xref: /dflybsd-src/sys/vm/vm_fault.c (revision 2e7bf158f373428dba2c765c927f14d9e94f00a4)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74 
75 /*
76  *	Page fault handling module.
77  */
78 
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89 
90 #include <cpu/lwbuf.h>
91 
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103 
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106 
107 struct faultstate {
108 	vm_page_t m;
109 	vm_object_t object;
110 	vm_pindex_t pindex;
111 	vm_prot_t prot;
112 	vm_page_t first_m;
113 	vm_object_t first_object;
114 	vm_prot_t first_prot;
115 	vm_map_t map;
116 	vm_map_entry_t entry;
117 	int lookup_still_valid;
118 	int didlimit;
119 	int hardfault;
120 	int fault_flags;
121 	int map_generation;
122 	boolean_t wired;
123 	struct vnode *vp;
124 };
125 
126 static int vm_fast_fault = 1;
127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, "");
128 static int debug_cluster = 0;
129 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
130 
131 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
132 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
133 #if 0
134 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
135 #endif
136 static int vm_fault_ratelimit(struct vmspace *);
137 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
138 			int prot);
139 
140 /*
141  * The caller must hold vm_token.
142  */
143 static __inline void
144 release_page(struct faultstate *fs)
145 {
146 	vm_page_deactivate(fs->m);
147 	vm_page_wakeup(fs->m);
148 	fs->m = NULL;
149 }
150 
151 /*
152  * The caller must hold vm_token.
153  */
154 static __inline void
155 unlock_map(struct faultstate *fs)
156 {
157 	if (fs->lookup_still_valid && fs->map) {
158 		vm_map_lookup_done(fs->map, fs->entry, 0);
159 		fs->lookup_still_valid = FALSE;
160 	}
161 }
162 
163 /*
164  * Clean up after a successful call to vm_fault_object() so another call
165  * to vm_fault_object() can be made.
166  *
167  * The caller must hold vm_token.
168  */
169 static void
170 _cleanup_successful_fault(struct faultstate *fs, int relock)
171 {
172 	if (fs->object != fs->first_object) {
173 		vm_page_free(fs->first_m);
174 		vm_object_pip_wakeup(fs->object);
175 		fs->first_m = NULL;
176 	}
177 	fs->object = fs->first_object;
178 	if (relock && fs->lookup_still_valid == FALSE) {
179 		if (fs->map)
180 			vm_map_lock_read(fs->map);
181 		fs->lookup_still_valid = TRUE;
182 	}
183 }
184 
185 /*
186  * The caller must hold vm_token.
187  */
188 static void
189 _unlock_things(struct faultstate *fs, int dealloc)
190 {
191 	vm_object_pip_wakeup(fs->first_object);
192 	_cleanup_successful_fault(fs, 0);
193 	if (dealloc) {
194 		vm_object_deallocate(fs->first_object);
195 		fs->first_object = NULL;
196 	}
197 	unlock_map(fs);
198 	if (fs->vp != NULL) {
199 		vput(fs->vp);
200 		fs->vp = NULL;
201 	}
202 }
203 
204 #define unlock_things(fs) _unlock_things(fs, 0)
205 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
206 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
207 
208 /*
209  * TRYPAGER
210  *
211  * Determine if the pager for the current object *might* contain the page.
212  *
213  * We only need to try the pager if this is not a default object (default
214  * objects are zero-fill and have no real pager), and if we are not taking
215  * a wiring fault or if the FS entry is wired.
216  */
217 #define TRYPAGER(fs)	\
218 		(fs->object->type != OBJT_DEFAULT && \
219 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
220 
221 /*
222  * vm_fault:
223  *
224  * Handle a page fault occuring at the given address, requiring the given
225  * permissions, in the map specified.  If successful, the page is inserted
226  * into the associated physical map.
227  *
228  * NOTE: The given address should be truncated to the proper page address.
229  *
230  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
231  * a standard error specifying why the fault is fatal is returned.
232  *
233  * The map in question must be referenced, and remains so.
234  * The caller may hold no locks.
235  * No other requirements.
236  */
237 int
238 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
239 {
240 	int result;
241 	vm_pindex_t first_pindex;
242 	struct faultstate fs;
243 	int growstack;
244 
245 	mycpu->gd_cnt.v_vm_faults++;
246 
247 	fs.didlimit = 0;
248 	fs.hardfault = 0;
249 	fs.fault_flags = fault_flags;
250 	growstack = 1;
251 
252 RetryFault:
253 	/*
254 	 * Find the vm_map_entry representing the backing store and resolve
255 	 * the top level object and page index.  This may have the side
256 	 * effect of executing a copy-on-write on the map entry and/or
257 	 * creating a shadow object, but will not COW any actual VM pages.
258 	 *
259 	 * On success fs.map is left read-locked and various other fields
260 	 * are initialized but not otherwise referenced or locked.
261 	 *
262 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
263 	 * VM_FAULT_WRITE if the map entry is a virtual page table and also
264 	 * writable, so we can set the 'A'accessed bit in the virtual page
265 	 * table entry.
266 	 */
267 	fs.map = map;
268 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
269 			       &fs.entry, &fs.first_object,
270 			       &first_pindex, &fs.first_prot, &fs.wired);
271 
272 	/*
273 	 * If the lookup failed or the map protections are incompatible,
274 	 * the fault generally fails.  However, if the caller is trying
275 	 * to do a user wiring we have more work to do.
276 	 */
277 	if (result != KERN_SUCCESS) {
278 		if (result != KERN_PROTECTION_FAILURE ||
279 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
280 		{
281 			if (result == KERN_INVALID_ADDRESS && growstack &&
282 			    map != &kernel_map && curproc != NULL) {
283 				result = vm_map_growstack(curproc, vaddr);
284 				if (result != KERN_SUCCESS)
285 					return (KERN_FAILURE);
286 				growstack = 0;
287 				goto RetryFault;
288 			}
289 			return (result);
290 		}
291 
292 		/*
293    		 * If we are user-wiring a r/w segment, and it is COW, then
294    		 * we need to do the COW operation.  Note that we don't
295 		 * currently COW RO sections now, because it is NOT desirable
296    		 * to COW .text.  We simply keep .text from ever being COW'ed
297    		 * and take the heat that one cannot debug wired .text sections.
298    		 */
299 		result = vm_map_lookup(&fs.map, vaddr,
300 				       VM_PROT_READ|VM_PROT_WRITE|
301 				        VM_PROT_OVERRIDE_WRITE,
302 				       &fs.entry, &fs.first_object,
303 				       &first_pindex, &fs.first_prot,
304 				       &fs.wired);
305 		if (result != KERN_SUCCESS)
306 			return result;
307 
308 		/*
309 		 * If we don't COW now, on a user wire, the user will never
310 		 * be able to write to the mapping.  If we don't make this
311 		 * restriction, the bookkeeping would be nearly impossible.
312 		 */
313 		if ((fs.entry->protection & VM_PROT_WRITE) == 0)
314 			fs.entry->max_protection &= ~VM_PROT_WRITE;
315 	}
316 
317 	/*
318 	 * fs.map is read-locked
319 	 *
320 	 * Misc checks.  Save the map generation number to detect races.
321 	 */
322 	fs.map_generation = fs.map->timestamp;
323 
324 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
325 		panic("vm_fault: fault on nofault entry, addr: %lx",
326 		    (u_long)vaddr);
327 	}
328 
329 	/*
330 	 * A system map entry may return a NULL object.  No object means
331 	 * no pager means an unrecoverable kernel fault.
332 	 */
333 	if (fs.first_object == NULL) {
334 		panic("vm_fault: unrecoverable fault at %p in entry %p",
335 			(void *)vaddr, fs.entry);
336 	}
337 
338 	/*
339 	 * Make a reference to this object to prevent its disposal while we
340 	 * are messing with it.  Once we have the reference, the map is free
341 	 * to be diddled.  Since objects reference their shadows (and copies),
342 	 * they will stay around as well.
343 	 *
344 	 * Bump the paging-in-progress count to prevent size changes (e.g.
345 	 * truncation operations) during I/O.  This must be done after
346 	 * obtaining the vnode lock in order to avoid possible deadlocks.
347 	 *
348 	 * The vm_token is needed to manipulate the vm_object
349 	 */
350 	lwkt_gettoken(&vm_token);
351 	vm_object_reference(fs.first_object);
352 	fs.vp = vnode_pager_lock(fs.first_object);
353 	vm_object_pip_add(fs.first_object, 1);
354 	lwkt_reltoken(&vm_token);
355 
356 	fs.lookup_still_valid = TRUE;
357 	fs.first_m = NULL;
358 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
359 
360 	/*
361 	 * If the entry is wired we cannot change the page protection.
