xref: /dflybsd-src/sys/vm/swap_pager.c (revision 835079a27bde2f83453591a48b6d868ba20f60cc)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *	The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. Neither the name of the University nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  *
69  *				New Swap System
70  *				Matthew Dillon
71  *
72  * Radix Bitmap 'blists'.
73  *
74  *	- The new swapper uses the new radix bitmap code.  This should scale
75  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
76  *	  arbitrary degree of fragmentation.
77  *
78  * Features:
79  *
80  *	- on the fly reallocation of swap during putpages.  The new system
81  *	  does not try to keep previously allocated swap blocks for dirty
82  *	  pages.
83  *
84  *	- on the fly deallocation of swap
85  *
86  *	- No more garbage collection required.  Unnecessarily allocated swap
87  *	  blocks only exist for dirty vm_page_t's now and these are already
88  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
89  *	  removal of invalidated swap blocks when a page is destroyed
90  *	  or renamed.
91  *
92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93  * @(#)swap_pager.c	8.9 (Berkeley) 3/21/94
94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
95  */
96 
97 #include "opt_swap.h"
98 #include <sys/param.h>
99 #include <sys/systm.h>
100 #include <sys/conf.h>
101 #include <sys/kernel.h>
102 #include <sys/proc.h>
103 #include <sys/buf.h>
104 #include <sys/vnode.h>
105 #include <sys/malloc.h>
106 #include <sys/vmmeter.h>
107 #include <sys/sysctl.h>
108 #include <sys/blist.h>
109 #include <sys/lock.h>
110 #include <sys/kcollect.h>
111 
112 #include <vm/vm.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/vm_zone.h>
120 #include <vm/vnode_pager.h>
121 
122 #include <sys/buf2.h>
123 #include <vm/vm_page2.h>
124 
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER	SWB_NPAGES
127 #endif
128 
129 #define SWM_FREE	0x02	/* free, period			*/
130 #define SWM_POP		0x04	/* pop out			*/
131 
132 #define SWBIO_READ	0x01
133 #define SWBIO_WRITE	0x02
134 #define SWBIO_SYNC	0x04
135 #define SWBIO_TTC	0x08	/* for VM_PAGER_TRY_TO_CACHE */
136 
137 struct swfreeinfo {
138 	vm_object_t	object;
139 	vm_pindex_t	basei;
140 	vm_pindex_t	begi;
141 	vm_pindex_t	endi;	/* inclusive */
142 };
143 
144 struct swswapoffinfo {
145 	vm_object_t	object;
146 	int		devidx;
147 	int		shared;
148 };
149 
150 /*
151  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
152  * in the old system.
153  */
154 
155 int swap_pager_full;		/* swap space exhaustion (task killing) */
156 int swap_fail_ticks;		/* when we became exhausted */
157 int swap_pager_almost_full;	/* swap space exhaustion (w/ hysteresis)*/
158 swblk_t vm_swap_cache_use;
159 swblk_t vm_swap_anon_use;
160 static int vm_report_swap_allocs;
161 
162 static struct krate kswaprate = { 1 };
163 static int nsw_rcount;		/* free read buffers			*/
164 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
165 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
166 static int nsw_wcount_async_max;/* assigned maximum			*/
167 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
168 
169 struct blist *swapblist;
170 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
171 static int swap_burst_read = 0;	/* allow burst reading */
172 static swblk_t swapiterator;	/* linearize allocations */
173 int swap_user_async = 0;	/* user swap pager operation can be async */
174 
175 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
176 
177 /* from vm_swap.c */
178 extern struct vnode *swapdev_vp;
179 extern struct swdevt *swdevt;
180 extern int nswdev;
181 
182 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
183 
184 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
185         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
186 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
187         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
188 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
189         CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
190 
191 #if SWBLK_BITS == 64
192 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
193         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
194 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
195         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
196 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
197         CTLFLAG_RD, &vm_swap_size, 0, "");
198 #else
199 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
200         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
201 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
202         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
203 SYSCTL_INT(_vm, OID_AUTO, swap_size,
204         CTLFLAG_RD, &vm_swap_size, 0, "");
205 #endif
206 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
207         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
208 
209 vm_zone_t		swap_zone;
210 
211 /*
212  * Red-Black tree for swblock entries
213  *
214  * The caller must hold vm_token
215  */
216 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
217 	     vm_pindex_t, swb_index);
218 
219 int
220 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
221 {
222 	if (swb1->swb_index < swb2->swb_index)
223 		return(-1);
224 	if (swb1->swb_index > swb2->swb_index)
225 		return(1);
226 	return(0);
227 }
228 
229 static
230 int
231 rb_swblock_scancmp(struct swblock *swb, void *data)
232 {
233 	struct swfreeinfo *info = data;
234 
235 	if (swb->swb_index < info->basei)
236 		return(-1);
237 	if (swb->swb_index > info->endi)
238 		return(1);
239 	return(0);
240 }
241 
242 static
243 int
244 rb_swblock_condcmp(struct swblock *swb, void *data)
245 {
246 	struct swfreeinfo *info = data;
247 
248 	if (swb->swb_index < info->basei)
249 		return(-1);
250 	return(0);
251 }
252 
253 /*
254  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
255  * calls hooked from other parts of the VM system and do not appear here.
256  * (see vm/swap_pager.h).
257  */
258 
259 static void	swap_pager_dealloc (vm_object_t object);
260 static int	swap_pager_getpage (vm_object_t, vm_page_t *, int);
261 static void	swap_chain_iodone(struct bio *biox);
262 
263 struct pagerops swappagerops = {
264 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
265 	swap_pager_getpage,	/* pagein				*/
266 	swap_pager_putpages,	/* pageout				*/
267 	swap_pager_haspage	/* get backing store status for page	*/
268 };
269 
270 /*
271  * SWB_DMMAX is in page-sized chunks with the new swap system.  It was
272  * dev-bsized chunks in the old.  SWB_DMMAX is always a power of 2.
273  *
274  * swap_*() routines are externally accessible.  swp_*() routines are
275  * internal.
276  */
277 
278 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
279 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
280 
281 static __inline void	swp_sizecheck (void);
282 static void	swp_pager_async_iodone (struct bio *bio);
283 
284 /*
285  * Swap bitmap functions
286  */
287 
288 static __inline void	swp_pager_freeswapspace(vm_object_t object,
289 						swblk_t blk, int npages);
290 static __inline swblk_t	swp_pager_getswapspace(vm_object_t object, int npages);
291 
292 /*
293  * Metadata functions
294  */
295 
296 static void swp_pager_meta_convert(vm_object_t);
297 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
298 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
299 static void swp_pager_meta_free_all(vm_object_t);
300 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
301 
302 /*
303  * SWP_SIZECHECK() -	update swap_pager_full indication
304  *
305  *	update the swap_pager_almost_full indication and warn when we are
306  *	about to run out of swap space, using lowat/hiwat hysteresis.
307  *
308  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
309  *
310  * No restrictions on call
311  * This routine may not block.
312  * SMP races are ok.
313  */
314 static __inline void
315 swp_sizecheck(void)
316 {
317 	if (vm_swap_size < nswap_lowat) {
318 		if (swap_pager_almost_full == 0) {
319 			kprintf("swap_pager: out of swap space\n");
320 			swap_pager_almost_full = 1;
321 			swap_fail_ticks = ticks;
322 		}
323 	} else {
324 		swap_pager_full = 0;
325 		if (vm_swap_size > nswap_hiwat)
326 			swap_pager_almost_full = 0;
327 	}
328 }
329 
330 /*
331  * Long-term data collection on 10-second interval.  Return the value
332  * for KCOLLECT_SWAPPCT and set the values for SWAPANO and SWAPCCAC.
333  *
334  * Return total swap in the scale field.  This can change if swap is
335  * regularly added or removed and may cause some historical confusion
336  * in that case, but SWAPPCT will always be historically accurate.
337  */
338 
339 #define PTOB(value)	((uint64_t)(value) << PAGE_SHIFT)
340 
341 static uint64_t
342 collect_swap_callback(int n)
343 {
344 	uint64_t total = vm_swap_max;
345 	uint64_t anon = vm_swap_anon_use;
346 	uint64_t cache = vm_swap_cache_use;
347 
348 	if (total == 0)		/* avoid divide by zero */
349 		total = 1;
350 	kcollect_setvalue(KCOLLECT_SWAPANO, PTOB(anon));
351 	kcollect_setvalue(KCOLLECT_SWAPCAC, PTOB(cache));
352 	kcollect_setscale(KCOLLECT_SWAPANO,
353 			  KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, PTOB(total)));
354 	kcollect_setscale(KCOLLECT_SWAPCAC,
355 			  KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, PTOB(total)));
356 	return (((anon + cache) * 10000 + (total >> 1)) / total);
357 }
358 
359 /*
360  * SWAP_PAGER_INIT() -	initialize the swap pager!
