1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 44 * 45 * 46 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 47 * All rights reserved. 48 * 49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 50 * 51 * Permission to use, copy, modify and distribute this software and 52 * its documentation is hereby granted, provided that both the copyright 53 * notice and this permission notice appear in all copies of the 54 * software, derivative works or modified versions, and any portions 55 * thereof, and that both notices appear in supporting documentation. 56 * 57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 60 * 61 * Carnegie Mellon requests users of this software to return to 62 * 63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 64 * School of Computer Science 65 * Carnegie Mellon University 66 * Pittsburgh PA 15213-3890 67 * 68 * any improvements or extensions that they make and grant Carnegie the 69 * rights to redistribute these changes. 70 * 71 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $ 72 * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $ 73 */ 74 75 /* 76 * Page fault handling module. 77 */ 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/kernel.h> 82 #include <sys/proc.h> 83 #include <sys/vnode.h> 84 #include <sys/resourcevar.h> 85 #include <sys/vmmeter.h> 86 #include <sys/vkernel.h> 87 #include <sys/lock.h> 88 #include <sys/sysctl.h> 89 90 #include <cpu/lwbuf.h> 91 92 #include <vm/vm.h> 93 #include <vm/vm_param.h> 94 #include <vm/pmap.h> 95 #include <vm/vm_map.h> 96 #include <vm/vm_object.h> 97 #include <vm/vm_page.h> 98 #include <vm/vm_pageout.h> 99 #include <vm/vm_kern.h> 100 #include <vm/vm_pager.h> 101 #include <vm/vnode_pager.h> 102 #include <vm/vm_extern.h> 103 104 #include <sys/thread2.h> 105 #include <vm/vm_page2.h> 106 107 struct faultstate { 108 vm_page_t m; 109 vm_object_t object; 110 vm_pindex_t pindex; 111 vm_prot_t prot; 112 vm_page_t first_m; 113 vm_object_t first_object; 114 vm_prot_t first_prot; 115 vm_map_t map; 116 vm_map_entry_t entry; 117 int lookup_still_valid; 118 int didlimit; 119 int hardfault; 120 int fault_flags; 121 int map_generation; 122 boolean_t wired; 123 struct vnode *vp; 124 }; 125 126 static int vm_fast_fault = 1; 127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, ""); 128 static int debug_cluster = 0; 129 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, ""); 130 131 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t); 132 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int); 133 #if 0 134 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *); 135 #endif 136 static int vm_fault_ratelimit(struct vmspace *); 137 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, 138 int prot); 139 140 /* 141 * The caller must hold vm_token. 142 */ 143 static __inline void 144 release_page(struct faultstate *fs) 145 { 146 vm_page_deactivate(fs->m); 147 vm_page_wakeup(fs->m); 148 fs->m = NULL; 149 } 150 151 /* 152 * The caller must hold vm_token. 153 */ 154 static __inline void 155 unlock_map(struct faultstate *fs) 156 { 157 if (fs->lookup_still_valid && fs->map) { 158 vm_map_lookup_done(fs->map, fs->entry, 0); 159 fs->lookup_still_valid = FALSE; 160 } 161 } 162 163 /* 164 * Clean up after a successful call to vm_fault_object() so another call 165 * to vm_fault_object() can be made. 166 * 167 * The caller must hold vm_token. 168 */ 169 static void 170 _cleanup_successful_fault(struct faultstate *fs, int relock) 171 { 172 if (fs->object != fs->first_object) { 173 vm_page_free(fs->first_m); 174 vm_object_pip_wakeup(fs->object); 175 fs->first_m = NULL; 176 } 177 fs->object = fs->first_object; 178 if (relock && fs->lookup_still_valid == FALSE) { 179 if (fs->map) 180 vm_map_lock_read(fs->map); 181 fs->lookup_still_valid = TRUE; 182 } 183 } 184 185 /* 186 * The caller must hold vm_token. 187 */ 188 static void 189 _unlock_things(struct faultstate *fs, int dealloc) 190 { 191 vm_object_pip_wakeup(fs->first_object); 192 _cleanup_successful_fault(fs, 0); 193 if (dealloc) { 194 vm_object_deallocate(fs->first_object); 195 fs->first_object = NULL; 196 } 197 unlock_map(fs); 198 if (fs->vp != NULL) { 199 vput(fs->vp); 200 fs->vp = NULL; 201 } 202 } 203 204 #define unlock_things(fs) _unlock_things(fs, 0) 205 #define unlock_and_deallocate(fs) _unlock_things(fs, 1) 206 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1) 207 208 /* 209 * TRYPAGER 210 * 211 * Determine if the pager for the current object *might* contain the page. 212 * 213 * We only need to try the pager if this is not a default object (default 214 * objects are zero-fill and have no real pager), and if we are not taking 215 * a wiring fault or if the FS entry is wired. 216 */ 217 #define TRYPAGER(fs) \ 218 (fs->object->type != OBJT_DEFAULT && \ 219 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired)) 220 221 /* 222 * vm_fault: 223 * 224 * Handle a page fault occuring at the given address, requiring the given 225 * permissions, in the map specified. If successful, the page is inserted 226 * into the associated physical map. 227 * 228 * NOTE: The given address should be truncated to the proper page address. 229 * 230 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 231 * a standard error specifying why the fault is fatal is returned. 232 * 233 * The map in question must be referenced, and remains so. 234 * The caller may hold no locks. 235 * No other requirements. 236 */ 237 int 238 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags) 239 { 240 int result; 241 vm_pindex_t first_pindex; 242 struct faultstate fs; 243 int growstack; 244 245 mycpu->gd_cnt.v_vm_faults++; 246 247 fs.didlimit = 0; 248 fs.hardfault = 0; 249 fs.fault_flags = fault_flags; 250 growstack = 1; 251 252 RetryFault: 253 /* 254 * Find the vm_map_entry representing the backing store and resolve 255 * the top level object and page index. This may have the side 256 * effect of executing a copy-on-write on the map entry and/or 257 * creating a shadow object, but will not COW any actual VM pages. 258 * 259 * On success fs.map is left read-locked and various other fields 260 * are initialized but not otherwise referenced or locked. 261 * 262 * NOTE! vm_map_lookup will try to upgrade the fault_type to 263 * VM_FAULT_WRITE if the map entry is a virtual page table and also 264 * writable, so we can set the 'A'accessed bit in the virtual page 265 * table entry. 266 */ 267 fs.map = map; 268 result = vm_map_lookup(&fs.map, vaddr, fault_type, 269 &fs.entry, &fs.first_object, 270 &first_pindex, &fs.first_prot, &fs.wired); 271 272 /* 273 * If the lookup failed or the map protections are incompatible, 274 * the fault generally fails. However, if the caller is trying 275 * to do a user wiring we have more work to do. 276 */ 277 if (result != KERN_SUCCESS) { 278 if (result != KERN_PROTECTION_FAILURE || 279 (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE) 280 { 281 if (result == KERN_INVALID_ADDRESS && growstack && 282 map != &kernel_map && curproc != NULL) { 283 result = vm_map_growstack(curproc, vaddr); 284 if (result != KERN_SUCCESS) 285 return (KERN_FAILURE); 286 growstack = 0; 287 goto RetryFault; 288 } 289 return (result); 290 } 291 292 /* 293 * If we are user-wiring a r/w segment, and it is COW, then 294 * we need to do the COW operation. Note that we don't 295 * currently COW RO sections now, because it is NOT desirable 296 * to COW .text. We simply keep .text from ever being COW'ed 297 * and take the heat that one cannot debug wired .text sections. 