xref: /dflybsd-src/sys/vm/swap_pager.c (revision f00eae149c338528630cd778fd4de222713daa11)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. All advertising materials mentioning features or use of this software
54  *    must display the following acknowledgement:
55  *	This product includes software developed by the University of
56  *	California, Berkeley and its contributors.
57  * 4. Neither the name of the University nor the names of its contributors
58  *    may be used to endorse or promote products derived from this software
59  *    without specific prior written permission.
60  *
61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71  * SUCH DAMAGE.
72  *
73  *				New Swap System
74  *				Matthew Dillon
75  *
76  * Radix Bitmap 'blists'.
77  *
78  *	- The new swapper uses the new radix bitmap code.  This should scale
79  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
80  *	  arbitrary degree of fragmentation.
81  *
82  * Features:
83  *
84  *	- on the fly reallocation of swap during putpages.  The new system
85  *	  does not try to keep previously allocated swap blocks for dirty
86  *	  pages.
87  *
88  *	- on the fly deallocation of swap
89  *
90  *	- No more garbage collection required.  Unnecessarily allocated swap
91  *	  blocks only exist for dirty vm_page_t's now and these are already
92  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
93  *	  removal of invalidated swap blocks when a page is destroyed
94  *	  or renamed.
95  *
96  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
97  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
98  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
99  */
100 
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/conf.h>
104 #include <sys/kernel.h>
105 #include <sys/proc.h>
106 #include <sys/buf.h>
107 #include <sys/vnode.h>
108 #include <sys/malloc.h>
109 #include <sys/vmmeter.h>
110 #include <sys/sysctl.h>
111 #include <sys/blist.h>
112 #include <sys/lock.h>
113 #include <sys/thread2.h>
114 
115 #ifndef MAX_PAGEOUT_CLUSTER
116 #define MAX_PAGEOUT_CLUSTER 16
117 #endif
118 
119 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
120 
121 #include "opt_swap.h"
122 #include <vm/vm.h>
123 #include <vm/vm_object.h>
124 #include <vm/vm_page.h>
125 #include <vm/vm_pager.h>
126 #include <vm/vm_pageout.h>
127 #include <vm/swap_pager.h>
128 #include <vm/vm_extern.h>
129 #include <vm/vm_zone.h>
130 #include <vm/vnode_pager.h>
131 
132 #include <sys/buf2.h>
133 #include <vm/vm_page2.h>
134 
135 #define SWM_FREE	0x02	/* free, period			*/
136 #define SWM_POP		0x04	/* pop out			*/
137 
138 #define SWBIO_READ	0x01
139 #define SWBIO_WRITE	0x02
140 #define SWBIO_SYNC	0x04
141 
142 struct swfreeinfo {
143 	vm_object_t	object;
144 	vm_pindex_t	basei;
145 	vm_pindex_t	begi;
146 	vm_pindex_t	endi;	/* inclusive */
147 };
148 
149 struct swswapoffinfo {
150 	vm_object_t	object;
151 	int		devidx;
152 };
153 
154 /*
155  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
156  * in the old system.
157  */
158 
159 int swap_pager_full;		/* swap space exhaustion (task killing) */
160 int vm_swap_cache_use;
161 int vm_swap_anon_use;
162 
163 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
164 static int nsw_rcount;		/* free read buffers			*/
165 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
166 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
167 static int nsw_wcount_async_max;/* assigned maximum			*/
168 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
169 
170 struct blist *swapblist;
171 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
172 static int swap_burst_read = 0;	/* allow burst reading */
173 static swblk_t swapiterator;	/* linearize allocations */
174 
175 /* from vm_swap.c */
176 extern struct vnode *swapdev_vp;
177 extern struct swdevt *swdevt;
178 extern int nswdev;
179 
180 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / dmmax % nswdev : 0)
181 
182 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
183         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
184 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
185         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
186 
187 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
188         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
189 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
190         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
191 SYSCTL_INT(_vm, OID_AUTO, swap_size,
192         CTLFLAG_RD, &vm_swap_size, 0, "");
193 
194 vm_zone_t		swap_zone;
195 
196 /*
197  * Red-Black tree for swblock entries
198  *
199  * The caller must hold vm_token
200  */
201 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
202 	     vm_pindex_t, swb_index);
203 
204 int
205 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
206 {
207 	if (swb1->swb_index < swb2->swb_index)
208 		return(-1);
209 	if (swb1->swb_index > swb2->swb_index)
210 		return(1);
211 	return(0);
212 }
213 
214 static
215 int
216 rb_swblock_scancmp(struct swblock *swb, void *data)
217 {
218 	struct swfreeinfo *info = data;
219 
220 	if (swb->swb_index < info->basei)
221 		return(-1);
222 	if (swb->swb_index > info->endi)
223 		return(1);
224 	return(0);
225 }
226 
227 static
228 int
229 rb_swblock_condcmp(struct swblock *swb, void *data)
230 {
231 	struct swfreeinfo *info = data;
232 
233 	if (swb->swb_index < info->basei)
234 		return(-1);
235 	return(0);
236 }
237 
238 /*
239  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
240  * calls hooked from other parts of the VM system and do not appear here.
241  * (see vm/swap_pager.h).
242  */
243 
244 static void	swap_pager_dealloc (vm_object_t object);
245 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
246 static void	swap_chain_iodone(struct bio *biox);
247 
248 struct pagerops swappagerops = {
249 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
250 	swap_pager_getpage,	/* pagein				*/
251 	swap_pager_putpages,	/* pageout				*/
252 	swap_pager_haspage	/* get backing store status for page	*/
253 };
254 
255 /*
256  * dmmax is in page-sized chunks with the new swap system.  It was
257  * dev-bsized chunks in the old.  dmmax is always a power of 2.
258  *
259  * swap_*() routines are externally accessible.  swp_*() routines are
260  * internal.
261  */
262 
263 int dmmax;
264 static int dmmax_mask;
265 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
266 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
267 
268 static __inline void	swp_sizecheck (void);
269 static void	swp_pager_async_iodone (struct bio *bio);
270 
271 /*
272  * Swap bitmap functions
273  */
274 
275 static __inline void	swp_pager_freeswapspace(vm_object_t object,
276 						swblk_t blk, int npages);
277 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
278 
279 /*
280  * Metadata functions
281  */
282 
283 static void swp_pager_meta_convert(vm_object_t);
284 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
285 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
286 static void swp_pager_meta_free_all(vm_object_t);
287 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
288 
289 /*
290  * SWP_SIZECHECK() -	update swap_pager_full indication
291  *
292  *	update the swap_pager_almost_full indication and warn when we are
293  *	about to run out of swap space, using lowat/hiwat hysteresis.
294  *
295  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
296  *
297  * No restrictions on call
298  * This routine may not block.
299  * SMP races are ok.
300  */
301 static __inline void
302 swp_sizecheck(void)
303 {
304 	if (vm_swap_size < nswap_lowat) {
305 		if (swap_pager_almost_full == 0) {
306 			kprintf("swap_pager: out of swap space\n");
307 			swap_pager_almost_full = 1;
308 		}
309 	} else {
310 		swap_pager_full = 0;
311 		if (vm_swap_size > nswap_hiwat)
312 			swap_pager_almost_full = 0;
313 	}
314 }
315 
316 /*
317  * SWAP_PAGER_INIT() -	initialize the swap pager!
318  *
319  *	Expected to be started from system init.  NOTE:  This code is run
320  *	before much else so be careful what you depend on.  Most of the VM
321  *	system has yet to be initialized at this point.
322  *
323  * Called from the low level boot code only.
324  */
325 static void
326 swap_pager_init(void *arg __unused)
327 {
328 	/*
329 	 * Device Stripe, in PAGE_SIZE'd blocks
330 	 */
331 	dmmax = SWB_NPAGES * 2;
332 	dmmax_mask = ~(dmmax - 1);
333 }
334 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL)
335 
336 /*
337  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
338  *
339  *	Expected to be started from pageout process once, prior to entering
340  *	its main loop.
341  *
342  * Called from the low level boot code only.
343  */
344 void
345 swap_pager_swap_init(void)
346 {
347 	int n, n2;
348 
349 	/*
350 	 * Number of in-transit swap bp operations.  Don't
351 	 * exhaust the pbufs completely.  Make sure we
352 	 * initialize workable values (0 will work for hysteresis
353 	 * but it isn't very efficient).
354 	 *
355 	 * The nsw_cluster_max is constrained by the number of pages an XIO
356 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
357 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
358 	 * constrained by the swap device interleave stripe size.
359 	 *
360 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
361 	 * designed to prevent other I/O from having high latencies due to
362 	 * our pageout I/O.  The value 4 works well for one or two active swap
363 	 * devices but is probably a little low if you have more.  Even so,
364 	 * a higher value would probably generate only a limited improvement
365 	 * with three or four active swap devices since the system does not
366 	 * typically have to pageout at extreme bandwidths.   We will want
367 	 * at least 2 per swap devices, and 4 is a pretty good value if you
368 	 * have one NFS swap device due to the command/ack latency over NFS.
369 	 * So it all works out pretty well.
370 	 */
371 
372 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
373 
374 	nsw_rcount = (nswbuf + 1) / 2;
375 	nsw_wcount_sync = (nswbuf + 3) / 4;
376 	nsw_wcount_async = 4;
377 	nsw_wcount_async_max = nsw_wcount_async;
378 
379 	/*
380 	 * The zone is dynamically allocated so generally size it to
381 	 * maxswzone (32MB to 512MB of KVM).  Set a minimum size based
382 	 * on physical memory of around 8x (each swblock can hold 16 pages).