362 	 */
363 	if (fs.wired)
364 		fault_type = fs.first_prot;
365 
366 	/*
367 	 * The page we want is at (first_object, first_pindex), but if the
368 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
369 	 * page table to figure out the actual pindex.
370 	 *
371 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
372 	 * ONLY
373 	 */
374 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
375 		result = vm_fault_vpagetable(&fs, &first_pindex,
376 					     fs.entry->aux.master_pde,
377 					     fault_type);
378 		if (result == KERN_TRY_AGAIN)
379 			goto RetryFault;
380 		if (result != KERN_SUCCESS)
381 			return (result);
382 	}
383 
384 	/*
385 	 * Now we have the actual (object, pindex), fault in the page.  If
386 	 * vm_fault_object() fails it will unlock and deallocate the FS
387 	 * data.   If it succeeds everything remains locked and fs->object
388 	 * will have an additional PIP count if it is not equal to
389 	 * fs->first_object
390 	 *
391 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
392 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
393 	 * page can be safely written.  However, it will force a read-only
394 	 * mapping for a read fault if the memory is managed by a virtual
395 	 * page table.
396 	 */
397 	result = vm_fault_object(&fs, first_pindex, fault_type);
398 
399 	if (result == KERN_TRY_AGAIN)
400 		goto RetryFault;
401 	if (result != KERN_SUCCESS)
402 		return (result);
403 
404 	/*
405 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
406 	 * will contain a busied page.
407 	 *
408 	 * Enter the page into the pmap and do pmap-related adjustments.
409 	 */
410 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
411 
412 	/*
413 	 * Burst in a few more pages if possible.  The fs.map should still
414 	 * be locked.
415 	 */
416 	if (fault_flags & VM_FAULT_BURST) {
417 		if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
418 		    fs.wired == 0) {
419 			vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
420 		}
421 	}
422 	unlock_things(&fs);
423 
424 	vm_page_flag_clear(fs.m, PG_ZERO);
425 	vm_page_flag_set(fs.m, PG_REFERENCED);
426 
427 	/*
428 	 * If the page is not wired down, then put it where the pageout daemon
429 	 * can find it.
430 	 *
431 	 * We do not really need to get vm_token here but since all the
432 	 * vm_*() calls have to doing it here improves efficiency.
433 	 */
434 	lwkt_gettoken(&vm_token);
435 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
436 		if (fs.wired)
437 			vm_page_wire(fs.m);
438 		else
439 			vm_page_unwire(fs.m, 1);
440 	} else {
441 		vm_page_activate(fs.m);
442 	}
443 
444 	if (curthread->td_lwp) {
445 		if (fs.hardfault) {
446 			curthread->td_lwp->lwp_ru.ru_majflt++;
447 		} else {
448 			curthread->td_lwp->lwp_ru.ru_minflt++;
449 		}
450 	}
451 
452 	/*
453 	 * Unlock everything, and return
454 	 */
455 	vm_page_wakeup(fs.m);
456 	vm_object_deallocate(fs.first_object);
457 	lwkt_reltoken(&vm_token);
458 
459 	return (KERN_SUCCESS);
460 }
461 
462 /*
463  * Fault in the specified virtual address in the current process map,
464  * returning a held VM page or NULL.  See vm_fault_page() for more
465  * information.
466  *
467  * No requirements.
468  */
469 vm_page_t
470 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
471 {
472 	struct lwp *lp = curthread->td_lwp;
473 	vm_page_t m;
474 
475 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
476 			  fault_type, VM_FAULT_NORMAL, errorp);
477 	return(m);
478 }
479 
480 /*
481  * Fault in the specified virtual address in the specified map, doing all
482  * necessary manipulation of the object store and all necessary I/O.  Return
483  * a held VM page or NULL, and set *errorp.  The related pmap is not
484  * updated.
485  *
486  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
487  * and marked PG_REFERENCED as well.
488  *
489  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
490  * error will be returned.
491  *
492  * No requirements.
493  */
494 vm_page_t
495 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
496 	      int fault_flags, int *errorp)
497 {
498 	vm_pindex_t first_pindex;
499 	struct faultstate fs;
500 	int result;
501 	vm_prot_t orig_fault_type = fault_type;
502 
503 	mycpu->gd_cnt.v_vm_faults++;
504 
505 	fs.didlimit = 0;
506 	fs.hardfault = 0;
507 	fs.fault_flags = fault_flags;
508 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
509 
510 RetryFault:
511 	/*
512 	 * Find the vm_map_entry representing the backing store and resolve
513 	 * the top level object and page index.  This may have the side
514 	 * effect of executing a copy-on-write on the map entry and/or
515 	 * creating a shadow object, but will not COW any actual VM pages.
516 	 *
517 	 * On success fs.map is left read-locked and various other fields
518 	 * are initialized but not otherwise referenced or locked.
519 	 *
520 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
521 	 * if the map entry is a virtual page table and also writable,
522 	 * so we can set the 'A'accessed bit in the virtual page table entry.
523 	 */
524 	fs.map = map;
525 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
526 			       &fs.entry, &fs.first_object,
527 			       &first_pindex, &fs.first_prot, &fs.wired);
528 
529 	if (result != KERN_SUCCESS) {
530 		*errorp = result;
531 		return (NULL);
532 	}
533 
534 	/*
535 	 * fs.map is read-locked
536 	 *
537 	 * Misc checks.  Save the map generation number to detect races.
538 	 */
539 	fs.map_generation = fs.map->timestamp;
540 
541 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
542 		panic("vm_fault: fault on nofault entry, addr: %lx",
543 		    (u_long)vaddr);
544 	}
545 
546 	/*
547 	 * A system map entry may return a NULL object.  No object means
548 	 * no pager means an unrecoverable kernel fault.
549 	 */
550 	if (fs.first_object == NULL) {
551 		panic("vm_fault: unrecoverable fault at %p in entry %p",
552 			(void *)vaddr, fs.entry);
553 	}
554 
555 	/*
556 	 * Make a reference to this object to prevent its disposal while we
557 	 * are messing with it.  Once we have the reference, the map is free
558 	 * to be diddled.  Since objects reference their shadows (and copies),
559 	 * they will stay around as well.
560 	 *
561 	 * Bump the paging-in-progress count to prevent size changes (e.g.
562 	 * truncation operations) during I/O.  This must be done after
563 	 * obtaining the vnode lock in order to avoid possible deadlocks.
564 	 *
565 	 * The vm_token is needed to manipulate the vm_object
566 	 */
567 	lwkt_gettoken(&vm_token);
568 	vm_object_reference(fs.first_object);
569 	fs.vp = vnode_pager_lock(fs.first_object);
570 	vm_object_pip_add(fs.first_object, 1);
571 	lwkt_reltoken(&vm_token);
572 
573 	fs.lookup_still_valid = TRUE;
574 	fs.first_m = NULL;
575 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
576 
577 	/*
578 	 * If the entry is wired we cannot change the page protection.
579 	 */
580 	if (fs.wired)
581 		fault_type = fs.first_prot;
582 
583 	/*
584 	 * The page we want is at (first_object, first_pindex), but if the
585 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
586 	 * page table to figure out the actual pindex.
587 	 *
588 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
589 	 * ONLY
590 	 */
591 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
592 		result = vm_fault_vpagetable(&fs, &first_pindex,
593 					     fs.entry->aux.master_pde,
594 					     fault_type);
595 		if (result == KERN_TRY_AGAIN)
596 			goto RetryFault;
597 		if (result != KERN_SUCCESS) {
598 			*errorp = result;
599 			return (NULL);
600 		}
601 	}
602 
603 	/*
604 	 * Now we have the actual (object, pindex), fault in the page.  If
605 	 * vm_fault_object() fails it will unlock and deallocate the FS
606 	 * data.   If it succeeds everything remains locked and fs->object
607 	 * will have an additinal PIP count if it is not equal to
608 	 * fs->first_object
609 	 */
610 	result = vm_fault_object(&fs, first_pindex, fault_type);
611 
612 	if (result == KERN_TRY_AGAIN)
613 		goto RetryFault;
614 	if (result != KERN_SUCCESS) {
615 		*errorp = result;
616 		return(NULL);
617 	}
618 
619 	if ((orig_fault_type & VM_PROT_WRITE) &&
620 	    (fs.prot & VM_PROT_WRITE) == 0) {
621 		*errorp = KERN_PROTECTION_FAILURE;
622 		unlock_and_deallocate(&fs);
623 		return(NULL);
624 	}
625 
626 	/*
627 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
628 	 * will contain a busied page.