361  *
362  *	Expected to be started from system init.  NOTE:  This code is run
363  *	before much else so be careful what you depend on.  Most of the VM
364  *	system has yet to be initialized at this point.
365  *
366  * Called from the low level boot code only.
367  */
368 static void
369 swap_pager_init(void *arg __unused)
370 {
371 	kcollect_register(KCOLLECT_SWAPPCT, "swapuse", collect_swap_callback,
372 			  KCOLLECT_SCALE(KCOLLECT_SWAPPCT_FORMAT, 0));
373 	kcollect_register(KCOLLECT_SWAPANO, "swapano", NULL,
374 			  KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, 0));
375 	kcollect_register(KCOLLECT_SWAPCAC, "swapcac", NULL,
376 			  KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, 0));
377 }
378 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
379 
380 /*
381  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
382  *
383  *	Expected to be started from pageout process once, prior to entering
384  *	its main loop.
385  *
386  * Called from the low level boot code only.
387  */
388 void
389 swap_pager_swap_init(void)
390 {
391 	int n, n2;
392 
393 	/*
394 	 * Number of in-transit swap bp operations.  Don't
395 	 * exhaust the pbufs completely.  Make sure we
396 	 * initialize workable values (0 will work for hysteresis
397 	 * but it isn't very efficient).
398 	 *
399 	 * The nsw_cluster_max is constrained by the number of pages an XIO
400 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
401 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
402 	 * constrained by the swap device interleave stripe size.
403 	 *
404 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
405 	 * designed to prevent other I/O from having high latencies due to
406 	 * our pageout I/O.  The value 4 works well for one or two active swap
407 	 * devices but is probably a little low if you have more.  Even so,
408 	 * a higher value would probably generate only a limited improvement
409 	 * with three or four active swap devices since the system does not
410 	 * typically have to pageout at extreme bandwidths.   We will want
411 	 * at least 2 per swap devices, and 4 is a pretty good value if you
412 	 * have one NFS swap device due to the command/ack latency over NFS.
413 	 * So it all works out pretty well.
414 	 */
415 
416 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
417 
418 	nsw_rcount = (nswbuf_kva + 1) / 2;
419 	nsw_wcount_sync = (nswbuf_kva + 3) / 4;
420 	nsw_wcount_async = 4;
421 	nsw_wcount_async_max = nsw_wcount_async;
422 
423 	/*
424 	 * The zone is dynamically allocated so generally size it to
425 	 * maxswzone (32MB to 256GB of KVM).  Set a minimum size based
426 	 * on physical memory of around 8x (each swblock can hold 16 pages).
427 	 *
428 	 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
429 	 * has increased dramatically.
430 	 */
431 	n = vmstats.v_page_count / 2;
432 	if (maxswzone && n < maxswzone / sizeof(struct swblock))
433 		n = maxswzone / sizeof(struct swblock);
434 	n2 = n;
435 
436 	do {
437 		swap_zone = zinit(
438 			"SWAPMETA",
439 			sizeof(struct swblock),
440 			n,
441 			ZONE_INTERRUPT);
442 		if (swap_zone != NULL)
443 			break;
444 		/*
445 		 * if the allocation failed, try a zone two thirds the
446 		 * size of the previous attempt.
447 		 */
448 		n -= ((n + 2) / 3);
449 	} while (n > 0);
450 
451 	if (swap_zone == NULL)
452 		panic("swap_pager_swap_init: swap_zone == NULL");
453 	if (n2 != n)
454 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
455 }
456 
457 /*
458  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
459  *			its metadata structures.
460  *
461  *	This routine is called from the mmap and fork code to create a new
462  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
463  *	and then converting it with swp_pager_meta_convert().
464  *
465  *	We only support unnamed objects.
466  *
467  * No restrictions.
468  */
469 vm_object_t
470 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
471 {
472 	vm_object_t object;
473 
474 	KKASSERT(handle == NULL);
475 	object = vm_object_allocate_hold(OBJT_DEFAULT,
476 					 OFF_TO_IDX(offset + PAGE_MASK + size));
477 	swp_pager_meta_convert(object);
478 	vm_object_drop(object);
479 
480 	return (object);
481 }
482 
483 /*
484  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
485  *
486  *	The swap backing for the object is destroyed.  The code is
487  *	designed such that we can reinstantiate it later, but this
488  *	routine is typically called only when the entire object is
489  *	about to be destroyed.
490  *
491  * The object must be locked or unreferenceable.
492  * No other requirements.
493  */
494 static void
495 swap_pager_dealloc(vm_object_t object)
496 {
497 	vm_object_hold(object);
498 	vm_object_pip_wait(object, "swpdea");
499 
500 	/*
501 	 * Free all remaining metadata.  We only bother to free it from
502 	 * the swap meta data.  We do not attempt to free swapblk's still
503 	 * associated with vm_page_t's for this object.  We do not care
504 	 * if paging is still in progress on some objects.
505 	 */
506 	swp_pager_meta_free_all(object);
507 	vm_object_drop(object);
508 }
509 
510 /************************************************************************
511  *			SWAP PAGER BITMAP ROUTINES			*
512  ************************************************************************/
513 
514 /*
515  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
516  *
517  *	Allocate swap for the requested number of pages.  The starting
518  *	swap block number (a page index) is returned or SWAPBLK_NONE
519  *	if the allocation failed.
520  *
521  *	Also has the side effect of advising that somebody made a mistake
522  *	when they configured swap and didn't configure enough.
523  *
524  * The caller must hold the object.
525  * This routine may not block.
526  */
527 static __inline swblk_t
528 swp_pager_getswapspace(vm_object_t object, int npages)
529 {
530 	swblk_t blk;
531 
532 	lwkt_gettoken(&vm_token);
533 	blk = blist_allocat(swapblist, npages, swapiterator);
534 	if (blk == SWAPBLK_NONE)
535 		blk = blist_allocat(swapblist, npages, 0);
536 	if (blk == SWAPBLK_NONE) {
537 		if (swap_pager_full != 2) {
538 			if (vm_swap_max == 0) {
539 				krateprintf(&kswaprate,
540 					"Warning: The system would like to "
541 					"page to swap but no swap space "
542 					"is configured!\n");
543 			} else {
544 				krateprintf(&kswaprate,
545 					"swap_pager_getswapspace: "
546 					"swap full allocating %d pages\n",
547 					npages);
548 			}
549 			swap_pager_full = 2;
550 			if (swap_pager_almost_full == 0)
551 				swap_fail_ticks = ticks;
552 			swap_pager_almost_full = 1;
553 		}
554 	} else {
555 		/* swapiterator = blk; disable for now, doesn't work well */
556 		swapacctspace(blk, -npages);
557 		if (object->type == OBJT_SWAP)
558 			vm_swap_anon_use += npages;
559 		else
560 			vm_swap_cache_use += npages;
561 		swp_sizecheck();
562 	}
563 	lwkt_reltoken(&vm_token);
564 	return(blk);
565 }
566 
567 /*
568  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
569  *
570  *	This routine returns the specified swap blocks back to the bitmap.
571  *
572  *	Note:  This routine may not block (it could in the old swap code),
573  *	and through the use of the new blist routines it does not block.
574  *
575  * This routine may not block.
576  */
577 
578 static __inline void
579 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
580 {
581 	struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
582 
583 	lwkt_gettoken(&vm_token);
584 	sp->sw_nused -= npages;
585 	if (object->type == OBJT_SWAP)
586 		vm_swap_anon_use -= npages;
587 	else
588 		vm_swap_cache_use -= npages;
589 
590 	if (sp->sw_flags & SW_CLOSING) {
591 		lwkt_reltoken(&vm_token);
592 		return;
593 	}
594 
595 	blist_free(swapblist, blk, npages);
596 	vm_swap_size += npages;
597 	swp_sizecheck();
598 	lwkt_reltoken(&vm_token);
599 }
600 
601 /*
602  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
603  *				range within an object.
604  *
605  *	This is a globally accessible routine.
606  *
607  *	This routine removes swapblk assignments from swap metadata.
608  *
609  *	The external callers of this routine typically have already destroyed
610  *	or renamed vm_page_t's associated with this range in the object so
611  *	we should be ok.
612  *
613  * No requirements.
614  */
615 void
616 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
617 {
618 	vm_object_hold(object);
619 	swp_pager_meta_free(object, start, size);
620 	vm_object_drop(object);
621 }
622 
623 /*
624  * No requirements.
625  */
626 void
627 swap_pager_freespace_all(vm_object_t object)
628 {
629 	vm_object_hold(object);
630 	swp_pager_meta_free_all(object);
631 	vm_object_drop(object);
632 }
633 
634 /*
635  * This function conditionally frees swap cache swap starting at
636  * (*basei) in the object.  (count) swap blocks will be nominally freed.