383 	 *
384 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
385 	 * has increased dramatically.
386 	 */
387 	n = vmstats.v_page_count / 2;
388 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
389 		n = maxswzone / sizeof(struct swblock);
390 	n2 = n;
391 
392 	do {
393 		swap_zone = zinit(
394 			"SWAPMETA",
395 			sizeof(struct swblock),
396 			n,
397 			ZONE_INTERRUPT,
398 			1);
399 		if (swap_zone != NULL)
400 			break;
401 		/*
402 		 * if the allocation failed, try a zone two thirds the
403 		 * size of the previous attempt.
404 		 */
405 		n -= ((n + 2) / 3);
406 	} while (n > 0);
407 
408 	if (swap_zone == NULL)
409 		panic("swap_pager_swap_init: swap_zone == NULL");
410 	if (n2 != n)
411 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
412 }
413 
414 /*
415  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
416  *			its metadata structures.
417  *
418  *	This routine is called from the mmap and fork code to create a new
419  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
420  *	and then converting it with swp_pager_meta_convert().
421  *
422  *	We only support unnamed objects.
423  *
424  * No restrictions.
425  */
426 vm_object_t
427 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
428 {
429 	vm_object_t object;
430 
431 	KKASSERT(handle == NULL);
432 	object = vm_object_allocate_hold(OBJT_DEFAULT,
433 					 OFF_TO_IDX(offset + PAGE_MASK + size));
434 	swp_pager_meta_convert(object);
435 	vm_object_drop(object);
436 
437 	return (object);
438 }
439 
440 /*
441  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
442  *
443  *	The swap backing for the object is destroyed.  The code is
444  *	designed such that we can reinstantiate it later, but this
445  *	routine is typically called only when the entire object is
446  *	about to be destroyed.
447  *
448  * The object must be locked or unreferenceable.
449  * No other requirements.
450  */
451 static void
452 swap_pager_dealloc(vm_object_t object)
453 {
454 	vm_object_hold(object);
455 	vm_object_pip_wait(object, "swpdea");
456 
457 	/*
458 	 * Free all remaining metadata.  We only bother to free it from
459 	 * the swap meta data.  We do not attempt to free swapblk's still
460 	 * associated with vm_page_t's for this object.  We do not care
461 	 * if paging is still in progress on some objects.
462 	 */
463 	swp_pager_meta_free_all(object);
464 	vm_object_drop(object);
465 }
466 
467 /************************************************************************
468  *			SWAP PAGER BITMAP ROUTINES			*
469  ************************************************************************/
470 
471 /*
472  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
473  *
474  *	Allocate swap for the requested number of pages.  The starting
475  *	swap block number (a page index) is returned or SWAPBLK_NONE
476  *	if the allocation failed.
477  *
478  *	Also has the side effect of advising that somebody made a mistake
479  *	when they configured swap and didn't configure enough.
480  *
481  * The caller must hold the object.
482  * This routine may not block.
483  */
484 static __inline swblk_t
485 swp_pager_getswapspace(vm_object_t object, int npages)
486 {
487 	swblk_t blk;
488 
489 	lwkt_gettoken(&vm_token);
490 	blk = blist_allocat(swapblist, npages, swapiterator);
491 	if (blk == SWAPBLK_NONE)
492 		blk = blist_allocat(swapblist, npages, 0);
493 	if (blk == SWAPBLK_NONE) {
494 		if (swap_pager_full != 2) {
495 			kprintf("swap_pager_getswapspace: failed alloc=%d\n",
496 				npages);
497 			swap_pager_full = 2;
498 			swap_pager_almost_full = 1;
499 		}
500 	} else {
501 		swapiterator = blk;
502 		swapacctspace(blk, -npages);
503 		if (object->type == OBJT_SWAP)
504 			vm_swap_anon_use += npages;
505 		else
506 			vm_swap_cache_use += npages;
507 		swp_sizecheck();
508 	}
509 	lwkt_reltoken(&vm_token);
510 	return(blk);
511 }
512 
513 /*
514  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
515  *
516  *	This routine returns the specified swap blocks back to the bitmap.
517  *
518  *	Note:  This routine may not block (it could in the old swap code),
519  *	and through the use of the new blist routines it does not block.
520  *
521  *	We must be called at splvm() to avoid races with bitmap frees from
522  *	vm_page_remove() aka swap_pager_page_removed().
523  *
524  * This routine may not block.
525  */
526 
527 static __inline void
528 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
529 {
530 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
531 
532 	lwkt_gettoken(&vm_token);
533 	sp->sw_nused -= npages;
534 	if (object->type == OBJT_SWAP)
535 		vm_swap_anon_use -= npages;
536 	else
537 		vm_swap_cache_use -= npages;
538 
539 	if (sp->sw_flags & SW_CLOSING) {
540 		lwkt_reltoken(&vm_token);
541 		return;
542 	}
543 
544 	blist_free(swapblist, blk, npages);
545 	vm_swap_size += npages;
546 	swp_sizecheck();
547 	lwkt_reltoken(&vm_token);
548 }
549 
550 /*
551  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
552  *				range within an object.
553  *
554  *	This is a globally accessible routine.
555  *
556  *	This routine removes swapblk assignments from swap metadata.
557  *
558  *	The external callers of this routine typically have already destroyed
559  *	or renamed vm_page_t's associated with this range in the object so
560  *	we should be ok.
561  *
562  * No requirements.
563  */
564 void
565 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
566 {
567 	vm_object_hold(object);
568 	swp_pager_meta_free(object, start, size);
569 	vm_object_drop(object);
570 }
571 
572 /*
573  * No requirements.
574  */
575 void
576 swap_pager_freespace_all(vm_object_t object)
577 {
578 	vm_object_hold(object);
579 	swp_pager_meta_free_all(object);
580 	vm_object_drop(object);
581 }
582 
583 /*
584  * This function conditionally frees swap cache swap starting at
585  * (*basei) in the object.  (count) swap blocks will be nominally freed.
586  * The actual number of blocks freed can be more or less than the
587  * requested number.
588  *
589  * This function nominally returns the number of blocks freed.  However,
590  * the actual number of blocks freed may be less then the returned value.
591  * If the function is unable to exhaust the object or if it is able to
592  * free (approximately) the requested number of blocks it returns
593  * a value n > count.
594  *
595  * If we exhaust the object we will return a value n <= count.
596  *
597  * The caller must hold the object.
598  *
599  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
600  *	     callers should always pass a count value > 0.
601  */
602 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
603 
604 int
605 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
606 {
607 	struct swfreeinfo info;
608 	int n;
609 	int t;
610 
611 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
612 
613 	info.object = object;
614 	info.basei = *basei;	/* skip up to this page index */
615 	info.begi = count;	/* max swap pages to destroy */
616 	info.endi = count * 8;	/* max swblocks to scan */
617 
618 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
619 				swap_pager_condfree_callback, &info);
620 	*basei = info.basei;
621 
622 	/*
623 	 * Take the higher difference swblocks vs pages
624 	 */
625 	n = count - (int)info.begi;
626 	t = count * 8 - (int)info.endi;
627 	if (n < t)
628 		n = t;
629 	if (n < 1)
630 		n = 1;
631 	return(n);
632 }
633 
634 /*
635  * The idea is to free whole meta-block to avoid fragmenting
636  * the swap space or disk I/O.  We only do this if NO VM pages
637  * are present.
638  *
639  * We do not have to deal with clearing PG_SWAPPED in related VM
640  * pages because there are no related VM pages.
641  *
642  * The caller must hold the object.
643  */
644 static int
645 swap_pager_condfree_callback(struct swblock *swap, void *data)
646 {
647 	struct swfreeinfo *info = data;
648 	vm_object_t object = info->object;
649 	int i;
650 
651 	for (i = 0; i < SWAP_META_PAGES; ++i) {
652 		if (vm_page_lookup(object, swap->swb_index + i))
653 			break;
654 	}
655 	info->basei = swap->swb_index + SWAP_META_PAGES;
656 	if (i == SWAP_META_PAGES) {
657 		info->begi -= swap->swb_count;
658 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
659 	}
660 	--info->endi;
661 	if ((int)info->begi < 0 || (int)info->endi < 0)
662 		return(-1);
663 	lwkt_yield();
664 	return(0);
665 }
666 
667 /*
668  * Called by vm_page_alloc() when a new VM page is inserted
669  * into a VM object.  Checks whether swap has been assigned to
670  * the page and sets PG_SWAPPED as necessary.
671  *
672  * No requirements.
673  */
674 void
675 swap_pager_page_inserted(vm_page_t m)
676 {
677 	if (m->object->swblock_count) {
678 		vm_object_hold(m->object);
679 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
680 			vm_page_flag_set(m, PG_SWAPPED);
681 		vm_object_drop(m->object);
682 	}
683 }
684 
685 /*
686  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
687  *
688  *	Assigns swap blocks to the specified range within the object.  The
689  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
690  *
691  *	Returns 0 on success, -1 on failure.
692  *
693  * The caller is responsible for avoiding races in the specified range.
694  * No other requirements.
