xref: /dflybsd-src/sys/vm/vm_fault.c (revision 1ea2893e99482291345e6c798d20cfef84d6ed07)
1 /*
2  * Copyright (c) 2003-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98 
99 /*
100  *	Page fault handling module.
101  */
102 
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113 
114 #include <cpu/lwbuf.h>
115 
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
127 
128 #include <vm/vm_page2.h>
129 
130 struct faultstate {
131 	vm_page_t m;
132 	vm_object_t object;
133 	vm_pindex_t pindex;
134 	vm_prot_t prot;
135 	vm_page_t first_m;
136 	vm_object_t first_object;
137 	vm_prot_t first_prot;
138 	vm_map_t map;
139 	vm_map_entry_t entry;
140 	int lookup_still_valid;
141 	int hardfault;
142 	int fault_flags;
143 	int map_generation;
144 	int shared;
145 	int first_shared;
146 	int wflags;
147 	struct vnode *vp;
148 };
149 
150 static int debug_fault = 0;
151 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
152 static int debug_cluster = 0;
153 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
154 static int virtual_copy_enable = 1;
155 SYSCTL_INT(_vm, OID_AUTO, virtual_copy_enable, CTLFLAG_RW,
156 		&virtual_copy_enable, 0, "");
157 int vm_shared_fault = 1;
158 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
159 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW,
160 		&vm_shared_fault, 0, "Allow shared token on vm_object");
161 
162 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
163 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
164 			vpte_t, int, int);
165 #if 0
166 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
167 #endif
168 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
169 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
170 			vm_map_entry_t entry, int prot, int fault_flags);
171 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
172 			vm_map_entry_t entry, int prot, int fault_flags);
173 
174 static __inline void
175 release_page(struct faultstate *fs)
176 {
177 	vm_page_deactivate(fs->m);
178 	vm_page_wakeup(fs->m);
179 	fs->m = NULL;
180 }
181 
182 /*
183  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
184  *	 requires relocking and then checking the timestamp.
185  *
186  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
187  *	 not have to update fs->map_generation here.
188  *
189  * NOTE: This function can fail due to a deadlock against the caller's
190  *	 holding of a vm_page BUSY.
191  */
192 static __inline int
193 relock_map(struct faultstate *fs)
194 {
195 	int error;
196 
197 	if (fs->lookup_still_valid == FALSE && fs->map) {
198 		error = vm_map_lock_read_to(fs->map);
199 		if (error == 0)
200 			fs->lookup_still_valid = TRUE;
201 	} else {
202 		error = 0;
203 	}
204 	return error;
205 }
206 
207 static __inline void
208 unlock_map(struct faultstate *fs)
209 {
210 	if (fs->lookup_still_valid && fs->map) {
211 		vm_map_lookup_done(fs->map, fs->entry, 0);
212 		fs->lookup_still_valid = FALSE;
213 	}
214 }
215 
216 /*
217  * Clean up after a successful call to vm_fault_object() so another call
218  * to vm_fault_object() can be made.
219  */
220 static void
221 _cleanup_successful_fault(struct faultstate *fs, int relock)
222 {
223 	/*
224 	 * We allocated a junk page for a COW operation that did
225 	 * not occur, the page must be freed.
226 	 */
227 	if (fs->object != fs->first_object) {
228 		KKASSERT(fs->first_shared == 0);
229 		vm_page_free(fs->first_m);
230 		vm_object_pip_wakeup(fs->object);
231 		fs->first_m = NULL;
232 	}
233 
234 	/*
235 	 * Reset fs->object.
236 	 */
237 	fs->object = fs->first_object;
238 	if (relock && fs->lookup_still_valid == FALSE) {
239 		if (fs->map)
240 			vm_map_lock_read(fs->map);
241 		fs->lookup_still_valid = TRUE;
242 	}
243 }
244 
245 static void
246 _unlock_things(struct faultstate *fs, int dealloc)
247 {
248 	_cleanup_successful_fault(fs, 0);
249 	if (dealloc) {
250 		/*vm_object_deallocate(fs->first_object);*/
251 		/*fs->first_object = NULL; drop used later on */
252 	}
253 	unlock_map(fs);
254 	if (fs->vp != NULL) {
255 		vput(fs->vp);
256 		fs->vp = NULL;
257 	}
258 }
259 
260 #define unlock_things(fs) _unlock_things(fs, 0)
261 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
262 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
263 
264 /*
265  * Virtual copy tests.   Used by the fault code to determine if a
266  * page can be moved from an orphan vm_object into its shadow
267  * instead of copying its contents.
268  */
269 static __inline int
270 virtual_copy_test(struct faultstate *fs)
271 {
272 	/*
273 	 * Must be holding exclusive locks
274 	 */
275 	if (fs->first_shared || fs->shared || virtual_copy_enable == 0)
276 		return 0;
277 
278 	/*
279 	 * Map, if present, has not changed
280 	 */
281 	if (fs->map && fs->map_generation != fs->map->timestamp)
282 		return 0;
283 
284 	/*
285 	 * Only one shadow object
286 	 */
287 	if (fs->object->shadow_count != 1)
288 		return 0;
289 
290 	/*
291 	 * No COW refs, except us
292 	 */
293 	if (fs->object->ref_count != 1)
294 		return 0;
295 
296 	/*
297 	 * No one else can look this object up
298 	 */
299 	if (fs->object->handle != NULL)
300 		return 0;
301 
302 	/*
303 	 * No other ways to look the object up
304 	 */
305 	if (fs->object->type != OBJT_DEFAULT &&
306 	    fs->object->type != OBJT_SWAP)
307 		return 0;
308 
309 	/*
310 	 * We don't chase down the shadow chain
311 	 */
312 	if (fs->object != fs->first_object->backing_object)
313 		return 0;
314 
315 	return 1;
316 }
317 
318 static __inline int
319 virtual_copy_ok(struct faultstate *fs)
320 {
321 	if (virtual_copy_test(fs)) {
322 		/*
323 		 * Grab the lock and re-test changeable items.
324 		 */
325 		if (fs->lookup_still_valid == FALSE && fs->map) {
326 			if (lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT))
327 				return 0;
328 			fs->lookup_still_valid = TRUE;
329 			if (virtual_copy_test(fs)) {
330 				fs->map_generation = ++fs->map->timestamp;
331 				return 1;
332 			}
333 			fs->lookup_still_valid = FALSE;
334 			lockmgr(&fs->map->lock, LK_RELEASE);
335 		}
336 	}
337 	return 0;
338 }
339 
340 /*
341  * TRYPAGER
342  *
343  * Determine if the pager for the current object *might* contain the page.
344  *
345  * We only need to try the pager if this is not a default object (default
346  * objects are zero-fill and have no real pager), and if we are not taking
347  * a wiring fault or if the FS entry is wired.
348  */
349 #define TRYPAGER(fs)	\
350 		(fs->object->type != OBJT_DEFAULT &&			\
351 		(((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) ||	\
352 		 (fs->wflags & FW_WIRED)))
353 
354 /*
355  * vm_fault:
356  *
357  * Handle a page fault occuring at the given address, requiring the given
358  * permissions, in the map specified.  If successful, the page is inserted
359  * into the associated physical map.
360  *
361  * NOTE: The given address should be truncated to the proper page address.
362  *
363  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
364  * a standard error specifying why the fault is fatal is returned.
365  *
366  * The map in question must be referenced, and remains so.
367  * The caller may hold no locks.
368  * No other requirements.
369  */
370 int
371 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
372 {
373 	int result;
374 	vm_pindex_t first_pindex;
375 	struct faultstate fs;
376 	struct lwp *lp;
377 	struct proc *p;
378 	thread_t td;
379 	struct vm_map_ilock ilock;
380 	int didilock;
381 	int growstack;
382 	int retry = 0;
383 	int inherit_prot;
384 
385 	inherit_prot = fault_type & VM_PROT_NOSYNC;
386 	fs.hardfault = 0;
387 	fs.fault_flags = fault_flags;
388 	fs.vp = NULL;
389 	fs.shared = vm_shared_fault;
390 	fs.first_shared = vm_shared_fault;
391 	growstack = 1;
392 
393 	/*
394 	 * vm_map interactions
395 	 */
396 	td = curthread;
397 	if ((lp = td->td_lwp) != NULL)
398 		lp->lwp_flags |= LWP_PAGING;
399 
400 RetryFault:
401 	/*
402 	 * Find the vm_map_entry representing the backing store and resolve
403 	 * the top level object and page index.  This may have the side
404 	 * effect of executing a copy-on-write on the map entry,
405 	 * creating a shadow object, or splitting an anonymous entry for
406 	 * performance, but will not COW any actual VM pages.
407 	 *
408 	 * On success fs.map is left read-locked and various other fields
409 	 * are initialized but not otherwise referenced or locked.
410 	 *
411 	 * NOTE!  vm_map_lookup will try to upgrade the fault_type to
412 	 *	  VM_FAULT_WRITE if the map entry is a virtual page table
413 	 *	  and also writable, so we can set the 'A'accessed bit in
414 	 *	  the virtual page table entry.
415 	 */
416 	fs.map = map;
417 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
418 			       &fs.entry, &fs.first_object,
419 			       &first_pindex, &fs.first_prot, &fs.wflags);
420 
421 	/*
422 	 * If the lookup failed or the map protections are incompatible,
423 	 * the fault generally fails.
424 	 *
425 	 * The failure could be due to TDF_NOFAULT if vm_map_lookup()
426 	 * tried to do a COW fault.
427 	 *
428 	 * If the caller is trying to do a user wiring we have more work
429 	 * to do.
430 	 */
431 	if (result != KERN_SUCCESS) {
432 		if (result == KERN_FAILURE_NOFAULT) {
433 			result = KERN_FAILURE;
434 			goto done;
435 		}
436 		if (result != KERN_PROTECTION_FAILURE ||
437 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
438 		{
439 			if (result == KERN_INVALID_ADDRESS && growstack &&
440 			    map != &kernel_map && curproc != NULL) {
441 				result = vm_map_growstack(map, vaddr);
442 				if (result == KERN_SUCCESS) {
443 					growstack = 0;
444 					++retry;
445 					goto RetryFault;
446 				}
447 				result = KERN_FAILURE;
448 			}
449 			goto done;
450 		}
451 
452 		/*
453 		 * If we are user-wiring a r/w segment, and it is COW, then
454 		 * we need to do the COW operation.  Note that we don't
455 		 * currently COW RO sections now, because it is NOT desirable
456 		 * to COW .text.  We simply keep .text from ever being COW'ed
457 		 * and take the heat that one cannot debug wired .text sections.
458 		 *
459 		 * XXX Try to allow the above by specifying OVERRIDE_WRITE.
460 		 */
461 		result = vm_map_lookup(&fs.map, vaddr,
462 				       VM_PROT_READ|VM_PROT_WRITE|
463 				        VM_PROT_OVERRIDE_WRITE,
464 				       &fs.entry, &fs.first_object,
465 				       &first_pindex, &fs.first_prot,
466 				       &fs.wflags);
467 		if (result != KERN_SUCCESS) {
468 			/* could also be KERN_FAILURE_NOFAULT */
469 			result = KERN_FAILURE;
470 			goto done;
471 		}
472 
473 		/*
474 		 * If we don't COW now, on a user wire, the user will never
475 		 * be able to write to the mapping.  If we don't make this
476 		 * restriction, the bookkeeping would be nearly impossible.
477 		 *
478 		 * XXX We have a shared lock, this will have a MP race but
479 		 * I don't see how it can hurt anything.
480 		 */
481 		if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
482 			atomic_clear_char(&fs.entry->max_protection,
483 					  VM_PROT_WRITE);
484 		}
485 	}
486 
487 	/*
488 	 * fs.map is read-locked
489 	 *
490 	 * Misc checks.  Save the map generation number to detect races.
491 	 */
492 	fs.map_generation = fs.map->timestamp;
493 	fs.lookup_still_valid = TRUE;
494 	fs.first_m = NULL;
495 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
496 	fs.prot = fs.first_prot;	/* default (used by uksmap) */
497 
498 	if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
499 		if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
500 			panic("vm_fault: fault on nofault entry, addr: %p",
501 			      (void *)vaddr);
502 		}
503 		if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
504 		    vaddr >= fs.entry->start &&
505 		    vaddr < fs.entry->start + PAGE_SIZE) {
506 			panic("vm_fault: fault on stack guard, addr: %p",
507 			      (void *)vaddr);
508 		}
509 	}
510 
511 	/*
512 	 * A user-kernel shared map has no VM object and bypasses
513 	 * everything.  We execute the uksmap function with a temporary
514 	 * fictitious vm_page.  The address is directly mapped with no
515 	 * management.
516 	 */
517 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
518 		struct vm_page fakem;
519 
520 		bzero(&fakem, sizeof(fakem));
521 		fakem.pindex = first_pindex;
522 		fakem.flags = PG_FICTITIOUS | PG_UNMANAGED;
523 		fakem.busy_count = PBUSY_LOCKED;
524 		fakem.valid = VM_PAGE_BITS_ALL;
525 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
526 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
527 			result = KERN_FAILURE;
528 			unlock_things(&fs);
529 			goto done2;
530 		}
531 		pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
532 			   (fs.wflags & FW_WIRED), fs.entry);
533 		goto done_success;
534 	}
535 
536 	/*
537 	 * A system map entry may return a NULL object.  No object means
538 	 * no pager means an unrecoverable kernel fault.
539 	 */
540 	if (fs.first_object == NULL) {
541 		panic("vm_fault: unrecoverable fault at %p in entry %p",
542 			(void *)vaddr, fs.entry);
543 	}
544 
545 	/*
546 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
547 	 * is set.
