xref: /dflybsd-src/sys/vm/swap_pager.c (revision fdf79913ed50fa4924367597bec31b585b9c4618)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. Neither the name of the University nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  *
69  *				New Swap System
70  *				Matthew Dillon
71  *
72  * Radix Bitmap 'blists'.
73  *
74  *	- The new swapper uses the new radix bitmap code.  This should scale
75  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
76  *	  arbitrary degree of fragmentation.
77  *
78  * Features:
79  *
80  *	- on the fly reallocation of swap during putpages.  The new system
81  *	  does not try to keep previously allocated swap blocks for dirty
82  *	  pages.
83  *
84  *	- on the fly deallocation of swap
85  *
86  *	- No more garbage collection required.  Unnecessarily allocated swap
87  *	  blocks only exist for dirty vm_page_t's now and these are already
88  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
89  *	  removal of invalidated swap blocks when a page is destroyed
90  *	  or renamed.
91  *
92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
95  */
96 
97 #include <sys/param.h>
98 #include <sys/systm.h>
99 #include <sys/conf.h>
100 #include <sys/kernel.h>
101 #include <sys/proc.h>
102 #include <sys/buf.h>
103 #include <sys/vnode.h>
104 #include <sys/malloc.h>
105 #include <sys/vmmeter.h>
106 #include <sys/sysctl.h>
107 #include <sys/blist.h>
108 #include <sys/lock.h>
109 #include <sys/kcollect.h>
110 
111 #include <unistd.h>
112 #include "opt_swap.h"
113 #include <vm/vm.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
116 #include <vm/vm_pager.h>
117 #include <vm/vm_pageout.h>
118 #include <vm/swap_pager.h>
119 #include <vm/vm_extern.h>
120 #include <vm/vm_zone.h>
121 #include <vm/vnode_pager.h>
122 
123 #include <sys/buf2.h>
124 #include <vm/vm_page2.h>
125 
126 #ifndef MAX_PAGEOUT_CLUSTER
127 #define MAX_PAGEOUT_CLUSTER	SWB_NPAGES
128 #endif
129 
130 #define SWM_FREE	0x02	/* free, period			*/
131 #define SWM_POP		0x04	/* pop out			*/
132 
133 #define SWBIO_READ	0x01
134 #define SWBIO_WRITE	0x02
135 #define SWBIO_SYNC	0x04
136 #define SWBIO_TTC	0x08	/* for VM_PAGER_TRY_TO_CACHE */
137 
138 struct swfreeinfo {
139 	vm_object_t	object;
140 	vm_pindex_t	basei;
141 	vm_pindex_t	begi;
142 	vm_pindex_t	endi;	/* inclusive */
143 };
144 
145 struct swswapoffinfo {
146 	vm_object_t	object;
147 	int		devidx;
148 	int		shared;
149 };
150 
151 /*
152  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
153  * in the old system.
154  */
155 
156 int swap_pager_full;		/* swap space exhaustion (task killing) */
157 int swap_fail_ticks;		/* when we became exhausted */
158 int swap_pager_almost_full;	/* swap space exhaustion (w/ hysteresis)*/
159 swblk_t vm_swap_cache_use;
160 swblk_t vm_swap_anon_use;
161 static int vm_report_swap_allocs;
162 
163 static struct krate kswaprate = { 1 };
164 static int nsw_rcount;		/* free read buffers			*/
165 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
166 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
167 static int nsw_wcount_async_max;/* assigned maximum			*/
168 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
169 
170 struct blist *swapblist;
171 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
172 static int swap_burst_read = 0;	/* allow burst reading */
173 static swblk_t swapiterator;	/* linearize allocations */
174 int swap_user_async = 0;	/* user swap pager operation can be async */
175 
176 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
177 
178 /* from vm_swap.c */
179 extern struct vnode *swapdev_vp;
180 extern struct swdevt *swdevt;
181 extern int nswdev;
182 
183 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
184 
185 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
186         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
187 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
188         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
189 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
190         CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
191 
192 #if SWBLK_BITS == 64
193 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
194         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
195 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
196         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
197 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
198         CTLFLAG_RD, &vm_swap_size, 0, "");
199 #else
200 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
201         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
202 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
203         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
204 SYSCTL_INT(_vm, OID_AUTO, swap_size,
205         CTLFLAG_RD, &vm_swap_size, 0, "");
206 #endif
207 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
208         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
209 
210 vm_zone_t		swap_zone;
211 
212 /*
213  * Red-Black tree for swblock entries
214  *
215  * The caller must hold vm_token
216  */
217 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
218 	     vm_pindex_t, swb_index);
219 
220 int
221 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
222 {
223 	if (swb1->swb_index < swb2->swb_index)
224 		return(-1);
225 	if (swb1->swb_index > swb2->swb_index)
226 		return(1);
227 	return(0);
228 }
229 
230 static
231 int
232 rb_swblock_scancmp(struct swblock *swb, void *data)
233 {
234 	struct swfreeinfo *info = data;
235 
236 	if (swb->swb_index < info->basei)
237 		return(-1);
238 	if (swb->swb_index > info->endi)
239 		return(1);
240 	return(0);
241 }
242 
243 static
244 int
245 rb_swblock_condcmp(struct swblock *swb, void *data)
246 {
247 	struct swfreeinfo *info = data;
248 
249 	if (swb->swb_index < info->basei)
250 		return(-1);
251 	return(0);
252 }
253 
254 /*
255  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
256  * calls hooked from other parts of the VM system and do not appear here.
257  * (see vm/swap_pager.h).
258  */
259 
260 static void	swap_pager_dealloc (vm_object_t object);
261 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
262 static void	swap_chain_iodone(struct bio *biox);
263 
264 struct pagerops swappagerops = {
265 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
266 	swap_pager_getpage,	/* pagein				*/
267 	swap_pager_putpages,	/* pageout				*/
268 	swap_pager_haspage	/* get backing store status for page	*/
269 };
270 
271 /*
272  * SWB_DMMAX is in page-sized chunks with the new swap system.  It was
273  * dev-bsized chunks in the old.  SWB_DMMAX is always a power of 2.
274  *
275  * swap_*() routines are externally accessible.  swp_*() routines are
276  * internal.
277  */
278 
279 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
280 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
281 
282 static __inline void	swp_sizecheck (void);
283 static void	swp_pager_async_iodone (struct bio *bio);
284 
285 /*
286  * Swap bitmap functions
287  */
288 
289 static __inline void	swp_pager_freeswapspace(vm_object_t object,
290 						swblk_t blk, int npages);
291 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
292 
293 /*
294  * Metadata functions
295  */
296 
297 static void swp_pager_meta_convert(vm_object_t);
298 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
299 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
300 static void swp_pager_meta_free_all(vm_object_t);
301 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
302 
303 /*
304  * SWP_SIZECHECK() -	update swap_pager_full indication
305  *
306  *	update the swap_pager_almost_full indication and warn when we are
307  *	about to run out of swap space, using lowat/hiwat hysteresis.
308  *
309  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
310  *
311  * No restrictions on call
312  * This routine may not block.
313  * SMP races are ok.
314  */
315 static __inline void
316 swp_sizecheck(void)
317 {
318 	if (vm_swap_size < nswap_lowat) {
319 		if (swap_pager_almost_full == 0) {
320 			kprintf("swap_pager: out of swap space\n");
321 			swap_pager_almost_full = 1;
322 			swap_fail_ticks = ticks;
323 		}
324 	} else {
325 		swap_pager_full = 0;
326 		if (vm_swap_size > nswap_hiwat)
327 			swap_pager_almost_full = 0;
328 	}
329 }
330 
331 /*
332  * Long-term data collection on 10-second interval.  Return the value
333  * for KCOLLECT_SWAPPCT and set the values for SWAPANO and SWAPCCAC.
334  *
335  * Return total swap in the scale field.  This can change if swap is
336  * regularly added or removed and may cause some historical confusion
337  * in that case, but SWAPPCT will always be historically accurate.
338  */
339 
340 #define PTOB(value)	((uint64_t)(value) << PAGE_SHIFT)
341 
342 static uint64_t
343 collect_swap_callback(int n)
344 {
345 	uint64_t total = vm_swap_max;
346 	uint64_t anon = vm_swap_anon_use;
347 	uint64_t cache = vm_swap_cache_use;
348 
349 	if (total == 0)		/* avoid divide by zero */
350 		total = 1;
351 	kcollect_setvalue(KCOLLECT_SWAPANO, PTOB(anon));
352 	kcollect_setvalue(KCOLLECT_SWAPCAC, PTOB(cache));
353 	kcollect_setscale(KCOLLECT_SWAPANO,
354 			  KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, PTOB(total)));
355 	kcollect_setscale(KCOLLECT_SWAPCAC,
356 			  KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, PTOB(total)));
357 	return (((anon + cache) * 10000 + (total >> 1)) / total);
358 }
359 
360 /*
361  * SWAP_PAGER_INIT() -	initialize the swap pager!
362  *
363  *	Expected to be started from system init.  NOTE:  This code is run
364  *	before much else so be careful what you depend on.  Most of the VM
365  *	system has yet to be initialized at this point.
366  *
367  * Called from the low level boot code only.
368  */
369 static void
370 swap_pager_init(void *arg __unused)
371 {
372 	kcollect_register(KCOLLECT_SWAPPCT, "swapuse", collect_swap_callback,
373 			  KCOLLECT_SCALE(KCOLLECT_SWAPPCT_FORMAT, 0));
374 	kcollect_register(KCOLLECT_SWAPANO, "swapano", NULL,
375 			  KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, 0));
376 	kcollect_register(KCOLLECT_SWAPCAC, "swapcac", NULL,
377 			  KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, 0));
378 }
379 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
380 
381 /*
382  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
383  *
384  *	Expected to be started from pageout process once, prior to entering
385  *	its main loop.
386  *
387  * Called from the low level boot code only.
388  */
389 void
390 swap_pager_swap_init(void)
391 {
392 	int n, n2;
393 
394 	/*
395 	 * Number of in-transit swap bp operations.  Don't
396 	 * exhaust the pbufs completely.  Make sure we
397 	 * initialize workable values (0 will work for hysteresis
398 	 * but it isn't very efficient).
399 	 *
400 	 * The nsw_cluster_max is constrained by the number of pages an XIO
401 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
402 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
403 	 * constrained by the swap device interleave stripe size.
