1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1998-2010 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to The DragonFly Project 7 * by Matthew Dillon <dillon@backplane.com> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. Neither the name of The DragonFly Project nor the names of its 20 * contributors may be used to endorse or promote products derived 21 * from this software without specific, prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * Copyright (c) 1994 John S. Dyson 37 * Copyright (c) 1990 University of Utah. 38 * Copyright (c) 1991, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This code is derived from software contributed to Berkeley by 42 * the Systems Programming Group of the University of Utah Computer 43 * Science Department. 44 * 45 * Redistribution and use in source and binary forms, with or without 46 * modification, are permitted provided that the following conditions 47 * are met: 48 * 1. Redistributions of source code must retain the above copyright 49 * notice, this list of conditions and the following disclaimer. 50 * 2. Redistributions in binary form must reproduce the above copyright 51 * notice, this list of conditions and the following disclaimer in the 52 * documentation and/or other materials provided with the distribution. 53 * 3. Neither the name of the University nor the names of its contributors 54 * may be used to endorse or promote products derived from this software 55 * without specific prior written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 67 * SUCH DAMAGE. 68 * 69 * New Swap System 70 * Matthew Dillon 71 * 72 * Radix Bitmap 'blists'. 73 * 74 * - The new swapper uses the new radix bitmap code. This should scale 75 * to arbitrarily small or arbitrarily large swap spaces and an almost 76 * arbitrary degree of fragmentation. 77 * 78 * Features: 79 * 80 * - on the fly reallocation of swap during putpages. The new system 81 * does not try to keep previously allocated swap blocks for dirty 82 * pages. 83 * 84 * - on the fly deallocation of swap 85 * 86 * - No more garbage collection required. Unnecessarily allocated swap 87 * blocks only exist for dirty vm_page_t's now and these are already 88 * cycled (in a high-load system) by the pager. We also do on-the-fly 89 * removal of invalidated swap blocks when a page is destroyed 90 * or renamed. 91 * 92 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 93 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 94 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $ 95 */ 96 97 #include <sys/param.h> 98 #include <sys/systm.h> 99 #include <sys/conf.h> 100 #include <sys/kernel.h> 101 #include <sys/proc.h> 102 #include <sys/buf.h> 103 #include <sys/vnode.h> 104 #include <sys/malloc.h> 105 #include <sys/vmmeter.h> 106 #include <sys/sysctl.h> 107 #include <sys/blist.h> 108 #include <sys/lock.h> 109 #include <sys/kcollect.h> 110 111 #include <unistd.h> 112 #include "opt_swap.h" 113 #include <vm/vm.h> 114 #include <vm/vm_object.h> 115 #include <vm/vm_page.h> 116 #include <vm/vm_pager.h> 117 #include <vm/vm_pageout.h> 118 #include <vm/swap_pager.h> 119 #include <vm/vm_extern.h> 120 #include <vm/vm_zone.h> 121 #include <vm/vnode_pager.h> 122 123 #include <sys/thread2.h> 124 #include <sys/buf2.h> 125 #include <vm/vm_page2.h> 126 127 #ifndef MAX_PAGEOUT_CLUSTER 128 #define MAX_PAGEOUT_CLUSTER SWB_NPAGES 129 #endif 130 131 #define SWM_FREE 0x02 /* free, period */ 132 #define SWM_POP 0x04 /* pop out */ 133 134 #define SWBIO_READ 0x01 135 #define SWBIO_WRITE 0x02 136 #define SWBIO_SYNC 0x04 137 #define SWBIO_TTC 0x08 /* for VM_PAGER_TRY_TO_CACHE */ 138 139 struct swfreeinfo { 140 vm_object_t object; 141 vm_pindex_t basei; 142 vm_pindex_t begi; 143 vm_pindex_t endi; /* inclusive */ 144 }; 145 146 struct swswapoffinfo { 147 vm_object_t object; 148 int devidx; 149 int shared; 150 }; 151 152 /* 153 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks 154 * in the old system. 155 */ 156 157 int swap_pager_full; /* swap space exhaustion (task killing) */ 158 int swap_fail_ticks; /* when we became exhausted */ 159 int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 160 swblk_t vm_swap_cache_use; 161 swblk_t vm_swap_anon_use; 162 static int vm_report_swap_allocs; 163 164 static int nsw_rcount; /* free read buffers */ 165 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 166 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 167 static int nsw_wcount_async_max;/* assigned maximum */ 168 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 169 170 struct blist *swapblist; 171 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 172 static int swap_burst_read = 0; /* allow burst reading */ 173 static swblk_t swapiterator; /* linearize allocations */ 174 int swap_user_async = 0; /* user swap pager operation can be async */ 175 176 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin"); 177 178 /* from vm_swap.c */ 179 extern struct vnode *swapdev_vp; 180 extern struct swdevt *swdevt; 181 extern int nswdev; 182 183 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0) 184 185 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 186 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 187 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read, 188 CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins"); 189 SYSCTL_INT(_vm, OID_AUTO, swap_user_async, 190 CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O"); 191 192 #if SWBLK_BITS == 64 193 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use, 194 CTLFLAG_RD, &vm_swap_cache_use, 0, ""); 195 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use, 196 CTLFLAG_RD, &vm_swap_anon_use, 0, ""); 197 SYSCTL_LONG(_vm, OID_AUTO, swap_size, 198 CTLFLAG_RD, &vm_swap_size, 0, ""); 199 #else 200 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use, 201 CTLFLAG_RD, &vm_swap_cache_use, 0, ""); 202 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use, 203 CTLFLAG_RD, &vm_swap_anon_use, 0, ""); 204 SYSCTL_INT(_vm, OID_AUTO, swap_size, 205 CTLFLAG_RD, &vm_swap_size, 0, ""); 206 #endif 207 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs, 208 CTLFLAG_RW, &vm_report_swap_allocs, 0, ""); 209 210 vm_zone_t swap_zone; 211 212 /* 213 * Red-Black tree for swblock entries 214 * 215 * The caller must hold vm_token 216 */ 217 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare, 218 vm_pindex_t, swb_index); 219 220 int 221 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2) 222 { 223 if (swb1->swb_index < swb2->swb_index) 224 return(-1); 225 if (swb1->swb_index > swb2->swb_index) 226 return(1); 227 return(0); 228 } 229 230 static 231 int 232 rb_swblock_scancmp(struct swblock *swb, void *data) 233 { 234 struct swfreeinfo *info = data; 235 236 if (swb->swb_index < info->basei) 237 return(-1); 238 if (swb->swb_index > info->endi) 239 return(1); 240 return(0); 241 } 242 243 static 244 int 245 rb_swblock_condcmp(struct swblock *swb, void *data) 246 { 247 struct swfreeinfo *info = data; 248 249 if (swb->swb_index < info->basei) 250 return(-1); 251 return(0); 252 } 253 254 /* 255 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 256 * calls hooked from other parts of the VM system and do not appear here. 257 * (see vm/swap_pager.h). 258 */ 259 260 static void swap_pager_dealloc (vm_object_t object); 261 static int swap_pager_getpage (vm_object_t, vm_page_t *, int); 262 static void swap_chain_iodone(struct bio *biox); 263 264 struct pagerops swappagerops = { 265 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 266 swap_pager_getpage, /* pagein */ 267 swap_pager_putpages, /* pageout */ 268 swap_pager_haspage /* get backing store status for page */ 269 }; 270 271 /* 272 * SWB_DMMAX is in page-sized chunks with the new swap system. It was 273 * dev-bsized chunks in the old. SWB_DMMAX is always a power of 2. 274 * 275 * swap_*() routines are externally accessible. swp_*() routines are 276 * internal. 277 */ 278 279 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 280 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 281 282 static __inline void swp_sizecheck (void); 283 static void swp_pager_async_iodone (struct bio *bio); 284 285 /* 286 * Swap bitmap functions 287 */ 288 289 static __inline void swp_pager_freeswapspace(vm_object_t object, 290 swblk_t blk, int npages); 291 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages); 292 293 /* 294 * Metadata functions 295 */ 296 297 static void swp_pager_meta_convert(vm_object_t); 298 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t); 299 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t); 300 static void swp_pager_meta_free_all(vm_object_t); 301 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 302 303 /* 304 * SWP_SIZECHECK() - update swap_pager_full indication 305 * 306 * update the swap_pager_almost_full indication and warn when we are 307 * about to run out of swap space, using lowat/hiwat hysteresis. 308 * 309 * Clear swap_pager_full ( task killing ) indication when lowat is met. 310 * 311 * No restrictions on call 312 * This routine may not block. 