Create the top-level object for the destination entry. (Doesn't
2247 	 * actually shadow anything - we copy the pages directly.)
2248 	 */
2249 	vm_map_entry_allocate_object(dst_entry);
2250 	dst_object = dst_entry->object.vm_object;
2251 
2252 	prot = dst_entry->max_protection;
2253 
2254 	/*
2255 	 * Loop through all of the pages in the entry's range, copying each
2256 	 * one from the source object (it should be there) to the destination
2257 	 * object.
2258 	 */
2259 	vm_object_hold(src_object);
2260 	vm_object_hold(dst_object);
2261 	for (vaddr = dst_entry->start, dst_offset = 0;
2262 	    vaddr < dst_entry->end;
2263 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2264 
2265 		/*
2266 		 * Allocate a page in the destination object
2267 		 */
2268 		do {
2269 			dst_m = vm_page_alloc(dst_object,
2270 					      OFF_TO_IDX(dst_offset),
2271 					      VM_ALLOC_NORMAL);
2272 			if (dst_m == NULL) {
2273 				vm_wait(0);
2274 			}
2275 		} while (dst_m == NULL);
2276 
2277 		/*
2278 		 * Find the page in the source object, and copy it in.
2279 		 * (Because the source is wired down, the page will be in
2280 		 * memory.)
2281 		 */
2282 		src_m = vm_page_lookup(src_object,
2283 				       OFF_TO_IDX(dst_offset + src_offset));
2284 		if (src_m == NULL)
2285 			panic("vm_fault_copy_wired: page missing");
2286 
2287 		vm_page_copy(src_m, dst_m);
2288 		vm_page_event(src_m, VMEVENT_COW);
2289 
2290 		/*
2291 		 * Enter it in the pmap...
2292 		 */
2293 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2294 
2295 		/*
2296 		 * Mark it no longer busy, and put it on the active list.
2297 		 */
2298 		vm_page_activate(dst_m);
2299 		vm_page_wakeup(dst_m);
2300 	}
2301 	vm_object_drop(dst_object);
2302 	vm_object_drop(src_object);
2303 }
2304 
2305 #if 0
2306 
2307 /*
2308  * This routine checks around the requested page for other pages that
2309  * might be able to be faulted in.  This routine brackets the viable
2310  * pages for the pages to be paged in.
2311  *
2312  * Inputs:
2313  *	m, rbehind, rahead
2314  *
2315  * Outputs:
2316  *  marray (array of vm_page_t), reqpage (index of requested page)
2317  *
2318  * Return value:
2319  *  number of pages in marray
2320  */
2321 static int
2322 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2323 			  vm_page_t *marray, int *reqpage)
2324 {
2325 	int i,j;
2326 	vm_object_t object;
2327 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2328 	vm_page_t rtm;
2329 	int cbehind, cahead;
2330 
2331 	object = m->object;
2332 	pindex = m->pindex;
2333 
2334 	/*
2335 	 * we don't fault-ahead for device pager
2336 	 */
2337 	if ((object->type == OBJT_DEVICE) ||
2338 	    (object->type == OBJT_MGTDEVICE)) {
2339 		*reqpage = 0;
2340 		marray[0] = m;
2341 		return 1;
2342 	}
2343 
2344 	/*
2345 	 * if the requested page is not available, then give up now
2346 	 */
2347 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2348 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2349 		return 0;
2350 	}
2351 
2352 	if ((cbehind == 0) && (cahead == 0)) {
2353 		*reqpage = 0;
2354 		marray[0] = m;
2355 		return 1;
2356 	}
2357 
2358 	if (rahead > cahead) {
2359 		rahead = cahead;
2360 	}
2361 
2362 	if (rbehind > cbehind) {
2363 		rbehind = cbehind;
2364 	}
2365 
2366 	/*
2367 	 * Do not do any readahead if we have insufficient free memory.
2368 	 *
2369 	 * XXX code was broken disabled before and has instability
2370 	 * with this conditonal fixed, so shortcut for now.