404 	 *
405 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
406 	 * designed to prevent other I/O from having high latencies due to
407 	 * our pageout I/O.  The value 4 works well for one or two active swap
408 	 * devices but is probably a little low if you have more.  Even so,
409 	 * a higher value would probably generate only a limited improvement
410 	 * with three or four active swap devices since the system does not
411 	 * typically have to pageout at extreme bandwidths.   We will want
412 	 * at least 2 per swap devices, and 4 is a pretty good value if you
413 	 * have one NFS swap device due to the command/ack latency over NFS.
414 	 * So it all works out pretty well.
415 	 */
416 
417 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
418 
419 	nsw_rcount = (nswbuf_kva + 1) / 2;
420 	nsw_wcount_sync = (nswbuf_kva + 3) / 4;
421 	nsw_wcount_async = 4;
422 	nsw_wcount_async_max = nsw_wcount_async;
423 
424 	/*
425 	 * The zone is dynamically allocated so generally size it to
426 	 * maxswzone (32MB to 256GB of KVM).  Set a minimum size based
427 	 * on physical memory of around 8x (each swblock can hold 16 pages).
428 	 *
429 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
430 	 * has increased dramatically.
431 	 */
432 	n = vmstats.v_page_count / 2;
433 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
434 		n = maxswzone / sizeof(struct swblock);
435 	n2 = n;
436 
437 	do {
438 		swap_zone = zinit(
439 			"SWAPMETA",
440 			sizeof(struct swblock),
441 			n,
442 			ZONE_INTERRUPT);
443 		if (swap_zone != NULL)
444 			break;
445 		/*
446 		 * if the allocation failed, try a zone two thirds the
447 		 * size of the previous attempt.
448 		 */
449 		n -= ((n + 2) / 3);
450 	} while (n > 0);
451 
452 	if (swap_zone == NULL)
453 		panic("swap_pager_swap_init: swap_zone == NULL");
454 	if (n2 != n)
455 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
456 }
457 
458 /*
459  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
460  *			its metadata structures.
461  *
462  *	This routine is called from the mmap and fork code to create a new
463  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
464  *	and then converting it with swp_pager_meta_convert().
465  *
466  *	We only support unnamed objects.
467  *
468  * No restrictions.
469  */
470 vm_object_t
471 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
472 {
473 	vm_object_t object;
474 
475 	KKASSERT(handle == NULL);
476 	object = vm_object_allocate_hold(OBJT_DEFAULT,
477 					 OFF_TO_IDX(offset + PAGE_MASK + size));
478 	swp_pager_meta_convert(object);
479 	vm_object_drop(object);
480 
481 	return (object);
482 }
483 
484 /*
485  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
486  *
487  *	The swap backing for the object is destroyed.  The code is
488  *	designed such that we can reinstantiate it later, but this
489  *	routine is typically called only when the entire object is
490  *	about to be destroyed.
491  *
492  * The object must be locked or unreferenceable.
493  * No other requirements.
494  */
495 static void
496 swap_pager_dealloc(vm_object_t object)
497 {
498 	vm_object_hold(object);
499 	vm_object_pip_wait(object, "swpdea");
500 
501 	/*
502 	 * Free all remaining metadata.  We only bother to free it from
503 	 * the swap meta data.  We do not attempt to free swapblk's still
504 	 * associated with vm_page_t's for this object.  We do not care
505 	 * if paging is still in progress on some objects.
506 	 */
507 	swp_pager_meta_free_all(object);
508 	vm_object_drop(object);
509 }
510 
511 /************************************************************************
512  *			SWAP PAGER BITMAP ROUTINES			*
513  ************************************************************************/
514 
515 /*
516  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
517  *
518  *	Allocate swap for the requested number of pages.  The starting
519  *	swap block number (a page index) is returned or SWAPBLK_NONE
520  *	if the allocation failed.
521  *
522  *	Also has the side effect of advising that somebody made a mistake
523  *	when they configured swap and didn't configure enough.
524  *
525  * The caller must hold the object.
526  * This routine may not block.
527  */
528 static __inline swblk_t
529 swp_pager_getswapspace(vm_object_t object, int npages)
530 {
531 	swblk_t blk;
532 
533 	lwkt_gettoken(&vm_token);
534 	blk = blist_allocat(swapblist, npages, swapiterator);
535 	if (blk == SWAPBLK_NONE)
536 		blk = blist_allocat(swapblist, npages, 0);
537 	if (blk == SWAPBLK_NONE) {
538 		if (swap_pager_full != 2) {
539 			if (vm_swap_max == 0) {
540 				krateprintf(&kswaprate,
541 					"Warning: The system would like to "
542 					"page to swap but no swap space "
543 					"is configured!\n");
544 			} else {
545 				krateprintf(&kswaprate,
546 					"swap_pager_getswapspace: "
547 					"swap full allocating %d pages\n",
548 					npages);
549 			}
550 			swap_pager_full = 2;
551 			if (swap_pager_almost_full == 0)
552 				swap_fail_ticks = ticks;
553 			swap_pager_almost_full = 1;
554 		}
555 	} else {
556 		/* swapiterator = blk; disable for now, doesn't work well */
557 		swapacctspace(blk, -npages);
558 		if (object->type == OBJT_SWAP)
559 			vm_swap_anon_use += npages;
560 		else
561 			vm_swap_cache_use += npages;
562 		swp_sizecheck();
563 	}
564 	lwkt_reltoken(&vm_token);
565 	return(blk);
566 }
567 
568 /*
569  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
570  *
571  *	This routine returns the specified swap blocks back to the bitmap.
572  *
573  *	Note:  This routine may not block (it could in the old swap code),
574  *	and through the use of the new blist routines it does not block.
575  *
576  * This routine may not block.
577  */
578 
579 static __inline void
580 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
581 {
582 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
583 
584 	lwkt_gettoken(&vm_token);
585 	sp->sw_nused -= npages;
586 	if (object->type == OBJT_SWAP)
587 		vm_swap_anon_use -= npages;
588 	else
589 		vm_swap_cache_use -= npages;
590 
591 	if (sp->sw_flags & SW_CLOSING) {
592 		lwkt_reltoken(&vm_token);
593 		return;
594 	}
595 
596 	blist_free(swapblist, blk, npages);
597 	vm_swap_size += npages;
598 	swp_sizecheck();
599 	lwkt_reltoken(&vm_token);
600 }
601 
602 /*
603  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
604  *				range within an object.
605  *
606  *	This is a globally accessible routine.
607  *
608  *	This routine removes swapblk assignments from swap metadata.
609  *
610  *	The external callers of this routine typically have already destroyed
611  *	or renamed vm_page_t's associated with this range in the object so
612  *	we should be ok.
613  *
614  * No requirements.
615  */
616 void
617 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
618 {
619 	vm_object_hold(object);
620 	swp_pager_meta_free(object, start, size);
621 	vm_object_drop(object);
622 }
623 
624 /*
625  * No requirements.
626  */
627 void
628 swap_pager_freespace_all(vm_object_t object)
629 {
630 	vm_object_hold(object);
631 	swp_pager_meta_free_all(object);
632 	vm_object_drop(object);
633 }
634 
635 /*
636  * This function conditionally frees swap cache swap starting at
637  * (*basei) in the object.  (count) swap blocks will be nominally freed.
638  * The actual number of blocks freed can be more or less than the
639  * requested number.
640  *
641  * This function nominally returns the number of blocks freed.  However,
642  * the actual number of blocks freed may be less then the returned value.
643  * If the function is unable to exhaust the object or if it is able to
644  * free (approximately) the requested number of blocks it returns
645  * a value n > count.
646  *
647  * If we exhaust the object we will return a value n <= count.
648  *
649  * The caller must hold the object.
650  *
651  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
652  *	     callers should always pass a count value > 0.
653  */
654 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
655 
656 int
657 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
658 {
659 	struct swfreeinfo info;
660 	int n;
661 	int t;
662 
663 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
664 
665 	info.object = object;
666 	info.basei = *basei;	/* skip up to this page index */
667 	info.begi = count;	/* max swap pages to destroy */
668 	info.endi = count * 8;	/* max swblocks to scan */
669 
670 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
671 				swap_pager_condfree_callback, &info);
672 	*basei = info.basei;
673 
674 	/*
675 	 * Take the higher difference swblocks vs pages
676 	 */
677 	n = count - (int)info.begi;
678 	t = count * 8 - (int)info.endi;
679 	if (n < t)
680 		n = t;
681 	if (n < 1)
682 		n = 1;
683 	return(n);
684 }
685 
686 /*
687  * The idea is to free whole meta-block to avoid fragmenting
688  * the swap space or disk I/O.  We only do this if NO VM pages
689  * are present.
690  *
691  * We do not have to deal with clearing PG_SWAPPED in related VM
692  * pages because there are no related VM pages.
693  *
694  * The caller must hold the object.
695  */
696 static int
697 swap_pager_condfree_callback(struct swblock *swap, void *data)
698 {
699 	struct swfreeinfo *info = data;
700 	vm_object_t object = info->object;
701 	int i;
702 
703 	for (i = 0; i < SWAP_META_PAGES; ++i) {
704 		if (vm_page_lookup(object, swap->swb_index + i))
705 			break;
706 	}
707 	info->basei = swap->swb_index + SWAP_META_PAGES;
708 	if (i == SWAP_META_PAGES) {
709 		info->begi -= swap->swb_count;
710 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
711 	}
712 	--info->endi;
713 	if ((int)info->begi < 0 || (int)info->endi < 0)
714 		return(-1);
715 	lwkt_yield();
716 	return(0);
717 }
718 
719 /*
720  * Called by vm_page_alloc() when a new VM page is inserted
721  * into a VM object.  Checks whether swap has been assigned to
722  * the page and sets PG_SWAPPED as necessary.
723  *
724  * (m) must be busied by caller and remains busied on return.
725  */
726 void
727 swap_pager_page_inserted(vm_page_t m)
728 {
729 	if (m->object->swblock_count) {
730 		vm_object_hold(m->object);
731 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
732 			vm_page_flag_set(m, PG_SWAPPED);
733 		vm_object_drop(m->object);
734 	}
735 }
736 
737 /*
738  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
739  *
740  *	Assigns swap blocks to the specified range within the object.  The
741  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
742  *
743  *	Returns 0 on success, -1 on failure.
744  *
745  * The caller is responsible for avoiding races in the specified range.