629 	 */
630 	unlock_things(&fs);
631 
632 	/*
633 	 * Return a held page.  We are not doing any pmap manipulation so do
634 	 * not set PG_MAPPED.  However, adjust the page flags according to
635 	 * the fault type because the caller may not use a managed pmapping
636 	 * (so we don't want to lose the fact that the page will be dirtied
637 	 * if a write fault was specified).
638 	 */
639 	lwkt_gettoken(&vm_token);
640 	vm_page_hold(fs.m);
641 	vm_page_flag_clear(fs.m, PG_ZERO);
642 	if (fault_type & VM_PROT_WRITE)
643 		vm_page_dirty(fs.m);
644 
645 	/*
646 	 * Update the pmap.  We really only have to do this if a COW
647 	 * occured to replace the read-only page with the new page.  For
648 	 * now just do it unconditionally. XXX
649 	 */
650 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
651 	vm_page_flag_set(fs.m, PG_REFERENCED);
652 
653 	/*
654 	 * Unbusy the page by activating it.  It remains held and will not
655 	 * be reclaimed.
656 	 */
657 	vm_page_activate(fs.m);
658 
659 	if (curthread->td_lwp) {
660 		if (fs.hardfault) {
661 			curthread->td_lwp->lwp_ru.ru_majflt++;
662 		} else {
663 			curthread->td_lwp->lwp_ru.ru_minflt++;
664 		}
665 	}
666 
667 	/*
668 	 * Unlock everything, and return the held page.
669 	 */
670 	vm_page_wakeup(fs.m);
671 	vm_object_deallocate(fs.first_object);
672 	lwkt_reltoken(&vm_token);
673 
674 	*errorp = 0;
675 	return(fs.m);
676 }
677 
678 /*
679  * Fault in the specified (object,offset), dirty the returned page as
680  * needed.  If the requested fault_type cannot be done NULL and an
681  * error is returned.
682  *
683  * A held (but not busied) page is returned.
684  *
685  * No requirements.
686  */
687 vm_page_t
688 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
689 		     vm_prot_t fault_type, int fault_flags, int *errorp)
690 {
691 	int result;
692 	vm_pindex_t first_pindex;
693 	struct faultstate fs;
694 	struct vm_map_entry entry;
695 
696 	bzero(&entry, sizeof(entry));
697 	entry.object.vm_object = object;
698 	entry.maptype = VM_MAPTYPE_NORMAL;
699 	entry.protection = entry.max_protection = fault_type;
700 
701 	fs.didlimit = 0;
702 	fs.hardfault = 0;
703 	fs.fault_flags = fault_flags;
704 	fs.map = NULL;
705 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
706 
707 RetryFault:
708 
709 	fs.first_object = object;
710 	first_pindex = OFF_TO_IDX(offset);
711 	fs.entry = &entry;
712 	fs.first_prot = fault_type;
713 	fs.wired = 0;
714 	/*fs.map_generation = 0; unused */
715 
716 	/*
717 	 * Make a reference to this object to prevent its disposal while we
718 	 * are messing with it.  Once we have the reference, the map is free
719 	 * to be diddled.  Since objects reference their shadows (and copies),
720 	 * they will stay around as well.
721 	 *
722 	 * Bump the paging-in-progress count to prevent size changes (e.g.
723 	 * truncation operations) during I/O.  This must be done after
724 	 * obtaining the vnode lock in order to avoid possible deadlocks.
725 	 */
726 	lwkt_gettoken(&vm_token);
727 	vm_object_reference(fs.first_object);
728 	fs.vp = vnode_pager_lock(fs.first_object);
729 	vm_object_pip_add(fs.first_object, 1);
730 	lwkt_reltoken(&vm_token);
731 
732 	fs.lookup_still_valid = TRUE;
733 	fs.first_m = NULL;
734 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
735 
736 #if 0
737 	/* XXX future - ability to operate on VM object using vpagetable */
738 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
739 		result = vm_fault_vpagetable(&fs, &first_pindex,
740 					     fs.entry->aux.master_pde,
741 					     fault_type);
742 		if (result == KERN_TRY_AGAIN)
743 			goto RetryFault;
744 		if (result != KERN_SUCCESS) {
745 			*errorp = result;
746 			return (NULL);
747 		}
748 	}
749 #endif
750 
751 	/*
752 	 * Now we have the actual (object, pindex), fault in the page.  If
753 	 * vm_fault_object() fails it will unlock and deallocate the FS
754 	 * data.   If it succeeds everything remains locked and fs->object
755 	 * will have an additinal PIP count if it is not equal to
756 	 * fs->first_object
757 	 */
758 	result = vm_fault_object(&fs, first_pindex, fault_type);
759 
760 	if (result == KERN_TRY_AGAIN)
761 		goto RetryFault;
762 	if (result != KERN_SUCCESS) {
763 		*errorp = result;
764 		return(NULL);
765 	}
766 
767 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
768 		*errorp = KERN_PROTECTION_FAILURE;
769 		unlock_and_deallocate(&fs);
770 		return(NULL);
771 	}
772 
773 	/*
774 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
775 	 * will contain a busied page.
776 	 */
777 	unlock_things(&fs);
778 
779 	/*
780 	 * Return a held page.  We are not doing any pmap manipulation so do
781 	 * not set PG_MAPPED.  However, adjust the page flags according to
782 	 * the fault type because the caller may not use a managed pmapping
783 	 * (so we don't want to lose the fact that the page will be dirtied
784 	 * if a write fault was specified).
785 	 */
786 	lwkt_gettoken(&vm_token);
787 	vm_page_hold(fs.m);
788 	vm_page_flag_clear(fs.m, PG_ZERO);
789 	if (fault_type & VM_PROT_WRITE)
790 		vm_page_dirty(fs.m);
791 
792 	/*
793 	 * Indicate that the page was accessed.
794 	 */
795 	vm_page_flag_set(fs.m, PG_REFERENCED);
796 
797 	/*
798 	 * Unbusy the page by activating it.  It remains held and will not
799 	 * be reclaimed.
800 	 */
801 	vm_page_activate(fs.m);
802 
803 	if (curthread->td_lwp) {
804 		if (fs.hardfault) {
805 			mycpu->gd_cnt.v_vm_faults++;
806 			curthread->td_lwp->lwp_ru.ru_majflt++;
807 		} else {
808 			curthread->td_lwp->lwp_ru.ru_minflt++;
809 		}
810 	}
811 
812 	/*
813 	 * Unlock everything, and return the held page.
814 	 */
815 	vm_page_wakeup(fs.m);
816 	vm_object_deallocate(fs.first_object);
817 	lwkt_reltoken(&vm_token);
818 
819 	*errorp = 0;
820 	return(fs.m);
821 }
822 
823 /*
824  * Translate the virtual page number (first_pindex) that is relative
825  * to the address space into a logical page number that is relative to the
826  * backing object.  Use the virtual page table pointed to by (vpte).
827  *
828  * This implements an N-level page table.  Any level can terminate the
829  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
830  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
831  *
832  * No requirements (vm_token need not be held).
833  */
834 static
835 int
836 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
837 		    vpte_t vpte, int fault_type)
838 {
839 	struct lwbuf *lwb;
840 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
841 	int result = KERN_SUCCESS;
842 	vpte_t *ptep;
843 
844 	for (;;) {
845 		/*
846 		 * We cannot proceed if the vpte is not valid, not readable
847 		 * for a read fault, or not writable for a write fault.
848 		 */
849 		if ((vpte & VPTE_V) == 0) {
850 			unlock_and_deallocate(fs);
851 			return (KERN_FAILURE);
852 		}
853 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
854 			unlock_and_deallocate(fs);
855 			return (KERN_FAILURE);
856 		}
857 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
858 			unlock_and_deallocate(fs);
859 			return (KERN_FAILURE);
860 		}
861 		if ((vpte & VPTE_PS) || vshift == 0)
862 			break;
863 		KKASSERT(vshift >= VPTE_PAGE_BITS);
864 
865 		/*
866 		 * Get the page table page.  Nominally we only read the page
867 		 * table, but since we are actively setting VPTE_M and VPTE_A,
868 		 * tell vm_fault_object() that we are writing it.
869 		 *
870 		 * There is currently no real need to optimize this.
871 		 */
872 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
873 					 VM_PROT_READ|VM_PROT_WRITE);
874 		if (result != KERN_SUCCESS)
875 			return (result);
876 
877 		/*
878 		 * Process the returned fs.m and look up the page table
879 		 * entry in the page table page.