695  */
696 int
697 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
698 {
699 	int n = 0;
700 	swblk_t blk = SWAPBLK_NONE;
701 	vm_pindex_t beg = start;	/* save start index */
702 
703 	vm_object_hold(object);
704 
705 	while (size) {
706 		if (n == 0) {
707 			n = BLIST_MAX_ALLOC;
708 			while ((blk = swp_pager_getswapspace(object, n)) ==
709 			       SWAPBLK_NONE)
710 			{
711 				n >>= 1;
712 				if (n == 0) {
713 					swp_pager_meta_free(object, beg,
714 							    start - beg);
715 					vm_object_drop(object);
716 					return(-1);
717 				}
718 			}
719 		}
720 		swp_pager_meta_build(object, start, blk);
721 		--size;
722 		++start;
723 		++blk;
724 		--n;
725 	}
726 	swp_pager_meta_free(object, start, n);
727 	vm_object_drop(object);
728 	return(0);
729 }
730 
731 /*
732  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
733  *			and destroy the source.
734  *
735  *	Copy any valid swapblks from the source to the destination.  In
736  *	cases where both the source and destination have a valid swapblk,
737  *	we keep the destination's.
738  *
739  *	This routine is allowed to block.  It may block allocating metadata
740  *	indirectly through swp_pager_meta_build() or if paging is still in
741  *	progress on the source.
742  *
743  *	XXX vm_page_collapse() kinda expects us not to block because we
744  *	supposedly do not need to allocate memory, but for the moment we
745  *	*may* have to get a little memory from the zone allocator, but
746  *	it is taken from the interrupt memory.  We should be ok.
747  *
748  *	The source object contains no vm_page_t's (which is just as well)
749  *	The source object is of type OBJT_SWAP.
750  *
751  *	The source and destination objects must be held by the caller.
752  */
753 void
754 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
755 		vm_pindex_t base_index, int destroysource)
756 {
757 	vm_pindex_t i;
758 
759 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
760 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
761 
762 	/*
763 	 * transfer source to destination.
764 	 */
765 	for (i = 0; i < dstobject->size; ++i) {
766 		swblk_t dstaddr;
767 
768 		/*
769 		 * Locate (without changing) the swapblk on the destination,
770 		 * unless it is invalid in which case free it silently, or
771 		 * if the destination is a resident page, in which case the
772 		 * source is thrown away.
773 		 */
774 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
775 
776 		if (dstaddr == SWAPBLK_NONE) {
777 			/*
778 			 * Destination has no swapblk and is not resident,
779 			 * copy source.
780 			 */
781 			swblk_t srcaddr;
782 
783 			srcaddr = swp_pager_meta_ctl(srcobject,
784 						     base_index + i, SWM_POP);
785 
786 			if (srcaddr != SWAPBLK_NONE)
787 				swp_pager_meta_build(dstobject, i, srcaddr);
788 		} else {
789 			/*
790 			 * Destination has valid swapblk or it is represented
791 			 * by a resident page.  We destroy the sourceblock.
792 			 */
793 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
794 		}
795 	}
796 
797 	/*
798 	 * Free left over swap blocks in source.
799 	 *
800 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
801 	 * double-remove the object from the swap queues.
802 	 */
803 	if (destroysource) {
804 		/*
805 		 * Reverting the type is not necessary, the caller is going
806 		 * to destroy srcobject directly, but I'm doing it here
807 		 * for consistency since we've removed the object from its
808 		 * queues.
809 		 */
810 		swp_pager_meta_free_all(srcobject);
811 		if (srcobject->type == OBJT_SWAP)
812 			srcobject->type = OBJT_DEFAULT;
813 	}
814 }
815 
816 /*
817  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
818  *				the requested page.
819  *
820  *	We determine whether good backing store exists for the requested
821  *	page and return TRUE if it does, FALSE if it doesn't.
822  *
823  *	If TRUE, we also try to determine how much valid, contiguous backing
824  *	store exists before and after the requested page within a reasonable
825  *	distance.  We do not try to restrict it to the swap device stripe
826  *	(that is handled in getpages/putpages).  It probably isn't worth
827  *	doing here.
828  *
829  * No requirements.
830  */
831 boolean_t
832 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
833 {
834 	swblk_t blk0;
835 
836 	/*
837 	 * do we have good backing store at the requested index ?
838 	 */
839 	vm_object_hold(object);
840 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
841 
842 	if (blk0 == SWAPBLK_NONE) {
843 		vm_object_drop(object);
844 		return (FALSE);
845 	}
846 	vm_object_drop(object);
847 	return (TRUE);
848 }
849 
850 /*
851  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
852  *
853  * This removes any associated swap backing store, whether valid or
854  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
855  * objects.
856  *
857  * This routine is typically called when a page is made dirty, at
858  * which point any associated swap can be freed.  MADV_FREE also
859  * calls us in a special-case situation
860  *
861  * NOTE!!!  If the page is clean and the swap was valid, the caller
862  * should make the page dirty before calling this routine.  This routine
863  * does NOT change the m->dirty status of the page.  Also: MADV_FREE
864  * depends on it.
865  *
866  * The page must be busied or soft-busied.
867  * The caller can hold the object to avoid blocking, else we might block.
868  * No other requirements.
869  */
870 void
871 swap_pager_unswapped(vm_page_t m)
872 {
873 	if (m->flags & PG_SWAPPED) {
874 		vm_object_hold(m->object);
875 		KKASSERT(m->flags & PG_SWAPPED);
876 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
877 		vm_page_flag_clear(m, PG_SWAPPED);
878 		vm_object_drop(m->object);
879 	}
880 }
881 
882 /*
883  * SWAP_PAGER_STRATEGY() - read, write, free blocks
884  *
885  * This implements a VM OBJECT strategy function using swap backing store.
886  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
887  * types.
888  *
889  * This is intended to be a cacheless interface (i.e. caching occurs at
890  * higher levels), and is also used as a swap-based SSD cache for vnode
891  * and device objects.
892  *
893  * All I/O goes directly to and from the swap device.
894  *
895  * We currently attempt to run I/O synchronously or asynchronously as
896  * the caller requests.  This isn't perfect because we loose error
897  * sequencing when we run multiple ops in parallel to satisfy a request.
898  * But this is swap, so we let it all hang out.
899  *
900  * No requirements.
901  */
902 void
903 swap_pager_strategy(vm_object_t object, struct bio *bio)
904 {
905 	struct buf *bp = bio->bio_buf;
906 	struct bio *nbio;
907 	vm_pindex_t start;
908 	vm_pindex_t biox_blkno = 0;
909 	int count;
910 	char *data;
911 	struct bio *biox;
912 	struct buf *bufx;
913 #if 0
914 	struct bio_track *track;
915 #endif
916 
917 #if 0
918 	/*
919 	 * tracking for swapdev vnode I/Os
920 	 */
921 	if (bp->b_cmd == BUF_CMD_READ)
922 		track = &swapdev_vp->v_track_read;
923 	else
924 		track = &swapdev_vp->v_track_write;
925 #endif
926 
927 	if (bp->b_bcount & PAGE_MASK) {
928 		bp->b_error = EINVAL;
929 		bp->b_flags |= B_ERROR | B_INVAL;
930 		biodone(bio);
931 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
932 			"not page bounded\n",
933 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
934 		return;
935 	}
936 
937 	/*
938 	 * Clear error indication, initialize page index, count, data pointer.
939 	 */
940 	bp->b_error = 0;
941 	bp->b_flags &= ~B_ERROR;
942 	bp->b_resid = bp->b_bcount;
943 
944 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
945 	count = howmany(bp->b_bcount, PAGE_SIZE);
946 	data = bp->b_data;
947 
948 	/*
949 	 * Deal with BUF_CMD_FREEBLKS
950 	 */
951 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
952 		/*
953 		 * FREE PAGE(s) - destroy underlying swap that is no longer
954 		 *		  needed.
955 		 */
956 		vm_object_hold(object);
957 		swp_pager_meta_free(object, start, count);
958 		vm_object_drop(object);
959 		bp->b_resid = 0;
960 		biodone(bio);
961 		return;
962 	}
963 
964 	/*
965 	 * We need to be able to create a new cluster of I/O's.  We cannot
966 	 * use the caller fields of the passed bio so push a new one.
967 	 *
968 	 * Because nbio is just a placeholder for the cluster links,
969 	 * we can biodone() the original bio instead of nbio to make
970 	 * things a bit more efficient.
971 	 */
972 	nbio = push_bio(bio);
973 	nbio->bio_offset = bio->bio_offset;
974 	nbio->bio_caller_info1.cluster_head = NULL;
975 	nbio->bio_caller_info2.cluster_tail = NULL;
976 
977 	biox = NULL;
978 	bufx = NULL;
979 
980 	/*
981 	 * Execute read or write
982 	 */
983 	vm_object_hold(object);
984 
985 	while (count > 0) {
986 		swblk_t blk;
987 
988 		/*
989 		 * Obtain block.  If block not found and writing, allocate a
990 		 * new block and build it into the object.
991 		 */
992 		blk = swp_pager_meta_ctl(object, start, 0);
993 		if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
994 			blk = swp_pager_getswapspace(object, 1);
995 			if (blk == SWAPBLK_NONE) {
996 				bp->b_error = ENOMEM;
997 				bp->b_flags |= B_ERROR;
998 				break;
999 			}
1000 			swp_pager_meta_build(object, start, blk);
1001 		}
1002 
1003 		/*
1004 		 * Do we have to flush our current collection?  Yes if:
1005 		 *
1006 		 *	- no swap block at this index
1007 		 *	- swap block is not contiguous
1008 		 *	- we cross a physical disk boundry in the
1009 		 *	  stripe.