746  * No other requirements.
747  */
748 int
749 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
750 {
751 	int n = 0;
752 	swblk_t blk = SWAPBLK_NONE;
753 	vm_pindex_t beg = start;	/* save start index */
754 
755 	vm_object_hold(object);
756 
757 	while (size) {
758 		if (n == 0) {
759 			n = BLIST_MAX_ALLOC;
760 			while ((blk = swp_pager_getswapspace(object, n)) ==
761 			       SWAPBLK_NONE)
762 			{
763 				n >>= 1;
764 				if (n == 0) {
765 					swp_pager_meta_free(object, beg,
766 							    start - beg);
767 					vm_object_drop(object);
768 					return(-1);
769 				}
770 			}
771 		}
772 		swp_pager_meta_build(object, start, blk);
773 		--size;
774 		++start;
775 		++blk;
776 		--n;
777 	}
778 	swp_pager_meta_free(object, start, n);
779 	vm_object_drop(object);
780 	return(0);
781 }
782 
783 /*
784  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
785  *			and destroy the source.
786  *
787  *	Copy any valid swapblks from the source to the destination.  In
788  *	cases where both the source and destination have a valid swapblk,
789  *	we keep the destination's.
790  *
791  *	This routine is allowed to block.  It may block allocating metadata
792  *	indirectly through swp_pager_meta_build() or if paging is still in
793  *	progress on the source.
794  *
795  *	XXX vm_page_collapse() kinda expects us not to block because we
796  *	supposedly do not need to allocate memory, but for the moment we
797  *	*may* have to get a little memory from the zone allocator, but
798  *	it is taken from the interrupt memory.  We should be ok.
799  *
800  *	The source object contains no vm_page_t's (which is just as well)
801  *	The source object is of type OBJT_SWAP.
802  *
803  *	The source and destination objects must be held by the caller.
804  */
805 void
806 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
807 		vm_pindex_t base_index, int destroysource)
808 {
809 	vm_pindex_t i;
810 
811 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
812 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
813 
814 	/*
815 	 * transfer source to destination.
816 	 */
817 	for (i = 0; i < dstobject->size; ++i) {
818 		swblk_t dstaddr;
819 
820 		/*
821 		 * Locate (without changing) the swapblk on the destination,
822 		 * unless it is invalid in which case free it silently, or
823 		 * if the destination is a resident page, in which case the
824 		 * source is thrown away.
825 		 */
826 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
827 
828 		if (dstaddr == SWAPBLK_NONE) {
829 			/*
830 			 * Destination has no swapblk and is not resident,
831 			 * copy source.
832 			 */
833 			swblk_t srcaddr;
834 
835 			srcaddr = swp_pager_meta_ctl(srcobject,
836 						     base_index + i, SWM_POP);
837 
838 			if (srcaddr != SWAPBLK_NONE)
839 				swp_pager_meta_build(dstobject, i, srcaddr);
840 		} else {
841 			/*
842 			 * Destination has valid swapblk or it is represented
843 			 * by a resident page.  We destroy the sourceblock.
844 			 */
845 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
846 		}
847 	}
848 
849 	/*
850 	 * Free left over swap blocks in source.
851 	 *
852 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
853 	 * double-remove the object from the swap queues.
854 	 */
855 	if (destroysource) {
856 		/*
857 		 * Reverting the type is not necessary, the caller is going
858 		 * to destroy srcobject directly, but I'm doing it here
859 		 * for consistency since we've removed the object from its
860 		 * queues.
861 		 */
862 		swp_pager_meta_free_all(srcobject);
863 		if (srcobject->type == OBJT_SWAP)
864 			srcobject->type = OBJT_DEFAULT;
865 	}
866 }
867 
868 /*
869  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
870  *				the requested page.
871  *
872  *	We determine whether good backing store exists for the requested
873  *	page and return TRUE if it does, FALSE if it doesn't.
874  *
875  *	If TRUE, we also try to determine how much valid, contiguous backing
876  *	store exists before and after the requested page within a reasonable
877  *	distance.  We do not try to restrict it to the swap device stripe
878  *	(that is handled in getpages/putpages).  It probably isn't worth
879  *	doing here.
880  *
881  * No requirements.
882  */
883 boolean_t
884 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
885 {
886 	swblk_t blk0;
887 
888 	/*
889 	 * do we have good backing store at the requested index ?
890 	 */
891 	vm_object_hold(object);
892 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
893 
894 	if (blk0 == SWAPBLK_NONE) {
895 		vm_object_drop(object);
896 		return (FALSE);
897 	}
898 	vm_object_drop(object);
899 	return (TRUE);
900 }
901 
902 /*
903  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
904  *
905  * This removes any associated swap backing store, whether valid or
906  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
907  * objects.
908  *
909  * This routine is typically called when a page is made dirty, at
910  * which point any associated swap can be freed.  MADV_FREE also
911  * calls us in a special-case situation
912  *
913  * NOTE!!!  If the page is clean and the swap was valid, the caller
914  *	    should make the page dirty before calling this routine.
915  *	    This routine does NOT change the m->dirty status of the page.
916  *	    Also: MADV_FREE depends on it.
917  *
918  * The page must be busied.
919  * The caller can hold the object to avoid blocking, else we might block.
920  * No other requirements.
921  */
922 void
923 swap_pager_unswapped(vm_page_t m)
924 {
925 	if (m->flags & PG_SWAPPED) {
926 		vm_object_hold(m->object);
927 		KKASSERT(m->flags & PG_SWAPPED);
928 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
929 		vm_page_flag_clear(m, PG_SWAPPED);
930 		vm_object_drop(m->object);
931 	}
932 }
933 
934 /*
935  * SWAP_PAGER_STRATEGY() - read, write, free blocks
936  *
937  * This implements a VM OBJECT strategy function using swap backing store.
938  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
939  * types.  Only BUF_CMD_{READ,WRITE,FREEBLKS} is supported, any other
940  * requests will return EINVAL.
941  *
942  * This is intended to be a cacheless interface (i.e. caching occurs at
943  * higher levels), and is also used as a swap-based SSD cache for vnode
944  * and device objects.
945  *
946  * All I/O goes directly to and from the swap device.
947  *
948  * We currently attempt to run I/O synchronously or asynchronously as
949  * the caller requests.  This isn't perfect because we loose error
950  * sequencing when we run multiple ops in parallel to satisfy a request.
951  * But this is swap, so we let it all hang out.
952  *
953  * NOTE: This function supports the KVABIO API wherein bp->b_data might
954  *	 not be synchronized to the current cpu.
955  *
956  * No requirements.
957  */
958 void
959 swap_pager_strategy(vm_object_t object, struct bio *bio)
960 {
961 	struct buf *bp = bio->bio_buf;
962 	struct bio *nbio;
963 	vm_pindex_t start;
964 	vm_pindex_t biox_blkno = 0;
965 	int count;
966 	char *data;
967 	struct bio *biox;
968 	struct buf *bufx;
969 #if 0
970 	struct bio_track *track;
971 #endif
972 
973 #if 0
974 	/*
975 	 * tracking for swapdev vnode I/Os
976 	 */
977 	if (bp->b_cmd == BUF_CMD_READ)
978 		track = &swapdev_vp->v_track_read;
979 	else
980 		track = &swapdev_vp->v_track_write;
981 #endif
982 
983 	/*
984 	 * Only supported commands
985 	 */
986 	if (bp->b_cmd != BUF_CMD_FREEBLKS &&
987 	    bp->b_cmd != BUF_CMD_READ &&
988 	    bp->b_cmd != BUF_CMD_WRITE) {
989 		bp->b_error = EINVAL;
990 		bp->b_flags |= B_ERROR | B_INVAL;
991 		biodone(bio);
992 		return;
993 	}
994 
995 	/*
996 	 * bcount must be an integral number of pages.
997 	 */
998 	if (bp->b_bcount & PAGE_MASK) {
999 		bp->b_error = EINVAL;
1000 		bp->b_flags |= B_ERROR | B_INVAL;
1001 		biodone(bio);
1002 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
1003 			"not page bounded\n",
1004 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
1005 		return;
1006 	}
1007 
1008 	/*
1009 	 * Clear error indication, initialize page index, count, data pointer.
1010 	 */
1011 	bp->b_error = 0;
1012 	bp->b_flags &= ~B_ERROR;
1013 	bp->b_resid = bp->b_bcount;
1014 
1015 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
1016 	count = howmany(bp->b_bcount, PAGE_SIZE);
1017 
1018 	/*
1019 	 * WARNING!  Do not dereference *data without issuing a bkvasync()
1020 	 */
1021 	data = bp->b_data;
1022 
1023 	/*
1024 	 * Deal with BUF_CMD_FREEBLKS
1025 	 */
1026 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
1027 		/*
1028 		 * FREE PAGE(s) - destroy underlying swap that is no longer
1029 		 *		  needed.
1030 		 */
1031 		vm_object_hold(object);
1032 		swp_pager_meta_free(object, start, count);
1033 		vm_object_drop(object);
1034 		bp->b_resid = 0;
1035 		biodone(bio);
1036 		return;
1037 	}
1038 
1039 	/*
1040 	 * We need to be able to create a new cluster of I/O's.  We cannot
1041 	 * use the caller fields of the passed bio so push a new one.
1042 	 *
1043 	 * Because nbio is just a placeholder for the cluster links,
1044 	 * we can biodone() the original bio instead of nbio to make
1045 	 * things a bit more efficient.
1046 	 */
1047 	nbio = push_bio(bio);
1048 	nbio->bio_offset = bio->bio_offset;
1049 	nbio->bio_caller_info1.cluster_head = NULL;
1050 	nbio->bio_caller_info2.cluster_tail = NULL;
1051 
1052 	biox = NULL;
1053 	bufx = NULL;
1054 
1055 	/*
1056 	 * Execute read or write
1057 	 */
1058 	vm_object_hold(object);
1059 
1060 	while (count > 0) {
1061 		swblk_t blk;
1062 
1063 		/*
1064 		 * Obtain block.  If block not found and writing, allocate a
1065 		 * new block and build it into the object.