298 */ 299 result = vm_map_lookup(&fs.map, vaddr, 300 VM_PROT_READ|VM_PROT_WRITE| 301 VM_PROT_OVERRIDE_WRITE, 302 &fs.entry, &fs.first_object, 303 &first_pindex, &fs.first_prot, 304 &fs.wired); 305 if (result != KERN_SUCCESS) 306 return result; 307 308 /* 309 * If we don't COW now, on a user wire, the user will never 310 * be able to write to the mapping. If we don't make this 311 * restriction, the bookkeeping would be nearly impossible. 312 */ 313 if ((fs.entry->protection & VM_PROT_WRITE) == 0) 314 fs.entry->max_protection &= ~VM_PROT_WRITE; 315 } 316 317 /* 318 * fs.map is read-locked 319 * 320 * Misc checks. Save the map generation number to detect races. 321 */ 322 fs.map_generation = fs.map->timestamp; 323 324 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 325 panic("vm_fault: fault on nofault entry, addr: %lx", 326 (u_long)vaddr); 327 } 328 329 /* 330 * A system map entry may return a NULL object. No object means 331 * no pager means an unrecoverable kernel fault. 332 */ 333 if (fs.first_object == NULL) { 334 panic("vm_fault: unrecoverable fault at %p in entry %p", 335 (void *)vaddr, fs.entry); 336 } 337 338 /* 339 * Make a reference to this object to prevent its disposal while we 340 * are messing with it. Once we have the reference, the map is free 341 * to be diddled. Since objects reference their shadows (and copies), 342 * they will stay around as well. 343 * 344 * Bump the paging-in-progress count to prevent size changes (e.g. 345 * truncation operations) during I/O. This must be done after 346 * obtaining the vnode lock in order to avoid possible deadlocks. 347 * 348 * The vm_token is needed to manipulate the vm_object 349 */ 350 lwkt_gettoken(&vm_token); 351 vm_object_reference(fs.first_object); 352 fs.vp = vnode_pager_lock(fs.first_object); 353 vm_object_pip_add(fs.first_object, 1); 354 lwkt_reltoken(&vm_token); 355 356 fs.lookup_still_valid = TRUE; 357 fs.first_m = NULL; 358 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 359 360 /* 361 * If the entry is wired we cannot change the page protection. 362 */ 363 if (fs.wired) 364 fault_type = fs.first_prot; 365 366 /* 367 * The page we want is at (first_object, first_pindex), but if the 368 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 369 * page table to figure out the actual pindex. 370 * 371 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 372 * ONLY 373 */ 374 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 375 result = vm_fault_vpagetable(&fs, &first_pindex, 376 fs.entry->aux.master_pde, 377 fault_type); 378 if (result == KERN_TRY_AGAIN) 379 goto RetryFault; 380 if (result != KERN_SUCCESS) 381 return (result); 382 } 383 384 /* 385 * Now we have the actual (object, pindex), fault in the page. If 386 * vm_fault_object() fails it will unlock and deallocate the FS 387 * data. If it succeeds everything remains locked and fs->object 388 * will have an additional PIP count if it is not equal to 389 * fs->first_object 390 * 391 * vm_fault_object will set fs->prot for the pmap operation. It is 392 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the 393 * page can be safely written. However, it will force a read-only 394 * mapping for a read fault if the memory is managed by a virtual 395 * page table. 396 */ 397 result = vm_fault_object(&fs, first_pindex, fault_type); 398 399 if (result == KERN_TRY_AGAIN) 400 goto RetryFault; 401 if (result != KERN_SUCCESS) 402 return (result); 403 404 /* 405 * On success vm_fault_object() does not unlock or deallocate, and fs.m 406 * will contain a busied page. 407 * 408 * Enter the page into the pmap and do pmap-related adjustments. 409 */ 410 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired); 411 412 /* 413 * Burst in a few more pages if possible. The fs.map should still 414 * be locked. 415 */ 416 if (fault_flags & VM_FAULT_BURST) { 417 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 && 418 fs.wired == 0) { 419 vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot); 420 } 421 } 422 unlock_things(&fs); 423 424 vm_page_flag_clear(fs.m, PG_ZERO); 425 vm_page_flag_set(fs.m, PG_REFERENCED); 426 427 /* 428 * If the page is not wired down, then put it where the pageout daemon 429 * can find it. 430 * 431 * We do not really need to get vm_token here but since all the 432 * vm_*() calls have to doing it here improves efficiency. 433 */ 434 lwkt_gettoken(&vm_token); 435 if (fs.fault_flags & VM_FAULT_WIRE_MASK) { 436 if (fs.wired) 437 vm_page_wire(fs.m); 438 else 439 vm_page_unwire(fs.m, 1); 440 } else { 441 vm_page_activate(fs.m); 442 } 443 444 if (curthread->td_lwp) { 445 if (fs.hardfault) { 446 curthread->td_lwp->lwp_ru.ru_majflt++; 447 } else { 448 curthread->td_lwp->lwp_ru.ru_minflt++; 449 } 450 } 451 452 /* 453 * Unlock everything, and return 454 */ 455 vm_page_wakeup(fs.m); 456 vm_object_deallocate(fs.first_object); 457 lwkt_reltoken(&vm_token); 458 459 return (KERN_SUCCESS); 460 } 461 462 /* 463 * Fault in the specified virtual address in the current process map, 464 * returning a held VM page or NULL. See vm_fault_page() for more 465 * information. 466 * 467 * No requirements. 468 */ 469 vm_page_t 470 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp) 471 { 472 struct lwp *lp = curthread->td_lwp; 473 vm_page_t m; 474 475 m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 476 fault_type, VM_FAULT_NORMAL, errorp); 477 return(m); 478 } 479 480 /* 481 * Fault in the specified virtual address in the specified map, doing all 482 * necessary manipulation of the object store and all necessary I/O. Return 483 * a held VM page or NULL, and set *errorp. The related pmap is not 484 * updated. 485 * 486 * The returned page will be properly dirtied if VM_PROT_WRITE was specified, 487 * and marked PG_REFERENCED as well. 488 * 489 * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an 490 * error will be returned. 491 * 492 * No requirements. 493 */ 494 vm_page_t 495 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 496 int fault_flags, int *errorp) 497 { 498 vm_pindex_t first_pindex; 499 struct faultstate fs; 500 int result; 501 vm_prot_t orig_fault_type = fault_type; 502 503 mycpu->gd_cnt.v_vm_faults++; 504 505 fs.didlimit = 0; 506 fs.hardfault = 0; 507 fs.fault_flags = fault_flags; 508 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 509 510 RetryFault: 511 /* 512 * Find the vm_map_entry representing the backing store and resolve 513 * the top level object and page index. This may have the side 514 * effect of executing a copy-on-write on the map entry and/or 515 * creating a shadow object, but will not COW any actual VM pages. 516 * 517 * On success fs.map is left read-locked and various other fields 518 * are initialized but not otherwise referenced or locked. 519 * 520 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE 521 * if the map entry is a virtual page table and also writable, 522 * so we can set the 'A'accessed bit in the virtual page table entry. 523 */ 524 fs.map = map; 525 result = vm_map_lookup(&fs.map, vaddr, fault_type, 526 &fs.entry, &fs.first_object, 527 &first_pindex, &fs.first_prot, &fs.wired); 528 529 if (result != KERN_SUCCESS) { 530 *errorp = result; 531 return (NULL); 532 } 533 534 /* 535 * fs.map is read-locked 536 * 537 * Misc checks. Save the map generation number to detect races. 538 */ 539 fs.map_generation = fs.map->timestamp; 540 541 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) { 542 panic("vm_fault: fault on nofault entry, addr: %lx", 543 (u_long)vaddr); 544 } 545 546 /* 547 * A system map entry may return a NULL object. No object means 548 * no pager means an unrecoverable kernel fault. 