2371 	 */
2372 	if (burst_fault == 0 || vm_page_count_severe()) {
2373 		marray[0] = m;
2374 		*reqpage = 0;
2375 		return 1;
2376 	}
2377 
2378 	/*
2379 	 * scan backward for the read behind pages -- in memory
2380 	 *
2381 	 * Assume that if the page is not found an interrupt will not
2382 	 * create it.  Theoretically interrupts can only remove (busy)
2383 	 * pages, not create new associations.
2384 	 */
2385 	if (pindex > 0) {
2386 		if (rbehind > pindex) {
2387 			rbehind = pindex;
2388 			startpindex = 0;
2389 		} else {
2390 			startpindex = pindex - rbehind;
2391 		}
2392 
2393 		vm_object_hold(object);
2394 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2395 			if (vm_page_lookup(object, tpindex - 1))
2396 				break;
2397 		}
2398 
2399 		i = 0;
2400 		while (tpindex < pindex) {
2401 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2402 							     VM_ALLOC_NULL_OK);
2403 			if (rtm == NULL) {
2404 				for (j = 0; j < i; j++) {
2405 					vm_page_free(marray[j]);
2406 				}
2407 				vm_object_drop(object);
2408 				marray[0] = m;
2409 				*reqpage = 0;
2410 				return 1;
2411 			}
2412 			marray[i] = rtm;
2413 			++i;
2414 			++tpindex;
2415 		}
2416 		vm_object_drop(object);
2417 	} else {
2418 		i = 0;
2419 	}
2420 
2421 	/*
2422 	 * Assign requested page
2423 	 */
2424 	marray[i] = m;
2425 	*reqpage = i;
2426 	++i;
2427 
2428 	/*
2429 	 * Scan forwards for read-ahead pages
2430 	 */
2431 	tpindex = pindex + 1;
2432 	endpindex = tpindex + rahead;
2433 	if (endpindex > object->size)
2434 		endpindex = object->size;
2435 
2436 	vm_object_hold(object);
2437 	while (tpindex < endpindex) {
2438 		if (vm_page_lookup(object, tpindex))
2439 			break;
2440 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2441 						     VM_ALLOC_NULL_OK);
2442 		if (rtm == NULL)
2443 			break;
2444 		marray[i] = rtm;
2445 		++i;
2446 		++tpindex;
2447 	}
2448 	vm_object_drop(object);
2449 
2450 	return (i);
2451 }
2452 
2453 #endif
2454 
2455 /*
2456  * vm_prefault() provides a quick way of clustering pagefaults into a
2457  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2458  * except it runs at page fault time instead of mmap time.
2459  *
2460  * vm.fast_fault	Enables pre-faulting zero-fill pages
2461  *
2462  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2463  *			prefault.  Scan stops in either direction when
2464  *			a page is found to already exist.
2465  *
2466  * This code used to be per-platform pmap_prefault().  It is now
2467  * machine-independent and enhanced to also pre-fault zero-fill pages
2468  * (see vm.fast_fault) as well as make them writable, which greatly
2469  * reduces the number of page faults programs incur.
2470  *
2471  * Application performance when pre-faulting zero-fill pages is heavily
2472  * dependent on the application.  Very tiny applications like /bin/echo
2473  * lose a little performance while applications of any appreciable size
2474  * gain performance.  Prefaulting multiple pages also reduces SMP
2475  * congestion and can improve SMP performance significantly.
2476  *
2477  * NOTE!  prot may allow writing but this only applies to the top level
2478  *	  object.  If we wind up mapping a page extracted from a backing
2479  *	  object we have to make sure it is read-only.
2480  *
2481  * NOTE!  The caller has already handled any COW operations on the
2482  *	  vm_map_entry via the normal fault code.  Do NOT call this
2483  *	  shortcut unless the normal fault code has run on this entry.
2484  *
2485  * The related map must be locked.