1066 		 */
1067 		blk = swp_pager_meta_ctl(object, start, 0);
1068 		if ((blk == SWAPBLK_NONE) && bp->b_cmd == BUF_CMD_WRITE) {
1069 			blk = swp_pager_getswapspace(object, 1);
1070 			if (blk == SWAPBLK_NONE) {
1071 				bp->b_error = ENOMEM;
1072 				bp->b_flags |= B_ERROR;
1073 				break;
1074 			}
1075 			swp_pager_meta_build(object, start, blk);
1076 		}
1077 
1078 		/*
1079 		 * Do we have to flush our current collection?  Yes if:
1080 		 *
1081 		 *	- no swap block at this index
1082 		 *	- swap block is not contiguous
1083 		 *	- we cross a physical disk boundry in the
1084 		 *	  stripe.
1085 		 */
1086 		if (biox &&
1087 		    (biox_blkno + btoc(bufx->b_bcount) != blk ||
1088 		     ((biox_blkno ^ blk) & ~SWB_DMMASK))) {
1089 			switch(bp->b_cmd) {
1090 			case BUF_CMD_READ:
1091 				++mycpu->gd_cnt.v_swapin;
1092 				mycpu->gd_cnt.v_swappgsin +=
1093 					btoc(bufx->b_bcount);
1094 				break;
1095 			case BUF_CMD_WRITE:
1096 				++mycpu->gd_cnt.v_swapout;
1097 				mycpu->gd_cnt.v_swappgsout +=
1098 					btoc(bufx->b_bcount);
1099 				bufx->b_dirtyend = bufx->b_bcount;
1100 				break;
1101 			default:
1102 				/* NOT REACHED */
1103 				break;
1104 			}
1105 
1106 			/*
1107 			 * Finished with this buf.
1108 			 */
1109 			KKASSERT(bufx->b_bcount != 0);
1110 			if (bufx->b_cmd != BUF_CMD_READ)
1111 				bufx->b_dirtyend = bufx->b_bcount;
1112 			biox = NULL;
1113 			bufx = NULL;
1114 		}
1115 
1116 		/*
1117 		 * Add new swapblk to biox, instantiating biox if necessary.
1118 		 * Zero-fill reads are able to take a shortcut.
1119 		 */
1120 		if (blk == SWAPBLK_NONE) {
1121 			/*
1122 			 * We can only get here if we are reading.
1123 			 */
1124 			bkvasync(bp);
1125 			bzero(data, PAGE_SIZE);
1126 			bp->b_resid -= PAGE_SIZE;
1127 		} else {
1128 			if (biox == NULL) {
1129 				/* XXX chain count > 4, wait to <= 4 */
1130 
1131 				bufx = getpbuf(NULL);
1132 				bufx->b_flags |= B_KVABIO;
1133 				biox = &bufx->b_bio1;
1134 				cluster_append(nbio, bufx);
1135 				bufx->b_cmd = bp->b_cmd;
1136 				biox->bio_done = swap_chain_iodone;
1137 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1138 				biox->bio_caller_info1.cluster_parent = nbio;
1139 				biox_blkno = blk;
1140 				bufx->b_bcount = 0;
1141 				bufx->b_data = data;
1142 			}
1143 			bufx->b_bcount += PAGE_SIZE;
1144 		}
1145 		--count;
1146 		++start;
1147 		data += PAGE_SIZE;
1148 	}
1149 
1150 	vm_object_drop(object);
1151 
1152 	/*
1153 	 *  Flush out last buffer
1154 	 */
1155 	if (biox) {
1156 		if (bufx->b_cmd == BUF_CMD_READ) {
1157 			++mycpu->gd_cnt.v_swapin;
1158 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1159 		} else {
1160 			++mycpu->gd_cnt.v_swapout;
1161 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1162 			bufx->b_dirtyend = bufx->b_bcount;
1163 		}
1164 		KKASSERT(bufx->b_bcount);
1165 		if (bufx->b_cmd != BUF_CMD_READ)
1166 			bufx->b_dirtyend = bufx->b_bcount;
1167 		/* biox, bufx = NULL */
1168 	}
1169 
1170 	/*
1171 	 * Now initiate all the I/O.  Be careful looping on our chain as
1172 	 * I/O's may complete while we are still initiating them.
1173 	 *
1174 	 * If the request is a 100% sparse read no bios will be present
1175 	 * and we just biodone() the buffer.
1176 	 */
1177 	nbio->bio_caller_info2.cluster_tail = NULL;
1178 	bufx = nbio->bio_caller_info1.cluster_head;
1179 
1180 	if (bufx) {
1181 		while (bufx) {
1182 			biox = &bufx->b_bio1;
1183 			BUF_KERNPROC(bufx);
1184 			bufx = bufx->b_cluster_next;
1185 			vn_strategy(swapdev_vp, biox);
1186 		}
1187 	} else {
1188 		biodone(bio);
1189 	}
1190 
1191 	/*
1192 	 * Completion of the cluster will also call biodone_chain(nbio).
1193 	 * We never call biodone(nbio) so we don't have to worry about
1194 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1195 	 */
1196 	/**/
1197 }
1198 
1199 /*
1200  * biodone callback
1201  *
1202  * No requirements.
1203  */
1204 static void
1205 swap_chain_iodone(struct bio *biox)
1206 {
1207 	struct buf **nextp;
1208 	struct buf *bufx;	/* chained sub-buffer */
1209 	struct bio *nbio;	/* parent nbio with chain glue */
1210 	struct buf *bp;		/* original bp associated with nbio */
1211 	int chain_empty;
1212 
1213 	bufx = biox->bio_buf;
1214 	nbio = biox->bio_caller_info1.cluster_parent;
1215 	bp = nbio->bio_buf;
1216 
1217 	/*
1218 	 * Update the original buffer
1219 	 */
1220         KKASSERT(bp != NULL);
1221 	if (bufx->b_flags & B_ERROR) {
1222 		atomic_set_int(&bufx->b_flags, B_ERROR);
1223 		bp->b_error = bufx->b_error;	/* race ok */
1224 	} else if (bufx->b_resid != 0) {
1225 		atomic_set_int(&bufx->b_flags, B_ERROR);
1226 		bp->b_error = EINVAL;		/* race ok */
1227 	} else {
1228 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1229 	}
1230 
1231 	/*
1232 	 * Remove us from the chain.
1233 	 */
1234 	spin_lock(&swapbp_spin);
1235 	nextp = &nbio->bio_caller_info1.cluster_head;
1236 	while (*nextp != bufx) {
1237 		KKASSERT(*nextp != NULL);
1238 		nextp = &(*nextp)->b_cluster_next;
1239 	}
1240 	*nextp = bufx->b_cluster_next;
1241 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1242 	spin_unlock(&swapbp_spin);
1243 
1244 	/*
1245 	 * Clean up bufx.  If the chain is now empty we finish out
1246 	 * the parent.  Note that we may be racing other completions
1247 	 * so we must use the chain_empty status from above.
1248 	 */
1249 	if (chain_empty) {
1250 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1251 			atomic_set_int(&bp->b_flags, B_ERROR);
1252 			bp->b_error = EINVAL;
1253 		}
1254 		biodone_chain(nbio);
1255         }
1256         relpbuf(bufx, NULL);
1257 }
1258 
1259 /*
1260  * SWAP_PAGER_GETPAGES() - bring page in from swap
1261  *
1262  * The requested page may have to be brought in from swap.  Calculate the
1263  * swap block and bring in additional pages if possible.  All pages must
1264  * have contiguous swap block assignments and reside in the same object.
1265  *
1266  * The caller has a single vm_object_pip_add() reference prior to
1267  * calling us and we should return with the same.
1268  *
1269  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1270  * and any additinal pages unbusied.
1271  *
1272  * If the caller encounters a PG_RAM page it will pass it to us even though
1273  * it may be valid and dirty.  We cannot overwrite the page in this case!
1274  * The case is used to allow us to issue pure read-aheads.
1275  *
1276  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1277  *       the PG_RAM page is validated at the same time as mreq.  What we
1278  *	 really need to do is issue a separate read-ahead pbuf.
1279  *
1280  * No requirements.
1281  */
1282 static int
1283 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1284 {
1285 	struct buf *bp;
1286 	struct bio *bio;
1287 	vm_page_t mreq;
1288 	vm_page_t m;
1289 	vm_offset_t kva;
1290 	swblk_t blk;
1291 	int i;
1292 	int j;
1293 	int raonly;
1294 	int error;
1295 	u_int32_t busy_count;
1296 	vm_page_t marray[XIO_INTERNAL_PAGES];
1297 
1298 	mreq = *mpp;
1299 
1300 	vm_object_hold(object);
1301 	if (mreq->object != object) {
1302 		panic("swap_pager_getpages: object mismatch %p/%p",
1303 		    object,
1304 		    mreq->object
1305 		);
1306 	}
1307 
1308 	/*
1309 	 * We don't want to overwrite a fully valid page as it might be
1310 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1311 	 * valid page with PG_RAM set.
1312 	 *
1313 	 * In this case we see if the next page is a suitable page-in
1314 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1315 	 * set on the last page of the read-ahead to continue the pipeline.
1316 	 */
1317 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1318 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1319 			vm_object_drop(object);
1320 			return(VM_PAGER_OK);
1321 		}
1322 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1323 		if (blk == SWAPBLK_NONE) {
1324 			vm_object_drop(object);
1325 			return(VM_PAGER_OK);
1326 		}
1327 		m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1328 					    TRUE, &error);
1329 		if (error) {
1330 			vm_object_drop(object);
1331 			return(VM_PAGER_OK);
1332 		} else if (m == NULL) {
1333 			/*
1334 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1335 			 * page reuse.
1336 			 */
1337 			m = vm_page_alloc(object, mreq->pindex + 1,
1338 					  VM_ALLOC_QUICK);
1339 			if (m == NULL) {
1340 				vm_object_drop(object);
1341 				return(VM_PAGER_OK);
1342 			}
1343 		} else {
1344 			if (m->valid) {
1345 				vm_page_wakeup(m);
1346 				vm_object_drop(object);
1347 				return(VM_PAGER_OK);
1348 			}
1349 			vm_page_unqueue_nowakeup(m);
1350 		}
1351 		/* page is busy */
1352 		mreq = m;
1353 		raonly = 1;
1354 	} else {
1355 		raonly = 0;
1356 	}
1357 
1358 	/*
1359 	 * Try to block-read contiguous pages from swap if sequential,
1360 	 * otherwise just read one page.  Contiguous pages from swap must
1361 	 * reside within a single device stripe because the I/O cannot be
1362 	 * broken up across multiple stripes.