637  * The actual number of blocks freed can be more or less than the
638  * requested number.
639  *
640  * This function nominally returns the number of blocks freed.  However,
641  * the actual number of blocks freed may be less then the returned value.
642  * If the function is unable to exhaust the object or if it is able to
643  * free (approximately) the requested number of blocks it returns
644  * a value n > count.
645  *
646  * If we exhaust the object we will return a value n <= count.
647  *
648  * The caller must hold the object.
649  *
650  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
651  *	     callers should always pass a count value > 0.
652  */
653 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
654 
655 int
656 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
657 {
658 	struct swfreeinfo info;
659 	int n;
660 	int t;
661 
662 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
663 
664 	info.object = object;
665 	info.basei = *basei;	/* skip up to this page index */
666 	info.begi = count;	/* max swap pages to destroy */
667 	info.endi = count * 8;	/* max swblocks to scan */
668 
669 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
670 				swap_pager_condfree_callback, &info);
671 	*basei = info.basei;
672 
673 	/*
674 	 * Take the higher difference swblocks vs pages
675 	 */
676 	n = count - (int)info.begi;
677 	t = count * 8 - (int)info.endi;
678 	if (n < t)
679 		n = t;
680 	if (n < 1)
681 		n = 1;
682 	return(n);
683 }
684 
685 /*
686  * The idea is to free whole meta-block to avoid fragmenting
687  * the swap space or disk I/O.  We only do this if NO VM pages
688  * are present.
689  *
690  * We do not have to deal with clearing PG_SWAPPED in related VM
691  * pages because there are no related VM pages.
692  *
693  * The caller must hold the object.
694  */
695 static int
696 swap_pager_condfree_callback(struct swblock *swap, void *data)
697 {
698 	struct swfreeinfo *info = data;
699 	vm_object_t object = info->object;
700 	int i;
701 
702 	for (i = 0; i < SWAP_META_PAGES; ++i) {
703 		if (vm_page_lookup(object, swap->swb_index + i))
704 			break;
705 	}
706 	info->basei = swap->swb_index + SWAP_META_PAGES;
707 	if (i == SWAP_META_PAGES) {
708 		info->begi -= swap->swb_count;
709 		swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
710 	}
711 	--info->endi;
712 	if ((int)info->begi < 0 || (int)info->endi < 0)
713 		return(-1);
714 	lwkt_yield();
715 	return(0);
716 }
717 
718 /*
719  * Called by vm_page_alloc() when a new VM page is inserted
720  * into a VM object.  Checks whether swap has been assigned to
721  * the page and sets PG_SWAPPED as necessary.
722  *
723  * (m) must be busied by caller and remains busied on return.
724  */
725 void
726 swap_pager_page_inserted(vm_page_t m)
727 {
728 	if (m->object->swblock_count) {
729 		vm_object_hold(m->object);
730 		if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
731 			vm_page_flag_set(m, PG_SWAPPED);
732 		vm_object_drop(m->object);
733 	}
734 }
735 
736 /*
737  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
738  *
739  *	Assigns swap blocks to the specified range within the object.  The
740  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
741  *
742  *	Returns 0 on success, -1 on failure.
743  *
744  * The caller is responsible for avoiding races in the specified range.
745  * No other requirements.
746  */
747 int
748 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
749 {
750 	int n = 0;
751 	swblk_t blk = SWAPBLK_NONE;
752 	vm_pindex_t beg = start;	/* save start index */
753 
754 	vm_object_hold(object);
755 
756 	while (size) {
757 		if (n == 0) {
758 			n = BLIST_MAX_ALLOC;
759 			while ((blk = swp_pager_getswapspace(object, n)) ==
760 			       SWAPBLK_NONE)
761 			{
762 				n >>= 1;
763 				if (n == 0) {
764 					swp_pager_meta_free(object, beg,
765 							    start - beg);
766 					vm_object_drop(object);
767 					return(-1);
768 				}
769 			}
770 		}
771 		swp_pager_meta_build(object, start, blk);
772 		--size;
773 		++start;
774 		++blk;
775 		--n;
776 	}
777 	swp_pager_meta_free(object, start, n);
778 	vm_object_drop(object);
779 	return(0);
780 }
781 
782 /*
783  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
784  *			and destroy the source.
785  *
786  *	Copy any valid swapblks from the source to the destination.  In
787  *	cases where both the source and destination have a valid swapblk,
788  *	we keep the destination's.
789  *
790  *	This routine is allowed to block.  It may block allocating metadata
791  *	indirectly through swp_pager_meta_build() or if paging is still in
792  *	progress on the source.
793  *
794  *	XXX vm_page_collapse() kinda expects us not to block because we
795  *	supposedly do not need to allocate memory, but for the moment we
796  *	*may* have to get a little memory from the zone allocator, but
797  *	it is taken from the interrupt memory.  We should be ok.
798  *
799  *	The source object contains no vm_page_t's (which is just as well)
800  *	The source object is of type OBJT_SWAP.
801  *
802  *	The source and destination objects must be held by the caller.
803  */
804 void
805 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
806 		vm_pindex_t base_index, int destroysource)
807 {
808 	vm_pindex_t i;
809 
810 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
811 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
812 
813 	/*
814 	 * transfer source to destination.
815 	 */
816 	for (i = 0; i < dstobject->size; ++i) {
817 		swblk_t dstaddr;
818 
819 		/*
820 		 * Locate (without changing) the swapblk on the destination,
821 		 * unless it is invalid in which case free it silently, or
822 		 * if the destination is a resident page, in which case the
823 		 * source is thrown away.
824 		 */
825 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
826 
827 		if (dstaddr == SWAPBLK_NONE) {
828 			/*
829 			 * Destination has no swapblk and is not resident,
830 			 * copy source.
831 			 */
832 			swblk_t srcaddr;
833 
834 			srcaddr = swp_pager_meta_ctl(srcobject,
835 						     base_index + i, SWM_POP);
836 
837 			if (srcaddr != SWAPBLK_NONE)
838 				swp_pager_meta_build(dstobject, i, srcaddr);
839 		} else {
840 			/*
841 			 * Destination has valid swapblk or it is represented
842 			 * by a resident page.  We destroy the sourceblock.
843 			 */
844 			swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
845 		}
846 	}
847 
848 	/*
849 	 * Free left over swap blocks in source.
850 	 *
851 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
852 	 * double-remove the object from the swap queues.
853 	 */
854 	if (destroysource) {
855 		/*
856 		 * Reverting the type is not necessary, the caller is going
857 		 * to destroy srcobject directly, but I'm doing it here
858 		 * for consistency since we've removed the object from its
859 		 * queues.
860 		 */
861 		swp_pager_meta_free_all(srcobject);
862 		if (srcobject->type == OBJT_SWAP)
863 			srcobject->type = OBJT_DEFAULT;
864 	}
865 }
866 
867 /*
868  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
869  *				the requested page.
870  *
871  *	We determine whether good backing store exists for the requested
872  *	page and return TRUE if it does, FALSE if it doesn't.
873  *
874  *	If TRUE, we also try to determine how much valid, contiguous backing
875  *	store exists before and after the requested page within a reasonable
876  *	distance.  We do not try to restrict it to the swap device stripe
877  *	(that is handled in getpages/putpages).  It probably isn't worth
878  *	doing here.
879  *
880  * No requirements.
881  */
882 boolean_t
883 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
884 {
885 	swblk_t blk0;
886 
887 	/*
888 	 * do we have good backing store at the requested index ?
889 	 */
890 	vm_object_hold(object);
891 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
892 
893 	if (blk0 == SWAPBLK_NONE) {
894 		vm_object_drop(object);
895 		return (FALSE);
896 	}
897 	vm_object_drop(object);
898 	return (TRUE);
899 }
900 
901 /*
902  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
903  *
904  * This removes any associated swap backing store, whether valid or
905  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
906  * objects.
907  *
908  * This routine is typically called when a page is made dirty, at
909  * which point any associated swap can be freed.  MADV_FREE also
910  * calls us in a special-case situation
911  *
912  * NOTE!!!  If the page is clean and the swap was valid, the caller
913  *	    should make the page dirty before calling this routine.
914  *	    This routine does NOT change the m->dirty status of the page.
915  *	    Also: MADV_FREE depends on it.
916  *
917  * The page must be busied.
918  * The caller can hold the object to avoid blocking, else we might block.
919  * No other requirements.
920  */
921 void
922 swap_pager_unswapped(vm_page_t m)
923 {
924 	if (m->flags & PG_SWAPPED) {
925 		vm_object_hold(m->object);
926 		KKASSERT(m->flags & PG_SWAPPED);
927 		swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
928 		vm_page_flag_clear(m, PG_SWAPPED);
929 		vm_object_drop(m->object);
930 	}
931 }
932 
933 /*
934  * SWAP_PAGER_STRATEGY() - read, write, free blocks
935  *
936  * This implements a VM OBJECT strategy function using swap backing store.