313 * SMP races are ok. 314 */ 315 static __inline void 316 swp_sizecheck(void) 317 { 318 if (vm_swap_size < nswap_lowat) { 319 if (swap_pager_almost_full == 0) { 320 kprintf("swap_pager: out of swap space\n"); 321 swap_pager_almost_full = 1; 322 swap_fail_ticks = ticks; 323 } 324 } else { 325 swap_pager_full = 0; 326 if (vm_swap_size > nswap_hiwat) 327 swap_pager_almost_full = 0; 328 } 329 } 330 331 /* 332 * Long-term data collection on 10-second interval. Return the value 333 * for KCOLLECT_SWAPPCT and set the values for SWAPANO and SWAPCCAC. 334 * 335 * Return total swap in the scale field. This can change if swap is 336 * regularly added or removed and may cause some historical confusion 337 * in that case, but SWAPPCT will always be historically accurate. 338 */ 339 340 #define PTOB(value) ((uint64_t)(value) << PAGE_SHIFT) 341 342 static uint64_t 343 collect_swap_callback(int n) 344 { 345 uint64_t total = vm_swap_max; 346 uint64_t anon = vm_swap_anon_use; 347 uint64_t cache = vm_swap_cache_use; 348 349 if (total == 0) /* avoid divide by zero */ 350 total = 1; 351 kcollect_setvalue(KCOLLECT_SWAPANO, PTOB(anon)); 352 kcollect_setvalue(KCOLLECT_SWAPCAC, PTOB(cache)); 353 kcollect_setscale(KCOLLECT_SWAPANO, 354 KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, PTOB(total))); 355 kcollect_setscale(KCOLLECT_SWAPCAC, 356 KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, PTOB(total))); 357 return (((anon + cache) * 10000 + (total >> 1)) / total); 358 } 359 360 /* 361 * SWAP_PAGER_INIT() - initialize the swap pager! 362 * 363 * Expected to be started from system init. NOTE: This code is run 364 * before much else so be careful what you depend on. Most of the VM 365 * system has yet to be initialized at this point. 366 * 367 * Called from the low level boot code only. 368 */ 369 static void 370 swap_pager_init(void *arg __unused) 371 { 372 kcollect_register(KCOLLECT_SWAPPCT, "swapuse", collect_swap_callback, 373 KCOLLECT_SCALE(KCOLLECT_SWAPPCT_FORMAT, 0)); 374 kcollect_register(KCOLLECT_SWAPANO, "swapano", NULL, 375 KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, 0)); 376 kcollect_register(KCOLLECT_SWAPCAC, "swapcac", NULL, 377 KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, 0)); 378 } 379 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL); 380 381 /* 382 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 383 * 384 * Expected to be started from pageout process once, prior to entering 385 * its main loop. 386 * 387 * Called from the low level boot code only. 388 */ 389 void 390 swap_pager_swap_init(void) 391 { 392 int n, n2; 393 394 /* 395 * Number of in-transit swap bp operations. Don't 396 * exhaust the pbufs completely. Make sure we 397 * initialize workable values (0 will work for hysteresis 398 * but it isn't very efficient). 399 * 400 * The nsw_cluster_max is constrained by the number of pages an XIO 401 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined 402 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 403 * constrained by the swap device interleave stripe size. 404 * 405 * Currently we hardwire nsw_wcount_async to 4. This limit is 406 * designed to prevent other I/O from having high latencies due to 407 * our pageout I/O. The value 4 works well for one or two active swap 408 * devices but is probably a little low if you have more. Even so, 409 * a higher value would probably generate only a limited improvement 410 * with three or four active swap devices since the system does not 411 * typically have to pageout at extreme bandwidths. We will want 412 * at least 2 per swap devices, and 4 is a pretty good value if you 413 * have one NFS swap device due to the command/ack latency over NFS. 414 * So it all works out pretty well. 415 */ 416 417 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 418 419 nsw_rcount = (nswbuf_kva + 1) / 2; 420 nsw_wcount_sync = (nswbuf_kva + 3) / 4; 421 nsw_wcount_async = 4; 422 nsw_wcount_async_max = nsw_wcount_async; 423 424 /* 425 * The zone is dynamically allocated so generally size it to 426 * maxswzone (32MB to 256GB of KVM). Set a minimum size based 427 * on physical memory of around 8x (each swblock can hold 16 pages). 428 * 429 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio 430 * has increased dramatically. 431 */ 432 n = vmstats.v_page_count / 2; 433 if (maxswzone && n < maxswzone / sizeof(struct swblock)) 434 n = maxswzone / sizeof(struct swblock); 435 n2 = n; 436 437 do { 438 swap_zone = zinit( 439 "SWAPMETA", 440 sizeof(struct swblock), 441 n, 442 ZONE_INTERRUPT); 443 if (swap_zone != NULL) 444 break; 445 /* 446 * if the allocation failed, try a zone two thirds the 447 * size of the previous attempt. 448 */ 449 n -= ((n + 2) / 3); 450 } while (n > 0); 451 452 if (swap_zone == NULL) 453 panic("swap_pager_swap_init: swap_zone == NULL"); 454 if (n2 != n) 455 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n); 456 } 457 458 /* 459 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 460 * its metadata structures. 461 * 462 * This routine is called from the mmap and fork code to create a new 463 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 464 * and then converting it with swp_pager_meta_convert(). 465 * 466 * We only support unnamed objects. 467 * 468 * No restrictions. 469 */ 470 vm_object_t 471 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset) 472 { 473 vm_object_t object; 474 475 KKASSERT(handle == NULL); 476 object = vm_object_allocate_hold(OBJT_DEFAULT, 477 OFF_TO_IDX(offset + PAGE_MASK + size)); 478 swp_pager_meta_convert(object); 479 vm_object_drop(object); 480 481 return (object); 482 } 483 484 /* 485 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 486 * 487 * The swap backing for the object is destroyed. The code is 488 * designed such that we can reinstantiate it later, but this 489 * routine is typically called only when the entire object is 490 * about to be destroyed. 491 * 492 * The object must be locked or unreferenceable. 493 * No other requirements. 494 */ 495 static void 496 swap_pager_dealloc(vm_object_t object) 497 { 498 vm_object_hold(object); 499 vm_object_pip_wait(object, "swpdea"); 500 501 /* 502 * Free all remaining metadata. We only bother to free it from 503 * the swap meta data. We do not attempt to free swapblk's still 504 * associated with vm_page_t's for this object. We do not care 505 * if paging is still in progress on some objects. 506 */ 507 swp_pager_meta_free_all(object); 508 vm_object_drop(object); 509 } 510 511 /************************************************************************ 512 * SWAP PAGER BITMAP ROUTINES * 513 ************************************************************************/ 514 515 /* 516 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 517 * 518 * Allocate swap for the requested number of pages. The starting 519 * swap block number (a page index) is returned or SWAPBLK_NONE 520 * if the allocation failed. 521 * 522 * Also has the side effect of advising that somebody made a mistake 523 * when they configured swap and didn't configure enough. 524 * 525 * The caller must hold the object. 526 * This routine may not block. 527 */ 528 static __inline swblk_t 529 swp_pager_getswapspace(vm_object_t object, int npages) 530 { 531 swblk_t blk; 532 533 lwkt_gettoken(&vm_token); 534 blk = blist_allocat(swapblist, npages, swapiterator); 535 if (blk == SWAPBLK_NONE) 536 blk = blist_allocat(swapblist, npages, 0); 537 if (blk == SWAPBLK_NONE) { 538 if (swap_pager_full != 2) { 539 if (vm_swap_max == 0) 540 kprintf("Warning: The system would like to " 541 "page to swap but no swap space " 542 "is configured!\n"); 543 else 544 kprintf("swap_pager_getswapspace: " 545 "swap full allocating %d pages\n", 546 npages); 547 swap_pager_full = 2; 548 if (swap_pager_almost_full == 0) 549 swap_fail_ticks = ticks; 550 swap_pager_almost_full = 1; 551 } 552 } else { 553 /* swapiterator = blk; disable for now, doesn't work well */ 554 swapacctspace(blk, -npages); 555 if (object->type == OBJT_SWAP) 556 vm_swap_anon_use += npages; 557 else 558 vm_swap_cache_use += npages; 559 swp_sizecheck(); 560 } 561 lwkt_reltoken(&vm_token); 562 return(blk); 563 } 564 565 /* 566 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 567 * 568 * This routine returns the specified swap blocks back to the bitmap. 569 * 570 * Note: This routine may not block (it could in the old swap code), 571 * and through the use of the new blist routines it does not block. 572 * 573 * This routine may not block. 574 */ 575 576 static __inline void 577 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages) 578 { 579 struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)]; 580 581 lwkt_gettoken(&vm_token); 582 sp->sw_nused -= npages; 583 if (object->type == OBJT_SWAP) 584 vm_swap_anon_use -= npages; 585 else 586 vm_swap_cache_use -= npages; 587 588 if (sp->sw_flags & SW_CLOSING) { 589 lwkt_reltoken(&vm_token); 590 return; 591 } 592 593 blist_free(swapblist, blk, npages); 594 vm_swap_size += npages; 595 swp_sizecheck(); 596 lwkt_reltoken(&vm_token); 597 } 598 599 /* 600 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 601 * range within an object. 602 * 603 * This is a globally accessible routine. 604 * 605 * This routine removes swapblk assignments from swap metadata. 606 * 607 * The external callers of this routine typically have already destroyed 608 * or renamed vm_page_t's associated with this range in the object so 609 * we should be ok. 610 * 611 * No requirements. 612 */ 613 void 614 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size) 615 { 616 vm_object_hold(object); 617 swp_pager_meta_free(object, start, size); 618 vm_object_drop(object); 619 } 620 621 /* 622 * No requirements. 