548 	 *
549 	 * Unfortunately a deadlock can occur if we are forced to page-in
550 	 * from swap, but diving all the way into the vm_pager_get_page()
551 	 * function to find out is too much.  Just check the object type.
552 	 *
553 	 * The deadlock is a CAM deadlock on a busy VM page when trying
554 	 * to finish an I/O if another process gets stuck in
555 	 * vop_helper_read_shortcut() due to a swap fault.
556 	 */
557 	if ((td->td_flags & TDF_NOFAULT) &&
558 	    (retry ||
559 	     fs.first_object->type == OBJT_VNODE ||
560 	     fs.first_object->type == OBJT_SWAP ||
561 	     fs.first_object->backing_object)) {
562 		result = KERN_FAILURE;
563 		unlock_things(&fs);
564 		goto done2;
565 	}
566 
567 	/*
568 	 * If the entry is wired we cannot change the page protection.
569 	 */
570 	if (fs.wflags & FW_WIRED)
571 		fault_type = fs.first_prot;
572 
573 	/*
574 	 * We generally want to avoid unnecessary exclusive modes on backing
575 	 * and terminal objects because this can seriously interfere with
576 	 * heavily fork()'d processes (particularly /bin/sh scripts).
577 	 *
578 	 * However, we also want to avoid unnecessary retries due to needed
579 	 * shared->exclusive promotion for common faults.  Exclusive mode is
580 	 * always needed if any page insertion, rename, or free occurs in an
581 	 * object (and also indirectly if any I/O is done).
582 	 *
583 	 * The main issue here is going to be fs.first_shared.  If the
584 	 * first_object has a backing object which isn't shadowed and the
585 	 * process is single-threaded we might as well use an exclusive
586 	 * lock/chain right off the bat.
587 	 */
588 	if (fs.first_shared && fs.first_object->backing_object &&
589 	    LIST_EMPTY(&fs.first_object->shadow_head) &&
590 	    td->td_proc && td->td_proc->p_nthreads == 1) {
591 		fs.first_shared = 0;
592 	}
593 
594 	/*
595 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
596 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
597 	 *		     we can try shared first.
598 	 */
599 	if (fault_flags & VM_FAULT_UNSWAP) {
600 		fs.first_shared = 0;
601 	}
602 
603 	/*
604 	 * Obtain a top-level object lock, shared or exclusive depending
605 	 * on fs.first_shared.  If a shared lock winds up being insufficient
606 	 * we will retry with an exclusive lock.
607 	 *
608 	 * The vnode pager lock is always shared.
609 	 */
610 	if (fs.first_shared)
611 		vm_object_hold_shared(fs.first_object);
612 	else
613 		vm_object_hold(fs.first_object);
614 	if (fs.vp == NULL)
615 		fs.vp = vnode_pager_lock(fs.first_object);
616 
617 	/*
618 	 * The page we want is at (first_object, first_pindex), but if the
619 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
620 	 * page table to figure out the actual pindex.
621 	 *
622 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
623 	 * ONLY
624 	 */
625 	didilock = 0;
626 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
627 		vm_map_interlock(fs.map, &ilock, vaddr, vaddr + PAGE_SIZE);
628 		didilock = 1;
629 		result = vm_fault_vpagetable(&fs, &first_pindex,
630 					     fs.entry->aux.master_pde,
631 					     fault_type, 1);
632 		if (result == KERN_TRY_AGAIN) {
633 			vm_map_deinterlock(fs.map, &ilock);
634 			vm_object_drop(fs.first_object);
635 			++retry;
636 			goto RetryFault;
637 		}
638 		if (result != KERN_SUCCESS) {
639 			vm_map_deinterlock(fs.map, &ilock);
640 			goto done;
641 		}
642 	}
643 
644 	/*
645 	 * Now we have the actual (object, pindex), fault in the page.  If
646 	 * vm_fault_object() fails it will unlock and deallocate the FS
647 	 * data.   If it succeeds everything remains locked and fs->object
648 	 * will have an additional PIP count if it is not equal to
649 	 * fs->first_object
650 	 *
651 	 * vm_fault_object will set fs->prot for the pmap operation.  It is
652 	 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
653 	 * page can be safely written.  However, it will force a read-only
654 	 * mapping for a read fault if the memory is managed by a virtual
655 	 * page table.
656 	 *
657 	 * If the fault code uses the shared object lock shortcut
658 	 * we must not try to burst (we can't allocate VM pages).
659 	 */
660 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
661 
662 	if (debug_fault > 0) {
663 		--debug_fault;
664 		kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
665 			"fs.m=%p fs.prot=%02x fs.wflags=%02x fs.entry=%p\n",
666 			result, (intmax_t)vaddr, fault_type, fault_flags,
667 			fs.m, fs.prot, fs.wflags, fs.entry);
668 	}
669 
670 	if (result == KERN_TRY_AGAIN) {
671 		if (didilock)
672 			vm_map_deinterlock(fs.map, &ilock);
673 		vm_object_drop(fs.first_object);
674 		++retry;
675 		goto RetryFault;
676 	}
677 	if (result != KERN_SUCCESS) {
678 		if (didilock)
679 			vm_map_deinterlock(fs.map, &ilock);
680 		goto done;
681 	}
682 
683 	/*
684 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
685 	 * will contain a busied page.
686 	 *
687 	 * Enter the page into the pmap and do pmap-related adjustments.
688 	 */
689 	KKASSERT(fs.lookup_still_valid == TRUE);
690 	vm_page_flag_set(fs.m, PG_REFERENCED);
691 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
692 		   fs.wflags & FW_WIRED, fs.entry);
693 
694 	if (didilock)
695 		vm_map_deinterlock(fs.map, &ilock);
696 
697 	/*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
698 	KKASSERT(fs.m->busy_count & PBUSY_LOCKED);
699 
700 	/*
701 	 * If the page is not wired down, then put it where the pageout daemon
702 	 * can find it.
703 	 */
704 	if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
705 		if (fs.wflags & FW_WIRED)
706 			vm_page_wire(fs.m);
707 		else
708 			vm_page_unwire(fs.m, 1);
709 	} else {
710 		vm_page_activate(fs.m);
711 	}
712 	vm_page_wakeup(fs.m);
713 
714 	/*
715 	 * Burst in a few more pages if possible.  The fs.map should still
716 	 * be locked.  To avoid interlocking against a vnode->getblk
717 	 * operation we had to be sure to unbusy our primary vm_page above
718 	 * first.
719 	 *
720 	 * A normal burst can continue down backing store, only execute
721 	 * if we are holding an exclusive lock, otherwise the exclusive
722 	 * locks the burst code gets might cause excessive SMP collisions.
723 	 *
724 	 * A quick burst can be utilized when there is no backing object
725 	 * (i.e. a shared file mmap).
726 	 */
727 	if ((fault_flags & VM_FAULT_BURST) &&
728 	    (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
729 	    (fs.wflags & FW_WIRED) == 0) {
730 		if (fs.first_shared == 0 && fs.shared == 0) {
731 			vm_prefault(fs.map->pmap, vaddr,
732 				    fs.entry, fs.prot, fault_flags);
733 		} else {
734 			vm_prefault_quick(fs.map->pmap, vaddr,
735 					  fs.entry, fs.prot, fault_flags);
736 		}
737 	}
738 
739 done_success:
740 	mycpu->gd_cnt.v_vm_faults++;
741 	if (td->td_lwp)
742 		++td->td_lwp->lwp_ru.ru_minflt;
743 
744 	/*
745 	 * Unlock everything, and return
746 	 */
747 	unlock_things(&fs);
748 
749 	if (td->td_lwp) {
750 		if (fs.hardfault) {
751 			td->td_lwp->lwp_ru.ru_majflt++;
752 		} else {
753 			td->td_lwp->lwp_ru.ru_minflt++;
754 		}
755 	}
756 
757 	/*vm_object_deallocate(fs.first_object);*/
758 	/*fs.m = NULL; */
759 	/*fs.first_object = NULL; must still drop later */
760 
761 	result = KERN_SUCCESS;
762 done:
763 	if (fs.first_object)
764 		vm_object_drop(fs.first_object);
765 done2:
766 	if (lp)
767 		lp->lwp_flags &= ~LWP_PAGING;
768 
769 #if !defined(NO_SWAPPING)
770 	/*
771 	 * Check the process RSS limit and force deactivation and
772 	 * (asynchronous) paging if necessary.  This is a complex operation,
773 	 * only do it for direct user-mode faults, for now.
774 	 *
775 	 * To reduce overhead implement approximately a ~16MB hysteresis.
776 	 */
777 	p = td->td_proc;
778 	if ((fault_flags & VM_FAULT_USERMODE) && lp &&
779 	    p->p_limit && map->pmap && vm_pageout_memuse_mode >= 1 &&
780 	    map != &kernel_map) {
781 		vm_pindex_t limit;
782 		vm_pindex_t size;
783 
784 		limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
785 					p->p_rlimit[RLIMIT_RSS].rlim_max));
786 		size = pmap_resident_tlnw_count(map->pmap);
787 		if (limit >= 0 && size > 4096 && size - 4096 >= limit) {
788 			vm_pageout_map_deactivate_pages(map, limit);
789 		}
790 	}
791 #endif
792 
793 	return (result);
794 }
795 
796 /*
797  * Fault in the specified virtual address in the current process map,
798  * returning a held VM page or NULL.  See vm_fault_page() for more
799  * information.
800  *
801  * No requirements.
802  */
803 vm_page_t
804 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type,
805 		    int *errorp, int *busyp)
806 {
807 	struct lwp *lp = curthread->td_lwp;
808 	vm_page_t m;
809 
810 	m = vm_fault_page(&lp->lwp_vmspace->vm_map, va,
811 			  fault_type, VM_FAULT_NORMAL,
812 			  errorp, busyp);
813 	return(m);
814 }
815 
816 /*
817  * Fault in the specified virtual address in the specified map, doing all
818  * necessary manipulation of the object store and all necessary I/O.  Return
819  * a held VM page or NULL, and set *errorp.  The related pmap is not
820  * updated.
821  *
822  * If busyp is not NULL then *busyp will be set to TRUE if this routine
823  * decides to return a busied page (aka VM_PROT_WRITE), or FALSE if it
824  * does not (VM_PROT_WRITE not specified or busyp is NULL).  If busyp is
825  * NULL the returned page is only held.
826  *
827  * If the caller has no intention of writing to the page's contents, busyp
828  * can be passed as NULL along with VM_PROT_WRITE to force a COW operation
829  * without busying the page.
830  *
831  * The returned page will also be marked PG_REFERENCED.
832  *
833  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
834  * error will be returned.
835  *
836  * No requirements.
837  */
838 vm_page_t
839 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
840 	      int fault_flags, int *errorp, int *busyp)
841 {
842 	vm_pindex_t first_pindex;
843 	struct faultstate fs;
844 	int result;
845 	int retry;
846 	int growstack;
847 	int didcow;
848 	vm_prot_t orig_fault_type = fault_type;
849 
850 	retry = 0;
851 	didcow = 0;
852 	fs.hardfault = 0;
853 	fs.fault_flags = fault_flags;
854 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
855 
856 	/*
857 	 * Dive the pmap (concurrency possible).  If we find the
858 	 * appropriate page we can terminate early and quickly.
859 	 *
860 	 * This works great for normal programs but will always return
861 	 * NULL for host lookups of vkernel maps in VMM mode.
862 	 *
863 	 * NOTE: pmap_fault_page_quick() might not busy the page.  If
864 	 *	 VM_PROT_WRITE is set in fault_type and pmap_fault_page_quick()
865 	 *	 returns non-NULL, it will safely dirty the returned vm_page_t
866 	 *	 for us.  We cannot safely dirty it here (it might not be
867 	 *	 busy).
868 	 */
869 	fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type, busyp);
870 	if (fs.m) {
871 		*errorp = 0;
872 		return(fs.m);
873 	}
874 
875 	/*
876 	 * Otherwise take a concurrency hit and do a formal page
877 	 * fault.
878 	 */
879 	fs.vp = NULL;
880 	fs.shared = vm_shared_fault;
881 	fs.first_shared = vm_shared_fault;
882 	growstack = 1;
883 
884 	/*
885 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
886 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
887 	 *		     we can try shared first.
888 	 */
889 	if (fault_flags & VM_FAULT_UNSWAP) {
890 		fs.first_shared = 0;
891 	}
892 
893 RetryFault:
894 	/*
895 	 * Find the vm_map_entry representing the backing store and resolve
896 	 * the top level object and page index.  This may have the side
897 	 * effect of executing a copy-on-write on the map entry and/or
898 	 * creating a shadow object, but will not COW any actual VM pages.
899 	 *
900 	 * On success fs.map is left read-locked and various other fields
901 	 * are initialized but not otherwise referenced or locked.
902 	 *
903 	 * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
904 	 *	  if the map entry is a virtual page table and also writable,
905 	 *	  so we can set the 'A'accessed bit in the virtual page table
906 	 *	  entry.
907 	 */
908 	fs.map = map;
909 	result = vm_map_lookup(&fs.map, vaddr, fault_type,
910 			       &fs.entry, &fs.first_object,
911 			       &first_pindex, &fs.first_prot, &fs.wflags);
912 
913 	if (result != KERN_SUCCESS) {
914 		if (result == KERN_FAILURE_NOFAULT) {
915 			*errorp = KERN_FAILURE;
916 			fs.m = NULL;
917 			goto done;
918 		}
919 		if (result != KERN_PROTECTION_FAILURE ||
920 		    (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
921 		{
922 			if (result == KERN_INVALID_ADDRESS && growstack &&
923 			    map != &kernel_map && curproc != NULL) {
924 				result = vm_map_growstack(map, vaddr);
925 				if (result == KERN_SUCCESS) {
926 					growstack = 0;
927 					++retry;
928 					goto RetryFault;
929 				}
930 				result = KERN_FAILURE;
931 			}
932 			fs.m = NULL;
933 			*errorp = result;
934 			goto done;
935 		}
936 
937 		/*
938 		 * If we are user-wiring a r/w segment, and it is COW, then
939 		 * we need to do the COW operation.  Note that we don't
940 		 * currently COW RO sections now, because it is NOT desirable
941 		 * to COW .text.  We simply keep .text from ever being COW'ed
942 		 * and take the heat that one cannot debug wired .text sections.