937  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
938  * types.  Only BUF_CMD_{READ,WRITE,FREEBLKS} is supported, any other
939  * requests will return EINVAL.
940  *
941  * This is intended to be a cacheless interface (i.e. caching occurs at
942  * higher levels), and is also used as a swap-based SSD cache for vnode
943  * and device objects.
944  *
945  * All I/O goes directly to and from the swap device.
946  *
947  * We currently attempt to run I/O synchronously or asynchronously as
948  * the caller requests.  This isn't perfect because we loose error
949  * sequencing when we run multiple ops in parallel to satisfy a request.
950  * But this is swap, so we let it all hang out.
951  *
952  * NOTE: This function supports the KVABIO API wherein bp->b_data might
953  *	 not be synchronized to the current cpu.
954  *
955  * No requirements.
956  */
957 void
958 swap_pager_strategy(vm_object_t object, struct bio *bio)
959 {
960 	struct buf *bp = bio->bio_buf;
961 	struct bio *nbio;
962 	vm_pindex_t start;
963 	vm_pindex_t biox_blkno = 0;
964 	int count;
965 	char *data;
966 	struct bio *biox;
967 	struct buf *bufx;
968 #if 0
969 	struct bio_track *track;
970 #endif
971 
972 #if 0
973 	/*
974 	 * tracking for swapdev vnode I/Os
975 	 */
976 	if (bp->b_cmd == BUF_CMD_READ)
977 		track = &swapdev_vp->v_track_read;
978 	else
979 		track = &swapdev_vp->v_track_write;
980 #endif
981 
982 	/*
983 	 * Only supported commands
984 	 */
985 	if (bp->b_cmd != BUF_CMD_FREEBLKS &&
986 	    bp->b_cmd != BUF_CMD_READ &&
987 	    bp->b_cmd != BUF_CMD_WRITE) {
988 		bp->b_error = EINVAL;
989 		bp->b_flags |= B_ERROR | B_INVAL;
990 		biodone(bio);
991 		return;
992 	}
993 
994 	/*
995 	 * bcount must be an integral number of pages.
996 	 */
997 	if (bp->b_bcount & PAGE_MASK) {
998 		bp->b_error = EINVAL;
999 		bp->b_flags |= B_ERROR | B_INVAL;
1000 		biodone(bio);
1001 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
1002 			"not page bounded\n",
1003 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
1004 		return;
1005 	}
1006 
1007 	/*
1008 	 * Clear error indication, initialize page index, count, data pointer.
1009 	 */
1010 	bp->b_error = 0;
1011 	bp->b_flags &= ~B_ERROR;
1012 	bp->b_resid = bp->b_bcount;
1013 
1014 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
1015 	count = howmany(bp->b_bcount, PAGE_SIZE);
1016 
1017 	/*
1018 	 * WARNING!  Do not dereference *data without issuing a bkvasync()
1019 	 */
1020 	data = bp->b_data;
1021 
1022 	/*
1023 	 * Deal with BUF_CMD_FREEBLKS
1024 	 */
1025 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
1026 		/*
1027 		 * FREE PAGE(s) - destroy underlying swap that is no longer
1028 		 *		  needed.
1029 		 */
1030 		vm_object_hold(object);
1031 		swp_pager_meta_free(object, start, count);
1032 		vm_object_drop(object);
1033 		bp->b_resid = 0;
1034 		biodone(bio);
1035 		return;
1036 	}
1037 
1038 	/*
1039 	 * We need to be able to create a new cluster of I/O's.  We cannot
1040 	 * use the caller fields of the passed bio so push a new one.
1041 	 *
1042 	 * Because nbio is just a placeholder for the cluster links,
1043 	 * we can biodone() the original bio instead of nbio to make
1044 	 * things a bit more efficient.
1045 	 */
1046 	nbio = push_bio(bio);
1047 	nbio->bio_offset = bio->bio_offset;
1048 	nbio->bio_caller_info1.cluster_head = NULL;
1049 	nbio->bio_caller_info2.cluster_tail = NULL;
1050 
1051 	biox = NULL;
1052 	bufx = NULL;
1053 
1054 	/*
1055 	 * Execute read or write
1056 	 */
1057 	vm_object_hold(object);
1058 
1059 	while (count > 0) {
1060 		swblk_t blk;
1061 
1062 		/*
1063 		 * Obtain block.  If block not found and writing, allocate a
1064 		 * new block and build it into the object.
1065 		 */
1066 		blk = swp_pager_meta_ctl(object, start, 0);
1067 		if ((blk == SWAPBLK_NONE) && bp->b_cmd == BUF_CMD_WRITE) {
1068 			blk = swp_pager_getswapspace(object, 1);
1069 			if (blk == SWAPBLK_NONE) {
1070 				bp->b_error = ENOMEM;
1071 				bp->b_flags |= B_ERROR;
1072 				break;
1073 			}
1074 			swp_pager_meta_build(object, start, blk);
1075 		}
1076 
1077 		/*
1078 		 * Do we have to flush our current collection?  Yes if:
1079 		 *
1080 		 *	- no swap block at this index
1081 		 *	- swap block is not contiguous
1082 		 *	- we cross a physical disk boundry in the
1083 		 *	  stripe.
1084 		 */
1085 		if (biox &&
1086 		    (biox_blkno + btoc(bufx->b_bcount) != blk ||
1087 		     ((biox_blkno ^ blk) & ~SWB_DMMASK))) {
1088 			switch(bp->b_cmd) {
1089 			case BUF_CMD_READ:
1090 				++mycpu->gd_cnt.v_swapin;
1091 				mycpu->gd_cnt.v_swappgsin +=
1092 					btoc(bufx->b_bcount);
1093 				break;
1094 			case BUF_CMD_WRITE:
1095 				++mycpu->gd_cnt.v_swapout;
1096 				mycpu->gd_cnt.v_swappgsout +=
1097 					btoc(bufx->b_bcount);
1098 				bufx->b_dirtyend = bufx->b_bcount;
1099 				break;
1100 			default:
1101 				/* NOT REACHED */
1102 				break;
1103 			}
1104 
1105 			/*
1106 			 * Finished with this buf.
1107 			 */
1108 			KKASSERT(bufx->b_bcount != 0);
1109 			if (bufx->b_cmd != BUF_CMD_READ)
1110 				bufx->b_dirtyend = bufx->b_bcount;
1111 			biox = NULL;
1112 			bufx = NULL;
1113 		}
1114 
1115 		/*
1116 		 * Add new swapblk to biox, instantiating biox if necessary.
1117 		 * Zero-fill reads are able to take a shortcut.
1118 		 */
1119 		if (blk == SWAPBLK_NONE) {
1120 			/*
1121 			 * We can only get here if we are reading.
1122 			 */
1123 			bkvasync(bp);
1124 			bzero(data, PAGE_SIZE);
1125 			bp->b_resid -= PAGE_SIZE;
1126 		} else {
1127 			if (biox == NULL) {
1128 				/* XXX chain count > 4, wait to <= 4 */
1129 
1130 				bufx = getpbuf(NULL);
1131 				bufx->b_flags |= B_KVABIO;
1132 				biox = &bufx->b_bio1;
1133 				cluster_append(nbio, bufx);
1134 				bufx->b_cmd = bp->b_cmd;
1135 				biox->bio_done = swap_chain_iodone;
1136 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1137 				biox->bio_caller_info1.cluster_parent = nbio;
1138 				biox_blkno = blk;
1139 				bufx->b_bcount = 0;
1140 				bufx->b_data = data;
1141 			}
1142 			bufx->b_bcount += PAGE_SIZE;
1143 		}
1144 		--count;
1145 		++start;
1146 		data += PAGE_SIZE;
1147 	}
1148 
1149 	vm_object_drop(object);
1150 
1151 	/*
1152 	 *  Flush out last buffer
1153 	 */
1154 	if (biox) {
1155 		if (bufx->b_cmd == BUF_CMD_READ) {
1156 			++mycpu->gd_cnt.v_swapin;
1157 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1158 		} else {
1159 			++mycpu->gd_cnt.v_swapout;
1160 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1161 			bufx->b_dirtyend = bufx->b_bcount;
1162 		}
1163 		KKASSERT(bufx->b_bcount);
1164 		if (bufx->b_cmd != BUF_CMD_READ)
1165 			bufx->b_dirtyend = bufx->b_bcount;
1166 		/* biox, bufx = NULL */
1167 	}
1168 
1169 	/*
1170 	 * Now initiate all the I/O.  Be careful looping on our chain as
1171 	 * I/O's may complete while we are still initiating them.
1172 	 *
1173 	 * If the request is a 100% sparse read no bios will be present
1174 	 * and we just biodone() the buffer.