623 */ 624 void 625 swap_pager_freespace_all(vm_object_t object) 626 { 627 vm_object_hold(object); 628 swp_pager_meta_free_all(object); 629 vm_object_drop(object); 630 } 631 632 /* 633 * This function conditionally frees swap cache swap starting at 634 * (*basei) in the object. (count) swap blocks will be nominally freed. 635 * The actual number of blocks freed can be more or less than the 636 * requested number. 637 * 638 * This function nominally returns the number of blocks freed. However, 639 * the actual number of blocks freed may be less then the returned value. 640 * If the function is unable to exhaust the object or if it is able to 641 * free (approximately) the requested number of blocks it returns 642 * a value n > count. 643 * 644 * If we exhaust the object we will return a value n <= count. 645 * 646 * The caller must hold the object. 647 * 648 * WARNING! If count == 0 then -1 can be returned as a degenerate case, 649 * callers should always pass a count value > 0. 650 */ 651 static int swap_pager_condfree_callback(struct swblock *swap, void *data); 652 653 int 654 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count) 655 { 656 struct swfreeinfo info; 657 int n; 658 int t; 659 660 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 661 662 info.object = object; 663 info.basei = *basei; /* skip up to this page index */ 664 info.begi = count; /* max swap pages to destroy */ 665 info.endi = count * 8; /* max swblocks to scan */ 666 667 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp, 668 swap_pager_condfree_callback, &info); 669 *basei = info.basei; 670 671 /* 672 * Take the higher difference swblocks vs pages 673 */ 674 n = count - (int)info.begi; 675 t = count * 8 - (int)info.endi; 676 if (n < t) 677 n = t; 678 if (n < 1) 679 n = 1; 680 return(n); 681 } 682 683 /* 684 * The idea is to free whole meta-block to avoid fragmenting 685 * the swap space or disk I/O. We only do this if NO VM pages 686 * are present. 687 * 688 * We do not have to deal with clearing PG_SWAPPED in related VM 689 * pages because there are no related VM pages. 690 * 691 * The caller must hold the object. 692 */ 693 static int 694 swap_pager_condfree_callback(struct swblock *swap, void *data) 695 { 696 struct swfreeinfo *info = data; 697 vm_object_t object = info->object; 698 int i; 699 700 for (i = 0; i < SWAP_META_PAGES; ++i) { 701 if (vm_page_lookup(object, swap->swb_index + i)) 702 break; 703 } 704 info->basei = swap->swb_index + SWAP_META_PAGES; 705 if (i == SWAP_META_PAGES) { 706 info->begi -= swap->swb_count; 707 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES); 708 } 709 --info->endi; 710 if ((int)info->begi < 0 || (int)info->endi < 0) 711 return(-1); 712 lwkt_yield(); 713 return(0); 714 } 715 716 /* 717 * Called by vm_page_alloc() when a new VM page is inserted 718 * into a VM object. Checks whether swap has been assigned to 719 * the page and sets PG_SWAPPED as necessary. 720 * 721 * (m) must be busied by caller and remains busied on return. 722 */ 723 void 724 swap_pager_page_inserted(vm_page_t m) 725 { 726 if (m->object->swblock_count) { 727 vm_object_hold(m->object); 728 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE) 729 vm_page_flag_set(m, PG_SWAPPED); 730 vm_object_drop(m->object); 731 } 732 } 733 734 /* 735 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 736 * 737 * Assigns swap blocks to the specified range within the object. The 738 * swap blocks are not zerod. Any previous swap assignment is destroyed. 739 * 740 * Returns 0 on success, -1 on failure. 741 * 742 * The caller is responsible for avoiding races in the specified range. 743 * No other requirements. 744 */ 745 int 746 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 747 { 748 int n = 0; 749 swblk_t blk = SWAPBLK_NONE; 750 vm_pindex_t beg = start; /* save start index */ 751 752 vm_object_hold(object); 753 754 while (size) { 755 if (n == 0) { 756 n = BLIST_MAX_ALLOC; 757 while ((blk = swp_pager_getswapspace(object, n)) == 758 SWAPBLK_NONE) 759 { 760 n >>= 1; 761 if (n == 0) { 762 swp_pager_meta_free(object, beg, 763 start - beg); 764 vm_object_drop(object); 765 return(-1); 766 } 767 } 768 } 769 swp_pager_meta_build(object, start, blk); 770 --size; 771 ++start; 772 ++blk; 773 --n; 774 } 775 swp_pager_meta_free(object, start, n); 776 vm_object_drop(object); 777 return(0); 778 } 779 780 /* 781 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 782 * and destroy the source. 783 * 784 * Copy any valid swapblks from the source to the destination. In 785 * cases where both the source and destination have a valid swapblk, 786 * we keep the destination's. 787 * 788 * This routine is allowed to block. It may block allocating metadata 789 * indirectly through swp_pager_meta_build() or if paging is still in 790 * progress on the source. 791 * 792 * XXX vm_page_collapse() kinda expects us not to block because we 793 * supposedly do not need to allocate memory, but for the moment we 794 * *may* have to get a little memory from the zone allocator, but 795 * it is taken from the interrupt memory. We should be ok. 796 * 797 * The source object contains no vm_page_t's (which is just as well) 798 * The source object is of type OBJT_SWAP. 799 * 800 * The source and destination objects must be held by the caller. 801 */ 802 void 803 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 804 vm_pindex_t base_index, int destroysource) 805 { 806 vm_pindex_t i; 807 808 ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject)); 809 ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject)); 810 811 /* 812 * transfer source to destination. 813 */ 814 for (i = 0; i < dstobject->size; ++i) { 815 swblk_t dstaddr; 816 817 /* 818 * Locate (without changing) the swapblk on the destination, 819 * unless it is invalid in which case free it silently, or 820 * if the destination is a resident page, in which case the 821 * source is thrown away. 822 */ 823 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 824 825 if (dstaddr == SWAPBLK_NONE) { 826 /* 827 * Destination has no swapblk and is not resident, 828 * copy source. 829 */ 830 swblk_t srcaddr; 831 832 srcaddr = swp_pager_meta_ctl(srcobject, 833 base_index + i, SWM_POP); 834 835 if (srcaddr != SWAPBLK_NONE) 836 swp_pager_meta_build(dstobject, i, srcaddr); 837 } else { 838 /* 839 * Destination has valid swapblk or it is represented 840 * by a resident page. We destroy the sourceblock. 841 */ 842 swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE); 843 } 844 } 845 846 /* 847 * Free left over swap blocks in source. 848 * 849 * We have to revert the type to OBJT_DEFAULT so we do not accidently 850 * double-remove the object from the swap queues. 851 */ 852 if (destroysource) { 853 /* 854 * Reverting the type is not necessary, the caller is going 855 * to destroy srcobject directly, but I'm doing it here 856 * for consistency since we've removed the object from its 857 * queues. 858 */ 859 swp_pager_meta_free_all(srcobject); 860 if (srcobject->type == OBJT_SWAP) 861 srcobject->type = OBJT_DEFAULT; 862 } 863 } 864 865 /* 866 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 867 * the requested page. 868 * 869 * We determine whether good backing store exists for the requested 870 * page and return TRUE if it does, FALSE if it doesn't. 871 * 872 * If TRUE, we also try to determine how much valid, contiguous backing 873 * store exists before and after the requested page within a reasonable 874 * distance. We do not try to restrict it to the swap device stripe 875 * (that is handled in getpages/putpages). It probably isn't worth 876 * doing here. 877 * 878 * No requirements. 879 */ 880 boolean_t 881 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex) 882 { 883 swblk_t blk0; 884 885 /* 886 * do we have good backing store at the requested index ? 887 */ 888 vm_object_hold(object); 889 blk0 = swp_pager_meta_ctl(object, pindex, 0); 890 891 if (blk0 == SWAPBLK_NONE) { 892 vm_object_drop(object); 893 return (FALSE); 894 } 895 vm_object_drop(object); 896 return (TRUE); 897 } 898 899 /* 900 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 901 * 902 * This removes any associated swap backing store, whether valid or 903 * not, from the page. This operates on any VM object, not just OBJT_SWAP 904 * objects. 905 * 906 * This routine is typically called when a page is made dirty, at 907 * which point any associated swap can be freed. MADV_FREE also 908 * calls us in a special-case situation 909 * 910 * NOTE!!! If the page is clean and the swap was valid, the caller 911 * should make the page dirty before calling this routine. 912 * This routine does NOT change the m->dirty status of the page. 913 * Also: MADV_FREE depends on it. 914 * 915 * The page must be busied. 916 * The caller can hold the object to avoid blocking, else we might block. 917 * No other requirements. 918 */ 919 void 920 swap_pager_unswapped(vm_page_t m) 921 { 922 if (m->flags & PG_SWAPPED) { 923 vm_object_hold(m->object); 924 KKASSERT(m->flags & PG_SWAPPED); 925 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 926 vm_page_flag_clear(m, PG_SWAPPED); 927 vm_object_drop(m->object); 928 } 929 } 930 931 /* 932 * SWAP_PAGER_STRATEGY() - read, write, free blocks 933 * 934 * This implements a VM OBJECT strategy function using swap backing store. 