1010 		 */
1011 		if (
1012 		    biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
1013 		     ((biox_blkno ^ blk) & dmmax_mask)
1014 		    )
1015 		) {
1016 			if (bp->b_cmd == BUF_CMD_READ) {
1017 				++mycpu->gd_cnt.v_swapin;
1018 				mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1019 			} else {
1020 				++mycpu->gd_cnt.v_swapout;
1021 				mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1022 				bufx->b_dirtyend = bufx->b_bcount;
1023 			}
1024 
1025 			/*
1026 			 * Finished with this buf.
1027 			 */
1028 			KKASSERT(bufx->b_bcount != 0);
1029 			if (bufx->b_cmd != BUF_CMD_READ)
1030 				bufx->b_dirtyend = bufx->b_bcount;
1031 			biox = NULL;
1032 			bufx = NULL;
1033 		}
1034 
1035 		/*
1036 		 * Add new swapblk to biox, instantiating biox if necessary.
1037 		 * Zero-fill reads are able to take a shortcut.
1038 		 */
1039 		if (blk == SWAPBLK_NONE) {
1040 			/*
1041 			 * We can only get here if we are reading.  Since
1042 			 * we are at splvm() we can safely modify b_resid,
1043 			 * even if chain ops are in progress.
1044 			 */
1045 			bzero(data, PAGE_SIZE);
1046 			bp->b_resid -= PAGE_SIZE;
1047 		} else {
1048 			if (biox == NULL) {
1049 				/* XXX chain count > 4, wait to <= 4 */
1050 
1051 				bufx = getpbuf(NULL);
1052 				biox = &bufx->b_bio1;
1053 				cluster_append(nbio, bufx);
1054 				bufx->b_flags |= (bp->b_flags & B_ORDERED);
1055 				bufx->b_cmd = bp->b_cmd;
1056 				biox->bio_done = swap_chain_iodone;
1057 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1058 				biox->bio_caller_info1.cluster_parent = nbio;
1059 				biox_blkno = blk;
1060 				bufx->b_bcount = 0;
1061 				bufx->b_data = data;
1062 			}
1063 			bufx->b_bcount += PAGE_SIZE;
1064 		}
1065 		--count;
1066 		++start;
1067 		data += PAGE_SIZE;
1068 	}
1069 
1070 	vm_object_drop(object);
1071 
1072 	/*
1073 	 *  Flush out last buffer
1074 	 */
1075 	if (biox) {
1076 		if (bufx->b_cmd == BUF_CMD_READ) {
1077 			++mycpu->gd_cnt.v_swapin;
1078 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1079 		} else {
1080 			++mycpu->gd_cnt.v_swapout;
1081 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1082 			bufx->b_dirtyend = bufx->b_bcount;
1083 		}
1084 		KKASSERT(bufx->b_bcount);
1085 		if (bufx->b_cmd != BUF_CMD_READ)
1086 			bufx->b_dirtyend = bufx->b_bcount;
1087 		/* biox, bufx = NULL */
1088 	}
1089 
1090 	/*
1091 	 * Now initiate all the I/O.  Be careful looping on our chain as
1092 	 * I/O's may complete while we are still initiating them.
1093 	 *
1094 	 * If the request is a 100% sparse read no bios will be present
1095 	 * and we just biodone() the buffer.
1096 	 */
1097 	nbio->bio_caller_info2.cluster_tail = NULL;
1098 	bufx = nbio->bio_caller_info1.cluster_head;
1099 
1100 	if (bufx) {
1101 		while (bufx) {
1102 			biox = &bufx->b_bio1;
1103 			BUF_KERNPROC(bufx);
1104 			bufx = bufx->b_cluster_next;
1105 			vn_strategy(swapdev_vp, biox);
1106 		}
1107 	} else {
1108 		biodone(bio);
1109 	}
1110 
1111 	/*
1112 	 * Completion of the cluster will also call biodone_chain(nbio).
1113 	 * We never call biodone(nbio) so we don't have to worry about
1114 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1115 	 */
1116 	/**/
1117 }
1118 
1119 /*
1120  * biodone callback
1121  *
1122  * No requirements.
1123  */
1124 static void
1125 swap_chain_iodone(struct bio *biox)
1126 {
1127 	struct buf **nextp;
1128 	struct buf *bufx;	/* chained sub-buffer */
1129 	struct bio *nbio;	/* parent nbio with chain glue */
1130 	struct buf *bp;		/* original bp associated with nbio */
1131 	int chain_empty;
1132 
1133 	bufx = biox->bio_buf;
1134 	nbio = biox->bio_caller_info1.cluster_parent;
1135 	bp = nbio->bio_buf;
1136 
1137 	/*
1138 	 * Update the original buffer
1139 	 */
1140         KKASSERT(bp != NULL);
1141 	if (bufx->b_flags & B_ERROR) {
1142 		atomic_set_int(&bufx->b_flags, B_ERROR);
1143 		bp->b_error = bufx->b_error;	/* race ok */
1144 	} else if (bufx->b_resid != 0) {
1145 		atomic_set_int(&bufx->b_flags, B_ERROR);
1146 		bp->b_error = EINVAL;		/* race ok */
1147 	} else {
1148 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1149 	}
1150 
1151 	/*
1152 	 * Remove us from the chain.
1153 	 */
1154 	spin_lock(&bp->b_lock.lk_spinlock);
1155 	nextp = &nbio->bio_caller_info1.cluster_head;
1156 	while (*nextp != bufx) {
1157 		KKASSERT(*nextp != NULL);
1158 		nextp = &(*nextp)->b_cluster_next;
1159 	}
1160 	*nextp = bufx->b_cluster_next;
1161 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1162 	spin_unlock(&bp->b_lock.lk_spinlock);
1163 
1164 	/*
1165 	 * Clean up bufx.  If the chain is now empty we finish out
1166 	 * the parent.  Note that we may be racing other completions
1167 	 * so we must use the chain_empty status from above.
1168 	 */
1169 	if (chain_empty) {
1170 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1171 			atomic_set_int(&bp->b_flags, B_ERROR);
1172 			bp->b_error = EINVAL;
1173 		}
1174 		biodone_chain(nbio);
1175         }
1176         relpbuf(bufx, NULL);
1177 }
1178 
1179 /*
1180  * SWAP_PAGER_GETPAGES() - bring page in from swap
1181  *
1182  * The requested page may have to be brought in from swap.  Calculate the
1183  * swap block and bring in additional pages if possible.  All pages must
1184  * have contiguous swap block assignments and reside in the same object.
1185  *
1186  * The caller has a single vm_object_pip_add() reference prior to
1187  * calling us and we should return with the same.
1188  *
1189  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1190  * and any additinal pages unbusied.
1191  *
1192  * If the caller encounters a PG_RAM page it will pass it to us even though
1193  * it may be valid and dirty.  We cannot overwrite the page in this case!
1194  * The case is used to allow us to issue pure read-aheads.
1195  *
1196  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1197  *       the PG_RAM page is validated at the same time as mreq.  What we
1198  *	 really need to do is issue a separate read-ahead pbuf.
1199  *
1200  * No requirements.
1201  */
1202 static int
1203 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1204 {
1205 	struct buf *bp;
1206 	struct bio *bio;
1207 	vm_page_t mreq;
1208 	vm_page_t m;
1209 	vm_offset_t kva;
1210 	swblk_t blk;
1211 	int i;
1212 	int j;
1213 	int raonly;
1214 	int error;
1215 	u_int32_t flags;
1216 	vm_page_t marray[XIO_INTERNAL_PAGES];
1217 
1218 	mreq = *mpp;
1219 
1220 	vm_object_hold(object);
1221 	if (mreq->object != object) {
1222 		panic("swap_pager_getpages: object mismatch %p/%p",
1223 		    object,
1224 		    mreq->object
1225 		);
1226 	}
1227 
1228 	/*
1229 	 * We don't want to overwrite a fully valid page as it might be
1230 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1231 	 * valid page with PG_RAM set.
1232 	 *
1233 	 * In this case we see if the next page is a suitable page-in
1234 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1235 	 * set on the last page of the read-ahead to continue the pipeline.
1236 	 */
1237 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1238 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1239 			vm_object_drop(object);
1240 			return(VM_PAGER_OK);
1241 		}
1242 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1243 		if (blk == SWAPBLK_NONE) {
1244 			vm_object_drop(object);
1245 			return(VM_PAGER_OK);
1246 		}
1247 		m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1248 					    TRUE, &error);
1249 		if (error) {
1250 			vm_object_drop(object);
1251 			return(VM_PAGER_OK);
1252 		} else if (m == NULL) {
1253 			/*
1254 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1255 			 * page reuse.
1256 			 */
1257 			m = vm_page_alloc(object, mreq->pindex + 1,
1258 					  VM_ALLOC_QUICK);
1259 			if (m == NULL) {
1260 				vm_object_drop(object);
1261 				return(VM_PAGER_OK);
1262 			}
1263 		} else {
1264 			if (m->valid) {
1265 				vm_page_wakeup(m);
1266 				vm_object_drop(object);
1267 				return(VM_PAGER_OK);
1268 			}
1269 			vm_page_unqueue_nowakeup(m);
1270 		}
1271 		/* page is busy */
1272 		mreq = m;
1273 		raonly = 1;
1274 	} else {
1275 		raonly = 0;
1276 	}
1277 
1278 	/*
1279 	 * Try to block-read contiguous pages from swap if sequential,
1280 	 * otherwise just read one page.  Contiguous pages from swap must
1281 	 * reside within a single device stripe because the I/O cannot be
1282 	 * broken up across multiple stripes.