1175 	 */
1176 	nbio->bio_caller_info2.cluster_tail = NULL;
1177 	bufx = nbio->bio_caller_info1.cluster_head;
1178 
1179 	if (bufx) {
1180 		while (bufx) {
1181 			biox = &bufx->b_bio1;
1182 			BUF_KERNPROC(bufx);
1183 			bufx = bufx->b_cluster_next;
1184 			vn_strategy(swapdev_vp, biox);
1185 		}
1186 	} else {
1187 		biodone(bio);
1188 	}
1189 
1190 	/*
1191 	 * Completion of the cluster will also call biodone_chain(nbio).
1192 	 * We never call biodone(nbio) so we don't have to worry about
1193 	 * setting up a bio_done callback.  It's handled in the sub-IO.
1194 	 */
1195 	/**/
1196 }
1197 
1198 /*
1199  * biodone callback
1200  *
1201  * No requirements.
1202  */
1203 static void
1204 swap_chain_iodone(struct bio *biox)
1205 {
1206 	struct buf **nextp;
1207 	struct buf *bufx;	/* chained sub-buffer */
1208 	struct bio *nbio;	/* parent nbio with chain glue */
1209 	struct buf *bp;		/* original bp associated with nbio */
1210 	int chain_empty;
1211 
1212 	bufx = biox->bio_buf;
1213 	nbio = biox->bio_caller_info1.cluster_parent;
1214 	bp = nbio->bio_buf;
1215 
1216 	/*
1217 	 * Update the original buffer
1218 	 */
1219         KKASSERT(bp != NULL);
1220 	if (bufx->b_flags & B_ERROR) {
1221 		atomic_set_int(&bufx->b_flags, B_ERROR);
1222 		bp->b_error = bufx->b_error;	/* race ok */
1223 	} else if (bufx->b_resid != 0) {
1224 		atomic_set_int(&bufx->b_flags, B_ERROR);
1225 		bp->b_error = EINVAL;		/* race ok */
1226 	} else {
1227 		atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1228 	}
1229 
1230 	/*
1231 	 * Remove us from the chain.
1232 	 */
1233 	spin_lock(&swapbp_spin);
1234 	nextp = &nbio->bio_caller_info1.cluster_head;
1235 	while (*nextp != bufx) {
1236 		KKASSERT(*nextp != NULL);
1237 		nextp = &(*nextp)->b_cluster_next;
1238 	}
1239 	*nextp = bufx->b_cluster_next;
1240 	chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1241 	spin_unlock(&swapbp_spin);
1242 
1243 	/*
1244 	 * Clean up bufx.  If the chain is now empty we finish out
1245 	 * the parent.  Note that we may be racing other completions
1246 	 * so we must use the chain_empty status from above.
1247 	 */
1248 	if (chain_empty) {
1249 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1250 			atomic_set_int(&bp->b_flags, B_ERROR);
1251 			bp->b_error = EINVAL;
1252 		}
1253 		biodone_chain(nbio);
1254         }
1255         relpbuf(bufx, NULL);
1256 }
1257 
1258 /*
1259  * SWAP_PAGER_GETPAGES() - bring page in from swap
1260  *
1261  * The requested page may have to be brought in from swap.  Calculate the
1262  * swap block and bring in additional pages if possible.  All pages must
1263  * have contiguous swap block assignments and reside in the same object.
1264  *
1265  * The caller has a single vm_object_pip_add() reference prior to
1266  * calling us and we should return with the same.
1267  *
1268  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1269  * and any additinal pages unbusied.
1270  *
1271  * If the caller encounters a PG_RAM page it will pass it to us even though
1272  * it may be valid and dirty.  We cannot overwrite the page in this case!
1273  * The case is used to allow us to issue pure read-aheads.
1274  *
1275  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1276  *       the PG_RAM page is validated at the same time as mreq.  What we
1277  *	 really need to do is issue a separate read-ahead pbuf.
1278  *
1279  * No requirements.
1280  */
1281 static int
1282 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1283 {
1284 	struct buf *bp;
1285 	struct bio *bio;
1286 	vm_page_t mreq;
1287 	vm_page_t m;
1288 	vm_offset_t kva;
1289 	swblk_t blk;
1290 	int i;
1291 	int j;
1292 	int raonly;
1293 	int error;
1294 	u_int32_t busy_count;
1295 	vm_page_t marray[XIO_INTERNAL_PAGES];
1296 
1297 	mreq = *mpp;
1298 
1299 	vm_object_hold(object);
1300 	if (mreq->object != object) {
1301 		panic("swap_pager_getpages: object mismatch %p/%p",
1302 		    object,
1303 		    mreq->object
1304 		);
1305 	}
1306 
1307 	/*
1308 	 * We don't want to overwrite a fully valid page as it might be
1309 	 * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1310 	 * valid page with PG_RAM set.
1311 	 *
1312 	 * In this case we see if the next page is a suitable page-in
1313 	 * candidate and if it is we issue read-ahead.  PG_RAM will be
1314 	 * set on the last page of the read-ahead to continue the pipeline.
1315 	 */
1316 	if (mreq->valid == VM_PAGE_BITS_ALL) {
1317 		if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1318 			vm_object_drop(object);
1319 			return(VM_PAGER_OK);
1320 		}
1321 		blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1322 		if (blk == SWAPBLK_NONE) {
1323 			vm_object_drop(object);
1324 			return(VM_PAGER_OK);
1325 		}
1326 		m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1327 					    TRUE, &error);
1328 		if (error) {
1329 			vm_object_drop(object);
1330 			return(VM_PAGER_OK);
1331 		} else if (m == NULL) {
1332 			/*
1333 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1334 			 * page reuse.
1335 			 */
1336 			m = vm_page_alloc(object, mreq->pindex + 1,
1337 					  VM_ALLOC_QUICK);
1338 			if (m == NULL) {
1339 				vm_object_drop(object);
1340 				return(VM_PAGER_OK);
1341 			}
1342 		} else {
1343 			if (m->valid) {
1344 				vm_page_wakeup(m);
1345 				vm_object_drop(object);
1346 				return(VM_PAGER_OK);
1347 			}
1348 			vm_page_unqueue_nowakeup(m);
1349 		}
1350 		/* page is busy */
1351 		mreq = m;
1352 		raonly = 1;
1353 	} else {
1354 		raonly = 0;
1355 	}
1356 
1357 	/*
1358 	 * Try to block-read contiguous pages from swap if sequential,
1359 	 * otherwise just read one page.  Contiguous pages from swap must
1360 	 * reside within a single device stripe because the I/O cannot be
1361 	 * broken up across multiple stripes.
1362 	 *
1363 	 * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1364 	 * set up such that the case(s) are handled implicitly.
1365 	 */
1366 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1367 	marray[0] = mreq;
1368 
1369 	for (i = 1; i <= swap_burst_read &&
1370 		    i < XIO_INTERNAL_PAGES &&
1371 		    mreq->pindex + i < object->size; ++i) {
1372 		swblk_t iblk;
1373 
1374 		iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1375 		if (iblk != blk + i)
1376 			break;
1377 		if ((blk ^ iblk) & ~SWB_DMMASK)
1378 			break;
1379 		m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1380 					    TRUE, &error);
1381 		if (error) {
1382 			break;
1383 		} else if (m == NULL) {
1384 			/*
1385 			 * Use VM_ALLOC_QUICK to avoid blocking on cache
1386 			 * page reuse.
1387 			 */
1388 			m = vm_page_alloc(object, mreq->pindex + i,
1389 					  VM_ALLOC_QUICK);
1390 			if (m == NULL)
1391 				break;
1392 		} else {
1393 			if (m->valid) {
1394 				vm_page_wakeup(m);
1395 				break;
1396 			}
1397 			vm_page_unqueue_nowakeup(m);
1398 		}
1399 		/* page is busy */
1400 		marray[i] = m;
1401 	}
1402 	if (i > 1)
1403 		vm_page_flag_set(marray[i - 1], PG_RAM);
1404 
1405 	/*
1406 	 * If mreq is the requested page and we have nothing to do return
1407 	 * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1408 	 * page and must be cleaned up.
1409 	 */
1410 	if (blk == SWAPBLK_NONE) {
1411 		KKASSERT(i == 1);
1412 		if (raonly) {
1413 			vnode_pager_freepage(mreq);
1414 			vm_object_drop(object);
1415 			return(VM_PAGER_OK);
1416 		} else {
1417 			vm_object_drop(object);
1418 			return(VM_PAGER_FAIL);
1419 		}
1420 	}
1421 
1422 	/*
1423 	 * Map our page(s) into kva for input
1424 	 *
1425 	 * Use the KVABIO API to avoid synchronizing the pmap.