549 */ 550 if (fs.first_object == NULL) { 551 panic("vm_fault: unrecoverable fault at %p in entry %p", 552 (void *)vaddr, fs.entry); 553 } 554 555 /* 556 * Make a reference to this object to prevent its disposal while we 557 * are messing with it. Once we have the reference, the map is free 558 * to be diddled. Since objects reference their shadows (and copies), 559 * they will stay around as well. 560 * 561 * Bump the paging-in-progress count to prevent size changes (e.g. 562 * truncation operations) during I/O. This must be done after 563 * obtaining the vnode lock in order to avoid possible deadlocks. 564 * 565 * The vm_token is needed to manipulate the vm_object 566 */ 567 lwkt_gettoken(&vm_token); 568 vm_object_reference(fs.first_object); 569 fs.vp = vnode_pager_lock(fs.first_object); 570 vm_object_pip_add(fs.first_object, 1); 571 lwkt_reltoken(&vm_token); 572 573 fs.lookup_still_valid = TRUE; 574 fs.first_m = NULL; 575 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 576 577 /* 578 * If the entry is wired we cannot change the page protection. 579 */ 580 if (fs.wired) 581 fault_type = fs.first_prot; 582 583 /* 584 * The page we want is at (first_object, first_pindex), but if the 585 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the 586 * page table to figure out the actual pindex. 587 * 588 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION 589 * ONLY 590 */ 591 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 592 result = vm_fault_vpagetable(&fs, &first_pindex, 593 fs.entry->aux.master_pde, 594 fault_type); 595 if (result == KERN_TRY_AGAIN) 596 goto RetryFault; 597 if (result != KERN_SUCCESS) { 598 *errorp = result; 599 return (NULL); 600 } 601 } 602 603 /* 604 * Now we have the actual (object, pindex), fault in the page. If 605 * vm_fault_object() fails it will unlock and deallocate the FS 606 * data. If it succeeds everything remains locked and fs->object 607 * will have an additinal PIP count if it is not equal to 608 * fs->first_object 609 */ 610 result = vm_fault_object(&fs, first_pindex, fault_type); 611 612 if (result == KERN_TRY_AGAIN) 613 goto RetryFault; 614 if (result != KERN_SUCCESS) { 615 *errorp = result; 616 return(NULL); 617 } 618 619 if ((orig_fault_type & VM_PROT_WRITE) && 620 (fs.prot & VM_PROT_WRITE) == 0) { 621 *errorp = KERN_PROTECTION_FAILURE; 622 unlock_and_deallocate(&fs); 623 return(NULL); 624 } 625 626 /* 627 * On success vm_fault_object() does not unlock or deallocate, and fs.m 628 * will contain a busied page. 629 */ 630 unlock_things(&fs); 631 632 /* 633 * Return a held page. We are not doing any pmap manipulation so do 634 * not set PG_MAPPED. However, adjust the page flags according to 635 * the fault type because the caller may not use a managed pmapping 636 * (so we don't want to lose the fact that the page will be dirtied 637 * if a write fault was specified). 638 */ 639 lwkt_gettoken(&vm_token); 640 vm_page_hold(fs.m); 641 vm_page_flag_clear(fs.m, PG_ZERO); 642 if (fault_type & VM_PROT_WRITE) 643 vm_page_dirty(fs.m); 644 645 /* 646 * Update the pmap. We really only have to do this if a COW 647 * occured to replace the read-only page with the new page. For 648 * now just do it unconditionally. XXX 649 */ 650 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired); 651 vm_page_flag_set(fs.m, PG_REFERENCED); 652 653 /* 654 * Unbusy the page by activating it. It remains held and will not 655 * be reclaimed. 656 */ 657 vm_page_activate(fs.m); 658 659 if (curthread->td_lwp) { 660 if (fs.hardfault) { 661 curthread->td_lwp->lwp_ru.ru_majflt++; 662 } else { 663 curthread->td_lwp->lwp_ru.ru_minflt++; 664 } 665 } 666 667 /* 668 * Unlock everything, and return the held page. 669 */ 670 vm_page_wakeup(fs.m); 671 vm_object_deallocate(fs.first_object); 672 lwkt_reltoken(&vm_token); 673 674 *errorp = 0; 675 return(fs.m); 676 } 677 678 /* 679 * Fault in the specified (object,offset), dirty the returned page as 680 * needed. If the requested fault_type cannot be done NULL and an 681 * error is returned. 682 * 683 * A held (but not busied) page is returned. 684 * 685 * No requirements. 686 */ 687 vm_page_t 688 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset, 689 vm_prot_t fault_type, int fault_flags, int *errorp) 690 { 691 int result; 692 vm_pindex_t first_pindex; 693 struct faultstate fs; 694 struct vm_map_entry entry; 695 696 bzero(&entry, sizeof(entry)); 697 entry.object.vm_object = object; 698 entry.maptype = VM_MAPTYPE_NORMAL; 699 entry.protection = entry.max_protection = fault_type; 700 701 fs.didlimit = 0; 702 fs.hardfault = 0; 703 fs.fault_flags = fault_flags; 704 fs.map = NULL; 705 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0); 706 707 RetryFault: 708 709 fs.first_object = object; 710 first_pindex = OFF_TO_IDX(offset); 711 fs.entry = &entry; 712 fs.first_prot = fault_type; 713 fs.wired = 0; 714 /*fs.map_generation = 0; unused */ 715 716 /* 717 * Make a reference to this object to prevent its disposal while we 718 * are messing with it. Once we have the reference, the map is free 719 * to be diddled. Since objects reference their shadows (and copies), 720 * they will stay around as well. 721 * 722 * Bump the paging-in-progress count to prevent size changes (e.g. 723 * truncation operations) during I/O. This must be done after 724 * obtaining the vnode lock in order to avoid possible deadlocks. 725 */ 726 lwkt_gettoken(&vm_token); 727 vm_object_reference(fs.first_object); 728 fs.vp = vnode_pager_lock(fs.first_object); 729 vm_object_pip_add(fs.first_object, 1); 730 lwkt_reltoken(&vm_token); 731 732 fs.lookup_still_valid = TRUE; 733 fs.first_m = NULL; 734 fs.object = fs.first_object; /* so unlock_and_deallocate works */ 735 736 #if 0 737 /* XXX future - ability to operate on VM object using vpagetable */ 738 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) { 739 result = vm_fault_vpagetable(&fs, &first_pindex, 740 fs.entry->aux.master_pde, 741 fault_type); 742 if (result == KERN_TRY_AGAIN) 743 goto RetryFault; 744 if (result != KERN_SUCCESS) { 745 *errorp = result; 746 return (NULL); 747 } 748 } 749 #endif 750 751 /* 752 * Now we have the actual (object, pindex), fault in the page. If 753 * vm_fault_object() fails it will unlock and deallocate the FS 754 * data. If it succeeds everything remains locked and fs->object 755 * will have an additinal PIP count if it is not equal to 756 * fs->first_object 757 */ 758 result = vm_fault_object(&fs, first_pindex, fault_type); 759 760 if (result == KERN_TRY_AGAIN) 761 goto RetryFault; 762 if (result != KERN_SUCCESS) { 763 *errorp = result; 764 return(NULL); 765 } 766 767 if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) { 768 *errorp = KERN_PROTECTION_FAILURE; 769 unlock_and_deallocate(&fs); 770 return(NULL); 771 } 772 773 /* 774 * On success vm_fault_object() does not unlock or deallocate, and fs.m 775 * will contain a busied page. 776 */ 777 unlock_things(&fs); 778 779 /* 780 * Return a held page. We are not doing any pmap manipulation so do 781 * not set PG_MAPPED. However, adjust the page flags according to 782 * the fault type because the caller may not use a managed pmapping 783 * (so we don't want to lose the fact that the page will be dirtied 784 * if a write fault was specified). 785 */ 786 lwkt_gettoken(&vm_token); 787 vm_page_hold(fs.m); 788 vm_page_flag_clear(fs.m, PG_ZERO); 789 if (fault_type & VM_PROT_WRITE) 790 vm_page_dirty(fs.m); 791 792 /* 793 * Indicate that the page was accessed. 