1283 	 *
1284 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1285 	 * set up such that the case(s) are handled implicitly.
1286 	 */
1287 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1288 	marray[0] = mreq;
1289 
1290 	for (i = 1; swap_burst_read &&
1291 		    i < XIO_INTERNAL_PAGES &&
1292 		    mreq->pindex + i < object->size; ++i) {
1293 		swblk_t iblk;
1294 
1295 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1296 		if (iblk != blk + i)
1297 			break;
1298 		if ((blk ^ iblk) & dmmax_mask)
1299 			break;
1300 		m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1301 					    TRUE, &error);
1302 		if (error) {
1303 			break;
1304 		} else if (m == NULL) {
1305 			/*
1306 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1307 			 * page reuse.
1308 			 */
1309 			m = vm_page_alloc(object, mreq->pindex + i,
1310 					  VM_ALLOC_QUICK);
1311 			if (m == NULL)
1312 				break;
1313 		} else {
1314 			if (m->valid) {
1315 				vm_page_wakeup(m);
1316 				break;
1317 			}
1318 			vm_page_unqueue_nowakeup(m);
1319 		}
1320 		/* page is busy */
1321 		marray[i] = m;
1322 	}
1323 	if (i > 1)
1324 		vm_page_flag_set(marray[i - 1], PG_RAM);
1325 
1326 	/*
1327 	 * If mreq is the requested page and we have nothing to do return
1328 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1329 	 * page and must be cleaned up.
1330 	 */
1331 	if (blk == SWAPBLK_NONE) {
1332 		KKASSERT(i == 1);
1333 		if (raonly) {
1334 			vnode_pager_freepage(mreq);
1335 			vm_object_drop(object);
1336 			return(VM_PAGER_OK);
1337 		} else {
1338 			vm_object_drop(object);
1339 			return(VM_PAGER_FAIL);
1340 		}
1341 	}
1342 
1343 	/*
1344 	 * map our page(s) into kva for input
1345 	 */
1346 	bp = getpbuf_kva(&nsw_rcount);
1347 	bio = &bp->b_bio1;
1348 	kva = (vm_offset_t) bp->b_kvabase;
1349 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1350 	pmap_qenter(kva, bp->b_xio.xio_pages, i);
1351 
1352 	bp->b_data = (caddr_t)kva;
1353 	bp->b_bcount = PAGE_SIZE * i;
1354 	bp->b_xio.xio_npages = i;
1355 	bio->bio_done = swp_pager_async_iodone;
1356 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1357 	bio->bio_caller_info1.index = SWBIO_READ;
1358 
1359 	/*
1360 	 * Set index.  If raonly set the index beyond the array so all
1361 	 * the pages are treated the same, otherwise the original mreq is
1362 	 * at index 0.
1363 	 */
1364 	if (raonly)
1365 		bio->bio_driver_info = (void *)(intptr_t)i;
1366 	else
1367 		bio->bio_driver_info = (void *)(intptr_t)0;
1368 
1369 	for (j = 0; j < i; ++j)
1370 		vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG);
1371 
1372 	mycpu->gd_cnt.v_swapin++;
1373 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1374 
1375 	/*
1376 	 * We still hold the lock on mreq, and our automatic completion routine
1377 	 * does not remove it.
1378 	 */
1379 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1380 
1381 	/*
1382 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1383 	 * this point because we automatically release it on completion.
1384 	 * Instead, we look at the one page we are interested in which we
1385 	 * still hold a lock on even through the I/O completion.
1386 	 *
1387 	 * The other pages in our m[] array are also released on completion,
1388 	 * so we cannot assume they are valid anymore either.
1389 	 */
1390 	bp->b_cmd = BUF_CMD_READ;
1391 	BUF_KERNPROC(bp);
1392 	vn_strategy(swapdev_vp, bio);
1393 
1394 	/*
1395 	 * Wait for the page we want to complete.  PG_SWAPINPROG is always
1396 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1397 	 * is set in the meta-data.
1398 	 *
1399 	 * If this is a read-ahead only we return immediately without
1400 	 * waiting for I/O.
1401 	 */
1402 	if (raonly) {
1403 		vm_object_drop(object);
1404 		return(VM_PAGER_OK);
1405 	}
1406 
1407 	/*
1408 	 * Read-ahead includes originally requested page case.
1409 	 */
1410 	for (;;) {
1411 		flags = mreq->flags;
1412 		cpu_ccfence();
1413 		if ((flags & PG_SWAPINPROG) == 0)
1414 			break;
1415 		tsleep_interlock(mreq, 0);
1416 		if (!atomic_cmpset_int(&mreq->flags, flags,
1417 				       flags | PG_WANTED | PG_REFERENCED)) {
1418 			continue;
1419 		}
1420 		mycpu->gd_cnt.v_intrans++;
1421 		if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1422 			kprintf(
1423 			    "swap_pager: indefinite wait buffer: "
1424 				" offset: %lld, size: %ld\n",
1425 			    (long long)bio->bio_offset,
1426 			    (long)bp->b_bcount
1427 			);
1428 		}
1429 	}
1430 
1431 	/*
1432 	 * mreq is left bussied after completion, but all the other pages
1433 	 * are freed.  If we had an unrecoverable read error the page will
1434 	 * not be valid.
1435 	 */
1436 	vm_object_drop(object);
1437 	if (mreq->valid != VM_PAGE_BITS_ALL)
1438 		return(VM_PAGER_ERROR);
1439 	else
1440 		return(VM_PAGER_OK);
1441 
1442 	/*
1443 	 * A final note: in a low swap situation, we cannot deallocate swap
1444 	 * and mark a page dirty here because the caller is likely to mark
1445 	 * the page clean when we return, causing the page to possibly revert
1446 	 * to all-zero's later.
1447 	 */
1448 }
1449 
1450 /*
1451  *	swap_pager_putpages:
1452  *
1453  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1454  *
1455  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1456  *	are automatically converted to SWAP objects.
1457  *
1458  *	In a low memory situation we may block in vn_strategy(), but the new
1459  *	vm_page reservation system coupled with properly written VFS devices
1460  *	should ensure that no low-memory deadlock occurs.  This is an area
1461  *	which needs work.
1462  *
1463  *	The parent has N vm_object_pip_add() references prior to
1464  *	calling us and will remove references for rtvals[] that are
1465  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1466  *	completion.
1467  *
1468  *	The parent has soft-busy'd the pages it passes us and will unbusy
1469  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1470  *	We need to unbusy the rest on I/O completion.
1471  *
1472  * No requirements.
1473  */
1474 void
1475 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1476 		    boolean_t sync, int *rtvals)
1477 {
1478 	int i;
1479 	int n = 0;
1480 
1481 	vm_object_hold(object);
1482 
1483 	if (count && m[0]->object != object) {
1484 		panic("swap_pager_getpages: object mismatch %p/%p",
1485 		    object,
1486 		    m[0]->object
1487 		);
1488 	}
1489 
1490 	/*
1491 	 * Step 1
1492 	 *
1493 	 * Turn object into OBJT_SWAP
1494 	 * check for bogus sysops
1495 	 * force sync if not pageout process
1496 	 */
1497 	if (object->type == OBJT_DEFAULT) {
1498 		if (object->type == OBJT_DEFAULT)
1499 			swp_pager_meta_convert(object);
1500 	}
1501 
1502 	if (curthread != pagethread)
1503 		sync = TRUE;
1504 
1505 	/*
1506 	 * Step 2
1507 	 *
1508 	 * Update nsw parameters from swap_async_max sysctl values.
1509 	 * Do not let the sysop crash the machine with bogus numbers.
1510 	 */
1511 	if (swap_async_max != nsw_wcount_async_max) {
1512 		int n;
1513 
1514 		/*
1515 		 * limit range
1516 		 */
1517 		if ((n = swap_async_max) > nswbuf / 2)
1518 			n = nswbuf / 2;
1519 		if (n < 1)
1520 			n = 1;
1521 		swap_async_max = n;
1522 
1523 		/*
1524 		 * Adjust difference ( if possible ).  If the current async
1525 		 * count is too low, we may not be able to make the adjustment
1526 		 * at this time.
1527 		 *
1528 		 * vm_token needed for nsw_wcount sleep interlock
1529 		 */
1530 		lwkt_gettoken(&vm_token);
1531 		n -= nsw_wcount_async_max;
1532 		if (nsw_wcount_async + n >= 0) {
1533 			nsw_wcount_async_max += n;
1534 			pbuf_adjcount(&nsw_wcount_async, n);
1535 		}
1536 		lwkt_reltoken(&vm_token);
1537 	}
1538 
1539 	/*
1540 	 * Step 3
1541 	 *
1542 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1543 	 * The page is left dirty until the pageout operation completes
1544 	 * successfully.
1545 	 */
1546 
1547 	for (i = 0; i < count; i += n) {
1548 		struct buf *bp;
1549 		struct bio *bio;
1550 		swblk_t blk;
1551 		int j;
1552 
1553 		/*
1554 		 * Maximum I/O size is limited by a number of factors.