2486  * No other requirements.
2487  */
2488 static int vm_prefault_pages = 8;
2489 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2490 	   "Maximum number of pages to pre-fault");
2491 static int vm_fast_fault = 1;
2492 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2493 	   "Burst fault zero-fill regions");
2494 
2495 /*
2496  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2497  * is not already dirty by other means.  This will prevent passive
2498  * filesystem syncing as well as 'sync' from writing out the page.
2499  */
2500 static void
2501 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2502 {
2503 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2504 		if (m->dirty == 0)
2505 			vm_page_flag_set(m, PG_NOSYNC);
2506 	} else {
2507 		vm_page_flag_clear(m, PG_NOSYNC);
2508 	}
2509 }
2510 
2511 static void
2512 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2513 	    int fault_flags)
2514 {
2515 	struct lwp *lp;
2516 	vm_page_t m;
2517 	vm_offset_t addr;
2518 	vm_pindex_t index;
2519 	vm_pindex_t pindex;
2520 	vm_object_t object;
2521 	int pprot;
2522 	int i;
2523 	int noneg;
2524 	int nopos;
2525 	int maxpages;
2526 
2527 	/*
2528 	 * Get stable max count value, disabled if set to 0
2529 	 */
2530 	maxpages = vm_prefault_pages;
2531 	cpu_ccfence();
2532 	if (maxpages <= 0)
2533 		return;
2534 
2535 	/*
2536 	 * We do not currently prefault mappings that use virtual page
2537 	 * tables.  We do not prefault foreign pmaps.
2538 	 */
2539 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2540 		return;
2541 	lp = curthread->td_lwp;
2542 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2543 		return;
2544 
2545 	/*
2546 	 * Limit pre-fault count to 1024 pages.
2547 	 */
2548 	if (maxpages > 1024)
2549 		maxpages = 1024;
2550 
2551 	object = entry->object.vm_object;
2552 	KKASSERT(object != NULL);
2553 	KKASSERT(object == entry->object.vm_object);
2554 	vm_object_hold(object);
2555 	vm_object_chain_acquire(object, 0);
2556 
2557 	noneg = 0;
2558 	nopos = 0;
2559 	for (i = 0; i < maxpages; ++i) {
2560 		vm_object_t lobject;
2561 		vm_object_t nobject;
2562 		int allocated = 0;
2563 		int error;
2564 
2565 		/*
2566 		 * This can eat a lot of time on a heavily contended
2567 		 * machine so yield on the tick if needed.
2568 		 */
2569 		if ((i & 7) == 7)
2570 			lwkt_yield();
2571 
2572 		/*
2573 		 * Calculate the page to pre-fault, stopping the scan in
2574 		 * each direction separately if the limit is reached.
2575 		 */
2576 		if (i & 1) {
2577 			if (noneg)
2578 				continue;
2579 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2580 		} else {
2581 			if (nopos)
2582 				continue;
2583 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2584 		}
2585 		if (addr < entry->start) {
2586 			noneg = 1;
2587 			if (noneg && nopos)
2588 				break;
2589 			continue;
2590 		}
2591 		if (addr >= entry->end) {
2592 			nopos = 1;
2593 			if (noneg && nopos)
2594 				break;
2595 			continue;
2596 		}
2597 
2598 		/*
2599 		 * Skip pages already mapped, and stop scanning in that
2600 		 * direction.  When the scan terminates in both directions
2601 		 * we are done.
2602 		 */
2603 		if (pmap_prefault_ok(pmap, addr) == 0) {
2604 			if (i & 1)
2605 				noneg = 1;
2606 			else
2607 				nopos = 1;
2608 			if (noneg && nopos)
2609 				break;
2610 			continue;
2611 		}
2612 
2613 		/*
2614 		 * Follow the VM object chain to obtain the page to be mapped
2615 		 * into the pmap.