935 * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP 936 * types. 937 * 938 * This is intended to be a cacheless interface (i.e. caching occurs at 939 * higher levels), and is also used as a swap-based SSD cache for vnode 940 * and device objects. 941 * 942 * All I/O goes directly to and from the swap device. 943 * 944 * We currently attempt to run I/O synchronously or asynchronously as 945 * the caller requests. This isn't perfect because we loose error 946 * sequencing when we run multiple ops in parallel to satisfy a request. 947 * But this is swap, so we let it all hang out. 948 * 949 * No requirements. 950 */ 951 void 952 swap_pager_strategy(vm_object_t object, struct bio *bio) 953 { 954 struct buf *bp = bio->bio_buf; 955 struct bio *nbio; 956 vm_pindex_t start; 957 vm_pindex_t biox_blkno = 0; 958 int count; 959 char *data; 960 struct bio *biox; 961 struct buf *bufx; 962 #if 0 963 struct bio_track *track; 964 #endif 965 966 #if 0 967 /* 968 * tracking for swapdev vnode I/Os 969 */ 970 if (bp->b_cmd == BUF_CMD_READ) 971 track = &swapdev_vp->v_track_read; 972 else 973 track = &swapdev_vp->v_track_write; 974 #endif 975 976 if (bp->b_bcount & PAGE_MASK) { 977 bp->b_error = EINVAL; 978 bp->b_flags |= B_ERROR | B_INVAL; 979 biodone(bio); 980 kprintf("swap_pager_strategy: bp %p offset %lld size %d, " 981 "not page bounded\n", 982 bp, (long long)bio->bio_offset, (int)bp->b_bcount); 983 return; 984 } 985 986 /* 987 * Clear error indication, initialize page index, count, data pointer. 988 */ 989 bp->b_error = 0; 990 bp->b_flags &= ~B_ERROR; 991 bp->b_resid = bp->b_bcount; 992 993 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT); 994 count = howmany(bp->b_bcount, PAGE_SIZE); 995 data = bp->b_data; 996 997 /* 998 * Deal with BUF_CMD_FREEBLKS 999 */ 1000 if (bp->b_cmd == BUF_CMD_FREEBLKS) { 1001 /* 1002 * FREE PAGE(s) - destroy underlying swap that is no longer 1003 * needed. 1004 */ 1005 vm_object_hold(object); 1006 swp_pager_meta_free(object, start, count); 1007 vm_object_drop(object); 1008 bp->b_resid = 0; 1009 biodone(bio); 1010 return; 1011 } 1012 1013 /* 1014 * We need to be able to create a new cluster of I/O's. We cannot 1015 * use the caller fields of the passed bio so push a new one. 1016 * 1017 * Because nbio is just a placeholder for the cluster links, 1018 * we can biodone() the original bio instead of nbio to make 1019 * things a bit more efficient. 1020 */ 1021 nbio = push_bio(bio); 1022 nbio->bio_offset = bio->bio_offset; 1023 nbio->bio_caller_info1.cluster_head = NULL; 1024 nbio->bio_caller_info2.cluster_tail = NULL; 1025 1026 biox = NULL; 1027 bufx = NULL; 1028 1029 /* 1030 * Execute read or write 1031 */ 1032 vm_object_hold(object); 1033 1034 while (count > 0) { 1035 swblk_t blk; 1036 1037 /* 1038 * Obtain block. If block not found and writing, allocate a 1039 * new block and build it into the object. 1040 */ 1041 blk = swp_pager_meta_ctl(object, start, 0); 1042 if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) { 1043 blk = swp_pager_getswapspace(object, 1); 1044 if (blk == SWAPBLK_NONE) { 1045 bp->b_error = ENOMEM; 1046 bp->b_flags |= B_ERROR; 1047 break; 1048 } 1049 swp_pager_meta_build(object, start, blk); 1050 } 1051 1052 /* 1053 * Do we have to flush our current collection? Yes if: 1054 * 1055 * - no swap block at this index 1056 * - swap block is not contiguous 1057 * - we cross a physical disk boundry in the 1058 * stripe. 1059 */ 1060 if ( 1061 biox && (biox_blkno + btoc(bufx->b_bcount) != blk || 1062 ((biox_blkno ^ blk) & ~SWB_DMMASK) 1063 ) 1064 ) { 1065 if (bp->b_cmd == BUF_CMD_READ) { 1066 ++mycpu->gd_cnt.v_swapin; 1067 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount); 1068 } else { 1069 ++mycpu->gd_cnt.v_swapout; 1070 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount); 1071 bufx->b_dirtyend = bufx->b_bcount; 1072 } 1073 1074 /* 1075 * Finished with this buf. 1076 */ 1077 KKASSERT(bufx->b_bcount != 0); 1078 if (bufx->b_cmd != BUF_CMD_READ) 1079 bufx->b_dirtyend = bufx->b_bcount; 1080 biox = NULL; 1081 bufx = NULL; 1082 } 1083 1084 /* 1085 * Add new swapblk to biox, instantiating biox if necessary. 1086 * Zero-fill reads are able to take a shortcut. 1087 */ 1088 if (blk == SWAPBLK_NONE) { 1089 /* 1090 * We can only get here if we are reading. 1091 */ 1092 bzero(data, PAGE_SIZE); 1093 bp->b_resid -= PAGE_SIZE; 1094 } else { 1095 if (biox == NULL) { 1096 /* XXX chain count > 4, wait to <= 4 */ 1097 1098 bufx = getpbuf(NULL); 1099 biox = &bufx->b_bio1; 1100 cluster_append(nbio, bufx); 1101 bufx->b_cmd = bp->b_cmd; 1102 biox->bio_done = swap_chain_iodone; 1103 biox->bio_offset = (off_t)blk << PAGE_SHIFT; 1104 biox->bio_caller_info1.cluster_parent = nbio; 1105 biox_blkno = blk; 1106 bufx->b_bcount = 0; 1107 bufx->b_data = data; 1108 } 1109 bufx->b_bcount += PAGE_SIZE; 1110 } 1111 --count; 1112 ++start; 1113 data += PAGE_SIZE; 1114 } 1115 1116 vm_object_drop(object); 1117 1118 /* 1119 * Flush out last buffer 1120 */ 1121 if (biox) { 1122 if (bufx->b_cmd == BUF_CMD_READ) { 1123 ++mycpu->gd_cnt.v_swapin; 1124 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount); 1125 } else { 1126 ++mycpu->gd_cnt.v_swapout; 1127 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount); 1128 bufx->b_dirtyend = bufx->b_bcount; 1129 } 1130 KKASSERT(bufx->b_bcount); 1131 if (bufx->b_cmd != BUF_CMD_READ) 1132 bufx->b_dirtyend = bufx->b_bcount; 1133 /* biox, bufx = NULL */ 1134 } 1135 1136 /* 1137 * Now initiate all the I/O. Be careful looping on our chain as 1138 * I/O's may complete while we are still initiating them. 1139 * 1140 * If the request is a 100% sparse read no bios will be present 1141 * and we just biodone() the buffer. 1142 */ 1143 nbio->bio_caller_info2.cluster_tail = NULL; 1144 bufx = nbio->bio_caller_info1.cluster_head; 1145 1146 if (bufx) { 1147 while (bufx) { 1148 biox = &bufx->b_bio1; 1149 BUF_KERNPROC(bufx); 1150 bufx = bufx->b_cluster_next; 1151 vn_strategy(swapdev_vp, biox); 1152 } 1153 } else { 1154 biodone(bio); 1155 } 1156 1157 /* 1158 * Completion of the cluster will also call biodone_chain(nbio). 1159 * We never call biodone(nbio) so we don't have to worry about 1160 * setting up a bio_done callback. It's handled in the sub-IO. 1161 */ 1162 /**/ 1163 } 1164 1165 /* 1166 * biodone callback 1167 * 1168 * No requirements. 1169 */ 1170 static void 1171 swap_chain_iodone(struct bio *biox) 1172 { 1173 struct buf **nextp; 1174 struct buf *bufx; /* chained sub-buffer */ 1175 struct bio *nbio; /* parent nbio with chain glue */ 1176 struct buf *bp; /* original bp associated with nbio */ 1177 int chain_empty; 1178 1179 bufx = biox->bio_buf; 1180 nbio = biox->bio_caller_info1.cluster_parent; 1181 bp = nbio->bio_buf; 1182 1183 /* 1184 * Update the original buffer 1185 */ 1186 KKASSERT(bp != NULL); 1187 if (bufx->b_flags & B_ERROR) { 1188 atomic_set_int(&bufx->b_flags, B_ERROR); 1189 bp->b_error = bufx->b_error; /* race ok */ 1190 } else if (bufx->b_resid != 0) { 1191 atomic_set_int(&bufx->b_flags, B_ERROR); 1192 bp->b_error = EINVAL; /* race ok */ 1193 } else { 1194 atomic_subtract_int(&bp->b_resid, bufx->b_bcount); 1195 } 1196 1197 /* 1198 * Remove us from the chain. 1199 */ 1200 spin_lock(&swapbp_spin); 1201 nextp = &nbio->bio_caller_info1.cluster_head; 1202 while (*nextp != bufx) { 1203 KKASSERT(*nextp != NULL); 1204 nextp = &(*nextp)->b_cluster_next; 1205 } 1206 *nextp = bufx->b_cluster_next; 1207 chain_empty = (nbio->bio_caller_info1.cluster_head == NULL); 1208 spin_unlock(&swapbp_spin); 1209 1210 /* 1211 * Clean up bufx. If the chain is now empty we finish out 1212 * the parent. Note that we may be racing other completions 1213 * so we must use the chain_empty status from above. 1214 */ 1215 if (chain_empty) { 1216 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) { 1217 atomic_set_int(&bp->b_flags, B_ERROR); 1218 bp->b_error = EINVAL; 1219 } 1220 biodone_chain(nbio); 1221 } 1222 relpbuf(bufx, NULL); 1223 } 1224 1225 /* 1226 * SWAP_PAGER_GETPAGES() - bring page in from swap 1227 * 1228 * The requested page may have to be brought in from swap. Calculate the 1229 * swap block and bring in additional pages if possible. All pages must 1230 * have contiguous swap block assignments and reside in the same object. 1231 * 1232 * The caller has a single vm_object_pip_add() reference prior to 1233 * calling us and we should return with the same. 1234 * 1235 * The caller has BUSY'd the page. We should return with (*mpp) left busy, 1236 * and any additinal pages unbusied. 1237 * 1238 * If the caller encounters a PG_RAM page it will pass it to us even though 1239 * it may be valid and dirty. We cannot overwrite the page in this case! 1240 * The case is used to allow us to issue pure read-aheads. 1241 * 1242 * NOTE! XXX This code does not entirely pipeline yet due to the fact that 1243 * the PG_RAM page is validated at the same time as mreq. What we 1244 * really need to do is issue a separate read-ahead pbuf. 1245 * 1246 * No requirements. 