943 		 */
944 		result = vm_map_lookup(&fs.map, vaddr,
945 				       VM_PROT_READ|VM_PROT_WRITE|
946 				        VM_PROT_OVERRIDE_WRITE,
947 				       &fs.entry, &fs.first_object,
948 				       &first_pindex, &fs.first_prot,
949 				       &fs.wflags);
950 		if (result != KERN_SUCCESS) {
951 			/* could also be KERN_FAILURE_NOFAULT */
952 			*errorp = KERN_FAILURE;
953 			fs.m = NULL;
954 			goto done;
955 		}
956 
957 		/*
958 		 * If we don't COW now, on a user wire, the user will never
959 		 * be able to write to the mapping.  If we don't make this
960 		 * restriction, the bookkeeping would be nearly impossible.
961 		 *
962 		 * XXX We have a shared lock, this will have a MP race but
963 		 * I don't see how it can hurt anything.
964 		 */
965 		if ((fs.entry->protection & VM_PROT_WRITE) == 0) {
966 			atomic_clear_char(&fs.entry->max_protection,
967 					  VM_PROT_WRITE);
968 		}
969 	}
970 
971 	/*
972 	 * fs.map is read-locked
973 	 *
974 	 * Misc checks.  Save the map generation number to detect races.
975 	 */
976 	fs.map_generation = fs.map->timestamp;
977 	fs.lookup_still_valid = TRUE;
978 	fs.first_m = NULL;
979 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
980 
981 	if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
982 		panic("vm_fault: fault on nofault entry, addr: %lx",
983 		    (u_long)vaddr);
984 	}
985 
986 	/*
987 	 * A user-kernel shared map has no VM object and bypasses
988 	 * everything.  We execute the uksmap function with a temporary
989 	 * fictitious vm_page.  The address is directly mapped with no
990 	 * management.
991 	 */
992 	if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
993 		struct vm_page fakem;
994 
995 		bzero(&fakem, sizeof(fakem));
996 		fakem.pindex = first_pindex;
997 		fakem.flags = PG_FICTITIOUS | PG_UNMANAGED;
998 		fakem.busy_count = PBUSY_LOCKED;
999 		fakem.valid = VM_PAGE_BITS_ALL;
1000 		fakem.pat_mode = VM_MEMATTR_DEFAULT;
1001 		if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
1002 			*errorp = KERN_FAILURE;
1003 			fs.m = NULL;
1004 			unlock_things(&fs);
1005 			goto done2;
1006 		}
1007 		fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
1008 		vm_page_hold(fs.m);
1009 		if (busyp)
1010 			*busyp = 0;	/* don't need to busy R or W */
1011 		unlock_things(&fs);
1012 		*errorp = 0;
1013 		goto done;
1014 	}
1015 
1016 
1017 	/*
1018 	 * A system map entry may return a NULL object.  No object means
1019 	 * no pager means an unrecoverable kernel fault.
1020 	 */
1021 	if (fs.first_object == NULL) {
1022 		panic("vm_fault: unrecoverable fault at %p in entry %p",
1023 			(void *)vaddr, fs.entry);
1024 	}
1025 
1026 	/*
1027 	 * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
1028 	 * is set.
1029 	 *
1030 	 * Unfortunately a deadlock can occur if we are forced to page-in
1031 	 * from swap, but diving all the way into the vm_pager_get_page()
1032 	 * function to find out is too much.  Just check the object type.
1033 	 */
1034 	if ((curthread->td_flags & TDF_NOFAULT) &&
1035 	    (retry ||
1036 	     fs.first_object->type == OBJT_VNODE ||
1037 	     fs.first_object->type == OBJT_SWAP ||
1038 	     fs.first_object->backing_object)) {
1039 		*errorp = KERN_FAILURE;
1040 		unlock_things(&fs);
1041 		fs.m = NULL;
1042 		goto done2;
1043 	}
1044 
1045 	/*
1046 	 * If the entry is wired we cannot change the page protection.
1047 	 */
1048 	if (fs.wflags & FW_WIRED)
1049 		fault_type = fs.first_prot;
1050 
1051 	/*
1052 	 * Make a reference to this object to prevent its disposal while we
1053 	 * are messing with it.  Once we have the reference, the map is free
1054 	 * to be diddled.  Since objects reference their shadows (and copies),
1055 	 * they will stay around as well.
1056 	 *
1057 	 * The reference should also prevent an unexpected collapse of the
1058 	 * parent that might move pages from the current object into the
1059 	 * parent unexpectedly, resulting in corruption.
1060 	 *
1061 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1062 	 * truncation operations) during I/O.  This must be done after
1063 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1064 	 */
1065 	if (fs.first_shared)
1066 		vm_object_hold_shared(fs.first_object);
1067 	else
1068 		vm_object_hold(fs.first_object);
1069 	if (fs.vp == NULL)
1070 		fs.vp = vnode_pager_lock(fs.first_object);	/* shared */
1071 
1072 	/*
1073 	 * The page we want is at (first_object, first_pindex), but if the
1074 	 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
1075 	 * page table to figure out the actual pindex.
1076 	 *
1077 	 * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
1078 	 * ONLY
1079 	 */
1080 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1081 		result = vm_fault_vpagetable(&fs, &first_pindex,
1082 					     fs.entry->aux.master_pde,
1083 					     fault_type, 1);
1084 		if (result == KERN_TRY_AGAIN) {
1085 			vm_object_drop(fs.first_object);
1086 			++retry;
1087 			goto RetryFault;
1088 		}
1089 		if (result != KERN_SUCCESS) {
1090 			*errorp = result;
1091 			fs.m = NULL;
1092 			goto done;
1093 		}
1094 	}
1095 
1096 	/*
1097 	 * Now we have the actual (object, pindex), fault in the page.  If
1098 	 * vm_fault_object() fails it will unlock and deallocate the FS
1099 	 * data.   If it succeeds everything remains locked and fs->object
1100 	 * will have an additinal PIP count if it is not equal to
1101 	 * fs->first_object
1102 	 */
1103 	fs.m = NULL;
1104 	result = vm_fault_object(&fs, first_pindex, fault_type, 1);
1105 
1106 	if (result == KERN_TRY_AGAIN) {
1107 		vm_object_drop(fs.first_object);
1108 		++retry;
1109 		didcow |= fs.wflags & FW_DIDCOW;
1110 		goto RetryFault;
1111 	}
1112 	if (result != KERN_SUCCESS) {
1113 		*errorp = result;
1114 		fs.m = NULL;
1115 		goto done;
1116 	}
1117 
1118 	if ((orig_fault_type & VM_PROT_WRITE) &&
1119 	    (fs.prot & VM_PROT_WRITE) == 0) {
1120 		*errorp = KERN_PROTECTION_FAILURE;
1121 		unlock_and_deallocate(&fs);
1122 		fs.m = NULL;
1123 		goto done;
1124 	}
1125 
1126 	/*
1127 	 * Generally speaking we don't want to update the pmap because
1128 	 * this routine can be called many times for situations that do
1129 	 * not require updating the pmap, not to mention the page might
1130 	 * already be in the pmap.
1131 	 *
1132 	 * However, if our vm_map_lookup() results in a COW, we need to
1133 	 * at least remove the pte from the pmap to guarantee proper
1134 	 * visibility of modifications made to the process.  For example,
1135 	 * modifications made by vkernel uiocopy/related routines and
1136 	 * modifications made by ptrace().
1137 	 */
1138 	vm_page_flag_set(fs.m, PG_REFERENCED);
1139 #if 0
1140 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1141 		   fs.wflags & FW_WIRED, NULL);
1142 	mycpu->gd_cnt.v_vm_faults++;
1143 	if (curthread->td_lwp)
1144 		++curthread->td_lwp->lwp_ru.ru_minflt;
1145 #endif
1146 	if ((fs.wflags | didcow) | FW_DIDCOW) {
1147 		pmap_remove(fs.map->pmap,
1148 			    vaddr & ~PAGE_MASK,
1149 			    (vaddr & ~PAGE_MASK) + PAGE_SIZE);
1150 	}
1151 
1152 	/*
1153 	 * On success vm_fault_object() does not unlock or deallocate, and fs.m
1154 	 * will contain a busied page.  So we must unlock here after having
1155 	 * messed with the pmap.
1156 	 */
1157 	unlock_things(&fs);
1158 
1159 	/*
1160 	 * Return a held page.  We are not doing any pmap manipulation so do
1161 	 * not set PG_MAPPED.  However, adjust the page flags according to
1162 	 * the fault type because the caller may not use a managed pmapping
1163 	 * (so we don't want to lose the fact that the page will be dirtied
1164 	 * if a write fault was specified).
1165 	 */
1166 	if (fault_type & VM_PROT_WRITE)
1167 		vm_page_dirty(fs.m);
1168 	vm_page_activate(fs.m);
1169 
1170 	if (curthread->td_lwp) {
1171 		if (fs.hardfault) {
1172 			curthread->td_lwp->lwp_ru.ru_majflt++;
1173 		} else {
1174 			curthread->td_lwp->lwp_ru.ru_minflt++;
1175 		}
1176 	}
1177 
1178 	/*
1179 	 * Unlock everything, and return the held or busied page.
1180 	 */
1181 	if (busyp) {
1182 		if (fault_type & VM_PROT_WRITE) {
1183 			vm_page_dirty(fs.m);
1184 			*busyp = 1;
1185 		} else {
1186 			*busyp = 0;
1187 			vm_page_hold(fs.m);
1188 			vm_page_wakeup(fs.m);
1189 		}
1190 	} else {
1191 		vm_page_hold(fs.m);
1192 		vm_page_wakeup(fs.m);
1193 	}
1194 	/*vm_object_deallocate(fs.first_object);*/
1195 	/*fs.first_object = NULL; */
1196 	*errorp = 0;
1197 
1198 done:
1199 	if (fs.first_object)
1200 		vm_object_drop(fs.first_object);
1201 done2:
1202 	return(fs.m);
1203 }
1204 
1205 /*
1206  * Fault in the specified (object,offset), dirty the returned page as
1207  * needed.  If the requested fault_type cannot be done NULL and an
1208  * error is returned.
1209  *
1210  * A held (but not busied) page is returned.
1211  *
1212  * The passed in object must be held as specified by the shared
1213  * argument.
1214  */
1215 vm_page_t
1216 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
1217 		     vm_prot_t fault_type, int fault_flags,
1218 		     int *sharedp, int *errorp)
1219 {
1220 	int result;
1221 	vm_pindex_t first_pindex;
1222 	struct faultstate fs;
1223 	struct vm_map_entry entry;
1224 
1225 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1226 	bzero(&entry, sizeof(entry));
1227 	entry.object.vm_object = object;
1228 	entry.maptype = VM_MAPTYPE_NORMAL;
1229 	entry.protection = entry.max_protection = fault_type;
1230 
1231 	fs.hardfault = 0;
1232 	fs.fault_flags = fault_flags;
1233 	fs.map = NULL;
1234 	fs.shared = vm_shared_fault;
1235 	fs.first_shared = *sharedp;
1236 	fs.vp = NULL;
1237 	KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1238 
1239 	/*
1240 	 * VM_FAULT_UNSWAP - swap_pager_unswapped() needs an exclusive object
1241 	 * VM_FAULT_DIRTY  - may require swap_pager_unswapped() later, but
1242 	 *		     we can try shared first.
1243 	 */
1244 	if (fs.first_shared && (fault_flags & VM_FAULT_UNSWAP)) {
1245 		fs.first_shared = 0;
1246 		vm_object_upgrade(object);
1247 	}
1248 
1249 	/*
1250 	 * Retry loop as needed (typically for shared->exclusive transitions)
1251 	 */
1252 RetryFault:
1253 	*sharedp = fs.first_shared;
1254 	first_pindex = OFF_TO_IDX(offset);
1255 	fs.first_object = object;
1256 	fs.entry = &entry;
1257 	fs.first_prot = fault_type;
1258 	fs.wflags = 0;
1259 	/*fs.map_generation = 0; unused */
1260 
1261 	/*
1262 	 * Make a reference to this object to prevent its disposal while we
1263 	 * are messing with it.  Once we have the reference, the map is free
1264 	 * to be diddled.  Since objects reference their shadows (and copies),
1265 	 * they will stay around as well.
1266 	 *
1267 	 * The reference should also prevent an unexpected collapse of the
1268 	 * parent that might move pages from the current object into the
1269 	 * parent unexpectedly, resulting in corruption.
1270 	 *
1271 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1272 	 * truncation operations) during I/O.  This must be done after
1273 	 * obtaining the vnode lock in order to avoid possible deadlocks.