2616 		 *
2617 		 * If we reach the terminal object without finding a page
2618 		 * and we determine it would be advantageous, then allocate
2619 		 * a zero-fill page for the base object.  The base object
2620 		 * is guaranteed to be OBJT_DEFAULT for this case.
2621 		 *
2622 		 * In order to not have to check the pager via *haspage*()
2623 		 * we stop if any non-default object is encountered.  e.g.
2624 		 * a vnode or swap object would stop the loop.
2625 		 */
2626 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2627 		lobject = object;
2628 		pindex = index;
2629 		pprot = prot;
2630 
2631 		KKASSERT(lobject == entry->object.vm_object);
2632 		/*vm_object_hold(lobject); implied */
2633 
2634 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
2635 						    TRUE, &error)) == NULL) {
2636 			if (lobject->type != OBJT_DEFAULT)
2637 				break;
2638 			if (lobject->backing_object == NULL) {
2639 				if (vm_fast_fault == 0)
2640 					break;
2641 				if ((prot & VM_PROT_WRITE) == 0 ||
2642 				    vm_page_count_min(0)) {
2643 					break;
2644 				}
2645 
2646 				/*
2647 				 * NOTE: Allocated from base object
2648 				 */
2649 				m = vm_page_alloc(object, index,
2650 						  VM_ALLOC_NORMAL |
2651 						  VM_ALLOC_ZERO |
2652 						  VM_ALLOC_USE_GD |
2653 						  VM_ALLOC_NULL_OK);
2654 				if (m == NULL)
2655 					break;
2656 				allocated = 1;
2657 				pprot = prot;
2658 				/* lobject = object .. not needed */
2659 				break;
2660 			}
2661 			if (lobject->backing_object_offset & PAGE_MASK)
2662 				break;
2663 			nobject = lobject->backing_object;
2664 			vm_object_hold(nobject);
2665 			KKASSERT(nobject == lobject->backing_object);
2666 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2667 			if (lobject != object) {
2668 				vm_object_lock_swap();
2669 				vm_object_drop(lobject);
2670 			}
2671 			lobject = nobject;
2672 			pprot &= ~VM_PROT_WRITE;
2673 			vm_object_chain_acquire(lobject, 0);
2674 		}
2675 
2676 		/*
2677 		 * NOTE: A non-NULL (m) will be associated with lobject if
2678 		 *	 it was found there, otherwise it is probably a
2679 		 *	 zero-fill page associated with the base object.
2680 		 *
2681 		 * Give-up if no page is available.
2682 		 */
2683 		if (m == NULL) {
2684 			if (lobject != object) {
2685 #if 0
2686 				if (object->backing_object != lobject)
2687 					vm_object_hold(object->backing_object);
2688 #endif
2689 				vm_object_chain_release_all(
2690 					object->backing_object, lobject);
2691 #if 0
2692 				if (object->backing_object != lobject)
2693 					vm_object_drop(object->backing_object);
2694 #endif
2695 				vm_object_drop(lobject);
2696 			}
2697 			break;
2698 		}
2699 
2700 		/*
2701 		 * The object must be marked dirty if we are mapping a
2702 		 * writable page.  m->object is either lobject or object,
2703 		 * both of which are still held.  Do this before we
2704 		 * potentially drop the object.
2705 		 */
2706 		if (pprot & VM_PROT_WRITE)
2707 			vm_object_set_writeable_dirty(m->object);
2708 
2709 		/*
2710 		 * Do not conditionalize on PG_RAM.  If pages are present in
2711 		 * the VM system we assume optimal caching.  If caching is
2712 		 * not optimal the I/O gravy train will be restarted when we
2713 		 * hit an unavailable page.  We do not want to try to restart
2714 		 * the gravy train now because we really don't know how much
2715 		 * of the object has been cached.  The cost for restarting
2716 		 * the gravy train should be low (since accesses will likely
2717 		 * be I/O bound anyway).