1247 */ 1248 static int 1249 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess) 1250 { 1251 struct buf *bp; 1252 struct bio *bio; 1253 vm_page_t mreq; 1254 vm_page_t m; 1255 vm_offset_t kva; 1256 swblk_t blk; 1257 int i; 1258 int j; 1259 int raonly; 1260 int error; 1261 u_int32_t flags; 1262 vm_page_t marray[XIO_INTERNAL_PAGES]; 1263 1264 mreq = *mpp; 1265 1266 vm_object_hold(object); 1267 if (mreq->object != object) { 1268 panic("swap_pager_getpages: object mismatch %p/%p", 1269 object, 1270 mreq->object 1271 ); 1272 } 1273 1274 /* 1275 * We don't want to overwrite a fully valid page as it might be 1276 * dirty. This case can occur when e.g. vm_fault hits a perfectly 1277 * valid page with PG_RAM set. 1278 * 1279 * In this case we see if the next page is a suitable page-in 1280 * candidate and if it is we issue read-ahead. PG_RAM will be 1281 * set on the last page of the read-ahead to continue the pipeline. 1282 */ 1283 if (mreq->valid == VM_PAGE_BITS_ALL) { 1284 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) { 1285 vm_object_drop(object); 1286 return(VM_PAGER_OK); 1287 } 1288 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0); 1289 if (blk == SWAPBLK_NONE) { 1290 vm_object_drop(object); 1291 return(VM_PAGER_OK); 1292 } 1293 m = vm_page_lookup_busy_try(object, mreq->pindex + 1, 1294 TRUE, &error); 1295 if (error) { 1296 vm_object_drop(object); 1297 return(VM_PAGER_OK); 1298 } else if (m == NULL) { 1299 /* 1300 * Use VM_ALLOC_QUICK to avoid blocking on cache 1301 * page reuse. 1302 */ 1303 m = vm_page_alloc(object, mreq->pindex + 1, 1304 VM_ALLOC_QUICK); 1305 if (m == NULL) { 1306 vm_object_drop(object); 1307 return(VM_PAGER_OK); 1308 } 1309 } else { 1310 if (m->valid) { 1311 vm_page_wakeup(m); 1312 vm_object_drop(object); 1313 return(VM_PAGER_OK); 1314 } 1315 vm_page_unqueue_nowakeup(m); 1316 } 1317 /* page is busy */ 1318 mreq = m; 1319 raonly = 1; 1320 } else { 1321 raonly = 0; 1322 } 1323 1324 /* 1325 * Try to block-read contiguous pages from swap if sequential, 1326 * otherwise just read one page. Contiguous pages from swap must 1327 * reside within a single device stripe because the I/O cannot be 1328 * broken up across multiple stripes. 1329 * 1330 * Note that blk and iblk can be SWAPBLK_NONE but the loop is 1331 * set up such that the case(s) are handled implicitly. 1332 */ 1333 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1334 marray[0] = mreq; 1335 1336 for (i = 1; i <= swap_burst_read && 1337 i < XIO_INTERNAL_PAGES && 1338 mreq->pindex + i < object->size; ++i) { 1339 swblk_t iblk; 1340 1341 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0); 1342 if (iblk != blk + i) 1343 break; 1344 if ((blk ^ iblk) & ~SWB_DMMASK) 1345 break; 1346 m = vm_page_lookup_busy_try(object, mreq->pindex + i, 1347 TRUE, &error); 1348 if (error) { 1349 break; 1350 } else if (m == NULL) { 1351 /* 1352 * Use VM_ALLOC_QUICK to avoid blocking on cache 1353 * page reuse. 1354 */ 1355 m = vm_page_alloc(object, mreq->pindex + i, 1356 VM_ALLOC_QUICK); 1357 if (m == NULL) 1358 break; 1359 } else { 1360 if (m->valid) { 1361 vm_page_wakeup(m); 1362 break; 1363 } 1364 vm_page_unqueue_nowakeup(m); 1365 } 1366 /* page is busy */ 1367 marray[i] = m; 1368 } 1369 if (i > 1) 1370 vm_page_flag_set(marray[i - 1], PG_RAM); 1371 1372 /* 1373 * If mreq is the requested page and we have nothing to do return 1374 * VM_PAGER_FAIL. If raonly is set mreq is just another read-ahead 1375 * page and must be cleaned up. 1376 */ 1377 if (blk == SWAPBLK_NONE) { 1378 KKASSERT(i == 1); 1379 if (raonly) { 1380 vnode_pager_freepage(mreq); 1381 vm_object_drop(object); 1382 return(VM_PAGER_OK); 1383 } else { 1384 vm_object_drop(object); 1385 return(VM_PAGER_FAIL); 1386 } 1387 } 1388 1389 /* 1390 * map our page(s) into kva for input 1391 */ 1392 bp = getpbuf_kva(&nsw_rcount); 1393 bio = &bp->b_bio1; 1394 kva = (vm_offset_t) bp->b_kvabase; 1395 bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t)); 1396 pmap_qenter(kva, bp->b_xio.xio_pages, i); 1397 1398 bp->b_data = (caddr_t)kva; 1399 bp->b_bcount = PAGE_SIZE * i; 1400 bp->b_xio.xio_npages = i; 1401 bio->bio_done = swp_pager_async_iodone; 1402 bio->bio_offset = (off_t)blk << PAGE_SHIFT; 1403 bio->bio_caller_info1.index = SWBIO_READ; 1404 1405 /* 1406 * Set index. If raonly set the index beyond the array so all 1407 * the pages are treated the same, otherwise the original mreq is 1408 * at index 0. 1409 */ 1410 if (raonly) 1411 bio->bio_driver_info = (void *)(intptr_t)i; 1412 else 1413 bio->bio_driver_info = (void *)(intptr_t)0; 1414 1415 for (j = 0; j < i; ++j) 1416 vm_page_flag_set(bp->b_xio.xio_pages[j], PG_SWAPINPROG); 1417 1418 mycpu->gd_cnt.v_swapin++; 1419 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages; 1420 1421 /* 1422 * We still hold the lock on mreq, and our automatic completion routine 1423 * does not remove it. 1424 */ 1425 vm_object_pip_add(object, bp->b_xio.xio_npages); 1426 1427 /* 1428 * perform the I/O. NOTE!!! bp cannot be considered valid after 1429 * this point because we automatically release it on completion. 1430 * Instead, we look at the one page we are interested in which we 1431 * still hold a lock on even through the I/O completion. 1432 * 1433 * The other pages in our m[] array are also released on completion, 1434 * so we cannot assume they are valid anymore either. 1435 */ 1436 bp->b_cmd = BUF_CMD_READ; 1437 BUF_KERNPROC(bp); 1438 vn_strategy(swapdev_vp, bio); 1439 1440 /* 1441 * Wait for the page we want to complete. PG_SWAPINPROG is always 1442 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1443 * is set in the meta-data. 1444 * 1445 * If this is a read-ahead only we return immediately without 1446 * waiting for I/O. 1447 */ 1448 if (raonly) { 1449 vm_object_drop(object); 1450 return(VM_PAGER_OK); 1451 } 1452 1453 /* 1454 * Read-ahead includes originally requested page case. 1455 */ 1456 for (;;) { 1457 flags = mreq->flags; 1458 cpu_ccfence(); 1459 if ((flags & PG_SWAPINPROG) == 0) 1460 break; 1461 tsleep_interlock(mreq, 0); 1462 if (!atomic_cmpset_int(&mreq->flags, flags, 1463 flags | PG_WANTED | PG_REFERENCED)) { 1464 continue; 1465 } 1466 mycpu->gd_cnt.v_intrans++; 1467 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) { 1468 kprintf( 1469 "swap_pager: indefinite wait buffer: " 1470 " bp %p offset: %lld, size: %ld\n", 1471 bp, 1472 (long long)bio->bio_offset, 1473 (long)bp->b_bcount 1474 ); 1475 } 1476 } 1477 1478 /* 1479 * Disallow speculative reads prior to the PG_SWAPINPROG test. 1480 */ 1481 cpu_lfence(); 1482 1483 /* 1484 * mreq is left busied after completion, but all the other pages 1485 * are freed. If we had an unrecoverable read error the page will 1486 * not be valid. 1487 */ 1488 vm_object_drop(object); 1489 if (mreq->valid != VM_PAGE_BITS_ALL) 1490 return(VM_PAGER_ERROR); 1491 else 1492 return(VM_PAGER_OK); 1493 1494 /* 1495 * A final note: in a low swap situation, we cannot deallocate swap 1496 * and mark a page dirty here because the caller is likely to mark 1497 * the page clean when we return, causing the page to possibly revert 1498 * to all-zero's later. 1499 */ 1500 } 1501 1502 /* 1503 * swap_pager_putpages: 1504 * 1505 * Assign swap (if necessary) and initiate I/O on the specified pages. 1506 * 1507 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1508 * are automatically converted to SWAP objects. 1509 * 1510 * In a low memory situation we may block in vn_strategy(), but the new 1511 * vm_page reservation system coupled with properly written VFS devices 1512 * should ensure that no low-memory deadlock occurs. This is an area 1513 * which needs work. 1514 * 1515 * The parent has N vm_object_pip_add() references prior to 1516 * calling us and will remove references for rtvals[] that are 1517 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1518 * completion. 1519 * 1520 * The parent has soft-busy'd the pages it passes us and will unbusy 1521 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1522 * We need to unbusy the rest on I/O completion. 1523 * 1524 * No requirements. 1525 */ 1526 void 1527 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1528 int flags, int *rtvals) 1529 { 1530 int i; 1531 int n = 0; 1532 1533 vm_object_hold(object); 1534 1535 if (count && m[0]->object != object) { 1536 panic("swap_pager_getpages: object mismatch %p/%p", 1537 object, 1538 m[0]->object 1539 ); 1540 } 1541 1542 /* 1543 * Step 1 1544 * 1545 * Turn object into OBJT_SWAP 1546 * Check for bogus sysops 1547 * 1548 * Force sync if not pageout process, we don't want any single 1549 * non-pageout process to be able to hog the I/O subsystem! This 1550 * can be overridden by setting. 1551 */ 1552 if (object->type == OBJT_DEFAULT) { 1553 if (object->type == OBJT_DEFAULT) 1554 swp_pager_meta_convert(object); 1555 } 1556 1557 /* 1558 * Normally we force synchronous swap I/O if this is not the 1559 * pageout daemon to prevent any single user process limited 1560 * via RLIMIT_RSS from hogging swap write bandwidth. 1561 */ 1562 if (curthread != pagethread && swap_user_async == 0) 1563 flags |= VM_PAGER_PUT_SYNC; 1564 1565 /* 1566 * Step 2 1567 * 1568 * Update nsw parameters from swap_async_max sysctl values. 1569 * Do not let the sysop crash the machine with bogus numbers. 