794 */ 795 vm_page_flag_set(fs.m, PG_REFERENCED); 796 797 /* 798 * Unbusy the page by activating it. It remains held and will not 799 * be reclaimed. 800 */ 801 vm_page_activate(fs.m); 802 803 if (curthread->td_lwp) { 804 if (fs.hardfault) { 805 mycpu->gd_cnt.v_vm_faults++; 806 curthread->td_lwp->lwp_ru.ru_majflt++; 807 } else { 808 curthread->td_lwp->lwp_ru.ru_minflt++; 809 } 810 } 811 812 /* 813 * Unlock everything, and return the held page. 814 */ 815 vm_page_wakeup(fs.m); 816 vm_object_deallocate(fs.first_object); 817 lwkt_reltoken(&vm_token); 818 819 *errorp = 0; 820 return(fs.m); 821 } 822 823 /* 824 * Translate the virtual page number (first_pindex) that is relative 825 * to the address space into a logical page number that is relative to the 826 * backing object. Use the virtual page table pointed to by (vpte). 827 * 828 * This implements an N-level page table. Any level can terminate the 829 * scan by setting VPTE_PS. A linear mapping is accomplished by setting 830 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP). 831 * 832 * No requirements (vm_token need not be held). 833 */ 834 static 835 int 836 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex, 837 vpte_t vpte, int fault_type) 838 { 839 struct lwbuf *lwb; 840 int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */ 841 int result = KERN_SUCCESS; 842 vpte_t *ptep; 843 844 for (;;) { 845 /* 846 * We cannot proceed if the vpte is not valid, not readable 847 * for a read fault, or not writable for a write fault. 848 */ 849 if ((vpte & VPTE_V) == 0) { 850 unlock_and_deallocate(fs); 851 return (KERN_FAILURE); 852 } 853 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) { 854 unlock_and_deallocate(fs); 855 return (KERN_FAILURE); 856 } 857 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) { 858 unlock_and_deallocate(fs); 859 return (KERN_FAILURE); 860 } 861 if ((vpte & VPTE_PS) || vshift == 0) 862 break; 863 KKASSERT(vshift >= VPTE_PAGE_BITS); 864 865 /* 866 * Get the page table page. Nominally we only read the page 867 * table, but since we are actively setting VPTE_M and VPTE_A, 868 * tell vm_fault_object() that we are writing it. 869 * 870 * There is currently no real need to optimize this. 871 */ 872 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT, 873 VM_PROT_READ|VM_PROT_WRITE); 874 if (result != KERN_SUCCESS) 875 return (result); 876 877 /* 878 * Process the returned fs.m and look up the page table 879 * entry in the page table page. 880 */ 881 vshift -= VPTE_PAGE_BITS; 882 lwb = lwbuf_alloc(fs->m); 883 ptep = ((vpte_t *)lwbuf_kva(lwb) + 884 ((*pindex >> vshift) & VPTE_PAGE_MASK)); 885 vpte = *ptep; 886 887 /* 888 * Page table write-back. If the vpte is valid for the 889 * requested operation, do a write-back to the page table. 890 * 891 * XXX VPTE_M is not set properly for page directory pages. 892 * It doesn't get set in the page directory if the page table 893 * is modified during a read access. 894 */ 895 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) && 896 (vpte & VPTE_W)) { 897 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) { 898 atomic_set_long(ptep, VPTE_M | VPTE_A); 899 vm_page_dirty(fs->m); 900 } 901 } 902 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) && 903 (vpte & VPTE_R)) { 904 if ((vpte & VPTE_A) == 0) { 905 atomic_set_long(ptep, VPTE_A); 906 vm_page_dirty(fs->m); 907 } 908 } 909 lwbuf_free(lwb); 910 vm_page_flag_set(fs->m, PG_REFERENCED); 911 vm_page_activate(fs->m); 912 vm_page_wakeup(fs->m); 913 cleanup_successful_fault(fs); 914 } 915 /* 916 * Combine remaining address bits with the vpte. 917 */ 918 /* JG how many bits from each? */ 919 *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) + 920 (*pindex & ((1L << vshift) - 1)); 921 return (KERN_SUCCESS); 922 } 923 924 925 /* 926 * This is the core of the vm_fault code. 927 * 928 * Do all operations required to fault-in (fs.first_object, pindex). Run 929 * through the shadow chain as necessary and do required COW or virtual 930 * copy operations. The caller has already fully resolved the vm_map_entry 931 * and, if appropriate, has created a copy-on-write layer. All we need to 932 * do is iterate the object chain. 933 * 934 * On failure (fs) is unlocked and deallocated and the caller may return or 935 * retry depending on the failure code. On success (fs) is NOT unlocked or 936 * deallocated, fs.m will contained a resolved, busied page, and fs.object 937 * will have an additional PIP count if it is not equal to fs.first_object. 938 * 939 * No requirements. 940 */ 941 static 942 int 943 vm_fault_object(struct faultstate *fs, 944 vm_pindex_t first_pindex, vm_prot_t fault_type) 945 { 946 vm_object_t next_object; 947 vm_pindex_t pindex; 948 949 fs->prot = fs->first_prot; 950 fs->object = fs->first_object; 951 pindex = first_pindex; 952 953 /* 954 * If a read fault occurs we try to make the page writable if 955 * possible. There are three cases where we cannot make the 956 * page mapping writable: 957 * 958 * (1) The mapping is read-only or the VM object is read-only, 959 * fs->prot above will simply not have VM_PROT_WRITE set. 960 * 961 * (2) If the mapping is a virtual page table we need to be able 962 * to detect writes so we can set VPTE_M in the virtual page 963 * table. 964 * 965 * (3) If the VM page is read-only or copy-on-write, upgrading would 966 * just result in an unnecessary COW fault. 967 * 968 * VM_PROT_VPAGED is set if faulting via a virtual page table and 969 * causes adjustments to the 'M'odify bit to also turn off write 970 * access to force a re-fault. 971 */ 972 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) { 973 if ((fault_type & VM_PROT_WRITE) == 0) 974 fs->prot &= ~VM_PROT_WRITE; 975 } 976 977 lwkt_gettoken(&vm_token); 978 979 for (;;) { 980 /* 981 * If the object is dead, we stop here 982 */ 983 if (fs->object->flags & OBJ_DEAD) { 984 unlock_and_deallocate(fs); 985 lwkt_reltoken(&vm_token); 986 return (KERN_PROTECTION_FAILURE); 987 } 988 989 /* 990 * See if page is resident. spl protection is required 991 * to avoid an interrupt unbusy/free race against our 992 * lookup. We must hold the protection through a page 993 * allocation or busy. 994 */ 995 crit_enter(); 996 fs->m = vm_page_lookup(fs->object, pindex); 997 if (fs->m != NULL) { 998 int queue; 999 /* 1000 * Wait/Retry if the page is busy. We have to do this 1001 * if the page is busy via either PG_BUSY or 1002 * vm_page_t->busy because the vm_pager may be using 1003 * vm_page_t->busy for pageouts ( and even pageins if 1004 * it is the vnode pager ), and we could end up trying 1005 * to pagein and pageout the same page simultaneously. 1006 * 1007 * We can theoretically allow the busy case on a read 1008 * fault if the page is marked valid, but since such 1009 * pages are typically already pmap'd, putting that 1010 * special case in might be more effort then it is 1011 * worth. We cannot under any circumstances mess 1012 * around with a vm_page_t->busy page except, perhaps, 1013 * to pmap it. 1014 */ 1015 if ((fs->m->flags & PG_BUSY) || fs->m->busy) { 1016 unlock_things(fs); 1017 vm_page_sleep_busy(fs->m, TRUE, "vmpfw"); 1018 mycpu->gd_cnt.v_intrans++; 1019 vm_object_deallocate(fs->first_object); 1020 fs->first_object = NULL; 1021 lwkt_reltoken(&vm_token); 1022 crit_exit(); 1023 return (KERN_TRY_AGAIN); 1024 } 1025 1026 /* 1027 * If reactivating a page from PQ_CACHE we may have 1028 * to rate-limit. 