2718 		 */
2719 		if (lobject != object) {
2720 #if 0
2721 			if (object->backing_object != lobject)
2722 				vm_object_hold(object->backing_object);
2723 #endif
2724 			vm_object_chain_release_all(object->backing_object,
2725 						    lobject);
2726 #if 0
2727 			if (object->backing_object != lobject)
2728 				vm_object_drop(object->backing_object);
2729 #endif
2730 			vm_object_drop(lobject);
2731 		}
2732 
2733 		/*
2734 		 * Enter the page into the pmap if appropriate.  If we had
2735 		 * allocated the page we have to place it on a queue.  If not
2736 		 * we just have to make sure it isn't on the cache queue
2737 		 * (pages on the cache queue are not allowed to be mapped).
2738 		 */
2739 		if (allocated) {
2740 			/*
2741 			 * Page must be zerod.
2742 			 */
2743 			vm_page_zero_fill(m);
2744 			mycpu->gd_cnt.v_zfod++;
2745 			m->valid = VM_PAGE_BITS_ALL;
2746 
2747 			/*
2748 			 * Handle dirty page case
2749 			 */
2750 			if (pprot & VM_PROT_WRITE)
2751 				vm_set_nosync(m, entry);
2752 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2753 			mycpu->gd_cnt.v_vm_faults++;
2754 			if (curthread->td_lwp)
2755 				++curthread->td_lwp->lwp_ru.ru_minflt;
2756 			vm_page_deactivate(m);
2757 			if (pprot & VM_PROT_WRITE) {
2758 				/*vm_object_set_writeable_dirty(m->object);*/
2759 				vm_set_nosync(m, entry);
2760 				if (fault_flags & VM_FAULT_DIRTY) {
2761 					vm_page_dirty(m);
2762 					/*XXX*/
2763 					swap_pager_unswapped(m);
2764 				}
2765 			}
2766 			vm_page_wakeup(m);
2767 		} else if (error) {
2768 			/* couldn't busy page, no wakeup */
2769 		} else if (
2770 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2771 		    (m->flags & PG_FICTITIOUS) == 0) {
2772 			/*
2773 			 * A fully valid page not undergoing soft I/O can
2774 			 * be immediately entered into the pmap.
2775 			 */
2776 			if ((m->queue - m->pc) == PQ_CACHE)
2777 				vm_page_deactivate(m);
2778 			if (pprot & VM_PROT_WRITE) {
2779 				/*vm_object_set_writeable_dirty(m->object);*/
2780 				vm_set_nosync(m, entry);
2781 				if (fault_flags & VM_FAULT_DIRTY) {
2782 					vm_page_dirty(m);
2783 					/*XXX*/
2784 					swap_pager_unswapped(m);
2785 				}
2786 			}
2787 			if (pprot & VM_PROT_WRITE)
2788 				vm_set_nosync(m, entry);
2789 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2790 			mycpu->gd_cnt.v_vm_faults++;
2791 			if (curthread->td_lwp)
2792 				++curthread->td_lwp->lwp_ru.ru_minflt;
2793 			vm_page_wakeup(m);
2794 		} else {
2795 			vm_page_wakeup(m);
2796 		}
2797 	}
2798 	vm_object_chain_release(object);
2799 	vm_object_drop(object);
2800 }
2801 
2802 /*
2803  * Object can be held shared
2804  */
2805 static void
2806 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2807 		  vm_map_entry_t entry, int prot, int fault_flags)
2808 {
2809 	struct lwp *lp;
2810 	vm_page_t m;
2811 	vm_offset_t addr;
2812 	vm_pindex_t pindex;
2813 	vm_object_t object;
2814 	int i;
2815 	int noneg;
2816 	int nopos;
2817 	int maxpages;
2818 
2819 	/*
2820 	 * Get stable max count value, disabled if set to 0
2821 	 */
2822 	maxpages = vm_prefault_pages;
2823 	cpu_ccfence();
2824 	if (maxpages <= 0)
2825 		return;
2826 
2827 	/*
2828 	 * We do not currently prefault mappings that use virtual page
2829 	 * tables.  We do not prefault foreign pmaps.