1426 	 */
1427 	bp = getpbuf_kva(&nsw_rcount);
1428 	bio = &bp->b_bio1;
1429 	kva = (vm_offset_t) bp->b_kvabase;
1430 	bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1431 	pmap_qenter_noinval(kva, bp->b_xio.xio_pages, i);
1432 
1433 	bp->b_data = (caddr_t)kva;
1434 	bp->b_bcount = PAGE_SIZE * i;
1435 	bp->b_xio.xio_npages = i;
1436 	bp->b_flags |= B_KVABIO;
1437 	bio->bio_done = swp_pager_async_iodone;
1438 	bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1439 	bio->bio_caller_info1.index = SWBIO_READ;
1440 
1441 	/*
1442 	 * Set index.  If raonly set the index beyond the array so all
1443 	 * the pages are treated the same, otherwise the original mreq is
1444 	 * at index 0.
1445 	 */
1446 	if (raonly)
1447 		bio->bio_driver_info = (void *)(intptr_t)i;
1448 	else
1449 		bio->bio_driver_info = (void *)(intptr_t)0;
1450 
1451 	for (j = 0; j < i; ++j) {
1452 		atomic_set_int(&bp->b_xio.xio_pages[j]->busy_count,
1453 			       PBUSY_SWAPINPROG);
1454 	}
1455 
1456 	mycpu->gd_cnt.v_swapin++;
1457 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1458 
1459 	/*
1460 	 * We still hold the lock on mreq, and our automatic completion routine
1461 	 * does not remove it.
1462 	 */
1463 	vm_object_pip_add(object, bp->b_xio.xio_npages);
1464 
1465 	/*
1466 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1467 	 * this point because we automatically release it on completion.
1468 	 * Instead, we look at the one page we are interested in which we
1469 	 * still hold a lock on even through the I/O completion.
1470 	 *
1471 	 * The other pages in our m[] array are also released on completion,
1472 	 * so we cannot assume they are valid anymore either.
1473 	 */
1474 	bp->b_cmd = BUF_CMD_READ;
1475 	BUF_KERNPROC(bp);
1476 	vn_strategy(swapdev_vp, bio);
1477 
1478 	/*
1479 	 * Wait for the page we want to complete.  PBUSY_SWAPINPROG is always
1480 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1481 	 * is set in the meta-data.
1482 	 *
1483 	 * If this is a read-ahead only we return immediately without
1484 	 * waiting for I/O.
1485 	 */
1486 	if (raonly) {
1487 		vm_object_drop(object);
1488 		return(VM_PAGER_OK);
1489 	}
1490 
1491 	/*
1492 	 * Read-ahead includes originally requested page case.
1493 	 */
1494 	for (;;) {
1495 		busy_count = mreq->busy_count;
1496 		cpu_ccfence();
1497 		if ((busy_count & PBUSY_SWAPINPROG) == 0)
1498 			break;
1499 		tsleep_interlock(mreq, 0);
1500 		if (!atomic_cmpset_int(&mreq->busy_count, busy_count,
1501 				       busy_count |
1502 				        PBUSY_SWAPINPROG | PBUSY_WANTED)) {
1503 			continue;
1504 		}
1505 		atomic_set_int(&mreq->flags, PG_REFERENCED);
1506 		mycpu->gd_cnt.v_intrans++;
1507 		if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1508 			kprintf(
1509 			    "swap_pager: indefinite wait buffer: "
1510 				" bp %p offset: %lld, size: %ld\n",
1511 			    bp,
1512 			    (long long)bio->bio_offset,
1513 			    (long)bp->b_bcount
1514 			);
1515 		}
1516 	}
1517 
1518 	/*
1519 	 * Disallow speculative reads prior to the SWAPINPROG test.
1520 	 */
1521 	cpu_lfence();
1522 
1523 	/*
1524 	 * mreq is left busied after completion, but all the other pages
1525 	 * are freed.  If we had an unrecoverable read error the page will
1526 	 * not be valid.
1527 	 */
1528 	vm_object_drop(object);
1529 	if (mreq->valid != VM_PAGE_BITS_ALL)
1530 		return(VM_PAGER_ERROR);
1531 	else
1532 		return(VM_PAGER_OK);
1533 
1534 	/*
1535 	 * A final note: in a low swap situation, we cannot deallocate swap
1536 	 * and mark a page dirty here because the caller is likely to mark
1537 	 * the page clean when we return, causing the page to possibly revert
1538 	 * to all-zero's later.
1539 	 */
1540 }
1541 
1542 /*
1543  *	swap_pager_putpages:
1544  *
1545  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1546  *
1547  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1548  *	are automatically converted to SWAP objects.
1549  *
1550  *	In a low memory situation we may block in vn_strategy(), but the new
1551  *	vm_page reservation system coupled with properly written VFS devices
1552  *	should ensure that no low-memory deadlock occurs.  This is an area
1553  *	which needs work.
1554  *
1555  *	The parent has N vm_object_pip_add() references prior to
1556  *	calling us and will remove references for rtvals[] that are
1557  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1558  *	completion.
1559  *
1560  *	The parent has soft-busy'd the pages it passes us and will unbusy
1561  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1562  *	We need to unbusy the rest on I/O completion.
1563  *
1564  * No requirements.
1565  */
1566 void
1567 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1568 		    int flags, int *rtvals)
1569 {
1570 	int i;
1571 	int n = 0;
1572 
1573 	vm_object_hold(object);
1574 
1575 	if (count && m[0]->object != object) {
1576 		panic("swap_pager_getpages: object mismatch %p/%p",
1577 		    object,
1578 		    m[0]->object
1579 		);
1580 	}
1581 
1582 	/*
1583 	 * Step 1
1584 	 *
1585 	 * Turn object into OBJT_SWAP
1586 	 * Check for bogus sysops
1587 	 *
1588 	 * Force sync if not pageout process, we don't want any single
1589 	 * non-pageout process to be able to hog the I/O subsystem!  This
1590 	 * can be overridden by setting.
1591 	 */
1592 	if (object->type == OBJT_DEFAULT) {
1593 		if (object->type == OBJT_DEFAULT)
1594 			swp_pager_meta_convert(object);
1595 	}
1596 
1597 	/*
1598 	 * Normally we force synchronous swap I/O if this is not the
1599 	 * pageout daemon to prevent any single user process limited
1600 	 * via RLIMIT_RSS from hogging swap write bandwidth.
1601 	 */
1602 	if (curthread != pagethread &&
1603 	    curthread != emergpager &&
1604 	    swap_user_async == 0) {
1605 		flags |= VM_PAGER_PUT_SYNC;
1606 	}
1607 
1608 	/*
1609 	 * Step 2
1610 	 *
1611 	 * Update nsw parameters from swap_async_max sysctl values.
1612 	 * Do not let the sysop crash the machine with bogus numbers.
1613 	 */
1614 	if (swap_async_max != nsw_wcount_async_max) {
1615 		int n;
1616 
1617 		/*
1618 		 * limit range
1619 		 */
1620 		if ((n = swap_async_max) > nswbuf_kva / 2)
1621 			n = nswbuf_kva / 2;
1622 		if (n < 1)
1623 			n = 1;
1624 		swap_async_max = n;
1625 
1626 		/*
1627 		 * Adjust difference ( if possible ).  If the current async
1628 		 * count is too low, we may not be able to make the adjustment
1629 		 * at this time.
1630 		 *
1631 		 * vm_token needed for nsw_wcount sleep interlock
1632 		 */
1633 		lwkt_gettoken(&vm_token);
1634 		n -= nsw_wcount_async_max;
1635 		if (nsw_wcount_async + n >= 0) {
1636 			nsw_wcount_async_max += n;
1637 			pbuf_adjcount(&nsw_wcount_async, n);
1638 		}
1639 		lwkt_reltoken(&vm_token);
1640 	}
1641 
1642 	/*
1643 	 * Step 3
1644 	 *
1645 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1646 	 * The page is left dirty until the pageout operation completes
1647 	 * successfully.
1648 	 */
1649 
1650 	for (i = 0; i < count; i += n) {
1651 		struct buf *bp;
1652 		struct bio *bio;
1653 		swblk_t blk;
1654 		int j;
1655 
1656 		/*
1657 		 * Maximum I/O size is limited by a number of factors.
1658 		 */
1659 
1660 		n = min(BLIST_MAX_ALLOC, count - i);
1661 		n = min(n, nsw_cluster_max);
1662 
1663 		lwkt_gettoken(&vm_token);
1664 
1665 		/*
1666 		 * Get biggest block of swap we can.  If we fail, fall
1667 		 * back and try to allocate a smaller block.  Don't go
1668 		 * overboard trying to allocate space if it would overly
1669 		 * fragment swap.