1274 	 */
1275 	if (fs.vp == NULL)
1276 		fs.vp = vnode_pager_lock(fs.first_object);
1277 
1278 	fs.lookup_still_valid = TRUE;
1279 	fs.first_m = NULL;
1280 	fs.object = fs.first_object;	/* so unlock_and_deallocate works */
1281 
1282 #if 0
1283 	/* XXX future - ability to operate on VM object using vpagetable */
1284 	if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1285 		result = vm_fault_vpagetable(&fs, &first_pindex,
1286 					     fs.entry->aux.master_pde,
1287 					     fault_type, 0);
1288 		if (result == KERN_TRY_AGAIN) {
1289 			if (fs.first_shared == 0 && *sharedp)
1290 				vm_object_upgrade(object);
1291 			goto RetryFault;
1292 		}
1293 		if (result != KERN_SUCCESS) {
1294 			*errorp = result;
1295 			return (NULL);
1296 		}
1297 	}
1298 #endif
1299 
1300 	/*
1301 	 * Now we have the actual (object, pindex), fault in the page.  If
1302 	 * vm_fault_object() fails it will unlock and deallocate the FS
1303 	 * data.   If it succeeds everything remains locked and fs->object
1304 	 * will have an additinal PIP count if it is not equal to
1305 	 * fs->first_object
1306 	 *
1307 	 * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1308 	 * We may have to upgrade its lock to handle the requested fault.
1309 	 */
1310 	result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1311 
1312 	if (result == KERN_TRY_AGAIN) {
1313 		if (fs.first_shared == 0 && *sharedp)
1314 			vm_object_upgrade(object);
1315 		goto RetryFault;
1316 	}
1317 	if (result != KERN_SUCCESS) {
1318 		*errorp = result;
1319 		return(NULL);
1320 	}
1321 
1322 	if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1323 		*errorp = KERN_PROTECTION_FAILURE;
1324 		unlock_and_deallocate(&fs);
1325 		return(NULL);
1326 	}
1327 
1328 	/*
1329 	 * On success vm_fault_object() does not unlock or deallocate, so we
1330 	 * do it here.  Note that the returned fs.m will be busied.
1331 	 */
1332 	unlock_things(&fs);
1333 
1334 	/*
1335 	 * Return a held page.  We are not doing any pmap manipulation so do
1336 	 * not set PG_MAPPED.  However, adjust the page flags according to
1337 	 * the fault type because the caller may not use a managed pmapping
1338 	 * (so we don't want to lose the fact that the page will be dirtied
1339 	 * if a write fault was specified).
1340 	 */
1341 	vm_page_hold(fs.m);
1342 	vm_page_activate(fs.m);
1343 	if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1344 		vm_page_dirty(fs.m);
1345 	if (fault_flags & VM_FAULT_UNSWAP)
1346 		swap_pager_unswapped(fs.m);
1347 
1348 	/*
1349 	 * Indicate that the page was accessed.
1350 	 */
1351 	vm_page_flag_set(fs.m, PG_REFERENCED);
1352 
1353 	if (curthread->td_lwp) {
1354 		if (fs.hardfault) {
1355 			curthread->td_lwp->lwp_ru.ru_majflt++;
1356 		} else {
1357 			curthread->td_lwp->lwp_ru.ru_minflt++;
1358 		}
1359 	}
1360 
1361 	/*
1362 	 * Unlock everything, and return the held page.
1363 	 */
1364 	vm_page_wakeup(fs.m);
1365 	/*vm_object_deallocate(fs.first_object);*/
1366 	/*fs.first_object = NULL; */
1367 
1368 	*errorp = 0;
1369 	return(fs.m);
1370 }
1371 
1372 /*
1373  * Translate the virtual page number (first_pindex) that is relative
1374  * to the address space into a logical page number that is relative to the
1375  * backing object.  Use the virtual page table pointed to by (vpte).
1376  *
1377  * Possibly downgrade the protection based on the vpte bits.
1378  *
1379  * This implements an N-level page table.  Any level can terminate the
1380  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1381  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1382  */
1383 static
1384 int
1385 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1386 		    vpte_t vpte, int fault_type, int allow_nofault)
1387 {
1388 	struct lwbuf *lwb;
1389 	struct lwbuf lwb_cache;
1390 	int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1391 	int result;
1392 	vpte_t *ptep;
1393 
1394 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1395 	for (;;) {
1396 		/*
1397 		 * We cannot proceed if the vpte is not valid, not readable
1398 		 * for a read fault, not writable for a write fault, or
1399 		 * not executable for an instruction execution fault.
1400 		 */
1401 		if ((vpte & VPTE_V) == 0) {
1402 			unlock_and_deallocate(fs);
1403 			return (KERN_FAILURE);
1404 		}
1405 		if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1406 			unlock_and_deallocate(fs);
1407 			return (KERN_FAILURE);
1408 		}
1409 		if ((fault_type & VM_PROT_EXECUTE) && (vpte & VPTE_NX)) {
1410 			unlock_and_deallocate(fs);
1411 			return (KERN_FAILURE);
1412 		}
1413 		if ((vpte & VPTE_PS) || vshift == 0)
1414 			break;
1415 
1416 		/*
1417 		 * Get the page table page.  Nominally we only read the page
1418 		 * table, but since we are actively setting VPTE_M and VPTE_A,
1419 		 * tell vm_fault_object() that we are writing it.
1420 		 *
1421 		 * There is currently no real need to optimize this.
1422 		 */
1423 		result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1424 					 VM_PROT_READ|VM_PROT_WRITE,
1425 					 allow_nofault);
1426 		if (result != KERN_SUCCESS)
1427 			return (result);
1428 
1429 		/*
1430 		 * Process the returned fs.m and look up the page table
1431 		 * entry in the page table page.
1432 		 */
1433 		vshift -= VPTE_PAGE_BITS;
1434 		lwb = lwbuf_alloc(fs->m, &lwb_cache);
1435 		ptep = ((vpte_t *)lwbuf_kva(lwb) +
1436 		        ((*pindex >> vshift) & VPTE_PAGE_MASK));
1437 		vm_page_activate(fs->m);
1438 
1439 		/*
1440 		 * Page table write-back - entire operation including
1441 		 * validation of the pte must be atomic to avoid races
1442 		 * against the vkernel changing the pte.
1443 		 *
1444 		 * If the vpte is valid for the* requested operation, do
1445 		 * a write-back to the page table.
1446 		 *
1447 		 * XXX VPTE_M is not set properly for page directory pages.
1448 		 * It doesn't get set in the page directory if the page table
1449 		 * is modified during a read access.
1450 		 */
1451 		for (;;) {
1452 			vpte_t nvpte;
1453 
1454 			/*
1455 			 * Reload for the cmpset, but make sure the pte is
1456 			 * still valid.
1457 			 */
1458 			vpte = *ptep;
1459 			cpu_ccfence();
1460 			nvpte = vpte;
1461 
1462 			if ((vpte & VPTE_V) == 0)
1463 				break;
1464 
1465 			if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW))
1466 				nvpte |= VPTE_M | VPTE_A;
1467 			if (fault_type & (VM_PROT_READ | VM_PROT_EXECUTE))
1468 				nvpte |= VPTE_A;
1469 			if (vpte == nvpte)
1470 				break;
1471 			if (atomic_cmpset_long(ptep, vpte, nvpte)) {
1472 				vm_page_dirty(fs->m);
1473 				break;
1474 			}
1475 		}
1476 		lwbuf_free(lwb);
1477 		vm_page_flag_set(fs->m, PG_REFERENCED);
1478 		vm_page_wakeup(fs->m);
1479 		fs->m = NULL;
1480 		cleanup_successful_fault(fs);
1481 	}
1482 
1483 	/*
1484 	 * When the vkernel sets VPTE_RW it expects the real kernel to
1485 	 * reflect VPTE_M back when the page is modified via the mapping.
1486 	 * In order to accomplish this the real kernel must map the page
1487 	 * read-only for read faults and use write faults to reflect VPTE_M
1488 	 * back.
1489 	 *
1490 	 * Once VPTE_M has been set, the real kernel's pte allows writing.
1491 	 * If the vkernel clears VPTE_M the vkernel must be sure to
1492 	 * MADV_INVAL the real kernel's mappings to force the real kernel
1493 	 * to re-fault on the next write so oit can set VPTE_M again.
1494 	 */
1495 	if ((fault_type & VM_PROT_WRITE) == 0 &&
1496 	    (vpte & (VPTE_RW | VPTE_M)) != (VPTE_RW | VPTE_M)) {
1497 		fs->first_prot &= ~VM_PROT_WRITE;
1498 	}
1499 
1500 	/*
1501 	 * Disable EXECUTE perms if NX bit is set.
1502 	 */
1503 	if (vpte & VPTE_NX)
1504 		fs->first_prot &= ~VM_PROT_EXECUTE;
1505 
1506 	/*
1507 	 * Combine remaining address bits with the vpte.
1508 	 */
1509 	*pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1510 		  (*pindex & ((1L << vshift) - 1));
1511 	return (KERN_SUCCESS);
1512 }
1513 
1514 
1515 /*
1516  * This is the core of the vm_fault code.
1517  *
1518  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1519  * through the shadow chain as necessary and do required COW or virtual
1520  * copy operations.  The caller has already fully resolved the vm_map_entry
1521  * and, if appropriate, has created a copy-on-write layer.  All we need to
1522  * do is iterate the object chain.
1523  *
1524  * On failure (fs) is unlocked and deallocated and the caller may return or
1525  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1526  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1527  * will have an additional PIP count if it is not equal to fs.first_object.
1528  *
1529  * If locks based on fs->first_shared or fs->shared are insufficient,
1530  * clear the appropriate field(s) and return RETRY.  COWs require that
1531  * first_shared be 0, while page allocations (or frees) require that
1532  * shared be 0.  Renames require that both be 0.
1533  *
1534  * NOTE! fs->[first_]shared might be set with VM_FAULT_DIRTY also set.
1535  *	 we will have to retry with it exclusive if the vm_page is
1536  *	 PG_SWAPPED.
1537  *
1538  * fs->first_object must be held on call.
1539  */
1540 static
1541 int
1542 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1543 		vm_prot_t fault_type, int allow_nofault)
1544 {
1545 	vm_object_t next_object;
1546 	vm_pindex_t pindex;
1547 	int error;
1548 
1549 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1550 	fs->prot = fs->first_prot;
1551 	fs->object = fs->first_object;
1552 	pindex = first_pindex;
1553 
1554 	vm_object_chain_acquire(fs->first_object, fs->shared);
1555 	vm_object_pip_add(fs->first_object, 1);
1556 
1557 	/*
1558 	 * If a read fault occurs we try to upgrade the page protection
1559 	 * and make it also writable if possible.  There are three cases
1560 	 * where we cannot make the page mapping writable:
1561 	 *
1562 	 * (1) The mapping is read-only or the VM object is read-only,
1563 	 *     fs->prot above will simply not have VM_PROT_WRITE set.
1564 	 *
1565 	 * (2) If the mapping is a virtual page table fs->first_prot will
1566 	 *     have already been properly adjusted by vm_fault_vpagetable().
1567 	 *     to detect writes so we can set VPTE_M in the virtual page
1568 	 *     table.  Used by vkernels.
1569 	 *
1570 	 * (3) If the VM page is read-only or copy-on-write, upgrading would
1571 	 *     just result in an unnecessary COW fault.
1572 	 *
1573 	 * (4) If the pmap specifically requests A/M bit emulation, downgrade
1574 	 *     here.
1575 	 */
1576 #if 0
1577 	/* see vpagetable code */
1578 	if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1579 		if ((fault_type & VM_PROT_WRITE) == 0)
1580 			fs->prot &= ~VM_PROT_WRITE;
1581 	}
1582 #endif
1583 
1584 	if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1585 	    pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1586 		if ((fault_type & VM_PROT_WRITE) == 0)
1587 			fs->prot &= ~VM_PROT_WRITE;
1588 	}
1589 
1590 	/* vm_object_hold(fs->object); implied b/c object == first_object */
1591 
1592 	for (;;) {
1593 		/*
1594 		 * The entire backing chain from first_object to object
1595 		 * inclusive is chainlocked.
1596 		 *
1597 		 * If the object is dead, we stop here
1598 		 */
1599 		if (fs->object->flags & OBJ_DEAD) {
1600 			vm_object_pip_wakeup(fs->first_object);
1601 			vm_object_chain_release_all(fs->first_object,
1602 						    fs->object);
1603 			if (fs->object != fs->first_object)
1604 				vm_object_drop(fs->object);
1605 			unlock_and_deallocate(fs);
1606 			return (KERN_PROTECTION_FAILURE);
1607 		}
1608 
1609 		/*
1610 		 * See if the page is resident.  Wait/Retry if the page is
1611 		 * busy (lots of stuff may have changed so we can't continue
1612 		 * in that case).
1613 		 *
1614 		 * We can theoretically allow the soft-busy case on a read
1615 		 * fault if the page is marked valid, but since such
1616 		 * pages are typically already pmap'd, putting that
1617 		 * special case in might be more effort then it is
1618 		 * worth.  We cannot under any circumstances mess
1619 		 * around with a vm_page_t->busy page except, perhaps,
1620 		 * to pmap it.
1621 		 */
1622 		fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1623 						TRUE, &error);
1624 		if (error) {
1625 			vm_object_pip_wakeup(fs->first_object);
1626 			vm_object_chain_release_all(fs->first_object,
1627 						    fs->object);
1628 			if (fs->object != fs->first_object)
1629 				vm_object_drop(fs->object);
1630 			unlock_things(fs);
1631 			vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1632 			mycpu->gd_cnt.v_intrans++;
1633 			/*vm_object_deallocate(fs->first_object);*/
1634 			/*fs->first_object = NULL;*/
1635 			fs->m = NULL;
1636 			return (KERN_TRY_AGAIN);
1637 		}
1638 		if (fs->m) {
1639 			/*
1640 			 * The page is busied for us.
1641 			 *
1642 			 * If reactivating a page from PQ_CACHE we may have
1643 			 * to rate-limit.