1029 */ 1030 queue = fs->m->queue; 1031 vm_page_unqueue_nowakeup(fs->m); 1032 1033 if ((queue - fs->m->pc) == PQ_CACHE && 1034 vm_page_count_severe()) { 1035 vm_page_activate(fs->m); 1036 unlock_and_deallocate(fs); 1037 vm_waitpfault(); 1038 lwkt_reltoken(&vm_token); 1039 crit_exit(); 1040 return (KERN_TRY_AGAIN); 1041 } 1042 1043 /* 1044 * Mark page busy for other processes, and the 1045 * pagedaemon. If it still isn't completely valid 1046 * (readable), or if a read-ahead-mark is set on 1047 * the VM page, jump to readrest, else we found the 1048 * page and can return. 1049 * 1050 * We can release the spl once we have marked the 1051 * page busy. 1052 */ 1053 vm_page_busy(fs->m); 1054 crit_exit(); 1055 1056 if (fs->m->object != &kernel_object) { 1057 if ((fs->m->valid & VM_PAGE_BITS_ALL) != 1058 VM_PAGE_BITS_ALL) { 1059 goto readrest; 1060 } 1061 if (fs->m->flags & PG_RAM) { 1062 if (debug_cluster) 1063 kprintf("R"); 1064 vm_page_flag_clear(fs->m, PG_RAM); 1065 goto readrest; 1066 } 1067 } 1068 break; /* break to PAGE HAS BEEN FOUND */ 1069 } 1070 1071 /* 1072 * Page is not resident, If this is the search termination 1073 * or the pager might contain the page, allocate a new page. 1074 * 1075 * NOTE: We are still in a critical section. 1076 */ 1077 if (TRYPAGER(fs) || fs->object == fs->first_object) { 1078 /* 1079 * If the page is beyond the object size we fail 1080 */ 1081 if (pindex >= fs->object->size) { 1082 lwkt_reltoken(&vm_token); 1083 crit_exit(); 1084 unlock_and_deallocate(fs); 1085 return (KERN_PROTECTION_FAILURE); 1086 } 1087 1088 /* 1089 * Ratelimit. 1090 */ 1091 if (fs->didlimit == 0 && curproc != NULL) { 1092 int limticks; 1093 1094 limticks = vm_fault_ratelimit(curproc->p_vmspace); 1095 if (limticks) { 1096 lwkt_reltoken(&vm_token); 1097 crit_exit(); 1098 unlock_and_deallocate(fs); 1099 tsleep(curproc, 0, "vmrate", limticks); 1100 fs->didlimit = 1; 1101 return (KERN_TRY_AGAIN); 1102 } 1103 } 1104 1105 /* 1106 * Allocate a new page for this object/offset pair. 1107 */ 1108 fs->m = NULL; 1109 if (!vm_page_count_severe()) { 1110 fs->m = vm_page_alloc(fs->object, pindex, 1111 (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO); 1112 } 1113 if (fs->m == NULL) { 1114 lwkt_reltoken(&vm_token); 1115 crit_exit(); 1116 unlock_and_deallocate(fs); 1117 vm_waitpfault(); 1118 return (KERN_TRY_AGAIN); 1119 } 1120 } 1121 crit_exit(); 1122 1123 readrest: 1124 /* 1125 * We have found an invalid or partially valid page, a 1126 * page with a read-ahead mark which might be partially or 1127 * fully valid (and maybe dirty too), or we have allocated 1128 * a new page. 1129 * 1130 * Attempt to fault-in the page if there is a chance that the 1131 * pager has it, and potentially fault in additional pages 1132 * at the same time. 1133 * 1134 * We are NOT in splvm here and if TRYPAGER is true then 1135 * fs.m will be non-NULL and will be PG_BUSY for us. 1136 */ 1137 if (TRYPAGER(fs)) { 1138 int rv; 1139 int seqaccess; 1140 u_char behavior = vm_map_entry_behavior(fs->entry); 1141 1142 if (behavior == MAP_ENTRY_BEHAV_RANDOM) 1143 seqaccess = 0; 1144 else 1145 seqaccess = -1; 1146 1147 /* 1148 * If sequential access is detected then attempt 1149 * to deactivate/cache pages behind the scan to 1150 * prevent resource hogging. 1151 * 1152 * Use of PG_RAM to detect sequential access 1153 * also simulates multi-zone sequential access 1154 * detection for free. 1155 * 1156 * NOTE: Partially valid dirty pages cannot be 1157 * deactivated without causing NFS picemeal 1158 * writes to barf. 1159 */ 1160 if ((fs->first_object->type != OBJT_DEVICE) && 1161 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL || 1162 (behavior != MAP_ENTRY_BEHAV_RANDOM && 1163 (fs->m->flags & PG_RAM))) 1164 ) { 1165 vm_pindex_t scan_pindex; 1166 int scan_count = 16; 1167 1168 if (first_pindex < 16) { 1169 scan_pindex = 0; 1170 scan_count = 0; 1171 } else { 1172 scan_pindex = first_pindex - 16; 1173 if (scan_pindex < 16) 1174 scan_count = scan_pindex; 1175 else 1176 scan_count = 16; 1177 } 1178 1179 crit_enter(); 1180 while (scan_count) { 1181 vm_page_t mt; 1182 1183 mt = vm_page_lookup(fs->first_object, 1184 scan_pindex); 1185 if (mt == NULL || 1186 (mt->valid != VM_PAGE_BITS_ALL)) { 1187 break; 1188 } 1189 if (mt->busy || 1190 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) || 1191 mt->hold_count || 1192 mt->wire_count) { 1193 goto skip; 1194 } 1195 if (mt->dirty == 0) 1196 vm_page_test_dirty(mt); 1197 if (mt->dirty) { 1198 vm_page_busy(mt); 1199 vm_page_protect(mt, 1200 VM_PROT_NONE); 1201 vm_page_deactivate(mt); 1202 vm_page_wakeup(mt); 1203 } else { 1204 vm_page_cache(mt); 1205 } 1206 skip: 1207 --scan_count; 1208 --scan_pindex; 1209 } 1210 crit_exit(); 1211 1212 seqaccess = 1; 1213 } 1214 1215 /* 1216 * Avoid deadlocking against the map when doing I/O. 1217 * fs.object and the page is PG_BUSY'd. 1218 */ 1219 unlock_map(fs); 1220 1221 /* 1222 * Acquire the page data. We still hold a ref on 1223 * fs.object and the page has been PG_BUSY's. 1224 * 1225 * The pager may replace the page (for example, in 1226 * order to enter a fictitious page into the 1227 * object). If it does so it is responsible for 1228 * cleaning up the passed page and properly setting 1229 * the new page PG_BUSY. 1230 * 1231 * If we got here through a PG_RAM read-ahead 1232 * mark the page may be partially dirty and thus 1233 * not freeable. Don't bother checking to see 1234 * if the pager has the page because we can't free 1235 * it anyway. We have to depend on the get_page 1236 * operation filling in any gaps whether there is 1237 * backing store or not. 1238 */ 1239 rv = vm_pager_get_page(fs->object, &fs->m, seqaccess); 1240 1241 if (rv == VM_PAGER_OK) { 1242 /* 1243 * Relookup in case pager changed page. Pager 1244 * is responsible for disposition of old page 1245 * if moved. 1246 * 1247 * XXX other code segments do relookups too. 1248 * It's a bad abstraction that needs to be 1249 * fixed/removed. 1250 */ 1251 fs->m = vm_page_lookup(fs->object, pindex); 1252 if (fs->m == NULL) { 1253 lwkt_reltoken(&vm_token); 1254 unlock_and_deallocate(fs); 1255 return (KERN_TRY_AGAIN); 1256 } 1257 1258 ++fs->hardfault; 1259 break; /* break to PAGE HAS BEEN FOUND */ 1260 } 1261 1262 /* 1263 * Remove the bogus page (which does not exist at this 1264 * object/offset); before doing so, we must get back 1265 * our object lock to preserve our invariant. 1266 * 1267 * Also wake up any other process that may want to bring 1268 * in this page. 1269 * 1270 * If this is the top-level object, we must leave the 1271 * busy page to prevent another process from rushing 1272 * past us, and inserting the page in that object at 1273 * the same time that we are. 1274 */ 1275 if (rv == VM_PAGER_ERROR) { 1276 if (curproc) 1277 kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm); 1278 else 1279 kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm); 1280 } 1281 1282 /* 1283 * Data outside the range of the pager or an I/O error 1284 * 1285 * The page may have been wired during the pagein, 1286 * e.g. by the buffer cache, and cannot simply be 1287 * freed. Call vnode_pager_freepage() to deal with it. 1288 */ 1289 /* 1290 * XXX - the check for kernel_map is a kludge to work 1291 * around having the machine panic on a kernel space 1292 * fault w/ I/O error. 1293 */ 1294 if (((fs->map != &kernel_map) && 1295 (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) { 1296 vnode_pager_freepage(fs->m); 1297 lwkt_reltoken(&vm_token); 1298 fs->m = NULL; 1299 unlock_and_deallocate(fs); 1300 if (rv == VM_PAGER_ERROR) 1301 return (KERN_FAILURE); 1302 else 1303 return (KERN_PROTECTION_FAILURE); 1304 /* NOT REACHED */ 1305 } 1306 if (fs->object != fs->first_object) { 1307 vnode_pager_freepage(fs->m); 1308 fs->m = NULL; 1309 /* 1310 * XXX - we cannot just fall out at this 1311 * point, m has been freed and is invalid! 