1555 		 */
1556 
1557 		n = min(BLIST_MAX_ALLOC, count - i);
1558 		n = min(n, nsw_cluster_max);
1559 
1560 		lwkt_gettoken(&vm_token);
1561 
1562 		/*
1563 		 * Get biggest block of swap we can.  If we fail, fall
1564 		 * back and try to allocate a smaller block.  Don't go
1565 		 * overboard trying to allocate space if it would overly
1566 		 * fragment swap.
1567 		 */
1568 		while (
1569 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1570 		    n > 4
1571 		) {
1572 			n >>= 1;
1573 		}
1574 		if (blk == SWAPBLK_NONE) {
1575 			for (j = 0; j < n; ++j)
1576 				rtvals[i+j] = VM_PAGER_FAIL;
1577 			lwkt_reltoken(&vm_token);
1578 			continue;
1579 		}
1580 
1581 		/*
1582 		 * The I/O we are constructing cannot cross a physical
1583 		 * disk boundry in the swap stripe.  Note: we are still
1584 		 * at splvm().
1585 		 */
1586 		if ((blk ^ (blk + n)) & dmmax_mask) {
1587 			j = ((blk + dmmax) & dmmax_mask) - blk;
1588 			swp_pager_freeswapspace(object, blk + j, n - j);
1589 			n = j;
1590 		}
1591 
1592 		/*
1593 		 * All I/O parameters have been satisfied, build the I/O
1594 		 * request and assign the swap space.
1595 		 */
1596 		if (sync == TRUE)
1597 			bp = getpbuf_kva(&nsw_wcount_sync);
1598 		else
1599 			bp = getpbuf_kva(&nsw_wcount_async);
1600 		bio = &bp->b_bio1;
1601 
1602 		lwkt_reltoken(&vm_token);
1603 
1604 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1605 
1606 		bp->b_bcount = PAGE_SIZE * n;
1607 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1608 
1609 		for (j = 0; j < n; ++j) {
1610 			vm_page_t mreq = m[i+j];
1611 
1612 			swp_pager_meta_build(mreq->object, mreq->pindex,
1613 					     blk + j);
1614 			if (object->type == OBJT_SWAP)
1615 				vm_page_dirty(mreq);
1616 			rtvals[i+j] = VM_PAGER_OK;
1617 
1618 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1619 			bp->b_xio.xio_pages[j] = mreq;
1620 		}
1621 		bp->b_xio.xio_npages = n;
1622 
1623 		mycpu->gd_cnt.v_swapout++;
1624 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1625 
1626 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1627 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1628 		bp->b_cmd = BUF_CMD_WRITE;
1629 		bio->bio_caller_info1.index = SWBIO_WRITE;
1630 
1631 		/*
1632 		 * asynchronous
1633 		 */
1634 		if (sync == FALSE) {
1635 			bio->bio_done = swp_pager_async_iodone;
1636 			BUF_KERNPROC(bp);
1637 			vn_strategy(swapdev_vp, bio);
1638 
1639 			for (j = 0; j < n; ++j)
1640 				rtvals[i+j] = VM_PAGER_PEND;
1641 			continue;
1642 		}
1643 
1644 		/*
1645 		 * Issue synchrnously.
1646 		 *
1647 		 * Wait for the sync I/O to complete, then update rtvals.
1648 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1649 		 * our async completion routine at the end, thus avoiding a
1650 		 * double-free.
1651 		 */
1652 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1653 		bio->bio_done = biodone_sync;
1654 		bio->bio_flags |= BIO_SYNC;
1655 		vn_strategy(swapdev_vp, bio);
1656 		biowait(bio, "swwrt");
1657 
1658 		for (j = 0; j < n; ++j)
1659 			rtvals[i+j] = VM_PAGER_PEND;
1660 
1661 		/*
1662 		 * Now that we are through with the bp, we can call the
1663 		 * normal async completion, which frees everything up.
1664 		 */
1665 		swp_pager_async_iodone(bio);
1666 	}
1667 	vm_object_drop(object);
1668 }
1669 
1670 /*
1671  * No requirements.
1672  */
1673 void
1674 swap_pager_newswap(void)
1675 {
1676 	swp_sizecheck();
1677 }
1678 
1679 /*
1680  *	swp_pager_async_iodone:
1681  *
1682  *	Completion routine for asynchronous reads and writes from/to swap.
1683  *	Also called manually by synchronous code to finish up a bp.
1684  *
1685  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1686  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1687  *	unbusy all pages except the 'main' request page.  For WRITE
1688  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1689  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1690  *
1691  *	This routine may not block.
1692  *
1693  * No requirements.
1694  */
1695 static void
1696 swp_pager_async_iodone(struct bio *bio)
1697 {
1698 	struct buf *bp = bio->bio_buf;
1699 	vm_object_t object = NULL;
1700 	int i;
1701 	int *nswptr;
1702 
1703 	/*
1704 	 * report error
1705 	 */
1706 	if (bp->b_flags & B_ERROR) {
1707 		kprintf(
1708 		    "swap_pager: I/O error - %s failed; offset %lld,"
1709 			"size %ld, error %d\n",
1710 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1711 			"pagein" : "pageout"),
1712 		    (long long)bio->bio_offset,
1713 		    (long)bp->b_bcount,
1714 		    bp->b_error
1715 		);
1716 	}
1717 
1718 	/*
1719 	 * set object, raise to splvm().
1720 	 */
1721 	if (bp->b_xio.xio_npages)
1722 		object = bp->b_xio.xio_pages[0]->object;
1723 
1724 	/*
1725 	 * remove the mapping for kernel virtual
1726 	 */
1727 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1728 
1729 	/*
1730 	 * cleanup pages.  If an error occurs writing to swap, we are in
1731 	 * very serious trouble.  If it happens to be a disk error, though,
1732 	 * we may be able to recover by reassigning the swap later on.  So
1733 	 * in this case we remove the m->swapblk assignment for the page
1734 	 * but do not free it in the rlist.  The errornous block(s) are thus
1735 	 * never reallocated as swap.  Redirty the page and continue.
1736 	 */
1737 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1738 		vm_page_t m = bp->b_xio.xio_pages[i];
1739 
1740 		if (bp->b_flags & B_ERROR) {
1741 			/*
1742 			 * If an error occurs I'd love to throw the swapblk
1743 			 * away without freeing it back to swapspace, so it
1744 			 * can never be used again.  But I can't from an
1745 			 * interrupt.
1746 			 */
1747 
1748 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1749 				/*
1750 				 * When reading, reqpage needs to stay
1751 				 * locked for the parent, but all other
1752 				 * pages can be freed.  We still want to
1753 				 * wakeup the parent waiting on the page,
1754 				 * though.  ( also: pg_reqpage can be -1 and
1755 				 * not match anything ).
1756 				 *
1757 				 * We have to wake specifically requested pages
1758 				 * up too because we cleared PG_SWAPINPROG and
1759 				 * someone may be waiting for that.
1760 				 *
1761 				 * NOTE: for reads, m->dirty will probably
1762 				 * be overridden by the original caller of
1763 				 * getpages so don't play cute tricks here.
1764 				 *
1765 				 * NOTE: We can't actually free the page from
1766 				 * here, because this is an interrupt.  It
1767 				 * is not legal to mess with object->memq
1768 				 * from an interrupt.  Deactivate the page
1769 				 * instead.
1770 				 */
1771 
1772 				m->valid = 0;
1773 				vm_page_flag_clear(m, PG_ZERO);
1774 				vm_page_flag_clear(m, PG_SWAPINPROG);
1775 
1776 				/*
1777 				 * bio_driver_info holds the requested page
1778 				 * index.
1779 				 */
1780 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1781 					vm_page_deactivate(m);
1782 					vm_page_wakeup(m);
1783 				} else {
1784 					vm_page_flash(m);
1785 				}
1786 				/*
1787 				 * If i == bp->b_pager.pg_reqpage, do not wake
1788 				 * the page up.  The caller needs to.
1789 				 */
1790 			} else {
1791 				/*
1792 				 * If a write error occurs remove the swap
1793 				 * assignment (note that PG_SWAPPED may or
1794 				 * may not be set depending on prior activity).
1795 				 *
1796 				 * Re-dirty OBJT_SWAP pages as there is no
1797 				 * other backing store, we can't throw the
1798 				 * page away.
1799 				 *
1800 				 * Non-OBJT_SWAP pages (aka swapcache) must
1801 				 * not be dirtied since they may not have
1802 				 * been dirty in the first place, and they
1803 				 * do have backing store (the vnode).
1804 				 */
1805 				vm_page_busy_wait(m, FALSE, "swadpg");
1806 				swp_pager_meta_ctl(m->object, m->pindex,
1807 						   SWM_FREE);
1808 				vm_page_flag_clear(m, PG_SWAPPED);
1809 				if (m->object->type == OBJT_SWAP) {
1810 					vm_page_dirty(m);
1811 					vm_page_activate(m);
1812 				}
1813 				vm_page_flag_clear(m, PG_SWAPINPROG);
1814 				vm_page_io_finish(m);
1815 				vm_page_wakeup(m);
1816 			}
1817 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1818 			/*
1819 			 * NOTE: for reads, m->dirty will probably be
1820 			 * overridden by the original caller of getpages so
1821 			 * we cannot set them in order to free the underlying
1822 			 * swap in a low-swap situation.  I don't think we'd
1823 			 * want to do that anyway, but it was an optimization
1824 			 * that existed in the old swapper for a time before
1825 			 * it got ripped out due to precisely this problem.