1644 			 */
1645 			int queue = fs->m->queue;
1646 			vm_page_unqueue_nowakeup(fs->m);
1647 
1648 			if ((queue - fs->m->pc) == PQ_CACHE &&
1649 			    vm_page_count_severe()) {
1650 				vm_page_activate(fs->m);
1651 				vm_page_wakeup(fs->m);
1652 				fs->m = NULL;
1653 				vm_object_pip_wakeup(fs->first_object);
1654 				vm_object_chain_release_all(fs->first_object,
1655 							    fs->object);
1656 				if (fs->object != fs->first_object)
1657 					vm_object_drop(fs->object);
1658 				unlock_and_deallocate(fs);
1659 				if (allow_nofault == 0 ||
1660 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1661 					thread_t td;
1662 
1663 					vm_wait_pfault();
1664 					td = curthread;
1665 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1666 						return (KERN_PROTECTION_FAILURE);
1667 				}
1668 				return (KERN_TRY_AGAIN);
1669 			}
1670 
1671 			/*
1672 			 * If it still isn't completely valid (readable),
1673 			 * or if a read-ahead-mark is set on the VM page,
1674 			 * jump to readrest, else we found the page and
1675 			 * can return.
1676 			 *
1677 			 * We can release the spl once we have marked the
1678 			 * page busy.
1679 			 */
1680 			if (fs->m->object != &kernel_object) {
1681 				if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1682 				    VM_PAGE_BITS_ALL) {
1683 					goto readrest;
1684 				}
1685 				if (fs->m->flags & PG_RAM) {
1686 					if (debug_cluster)
1687 						kprintf("R");
1688 					vm_page_flag_clear(fs->m, PG_RAM);
1689 					goto readrest;
1690 				}
1691 			}
1692 			break; /* break to PAGE HAS BEEN FOUND */
1693 		}
1694 
1695 		/*
1696 		 * Page is not resident, If this is the search termination
1697 		 * or the pager might contain the page, allocate a new page.
1698 		 */
1699 		if (TRYPAGER(fs) || fs->object == fs->first_object) {
1700 			/*
1701 			 * Allocating, must be exclusive.
1702 			 */
1703 			if (fs->object == fs->first_object &&
1704 			    fs->first_shared) {
1705 				fs->first_shared = 0;
1706 				vm_object_pip_wakeup(fs->first_object);
1707 				vm_object_chain_release_all(fs->first_object,
1708 							    fs->object);
1709 				if (fs->object != fs->first_object)
1710 					vm_object_drop(fs->object);
1711 				unlock_and_deallocate(fs);
1712 				return (KERN_TRY_AGAIN);
1713 			}
1714 			if (fs->object != fs->first_object &&
1715 			    fs->shared) {
1716 				fs->first_shared = 0;
1717 				fs->shared = 0;
1718 				vm_object_pip_wakeup(fs->first_object);
1719 				vm_object_chain_release_all(fs->first_object,
1720 							    fs->object);
1721 				if (fs->object != fs->first_object)
1722 					vm_object_drop(fs->object);
1723 				unlock_and_deallocate(fs);
1724 				return (KERN_TRY_AGAIN);
1725 			}
1726 
1727 			/*
1728 			 * If the page is beyond the object size we fail
1729 			 */
1730 			if (pindex >= fs->object->size) {
1731 				vm_object_pip_wakeup(fs->first_object);
1732 				vm_object_chain_release_all(fs->first_object,
1733 							    fs->object);
1734 				if (fs->object != fs->first_object)
1735 					vm_object_drop(fs->object);
1736 				unlock_and_deallocate(fs);
1737 				return (KERN_PROTECTION_FAILURE);
1738 			}
1739 
1740 			/*
1741 			 * Allocate a new page for this object/offset pair.
1742 			 *
1743 			 * It is possible for the allocation to race, so
1744 			 * handle the case.
1745 			 */
1746 			fs->m = NULL;
1747 			if (!vm_page_count_severe()) {
1748 				fs->m = vm_page_alloc(fs->object, pindex,
1749 				    ((fs->vp || fs->object->backing_object) ?
1750 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1751 					VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1752 					VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1753 			}
1754 			if (fs->m == NULL) {
1755 				vm_object_pip_wakeup(fs->first_object);
1756 				vm_object_chain_release_all(fs->first_object,
1757 							    fs->object);
1758 				if (fs->object != fs->first_object)
1759 					vm_object_drop(fs->object);
1760 				unlock_and_deallocate(fs);
1761 				if (allow_nofault == 0 ||
1762 				    (curthread->td_flags & TDF_NOFAULT) == 0) {
1763 					thread_t td;
1764 
1765 					vm_wait_pfault();
1766 					td = curthread;
1767 					if (td->td_proc && (td->td_proc->p_flags & P_LOWMEMKILL))
1768 						return (KERN_PROTECTION_FAILURE);
1769 				}
1770 				return (KERN_TRY_AGAIN);
1771 			}
1772 
1773 			/*
1774 			 * Fall through to readrest.  We have a new page which
1775 			 * will have to be paged (since m->valid will be 0).
1776 			 */
1777 		}
1778 
1779 readrest:
1780 		/*
1781 		 * We have found an invalid or partially valid page, a
1782 		 * page with a read-ahead mark which might be partially or
1783 		 * fully valid (and maybe dirty too), or we have allocated
1784 		 * a new page.
1785 		 *
1786 		 * Attempt to fault-in the page if there is a chance that the
1787 		 * pager has it, and potentially fault in additional pages
1788 		 * at the same time.
1789 		 *
1790 		 * If TRYPAGER is true then fs.m will be non-NULL and busied
1791 		 * for us.
1792 		 */
1793 		if (TRYPAGER(fs)) {
1794 			int rv;
1795 			int seqaccess;
1796 			u_char behavior = vm_map_entry_behavior(fs->entry);
1797 
1798 			if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1799 				seqaccess = 0;
1800 			else
1801 				seqaccess = -1;
1802 
1803 			/*
1804 			 * Doing I/O may synchronously insert additional
1805 			 * pages so we can't be shared at this point either.
1806 			 *
1807 			 * NOTE: We can't free fs->m here in the allocated
1808 			 *	 case (fs->object != fs->first_object) as
1809 			 *	 this would require an exclusively locked
1810 			 *	 VM object.
1811 			 */
1812 			if (fs->object == fs->first_object &&
1813 			    fs->first_shared) {
1814 				vm_page_deactivate(fs->m);
1815 				vm_page_wakeup(fs->m);
1816 				fs->m = NULL;
1817 				fs->first_shared = 0;
1818 				vm_object_pip_wakeup(fs->first_object);
1819 				vm_object_chain_release_all(fs->first_object,
1820 							    fs->object);
1821 				if (fs->object != fs->first_object)
1822 					vm_object_drop(fs->object);
1823 				unlock_and_deallocate(fs);
1824 				return (KERN_TRY_AGAIN);
1825 			}
1826 			if (fs->object != fs->first_object &&
1827 			    fs->shared) {
1828 				vm_page_deactivate(fs->m);
1829 				vm_page_wakeup(fs->m);
1830 				fs->m = NULL;
1831 				fs->first_shared = 0;
1832 				fs->shared = 0;
1833 				vm_object_pip_wakeup(fs->first_object);
1834 				vm_object_chain_release_all(fs->first_object,
1835 							    fs->object);
1836 				if (fs->object != fs->first_object)
1837 					vm_object_drop(fs->object);
1838 				unlock_and_deallocate(fs);
1839 				return (KERN_TRY_AGAIN);
1840 			}
1841 
1842 			/*
1843 			 * Avoid deadlocking against the map when doing I/O.
1844 			 * fs.object and the page is BUSY'd.
1845 			 *
1846 			 * NOTE: Once unlocked, fs->entry can become stale
1847 			 *	 so this will NULL it out.
1848 			 *
1849 			 * NOTE: fs->entry is invalid until we relock the
1850 			 *	 map and verify that the timestamp has not
1851 			 *	 changed.
1852 			 */
1853 			unlock_map(fs);
1854 
1855 			/*
1856 			 * Acquire the page data.  We still hold a ref on
1857 			 * fs.object and the page has been BUSY's.
1858 			 *
1859 			 * The pager may replace the page (for example, in
1860 			 * order to enter a fictitious page into the
1861 			 * object).  If it does so it is responsible for
1862 			 * cleaning up the passed page and properly setting
1863 			 * the new page BUSY.
1864 			 *
1865 			 * If we got here through a PG_RAM read-ahead
1866 			 * mark the page may be partially dirty and thus
1867 			 * not freeable.  Don't bother checking to see
1868 			 * if the pager has the page because we can't free
1869 			 * it anyway.  We have to depend on the get_page
1870 			 * operation filling in any gaps whether there is
1871 			 * backing store or not.
1872 			 */
1873 			rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1874 
1875 			if (rv == VM_PAGER_OK) {
1876 				/*
1877 				 * Relookup in case pager changed page. Pager
1878 				 * is responsible for disposition of old page
1879 				 * if moved.
1880 				 *
1881 				 * XXX other code segments do relookups too.
1882 				 * It's a bad abstraction that needs to be
1883 				 * fixed/removed.
1884 				 */
1885 				fs->m = vm_page_lookup(fs->object, pindex);
1886 				if (fs->m == NULL) {
1887 					vm_object_pip_wakeup(fs->first_object);
1888 					vm_object_chain_release_all(
1889 						fs->first_object, fs->object);
1890 					if (fs->object != fs->first_object)
1891 						vm_object_drop(fs->object);
1892 					unlock_and_deallocate(fs);
1893 					return (KERN_TRY_AGAIN);
1894 				}
1895 				++fs->hardfault;
1896 				break; /* break to PAGE HAS BEEN FOUND */
1897 			}
1898 
1899 			/*
1900 			 * Remove the bogus page (which does not exist at this
1901 			 * object/offset); before doing so, we must get back
1902 			 * our object lock to preserve our invariant.
1903 			 *
1904 			 * Also wake up any other process that may want to bring
1905 			 * in this page.
1906 			 *
1907 			 * If this is the top-level object, we must leave the
1908 			 * busy page to prevent another process from rushing
1909 			 * past us, and inserting the page in that object at
1910 			 * the same time that we are.
1911 			 */
1912 			if (rv == VM_PAGER_ERROR) {
1913 				if (curproc) {
1914 					kprintf("vm_fault: pager read error, "
1915 						"pid %d (%s)\n",
1916 						curproc->p_pid,
1917 						curproc->p_comm);
1918 				} else {
1919 					kprintf("vm_fault: pager read error, "
1920 						"thread %p (%s)\n",
1921 						curthread,
1922 						curthread->td_comm);
1923 				}
1924 			}
1925 
1926 			/*
1927 			 * Data outside the range of the pager or an I/O error
1928 			 *
1929 			 * The page may have been wired during the pagein,
1930 			 * e.g. by the buffer cache, and cannot simply be
1931 			 * freed.  Call vnode_pager_freepage() to deal with it.
1932 			 *
1933 			 * Also note that we cannot free the page if we are
1934 			 * holding the related object shared. XXX not sure
1935 			 * what to do in that case.
1936 			 */
1937 			if (fs->object != fs->first_object) {
1938 				/*
1939 				 * Scrap the page.  Check to see if the
1940 				 * vm_pager_get_page() call has already
1941 				 * dealt with it.
1942 				 */
1943 				if (fs->m) {
1944 					vnode_pager_freepage(fs->m);
1945 					fs->m = NULL;
1946 				}
1947 
1948 				/*
1949 				 * XXX - we cannot just fall out at this
1950 				 * point, m has been freed and is invalid!
1951 				 */
1952 			}
1953 			/*
1954 			 * XXX - the check for kernel_map is a kludge to work
1955 			 * around having the machine panic on a kernel space
1956 			 * fault w/ I/O error.
1957 			 */
1958 			if (((fs->map != &kernel_map) &&
1959 			    (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1960 				if (fs->m) {
1961 					if (fs->first_shared) {
1962 						vm_page_deactivate(fs->m);
1963 						vm_page_wakeup(fs->m);
1964 					} else {
1965 						vnode_pager_freepage(fs->m);
1966 					}
1967 					fs->m = NULL;
1968 				}
1969 				vm_object_pip_wakeup(fs->first_object);
1970 				vm_object_chain_release_all(fs->first_object,
1971 							    fs->object);
1972 				if (fs->object != fs->first_object)
1973 					vm_object_drop(fs->object);
1974 				unlock_and_deallocate(fs);
1975 				if (rv == VM_PAGER_ERROR)
1976 					return (KERN_FAILURE);
1977 				else
1978 					return (KERN_PROTECTION_FAILURE);
1979 				/* NOT REACHED */
1980 			}
1981 		}
1982 
1983 		/*
1984 		 * We get here if the object has a default pager (or unwiring)
1985 		 * or the pager doesn't have the page.
1986 		 *
1987 		 * fs->first_m will be used for the COW unless we find a
1988 		 * deeper page to be mapped read-only, in which case the
1989 		 * unlock*(fs) will free first_m.
1990 		 */
1991 		if (fs->object == fs->first_object)
1992 			fs->first_m = fs->m;
1993 
1994 		/*
1995 		 * Move on to the next object.  The chain lock should prevent
1996 		 * the backing_object from getting ripped out from under us.
1997 		 *
1998 		 * The object lock for the next object is governed by
1999 		 * fs->shared.
2000 		 */
2001 		if ((next_object = fs->object->backing_object) != NULL) {
2002 			if (fs->shared)
2003 				vm_object_hold_shared(next_object);
2004 			else
2005 				vm_object_hold(next_object);
2006 			vm_object_chain_acquire(next_object, fs->shared);
2007 			KKASSERT(next_object == fs->object->backing_object);
2008 			pindex += OFF_TO_IDX(fs->object->backing_object_offset);
2009 		}
2010 
2011 		if (next_object == NULL) {
2012 			/*
2013 			 * If there's no object left, fill the page in the top
2014 			 * object with zeros.