1363 	 *
1364 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1365 	 * set up such that the case(s) are handled implicitly.
1366 	 */
1367 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1368 	marray[0] = mreq;
1369 
1370 	for (i = 1; i <= swap_burst_read &&
1371 		    i < XIO_INTERNAL_PAGES &&
1372 		    mreq->pindex + i < object->size; ++i) {
1373 		swblk_t iblk;
1374 
1375 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1376 		if (iblk != blk + i)
1377 			break;
1378 		if ((blk ^ iblk) & ~SWB_DMMASK)
1379 			break;
1380 		m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1381 					    TRUE, &error);
1382 		if (error) {
1383 			break;
1384 		} else if (m == NULL) {
1385 			/*
1386 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1387 			 * page reuse.
1388 			 */
1389 			m = vm_page_alloc(object, mreq->pindex + i,
1390 					  VM_ALLOC_QUICK);
1391 			if (m == NULL)
1392 				break;
1393 		} else {
1394 			if (m->valid) {
1395 				vm_page_wakeup(m);
1396 				break;
1397 			}
1398 			vm_page_unqueue_nowakeup(m);
1399 		}
1400 		/* page is busy */
1401 		marray[i] = m;
1402 	}
1403 	if (i > 1)
1404 		vm_page_flag_set(marray[i - 1], PG_RAM);
1405 
1406 	/*
1407 	 * If mreq is the requested page and we have nothing to do return
1408 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1409 	 * page and must be cleaned up.
1410 	 */
1411 	if (blk == SWAPBLK_NONE) {
1412 		KKASSERT(i == 1);
1413 		if (raonly) {
1414 			vnode_pager_freepage(mreq);
1415 			vm_object_drop(object);
1416 			return(VM_PAGER_OK);
1417 		} else {
1418 			vm_object_drop(object);
1419 			return(VM_PAGER_FAIL);
1420 		}
1421 	}
1422 
1423 	/*
1424 	 * Map our page(s) into kva for input
1425 	 *
1426 	 * Use the KVABIO API to avoid synchronizing the pmap.
1427 	 */
1428 	bp = getpbuf_kva(&nsw_rcount);
1429 	bio = &bp->b_bio1;
1430 	kva = (vm_offset_t) bp->b_kvabase;
1431 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1432 	pmap_qenter_noinval(kva, bp->b_xio.xio_pages, i);
1433 
1434 	bp->b_data = (caddr_t)kva;
1435 	bp->b_bcount = PAGE_SIZE * i;
1436 	bp->b_xio.xio_npages = i;
1437 	bp->b_flags |= B_KVABIO;
1438 	bio->bio_done = swp_pager_async_iodone;
1439 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1440 	bio->bio_caller_info1.index = SWBIO_READ;
1441 
1442 	/*
1443 	 * Set index.  If raonly set the index beyond the array so all
1444 	 * the pages are treated the same, otherwise the original mreq is
1445 	 * at index 0.
1446 	 */
1447 	if (raonly)
1448 		bio->bio_driver_info = (void *)(intptr_t)i;
1449 	else
1450 		bio->bio_driver_info = (void *)(intptr_t)0;
1451 
1452 	for (j = 0; j < i; ++j) {
1453 		atomic_set_int(&bp->b_xio.xio_pages[j]->busy_count,
1454 			       PBUSY_SWAPINPROG);
1455 	}
1456 
1457 	mycpu->gd_cnt.v_swapin++;
1458 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1459 
1460 	/*
1461 	 * We still hold the lock on mreq, and our automatic completion routine
1462 	 * does not remove it.
1463 	 */
1464 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1465 
1466 	/*
1467 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1468 	 * this point because we automatically release it on completion.
1469 	 * Instead, we look at the one page we are interested in which we
1470 	 * still hold a lock on even through the I/O completion.
1471 	 *
1472 	 * The other pages in our m[] array are also released on completion,
1473 	 * so we cannot assume they are valid anymore either.
1474 	 */
1475 	bp->b_cmd = BUF_CMD_READ;
1476 	BUF_KERNPROC(bp);
1477 	vn_strategy(swapdev_vp, bio);
1478 
1479 	/*
1480 	 * Wait for the page we want to complete.  PBUSY_SWAPINPROG is always
1481 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1482 	 * is set in the meta-data.
1483 	 *
1484 	 * If this is a read-ahead only we return immediately without
1485 	 * waiting for I/O.
1486 	 */
1487 	if (raonly) {
1488 		vm_object_drop(object);
1489 		return(VM_PAGER_OK);
1490 	}
1491 
1492 	/*
1493 	 * Read-ahead includes originally requested page case.
1494 	 */
1495 	for (;;) {
1496 		busy_count = mreq->busy_count;
1497 		cpu_ccfence();
1498 		if ((busy_count & PBUSY_SWAPINPROG) == 0)
1499 			break;
1500 		tsleep_interlock(mreq, 0);
1501 		if (!atomic_cmpset_int(&mreq->busy_count, busy_count,
1502 				       busy_count |
1503 				        PBUSY_SWAPINPROG | PBUSY_WANTED)) {
1504 			continue;
1505 		}
1506 		atomic_set_int(&mreq->flags, PG_REFERENCED);
1507 		mycpu->gd_cnt.v_intrans++;
1508 		if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1509 			kprintf(
1510 			    "swap_pager: indefinite wait buffer: "
1511 				" bp %p offset: %lld, size: %ld\n",
1512 			    bp,
1513 			    (long long)bio->bio_offset,
1514 			    (long)bp->b_bcount
1515 			);
1516 		}
1517 	}
1518 
1519 	/*
1520 	 * Disallow speculative reads prior to the SWAPINPROG test.
1521 	 */
1522 	cpu_lfence();
1523 
1524 	/*
1525 	 * mreq is left busied after completion, but all the other pages
1526 	 * are freed.  If we had an unrecoverable read error the page will
1527 	 * not be valid.
1528 	 */
1529 	vm_object_drop(object);
1530 	if (mreq->valid != VM_PAGE_BITS_ALL)
1531 		return(VM_PAGER_ERROR);
1532 	else
1533 		return(VM_PAGER_OK);
1534 
1535 	/*
1536 	 * A final note: in a low swap situation, we cannot deallocate swap
1537 	 * and mark a page dirty here because the caller is likely to mark
1538 	 * the page clean when we return, causing the page to possibly revert
1539 	 * to all-zero's later.
1540 	 */
1541 }
1542 
1543 /*
1544  *	swap_pager_putpages:
1545  *
1546  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1547  *
1548  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1549  *	are automatically converted to SWAP objects.
1550  *
1551  *	In a low memory situation we may block in vn_strategy(), but the new
1552  *	vm_page reservation system coupled with properly written VFS devices
1553  *	should ensure that no low-memory deadlock occurs.  This is an area
1554  *	which needs work.
1555  *
1556  *	The parent has N vm_object_pip_add() references prior to
1557  *	calling us and will remove references for rtvals[] that are
1558  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1559  *	completion.
1560  *
1561  *	The parent has soft-busy'd the pages it passes us and will unbusy
1562  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1563  *	We need to unbusy the rest on I/O completion.
1564  *
1565  * No requirements.
1566  */
1567 void
1568 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1569 		    int flags, int *rtvals)
1570 {
1571 	int i;
1572 	int n = 0;
1573 
1574 	vm_object_hold(object);
1575 
1576 	if (count && m[0]->object != object) {
1577 		panic("swap_pager_getpages: object mismatch %p/%p",
1578 		    object,
1579 		    m[0]->object
1580 		);
1581 	}
1582 
1583 	/*
1584 	 * Step 1
1585 	 *
1586 	 * Turn object into OBJT_SWAP
1587 	 * Check for bogus sysops
1588 	 *
1589 	 * Force sync if not pageout process, we don't want any single
1590 	 * non-pageout process to be able to hog the I/O subsystem!  This
1591 	 * can be overridden by setting.
1592 	 */
1593 	if (object->type == OBJT_DEFAULT) {
1594 		if (object->type == OBJT_DEFAULT)
1595 			swp_pager_meta_convert(object);
1596 	}
1597 
1598 	/*
1599 	 * Normally we force synchronous swap I/O if this is not the
1600 	 * pageout daemon to prevent any single user process limited
1601 	 * via RLIMIT_RSS from hogging swap write bandwidth.
1602 	 */
1603 	if (curthread != pagethread &&
1604 	    curthread != emergpager &&
1605 	    swap_user_async == 0) {
1606 		flags |= VM_PAGER_PUT_SYNC;
1607 	}
1608 
1609 	/*
1610 	 * Step 2
1611 	 *
1612 	 * Update nsw parameters from swap_async_max sysctl values.
1613 	 * Do not let the sysop crash the machine with bogus numbers.
1614 	 */
1615 	if (swap_async_max != nsw_wcount_async_max) {
1616 		int n;
1617 
1618 		/*
1619 		 * limit range
1620 		 */
1621 		if ((n = swap_async_max) > nswbuf_kva / 2)
1622 			n = nswbuf_kva / 2;
1623 		if (n < 1)
1624 			n = 1;
1625 		swap_async_max = n;
1626 
1627 		/*
1628 		 * Adjust difference ( if possible ).  If the current async
1629 		 * count is too low, we may not be able to make the adjustment
1630 		 * at this time.
1631 		 *
1632 		 * vm_token needed for nsw_wcount sleep interlock
1633 		 */
1634 		lwkt_gettoken(&vm_token);
1635 		n -= nsw_wcount_async_max;
1636 		if (nsw_wcount_async + n >= 0) {
1637 			nsw_wcount_async_max += n;
1638 			pbuf_adjcount(&nsw_wcount_async, n);
1639 		}
1640 		lwkt_reltoken(&vm_token);
1641 	}
1642 
1643 	/*
1644 	 * Step 3
1645 	 *
1646 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1647 	 * The page is left dirty until the pageout operation completes
1648 	 * successfully.
1649 	 */
1650 
1651 	for (i = 0; i < count; i += n) {
1652 		struct buf *bp;
1653 		struct bio *bio;
1654 		swblk_t blk;
1655 		int j;
1656 
1657 		/*
1658 		 * Maximum I/O size is limited by a number of factors.