1570 */ 1571 if (swap_async_max != nsw_wcount_async_max) { 1572 int n; 1573 1574 /* 1575 * limit range 1576 */ 1577 if ((n = swap_async_max) > nswbuf_kva / 2) 1578 n = nswbuf_kva / 2; 1579 if (n < 1) 1580 n = 1; 1581 swap_async_max = n; 1582 1583 /* 1584 * Adjust difference ( if possible ). If the current async 1585 * count is too low, we may not be able to make the adjustment 1586 * at this time. 1587 * 1588 * vm_token needed for nsw_wcount sleep interlock 1589 */ 1590 lwkt_gettoken(&vm_token); 1591 n -= nsw_wcount_async_max; 1592 if (nsw_wcount_async + n >= 0) { 1593 nsw_wcount_async_max += n; 1594 pbuf_adjcount(&nsw_wcount_async, n); 1595 } 1596 lwkt_reltoken(&vm_token); 1597 } 1598 1599 /* 1600 * Step 3 1601 * 1602 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1603 * The page is left dirty until the pageout operation completes 1604 * successfully. 1605 */ 1606 1607 for (i = 0; i < count; i += n) { 1608 struct buf *bp; 1609 struct bio *bio; 1610 swblk_t blk; 1611 int j; 1612 1613 /* 1614 * Maximum I/O size is limited by a number of factors. 1615 */ 1616 1617 n = min(BLIST_MAX_ALLOC, count - i); 1618 n = min(n, nsw_cluster_max); 1619 1620 lwkt_gettoken(&vm_token); 1621 1622 /* 1623 * Get biggest block of swap we can. If we fail, fall 1624 * back and try to allocate a smaller block. Don't go 1625 * overboard trying to allocate space if it would overly 1626 * fragment swap. 1627 */ 1628 while ( 1629 (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE && 1630 n > 4 1631 ) { 1632 n >>= 1; 1633 } 1634 if (blk == SWAPBLK_NONE) { 1635 for (j = 0; j < n; ++j) 1636 rtvals[i+j] = VM_PAGER_FAIL; 1637 lwkt_reltoken(&vm_token); 1638 continue; 1639 } 1640 if (vm_report_swap_allocs > 0) { 1641 kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n); 1642 --vm_report_swap_allocs; 1643 } 1644 1645 /* 1646 * The I/O we are constructing cannot cross a physical 1647 * disk boundry in the swap stripe. 1648 */ 1649 if ((blk ^ (blk + n)) & ~SWB_DMMASK) { 1650 j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk; 1651 swp_pager_freeswapspace(object, blk + j, n - j); 1652 n = j; 1653 } 1654 1655 /* 1656 * All I/O parameters have been satisfied, build the I/O 1657 * request and assign the swap space. 1658 */ 1659 if ((flags & VM_PAGER_PUT_SYNC)) 1660 bp = getpbuf_kva(&nsw_wcount_sync); 1661 else 1662 bp = getpbuf_kva(&nsw_wcount_async); 1663 bio = &bp->b_bio1; 1664 1665 lwkt_reltoken(&vm_token); 1666 1667 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1668 1669 bp->b_bcount = PAGE_SIZE * n; 1670 bio->bio_offset = (off_t)blk << PAGE_SHIFT; 1671 1672 for (j = 0; j < n; ++j) { 1673 vm_page_t mreq = m[i+j]; 1674 1675 swp_pager_meta_build(mreq->object, mreq->pindex, 1676 blk + j); 1677 if (object->type == OBJT_SWAP) 1678 vm_page_dirty(mreq); 1679 rtvals[i+j] = VM_PAGER_OK; 1680 1681 vm_page_flag_set(mreq, PG_SWAPINPROG); 1682 bp->b_xio.xio_pages[j] = mreq; 1683 } 1684 bp->b_xio.xio_npages = n; 1685 1686 mycpu->gd_cnt.v_swapout++; 1687 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages; 1688 1689 bp->b_dirtyoff = 0; /* req'd for NFS */ 1690 bp->b_dirtyend = bp->b_bcount; /* req'd for NFS */ 1691 bp->b_cmd = BUF_CMD_WRITE; 1692 bio->bio_caller_info1.index = SWBIO_WRITE; 1693 1694 #if 0 1695 /* PMAP TESTING CODE (useful, keep it in but #if 0'd) */ 1696 bio->bio_crc = iscsi_crc32(bp->b_data, bp->b_bcount); 1697 { 1698 uint32_t crc = 0; 1699 for (j = 0; j < n; ++j) { 1700 vm_page_t mm = bp->b_xio.xio_pages[j]; 1701 char *p = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mm)); 1702 crc = iscsi_crc32_ext(p, PAGE_SIZE, crc); 1703 } 1704 if (bio->bio_crc != crc) { 1705 kprintf("PREWRITE MISMATCH-A " 1706 "bdata=%08x dmap=%08x bdata=%08x (%d)\n", 1707 bio->bio_crc, 1708 crc, 1709 iscsi_crc32(bp->b_data, bp->b_bcount), 1710 bp->b_bcount); 1711 #ifdef _KERNEL_VIRTUAL 1712 madvise(bp->b_data, bp->b_bcount, MADV_INVAL); 1713 #endif 1714 crc = 0; 1715 for (j = 0; j < n; ++j) { 1716 vm_page_t mm = bp->b_xio.xio_pages[j]; 1717 char *p = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mm)); 1718 crc = iscsi_crc32_ext(p, PAGE_SIZE, crc); 1719 } 1720 kprintf("PREWRITE MISMATCH-B " 1721 "bdata=%08x dmap=%08x\n", 1722 iscsi_crc32(bp->b_data, bp->b_bcount), 1723 crc); 1724 } 1725 } 1726 #endif 1727 1728 /* 1729 * asynchronous 1730 */ 1731 if ((flags & VM_PAGER_PUT_SYNC) == 0) { 1732 bio->bio_done = swp_pager_async_iodone; 1733 BUF_KERNPROC(bp); 1734 vn_strategy(swapdev_vp, bio); 1735 1736 for (j = 0; j < n; ++j) 1737 rtvals[i+j] = VM_PAGER_PEND; 1738 continue; 1739 } 1740 1741 /* 1742 * Issue synchrnously. 1743 * 1744 * Wait for the sync I/O to complete, then update rtvals. 1745 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1746 * our async completion routine at the end, thus avoiding a 1747 * double-free. 1748 */ 1749 bio->bio_caller_info1.index |= SWBIO_SYNC; 1750 if (flags & VM_PAGER_TRY_TO_CACHE) 1751 bio->bio_caller_info1.index |= SWBIO_TTC; 1752 bio->bio_done = biodone_sync; 1753 bio->bio_flags |= BIO_SYNC; 1754 vn_strategy(swapdev_vp, bio); 1755 biowait(bio, "swwrt"); 1756 1757 for (j = 0; j < n; ++j) 1758 rtvals[i+j] = VM_PAGER_PEND; 1759 1760 /* 1761 * Now that we are through with the bp, we can call the 1762 * normal async completion, which frees everything up. 1763 */ 1764 swp_pager_async_iodone(bio); 1765 } 1766 vm_object_drop(object); 1767 } 1768 1769 /* 1770 * No requirements. 1771 * 1772 * Recalculate the low and high-water marks. 1773 */ 1774 void 1775 swap_pager_newswap(void) 1776 { 1777 /* 1778 * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the 1779 * limitation imposed by the blist code. Remember that this 1780 * will be divided by NSWAP_MAX (4), so each swap device is 1781 * limited to around a terrabyte. 1782 */ 1783 if (vm_swap_max) { 1784 nswap_lowat = (int64_t)vm_swap_max * 4 / 100; /* 4% left */ 1785 nswap_hiwat = (int64_t)vm_swap_max * 6 / 100; /* 6% left */ 1786 kprintf("swap low/high-water marks set to %d/%d\n", 1787 nswap_lowat, nswap_hiwat); 1788 } else { 1789 nswap_lowat = 128; 1790 nswap_hiwat = 512; 1791 } 1792 swp_sizecheck(); 1793 } 1794 1795 /* 1796 * swp_pager_async_iodone: 1797 * 1798 * Completion routine for asynchronous reads and writes from/to swap. 1799 * Also called manually by synchronous code to finish up a bp. 1800 * 1801 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1802 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1803 * unbusy all pages except the 'main' request page. For WRITE 1804 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1805 * because we marked them all VM_PAGER_PEND on return from putpages ). 1806 * 1807 * This routine may not block. 1808 * 1809 * No requirements. 1810 */ 1811 static void 1812 swp_pager_async_iodone(struct bio *bio) 1813 { 1814 struct buf *bp = bio->bio_buf; 1815 vm_object_t object = NULL; 1816 int i; 1817 int *nswptr; 1818 1819 /* 1820 * report error 1821 */ 1822 if (bp->b_flags & B_ERROR) { 1823 kprintf( 1824 "swap_pager: I/O error - %s failed; offset %lld," 1825 "size %ld, error %d\n", 1826 ((bio->bio_caller_info1.index & SWBIO_READ) ? 1827 "pagein" : "pageout"), 1828 (long long)bio->bio_offset, 1829 (long)bp->b_bcount, 1830 bp->b_error 1831 ); 1832 } 1833 1834 /* 1835 * set object. 1836 */ 1837 if (bp->b_xio.xio_npages) 1838 object = bp->b_xio.xio_pages[0]->object; 1839 1840 #if 0 1841 /* PMAP TESTING CODE (useful, keep it in but #if 0'd) */ 1842 if (bio->bio_caller_info1.index & SWBIO_WRITE) { 1843 if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) { 1844 kprintf("SWAPOUT: BADCRC %08x %08x\n", 1845 bio->bio_crc, 1846 iscsi_crc32(bp->b_data, bp->b_bcount)); 1847 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 1848 vm_page_t m = bp->b_xio.xio_pages[i]; 1849 if (m->flags & PG_WRITEABLE) 1850 kprintf("SWAPOUT: " 1851 "%d/%d %p writable\n", 1852 i, bp->b_xio.xio_npages, m); 1853 } 1854 } 1855 } 1856 #endif 1857 1858 /* 1859 * remove the mapping for kernel virtual 1860 */ 1861 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages); 1862 1863 /* 1864 * cleanup pages. If an error occurs writing to swap, we are in 1865 * very serious trouble. If it happens to be a disk error, though, 1866 * we may be able to recover by reassigning the swap later on. So 1867 * in this case we remove the m->swapblk assignment for the page 1868 * but do not free it in the rlist. The errornous block(s) are thus 1869 * never reallocated as swap. Redirty the page and continue. 1870 */ 1871 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 1872 vm_page_t m = bp->b_xio.xio_pages[i]; 1873 1874 if (bp->b_flags & B_ERROR) { 1875 /* 1876 * If an error occurs I'd love to throw the swapblk 1877 * away without freeing it back to swapspace, so it 1878 * can never be used again. But I can't from an 1879 * interrupt. 1880 */ 1881 1882 if (bio->bio_caller_info1.index & SWBIO_READ) { 1883 /* 1884 * When reading, reqpage needs to stay 1885 * locked for the parent, but all other 1886 * pages can be freed. We still want to 1887 * wakeup the parent waiting on the page, 1888 * though. ( also: pg_reqpage can be -1 and 1889 * not match anything ). 1890 * 1891 * We have to wake specifically requested pages 1892 * up too because we cleared PG_SWAPINPROG and 1893 * someone may be waiting for that. 1894 * 1895 * NOTE: For reads, m->dirty will probably 1896 * be overridden by the original caller 1897 * of getpages so don't play cute tricks 1898 * here. 1899 * 1900 * NOTE: We can't actually free the page from 1901 * here, because this is an interrupt. 1902 * It is not legal to mess with 1903 * object->memq from an interrupt. 1904 * Deactivate the page instead. 1905 * 1906 * WARNING! The instant PG_SWAPINPROG is 1907 * cleared another cpu may start 1908 * using the mreq page (it will 1909 * check m->valid immediately). 