2015 			 */
2016 			if (fs->object != fs->first_object) {
2017 #if 0
2018 				if (fs->first_object->backing_object !=
2019 				    fs->object) {
2020 					vm_object_hold(fs->first_object->backing_object);
2021 				}
2022 #endif
2023 				vm_object_chain_release_all(
2024 					fs->first_object->backing_object,
2025 					fs->object);
2026 #if 0
2027 				if (fs->first_object->backing_object !=
2028 				    fs->object) {
2029 					vm_object_drop(fs->first_object->backing_object);
2030 				}
2031 #endif
2032 				vm_object_pip_wakeup(fs->object);
2033 				vm_object_drop(fs->object);
2034 				fs->object = fs->first_object;
2035 				pindex = first_pindex;
2036 				fs->m = fs->first_m;
2037 			}
2038 			fs->first_m = NULL;
2039 
2040 			/*
2041 			 * Zero the page and mark it valid.
2042 			 */
2043 			vm_page_zero_fill(fs->m);
2044 			mycpu->gd_cnt.v_zfod++;
2045 			fs->m->valid = VM_PAGE_BITS_ALL;
2046 			break;	/* break to PAGE HAS BEEN FOUND */
2047 		}
2048 		if (fs->object != fs->first_object) {
2049 			vm_object_pip_wakeup(fs->object);
2050 			vm_object_lock_swap();
2051 			vm_object_drop(fs->object);
2052 		}
2053 		KASSERT(fs->object != next_object,
2054 			("object loop %p", next_object));
2055 		fs->object = next_object;
2056 		vm_object_pip_add(fs->object, 1);
2057 	}
2058 
2059 	/*
2060 	 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
2061 	 * is held.]
2062 	 *
2063 	 * object still held.
2064 	 * vm_map may not be locked (determined by fs->lookup_still_valid)
2065 	 *
2066 	 * local shared variable may be different from fs->shared.
2067 	 *
2068 	 * If the page is being written, but isn't already owned by the
2069 	 * top-level object, we have to copy it into a new page owned by the
2070 	 * top-level object.
2071 	 */
2072 	KASSERT((fs->m->busy_count & PBUSY_LOCKED) != 0,
2073 		("vm_fault: not busy after main loop"));
2074 
2075 	if (fs->object != fs->first_object) {
2076 		/*
2077 		 * We only really need to copy if we want to write it.
2078 		 */
2079 		if (fault_type & VM_PROT_WRITE) {
2080 			/*
2081 			 * This allows pages to be virtually copied from a
2082 			 * backing_object into the first_object, where the
2083 			 * backing object has no other refs to it, and cannot
2084 			 * gain any more refs.  Instead of a bcopy, we just
2085 			 * move the page from the backing object to the
2086 			 * first object.  Note that we must mark the page
2087 			 * dirty in the first object so that it will go out
2088 			 * to swap when needed.
2089 			 */
2090 			if (virtual_copy_ok(fs)) {
2091 				/*
2092 				 * (first_m) and (m) are both busied.  We have
2093 				 * move (m) into (first_m)'s object/pindex
2094 				 * in an atomic fashion, then free (first_m).
2095 				 *
2096 				 * first_object is held so second remove
2097 				 * followed by the rename should wind
2098 				 * up being atomic.  vm_page_free() might
2099 				 * block so we don't do it until after the
2100 				 * rename.
2101 				 */
2102 				vm_page_protect(fs->first_m, VM_PROT_NONE);
2103 				vm_page_remove(fs->first_m);
2104 				vm_page_rename(fs->m, fs->first_object,
2105 					       first_pindex);
2106 				vm_page_free(fs->first_m);
2107 				fs->first_m = fs->m;
2108 				fs->m = NULL;
2109 				mycpu->gd_cnt.v_cow_optim++;
2110 			} else {
2111 				/*
2112 				 * Oh, well, lets copy it.
2113 				 *
2114 				 * Why are we unmapping the original page
2115 				 * here?  Well, in short, not all accessors
2116 				 * of user memory go through the pmap.  The
2117 				 * procfs code doesn't have access user memory
2118 				 * via a local pmap, so vm_fault_page*()
2119 				 * can't call pmap_enter().  And the umtx*()
2120 				 * code may modify the COW'd page via a DMAP
2121 				 * or kernel mapping and not via the pmap,
2122 				 * leaving the original page still mapped
2123 				 * read-only into the pmap.
2124 				 *
2125 				 * So we have to remove the page from at
2126 				 * least the current pmap if it is in it.
2127 				 *
2128 				 * We used to just remove it from all pmaps
2129 				 * but that creates inefficiencies on SMP,
2130 				 * particularly for COW program & library
2131 				 * mappings that are concurrently exec'd.
2132 				 * Only remove the page from the current
2133 				 * pmap.
2134 				 */
2135 				KKASSERT(fs->first_shared == 0);
2136 				vm_page_copy(fs->m, fs->first_m);
2137 				/*vm_page_protect(fs->m, VM_PROT_NONE);*/
2138 				pmap_remove_specific(
2139 				    &curthread->td_lwp->lwp_vmspace->vm_pmap,
2140 				    fs->m);
2141 			}
2142 
2143 			/*
2144 			 * We no longer need the old page or object.
2145 			 */
2146 			if (fs->m)
2147 				release_page(fs);
2148 
2149 			/*
2150 			 * We intend to revert to first_object, undo the
2151 			 * chain lock through to that.
2152 			 */
2153 #if 0
2154 			if (fs->first_object->backing_object != fs->object)
2155 				vm_object_hold(fs->first_object->backing_object);
2156 #endif
2157 			vm_object_chain_release_all(
2158 					fs->first_object->backing_object,
2159 					fs->object);
2160 #if 0
2161 			if (fs->first_object->backing_object != fs->object)
2162 				vm_object_drop(fs->first_object->backing_object);
2163 #endif
2164 
2165 			/*
2166 			 * fs->object != fs->first_object due to above
2167 			 * conditional
2168 			 */
2169 			vm_object_pip_wakeup(fs->object);
2170 			vm_object_drop(fs->object);
2171 
2172 			/*
2173 			 * Only use the new page below...
2174 			 */
2175 			mycpu->gd_cnt.v_cow_faults++;
2176 			fs->m = fs->first_m;
2177 			fs->object = fs->first_object;
2178 			pindex = first_pindex;
2179 		} else {
2180 			/*
2181 			 * If it wasn't a write fault avoid having to copy
2182 			 * the page by mapping it read-only.
2183 			 */
2184 			fs->prot &= ~VM_PROT_WRITE;
2185 		}
2186 	}
2187 
2188 	/*
2189 	 * Relock the map if necessary, then check the generation count.
2190 	 * relock_map() will update fs->timestamp to account for the
2191 	 * relocking if necessary.
2192 	 *
2193 	 * If the count has changed after relocking then all sorts of
2194 	 * crap may have happened and we have to retry.
2195 	 *
2196 	 * NOTE: The relock_map() can fail due to a deadlock against
2197 	 *	 the vm_page we are holding BUSY.
2198 	 */
2199 	if (fs->lookup_still_valid == FALSE && fs->map) {
2200 		if (relock_map(fs) ||
2201 		    fs->map->timestamp != fs->map_generation) {
2202 			release_page(fs);
2203 			vm_object_pip_wakeup(fs->first_object);
2204 			vm_object_chain_release_all(fs->first_object,
2205 						    fs->object);
2206 			if (fs->object != fs->first_object)
2207 				vm_object_drop(fs->object);
2208 			unlock_and_deallocate(fs);
2209 			return (KERN_TRY_AGAIN);
2210 		}
2211 	}
2212 
2213 	/*
2214 	 * If the fault is a write, we know that this page is being
2215 	 * written NOW so dirty it explicitly to save on pmap_is_modified()
2216 	 * calls later.
2217 	 *
2218 	 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
2219 	 * if the page is already dirty to prevent data written with
2220 	 * the expectation of being synced from not being synced.
2221 	 * Likewise if this entry does not request NOSYNC then make
2222 	 * sure the page isn't marked NOSYNC.  Applications sharing
2223 	 * data should use the same flags to avoid ping ponging.
2224 	 *
2225 	 * Also tell the backing pager, if any, that it should remove
2226 	 * any swap backing since the page is now dirty.
2227 	 */
2228 	vm_page_activate(fs->m);
2229 	if (fs->prot & VM_PROT_WRITE) {
2230 		vm_object_set_writeable_dirty(fs->m->object);
2231 		vm_set_nosync(fs->m, fs->entry);
2232 		if (fs->fault_flags & VM_FAULT_DIRTY) {
2233 			vm_page_dirty(fs->m);
2234 			if (fs->m->flags & PG_SWAPPED) {
2235 				/*
2236 				 * If the page is swapped out we have to call
2237 				 * swap_pager_unswapped() which requires an
2238 				 * exclusive object lock.  If we are shared,
2239 				 * we must clear the shared flag and retry.
2240 				 */
2241 				if ((fs->object == fs->first_object &&
2242 				     fs->first_shared) ||
2243 				    (fs->object != fs->first_object &&
2244 				     fs->shared)) {
2245 					vm_page_wakeup(fs->m);
2246 					fs->m = NULL;
2247 					if (fs->object == fs->first_object)
2248 						fs->first_shared = 0;
2249 					else
2250 						fs->shared = 0;
2251 					vm_object_pip_wakeup(fs->first_object);
2252 					vm_object_chain_release_all(
2253 						fs->first_object, fs->object);
2254 					if (fs->object != fs->first_object)
2255 						vm_object_drop(fs->object);
2256 					unlock_and_deallocate(fs);
2257 					return (KERN_TRY_AGAIN);
2258 				}
2259 				swap_pager_unswapped(fs->m);
2260 			}
2261 		}
2262 	}
2263 
2264 	vm_object_pip_wakeup(fs->first_object);
2265 	vm_object_chain_release_all(fs->first_object, fs->object);
2266 	if (fs->object != fs->first_object)
2267 		vm_object_drop(fs->object);
2268 
2269 	/*
2270 	 * Page had better still be busy.  We are still locked up and
2271 	 * fs->object will have another PIP reference if it is not equal
2272 	 * to fs->first_object.
2273 	 */
2274 	KASSERT(fs->m->busy_count & PBUSY_LOCKED,
2275 		("vm_fault: page %p not busy!", fs->m));
2276 
2277 	/*
2278 	 * Sanity check: page must be completely valid or it is not fit to
2279 	 * map into user space.  vm_pager_get_pages() ensures this.
2280 	 */
2281 	if (fs->m->valid != VM_PAGE_BITS_ALL) {
2282 		vm_page_zero_invalid(fs->m, TRUE);
2283 		kprintf("Warning: page %p partially invalid on fault\n", fs->m);
2284 	}
2285 
2286 	return (KERN_SUCCESS);
2287 }
2288 
2289 /*
2290  * Wire down a range of virtual addresses in a map.  The entry in question
2291  * should be marked in-transition and the map must be locked.  We must
2292  * release the map temporarily while faulting-in the page to avoid a
2293  * deadlock.  Note that the entry may be clipped while we are blocked but
2294  * will never be freed.
2295  *
2296  * No requirements.
2297  */
2298 int
2299 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2300 	      boolean_t user_wire, int kmflags)
2301 {
2302 	boolean_t fictitious;
2303 	vm_offset_t start;
2304 	vm_offset_t end;
2305 	vm_offset_t va;
2306 	pmap_t pmap;
2307 	int rv;
2308 	int wire_prot;
2309 	int fault_flags;
2310 	vm_page_t m;
2311 
2312 	if (user_wire) {
2313 		wire_prot = VM_PROT_READ;
2314 		fault_flags = VM_FAULT_USER_WIRE;
2315 	} else {
2316 		wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2317 		fault_flags = VM_FAULT_CHANGE_WIRING;
2318 	}
2319 	if (kmflags & KM_NOTLBSYNC)
2320 		wire_prot |= VM_PROT_NOSYNC;
2321 
2322 	pmap = vm_map_pmap(map);
2323 	start = entry->start;
2324 	end = entry->end;
2325 
2326 	switch(entry->maptype) {
2327 	case VM_MAPTYPE_NORMAL:
2328 	case VM_MAPTYPE_VPAGETABLE:
2329 		fictitious = entry->object.vm_object &&
2330 			    ((entry->object.vm_object->type == OBJT_DEVICE) ||
2331 			     (entry->object.vm_object->type == OBJT_MGTDEVICE));
2332 		break;
2333 	case VM_MAPTYPE_UKSMAP:
2334 		fictitious = TRUE;
2335 		break;
2336 	default:
2337 		fictitious = FALSE;
2338 		break;
2339 	}
2340 
2341 	if (entry->eflags & MAP_ENTRY_KSTACK)
2342 		start += PAGE_SIZE;
2343 	map->timestamp++;
2344 	vm_map_unlock(map);
2345 
2346 	/*
2347 	 * We simulate a fault to get the page and enter it in the physical
2348 	 * map.
2349 	 */
2350 	for (va = start; va < end; va += PAGE_SIZE) {
2351 		rv = vm_fault(map, va, wire_prot, fault_flags);
2352 		if (rv) {
2353 			while (va > start) {
2354 				va -= PAGE_SIZE;
2355 				m = pmap_unwire(pmap, va);
2356 				if (m && !fictitious) {
2357 					vm_page_busy_wait(m, FALSE, "vmwrpg");
2358 					vm_page_unwire(m, 1);
2359 					vm_page_wakeup(m);
2360 				}
2361 			}
2362 			goto done;
2363 		}
2364 	}
2365 	rv = KERN_SUCCESS;
2366 done:
2367 	vm_map_lock(map);
2368 
2369 	return (rv);
2370 }
2371 
2372 /*
2373  * Unwire a range of virtual addresses in a map.  The map should be
2374  * locked.