1312 */ 1313 } 1314 } 1315 1316 /* 1317 * We get here if the object has a default pager (or unwiring) 1318 * or the pager doesn't have the page. 1319 */ 1320 if (fs->object == fs->first_object) 1321 fs->first_m = fs->m; 1322 1323 /* 1324 * Move on to the next object. Lock the next object before 1325 * unlocking the current one. 1326 */ 1327 pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1328 next_object = fs->object->backing_object; 1329 if (next_object == NULL) { 1330 /* 1331 * If there's no object left, fill the page in the top 1332 * object with zeros. 1333 */ 1334 if (fs->object != fs->first_object) { 1335 vm_object_pip_wakeup(fs->object); 1336 1337 fs->object = fs->first_object; 1338 pindex = first_pindex; 1339 fs->m = fs->first_m; 1340 } 1341 fs->first_m = NULL; 1342 1343 /* 1344 * Zero the page if necessary and mark it valid. 1345 */ 1346 if ((fs->m->flags & PG_ZERO) == 0) { 1347 vm_page_zero_fill(fs->m); 1348 } else { 1349 mycpu->gd_cnt.v_ozfod++; 1350 } 1351 mycpu->gd_cnt.v_zfod++; 1352 fs->m->valid = VM_PAGE_BITS_ALL; 1353 break; /* break to PAGE HAS BEEN FOUND */ 1354 } 1355 if (fs->object != fs->first_object) { 1356 vm_object_pip_wakeup(fs->object); 1357 } 1358 KASSERT(fs->object != next_object, 1359 ("object loop %p", next_object)); 1360 fs->object = next_object; 1361 vm_object_pip_add(fs->object, 1); 1362 } 1363 1364 /* 1365 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock 1366 * is held.] 1367 * 1368 * vm_token is still held 1369 * 1370 * If the page is being written, but isn't already owned by the 1371 * top-level object, we have to copy it into a new page owned by the 1372 * top-level object. 1373 */ 1374 KASSERT((fs->m->flags & PG_BUSY) != 0, 1375 ("vm_fault: not busy after main loop")); 1376 1377 if (fs->object != fs->first_object) { 1378 /* 1379 * We only really need to copy if we want to write it. 1380 */ 1381 if (fault_type & VM_PROT_WRITE) { 1382 /* 1383 * This allows pages to be virtually copied from a 1384 * backing_object into the first_object, where the 1385 * backing object has no other refs to it, and cannot 1386 * gain any more refs. Instead of a bcopy, we just 1387 * move the page from the backing object to the 1388 * first object. Note that we must mark the page 1389 * dirty in the first object so that it will go out 1390 * to swap when needed. 1391 */ 1392 if ( 1393 /* 1394 * Map, if present, has not changed 1395 */ 1396 (fs->map == NULL || 1397 fs->map_generation == fs->map->timestamp) && 1398 /* 1399 * Only one shadow object 1400 */ 1401 (fs->object->shadow_count == 1) && 1402 /* 1403 * No COW refs, except us 1404 */ 1405 (fs->object->ref_count == 1) && 1406 /* 1407 * No one else can look this object up 1408 */ 1409 (fs->object->handle == NULL) && 1410 /* 1411 * No other ways to look the object up 1412 */ 1413 ((fs->object->type == OBJT_DEFAULT) || 1414 (fs->object->type == OBJT_SWAP)) && 1415 /* 1416 * We don't chase down the shadow chain 1417 */ 1418 (fs->object == fs->first_object->backing_object) && 1419 1420 /* 1421 * grab the lock if we need to 1422 */ 1423 (fs->lookup_still_valid || 1424 fs->map == NULL || 1425 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0) 1426 ) { 1427 1428 fs->lookup_still_valid = 1; 1429 /* 1430 * get rid of the unnecessary page 1431 */ 1432 vm_page_protect(fs->first_m, VM_PROT_NONE); 1433 vm_page_free(fs->first_m); 1434 fs->first_m = NULL; 1435 1436 /* 1437 * grab the page and put it into the 1438 * process'es object. The page is 1439 * automatically made dirty. 1440 */ 1441 vm_page_rename(fs->m, fs->first_object, first_pindex); 1442 fs->first_m = fs->m; 1443 vm_page_busy(fs->first_m); 1444 fs->m = NULL; 1445 mycpu->gd_cnt.v_cow_optim++; 1446 } else { 1447 /* 1448 * Oh, well, lets copy it. 1449 */ 1450 vm_page_copy(fs->m, fs->first_m); 1451 vm_page_event(fs->m, VMEVENT_COW); 1452 } 1453 1454 if (fs->m) { 1455 /* 1456 * We no longer need the old page or object. 1457 */ 1458 release_page(fs); 1459 } 1460 1461 /* 1462 * fs->object != fs->first_object due to above 1463 * conditional 1464 */ 1465 vm_object_pip_wakeup(fs->object); 1466 1467 /* 1468 * Only use the new page below... 1469 */ 1470 1471 mycpu->gd_cnt.v_cow_faults++; 1472 fs->m = fs->first_m; 1473 fs->object = fs->first_object; 1474 pindex = first_pindex; 1475 } else { 1476 /* 1477 * If it wasn't a write fault avoid having to copy 1478 * the page by mapping it read-only. 1479 */ 1480 fs->prot &= ~VM_PROT_WRITE; 1481 } 1482 } 1483 1484 /* 1485 * We may have had to unlock a map to do I/O. If we did then 1486 * lookup_still_valid will be FALSE. If the map generation count 1487 * also changed then all sorts of things could have happened while 1488 * we were doing the I/O and we need to retry. 1489 */ 1490 1491 if (!fs->lookup_still_valid && 1492 fs->map != NULL && 1493 (fs->map->timestamp != fs->map_generation)) { 1494 release_page(fs); 1495 lwkt_reltoken(&vm_token); 1496 unlock_and_deallocate(fs); 1497 return (KERN_TRY_AGAIN); 1498 } 1499 1500 /* 1501 * If the fault is a write, we know that this page is being 1502 * written NOW so dirty it explicitly to save on pmap_is_modified() 1503 * calls later. 1504 * 1505 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC 1506 * if the page is already dirty to prevent data written with 1507 * the expectation of being synced from not being synced. 1508 * Likewise if this entry does not request NOSYNC then make 1509 * sure the page isn't marked NOSYNC. Applications sharing 1510 * data should use the same flags to avoid ping ponging. 1511 * 1512 * Also tell the backing pager, if any, that it should remove 1513 * any swap backing since the page is now dirty. 1514 */ 1515 if (fs->prot & VM_PROT_WRITE) { 1516 vm_object_set_writeable_dirty(fs->m->object); 1517 if (fs->entry->eflags & MAP_ENTRY_NOSYNC) { 1518 if (fs->m->dirty == 0) 1519 vm_page_flag_set(fs->m, PG_NOSYNC); 1520 } else { 1521 vm_page_flag_clear(fs->m, PG_NOSYNC); 1522 } 1523 if (fs->fault_flags & VM_FAULT_DIRTY) { 1524 crit_enter(); 1525 vm_page_dirty(fs->m); 1526 swap_pager_unswapped(fs->m); 1527 crit_exit(); 1528 } 1529 } 1530 1531 lwkt_reltoken(&vm_token); 1532 1533 /* 1534 * Page had better still be busy. We are still locked up and 1535 * fs->object will have another PIP reference if it is not equal 1536 * to fs->first_object. 1537 */ 1538 KASSERT(fs->m->flags & PG_BUSY, 1539 ("vm_fault: page %p not busy!", fs->m)); 1540 1541 /* 1542 * Sanity check: page must be completely valid or it is not fit to 1543 * map into user space. vm_pager_get_pages() ensures this. 1544 */ 1545 if (fs->m->valid != VM_PAGE_BITS_ALL) { 1546 vm_page_zero_invalid(fs->m, TRUE); 1547 kprintf("Warning: page %p partially invalid on fault\n", fs->m); 1548 } 1549 1550 return (KERN_SUCCESS); 1551 } 1552 1553 /* 1554 * Wire down a range of virtual addresses in a map. The entry in question 1555 * should be marked in-transition and the map must be locked. We must 1556 * release the map temporarily while faulting-in the page to avoid a 1557 * deadlock. Note that the entry may be clipped while we are blocked but 1558 * will never be freed. 1559 * 1560 * No requirements. 