1826 			 *
1827 			 * clear PG_ZERO in page.
1828 			 *
1829 			 * If not the requested page then deactivate it.
1830 			 *
1831 			 * Note that the requested page, reqpage, is left
1832 			 * busied, but we still have to wake it up.  The
1833 			 * other pages are released (unbusied) by
1834 			 * vm_page_wakeup().  We do not set reqpage's
1835 			 * valid bits here, it is up to the caller.
1836 			 */
1837 
1838 			/*
1839 			 * NOTE: can't call pmap_clear_modify(m) from an
1840 			 * interrupt thread, the pmap code may have to map
1841 			 * non-kernel pmaps and currently asserts the case.
1842 			 */
1843 			/*pmap_clear_modify(m);*/
1844 			m->valid = VM_PAGE_BITS_ALL;
1845 			vm_page_undirty(m);
1846 			vm_page_flag_clear(m, PG_ZERO | PG_SWAPINPROG);
1847 			vm_page_flag_set(m, PG_SWAPPED);
1848 
1849 			/*
1850 			 * We have to wake specifically requested pages
1851 			 * up too because we cleared PG_SWAPINPROG and
1852 			 * could be waiting for it in getpages.  However,
1853 			 * be sure to not unbusy getpages specifically
1854 			 * requested page - getpages expects it to be
1855 			 * left busy.
1856 			 *
1857 			 * bio_driver_info holds the requested page
1858 			 */
1859 			if (i != (int)(intptr_t)bio->bio_driver_info) {
1860 				vm_page_deactivate(m);
1861 				vm_page_wakeup(m);
1862 			} else {
1863 				vm_page_flash(m);
1864 			}
1865 		} else {
1866 			/*
1867 			 * Mark the page clean but do not mess with the
1868 			 * pmap-layer's modified state.  That state should
1869 			 * also be clear since the caller protected the
1870 			 * page VM_PROT_READ, but allow the case.
1871 			 *
1872 			 * We are in an interrupt, avoid pmap operations.
1873 			 *
1874 			 * If we have a severe page deficit, deactivate the
1875 			 * page.  Do not try to cache it (which would also
1876 			 * involve a pmap op), because the page might still
1877 			 * be read-heavy.
1878 			 *
1879 			 * When using the swap to cache clean vnode pages
1880 			 * we do not mess with the page dirty bits.
1881 			 */
1882 			vm_page_busy_wait(m, FALSE, "swadpg");
1883 			if (m->object->type == OBJT_SWAP)
1884 				vm_page_undirty(m);
1885 			vm_page_flag_clear(m, PG_SWAPINPROG);
1886 			vm_page_flag_set(m, PG_SWAPPED);
1887 			if (vm_page_count_severe())
1888 				vm_page_deactivate(m);
1889 #if 0
1890 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1891 				vm_page_protect(m, VM_PROT_READ);
1892 #endif
1893 			vm_page_io_finish(m);
1894 			vm_page_wakeup(m);
1895 		}
1896 	}
1897 
1898 	/*
1899 	 * adjust pip.  NOTE: the original parent may still have its own
1900 	 * pip refs on the object.
1901 	 */
1902 
1903 	if (object)
1904 		vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
1905 
1906 	/*
1907 	 * Release the physical I/O buffer.
1908 	 *
1909 	 * NOTE: Due to synchronous operations in the write case b_cmd may
1910 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
1911 	 *	 been cleared.
1912 	 *
1913 	 * Use vm_token to interlock nsw_rcount/wcount wakeup?
1914 	 */
1915 	lwkt_gettoken(&vm_token);
1916 	if (bio->bio_caller_info1.index & SWBIO_READ)
1917 		nswptr = &nsw_rcount;
1918 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
1919 		nswptr = &nsw_wcount_sync;
1920 	else
1921 		nswptr = &nsw_wcount_async;
1922 	bp->b_cmd = BUF_CMD_DONE;
1923 	relpbuf(bp, nswptr);
1924 	lwkt_reltoken(&vm_token);
1925 }
1926 
1927 /*
1928  * Fault-in a potentially swapped page and remove the swap reference.
1929  * (used by swapoff code)
1930  *
1931  * object must be held.
1932  */
1933 static __inline void
1934 swp_pager_fault_page(vm_object_t object, vm_pindex_t pindex)
1935 {
1936 	struct vnode *vp;
1937 	vm_page_t m;
1938 	int error;
1939 
1940 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1941 
1942 	if (object->type == OBJT_VNODE) {
1943 		/*
1944 		 * Any swap related to a vnode is due to swapcache.  We must
1945 		 * vget() the vnode in case it is not active (otherwise
1946 		 * vref() will panic).  Calling vm_object_page_remove() will
1947 		 * ensure that any swap ref is removed interlocked with the
1948 		 * page.  clean_only is set to TRUE so we don't throw away
1949 		 * dirty pages.
1950 		 */
1951 		vp = object->handle;
1952 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
1953 		if (error == 0) {
1954 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
1955 			vput(vp);
1956 		}
1957 	} else {
1958 		/*
1959 		 * Otherwise it is a normal OBJT_SWAP object and we can
1960 		 * fault the page in and remove the swap.
1961 		 */
1962 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
1963 					 VM_PROT_NONE,
1964 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
1965 					 0, &error);
1966 		if (m)
1967 			vm_page_unhold(m);
1968 	}
1969 }
1970 
1971 /*
1972  * This removes all swap blocks related to a particular device.  We have
1973  * to be careful of ripups during the scan.
1974  */
1975 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
1976 
1977 int
1978 swap_pager_swapoff(int devidx)
1979 {
1980 	struct vm_object marker;
1981 	vm_object_t object;
1982 	struct swswapoffinfo info;
1983 
1984 	bzero(&marker, sizeof(marker));
1985 	marker.type = OBJT_MARKER;
1986 
1987 	lwkt_gettoken(&vmobj_token);
1988 	TAILQ_INSERT_HEAD(&vm_object_list, &marker, object_list);
1989 
1990 	while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
1991 		if (object->type == OBJT_MARKER)
1992 			goto skip;
1993 		if (object->type != OBJT_SWAP && object->type != OBJT_VNODE)
1994 			goto skip;
1995 		vm_object_hold(object);
1996 		if (object->type != OBJT_SWAP && object->type != OBJT_VNODE) {
1997 			vm_object_drop(object);
1998 			goto skip;
1999 		}
2000 		info.object = object;
2001 		info.devidx = devidx;
2002 		swblock_rb_tree_RB_SCAN(&object->swblock_root,
2003 					NULL,
2004 					swp_pager_swapoff_callback,
2005 					&info);
2006 		vm_object_drop(object);
2007 skip:
2008 		if (object == TAILQ_NEXT(&marker, object_list)) {
2009 			TAILQ_REMOVE(&vm_object_list, &marker, object_list);
2010 			TAILQ_INSERT_AFTER(&vm_object_list, object,
2011 					   &marker, object_list);
2012 		}
2013 	}
2014 	TAILQ_REMOVE(&vm_object_list, &marker, object_list);
2015 	lwkt_reltoken(&vmobj_token);
2016 
2017 	/*
2018 	 * If we fail to locate all swblocks we just fail gracefully and
2019 	 * do not bother to restore paging on the swap device.  If the
2020 	 * user wants to retry the user can retry.
2021 	 */
2022 	if (swdevt[devidx].sw_nused)
2023 		return (1);
2024 	else
2025 		return (0);
2026 }
2027 
2028 static
2029 int
2030 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2031 {
2032 	struct swswapoffinfo *info = data;
2033 	vm_object_t object = info->object;
2034 	vm_pindex_t index;
2035 	swblk_t v;
2036 	int i;
2037 
2038 	index = swap->swb_index;
2039 	for (i = 0; i < SWAP_META_PAGES; ++i) {
2040 		/*
2041 		 * Make sure we don't race a dying object.  This will
2042 		 * kill the scan of the object's swap blocks entirely.
2043 		 */
2044 		if (object->flags & OBJ_DEAD)
2045 			return(-1);
2046 
2047 		/*
2048 		 * Fault the page, which can obviously block.  If the swap
2049 		 * structure disappears break out.
2050 		 */
2051 		v = swap->swb_pages[i];
2052 		if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2053 			swp_pager_fault_page(object, swap->swb_index + i);
2054 			/* swap ptr might go away */
2055 			if (RB_LOOKUP(swblock_rb_tree,
2056 				      &object->swblock_root, index) != swap) {
2057 				break;
2058 			}
2059 		}
2060 	}
2061 	return(0);
2062 }
2063 
2064 /************************************************************************
2065  *				SWAP META DATA 				*
2066  ************************************************************************
2067  *
2068  *	These routines manipulate the swap metadata stored in the
2069  *	OBJT_SWAP object.  All swp_*() routines must be called at
2070  *	splvm() because swap can be freed up by the low level vm_page
2071  *	code which might be called from interrupts beyond what splbio() covers.
2072  *
2073  *	Swap metadata is implemented with a global hash and not directly
2074  *	linked into the object.  Instead the object simply contains
2075  *	appropriate tracking counters.
2076  */
2077 
2078 /*
2079  * Lookup the swblock containing the specified swap block index.