880 		 */
881 		vshift -= VPTE_PAGE_BITS;
882 		lwb = lwbuf_alloc(fs->m);
883 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
884 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
885 		vpte = *ptep;
886 
887 		/*
888 		 * Page table write-back.  If the vpte is valid for the
889 		 * requested operation, do a write-back to the page table.
890 		 *
891 		 * XXX VPTE_M is not set properly for page directory pages.
892 		 * It doesn't get set in the page directory if the page table
893 		 * is modified during a read access.
894 		 */
895 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
896 		    (vpte & VPTE_W)) {
897 			if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
898 				atomic_set_long(ptep, VPTE_M | VPTE_A);
899 				vm_page_dirty(fs->m);
900 			}
901 		}
902 		if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
903 		    (vpte & VPTE_R)) {
904 			if ((vpte & VPTE_A) == 0) {
905 				atomic_set_long(ptep, VPTE_A);
906 				vm_page_dirty(fs->m);
907 			}
908 		}
909 		lwbuf_free(lwb);
910 		vm_page_flag_set(fs->m, PG_REFERENCED);
911 		vm_page_activate(fs->m);
912 		vm_page_wakeup(fs->m);
913 		cleanup_successful_fault(fs);
914 	}
915 	/*
916 	 * Combine remaining address bits with the vpte.
917 	 */
918 	/* JG how many bits from each? */
919 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
920 		  (*pindex & ((1L << vshift) - 1));
921 	return (KERN_SUCCESS);
922 }
923 
924 
925 /*
926  * This is the core of the vm_fault code.
927  *
928  * Do all operations required to fault-in (fs.first_object, pindex).  Run
929  * through the shadow chain as necessary and do required COW or virtual
930  * copy operations.  The caller has already fully resolved the vm_map_entry
931  * and, if appropriate, has created a copy-on-write layer.  All we need to
932  * do is iterate the object chain.
933  *
934  * On failure (fs) is unlocked and deallocated and the caller may return or
935  * retry depending on the failure code.  On success (fs) is NOT unlocked or
936  * deallocated, fs.m will contained a resolved, busied page, and fs.object
937  * will have an additional PIP count if it is not equal to fs.first_object.
938  *
939  * No requirements.
940  */
941 static
942 int
943 vm_fault_object(struct faultstate *fs,
944 		vm_pindex_t first_pindex, vm_prot_t fault_type)
945 {
946 	vm_object_t next_object;
947 	vm_pindex_t pindex;
948 
949 	fs->prot = fs->first_prot;
950 	fs->object = fs->first_object;
951 	pindex = first_pindex;
952 
953 	/*
954 	 * If a read fault occurs we try to make the page writable if
955 	 * possible.  There are three cases where we cannot make the
956 	 * page mapping writable:
957 	 *
958 	 * (1) The mapping is read-only or the VM object is read-only,
959 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
960 	 *
961 	 * (2) If the mapping is a virtual page table we need to be able
962 	 *     to detect writes so we can set VPTE_M in the virtual page
963 	 *     table.
964 	 *
965 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
966 	 *     just result in an unnecessary COW fault.
967 	 *
968 	 * VM_PROT_VPAGED is set if faulting via a virtual page table and
969 	 * causes adjustments to the 'M'odify bit to also turn off write
970 	 * access to force a re-fault.
971 	 */
972 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
973 		if ((fault_type & VM_PROT_WRITE) == 0)
974 			fs->prot &= ~VM_PROT_WRITE;
975 	}
976 
977 	lwkt_gettoken(&vm_token);
978 
979 	for (;;) {
980 		/*
981 		 * If the object is dead, we stop here
982 		 */
983 		if (fs->object->flags & OBJ_DEAD) {
984 			unlock_and_deallocate(fs);
985 			lwkt_reltoken(&vm_token);
986 			return (KERN_PROTECTION_FAILURE);
987 		}
988 
989 		/*
990 		 * See if page is resident.  spl protection is required
991 		 * to avoid an interrupt unbusy/free race against our
992 		 * lookup.  We must hold the protection through a page
993 		 * allocation or busy.
994 		 */
995 		crit_enter();
996 		fs->m = vm_page_lookup(fs->object, pindex);
997 		if (fs->m != NULL) {
998 			int queue;
999 			/*
1000 			 * Wait/Retry if the page is busy.  We have to do this
1001 			 * if the page is busy via either PG_BUSY or
1002 			 * vm_page_t->busy because the vm_pager may be using
1003 			 * vm_page_t->busy for pageouts ( and even pageins if
1004 			 * it is the vnode pager ), and we could end up trying
1005 			 * to pagein and pageout the same page simultaneously.
1006 			 *
1007 			 * We can theoretically allow the busy case on a read
1008 			 * fault if the page is marked valid, but since such
1009 			 * pages are typically already pmap'd, putting that
1010 			 * special case in might be more effort then it is
1011 			 * worth.  We cannot under any circumstances mess
1012 			 * around with a vm_page_t->busy page except, perhaps,
1013 			 * to pmap it.
1014 			 */
1015 			if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
1016 				unlock_things(fs);
1017 				vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1018 				mycpu->gd_cnt.v_intrans++;
1019 				vm_object_deallocate(fs->first_object);
1020 				fs->first_object = NULL;
1021 				lwkt_reltoken(&vm_token);
1022 				crit_exit();
1023 				return (KERN_TRY_AGAIN);
1024 			}
1025 
1026 			/*
1027 			 * If reactivating a page from PQ_CACHE we may have
1028 			 * to rate-limit.
1029 			 */
1030 			queue = fs->m->queue;
1031 			vm_page_unqueue_nowakeup(fs->m);
1032 
1033 			if ((queue - fs->m->pc) == PQ_CACHE &&
1034 			    vm_page_count_severe()) {
1035 				vm_page_activate(fs->m);
1036 				unlock_and_deallocate(fs);
1037 				vm_waitpfault();
1038 				lwkt_reltoken(&vm_token);
1039 				crit_exit();
1040 				return (KERN_TRY_AGAIN);
1041 			}
1042 
1043 			/*
1044 			 * Mark page busy for other processes, and the
1045 			 * pagedaemon.  If it still isn't completely valid
1046 			 * (readable), or if a read-ahead-mark is set on
1047 			 * the VM page, jump to readrest, else we found the
1048 			 * page and can return.
1049 			 *
1050 			 * We can release the spl once we have marked the
1051 			 * page busy.
1052 			 */
1053 			vm_page_busy(fs->m);
1054 			crit_exit();
1055 
1056 			if (fs->m->object != &kernel_object) {
1057 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1058 				    VM_PAGE_BITS_ALL) {
1059 					goto readrest;
1060 				}
1061 				if (fs->m->flags & PG_RAM) {
1062 					if (debug_cluster)
1063 						kprintf("R");
1064 					vm_page_flag_clear(fs->m, PG_RAM);
1065 					goto readrest;
1066 				}
1067 			}
1068 			break; /* break to PAGE HAS BEEN FOUND */
1069 		}
1070 
1071 		/*
1072 		 * Page is not resident, If this is the search termination
1073 		 * or the pager might contain the page, allocate a new page.
1074 		 *
1075 		 * NOTE: We are still in a critical section.
1076 		 */
1077 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1078 			/*
1079 			 * If the page is beyond the object size we fail
1080 			 */
1081 			if (pindex >= fs->object->size) {
1082 				lwkt_reltoken(&vm_token);
1083 				crit_exit();
1084 				unlock_and_deallocate(fs);
1085 				return (KERN_PROTECTION_FAILURE);
1086 			}
1087 
1088 			/*
1089 			 * Ratelimit.
1090 			 */
1091 			if (fs->didlimit == 0 && curproc != NULL) {
1092 				int limticks;
1093 
1094 				limticks = vm_fault_ratelimit(curproc->p_vmspace);
1095 				if (limticks) {
1096 					lwkt_reltoken(&vm_token);
1097 					crit_exit();
1098 					unlock_and_deallocate(fs);
1099 					tsleep(curproc, 0, "vmrate", limticks);
1100 					fs->didlimit = 1;
1101 					return (KERN_TRY_AGAIN);
1102 				}
1103 			}
1104 
1105 			/*
1106 			 * Allocate a new page for this object/offset pair.
1107 			 */
1108 			fs->m = NULL;
1109 			if (!vm_page_count_severe()) {
1110 				fs->m = vm_page_alloc(fs->object, pindex,
1111 				    (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1112 			}
1113 			if (fs->m == NULL) {
1114 				lwkt_reltoken(&vm_token);
1115 				crit_exit();
1116 				unlock_and_deallocate(fs);
1117 				vm_waitpfault();
1118 				return (KERN_TRY_AGAIN);
1119 			}
1120 		}
1121 		crit_exit();
1122 
1123 readrest:
1124 		/*
1125 		 * We have found an invalid or partially valid page, a
1126 		 * page with a read-ahead mark which might be partially or
1127 		 * fully valid (and maybe dirty too), or we have allocated
1128 		 * a new page.