1670 		 */
1671 		while (
1672 		    (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1673 		    n > 4
1674 		) {
1675 			n >>= 1;
1676 		}
1677 		if (blk == SWAPBLK_NONE) {
1678 			for (j = 0; j < n; ++j)
1679 				rtvals[i+j] = VM_PAGER_FAIL;
1680 			lwkt_reltoken(&vm_token);
1681 			continue;
1682 		}
1683 		if (vm_report_swap_allocs > 0) {
1684 			kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1685 			--vm_report_swap_allocs;
1686 		}
1687 
1688 		/*
1689 		 * The I/O we are constructing cannot cross a physical
1690 		 * disk boundry in the swap stripe.
1691 		 */
1692 		if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1693 			j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1694 			swp_pager_freeswapspace(object, blk + j, n - j);
1695 			n = j;
1696 		}
1697 
1698 		/*
1699 		 * All I/O parameters have been satisfied, build the I/O
1700 		 * request and assign the swap space.
1701 		 *
1702 		 * Use the KVABIO API to avoid synchronizing the pmap.
1703 		 */
1704 		if ((flags & VM_PAGER_PUT_SYNC))
1705 			bp = getpbuf_kva(&nsw_wcount_sync);
1706 		else
1707 			bp = getpbuf_kva(&nsw_wcount_async);
1708 		bio = &bp->b_bio1;
1709 
1710 		lwkt_reltoken(&vm_token);
1711 
1712 		pmap_qenter_noinval((vm_offset_t)bp->b_data, &m[i], n);
1713 
1714 		bp->b_flags |= B_KVABIO;
1715 		bp->b_bcount = PAGE_SIZE * n;
1716 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1717 
1718 		for (j = 0; j < n; ++j) {
1719 			vm_page_t mreq = m[i+j];
1720 
1721 			swp_pager_meta_build(mreq->object, mreq->pindex,
1722 					     blk + j);
1723 			if (object->type == OBJT_SWAP)
1724 				vm_page_dirty(mreq);
1725 			rtvals[i+j] = VM_PAGER_OK;
1726 
1727 			atomic_set_int(&mreq->busy_count, PBUSY_SWAPINPROG);
1728 			bp->b_xio.xio_pages[j] = mreq;
1729 		}
1730 		bp->b_xio.xio_npages = n;
1731 
1732 		mycpu->gd_cnt.v_swapout++;
1733 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1734 
1735 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1736 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1737 		bp->b_cmd = BUF_CMD_WRITE;
1738 		bio->bio_caller_info1.index = SWBIO_WRITE;
1739 
1740 		/*
1741 		 * asynchronous
1742 		 */
1743 		if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1744 			bio->bio_done = swp_pager_async_iodone;
1745 			BUF_KERNPROC(bp);
1746 			vn_strategy(swapdev_vp, bio);
1747 
1748 			for (j = 0; j < n; ++j)
1749 				rtvals[i+j] = VM_PAGER_PEND;
1750 			continue;
1751 		}
1752 
1753 		/*
1754 		 * Issue synchrnously.
1755 		 *
1756 		 * Wait for the sync I/O to complete, then update rtvals.
1757 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1758 		 * our async completion routine at the end, thus avoiding a
1759 		 * double-free.
1760 		 */
1761 		bio->bio_caller_info1.index |= SWBIO_SYNC;
1762 		if (flags & VM_PAGER_TRY_TO_CACHE)
1763 			bio->bio_caller_info1.index |= SWBIO_TTC;
1764 		bio->bio_done = biodone_sync;
1765 		bio->bio_flags |= BIO_SYNC;
1766 		vn_strategy(swapdev_vp, bio);
1767 		biowait(bio, "swwrt");
1768 
1769 		for (j = 0; j < n; ++j)
1770 			rtvals[i+j] = VM_PAGER_PEND;
1771 
1772 		/*
1773 		 * Now that we are through with the bp, we can call the
1774 		 * normal async completion, which frees everything up.
1775 		 */
1776 		swp_pager_async_iodone(bio);
1777 	}
1778 	vm_object_drop(object);
1779 }
1780 
1781 /*
1782  * No requirements.
1783  *
1784  * Recalculate the low and high-water marks.
1785  */
1786 void
1787 swap_pager_newswap(void)
1788 {
1789 	/*
1790 	 * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1791 	 *	 limitation imposed by the blist code.  Remember that this
1792 	 *	 will be divided by NSWAP_MAX (4), so each swap device is
1793 	 *	 limited to around a terrabyte.
1794 	 */
1795 	if (vm_swap_max) {
1796 		nswap_lowat = (int64_t)vm_swap_max * 4 / 100;	/* 4% left */
1797 		nswap_hiwat = (int64_t)vm_swap_max * 6 / 100;	/* 6% left */
1798 		kprintf("swap low/high-water marks set to %d/%d\n",
1799 			nswap_lowat, nswap_hiwat);
1800 	} else {
1801 		nswap_lowat = 128;
1802 		nswap_hiwat = 512;
1803 	}
1804 	swp_sizecheck();
1805 }
1806 
1807 /*
1808  *	swp_pager_async_iodone:
1809  *
1810  *	Completion routine for asynchronous reads and writes from/to swap.
1811  *	Also called manually by synchronous code to finish up a bp.
1812  *
1813  *	For READ operations, the pages are BUSY'd.  For WRITE operations,
1814  *	the pages are vm_page_t->busy'd.  For READ operations, we BUSY
1815  *	unbusy all pages except the 'main' request page.  For WRITE
1816  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1817  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1818  *
1819  *	This routine may not block.
1820  *
1821  * No requirements.
1822  */
1823 static void
1824 swp_pager_async_iodone(struct bio *bio)
1825 {
1826 	struct buf *bp = bio->bio_buf;
1827 	vm_object_t object = NULL;
1828 	int i;
1829 	int *nswptr;
1830 
1831 	/*
1832 	 * report error
1833 	 */
1834 	if (bp->b_flags & B_ERROR) {
1835 		kprintf(
1836 		    "swap_pager: I/O error - %s failed; offset %lld,"
1837 			"size %ld, error %d\n",
1838 		    ((bio->bio_caller_info1.index & SWBIO_READ) ?
1839 			"pagein" : "pageout"),
1840 		    (long long)bio->bio_offset,
1841 		    (long)bp->b_bcount,
1842 		    bp->b_error
1843 		);
1844 	}
1845 
1846 	/*
1847 	 * set object.
1848 	 */
1849 	if (bp->b_xio.xio_npages)
1850 		object = bp->b_xio.xio_pages[0]->object;
1851 
1852 #if 0
1853 	/* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1854 	if (bio->bio_caller_info1.index & SWBIO_WRITE) {
1855 		if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) {
1856 			kprintf("SWAPOUT: BADCRC %08x %08x\n",
1857 				bio->bio_crc,
1858 				iscsi_crc32(bp->b_data, bp->b_bcount));
1859 			for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1860 				vm_page_t m = bp->b_xio.xio_pages[i];
1861 				if (m->flags & PG_WRITEABLE)
1862 					kprintf("SWAPOUT: "
1863 						"%d/%d %p writable\n",
1864 						i, bp->b_xio.xio_npages, m);
1865 			}
1866 		}
1867 	}
1868 #endif
1869 
1870 	/*
1871 	 * remove the mapping for kernel virtual
1872 	 */
1873 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1874 
1875 	/*
1876 	 * cleanup pages.  If an error occurs writing to swap, we are in
1877 	 * very serious trouble.  If it happens to be a disk error, though,
1878 	 * we may be able to recover by reassigning the swap later on.  So
1879 	 * in this case we remove the m->swapblk assignment for the page
1880 	 * but do not free it in the rlist.  The errornous block(s) are thus
1881 	 * never reallocated as swap.  Redirty the page and continue.
1882 	 */
1883 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1884 		vm_page_t m = bp->b_xio.xio_pages[i];
1885 
1886 		if (bp->b_flags & B_ERROR) {
1887 			/*
1888 			 * If an error occurs I'd love to throw the swapblk
1889 			 * away without freeing it back to swapspace, so it
1890 			 * can never be used again.  But I can't from an
1891 			 * interrupt.
1892 			 */
1893 
1894 			if (bio->bio_caller_info1.index & SWBIO_READ) {
1895 				/*
1896 				 * When reading, reqpage needs to stay
1897 				 * locked for the parent, but all other
1898 				 * pages can be freed.  We still want to
1899 				 * wakeup the parent waiting on the page,
1900 				 * though.  ( also: pg_reqpage can be -1 and
1901 				 * not match anything ).
1902 				 *
1903 				 * We have to wake specifically requested pages
1904 				 * up too because we cleared SWAPINPROG and
1905 				 * someone may be waiting for that.
1906 				 *
1907 				 * NOTE: For reads, m->dirty will probably
1908 				 *	 be overridden by the original caller
1909 				 *	 of getpages so don't play cute tricks
1910 				 *	 here.
1911 				 *
1912 				 * NOTE: We can't actually free the page from
1913 				 *	 here, because this is an interrupt.
1914 				 *	 It is not legal to mess with
1915 				 *	 object->memq from an interrupt.