1910 */ 1911 1912 m->valid = 0; 1913 vm_page_flag_clear(m, PG_SWAPINPROG); 1914 1915 /* 1916 * bio_driver_info holds the requested page 1917 * index. 1918 */ 1919 if (i != (int)(intptr_t)bio->bio_driver_info) { 1920 vm_page_deactivate(m); 1921 vm_page_wakeup(m); 1922 } else { 1923 vm_page_flash(m); 1924 } 1925 /* 1926 * If i == bp->b_pager.pg_reqpage, do not wake 1927 * the page up. The caller needs to. 1928 */ 1929 } else { 1930 /* 1931 * If a write error occurs remove the swap 1932 * assignment (note that PG_SWAPPED may or 1933 * may not be set depending on prior activity). 1934 * 1935 * Re-dirty OBJT_SWAP pages as there is no 1936 * other backing store, we can't throw the 1937 * page away. 1938 * 1939 * Non-OBJT_SWAP pages (aka swapcache) must 1940 * not be dirtied since they may not have 1941 * been dirty in the first place, and they 1942 * do have backing store (the vnode). 1943 */ 1944 vm_page_busy_wait(m, FALSE, "swadpg"); 1945 vm_object_hold(m->object); 1946 swp_pager_meta_ctl(m->object, m->pindex, 1947 SWM_FREE); 1948 vm_page_flag_clear(m, PG_SWAPPED); 1949 vm_object_drop(m->object); 1950 if (m->object->type == OBJT_SWAP) { 1951 vm_page_dirty(m); 1952 vm_page_activate(m); 1953 } 1954 vm_page_io_finish(m); 1955 vm_page_flag_clear(m, PG_SWAPINPROG); 1956 vm_page_wakeup(m); 1957 } 1958 } else if (bio->bio_caller_info1.index & SWBIO_READ) { 1959 /* 1960 * NOTE: for reads, m->dirty will probably be 1961 * overridden by the original caller of getpages so 1962 * we cannot set them in order to free the underlying 1963 * swap in a low-swap situation. I don't think we'd 1964 * want to do that anyway, but it was an optimization 1965 * that existed in the old swapper for a time before 1966 * it got ripped out due to precisely this problem. 1967 * 1968 * If not the requested page then deactivate it. 1969 * 1970 * Note that the requested page, reqpage, is left 1971 * busied, but we still have to wake it up. The 1972 * other pages are released (unbusied) by 1973 * vm_page_wakeup(). We do not set reqpage's 1974 * valid bits here, it is up to the caller. 1975 */ 1976 1977 /* 1978 * NOTE: Can't call pmap_clear_modify(m) from an 1979 * interrupt thread, the pmap code may have to 1980 * map non-kernel pmaps and currently asserts 1981 * the case. 1982 * 1983 * WARNING! The instant PG_SWAPINPROG is 1984 * cleared another cpu may start 1985 * using the mreq page (it will 1986 * check m->valid immediately). 1987 */ 1988 /*pmap_clear_modify(m);*/ 1989 m->valid = VM_PAGE_BITS_ALL; 1990 vm_page_undirty(m); 1991 vm_page_flag_set(m, PG_SWAPPED); 1992 vm_page_flag_clear(m, PG_SWAPINPROG); 1993 1994 /* 1995 * We have to wake specifically requested pages 1996 * up too because we cleared PG_SWAPINPROG and 1997 * could be waiting for it in getpages. However, 1998 * be sure to not unbusy getpages specifically 1999 * requested page - getpages expects it to be 2000 * left busy. 2001 * 2002 * bio_driver_info holds the requested page 2003 */ 2004 if (i != (int)(intptr_t)bio->bio_driver_info) { 2005 vm_page_deactivate(m); 2006 vm_page_wakeup(m); 2007 } else { 2008 vm_page_flash(m); 2009 } 2010 } else { 2011 /* 2012 * Mark the page clean but do not mess with the 2013 * pmap-layer's modified state. That state should 2014 * also be clear since the caller protected the 2015 * page VM_PROT_READ, but allow the case. 2016 * 2017 * We are in an interrupt, avoid pmap operations. 2018 * 2019 * If we have a severe page deficit, deactivate the 2020 * page. Do not try to cache it (which would also 2021 * involve a pmap op), because the page might still 2022 * be read-heavy. 2023 * 2024 * When using the swap to cache clean vnode pages 2025 * we do not mess with the page dirty bits. 2026 * 2027 * NOTE! Nobody is waiting for the key mreq page 2028 * on write completion. 2029 */ 2030 vm_page_busy_wait(m, FALSE, "swadpg"); 2031 if (m->object->type == OBJT_SWAP) 2032 vm_page_undirty(m); 2033 vm_page_flag_set(m, PG_SWAPPED); 2034 vm_page_flag_clear(m, PG_SWAPINPROG); 2035 if (vm_page_count_severe()) 2036 vm_page_deactivate(m); 2037 vm_page_io_finish(m); 2038 if (bio->bio_caller_info1.index & SWBIO_TTC) 2039 vm_page_try_to_cache(m); 2040 else 2041 vm_page_wakeup(m); 2042 } 2043 } 2044 2045 /* 2046 * adjust pip. NOTE: the original parent may still have its own 2047 * pip refs on the object. 2048 */ 2049 2050 if (object) 2051 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages); 2052 2053 /* 2054 * Release the physical I/O buffer. 2055 * 2056 * NOTE: Due to synchronous operations in the write case b_cmd may 2057 * already be set to BUF_CMD_DONE and BIO_SYNC may have already 2058 * been cleared. 2059 * 2060 * Use vm_token to interlock nsw_rcount/wcount wakeup? 2061 */ 2062 lwkt_gettoken(&vm_token); 2063 if (bio->bio_caller_info1.index & SWBIO_READ) 2064 nswptr = &nsw_rcount; 2065 else if (bio->bio_caller_info1.index & SWBIO_SYNC) 2066 nswptr = &nsw_wcount_sync; 2067 else 2068 nswptr = &nsw_wcount_async; 2069 bp->b_cmd = BUF_CMD_DONE; 2070 relpbuf(bp, nswptr); 2071 lwkt_reltoken(&vm_token); 2072 } 2073 2074 /* 2075 * Fault-in a potentially swapped page and remove the swap reference. 2076 * (used by swapoff code) 2077 * 2078 * object must be held. 2079 */ 2080 static __inline void 2081 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex) 2082 { 2083 struct vnode *vp; 2084 vm_page_t m; 2085 int error; 2086 2087 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2088 2089 if (object->type == OBJT_VNODE) { 2090 /* 2091 * Any swap related to a vnode is due to swapcache. We must 2092 * vget() the vnode in case it is not active (otherwise 2093 * vref() will panic). Calling vm_object_page_remove() will 2094 * ensure that any swap ref is removed interlocked with the 2095 * page. clean_only is set to TRUE so we don't throw away 2096 * dirty pages. 2097 */ 2098 vp = object->handle; 2099 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE); 2100 if (error == 0) { 2101 vm_object_page_remove(object, pindex, pindex + 1, TRUE); 2102 vput(vp); 2103 } 2104 } else { 2105 /* 2106 * Otherwise it is a normal OBJT_SWAP object and we can 2107 * fault the page in and remove the swap. 2108 */ 2109 m = vm_fault_object_page(object, IDX_TO_OFF(pindex), 2110 VM_PROT_NONE, 2111 VM_FAULT_DIRTY | VM_FAULT_UNSWAP, 2112 sharedp, &error); 2113 if (m) 2114 vm_page_unhold(m); 2115 } 2116 } 2117 2118 /* 2119 * This removes all swap blocks related to a particular device. We have 2120 * to be careful of ripups during the scan. 2121 */ 2122 static int swp_pager_swapoff_callback(struct swblock *swap, void *data); 2123 2124 int 2125 swap_pager_swapoff(int devidx) 2126 { 2127 struct vm_object_hash *hash; 2128 struct swswapoffinfo info; 2129 struct vm_object marker; 2130 vm_object_t object; 2131 int n; 2132 2133 bzero(&marker, sizeof(marker)); 2134 marker.type = OBJT_MARKER; 2135 2136 for (n = 0; n < VMOBJ_HSIZE; ++n) { 2137 hash = &vm_object_hash[n]; 2138 2139 lwkt_gettoken(&hash->token); 2140 TAILQ_INSERT_HEAD(&hash->list, &marker, object_list); 2141 2142 while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) { 2143 if (object->type == OBJT_MARKER) 2144 goto skip; 2145 if (object->type != OBJT_SWAP && 2146 object->type != OBJT_VNODE) 2147 goto skip; 2148 vm_object_hold(object); 2149 if (object->type != OBJT_SWAP && 2150 object->type != OBJT_VNODE) { 2151 vm_object_drop(object); 2152 goto skip; 2153 } 2154 info.object = object; 2155 info.shared = 0; 2156 info.devidx = devidx; 2157 swblock_rb_tree_RB_SCAN(&object->swblock_root, 2158 NULL, swp_pager_swapoff_callback, 2159 &info); 2160 vm_object_drop(object); 2161 skip: 2162 if (object == TAILQ_NEXT(&marker, object_list)) { 2163 TAILQ_REMOVE(&hash->list, &marker, object_list); 2164 TAILQ_INSERT_AFTER(&hash->list, object, 2165 &marker, object_list); 2166 } 2167 } 2168 TAILQ_REMOVE(&hash->list, &marker, object_list); 2169 lwkt_reltoken(&hash->token); 2170 } 2171 2172 /* 2173 * If we fail to locate all swblocks we just fail gracefully and 2174 * do not bother to restore paging on the swap device. If the 2175 * user wants to retry the user can retry. 2176 */ 2177 if (swdevt[devidx].sw_nused) 2178 return (1); 2179 else 2180 return (0); 2181 } 2182 2183 static 2184 int 2185 swp_pager_swapoff_callback(struct swblock *swap, void *data) 2186 { 2187 struct swswapoffinfo *info = data; 2188 vm_object_t object = info->object; 2189 vm_pindex_t index; 2190 swblk_t v; 2191 int i; 2192 2193 index = swap->swb_index; 2194 for (i = 0; i < SWAP_META_PAGES; ++i) { 2195 /* 2196 * Make sure we don't race a dying object. This will 2197 * kill the scan of the object's swap blocks entirely. 2198 */ 2199 if (object->flags & OBJ_DEAD) 2200 return(-1); 2201 2202 /* 2203 * Fault the page, which can obviously block. If the swap 2204 * structure disappears break out. 2205 */ 2206 v = swap->swb_pages[i]; 2207 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) { 2208 swp_pager_fault_page(object, &info->shared, 2209 swap->swb_index + i); 2210 /* swap ptr might go away */ 2211 if (RB_LOOKUP(swblock_rb_tree, 2212 &object->swblock_root, index) != swap) { 2213 break; 2214 } 2215 } 2216 } 2217 return(0); 2218 } 2219 2220 /************************************************************************ 2221 * SWAP META DATA * 2222 ************************************************************************ 2223 * 2224 * These routines manipulate the swap metadata stored in the 2225 * OBJT_SWAP object. 