2375  */
2376 void
2377 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2378 {
2379 	boolean_t fictitious;
2380 	vm_offset_t start;
2381 	vm_offset_t end;
2382 	vm_offset_t va;
2383 	pmap_t pmap;
2384 	vm_page_t m;
2385 
2386 	pmap = vm_map_pmap(map);
2387 	start = entry->start;
2388 	end = entry->end;
2389 	fictitious = entry->object.vm_object &&
2390 			((entry->object.vm_object->type == OBJT_DEVICE) ||
2391 			 (entry->object.vm_object->type == OBJT_MGTDEVICE));
2392 	if (entry->eflags & MAP_ENTRY_KSTACK)
2393 		start += PAGE_SIZE;
2394 
2395 	/*
2396 	 * Since the pages are wired down, we must be able to get their
2397 	 * mappings from the physical map system.
2398 	 */
2399 	for (va = start; va < end; va += PAGE_SIZE) {
2400 		m = pmap_unwire(pmap, va);
2401 		if (m && !fictitious) {
2402 			vm_page_busy_wait(m, FALSE, "vmwrpg");
2403 			vm_page_unwire(m, 1);
2404 			vm_page_wakeup(m);
2405 		}
2406 	}
2407 }
2408 
2409 /*
2410  * Copy all of the pages from a wired-down map entry to another.
2411  *
2412  * The source and destination maps must be locked for write.
2413  * The source and destination maps token must be held
2414  * The source map entry must be wired down (or be a sharing map
2415  * entry corresponding to a main map entry that is wired down).
2416  *
2417  * No other requirements.
2418  *
2419  * XXX do segment optimization
2420  */
2421 void
2422 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2423 		    vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2424 {
2425 	vm_object_t dst_object;
2426 	vm_object_t src_object;
2427 	vm_ooffset_t dst_offset;
2428 	vm_ooffset_t src_offset;
2429 	vm_prot_t prot;
2430 	vm_offset_t vaddr;
2431 	vm_page_t dst_m;
2432 	vm_page_t src_m;
2433 
2434 	src_object = src_entry->object.vm_object;
2435 	src_offset = src_entry->offset;
2436 
2437 	/*
2438 	 * Create the top-level object for the destination entry. (Doesn't
2439 	 * actually shadow anything - we copy the pages directly.)
2440 	 */
2441 	vm_map_entry_allocate_object(dst_entry);
2442 	dst_object = dst_entry->object.vm_object;
2443 
2444 	prot = dst_entry->max_protection;
2445 
2446 	/*
2447 	 * Loop through all of the pages in the entry's range, copying each
2448 	 * one from the source object (it should be there) to the destination
2449 	 * object.
2450 	 */
2451 	vm_object_hold(src_object);
2452 	vm_object_hold(dst_object);
2453 
2454 	for (vaddr = dst_entry->start, dst_offset = 0;
2455 	     vaddr < dst_entry->end;
2456 	     vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2457 
2458 		/*
2459 		 * Allocate a page in the destination object
2460 		 */
2461 		do {
2462 			dst_m = vm_page_alloc(dst_object,
2463 					      OFF_TO_IDX(dst_offset),
2464 					      VM_ALLOC_NORMAL);
2465 			if (dst_m == NULL) {
2466 				vm_wait(0);
2467 			}
2468 		} while (dst_m == NULL);
2469 
2470 		/*
2471 		 * Find the page in the source object, and copy it in.
2472 		 * (Because the source is wired down, the page will be in
2473 		 * memory.)
2474 		 */
2475 		src_m = vm_page_lookup(src_object,
2476 				       OFF_TO_IDX(dst_offset + src_offset));
2477 		if (src_m == NULL)
2478 			panic("vm_fault_copy_wired: page missing");
2479 
2480 		vm_page_copy(src_m, dst_m);
2481 
2482 		/*
2483 		 * Enter it in the pmap...
2484 		 */
2485 		pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2486 
2487 		/*
2488 		 * Mark it no longer busy, and put it on the active list.
2489 		 */
2490 		vm_page_activate(dst_m);
2491 		vm_page_wakeup(dst_m);
2492 	}
2493 	vm_object_drop(dst_object);
2494 	vm_object_drop(src_object);
2495 }
2496 
2497 #if 0
2498 
2499 /*
2500  * This routine checks around the requested page for other pages that
2501  * might be able to be faulted in.  This routine brackets the viable
2502  * pages for the pages to be paged in.
2503  *
2504  * Inputs:
2505  *	m, rbehind, rahead
2506  *
2507  * Outputs:
2508  *  marray (array of vm_page_t), reqpage (index of requested page)
2509  *
2510  * Return value:
2511  *  number of pages in marray
2512  */
2513 static int
2514 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2515 			  vm_page_t *marray, int *reqpage)
2516 {
2517 	int i,j;
2518 	vm_object_t object;
2519 	vm_pindex_t pindex, startpindex, endpindex, tpindex;
2520 	vm_page_t rtm;
2521 	int cbehind, cahead;
2522 
2523 	object = m->object;
2524 	pindex = m->pindex;
2525 
2526 	/*
2527 	 * we don't fault-ahead for device pager
2528 	 */
2529 	if ((object->type == OBJT_DEVICE) ||
2530 	    (object->type == OBJT_MGTDEVICE)) {
2531 		*reqpage = 0;
2532 		marray[0] = m;
2533 		return 1;
2534 	}
2535 
2536 	/*
2537 	 * if the requested page is not available, then give up now
2538 	 */
2539 	if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2540 		*reqpage = 0;	/* not used by caller, fix compiler warn */
2541 		return 0;
2542 	}
2543 
2544 	if ((cbehind == 0) && (cahead == 0)) {
2545 		*reqpage = 0;
2546 		marray[0] = m;
2547 		return 1;
2548 	}
2549 
2550 	if (rahead > cahead) {
2551 		rahead = cahead;
2552 	}
2553 
2554 	if (rbehind > cbehind) {
2555 		rbehind = cbehind;
2556 	}
2557 
2558 	/*
2559 	 * Do not do any readahead if we have insufficient free memory.
2560 	 *
2561 	 * XXX code was broken disabled before and has instability
2562 	 * with this conditonal fixed, so shortcut for now.
2563 	 */
2564 	if (burst_fault == 0 || vm_page_count_severe()) {
2565 		marray[0] = m;
2566 		*reqpage = 0;
2567 		return 1;
2568 	}
2569 
2570 	/*
2571 	 * scan backward for the read behind pages -- in memory
2572 	 *
2573 	 * Assume that if the page is not found an interrupt will not
2574 	 * create it.  Theoretically interrupts can only remove (busy)
2575 	 * pages, not create new associations.
2576 	 */
2577 	if (pindex > 0) {
2578 		if (rbehind > pindex) {
2579 			rbehind = pindex;
2580 			startpindex = 0;
2581 		} else {
2582 			startpindex = pindex - rbehind;
2583 		}
2584 
2585 		vm_object_hold(object);
2586 		for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2587 			if (vm_page_lookup(object, tpindex - 1))
2588 				break;
2589 		}
2590 
2591 		i = 0;
2592 		while (tpindex < pindex) {
2593 			rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2594 							     VM_ALLOC_NULL_OK);
2595 			if (rtm == NULL) {
2596 				for (j = 0; j < i; j++) {
2597 					vm_page_free(marray[j]);
2598 				}
2599 				vm_object_drop(object);
2600 				marray[0] = m;
2601 				*reqpage = 0;
2602 				return 1;
2603 			}
2604 			marray[i] = rtm;
2605 			++i;
2606 			++tpindex;
2607 		}
2608 		vm_object_drop(object);
2609 	} else {
2610 		i = 0;
2611 	}
2612 
2613 	/*
2614 	 * Assign requested page
2615 	 */
2616 	marray[i] = m;
2617 	*reqpage = i;
2618 	++i;
2619 
2620 	/*
2621 	 * Scan forwards for read-ahead pages
2622 	 */
2623 	tpindex = pindex + 1;
2624 	endpindex = tpindex + rahead;
2625 	if (endpindex > object->size)
2626 		endpindex = object->size;
2627 
2628 	vm_object_hold(object);
2629 	while (tpindex < endpindex) {
2630 		if (vm_page_lookup(object, tpindex))
2631 			break;
2632 		rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2633 						     VM_ALLOC_NULL_OK);
2634 		if (rtm == NULL)
2635 			break;
2636 		marray[i] = rtm;
2637 		++i;
2638 		++tpindex;
2639 	}
2640 	vm_object_drop(object);
2641 
2642 	return (i);
2643 }
2644 
2645 #endif
2646 
2647 /*
2648  * vm_prefault() provides a quick way of clustering pagefaults into a
2649  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2650  * except it runs at page fault time instead of mmap time.
2651  *
2652  * vm.fast_fault	Enables pre-faulting zero-fill pages
2653  *
2654  * vm.prefault_pages	Number of pages (1/2 negative, 1/2 positive) to
2655  *			prefault.  Scan stops in either direction when
2656  *			a page is found to already exist.
2657  *
2658  * This code used to be per-platform pmap_prefault().  It is now
2659  * machine-independent and enhanced to also pre-fault zero-fill pages
2660  * (see vm.fast_fault) as well as make them writable, which greatly
2661  * reduces the number of page faults programs incur.
2662  *
2663  * Application performance when pre-faulting zero-fill pages is heavily
2664  * dependent on the application.  Very tiny applications like /bin/echo
2665  * lose a little performance while applications of any appreciable size
2666  * gain performance.  Prefaulting multiple pages also reduces SMP
2667  * congestion and can improve SMP performance significantly.
2668  *
2669  * NOTE!  prot may allow writing but this only applies to the top level
2670  *	  object.  If we wind up mapping a page extracted from a backing
2671  *	  object we have to make sure it is read-only.
2672  *
2673  * NOTE!  The caller has already handled any COW operations on the
2674  *	  vm_map_entry via the normal fault code.  Do NOT call this
2675  *	  shortcut unless the normal fault code has run on this entry.
2676  *
2677  * The related map must be locked.
2678  * No other requirements.
2679  */
2680 static int vm_prefault_pages = 8;
2681 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2682 	   "Maximum number of pages to pre-fault");
2683 static int vm_fast_fault = 1;
2684 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2685 	   "Burst fault zero-fill regions");
2686 
2687 /*
2688  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2689  * is not already dirty by other means.  This will prevent passive
2690  * filesystem syncing as well as 'sync' from writing out the page.
2691  */
2692 static void
2693 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2694 {
2695 	if (entry->eflags & MAP_ENTRY_NOSYNC) {
2696 		if (m->dirty == 0)
2697 			vm_page_flag_set(m, PG_NOSYNC);
2698 	} else {
2699 		vm_page_flag_clear(m, PG_NOSYNC);
2700 	}
2701 }
2702 
2703 static void
2704 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2705 	    int fault_flags)
2706 {
2707 	struct lwp *lp;
2708 	vm_page_t m;
2709 	vm_offset_t addr;
2710 	vm_pindex_t index;
2711 	vm_pindex_t pindex;
2712 	vm_object_t object;
2713 	int pprot;
2714 	int i;
2715 	int noneg;
2716 	int nopos;
2717 	int maxpages;
2718 
2719 	/*
2720 	 * Get stable max count value, disabled if set to 0
2721 	 */
2722 	maxpages = vm_prefault_pages;
2723 	cpu_ccfence();
2724 	if (maxpages <= 0)
2725 		return;
2726 
2727 	/*
2728 	 * We do not currently prefault mappings that use virtual page
2729 	 * tables.  We do not prefault foreign pmaps.
2730 	 */
2731 	if (entry->maptype != VM_MAPTYPE_NORMAL)
2732 		return;
2733 	lp = curthread->td_lwp;
2734 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2735 		return;
2736 
2737 	/*
2738 	 * Limit pre-fault count to 1024 pages.
2739 	 */
2740 	if (maxpages > 1024)
2741 		maxpages = 1024;
2742 
2743 	object = entry->object.vm_object;
2744 	KKASSERT(object != NULL);
2745 	KKASSERT(object == entry->object.vm_object);
2746 
2747 	/*
2748 	 * NOTE: VM_FAULT_DIRTY allowed later so must hold object exclusively
2749 	 *	 now (or do something more complex XXX).
2750 	 */
2751 	vm_object_hold(object);
2752 	vm_object_chain_acquire(object, 0);
2753 
2754 	noneg = 0;
2755 	nopos = 0;
2756 	for (i = 0; i < maxpages; ++i) {
2757 		vm_object_t lobject;
2758 		vm_object_t nobject;
2759 		int allocated = 0;
2760 		int error;
2761 
2762 		/*
2763 		 * This can eat a lot of time on a heavily contended
2764 		 * machine so yield on the tick if needed.
2765 		 */
2766 		if ((i & 7) == 7)
2767 			lwkt_yield();
2768 
2769 		/*
2770 		 * Calculate the page to pre-fault, stopping the scan in
2771 		 * each direction separately if the limit is reached.
2772 		 */
2773 		if (i & 1) {
2774 			if (noneg)
2775 				continue;
2776 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2777 		} else {
2778 			if (nopos)
2779 				continue;
2780 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2781 		}
2782 		if (addr < entry->start) {
2783 			noneg = 1;
2784 			if (noneg && nopos)
2785 				break;
2786 			continue;
2787 		}
2788 		if (addr >= entry->end) {
2789 			nopos = 1;
2790 			if (noneg && nopos)
2791 				break;
2792 			continue;
2793 		}
2794 
2795 		/*
2796 		 * Skip pages already mapped, and stop scanning in that
2797 		 * direction.  When the scan terminates in both directions
2798 		 * we are done.