1129 		 *
1130 		 * Attempt to fault-in the page if there is a chance that the
1131 		 * pager has it, and potentially fault in additional pages
1132 		 * at the same time.
1133 		 *
1134 		 * We are NOT in splvm here and if TRYPAGER is true then
1135 		 * fs.m will be non-NULL and will be PG_BUSY for us.
1136 		 */
1137 		if (TRYPAGER(fs)) {
1138 			int rv;
1139 			int seqaccess;
1140 			u_char behavior = vm_map_entry_behavior(fs->entry);
1141 
1142 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1143 				seqaccess = 0;
1144 			else
1145 				seqaccess = -1;
1146 
1147 			/*
1148 			 * If sequential access is detected then attempt
1149 			 * to deactivate/cache pages behind the scan to
1150 			 * prevent resource hogging.
1151 			 *
1152 			 * Use of PG_RAM to detect sequential access
1153 			 * also simulates multi-zone sequential access
1154 			 * detection for free.
1155 			 *
1156 			 * NOTE: Partially valid dirty pages cannot be
1157 			 *	 deactivated without causing NFS picemeal
1158 			 *	 writes to barf.
1159 			 */
1160 			if ((fs->first_object->type != OBJT_DEVICE) &&
1161 			    (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1162                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1163 				 (fs->m->flags & PG_RAM)))
1164 			) {
1165 				vm_pindex_t scan_pindex;
1166 				int scan_count = 16;
1167 
1168 				if (first_pindex < 16) {
1169 					scan_pindex = 0;
1170 					scan_count = 0;
1171 				} else {
1172 					scan_pindex = first_pindex - 16;
1173 					if (scan_pindex < 16)
1174 						scan_count = scan_pindex;
1175 					else
1176 						scan_count = 16;
1177 				}
1178 
1179 				crit_enter();
1180 				while (scan_count) {
1181 					vm_page_t mt;
1182 
1183 					mt = vm_page_lookup(fs->first_object,
1184 							    scan_pindex);
1185 					if (mt == NULL ||
1186 					    (mt->valid != VM_PAGE_BITS_ALL)) {
1187 						break;
1188 					}
1189 					if (mt->busy ||
1190 					    (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1191 					    mt->hold_count ||
1192 					    mt->wire_count)  {
1193 						goto skip;
1194 					}
1195 					if (mt->dirty == 0)
1196 						vm_page_test_dirty(mt);
1197 					if (mt->dirty) {
1198 						vm_page_busy(mt);
1199 						vm_page_protect(mt,
1200 								VM_PROT_NONE);
1201 						vm_page_deactivate(mt);
1202 						vm_page_wakeup(mt);
1203 					} else {
1204 						vm_page_cache(mt);
1205 					}
1206 skip:
1207 					--scan_count;
1208 					--scan_pindex;
1209 				}
1210 				crit_exit();
1211 
1212 				seqaccess = 1;
1213 			}
1214 
1215 			/*
1216 			 * Avoid deadlocking against the map when doing I/O.
1217 			 * fs.object and the page is PG_BUSY'd.
1218 			 */
1219 			unlock_map(fs);
1220 
1221 			/*
1222 			 * Acquire the page data.  We still hold a ref on
1223 			 * fs.object and the page has been PG_BUSY's.
1224 			 *
1225 			 * The pager may replace the page (for example, in
1226 			 * order to enter a fictitious page into the
1227 			 * object).  If it does so it is responsible for
1228 			 * cleaning up the passed page and properly setting
1229 			 * the new page PG_BUSY.
1230 			 *
1231 			 * If we got here through a PG_RAM read-ahead
1232 			 * mark the page may be partially dirty and thus
1233 			 * not freeable.  Don't bother checking to see
1234 			 * if the pager has the page because we can't free
1235 			 * it anyway.  We have to depend on the get_page
1236 			 * operation filling in any gaps whether there is
1237 			 * backing store or not.
1238 			 */
1239 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1240 
1241 			if (rv == VM_PAGER_OK) {
1242 				/*
1243 				 * Relookup in case pager changed page. Pager
1244 				 * is responsible for disposition of old page
1245 				 * if moved.
1246 				 *
1247 				 * XXX other code segments do relookups too.
1248 				 * It's a bad abstraction that needs to be
1249 				 * fixed/removed.
1250 				 */
1251 				fs->m = vm_page_lookup(fs->object, pindex);
1252 				if (fs->m == NULL) {
1253 					lwkt_reltoken(&vm_token);
1254 					unlock_and_deallocate(fs);
1255 					return (KERN_TRY_AGAIN);
1256 				}
1257 
1258 				++fs->hardfault;
1259 				break; /* break to PAGE HAS BEEN FOUND */
1260 			}
1261 
1262 			/*
1263 			 * Remove the bogus page (which does not exist at this
1264 			 * object/offset); before doing so, we must get back
1265 			 * our object lock to preserve our invariant.
1266 			 *
1267 			 * Also wake up any other process that may want to bring
1268 			 * in this page.
1269 			 *
1270 			 * If this is the top-level object, we must leave the
1271 			 * busy page to prevent another process from rushing
1272 			 * past us, and inserting the page in that object at
1273 			 * the same time that we are.
1274 			 */
1275 			if (rv == VM_PAGER_ERROR) {
1276 				if (curproc)
1277 					kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1278 				else
1279 					kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1280 			}
1281 
1282 			/*
1283 			 * Data outside the range of the pager or an I/O error
1284 			 *
1285 			 * The page may have been wired during the pagein,
1286 			 * e.g. by the buffer cache, and cannot simply be
1287 			 * freed.  Call vnode_pager_freepage() to deal with it.
1288 			 */
1289 			/*
1290 			 * XXX - the check for kernel_map is a kludge to work
1291 			 * around having the machine panic on a kernel space
1292 			 * fault w/ I/O error.
1293 			 */
1294 			if (((fs->map != &kernel_map) &&
1295 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1296 				vnode_pager_freepage(fs->m);
1297 				lwkt_reltoken(&vm_token);
1298 				fs->m = NULL;
1299 				unlock_and_deallocate(fs);
1300 				if (rv == VM_PAGER_ERROR)
1301 					return (KERN_FAILURE);
1302 				else
1303 					return (KERN_PROTECTION_FAILURE);
1304 				/* NOT REACHED */
1305 			}
1306 			if (fs->object != fs->first_object) {
1307 				vnode_pager_freepage(fs->m);
1308 				fs->m = NULL;
1309 				/*
1310 				 * XXX - we cannot just fall out at this
1311 				 * point, m has been freed and is invalid!
1312 				 */
1313 			}
1314 		}
1315 
1316 		/*
1317 		 * We get here if the object has a default pager (or unwiring)
1318 		 * or the pager doesn't have the page.
1319 		 */
1320 		if (fs->object == fs->first_object)
1321 			fs->first_m = fs->m;
1322 
1323 		/*
1324 		 * Move on to the next object.  Lock the next object before
1325 		 * unlocking the current one.
1326 		 */
1327 		pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1328 		next_object = fs->object->backing_object;
1329 		if (next_object == NULL) {
1330 			/*
1331 			 * If there's no object left, fill the page in the top
1332 			 * object with zeros.
1333 			 */
1334 			if (fs->object != fs->first_object) {
1335 				vm_object_pip_wakeup(fs->object);
1336 
1337 				fs->object = fs->first_object;
1338 				pindex = first_pindex;
1339 				fs->m = fs->first_m;
1340 			}
1341 			fs->first_m = NULL;
1342 
1343 			/*
1344 			 * Zero the page if necessary and mark it valid.
1345 			 */
1346 			if ((fs->m->flags & PG_ZERO) == 0) {
1347 				vm_page_zero_fill(fs->m);
1348 			} else {
1349 				mycpu->gd_cnt.v_ozfod++;
1350 			}
1351 			mycpu->gd_cnt.v_zfod++;
1352 			fs->m->valid = VM_PAGE_BITS_ALL;
1353 			break;	/* break to PAGE HAS BEEN FOUND */
1354 		}
1355 		if (fs->object != fs->first_object) {
1356 			vm_object_pip_wakeup(fs->object);
1357 		}
1358 		KASSERT(fs->object != next_object,
1359 			("object loop %p", next_object));
1360 		fs->object = next_object;
1361 		vm_object_pip_add(fs->object, 1);
1362 	}
1363 
1364 	/*
1365 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1366 	 * is held.]