2830 	 */
2831 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2832 		return;
2833 	lp = curthread->td_lwp;
2834 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2835 		return;
2836 	object = entry->object.vm_object;
2837 	if (object->backing_object != NULL)
2838 		return;
2839 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2840 
2841 	/*
2842 	 * Limit pre-fault count to 1024 pages.
2843 	 */
2844 	if (maxpages > 1024)
2845 		maxpages = 1024;
2846 
2847 	noneg = 0;
2848 	nopos = 0;
2849 	for (i = 0; i < maxpages; ++i) {
2850 		int error;
2851 
2852 		/*
2853 		 * Calculate the page to pre-fault, stopping the scan in
2854 		 * each direction separately if the limit is reached.
2855 		 */
2856 		if (i & 1) {
2857 			if (noneg)
2858 				continue;
2859 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2860 		} else {
2861 			if (nopos)
2862 				continue;
2863 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2864 		}
2865 		if (addr < entry->start) {
2866 			noneg = 1;
2867 			if (noneg && nopos)
2868 				break;
2869 			continue;
2870 		}
2871 		if (addr >= entry->end) {
2872 			nopos = 1;
2873 			if (noneg && nopos)
2874 				break;
2875 			continue;
2876 		}
2877 
2878 		/*
2879 		 * Follow the VM object chain to obtain the page to be mapped
2880 		 * into the pmap.  This version of the prefault code only
2881 		 * works with terminal objects.
2882 		 *
2883 		 * The page must already exist.  If we encounter a problem
2884 		 * we stop here.
2885 		 *
2886 		 * WARNING!  We cannot call swap_pager_unswapped() or insert
2887 		 *	     a new vm_page with a shared token.
2888 		 */
2889 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2890 
2891 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2892 		if (m == NULL || error)
2893 			break;
2894 
2895 		/*
2896 		 * Skip pages already mapped, and stop scanning in that
2897 		 * direction.  When the scan terminates in both directions
2898 		 * we are done.
2899 		 */
2900 		if (pmap_prefault_ok(pmap, addr) == 0) {
2901 			vm_page_wakeup(m);
2902 			if (i & 1)
2903 				noneg = 1;
2904 			else
2905 				nopos = 1;
2906 			if (noneg && nopos)
2907 				break;
2908 			continue;
2909 		}
2910 
2911 		/*
2912 		 * Stop if the page cannot be trivially entered into the
2913 		 * pmap.
2914 		 */
2915 		if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
2916 		    (m->flags & PG_FICTITIOUS) ||
2917 		    ((m->flags & PG_SWAPPED) &&
2918 		     (prot & VM_PROT_WRITE) &&
2919 		     (fault_flags & VM_FAULT_DIRTY))) {
2920 			vm_page_wakeup(m);
2921 			break;
2922 		}
2923 
2924 		/*
2925 		 * Enter the page into the pmap.  The object might be held
2926 		 * shared so we can't do any (serious) modifying operation
2927 		 * on it.
2928 		 */
2929 		if ((m->queue - m->pc) == PQ_CACHE)
2930 			vm_page_deactivate(m);
2931 		if (prot & VM_PROT_WRITE) {
2932 			vm_object_set_writeable_dirty(m->object);
2933 			vm_set_nosync(m, entry);
2934 			if (fault_flags & VM_FAULT_DIRTY) {
2935 				vm_page_dirty(m);
2936 				/* can't happeen due to conditional above */
2937 				/* swap_pager_unswapped(m); */
2938 			}
2939 		}
2940 		pmap_enter(pmap, addr, m, prot, 0, entry);
2941 		mycpu->gd_cnt.v_vm_faults++;
2942 		if (curthread->td_lwp)
2943 			++curthread->td_lwp->lwp_ru.ru_minflt;
2944 		vm_page_wakeup(m);
2945 	}
2946 }
2947