1659 		 */
1660 
1661 		n = min(BLIST_MAX_ALLOC, count - i);
1662 		n = min(n, nsw_cluster_max);
1663 
1664 		lwkt_gettoken(&vm_token);
1665 
1666 		/*
1667 		 * Get biggest block of swap we can.  If we fail, fall
1668 		 * back and try to allocate a smaller block.  Don't go
1669 		 * overboard trying to allocate space if it would overly
1670 		 * fragment swap.
1671 		 */
1672 		while (
1673 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1674 		    n > 4
1675 		) {
1676 			n >>= 1;
1677 		}
1678 		if (blk == SWAPBLK_NONE) {
1679 			for (j = 0; j < n; ++j)
1680 				rtvals[i+j] = VM_PAGER_FAIL;
1681 			lwkt_reltoken(&vm_token);
1682 			continue;
1683 		}
1684 		if (vm_report_swap_allocs > 0) {
1685 			kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1686 			--vm_report_swap_allocs;
1687 		}
1688 
1689 		/*
1690 		 * The I/O we are constructing cannot cross a physical
1691 		 * disk boundry in the swap stripe.
1692 		 */
1693 		if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1694 			j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1695 			swp_pager_freeswapspace(object, blk + j, n - j);
1696 			n = j;
1697 		}
1698 
1699 		/*
1700 		 * All I/O parameters have been satisfied, build the I/O
1701 		 * request and assign the swap space.
1702 		 *
1703 		 * Use the KVABIO API to avoid synchronizing the pmap.
1704 		 */
1705 		if ((flags & VM_PAGER_PUT_SYNC))
1706 			bp = getpbuf_kva(&nsw_wcount_sync);
1707 		else
1708 			bp = getpbuf_kva(&nsw_wcount_async);
1709 		bio = &bp->b_bio1;
1710 
1711 		lwkt_reltoken(&vm_token);
1712 
1713 		pmap_qenter_noinval((vm_offset_t)bp->b_data, &m[i], n);
1714 
1715 		bp->b_flags |= B_KVABIO;
1716 		bp->b_bcount = PAGE_SIZE * n;
1717 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1718 
1719 		for (j = 0; j < n; ++j) {
1720 			vm_page_t mreq = m[i+j];
1721 
1722 			swp_pager_meta_build(mreq->object, mreq->pindex,
1723 					     blk + j);
1724 			if (object->type == OBJT_SWAP)
1725 				vm_page_dirty(mreq);
1726 			rtvals[i+j] = VM_PAGER_OK;
1727 
1728 			atomic_set_int(&mreq->busy_count, PBUSY_SWAPINPROG);
1729 			bp->b_xio.xio_pages[j] = mreq;
1730 		}
1731 		bp->b_xio.xio_npages = n;
1732 
1733 		mycpu->gd_cnt.v_swapout++;
1734 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1735 
1736 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1737 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1738 		bp->b_cmd = BUF_CMD_WRITE;
1739 		bio->bio_caller_info1.index = SWBIO_WRITE;
1740 
1741 		/*
1742 		 * asynchronous
1743 		 */
1744 		if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1745 			bio->bio_done = swp_pager_async_iodone;
1746 			BUF_KERNPROC(bp);
1747 			vn_strategy(swapdev_vp, bio);
1748 
1749 			for (j = 0; j < n; ++j)
1750 				rtvals[i+j] = VM_PAGER_PEND;
1751 			continue;
1752 		}
1753 
1754 		/*
1755 		 * Issue synchrnously.
1756 		 *
1757 		 * Wait for the sync I/O to complete, then update rtvals.
1758 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1759 		 * our async completion routine at the end, thus avoiding a
1760 		 * double-free.
1761 		 */
1762 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1763 		if (flags & VM_PAGER_TRY_TO_CACHE)
1764 			bio->bio_caller_info1.index |= SWBIO_TTC;
1765 		bio->bio_done = biodone_sync;
1766 		bio->bio_flags |= BIO_SYNC;
1767 		vn_strategy(swapdev_vp, bio);
1768 		biowait(bio, "swwrt");
1769 
1770 		for (j = 0; j < n; ++j)
1771 			rtvals[i+j] = VM_PAGER_PEND;
1772 
1773 		/*
1774 		 * Now that we are through with the bp, we can call the
1775 		 * normal async completion, which frees everything up.
1776 		 */
1777 		swp_pager_async_iodone(bio);
1778 	}
1779 	vm_object_drop(object);
1780 }
1781 
1782 /*
1783  * No requirements.
1784  *
1785  * Recalculate the low and high-water marks.
1786  */
1787 void
1788 swap_pager_newswap(void)
1789 {
1790 	/*
1791 	 * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1792 	 *	 limitation imposed by the blist code.  Remember that this
1793 	 *	 will be divided by NSWAP_MAX (4), so each swap device is
1794 	 *	 limited to around a terrabyte.
1795 	 */
1796 	if (vm_swap_max) {
1797 		nswap_lowat = (int64_t)vm_swap_max * 4 / 100;	/* 4% left */
1798 		nswap_hiwat = (int64_t)vm_swap_max * 6 / 100;	/* 6% left */
1799 		kprintf("swap low/high-water marks set to %d/%d\n",
1800 			nswap_lowat, nswap_hiwat);
1801 	} else {
1802 		nswap_lowat = 128;
1803 		nswap_hiwat = 512;
1804 	}
1805 	swp_sizecheck();
1806 }
1807 
1808 /*
1809  *	swp_pager_async_iodone:
1810  *
1811  *	Completion routine for asynchronous reads and writes from/to swap.
1812  *	Also called manually by synchronous code to finish up a bp.
1813  *
1814  *	For READ operations, the pages are BUSY'd.  For WRITE operations,
1815  *	the pages are vm_page_t->busy'd.  For READ operations, we BUSY
1816  *	unbusy all pages except the 'main' request page.  For WRITE
1817  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1818  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1819  *
1820  *	This routine may not block.
1821  *
1822  * No requirements.
1823  */
1824 static void
1825 swp_pager_async_iodone(struct bio *bio)
1826 {
1827 	struct buf *bp = bio->bio_buf;
1828 	vm_object_t object = NULL;
1829 	int i;
1830 	int *nswptr;
1831 
1832 	/*
1833 	 * report error
1834 	 */
1835 	if (bp->b_flags & B_ERROR) {
1836 		kprintf(
1837 		    "swap_pager: I/O error - %s failed; offset %lld,"
1838 			"size %ld, error %d\n",
1839 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1840 			"pagein" : "pageout"),
1841 		    (long long)bio->bio_offset,
1842 		    (long)bp->b_bcount,
1843 		    bp->b_error
1844 		);
1845 	}
1846 
1847 	/*
1848 	 * set object.
1849 	 */
1850 	if (bp->b_xio.xio_npages)
1851 		object = bp->b_xio.xio_pages[0]->object;
1852 
1853 #if 0
1854 	/* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1855 	if (bio->bio_caller_info1.index & SWBIO_WRITE) {
1856 		if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) {
1857 			kprintf("SWAPOUT: BADCRC %08x %08x\n",
1858 				bio->bio_crc,
1859 				iscsi_crc32(bp->b_data, bp->b_bcount));
1860 			for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1861 				vm_page_t m = bp->b_xio.xio_pages[i];
1862 				if (m->flags & PG_WRITEABLE)
1863 					kprintf("SWAPOUT: "
1864 						"%d/%d %p writable\n",
1865 						i, bp->b_xio.xio_npages, m);
1866 			}
1867 		}
1868 	}
1869 #endif
1870 
1871 	/*
1872 	 * remove the mapping for kernel virtual
1873 	 */
1874 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1875 
1876 	/*
1877 	 * cleanup pages.  If an error occurs writing to swap, we are in
1878 	 * very serious trouble.  If it happens to be a disk error, though,
1879 	 * we may be able to recover by reassigning the swap later on.  So
1880 	 * in this case we remove the m->swapblk assignment for the page
1881 	 * but do not free it in the rlist.  The errornous block(s) are thus
1882 	 * never reallocated as swap.  Redirty the page and continue.
1883 	 */
1884 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1885 		vm_page_t m = bp->b_xio.xio_pages[i];
1886 
1887 		if (bp->b_flags & B_ERROR) {
1888 			/*
1889 			 * If an error occurs I'd love to throw the swapblk
1890 			 * away without freeing it back to swapspace, so it
1891 			 * can never be used again.  But I can't from an
1892 			 * interrupt.
1893 			 */
1894 
1895 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1896 				/*
1897 				 * When reading, reqpage needs to stay
1898 				 * locked for the parent, but all other
1899 				 * pages can be freed.  We still want to
1900 				 * wakeup the parent waiting on the page,
1901 				 * though.  ( also: pg_reqpage can be -1 and
1902 				 * not match anything ).
1903 				 *
1904 				 * We have to wake specifically requested pages
1905 				 * up too because we cleared SWAPINPROG and
1906 				 * someone may be waiting for that.
1907 				 *
1908 				 * NOTE: For reads, m->dirty will probably
1909 				 *	 be overridden by the original caller
1910 				 *	 of getpages so don't play cute tricks
1911 				 *	 here.
1912 				 *
1913 				 * NOTE: We can't actually free the page from
1914 				 *	 here, because this is an interrupt.
1915 				 *	 It is not legal to mess with
1916 				 *	 object->memq from an interrupt.
1917 				 *	 Deactivate the page instead.
1918 				 *
1919 				 * WARNING! The instant SWAPINPROG is
1920 				 *	    cleared another cpu may start
1921 				 *	    using the mreq page (it will
1922 				 *	    check m->valid immediately).
1923 				 */
1924 
1925 				m->valid = 0;
1926 				atomic_clear_int(&m->busy_count,
1927 						 PBUSY_SWAPINPROG);
1928 
1929 				/*
1930 				 * bio_driver_info holds the requested page
1931 				 * index.
1932 				 */
1933 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1934 					vm_page_deactivate(m);
1935 					vm_page_wakeup(m);
1936 				} else {
1937 					vm_page_flash(m);
1938 				}
1939 				/*
1940 				 * If i == bp->b_pager.pg_reqpage, do not wake
1941 				 * the page up.  The caller needs to.
1942 				 */
1943 			} else {
1944 				/*
1945 				 * If a write error occurs remove the swap
1946 				 * assignment (note that PG_SWAPPED may or
1947 				 * may not be set depending on prior activity).
1948 				 *
1949 				 * Re-dirty OBJT_SWAP pages as there is no
1950 				 * other backing store, we can't throw the
1951 				 * page away.