1367 	 *
1368 	 * vm_token is still held
1369 	 *
1370 	 * If the page is being written, but isn't already owned by the
1371 	 * top-level object, we have to copy it into a new page owned by the
1372 	 * top-level object.
1373 	 */
1374 	KASSERT((fs->m->flags & PG_BUSY) != 0,
1375 		("vm_fault: not busy after main loop"));
1376 
1377 	if (fs->object != fs->first_object) {
1378 		/*
1379 		 * We only really need to copy if we want to write it.
1380 		 */
1381 		if (fault_type & VM_PROT_WRITE) {
1382 			/*
1383 			 * This allows pages to be virtually copied from a
1384 			 * backing_object into the first_object, where the
1385 			 * backing object has no other refs to it, and cannot
1386 			 * gain any more refs.  Instead of a bcopy, we just
1387 			 * move the page from the backing object to the
1388 			 * first object.  Note that we must mark the page
1389 			 * dirty in the first object so that it will go out
1390 			 * to swap when needed.
1391 			 */
1392 			if (
1393 				/*
1394 				 * Map, if present, has not changed
1395 				 */
1396 				(fs->map == NULL ||
1397 				fs->map_generation == fs->map->timestamp) &&
1398 				/*
1399 				 * Only one shadow object
1400 				 */
1401 				(fs->object->shadow_count == 1) &&
1402 				/*
1403 				 * No COW refs, except us
1404 				 */
1405 				(fs->object->ref_count == 1) &&
1406 				/*
1407 				 * No one else can look this object up
1408 				 */
1409 				(fs->object->handle == NULL) &&
1410 				/*
1411 				 * No other ways to look the object up
1412 				 */
1413 				((fs->object->type == OBJT_DEFAULT) ||
1414 				 (fs->object->type == OBJT_SWAP)) &&
1415 				/*
1416 				 * We don't chase down the shadow chain
1417 				 */
1418 				(fs->object == fs->first_object->backing_object) &&
1419 
1420 				/*
1421 				 * grab the lock if we need to
1422 				 */
1423 				(fs->lookup_still_valid ||
1424 				 fs->map == NULL ||
1425 				 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1426 			    ) {
1427 
1428 				fs->lookup_still_valid = 1;
1429 				/*
1430 				 * get rid of the unnecessary page
1431 				 */
1432 				vm_page_protect(fs->first_m, VM_PROT_NONE);
1433 				vm_page_free(fs->first_m);
1434 				fs->first_m = NULL;
1435 
1436 				/*
1437 				 * grab the page and put it into the
1438 				 * process'es object.  The page is
1439 				 * automatically made dirty.
1440 				 */
1441 				vm_page_rename(fs->m, fs->first_object, first_pindex);
1442 				fs->first_m = fs->m;
1443 				vm_page_busy(fs->first_m);
1444 				fs->m = NULL;
1445 				mycpu->gd_cnt.v_cow_optim++;
1446 			} else {
1447 				/*
1448 				 * Oh, well, lets copy it.
1449 				 */
1450 				vm_page_copy(fs->m, fs->first_m);
1451 				vm_page_event(fs->m, VMEVENT_COW);
1452 			}
1453 
1454 			if (fs->m) {
1455 				/*
1456 				 * We no longer need the old page or object.
1457 				 */
1458 				release_page(fs);
1459 			}
1460 
1461 			/*
1462 			 * fs->object != fs->first_object due to above
1463 			 * conditional
1464 			 */
1465 			vm_object_pip_wakeup(fs->object);
1466 
1467 			/*
1468 			 * Only use the new page below...
1469 			 */
1470 
1471 			mycpu->gd_cnt.v_cow_faults++;
1472 			fs->m = fs->first_m;
1473 			fs->object = fs->first_object;
1474 			pindex = first_pindex;
1475 		} else {
1476 			/*
1477 			 * If it wasn't a write fault avoid having to copy
1478 			 * the page by mapping it read-only.
1479 			 */
1480 			fs->prot &= ~VM_PROT_WRITE;
1481 		}
1482 	}
1483 
1484 	/*
1485 	 * We may have had to unlock a map to do I/O.  If we did then
1486 	 * lookup_still_valid will be FALSE.  If the map generation count
1487 	 * also changed then all sorts of things could have happened while
1488 	 * we were doing the I/O and we need to retry.
1489 	 */
1490 
1491 	if (!fs->lookup_still_valid &&
1492 	    fs->map != NULL &&
1493 	    (fs->map->timestamp != fs->map_generation)) {
1494 		release_page(fs);
1495 		lwkt_reltoken(&vm_token);
1496 		unlock_and_deallocate(fs);
1497 		return (KERN_TRY_AGAIN);
1498 	}
1499 
1500 	/*
1501 	 * If the fault is a write, we know that this page is being
1502 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
1503 	 * calls later.
1504 	 *
1505 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1506 	 * if the page is already dirty to prevent data written with
1507 	 * the expectation of being synced from not being synced.
1508 	 * Likewise if this entry does not request NOSYNC then make
1509 	 * sure the page isn't marked NOSYNC.  Applications sharing
1510 	 * data should use the same flags to avoid ping ponging.
1511 	 *
1512 	 * Also tell the backing pager, if any, that it should remove
1513 	 * any swap backing since the page is now dirty.
1514 	 */
1515 	if (fs->prot & VM_PROT_WRITE) {
1516 		vm_object_set_writeable_dirty(fs->m->object);
1517 		if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1518 			if (fs->m->dirty == 0)
1519 				vm_page_flag_set(fs->m, PG_NOSYNC);
1520 		} else {
1521 			vm_page_flag_clear(fs->m, PG_NOSYNC);
1522 		}
1523 		if (fs->fault_flags & VM_FAULT_DIRTY) {
1524 			crit_enter();
1525 			vm_page_dirty(fs->m);
1526 			swap_pager_unswapped(fs->m);
1527 			crit_exit();
1528 		}
1529 	}
1530 
1531 	lwkt_reltoken(&vm_token);
1532 
1533 	/*
1534 	 * Page had better still be busy.  We are still locked up and
1535 	 * fs->object will have another PIP reference if it is not equal
1536 	 * to fs->first_object.
1537 	 */
1538 	KASSERT(fs->m->flags & PG_BUSY,
1539 		("vm_fault: page %p not busy!", fs->m));
1540 
1541 	/*
1542 	 * Sanity check: page must be completely valid or it is not fit to
1543 	 * map into user space.  vm_pager_get_pages() ensures this.
1544 	 */
1545 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
1546 		vm_page_zero_invalid(fs->m, TRUE);
1547 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1548 	}
1549 
1550 	return (KERN_SUCCESS);
1551 }
1552 
1553 /*
1554  * Wire down a range of virtual addresses in a map.  The entry in question
1555  * should be marked in-transition and the map must be locked.  We must
1556  * release the map temporarily while faulting-in the page to avoid a
1557  * deadlock.  Note that the entry may be clipped while we are blocked but
1558  * will never be freed.
1559  *
1560  * No requirements.
1561  */
1562 int
1563 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1564 {
1565 	boolean_t fictitious;
1566 	vm_offset_t start;
1567 	vm_offset_t end;
1568 	vm_offset_t va;
1569 	vm_paddr_t pa;
1570 	pmap_t pmap;
1571 	int rv;
1572 
1573 	pmap = vm_map_pmap(map);
1574 	start = entry->start;
1575 	end = entry->end;
1576 	fictitious = entry->object.vm_object &&
1577 			(entry->object.vm_object->type == OBJT_DEVICE);
1578 
1579 	lwkt_gettoken(&vm_token);
1580 	vm_map_unlock(map);
1581 	map->timestamp++;
1582 
1583 	/*
1584 	 * We simulate a fault to get the page and enter it in the physical
1585 	 * map.
1586 	 */
1587 	for (va = start; va < end; va += PAGE_SIZE) {
1588 		if (user_wire) {
1589 			rv = vm_fault(map, va, VM_PROT_READ,
1590 					VM_FAULT_USER_WIRE);
1591 		} else {
1592 			rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1593 					VM_FAULT_CHANGE_WIRING);
1594 		}
1595 		if (rv) {
1596 			while (va > start) {
1597 				va -= PAGE_SIZE;
1598 				if ((pa = pmap_extract(pmap, va)) == 0)
1599 					continue;
1600 				pmap_change_wiring(pmap, va, FALSE);
1601 				if (!fictitious)
1602 					vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1603 			}
1604 			vm_map_lock(map);
1605 			lwkt_reltoken(&vm_token);
1606 			return (rv);
1607 		}
1608 	}
1609 	vm_map_lock(map);
1610 	lwkt_reltoken(&vm_token);
1611 	return (KERN_SUCCESS);
1612 }
1613 
1614 /*
1615  * Unwire a range of virtual addresses in a map.  The map should be
1616  * locked.