2080  *
2081  * The caller must hold the object.
2082  */
2083 static __inline
2084 struct swblock *
2085 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2086 {
2087 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2088 	index &= ~(vm_pindex_t)SWAP_META_MASK;
2089 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2090 }
2091 
2092 /*
2093  * Remove a swblock from the RB tree.
2094  *
2095  * The caller must hold the object.
2096  */
2097 static __inline
2098 void
2099 swp_pager_remove(vm_object_t object, struct swblock *swap)
2100 {
2101 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2102 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2103 }
2104 
2105 /*
2106  * Convert default object to swap object if necessary
2107  *
2108  * The caller must hold the object.
2109  */
2110 static void
2111 swp_pager_meta_convert(vm_object_t object)
2112 {
2113 	if (object->type == OBJT_DEFAULT) {
2114 		object->type = OBJT_SWAP;
2115 		KKASSERT(object->swblock_count == 0);
2116 	}
2117 }
2118 
2119 /*
2120  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2121  *
2122  *	We first convert the object to a swap object if it is a default
2123  *	object.  Vnode objects do not need to be converted.
2124  *
2125  *	The specified swapblk is added to the object's swap metadata.  If
2126  *	the swapblk is not valid, it is freed instead.  Any previously
2127  *	assigned swapblk is freed.
2128  *
2129  * The caller must hold the object.
2130  */
2131 static void
2132 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2133 {
2134 	struct swblock *swap;
2135 	struct swblock *oswap;
2136 	vm_pindex_t v;
2137 
2138 	KKASSERT(swapblk != SWAPBLK_NONE);
2139 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2140 
2141 	/*
2142 	 * Convert object if necessary
2143 	 */
2144 	if (object->type == OBJT_DEFAULT)
2145 		swp_pager_meta_convert(object);
2146 
2147 	/*
2148 	 * Locate swblock.  If not found create, but if we aren't adding
2149 	 * anything just return.  If we run out of space in the map we wait
2150 	 * and, since the hash table may have changed, retry.
2151 	 */
2152 retry:
2153 	swap = swp_pager_lookup(object, index);
2154 
2155 	if (swap == NULL) {
2156 		int i;
2157 
2158 		swap = zalloc(swap_zone);
2159 		if (swap == NULL) {
2160 			vm_wait(0);
2161 			goto retry;
2162 		}
2163 		swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2164 		swap->swb_count = 0;
2165 
2166 		++object->swblock_count;
2167 
2168 		for (i = 0; i < SWAP_META_PAGES; ++i)
2169 			swap->swb_pages[i] = SWAPBLK_NONE;
2170 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2171 		KKASSERT(oswap == NULL);
2172 	}
2173 
2174 	/*
2175 	 * Delete prior contents of metadata.
2176 	 *
2177 	 * NOTE: Decrement swb_count after the freeing operation (which
2178 	 *	 might block) to prevent racing destruction of the swblock.
2179 	 */
2180 	index &= SWAP_META_MASK;
2181 
2182 	while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2183 		swap->swb_pages[index] = SWAPBLK_NONE;
2184 		/* can block */
2185 		swp_pager_freeswapspace(object, v, 1);
2186 		--swap->swb_count;
2187 	}
2188 
2189 	/*
2190 	 * Enter block into metadata
2191 	 */
2192 	swap->swb_pages[index] = swapblk;
2193 	if (swapblk != SWAPBLK_NONE)
2194 		++swap->swb_count;
2195 }
2196 
2197 /*
2198  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2199  *
2200  *	The requested range of blocks is freed, with any associated swap
2201  *	returned to the swap bitmap.
2202  *
2203  *	This routine will free swap metadata structures as they are cleaned
2204  *	out.  This routine does *NOT* operate on swap metadata associated
2205  *	with resident pages.
2206  *
2207  * The caller must hold the object.
2208  */
2209 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2210 
2211 static void
2212 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2213 {
2214 	struct swfreeinfo info;
2215 
2216 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2217 
2218 	/*
2219 	 * Nothing to do
2220 	 */
2221 	if (object->swblock_count == 0) {
2222 		KKASSERT(RB_EMPTY(&object->swblock_root));
2223 		return;
2224 	}
2225 	if (count == 0)
2226 		return;
2227 
2228 	/*
2229 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2230 	 * due to the 64 bit page index space so we cannot safely iterate.
2231 	 */
2232 	info.object = object;
2233 	info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2234 	info.begi = index;
2235 	info.endi = index + count - 1;
2236 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2237 				swp_pager_meta_free_callback, &info);
2238 }
2239 
2240 /*
2241  * The caller must hold the object.
2242  */
2243 static
2244 int
2245 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2246 {
2247 	struct swfreeinfo *info = data;
2248 	vm_object_t object = info->object;
2249 	int index;
2250 	int eindex;
2251 
2252 	/*
2253 	 * Figure out the range within the swblock.  The wider scan may
2254 	 * return edge-case swap blocks when the start and/or end points
2255 	 * are in the middle of a block.
2256 	 */
2257 	if (swap->swb_index < info->begi)
2258 		index = (int)info->begi & SWAP_META_MASK;
2259 	else
2260 		index = 0;
2261 
2262 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2263 		eindex = (int)info->endi & SWAP_META_MASK;
2264 	else
2265 		eindex = SWAP_META_MASK;
2266 
2267 	/*
2268 	 * Scan and free the blocks.  The loop terminates early
2269 	 * if (swap) runs out of blocks and could be freed.
2270 	 *
2271 	 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2272 	 *	 to deal with a zfree race.
2273 	 */
2274 	while (index <= eindex) {
2275 		swblk_t v = swap->swb_pages[index];
2276 
2277 		if (v != SWAPBLK_NONE) {
2278 			swap->swb_pages[index] = SWAPBLK_NONE;
2279 			/* can block */
2280 			swp_pager_freeswapspace(object, v, 1);
2281 			if (--swap->swb_count == 0) {
2282 				swp_pager_remove(object, swap);
2283 				zfree(swap_zone, swap);
2284 				--object->swblock_count;
2285 				break;
2286 			}
2287 		}
2288 		++index;
2289 	}
2290 
2291 	/* swap may be invalid here due to zfree above */
2292 	lwkt_yield();
2293 
2294 	return(0);
2295 }
2296 
2297 /*
2298  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2299  *
2300  *	This routine locates and destroys all swap metadata associated with
2301  *	an object.
2302  *
2303  * NOTE: Decrement swb_count after the freeing operation (which
2304  *	 might block) to prevent racing destruction of the swblock.
2305  *
2306  * The caller must hold the object.
2307  */
2308 static void
2309 swp_pager_meta_free_all(vm_object_t object)
2310 {
2311 	struct swblock *swap;
2312 	int i;
2313 
2314 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2315 
2316 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2317 		swp_pager_remove(object, swap);
2318 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2319 			swblk_t v = swap->swb_pages[i];
2320 			if (v != SWAPBLK_NONE) {
2321 				/* can block */
2322 				swp_pager_freeswapspace(object, v, 1);
2323 				--swap->swb_count;
2324 			}
2325 		}
2326 		if (swap->swb_count != 0)
2327 			panic("swap_pager_meta_free_all: swb_count != 0");
2328 		zfree(swap_zone, swap);
2329 		--object->swblock_count;
2330 		lwkt_yield();
2331 	}
2332 	KKASSERT(object->swblock_count == 0);
2333 }
2334 
2335 /*
2336  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2337  *
2338  *	This routine is capable of looking up, popping, or freeing
2339  *	swapblk assignments in the swap meta data or in the vm_page_t.
2340  *	The routine typically returns the swapblk being looked-up, or popped,
2341  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2342  *	was invalid.  This routine will automatically free any invalid
2343  *	meta-data swapblks.
2344  *
2345  *	It is not possible to store invalid swapblks in the swap meta data
2346  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2347  *
2348  *	When acting on a busy resident page and paging is in progress, we
2349  *	have to wait until paging is complete but otherwise can act on the
2350  *	busy page.
2351  *
2352  *	SWM_FREE	remove and free swap block from metadata
2353  *	SWM_POP		remove from meta data but do not free.. pop it out
2354  *
2355  * The caller must hold the object.
2356  */
2357 static swblk_t
2358 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2359 {
2360 	struct swblock *swap;
2361 	swblk_t r1;
2362 
2363 	if (object->swblock_count == 0)
2364 		return(SWAPBLK_NONE);
2365 
2366 	r1 = SWAPBLK_NONE;
2367 	swap = swp_pager_lookup(object, index);
2368 
2369 	if (swap != NULL) {
2370 		index &= SWAP_META_MASK;
2371 		r1 = swap->swb_pages[index];
2372 
2373 		if (r1 != SWAPBLK_NONE) {
2374 			if (flags & (SWM_FREE|SWM_POP)) {
2375 				swap->swb_pages[index] = SWAPBLK_NONE;
2376 				if (--swap->swb_count == 0) {
2377 					swp_pager_remove(object, swap);
2378 					zfree(swap_zone, swap);
2379 					--object->swblock_count;
2380 				}
2381 			}
2382 			/* swap ptr may be invalid */
2383 			if (flags & SWM_FREE) {
2384 				swp_pager_freeswapspace(object, r1, 1);
2385 				r1 = SWAPBLK_NONE;
2386 			}
2387 		}
2388 		/* swap ptr may be invalid */
2389 	}
2390 	return(r1);
2391 }
2392