1952 				 *
1953 				 * Non-OBJT_SWAP pages (aka swapcache) must
1954 				 * not be dirtied since they may not have
1955 				 * been dirty in the first place, and they
1956 				 * do have backing store (the vnode).
1957 				 */
1958 				vm_page_busy_wait(m, FALSE, "swadpg");
1959 				vm_object_hold(m->object);
1960 				swp_pager_meta_ctl(m->object, m->pindex,
1961 						   SWM_FREE);
1962 				vm_page_flag_clear(m, PG_SWAPPED);
1963 				vm_object_drop(m->object);
1964 				if (m->object->type == OBJT_SWAP) {
1965 					vm_page_dirty(m);
1966 					vm_page_activate(m);
1967 				}
1968 				vm_page_io_finish(m);
1969 				atomic_clear_int(&m->busy_count,
1970 						 PBUSY_SWAPINPROG);
1971 				vm_page_wakeup(m);
1972 			}
1973 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1974 			/*
1975 			 * NOTE: for reads, m->dirty will probably be
1976 			 * overridden by the original caller of getpages so
1977 			 * we cannot set them in order to free the underlying
1978 			 * swap in a low-swap situation.  I don't think we'd
1979 			 * want to do that anyway, but it was an optimization
1980 			 * that existed in the old swapper for a time before
1981 			 * it got ripped out due to precisely this problem.
1982 			 *
1983 			 * If not the requested page then deactivate it.
1984 			 *
1985 			 * Note that the requested page, reqpage, is left
1986 			 * busied, but we still have to wake it up.  The
1987 			 * other pages are released (unbusied) by
1988 			 * vm_page_wakeup().  We do not set reqpage's
1989 			 * valid bits here, it is up to the caller.
1990 			 */
1991 
1992 			/*
1993 			 * NOTE: Can't call pmap_clear_modify(m) from an
1994 			 *	 interrupt thread, the pmap code may have to
1995 			 *	 map non-kernel pmaps and currently asserts
1996 			 *	 the case.
1997 			 *
1998 			 * WARNING! The instant SWAPINPROG is
1999 			 *	    cleared another cpu may start
2000 			 *	    using the mreq page (it will
2001 			 *	    check m->valid immediately).
2002 			 */
2003 			/*pmap_clear_modify(m);*/
2004 			m->valid = VM_PAGE_BITS_ALL;
2005 			vm_page_undirty(m);
2006 			vm_page_flag_set(m, PG_SWAPPED);
2007 			atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2008 
2009 			/*
2010 			 * We have to wake specifically requested pages
2011 			 * up too because we cleared SWAPINPROG and
2012 			 * could be waiting for it in getpages.  However,
2013 			 * be sure to not unbusy getpages specifically
2014 			 * requested page - getpages expects it to be
2015 			 * left busy.
2016 			 *
2017 			 * bio_driver_info holds the requested page
2018 			 */
2019 			if (i != (int)(intptr_t)bio->bio_driver_info) {
2020 				vm_page_deactivate(m);
2021 				vm_page_wakeup(m);
2022 			} else {
2023 				vm_page_flash(m);
2024 			}
2025 		} else {
2026 			/*
2027 			 * Mark the page clean but do not mess with the
2028 			 * pmap-layer's modified state.  That state should
2029 			 * also be clear since the caller protected the
2030 			 * page VM_PROT_READ, but allow the case.
2031 			 *
2032 			 * We are in an interrupt, avoid pmap operations.
2033 			 *
2034 			 * If we have a severe page deficit, deactivate the
2035 			 * page.  Do not try to cache it (which would also
2036 			 * involve a pmap op), because the page might still
2037 			 * be read-heavy.
2038 			 *
2039 			 * When using the swap to cache clean vnode pages
2040 			 * we do not mess with the page dirty bits.
2041 			 *
2042 			 * NOTE! Nobody is waiting for the key mreq page
2043 			 *	 on write completion.
2044 			 */
2045 			vm_page_busy_wait(m, FALSE, "swadpg");
2046 			if (m->object->type == OBJT_SWAP)
2047 				vm_page_undirty(m);
2048 			vm_page_flag_set(m, PG_SWAPPED);
2049 			atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2050 			if (vm_page_count_severe())
2051 				vm_page_deactivate(m);
2052 			vm_page_io_finish(m);
2053 			if (bio->bio_caller_info1.index & SWBIO_TTC)
2054 				vm_page_try_to_cache(m);
2055 			else
2056 				vm_page_wakeup(m);
2057 		}
2058 	}
2059 
2060 	/*
2061 	 * adjust pip.  NOTE: the original parent may still have its own
2062 	 * pip refs on the object.
2063 	 */
2064 
2065 	if (object)
2066 		vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
2067 
2068 	/*
2069 	 * Release the physical I/O buffer.
2070 	 *
2071 	 * NOTE: Due to synchronous operations in the write case b_cmd may
2072 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
2073 	 *	 been cleared.
2074 	 *
2075 	 * Use vm_token to interlock nsw_rcount/wcount wakeup?
2076 	 */
2077 	lwkt_gettoken(&vm_token);
2078 	if (bio->bio_caller_info1.index & SWBIO_READ)
2079 		nswptr = &nsw_rcount;
2080 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
2081 		nswptr = &nsw_wcount_sync;
2082 	else
2083 		nswptr = &nsw_wcount_async;
2084 	bp->b_cmd = BUF_CMD_DONE;
2085 	relpbuf(bp, nswptr);
2086 	lwkt_reltoken(&vm_token);
2087 }
2088 
2089 /*
2090  * Fault-in a potentially swapped page and remove the swap reference.
2091  * (used by swapoff code)
2092  *
2093  * object must be held.
2094  */
2095 static __inline void
2096 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
2097 {
2098 	struct vnode *vp;
2099 	vm_page_t m;
2100 	int error;
2101 
2102 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2103 
2104 	if (object->type == OBJT_VNODE) {
2105 		/*
2106 		 * Any swap related to a vnode is due to swapcache.  We must
2107 		 * vget() the vnode in case it is not active (otherwise
2108 		 * vref() will panic).  Calling vm_object_page_remove() will
2109 		 * ensure that any swap ref is removed interlocked with the
2110 		 * page.  clean_only is set to TRUE so we don't throw away
2111 		 * dirty pages.
2112 		 */
2113 		vp = object->handle;
2114 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2115 		if (error == 0) {
2116 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2117 			vput(vp);
2118 		}
2119 	} else {
2120 		/*
2121 		 * Otherwise it is a normal OBJT_SWAP object and we can
2122 		 * fault the page in and remove the swap.
2123 		 */
2124 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2125 					 VM_PROT_NONE,
2126 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2127 					 sharedp, &error);
2128 		if (m)
2129 			vm_page_unhold(m);
2130 	}
2131 }
2132 
2133 /*
2134  * This removes all swap blocks related to a particular device.  We have
2135  * to be careful of ripups during the scan.
2136  */
2137 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2138 
2139 int
2140 swap_pager_swapoff(int devidx)
2141 {
2142 	struct vm_object_hash *hash;
2143 	struct swswapoffinfo info;
2144 	struct vm_object marker;
2145 	vm_object_t object;
2146 	int n;
2147 
2148 	bzero(&marker, sizeof(marker));
2149 	marker.type = OBJT_MARKER;
2150 
2151 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
2152 		hash = &vm_object_hash[n];
2153 
2154 		lwkt_gettoken(&hash->token);
2155 		TAILQ_INSERT_HEAD(&hash->list, &marker, object_list);
2156 
2157 		while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2158 			if (object->type == OBJT_MARKER)
2159 				goto skip;
2160 			if (object->type != OBJT_SWAP &&
2161 			    object->type != OBJT_VNODE)
2162 				goto skip;
2163 			vm_object_hold(object);
2164 			if (object->type != OBJT_SWAP &&
2165 			    object->type != OBJT_VNODE) {
2166 				vm_object_drop(object);
2167 				goto skip;
2168 			}
2169 
2170 			/*
2171 			 * Object is special in that we can't just pagein
2172 			 * into vm_page's in it (tmpfs, vn).
2173 			 */
2174 			if ((object->flags & OBJ_NOPAGEIN) &&
2175 			    RB_ROOT(&object->swblock_root)) {
2176 				vm_object_drop(object);
2177 				goto skip;
2178 			}
2179 
2180 			info.object = object;
2181 			info.shared = 0;
2182 			info.devidx = devidx;
2183 			swblock_rb_tree_RB_SCAN(&object->swblock_root,
2184 					    NULL, swp_pager_swapoff_callback,
2185 					    &info);
2186 			vm_object_drop(object);
2187 skip:
2188 			if (object == TAILQ_NEXT(&marker, object_list)) {
2189 				TAILQ_REMOVE(&hash->list, &marker, object_list);
2190 				TAILQ_INSERT_AFTER(&hash->list, object,
2191 						   &marker, object_list);
2192 			}
2193 		}
2194 		TAILQ_REMOVE(&hash->list, &marker, object_list);
2195 		lwkt_reltoken(&hash->token);
2196 	}
2197 
2198 	/*
2199 	 * If we fail to locate all swblocks we just fail gracefully and
2200 	 * do not bother to restore paging on the swap device.  If the
2201 	 * user wants to retry the user can retry.
2202 	 */
2203 	if (swdevt[devidx].sw_nused)
2204 		return (1);
2205 	else
2206 		return (0);
2207 }
2208 
2209 static
2210 int
2211 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2212 {
2213 	struct swswapoffinfo *info = data;
2214 	vm_object_t object = info->object;
2215 	vm_pindex_t index;
2216 	swblk_t v;
2217 	int i;
2218 
2219 	index = swap->swb_index;
2220 	for (i = 0; i < SWAP_META_PAGES; ++i) {
2221 		/*
2222 		 * Make sure we don't race a dying object.  This will
2223 		 * kill the scan of the object's swap blocks entirely.
2224 		 */
2225 		if (object->flags & OBJ_DEAD)
2226 			return(-1);
2227 
2228 		/*
2229 		 * Fault the page, which can obviously block.  If the swap
2230 		 * structure disappears break out.