1617  */
1618 void
1619 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1620 {
1621 	boolean_t fictitious;
1622 	vm_offset_t start;
1623 	vm_offset_t end;
1624 	vm_offset_t va;
1625 	vm_paddr_t pa;
1626 	pmap_t pmap;
1627 
1628 	pmap = vm_map_pmap(map);
1629 	start = entry->start;
1630 	end = entry->end;
1631 	fictitious = entry->object.vm_object &&
1632 			(entry->object.vm_object->type == OBJT_DEVICE);
1633 
1634 	/*
1635 	 * Since the pages are wired down, we must be able to get their
1636 	 * mappings from the physical map system.
1637 	 */
1638 	lwkt_gettoken(&vm_token);
1639 	for (va = start; va < end; va += PAGE_SIZE) {
1640 		pa = pmap_extract(pmap, va);
1641 		if (pa != 0) {
1642 			pmap_change_wiring(pmap, va, FALSE);
1643 			if (!fictitious)
1644 				vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1645 		}
1646 	}
1647 	lwkt_reltoken(&vm_token);
1648 }
1649 
1650 /*
1651  * Reduce the rate at which memory is allocated to a process based
1652  * on the perceived load on the VM system. As the load increases
1653  * the allocation burst rate goes down and the delay increases.
1654  *
1655  * Rate limiting does not apply when faulting active or inactive
1656  * pages.  When faulting 'cache' pages, rate limiting only applies
1657  * if the system currently has a severe page deficit.
1658  *
1659  * XXX vm_pagesupply should be increased when a page is freed.
1660  *
1661  * We sleep up to 1/10 of a second.
1662  */
1663 static int
1664 vm_fault_ratelimit(struct vmspace *vmspace)
1665 {
1666 	if (vm_load_enable == 0)
1667 		return(0);
1668 	if (vmspace->vm_pagesupply > 0) {
1669 		--vmspace->vm_pagesupply;	/* SMP race ok */
1670 		return(0);
1671 	}
1672 #ifdef INVARIANTS
1673 	if (vm_load_debug) {
1674 		kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1675 			vm_load,
1676 			(1000 - vm_load ) / 10, vm_load * hz / 10000,
1677 			curproc->p_pid, curproc->p_comm);
1678 	}
1679 #endif
1680 	vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1681 	return(vm_load * hz / 10000);
1682 }
1683 
1684 /*
1685  * Copy all of the pages from a wired-down map entry to another.
1686  *
1687  * The source and destination maps must be locked for write.
1688  * The source map entry must be wired down (or be a sharing map
1689  * entry corresponding to a main map entry that is wired down).
1690  *
1691  * No other requirements.
1692  */
1693 void
1694 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1695 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1696 {
1697 	vm_object_t dst_object;
1698 	vm_object_t src_object;
1699 	vm_ooffset_t dst_offset;
1700 	vm_ooffset_t src_offset;
1701 	vm_prot_t prot;
1702 	vm_offset_t vaddr;
1703 	vm_page_t dst_m;
1704 	vm_page_t src_m;
1705 
1706 #ifdef	lint
1707 	src_map++;
1708 #endif	/* lint */
1709 
1710 	src_object = src_entry->object.vm_object;
1711 	src_offset = src_entry->offset;
1712 
1713 	/*
1714 	 * Create the top-level object for the destination entry. (Doesn't
1715 	 * actually shadow anything - we copy the pages directly.)
1716 	 */
1717 	vm_map_entry_allocate_object(dst_entry);
1718 	dst_object = dst_entry->object.vm_object;
1719 
1720 	prot = dst_entry->max_protection;
1721 
1722 	/*
1723 	 * Loop through all of the pages in the entry's range, copying each
1724 	 * one from the source object (it should be there) to the destination
1725 	 * object.
1726 	 */
1727 	for (vaddr = dst_entry->start, dst_offset = 0;
1728 	    vaddr < dst_entry->end;
1729 	    vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1730 
1731 		/*
1732 		 * Allocate a page in the destination object
1733 		 */
1734 		do {
1735 			dst_m = vm_page_alloc(dst_object,
1736 				OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1737 			if (dst_m == NULL) {
1738 				vm_wait(0);
1739 			}
1740 		} while (dst_m == NULL);
1741 
1742 		/*
1743 		 * Find the page in the source object, and copy it in.
1744 		 * (Because the source is wired down, the page will be in
1745 		 * memory.)
1746 		 */
1747 		src_m = vm_page_lookup(src_object,
1748 			OFF_TO_IDX(dst_offset + src_offset));
1749 		if (src_m == NULL)
1750 			panic("vm_fault_copy_wired: page missing");
1751 
1752 		vm_page_copy(src_m, dst_m);
1753 		vm_page_event(src_m, VMEVENT_COW);
1754 
1755 		/*
1756 		 * Enter it in the pmap...
1757 		 */
1758 
1759 		vm_page_flag_clear(dst_m, PG_ZERO);
1760 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1761 
1762 		/*
1763 		 * Mark it no longer busy, and put it on the active list.
1764 		 */
1765 		vm_page_activate(dst_m);
1766 		vm_page_wakeup(dst_m);
1767 	}
1768 }
1769 
1770 #if 0
1771 
1772 /*
1773  * This routine checks around the requested page for other pages that
1774  * might be able to be faulted in.  This routine brackets the viable
1775  * pages for the pages to be paged in.
1776  *
1777  * Inputs:
1778  *	m, rbehind, rahead
1779  *
1780  * Outputs:
1781  *  marray (array of vm_page_t), reqpage (index of requested page)
1782  *
1783  * Return value:
1784  *  number of pages in marray
1785  */
1786 static int
1787 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1788 			  vm_page_t *marray, int *reqpage)
1789 {
1790 	int i,j;
1791 	vm_object_t object;
1792 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
1793 	vm_page_t rtm;
1794 	int cbehind, cahead;
1795 
1796 	object = m->object;
1797 	pindex = m->pindex;
1798 
1799 	/*
1800 	 * we don't fault-ahead for device pager
1801 	 */
1802 	if (object->type == OBJT_DEVICE) {
1803 		*reqpage = 0;
1804 		marray[0] = m;
1805 		return 1;
1806 	}
1807 
1808 	/*
1809 	 * if the requested page is not available, then give up now
1810 	 */
1811 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1812 		*reqpage = 0;	/* not used by caller, fix compiler warn */
1813 		return 0;
1814 	}
1815 
1816 	if ((cbehind == 0) && (cahead == 0)) {
1817 		*reqpage = 0;
1818 		marray[0] = m;
1819 		return 1;
1820 	}
1821 
1822 	if (rahead > cahead) {
1823 		rahead = cahead;
1824 	}
1825 
1826 	if (rbehind > cbehind) {
1827 		rbehind = cbehind;
1828 	}
1829 
1830 	/*
1831 	 * Do not do any readahead if we have insufficient free memory.
1832 	 *
1833 	 * XXX code was broken disabled before and has instability
1834 	 * with this conditonal fixed, so shortcut for now.
1835 	 */
1836 	if (burst_fault == 0 || vm_page_count_severe()) {
1837 		marray[0] = m;
1838 		*reqpage = 0;
1839 		return 1;
1840 	}
1841 
1842 	/*
1843 	 * scan backward for the read behind pages -- in memory
1844 	 *
1845 	 * Assume that if the page is not found an interrupt will not
1846 	 * create it.  Theoretically interrupts can only remove (busy)
1847 	 * pages, not create new associations.