2226 * 2227 * Swap metadata is implemented with a global hash and not directly 2228 * linked into the object. Instead the object simply contains 2229 * appropriate tracking counters. 2230 */ 2231 2232 /* 2233 * Lookup the swblock containing the specified swap block index. 2234 * 2235 * The caller must hold the object. 2236 */ 2237 static __inline 2238 struct swblock * 2239 swp_pager_lookup(vm_object_t object, vm_pindex_t index) 2240 { 2241 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2242 index &= ~(vm_pindex_t)SWAP_META_MASK; 2243 return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index)); 2244 } 2245 2246 /* 2247 * Remove a swblock from the RB tree. 2248 * 2249 * The caller must hold the object. 2250 */ 2251 static __inline 2252 void 2253 swp_pager_remove(vm_object_t object, struct swblock *swap) 2254 { 2255 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2256 RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap); 2257 } 2258 2259 /* 2260 * Convert default object to swap object if necessary 2261 * 2262 * The caller must hold the object. 2263 */ 2264 static void 2265 swp_pager_meta_convert(vm_object_t object) 2266 { 2267 if (object->type == OBJT_DEFAULT) { 2268 object->type = OBJT_SWAP; 2269 KKASSERT(object->swblock_count == 0); 2270 } 2271 } 2272 2273 /* 2274 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 2275 * 2276 * We first convert the object to a swap object if it is a default 2277 * object. Vnode objects do not need to be converted. 2278 * 2279 * The specified swapblk is added to the object's swap metadata. If 2280 * the swapblk is not valid, it is freed instead. Any previously 2281 * assigned swapblk is freed. 2282 * 2283 * The caller must hold the object. 2284 */ 2285 static void 2286 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk) 2287 { 2288 struct swblock *swap; 2289 struct swblock *oswap; 2290 vm_pindex_t v; 2291 2292 KKASSERT(swapblk != SWAPBLK_NONE); 2293 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2294 2295 /* 2296 * Convert object if necessary 2297 */ 2298 if (object->type == OBJT_DEFAULT) 2299 swp_pager_meta_convert(object); 2300 2301 /* 2302 * Locate swblock. If not found create, but if we aren't adding 2303 * anything just return. If we run out of space in the map we wait 2304 * and, since the hash table may have changed, retry. 2305 */ 2306 retry: 2307 swap = swp_pager_lookup(object, index); 2308 2309 if (swap == NULL) { 2310 int i; 2311 2312 swap = zalloc(swap_zone); 2313 if (swap == NULL) { 2314 vm_wait(0); 2315 goto retry; 2316 } 2317 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK; 2318 swap->swb_count = 0; 2319 2320 ++object->swblock_count; 2321 2322 for (i = 0; i < SWAP_META_PAGES; ++i) 2323 swap->swb_pages[i] = SWAPBLK_NONE; 2324 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap); 2325 KKASSERT(oswap == NULL); 2326 } 2327 2328 /* 2329 * Delete prior contents of metadata. 2330 * 2331 * NOTE: Decrement swb_count after the freeing operation (which 2332 * might block) to prevent racing destruction of the swblock. 2333 */ 2334 index &= SWAP_META_MASK; 2335 2336 while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) { 2337 swap->swb_pages[index] = SWAPBLK_NONE; 2338 /* can block */ 2339 swp_pager_freeswapspace(object, v, 1); 2340 --swap->swb_count; 2341 --mycpu->gd_vmtotal.t_vm; 2342 } 2343 2344 /* 2345 * Enter block into metadata 2346 */ 2347 swap->swb_pages[index] = swapblk; 2348 if (swapblk != SWAPBLK_NONE) { 2349 ++swap->swb_count; 2350 ++mycpu->gd_vmtotal.t_vm; 2351 } 2352 } 2353 2354 /* 2355 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 2356 * 2357 * The requested range of blocks is freed, with any associated swap 2358 * returned to the swap bitmap. 2359 * 2360 * This routine will free swap metadata structures as they are cleaned 2361 * out. This routine does *NOT* operate on swap metadata associated 2362 * with resident pages. 2363 * 2364 * The caller must hold the object. 2365 */ 2366 static int swp_pager_meta_free_callback(struct swblock *swb, void *data); 2367 2368 static void 2369 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count) 2370 { 2371 struct swfreeinfo info; 2372 2373 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2374 2375 /* 2376 * Nothing to do 2377 */ 2378 if (object->swblock_count == 0) { 2379 KKASSERT(RB_EMPTY(&object->swblock_root)); 2380 return; 2381 } 2382 if (count == 0) 2383 return; 2384 2385 /* 2386 * Setup for RB tree scan. Note that the pindex range can be huge 2387 * due to the 64 bit page index space so we cannot safely iterate. 2388 */ 2389 info.object = object; 2390 info.basei = index & ~(vm_pindex_t)SWAP_META_MASK; 2391 info.begi = index; 2392 info.endi = index + count - 1; 2393 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp, 2394 swp_pager_meta_free_callback, &info); 2395 } 2396 2397 /* 2398 * The caller must hold the object. 2399 */ 2400 static 2401 int 2402 swp_pager_meta_free_callback(struct swblock *swap, void *data) 2403 { 2404 struct swfreeinfo *info = data; 2405 vm_object_t object = info->object; 2406 int index; 2407 int eindex; 2408 2409 /* 2410 * Figure out the range within the swblock. The wider scan may 2411 * return edge-case swap blocks when the start and/or end points 2412 * are in the middle of a block. 2413 */ 2414 if (swap->swb_index < info->begi) 2415 index = (int)info->begi & SWAP_META_MASK; 2416 else 2417 index = 0; 2418 2419 if (swap->swb_index + SWAP_META_PAGES > info->endi) 2420 eindex = (int)info->endi & SWAP_META_MASK; 2421 else 2422 eindex = SWAP_META_MASK; 2423 2424 /* 2425 * Scan and free the blocks. The loop terminates early 2426 * if (swap) runs out of blocks and could be freed. 2427 * 2428 * NOTE: Decrement swb_count after swp_pager_freeswapspace() 2429 * to deal with a zfree race. 2430 */ 2431 while (index <= eindex) { 2432 swblk_t v = swap->swb_pages[index]; 2433 2434 if (v != SWAPBLK_NONE) { 2435 swap->swb_pages[index] = SWAPBLK_NONE; 2436 /* can block */ 2437 swp_pager_freeswapspace(object, v, 1); 2438 --mycpu->gd_vmtotal.t_vm; 2439 if (--swap->swb_count == 0) { 2440 swp_pager_remove(object, swap); 2441 zfree(swap_zone, swap); 2442 --object->swblock_count; 2443 break; 2444 } 2445 } 2446 ++index; 2447 } 2448 2449 /* swap may be invalid here due to zfree above */ 2450 lwkt_yield(); 2451 2452 return(0); 2453 } 2454 2455 /* 2456 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 2457 * 2458 * This routine locates and destroys all swap metadata associated with 2459 * an object. 2460 * 2461 * NOTE: Decrement swb_count after the freeing operation (which 2462 * might block) to prevent racing destruction of the swblock. 2463 * 2464 * The caller must hold the object. 2465 */ 2466 static void 2467 swp_pager_meta_free_all(vm_object_t object) 2468 { 2469 struct swblock *swap; 2470 int i; 2471 2472 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2473 2474 while ((swap = RB_ROOT(&object->swblock_root)) != NULL) { 2475 swp_pager_remove(object, swap); 2476 for (i = 0; i < SWAP_META_PAGES; ++i) { 2477 swblk_t v = swap->swb_pages[i]; 2478 if (v != SWAPBLK_NONE) { 2479 /* can block */ 2480 swp_pager_freeswapspace(object, v, 1); 2481 --swap->swb_count; 2482 --mycpu->gd_vmtotal.t_vm; 2483 } 2484 } 2485 if (swap->swb_count != 0) 2486 panic("swap_pager_meta_free_all: swb_count != 0"); 2487 zfree(swap_zone, swap); 2488 --object->swblock_count; 2489 lwkt_yield(); 2490 } 2491 KKASSERT(object->swblock_count == 0); 2492 } 2493 2494 /* 2495 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2496 * 2497 * This routine is capable of looking up, popping, or freeing 2498 * swapblk assignments in the swap meta data or in the vm_page_t. 2499 * The routine typically returns the swapblk being looked-up, or popped, 2500 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2501 * was invalid. This routine will automatically free any invalid 2502 * meta-data swapblks. 2503 * 2504 * It is not possible to store invalid swapblks in the swap meta data 2505 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2506 * 2507 * When acting on a busy resident page and paging is in progress, we 2508 * have to wait until paging is complete but otherwise can act on the 2509 * busy page. 2510 * 2511 * SWM_FREE remove and free swap block from metadata 2512 * SWM_POP remove from meta data but do not free.. pop it out 2513 * 2514 * The caller must hold the object. 2515 */ 2516 static swblk_t 2517 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags) 2518 { 2519 struct swblock *swap; 2520 swblk_t r1; 2521 2522 if (object->swblock_count == 0) 2523 return(SWAPBLK_NONE); 2524 2525 r1 = SWAPBLK_NONE; 2526 swap = swp_pager_lookup(object, index); 2527 2528 if (swap != NULL) { 2529 index &= SWAP_META_MASK; 2530 r1 = swap->swb_pages[index]; 2531 2532 if (r1 != SWAPBLK_NONE) { 2533 if (flags & (SWM_FREE|SWM_POP)) { 2534 swap->swb_pages[index] = SWAPBLK_NONE; 2535 --mycpu->gd_vmtotal.t_vm; 2536 if (--swap->swb_count == 0) { 2537 swp_pager_remove(object, swap); 2538 zfree(swap_zone, swap); 2539 --object->swblock_count; 2540 } 2541 } 2542 /* swap ptr may be invalid */ 2543 if (flags & SWM_FREE) { 2544 swp_pager_freeswapspace(object, r1, 1); 2545 r1 = SWAPBLK_NONE; 2546 } 2547 } 2548 /* swap ptr may be invalid */ 2549 } 2550 return(r1); 2551 } 2552