2231 		 */
2232 		v = swap->swb_pages[i];
2233 		if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2234 			swp_pager_fault_page(object, &info->shared,
2235 					     swap->swb_index + i);
2236 			/* swap ptr might go away */
2237 			if (RB_LOOKUP(swblock_rb_tree,
2238 				      &object->swblock_root, index) != swap) {
2239 				break;
2240 			}
2241 		}
2242 	}
2243 	return(0);
2244 }
2245 
2246 /************************************************************************
2247  *				SWAP META DATA 				*
2248  ************************************************************************
2249  *
2250  *	These routines manipulate the swap metadata stored in the
2251  *	OBJT_SWAP object.
2252  *
2253  *	Swap metadata is implemented with a global hash and not directly
2254  *	linked into the object.  Instead the object simply contains
2255  *	appropriate tracking counters.
2256  */
2257 
2258 /*
2259  * Lookup the swblock containing the specified swap block index.
2260  *
2261  * The caller must hold the object.
2262  */
2263 static __inline
2264 struct swblock *
2265 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2266 {
2267 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2268 	index &= ~(vm_pindex_t)SWAP_META_MASK;
2269 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2270 }
2271 
2272 /*
2273  * Remove a swblock from the RB tree.
2274  *
2275  * The caller must hold the object.
2276  */
2277 static __inline
2278 void
2279 swp_pager_remove(vm_object_t object, struct swblock *swap)
2280 {
2281 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2282 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2283 }
2284 
2285 /*
2286  * Convert default object to swap object if necessary
2287  *
2288  * The caller must hold the object.
2289  */
2290 static void
2291 swp_pager_meta_convert(vm_object_t object)
2292 {
2293 	if (object->type == OBJT_DEFAULT) {
2294 		object->type = OBJT_SWAP;
2295 		KKASSERT(object->swblock_count == 0);
2296 	}
2297 }
2298 
2299 /*
2300  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2301  *
2302  *	We first convert the object to a swap object if it is a default
2303  *	object.  Vnode objects do not need to be converted.
2304  *
2305  *	The specified swapblk is added to the object's swap metadata.  If
2306  *	the swapblk is not valid, it is freed instead.  Any previously
2307  *	assigned swapblk is freed.
2308  *
2309  * The caller must hold the object.
2310  */
2311 static void
2312 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2313 {
2314 	struct swblock *swap;
2315 	struct swblock *oswap;
2316 	vm_pindex_t v;
2317 
2318 	KKASSERT(swapblk != SWAPBLK_NONE);
2319 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2320 
2321 	/*
2322 	 * Convert object if necessary
2323 	 */
2324 	if (object->type == OBJT_DEFAULT)
2325 		swp_pager_meta_convert(object);
2326 
2327 	/*
2328 	 * Locate swblock.  If not found create, but if we aren't adding
2329 	 * anything just return.  If we run out of space in the map we wait
2330 	 * and, since the hash table may have changed, retry.
2331 	 */
2332 retry:
2333 	swap = swp_pager_lookup(object, index);
2334 
2335 	if (swap == NULL) {
2336 		int i;
2337 
2338 		swap = zalloc(swap_zone);
2339 		if (swap == NULL) {
2340 			vm_wait(0);
2341 			goto retry;
2342 		}
2343 		swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2344 		swap->swb_count = 0;
2345 
2346 		++object->swblock_count;
2347 
2348 		for (i = 0; i < SWAP_META_PAGES; ++i)
2349 			swap->swb_pages[i] = SWAPBLK_NONE;
2350 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2351 		KKASSERT(oswap == NULL);
2352 	}
2353 
2354 	/*
2355 	 * Delete prior contents of metadata.
2356 	 *
2357 	 * NOTE: Decrement swb_count after the freeing operation (which
2358 	 *	 might block) to prevent racing destruction of the swblock.
2359 	 */
2360 	index &= SWAP_META_MASK;
2361 
2362 	while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2363 		swap->swb_pages[index] = SWAPBLK_NONE;
2364 		/* can block */
2365 		swp_pager_freeswapspace(object, v, 1);
2366 		--swap->swb_count;
2367 		--mycpu->gd_vmtotal.t_vm;
2368 	}
2369 
2370 	/*
2371 	 * Enter block into metadata
2372 	 */
2373 	swap->swb_pages[index] = swapblk;
2374 	if (swapblk != SWAPBLK_NONE) {
2375 		++swap->swb_count;
2376 		++mycpu->gd_vmtotal.t_vm;
2377 	}
2378 }
2379 
2380 /*
2381  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2382  *
2383  *	The requested range of blocks is freed, with any associated swap
2384  *	returned to the swap bitmap.
2385  *
2386  *	This routine will free swap metadata structures as they are cleaned
2387  *	out.  This routine does *NOT* operate on swap metadata associated
2388  *	with resident pages.
2389  *
2390  * The caller must hold the object.
2391  */
2392 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2393 
2394 static void
2395 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2396 {
2397 	struct swfreeinfo info;
2398 
2399 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2400 
2401 	/*
2402 	 * Nothing to do
2403 	 */
2404 	if (object->swblock_count == 0) {
2405 		KKASSERT(RB_EMPTY(&object->swblock_root));
2406 		return;
2407 	}
2408 	if (count == 0)
2409 		return;
2410 
2411 	/*
2412 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2413 	 * due to the 64 bit page index space so we cannot safely iterate.
2414 	 */
2415 	info.object = object;
2416 	info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2417 	info.begi = index;
2418 	info.endi = index + count - 1;
2419 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2420 				swp_pager_meta_free_callback, &info);
2421 }
2422 
2423 /*
2424  * The caller must hold the object.
2425  */
2426 static
2427 int
2428 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2429 {
2430 	struct swfreeinfo *info = data;
2431 	vm_object_t object = info->object;
2432 	int index;
2433 	int eindex;
2434 
2435 	/*
2436 	 * Figure out the range within the swblock.  The wider scan may
2437 	 * return edge-case swap blocks when the start and/or end points
2438 	 * are in the middle of a block.
2439 	 */
2440 	if (swap->swb_index < info->begi)
2441 		index = (int)info->begi & SWAP_META_MASK;
2442 	else
2443 		index = 0;
2444 
2445 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2446 		eindex = (int)info->endi & SWAP_META_MASK;
2447 	else
2448 		eindex = SWAP_META_MASK;
2449 
2450 	/*
2451 	 * Scan and free the blocks.  The loop terminates early
2452 	 * if (swap) runs out of blocks and could be freed.
2453 	 *
2454 	 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2455 	 *	 to deal with a zfree race.
2456 	 */
2457 	while (index <= eindex) {
2458 		swblk_t v = swap->swb_pages[index];
2459 
2460 		if (v != SWAPBLK_NONE) {
2461 			swap->swb_pages[index] = SWAPBLK_NONE;
2462 			/* can block */
2463 			swp_pager_freeswapspace(object, v, 1);
2464 			--mycpu->gd_vmtotal.t_vm;
2465 			if (--swap->swb_count == 0) {
2466 				swp_pager_remove(object, swap);
2467 				zfree(swap_zone, swap);
2468 				--object->swblock_count;
2469 				break;
2470 			}
2471 		}
2472 		++index;
2473 	}
2474 
2475 	/* swap may be invalid here due to zfree above */
2476 	lwkt_yield();
2477 
2478 	return(0);
2479 }
2480 
2481 /*
2482  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2483  *
2484  *	This routine locates and destroys all swap metadata associated with
2485  *	an object.
2486  *
2487  * NOTE: Decrement swb_count after the freeing operation (which
2488  *	 might block) to prevent racing destruction of the swblock.
2489  *
2490  * The caller must hold the object.
2491  */
2492 static void
2493 swp_pager_meta_free_all(vm_object_t object)
2494 {
2495 	struct swblock *swap;
2496 	int i;
2497 
2498 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2499 
2500 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2501 		swp_pager_remove(object, swap);
2502 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2503 			swblk_t v = swap->swb_pages[i];
2504 			if (v != SWAPBLK_NONE) {
2505 				/* can block */
2506 				swp_pager_freeswapspace(object, v, 1);
2507 				--swap->swb_count;
2508 				--mycpu->gd_vmtotal.t_vm;
2509 			}
2510 		}
2511 		if (swap->swb_count != 0)
2512 			panic("swap_pager_meta_free_all: swb_count != 0");
2513 		zfree(swap_zone, swap);
2514 		--object->swblock_count;
2515 		lwkt_yield();
2516 	}
2517 	KKASSERT(object->swblock_count == 0);
2518 }
2519 
2520 /*
2521  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2522  *
2523  *	This routine is capable of looking up, popping, or freeing
2524  *	swapblk assignments in the swap meta data or in the vm_page_t.
2525  *	The routine typically returns the swapblk being looked-up, or popped,
2526  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2527  *	was invalid.  This routine will automatically free any invalid
2528  *	meta-data swapblks.
2529  *
2530  *	It is not possible to store invalid swapblks in the swap meta data
2531  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2532  *
2533  *	When acting on a busy resident page and paging is in progress, we
2534  *	have to wait until paging is complete but otherwise can act on the
2535  *	busy page.
2536  *
2537  *	SWM_FREE	remove and free swap block from metadata
2538  *	SWM_POP		remove from meta data but do not free.. pop it out
2539  *
2540  * The caller must hold the object.
2541  */
2542 static swblk_t
2543 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2544 {
2545 	struct swblock *swap;
2546 	swblk_t r1;
2547 
2548 	if (object->swblock_count == 0)
2549 		return(SWAPBLK_NONE);
2550 
2551 	r1 = SWAPBLK_NONE;
2552 	swap = swp_pager_lookup(object, index);
2553 
2554 	if (swap != NULL) {
2555 		index &= SWAP_META_MASK;
2556 		r1 = swap->swb_pages[index];
2557 
2558 		if (r1 != SWAPBLK_NONE) {
2559 			if (flags & (SWM_FREE|SWM_POP)) {
2560 				swap->swb_pages[index] = SWAPBLK_NONE;
2561 				--mycpu->gd_vmtotal.t_vm;
2562 				if (--swap->swb_count == 0) {
2563 					swp_pager_remove(object, swap);
2564 					zfree(swap_zone, swap);
2565 					--object->swblock_count;
2566 				}
2567 			}
2568 			/* swap ptr may be invalid */
2569 			if (flags & SWM_FREE) {
2570 				swp_pager_freeswapspace(object, r1, 1);
2571 				r1 = SWAPBLK_NONE;
2572 			}
2573 		}
2574 		/* swap ptr may be invalid */
2575 	}
2576 	return(r1);
2577 }
2578