1848 	 */
1849 	if (pindex > 0) {
1850 		if (rbehind > pindex) {
1851 			rbehind = pindex;
1852 			startpindex = 0;
1853 		} else {
1854 			startpindex = pindex - rbehind;
1855 		}
1856 
1857 		crit_enter();
1858 		lwkt_gettoken(&vm_token);
1859 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1860 			if (vm_page_lookup(object, tpindex - 1))
1861 				break;
1862 		}
1863 
1864 		i = 0;
1865 		while (tpindex < pindex) {
1866 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1867 			if (rtm == NULL) {
1868 				lwkt_reltoken(&vm_token);
1869 				crit_exit();
1870 				for (j = 0; j < i; j++) {
1871 					vm_page_free(marray[j]);
1872 				}
1873 				marray[0] = m;
1874 				*reqpage = 0;
1875 				return 1;
1876 			}
1877 			marray[i] = rtm;
1878 			++i;
1879 			++tpindex;
1880 		}
1881 		lwkt_reltoken(&vm_token);
1882 		crit_exit();
1883 	} else {
1884 		i = 0;
1885 	}
1886 
1887 	/*
1888 	 * Assign requested page
1889 	 */
1890 	marray[i] = m;
1891 	*reqpage = i;
1892 	++i;
1893 
1894 	/*
1895 	 * Scan forwards for read-ahead pages
1896 	 */
1897 	tpindex = pindex + 1;
1898 	endpindex = tpindex + rahead;
1899 	if (endpindex > object->size)
1900 		endpindex = object->size;
1901 
1902 	crit_enter();
1903 	lwkt_gettoken(&vm_token);
1904 	while (tpindex < endpindex) {
1905 		if (vm_page_lookup(object, tpindex))
1906 			break;
1907 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1908 		if (rtm == NULL)
1909 			break;
1910 		marray[i] = rtm;
1911 		++i;
1912 		++tpindex;
1913 	}
1914 	lwkt_reltoken(&vm_token);
1915 	crit_exit();
1916 
1917 	return (i);
1918 }
1919 
1920 #endif
1921 
1922 /*
1923  * vm_prefault() provides a quick way of clustering pagefaults into a
1924  * processes address space.  It is a "cousin" of pmap_object_init_pt,
1925  * except it runs at page fault time instead of mmap time.
1926  *
1927  * This code used to be per-platform pmap_prefault().  It is now
1928  * machine-independent and enhanced to also pre-fault zero-fill pages
1929  * (see vm.fast_fault) as well as make them writable, which greatly
1930  * reduces the number of page faults programs incur.
1931  *
1932  * Application performance when pre-faulting zero-fill pages is heavily
1933  * dependent on the application.  Very tiny applications like /bin/echo
1934  * lose a little performance while applications of any appreciable size
1935  * gain performance.  Prefaulting multiple pages also reduces SMP
1936  * congestion and can improve SMP performance significantly.
1937  *
1938  * NOTE!  prot may allow writing but this only applies to the top level
1939  *	  object.  If we wind up mapping a page extracted from a backing
1940  *	  object we have to make sure it is read-only.
1941  *
1942  * NOTE!  The caller has already handled any COW operations on the
1943  *	  vm_map_entry via the normal fault code.  Do NOT call this
1944  *	  shortcut unless the normal fault code has run on this entry.
1945  *
1946  * No other requirements.
1947  */
1948 #define PFBAK 4
1949 #define PFFOR 4
1950 #define PAGEORDER_SIZE (PFBAK+PFFOR)
1951 
1952 static int vm_prefault_pageorder[] = {
1953 	-PAGE_SIZE, PAGE_SIZE,
1954 	-2 * PAGE_SIZE, 2 * PAGE_SIZE,
1955 	-3 * PAGE_SIZE, 3 * PAGE_SIZE,
1956 	-4 * PAGE_SIZE, 4 * PAGE_SIZE
1957 };
1958 
1959 static void
1960 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
1961 {
1962 	struct lwp *lp;
1963 	vm_page_t m;
1964 	vm_offset_t starta;
1965 	vm_offset_t addr;
1966 	vm_pindex_t index;
1967 	vm_pindex_t pindex;
1968 	vm_object_t object;
1969 	int pprot;
1970 	int i;
1971 
1972 	/*
1973 	 * We do not currently prefault mappings that use virtual page
1974 	 * tables.  We do not prefault foreign pmaps.
1975 	 */
1976 	if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
1977 		return;
1978 	lp = curthread->td_lwp;
1979 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
1980 		return;
1981 
1982 	object = entry->object.vm_object;
1983 
1984 	starta = addra - PFBAK * PAGE_SIZE;
1985 	if (starta < entry->start)
1986 		starta = entry->start;
1987 	else if (starta > addra)
1988 		starta = 0;
1989 
1990 	/*
1991 	 * critical section protection is required to maintain the
1992 	 * page/object association, interrupts can free pages and remove
1993 	 * them from their objects.
1994 	 */
1995 	crit_enter();
1996 	lwkt_gettoken(&vm_token);
1997 	for (i = 0; i < PAGEORDER_SIZE; i++) {
1998 		vm_object_t lobject;
1999 		int allocated = 0;
2000 
2001 		addr = addra + vm_prefault_pageorder[i];
2002 		if (addr > addra + (PFFOR * PAGE_SIZE))
2003 			addr = 0;
2004 
2005 		if (addr < starta || addr >= entry->end)
2006 			continue;
2007 
2008 		if (pmap_prefault_ok(pmap, addr) == 0)
2009 			continue;
2010 
2011 		/*
2012 		 * Follow the VM object chain to obtain the page to be mapped
2013 		 * into the pmap.
2014 		 *
2015 		 * If we reach the terminal object without finding a page
2016 		 * and we determine it would be advantageous, then allocate
2017 		 * a zero-fill page for the base object.  The base object
2018 		 * is guaranteed to be OBJT_DEFAULT for this case.
2019 		 *
2020 		 * In order to not have to check the pager via *haspage*()
2021 		 * we stop if any non-default object is encountered.  e.g.
2022 		 * a vnode or swap object would stop the loop.
2023 		 */
2024 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2025 		lobject = object;
2026 		pindex = index;
2027 		pprot = prot;
2028 
2029 		while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
2030 			if (lobject->type != OBJT_DEFAULT)
2031 				break;
2032 			if (lobject->backing_object == NULL) {
2033 				if (vm_fast_fault == 0)
2034 					break;
2035 				if (vm_prefault_pageorder[i] < 0 ||
2036 				    (prot & VM_PROT_WRITE) == 0 ||
2037 				    vm_page_count_min(0)) {
2038 					break;
2039 				}
2040 				/* note: allocate from base object */
2041 				m = vm_page_alloc(object, index,
2042 					      VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
2043 
2044 				if ((m->flags & PG_ZERO) == 0) {
2045 					vm_page_zero_fill(m);
2046 				} else {
2047 					vm_page_flag_clear(m, PG_ZERO);
2048 					mycpu->gd_cnt.v_ozfod++;
2049 				}
2050 				mycpu->gd_cnt.v_zfod++;
2051 				m->valid = VM_PAGE_BITS_ALL;
2052 				allocated = 1;
2053 				pprot = prot;
2054 				/* lobject = object .. not needed */
2055 				break;
2056 			}
2057 			if (lobject->backing_object_offset & PAGE_MASK)
2058 				break;
2059 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2060 			lobject = lobject->backing_object;
2061 			pprot &= ~VM_PROT_WRITE;
2062 		}
2063 		/*
2064 		 * NOTE: lobject now invalid (if we did a zero-fill we didn't
2065 		 *	 bother assigning lobject = object).
2066 		 *
2067 		 * Give-up if the page is not available.
2068 		 */
2069 		if (m == NULL)
2070 			break;
2071 
2072 		/*
2073 		 * Do not conditionalize on PG_RAM.  If pages are present in
2074 		 * the VM system we assume optimal caching.  If caching is
2075 		 * not optimal the I/O gravy train will be restarted when we
2076 		 * hit an unavailable page.  We do not want to try to restart
2077 		 * the gravy train now because we really don't know how much
2078 		 * of the object has been cached.  The cost for restarting
2079 		 * the gravy train should be low (since accesses will likely
2080 		 * be I/O bound anyway).
2081 		 *
2082 		 * The object must be marked dirty if we are mapping a
2083 		 * writable page.
2084 		 */
2085 		if (pprot & VM_PROT_WRITE)
2086 			vm_object_set_writeable_dirty(m->object);
2087 
2088 		/*
2089 		 * Enter the page into the pmap if appropriate.  If we had
2090 		 * allocated the page we have to place it on a queue.  If not
2091 		 * we just have to make sure it isn't on the cache queue
2092 		 * (pages on the cache queue are not allowed to be mapped).
2093 		 */
2094 		if (allocated) {
2095 			pmap_enter(pmap, addr, m, pprot, 0);
2096 			vm_page_deactivate(m);
2097 			vm_page_wakeup(m);
2098 		} else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2099 		    (m->busy == 0) &&
2100 		    (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2101 
2102 			if ((m->queue - m->pc) == PQ_CACHE) {
2103 				vm_page_deactivate(m);
2104 			}
2105 			vm_page_busy(m);
2106 			pmap_enter(pmap, addr, m, pprot, 0);
2107 			vm_page_wakeup(m);
2108 		}
2109 	}
2110 	lwkt_reltoken(&vm_token);
2111 	crit_exit();
2112 }
2113