1561 */ 1562 int 1563 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire) 1564 { 1565 boolean_t fictitious; 1566 vm_offset_t start; 1567 vm_offset_t end; 1568 vm_offset_t va; 1569 vm_paddr_t pa; 1570 pmap_t pmap; 1571 int rv; 1572 1573 pmap = vm_map_pmap(map); 1574 start = entry->start; 1575 end = entry->end; 1576 fictitious = entry->object.vm_object && 1577 (entry->object.vm_object->type == OBJT_DEVICE); 1578 1579 lwkt_gettoken(&vm_token); 1580 vm_map_unlock(map); 1581 map->timestamp++; 1582 1583 /* 1584 * We simulate a fault to get the page and enter it in the physical 1585 * map. 1586 */ 1587 for (va = start; va < end; va += PAGE_SIZE) { 1588 if (user_wire) { 1589 rv = vm_fault(map, va, VM_PROT_READ, 1590 VM_FAULT_USER_WIRE); 1591 } else { 1592 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE, 1593 VM_FAULT_CHANGE_WIRING); 1594 } 1595 if (rv) { 1596 while (va > start) { 1597 va -= PAGE_SIZE; 1598 if ((pa = pmap_extract(pmap, va)) == 0) 1599 continue; 1600 pmap_change_wiring(pmap, va, FALSE); 1601 if (!fictitious) 1602 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1); 1603 } 1604 vm_map_lock(map); 1605 lwkt_reltoken(&vm_token); 1606 return (rv); 1607 } 1608 } 1609 vm_map_lock(map); 1610 lwkt_reltoken(&vm_token); 1611 return (KERN_SUCCESS); 1612 } 1613 1614 /* 1615 * Unwire a range of virtual addresses in a map. The map should be 1616 * locked. 1617 */ 1618 void 1619 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry) 1620 { 1621 boolean_t fictitious; 1622 vm_offset_t start; 1623 vm_offset_t end; 1624 vm_offset_t va; 1625 vm_paddr_t pa; 1626 pmap_t pmap; 1627 1628 pmap = vm_map_pmap(map); 1629 start = entry->start; 1630 end = entry->end; 1631 fictitious = entry->object.vm_object && 1632 (entry->object.vm_object->type == OBJT_DEVICE); 1633 1634 /* 1635 * Since the pages are wired down, we must be able to get their 1636 * mappings from the physical map system. 1637 */ 1638 lwkt_gettoken(&vm_token); 1639 for (va = start; va < end; va += PAGE_SIZE) { 1640 pa = pmap_extract(pmap, va); 1641 if (pa != 0) { 1642 pmap_change_wiring(pmap, va, FALSE); 1643 if (!fictitious) 1644 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1); 1645 } 1646 } 1647 lwkt_reltoken(&vm_token); 1648 } 1649 1650 /* 1651 * Reduce the rate at which memory is allocated to a process based 1652 * on the perceived load on the VM system. As the load increases 1653 * the allocation burst rate goes down and the delay increases. 1654 * 1655 * Rate limiting does not apply when faulting active or inactive 1656 * pages. When faulting 'cache' pages, rate limiting only applies 1657 * if the system currently has a severe page deficit. 1658 * 1659 * XXX vm_pagesupply should be increased when a page is freed. 1660 * 1661 * We sleep up to 1/10 of a second. 1662 */ 1663 static int 1664 vm_fault_ratelimit(struct vmspace *vmspace) 1665 { 1666 if (vm_load_enable == 0) 1667 return(0); 1668 if (vmspace->vm_pagesupply > 0) { 1669 --vmspace->vm_pagesupply; /* SMP race ok */ 1670 return(0); 1671 } 1672 #ifdef INVARIANTS 1673 if (vm_load_debug) { 1674 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n", 1675 vm_load, 1676 (1000 - vm_load ) / 10, vm_load * hz / 10000, 1677 curproc->p_pid, curproc->p_comm); 1678 } 1679 #endif 1680 vmspace->vm_pagesupply = (1000 - vm_load) / 10; 1681 return(vm_load * hz / 10000); 1682 } 1683 1684 /* 1685 * Copy all of the pages from a wired-down map entry to another. 1686 * 1687 * The source and destination maps must be locked for write. 1688 * The source map entry must be wired down (or be a sharing map 1689 * entry corresponding to a main map entry that is wired down). 1690 * 1691 * No other requirements. 1692 */ 1693 void 1694 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map, 1695 vm_map_entry_t dst_entry, vm_map_entry_t src_entry) 1696 { 1697 vm_object_t dst_object; 1698 vm_object_t src_object; 1699 vm_ooffset_t dst_offset; 1700 vm_ooffset_t src_offset; 1701 vm_prot_t prot; 1702 vm_offset_t vaddr; 1703 vm_page_t dst_m; 1704 vm_page_t src_m; 1705 1706 #ifdef lint 1707 src_map++; 1708 #endif /* lint */ 1709 1710 src_object = src_entry->object.vm_object; 1711 src_offset = src_entry->offset; 1712 1713 /* 1714 * Create the top-level object for the destination entry. (Doesn't 1715 * actually shadow anything - we copy the pages directly.) 1716 */ 1717 vm_map_entry_allocate_object(dst_entry); 1718 dst_object = dst_entry->object.vm_object; 1719 1720 prot = dst_entry->max_protection; 1721 1722 /* 1723 * Loop through all of the pages in the entry's range, copying each 1724 * one from the source object (it should be there) to the destination 1725 * object. 1726 */ 1727 for (vaddr = dst_entry->start, dst_offset = 0; 1728 vaddr < dst_entry->end; 1729 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) { 1730 1731 /* 1732 * Allocate a page in the destination object 1733 */ 1734 do { 1735 dst_m = vm_page_alloc(dst_object, 1736 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL); 1737 if (dst_m == NULL) { 1738 vm_wait(0); 1739 } 1740 } while (dst_m == NULL); 1741 1742 /* 1743 * Find the page in the source object, and copy it in. 1744 * (Because the source is wired down, the page will be in 1745 * memory.) 1746 */ 1747 src_m = vm_page_lookup(src_object, 1748 OFF_TO_IDX(dst_offset + src_offset)); 1749 if (src_m == NULL) 1750 panic("vm_fault_copy_wired: page missing"); 1751 1752 vm_page_copy(src_m, dst_m); 1753 vm_page_event(src_m, VMEVENT_COW); 1754 1755 /* 1756 * Enter it in the pmap... 1757 */ 1758 1759 vm_page_flag_clear(dst_m, PG_ZERO); 1760 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE); 1761 1762 /* 1763 * Mark it no longer busy, and put it on the active list. 1764 */ 1765 vm_page_activate(dst_m); 1766 vm_page_wakeup(dst_m); 1767 } 1768 } 1769 1770 #if 0 1771 1772 /* 1773 * This routine checks around the requested page for other pages that 1774 * might be able to be faulted in. This routine brackets the viable 1775 * pages for the pages to be paged in. 1776 * 1777 * Inputs: 1778 * m, rbehind, rahead 1779 * 1780 * Outputs: 1781 * marray (array of vm_page_t), reqpage (index of requested page) 1782 * 1783 * Return value: 1784 * number of pages in marray 1785 */ 1786 static int 1787 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead, 1788 vm_page_t *marray, int *reqpage) 1789 { 1790 int i,j; 1791 vm_object_t object; 1792 vm_pindex_t pindex, startpindex, endpindex, tpindex; 1793 vm_page_t rtm; 1794 int cbehind, cahead; 1795 1796 object = m->object; 1797 pindex = m->pindex; 1798 1799 /* 1800 * we don't fault-ahead for device pager 1801 */ 1802 if (object->type == OBJT_DEVICE) { 1803 *reqpage = 0; 1804 marray[0] = m; 1805 return 1; 1806 } 1807 1808 /* 1809 * if the requested page is not available, then give up now 1810 */ 1811 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) { 1812 *reqpage = 0; /* not used by caller, fix compiler warn */ 1813 return 0; 1814 } 1815 1816 if ((cbehind == 0) && (cahead == 0)) { 1817 *reqpage = 0; 1818 marray[0] = m; 1819 return 1; 1820 } 1821 1822 if (rahead > cahead) { 1823 rahead = cahead; 1824 } 1825 1826 if (rbehind > cbehind) { 1827 rbehind = cbehind; 1828 } 1829 1830 /* 1831 * Do not do any readahead if we have insufficient free memory. 1832 * 1833 * XXX code was broken disabled before and has instability 1834 * with this conditonal fixed, so shortcut for now. 1835 */ 1836 if (burst_fault == 0 || vm_page_count_severe()) { 1837 marray[0] = m; 1838 *reqpage = 0; 1839 return 1; 1840 } 1841 1842 /* 1843 * scan backward for the read behind pages -- in memory 1844 * 1845 * Assume that if the page is not found an interrupt will not 1846 * create it. Theoretically interrupts can only remove (busy) 1847 * pages, not create new associations. 