2799 		 */
2800 		if (pmap_prefault_ok(pmap, addr) == 0) {
2801 			if (i & 1)
2802 				noneg = 1;
2803 			else
2804 				nopos = 1;
2805 			if (noneg && nopos)
2806 				break;
2807 			continue;
2808 		}
2809 
2810 		/*
2811 		 * Follow the VM object chain to obtain the page to be mapped
2812 		 * into the pmap.
2813 		 *
2814 		 * If we reach the terminal object without finding a page
2815 		 * and we determine it would be advantageous, then allocate
2816 		 * a zero-fill page for the base object.  The base object
2817 		 * is guaranteed to be OBJT_DEFAULT for this case.
2818 		 *
2819 		 * In order to not have to check the pager via *haspage*()
2820 		 * we stop if any non-default object is encountered.  e.g.
2821 		 * a vnode or swap object would stop the loop.
2822 		 */
2823 		index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2824 		lobject = object;
2825 		pindex = index;
2826 		pprot = prot;
2827 
2828 		KKASSERT(lobject == entry->object.vm_object);
2829 		/*vm_object_hold(lobject); implied */
2830 
2831 		while ((m = vm_page_lookup_busy_try(lobject, pindex,
2832 						    TRUE, &error)) == NULL) {
2833 			if (lobject->type != OBJT_DEFAULT)
2834 				break;
2835 			if (lobject->backing_object == NULL) {
2836 				if (vm_fast_fault == 0)
2837 					break;
2838 				if ((prot & VM_PROT_WRITE) == 0 ||
2839 				    vm_page_count_min(0)) {
2840 					break;
2841 				}
2842 
2843 				/*
2844 				 * NOTE: Allocated from base object
2845 				 */
2846 				m = vm_page_alloc(object, index,
2847 						  VM_ALLOC_NORMAL |
2848 						  VM_ALLOC_ZERO |
2849 						  VM_ALLOC_USE_GD |
2850 						  VM_ALLOC_NULL_OK);
2851 				if (m == NULL)
2852 					break;
2853 				allocated = 1;
2854 				pprot = prot;
2855 				/* lobject = object .. not needed */
2856 				break;
2857 			}
2858 			if (lobject->backing_object_offset & PAGE_MASK)
2859 				break;
2860 			nobject = lobject->backing_object;
2861 			vm_object_hold(nobject);
2862 			KKASSERT(nobject == lobject->backing_object);
2863 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2864 			if (lobject != object) {
2865 				vm_object_lock_swap();
2866 				vm_object_drop(lobject);
2867 			}
2868 			lobject = nobject;
2869 			pprot &= ~VM_PROT_WRITE;
2870 			vm_object_chain_acquire(lobject, 0);
2871 		}
2872 
2873 		/*
2874 		 * NOTE: A non-NULL (m) will be associated with lobject if
2875 		 *	 it was found there, otherwise it is probably a
2876 		 *	 zero-fill page associated with the base object.
2877 		 *
2878 		 * Give-up if no page is available.
2879 		 */
2880 		if (m == NULL) {
2881 			if (lobject != object) {
2882 #if 0
2883 				if (object->backing_object != lobject)
2884 					vm_object_hold(object->backing_object);
2885 #endif
2886 				vm_object_chain_release_all(
2887 					object->backing_object, lobject);
2888 #if 0
2889 				if (object->backing_object != lobject)
2890 					vm_object_drop(object->backing_object);
2891 #endif
2892 				vm_object_drop(lobject);
2893 			}
2894 			break;
2895 		}
2896 
2897 		/*
2898 		 * The object must be marked dirty if we are mapping a
2899 		 * writable page.  m->object is either lobject or object,
2900 		 * both of which are still held.  Do this before we
2901 		 * potentially drop the object.
2902 		 */
2903 		if (pprot & VM_PROT_WRITE)
2904 			vm_object_set_writeable_dirty(m->object);
2905 
2906 		/*
2907 		 * Do not conditionalize on PG_RAM.  If pages are present in
2908 		 * the VM system we assume optimal caching.  If caching is
2909 		 * not optimal the I/O gravy train will be restarted when we
2910 		 * hit an unavailable page.  We do not want to try to restart
2911 		 * the gravy train now because we really don't know how much
2912 		 * of the object has been cached.  The cost for restarting
2913 		 * the gravy train should be low (since accesses will likely
2914 		 * be I/O bound anyway).
2915 		 */
2916 		if (lobject != object) {
2917 #if 0
2918 			if (object->backing_object != lobject)
2919 				vm_object_hold(object->backing_object);
2920 #endif
2921 			vm_object_chain_release_all(object->backing_object,
2922 						    lobject);
2923 #if 0
2924 			if (object->backing_object != lobject)
2925 				vm_object_drop(object->backing_object);
2926 #endif
2927 			vm_object_drop(lobject);
2928 		}
2929 
2930 		/*
2931 		 * Enter the page into the pmap if appropriate.  If we had
2932 		 * allocated the page we have to place it on a queue.  If not
2933 		 * we just have to make sure it isn't on the cache queue
2934 		 * (pages on the cache queue are not allowed to be mapped).
2935 		 */
2936 		if (allocated) {
2937 			/*
2938 			 * Page must be zerod.
2939 			 */
2940 			vm_page_zero_fill(m);
2941 			mycpu->gd_cnt.v_zfod++;
2942 			m->valid = VM_PAGE_BITS_ALL;
2943 
2944 			/*
2945 			 * Handle dirty page case
2946 			 */
2947 			if (pprot & VM_PROT_WRITE)
2948 				vm_set_nosync(m, entry);
2949 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2950 			mycpu->gd_cnt.v_vm_faults++;
2951 			if (curthread->td_lwp)
2952 				++curthread->td_lwp->lwp_ru.ru_minflt;
2953 			vm_page_deactivate(m);
2954 			if (pprot & VM_PROT_WRITE) {
2955 				/*vm_object_set_writeable_dirty(m->object);*/
2956 				vm_set_nosync(m, entry);
2957 				if (fault_flags & VM_FAULT_DIRTY) {
2958 					vm_page_dirty(m);
2959 					/*XXX*/
2960 					swap_pager_unswapped(m);
2961 				}
2962 			}
2963 			vm_page_wakeup(m);
2964 		} else if (error) {
2965 			/* couldn't busy page, no wakeup */
2966 		} else if (
2967 		    ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2968 		    (m->flags & PG_FICTITIOUS) == 0) {
2969 			/*
2970 			 * A fully valid page not undergoing soft I/O can
2971 			 * be immediately entered into the pmap.
2972 			 */
2973 			if ((m->queue - m->pc) == PQ_CACHE)
2974 				vm_page_deactivate(m);
2975 			if (pprot & VM_PROT_WRITE) {
2976 				/*vm_object_set_writeable_dirty(m->object);*/
2977 				vm_set_nosync(m, entry);
2978 				if (fault_flags & VM_FAULT_DIRTY) {
2979 					vm_page_dirty(m);
2980 					/*XXX*/
2981 					swap_pager_unswapped(m);
2982 				}
2983 			}
2984 			if (pprot & VM_PROT_WRITE)
2985 				vm_set_nosync(m, entry);
2986 			pmap_enter(pmap, addr, m, pprot, 0, entry);
2987 			mycpu->gd_cnt.v_vm_faults++;
2988 			if (curthread->td_lwp)
2989 				++curthread->td_lwp->lwp_ru.ru_minflt;
2990 			vm_page_wakeup(m);
2991 		} else {
2992 			vm_page_wakeup(m);
2993 		}
2994 	}
2995 	vm_object_chain_release(object);
2996 	vm_object_drop(object);
2997 }
2998 
2999 /*
3000  * Object can be held shared
3001  */
3002 static void
3003 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
3004 		  vm_map_entry_t entry, int prot, int fault_flags)
3005 {
3006 	struct lwp *lp;
3007 	vm_page_t m;
3008 	vm_offset_t addr;
3009 	vm_pindex_t pindex;
3010 	vm_object_t object;
3011 	int i;
3012 	int noneg;
3013 	int nopos;
3014 	int maxpages;
3015 
3016 	/*
3017 	 * Get stable max count value, disabled if set to 0
3018 	 */
3019 	maxpages = vm_prefault_pages;
3020 	cpu_ccfence();
3021 	if (maxpages <= 0)
3022 		return;
3023 
3024 	/*
3025 	 * We do not currently prefault mappings that use virtual page
3026 	 * tables.  We do not prefault foreign pmaps.
3027 	 */
3028 	if (entry->maptype != VM_MAPTYPE_NORMAL)
3029 		return;
3030 	lp = curthread->td_lwp;
3031 	if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
3032 		return;
3033 	object = entry->object.vm_object;
3034 	if (object->backing_object != NULL)
3035 		return;
3036 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
3037 
3038 	/*
3039 	 * Limit pre-fault count to 1024 pages.
3040 	 */
3041 	if (maxpages > 1024)
3042 		maxpages = 1024;
3043 
3044 	noneg = 0;
3045 	nopos = 0;
3046 	for (i = 0; i < maxpages; ++i) {
3047 		int error;
3048 
3049 		/*
3050 		 * Calculate the page to pre-fault, stopping the scan in
3051 		 * each direction separately if the limit is reached.
3052 		 */
3053 		if (i & 1) {
3054 			if (noneg)
3055 				continue;
3056 			addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
3057 		} else {
3058 			if (nopos)
3059 				continue;
3060 			addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
3061 		}
3062 		if (addr < entry->start) {
3063 			noneg = 1;
3064 			if (noneg && nopos)
3065 				break;
3066 			continue;
3067 		}
3068 		if (addr >= entry->end) {
3069 			nopos = 1;
3070 			if (noneg && nopos)
3071 				break;
3072 			continue;
3073 		}
3074 
3075 		/*
3076 		 * Follow the VM object chain to obtain the page to be mapped
3077 		 * into the pmap.  This version of the prefault code only
3078 		 * works with terminal objects.
3079 		 *
3080 		 * The page must already exist.  If we encounter a problem
3081 		 * we stop here.
3082 		 *
3083 		 * WARNING!  We cannot call swap_pager_unswapped() or insert
3084 		 *	     a new vm_page with a shared token.
3085 		 */
3086 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
3087 
3088 		/*
3089 		 * Skip pages already mapped, and stop scanning in that
3090 		 * direction.  When the scan terminates in both directions
3091 		 * we are done.
3092 		 */
3093 		if (pmap_prefault_ok(pmap, addr) == 0) {
3094 			if (i & 1)
3095 				noneg = 1;
3096 			else
3097 				nopos = 1;
3098 			if (noneg && nopos)
3099 				break;
3100 			continue;
3101 		}
3102 
3103 		/*
3104 		 * Shortcut the read-only mapping case using the far more
3105 		 * efficient vm_page_lookup_sbusy_try() function.  This
3106 		 * allows us to acquire the page soft-busied only which
3107 		 * is especially nice for concurrent execs of the same
3108 		 * program.
3109 		 *
3110 		 * The lookup function also validates page suitability
3111 		 * (all valid bits set, and not fictitious).
3112 		 *
3113 		 * If the page is in PQ_CACHE we have to fall-through
3114 		 * and hard-busy it so we can move it out of PQ_CACHE.
3115 		 */
3116 		if ((prot & VM_PROT_WRITE) == 0) {
3117 			m = vm_page_lookup_sbusy_try(object, pindex,
3118 						     0, PAGE_SIZE);
3119 			if (m == NULL)
3120 				break;
3121 			if ((m->queue - m->pc) != PQ_CACHE) {
3122 				pmap_enter(pmap, addr, m, prot, 0, entry);
3123 				mycpu->gd_cnt.v_vm_faults++;
3124 				if (curthread->td_lwp)
3125 					++curthread->td_lwp->lwp_ru.ru_minflt;
3126 				vm_page_sbusy_drop(m);
3127 				continue;
3128 			}
3129 			vm_page_sbusy_drop(m);
3130 		}
3131 
3132 		/*
3133 		 * Fallback to normal vm_page lookup code.  This code
3134 		 * hard-busies the page.  Not only that, but the page
3135 		 * can remain in that state for a significant period
3136 		 * time due to pmap_enter()'s overhead.
3137 		 */
3138 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
3139 		if (m == NULL || error)
3140 			break;
3141 
3142 		/*
3143 		 * Stop if the page cannot be trivially entered into the
3144 		 * pmap.
3145 		 */
3146 		if (((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) ||
3147 		    (m->flags & PG_FICTITIOUS) ||
3148 		    ((m->flags & PG_SWAPPED) &&
3149 		     (prot & VM_PROT_WRITE) &&
3150 		     (fault_flags & VM_FAULT_DIRTY))) {
3151 			vm_page_wakeup(m);
3152 			break;
3153 		}
3154 
3155 		/*
3156 		 * Enter the page into the pmap.  The object might be held
3157 		 * shared so we can't do any (serious) modifying operation
3158 		 * on it.
3159 		 */
3160 		if ((m->queue - m->pc) == PQ_CACHE)
3161 			vm_page_deactivate(m);
3162 		if (prot & VM_PROT_WRITE) {
3163 			vm_object_set_writeable_dirty(m->object);
3164 			vm_set_nosync(m, entry);
3165 			if (fault_flags & VM_FAULT_DIRTY) {
3166 				vm_page_dirty(m);
3167 				/* can't happeen due to conditional above */
3168 				/* swap_pager_unswapped(m); */
3169 			}
3170 		}
3171 		pmap_enter(pmap, addr, m, prot, 0, entry);
3172 		mycpu->gd_cnt.v_vm_faults++;
3173 		if (curthread->td_lwp)
3174 			++curthread->td_lwp->lwp_ru.ru_minflt;
3175 		vm_page_wakeup(m);
3176 	}
3177 }
3178