1848 */ 1849 if (pindex > 0) { 1850 if (rbehind > pindex) { 1851 rbehind = pindex; 1852 startpindex = 0; 1853 } else { 1854 startpindex = pindex - rbehind; 1855 } 1856 1857 crit_enter(); 1858 lwkt_gettoken(&vm_token); 1859 for (tpindex = pindex; tpindex > startpindex; --tpindex) { 1860 if (vm_page_lookup(object, tpindex - 1)) 1861 break; 1862 } 1863 1864 i = 0; 1865 while (tpindex < pindex) { 1866 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM); 1867 if (rtm == NULL) { 1868 lwkt_reltoken(&vm_token); 1869 crit_exit(); 1870 for (j = 0; j < i; j++) { 1871 vm_page_free(marray[j]); 1872 } 1873 marray[0] = m; 1874 *reqpage = 0; 1875 return 1; 1876 } 1877 marray[i] = rtm; 1878 ++i; 1879 ++tpindex; 1880 } 1881 lwkt_reltoken(&vm_token); 1882 crit_exit(); 1883 } else { 1884 i = 0; 1885 } 1886 1887 /* 1888 * Assign requested page 1889 */ 1890 marray[i] = m; 1891 *reqpage = i; 1892 ++i; 1893 1894 /* 1895 * Scan forwards for read-ahead pages 1896 */ 1897 tpindex = pindex + 1; 1898 endpindex = tpindex + rahead; 1899 if (endpindex > object->size) 1900 endpindex = object->size; 1901 1902 crit_enter(); 1903 lwkt_gettoken(&vm_token); 1904 while (tpindex < endpindex) { 1905 if (vm_page_lookup(object, tpindex)) 1906 break; 1907 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM); 1908 if (rtm == NULL) 1909 break; 1910 marray[i] = rtm; 1911 ++i; 1912 ++tpindex; 1913 } 1914 lwkt_reltoken(&vm_token); 1915 crit_exit(); 1916 1917 return (i); 1918 } 1919 1920 #endif 1921 1922 /* 1923 * vm_prefault() provides a quick way of clustering pagefaults into a 1924 * processes address space. It is a "cousin" of pmap_object_init_pt, 1925 * except it runs at page fault time instead of mmap time. 1926 * 1927 * This code used to be per-platform pmap_prefault(). It is now 1928 * machine-independent and enhanced to also pre-fault zero-fill pages 1929 * (see vm.fast_fault) as well as make them writable, which greatly 1930 * reduces the number of page faults programs incur. 1931 * 1932 * Application performance when pre-faulting zero-fill pages is heavily 1933 * dependent on the application. Very tiny applications like /bin/echo 1934 * lose a little performance while applications of any appreciable size 1935 * gain performance. Prefaulting multiple pages also reduces SMP 1936 * congestion and can improve SMP performance significantly. 1937 * 1938 * NOTE! prot may allow writing but this only applies to the top level 1939 * object. If we wind up mapping a page extracted from a backing 1940 * object we have to make sure it is read-only. 1941 * 1942 * NOTE! The caller has already handled any COW operations on the 1943 * vm_map_entry via the normal fault code. Do NOT call this 1944 * shortcut unless the normal fault code has run on this entry. 1945 * 1946 * No other requirements. 1947 */ 1948 #define PFBAK 4 1949 #define PFFOR 4 1950 #define PAGEORDER_SIZE (PFBAK+PFFOR) 1951 1952 static int vm_prefault_pageorder[] = { 1953 -PAGE_SIZE, PAGE_SIZE, 1954 -2 * PAGE_SIZE, 2 * PAGE_SIZE, 1955 -3 * PAGE_SIZE, 3 * PAGE_SIZE, 1956 -4 * PAGE_SIZE, 4 * PAGE_SIZE 1957 }; 1958 1959 static void 1960 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot) 1961 { 1962 struct lwp *lp; 1963 vm_page_t m; 1964 vm_offset_t starta; 1965 vm_offset_t addr; 1966 vm_pindex_t index; 1967 vm_pindex_t pindex; 1968 vm_object_t object; 1969 int pprot; 1970 int i; 1971 1972 /* 1973 * We do not currently prefault mappings that use virtual page 1974 * tables. We do not prefault foreign pmaps. 1975 */ 1976 if (entry->maptype == VM_MAPTYPE_VPAGETABLE) 1977 return; 1978 lp = curthread->td_lwp; 1979 if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace))) 1980 return; 1981 1982 object = entry->object.vm_object; 1983 1984 starta = addra - PFBAK * PAGE_SIZE; 1985 if (starta < entry->start) 1986 starta = entry->start; 1987 else if (starta > addra) 1988 starta = 0; 1989 1990 /* 1991 * critical section protection is required to maintain the 1992 * page/object association, interrupts can free pages and remove 1993 * them from their objects. 1994 */ 1995 crit_enter(); 1996 lwkt_gettoken(&vm_token); 1997 for (i = 0; i < PAGEORDER_SIZE; i++) { 1998 vm_object_t lobject; 1999 int allocated = 0; 2000 2001 addr = addra + vm_prefault_pageorder[i]; 2002 if (addr > addra + (PFFOR * PAGE_SIZE)) 2003 addr = 0; 2004 2005 if (addr < starta || addr >= entry->end) 2006 continue; 2007 2008 if (pmap_prefault_ok(pmap, addr) == 0) 2009 continue; 2010 2011 /* 2012 * Follow the VM object chain to obtain the page to be mapped 2013 * into the pmap. 2014 * 2015 * If we reach the terminal object without finding a page 2016 * and we determine it would be advantageous, then allocate 2017 * a zero-fill page for the base object. The base object 2018 * is guaranteed to be OBJT_DEFAULT for this case. 2019 * 2020 * In order to not have to check the pager via *haspage*() 2021 * we stop if any non-default object is encountered. e.g. 2022 * a vnode or swap object would stop the loop. 2023 */ 2024 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 2025 lobject = object; 2026 pindex = index; 2027 pprot = prot; 2028 2029 while ((m = vm_page_lookup(lobject, pindex)) == NULL) { 2030 if (lobject->type != OBJT_DEFAULT) 2031 break; 2032 if (lobject->backing_object == NULL) { 2033 if (vm_fast_fault == 0) 2034 break; 2035 if (vm_prefault_pageorder[i] < 0 || 2036 (prot & VM_PROT_WRITE) == 0 || 2037 vm_page_count_min(0)) { 2038 break; 2039 } 2040 /* note: allocate from base object */ 2041 m = vm_page_alloc(object, index, 2042 VM_ALLOC_NORMAL | VM_ALLOC_ZERO); 2043 2044 if ((m->flags & PG_ZERO) == 0) { 2045 vm_page_zero_fill(m); 2046 } else { 2047 vm_page_flag_clear(m, PG_ZERO); 2048 mycpu->gd_cnt.v_ozfod++; 2049 } 2050 mycpu->gd_cnt.v_zfod++; 2051 m->valid = VM_PAGE_BITS_ALL; 2052 allocated = 1; 2053 pprot = prot; 2054 /* lobject = object .. not needed */ 2055 break; 2056 } 2057 if (lobject->backing_object_offset & PAGE_MASK) 2058 break; 2059 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 2060 lobject = lobject->backing_object; 2061 pprot &= ~VM_PROT_WRITE; 2062 } 2063 /* 2064 * NOTE: lobject now invalid (if we did a zero-fill we didn't 2065 * bother assigning lobject = object). 2066 * 2067 * Give-up if the page is not available. 2068 */ 2069 if (m == NULL) 2070 break; 2071 2072 /* 2073 * Do not conditionalize on PG_RAM. If pages are present in 2074 * the VM system we assume optimal caching. If caching is 2075 * not optimal the I/O gravy train will be restarted when we 2076 * hit an unavailable page. We do not want to try to restart 2077 * the gravy train now because we really don't know how much 2078 * of the object has been cached. The cost for restarting 2079 * the gravy train should be low (since accesses will likely 2080 * be I/O bound anyway). 2081 * 2082 * The object must be marked dirty if we are mapping a 2083 * writable page. 2084 */ 2085 if (pprot & VM_PROT_WRITE) 2086 vm_object_set_writeable_dirty(m->object); 2087 2088 /* 2089 * Enter the page into the pmap if appropriate. If we had 2090 * allocated the page we have to place it on a queue. If not 2091 * we just have to make sure it isn't on the cache queue 2092 * (pages on the cache queue are not allowed to be mapped). 2093 */ 2094 if (allocated) { 2095 pmap_enter(pmap, addr, m, pprot, 0); 2096 vm_page_deactivate(m); 2097 vm_page_wakeup(m); 2098 } else if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) && 2099 (m->busy == 0) && 2100 (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) { 2101 2102 if ((m->queue - m->pc) == PQ_CACHE) { 2103 vm_page_deactivate(m); 2104 } 2105 vm_page_busy(m); 2106 pmap_enter(pmap, addr, m, pprot, 0); 2107 vm_page_wakeup(m); 2108 } 2109 } 2110 lwkt_reltoken(&vm_token); 2111 crit_exit(); 2112 } 2113