1916 				 *	 Deactivate the page instead.
1917 				 *
1918 				 * WARNING! The instant SWAPINPROG is
1919 				 *	    cleared another cpu may start
1920 				 *	    using the mreq page (it will
1921 				 *	    check m->valid immediately).
1922 				 */
1923 
1924 				m->valid = 0;
1925 				atomic_clear_int(&m->busy_count,
1926 						 PBUSY_SWAPINPROG);
1927 
1928 				/*
1929 				 * bio_driver_info holds the requested page
1930 				 * index.
1931 				 */
1932 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1933 					vm_page_deactivate(m);
1934 					vm_page_wakeup(m);
1935 				} else {
1936 					vm_page_flash(m);
1937 				}
1938 				/*
1939 				 * If i == bp->b_pager.pg_reqpage, do not wake
1940 				 * the page up.  The caller needs to.
1941 				 */
1942 			} else {
1943 				/*
1944 				 * If a write error occurs remove the swap
1945 				 * assignment (note that PG_SWAPPED may or
1946 				 * may not be set depending on prior activity).
1947 				 *
1948 				 * Re-dirty OBJT_SWAP pages as there is no
1949 				 * other backing store, we can't throw the
1950 				 * page away.
1951 				 *
1952 				 * Non-OBJT_SWAP pages (aka swapcache) must
1953 				 * not be dirtied since they may not have
1954 				 * been dirty in the first place, and they
1955 				 * do have backing store (the vnode).
1956 				 */
1957 				vm_page_busy_wait(m, FALSE, "swadpg");
1958 				vm_object_hold(m->object);
1959 				swp_pager_meta_ctl(m->object, m->pindex,
1960 						   SWM_FREE);
1961 				vm_page_flag_clear(m, PG_SWAPPED);
1962 				vm_object_drop(m->object);
1963 				if (m->object->type == OBJT_SWAP) {
1964 					vm_page_dirty(m);
1965 					vm_page_activate(m);
1966 				}
1967 				vm_page_io_finish(m);
1968 				atomic_clear_int(&m->busy_count,
1969 						 PBUSY_SWAPINPROG);
1970 				vm_page_wakeup(m);
1971 			}
1972 		} else if (bio->bio_caller_info1.index & SWBIO_READ) {
1973 			/*
1974 			 * NOTE: for reads, m->dirty will probably be
1975 			 * overridden by the original caller of getpages so
1976 			 * we cannot set them in order to free the underlying
1977 			 * swap in a low-swap situation.  I don't think we'd
1978 			 * want to do that anyway, but it was an optimization
1979 			 * that existed in the old swapper for a time before
1980 			 * it got ripped out due to precisely this problem.
1981 			 *
1982 			 * If not the requested page then deactivate it.
1983 			 *
1984 			 * Note that the requested page, reqpage, is left
1985 			 * busied, but we still have to wake it up.  The
1986 			 * other pages are released (unbusied) by
1987 			 * vm_page_wakeup().  We do not set reqpage's
1988 			 * valid bits here, it is up to the caller.
1989 			 */
1990 
1991 			/*
1992 			 * NOTE: Can't call pmap_clear_modify(m) from an
1993 			 *	 interrupt thread, the pmap code may have to
1994 			 *	 map non-kernel pmaps and currently asserts
1995 			 *	 the case.
1996 			 *
1997 			 * WARNING! The instant SWAPINPROG is
1998 			 *	    cleared another cpu may start
1999 			 *	    using the mreq page (it will
2000 			 *	    check m->valid immediately).
2001 			 */
2002 			/*pmap_clear_modify(m);*/
2003 			m->valid = VM_PAGE_BITS_ALL;
2004 			vm_page_undirty(m);
2005 			vm_page_flag_set(m, PG_SWAPPED);
2006 			atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2007 
2008 			/*
2009 			 * We have to wake specifically requested pages
2010 			 * up too because we cleared SWAPINPROG and
2011 			 * could be waiting for it in getpages.  However,
2012 			 * be sure to not unbusy getpages specifically
2013 			 * requested page - getpages expects it to be
2014 			 * left busy.
2015 			 *
2016 			 * bio_driver_info holds the requested page
2017 			 */
2018 			if (i != (int)(intptr_t)bio->bio_driver_info) {
2019 				vm_page_deactivate(m);
2020 				vm_page_wakeup(m);
2021 			} else {
2022 				vm_page_flash(m);
2023 			}
2024 		} else {
2025 			/*
2026 			 * Mark the page clean but do not mess with the
2027 			 * pmap-layer's modified state.  That state should
2028 			 * also be clear since the caller protected the
2029 			 * page VM_PROT_READ, but allow the case.
2030 			 *
2031 			 * We are in an interrupt, avoid pmap operations.
2032 			 *
2033 			 * If we have a severe page deficit, deactivate the
2034 			 * page.  Do not try to cache it (which would also
2035 			 * involve a pmap op), because the page might still
2036 			 * be read-heavy.
2037 			 *
2038 			 * When using the swap to cache clean vnode pages
2039 			 * we do not mess with the page dirty bits.
2040 			 *
2041 			 * NOTE! Nobody is waiting for the key mreq page
2042 			 *	 on write completion.
2043 			 */
2044 			vm_page_busy_wait(m, FALSE, "swadpg");
2045 			if (m->object->type == OBJT_SWAP)
2046 				vm_page_undirty(m);
2047 			vm_page_flag_set(m, PG_SWAPPED);
2048 			atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2049 			if (vm_page_count_severe())
2050 				vm_page_deactivate(m);
2051 			vm_page_io_finish(m);
2052 			if (bio->bio_caller_info1.index & SWBIO_TTC)
2053 				vm_page_try_to_cache(m);
2054 			else
2055 				vm_page_wakeup(m);
2056 		}
2057 	}
2058 
2059 	/*
2060 	 * adjust pip.  NOTE: the original parent may still have its own
2061 	 * pip refs on the object.
2062 	 */
2063 
2064 	if (object)
2065 		vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
2066 
2067 	/*
2068 	 * Release the physical I/O buffer.
2069 	 *
2070 	 * NOTE: Due to synchronous operations in the write case b_cmd may
2071 	 *	 already be set to BUF_CMD_DONE and BIO_SYNC may have already
2072 	 *	 been cleared.
2073 	 *
2074 	 * Use vm_token to interlock nsw_rcount/wcount wakeup?
2075 	 */
2076 	lwkt_gettoken(&vm_token);
2077 	if (bio->bio_caller_info1.index & SWBIO_READ)
2078 		nswptr = &nsw_rcount;
2079 	else if (bio->bio_caller_info1.index & SWBIO_SYNC)
2080 		nswptr = &nsw_wcount_sync;
2081 	else
2082 		nswptr = &nsw_wcount_async;
2083 	bp->b_cmd = BUF_CMD_DONE;
2084 	relpbuf(bp, nswptr);
2085 	lwkt_reltoken(&vm_token);
2086 }
2087 
2088 /*
2089  * Fault-in a potentially swapped page and remove the swap reference.
2090  * (used by swapoff code)
2091  *
2092  * object must be held.
2093  */
2094 static __inline void
2095 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
2096 {
2097 	struct vnode *vp;
2098 	vm_page_t m;
2099 	int error;
2100 
2101 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2102 
2103 	if (object->type == OBJT_VNODE) {
2104 		/*
2105 		 * Any swap related to a vnode is due to swapcache.  We must
2106 		 * vget() the vnode in case it is not active (otherwise
2107 		 * vref() will panic).  Calling vm_object_page_remove() will
2108 		 * ensure that any swap ref is removed interlocked with the
2109 		 * page.  clean_only is set to TRUE so we don't throw away
2110 		 * dirty pages.
2111 		 */
2112 		vp = object->handle;
2113 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2114 		if (error == 0) {
2115 			vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2116 			vput(vp);
2117 		}
2118 	} else {
2119 		/*
2120 		 * Otherwise it is a normal OBJT_SWAP object and we can
2121 		 * fault the page in and remove the swap.
2122 		 */
2123 		m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2124 					 VM_PROT_NONE,
2125 					 VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2126 					 sharedp, &error);
2127 		if (m)
2128 			vm_page_unhold(m);
2129 	}
2130 }
2131 
2132 /*
2133  * This removes all swap blocks related to a particular device.  We have
2134  * to be careful of ripups during the scan.
2135  */
2136 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2137 
2138 int
2139 swap_pager_swapoff(int devidx)
2140 {
2141 	struct vm_object_hash *hash;
2142 	struct swswapoffinfo info;
2143 	struct vm_object marker;
2144 	vm_object_t object;
2145 	int n;
2146 
2147 	bzero(&marker, sizeof(marker));
2148 	marker.type = OBJT_MARKER;
2149 
2150 	for (n = 0; n < VMOBJ_HSIZE; ++n) {
2151 		hash = &vm_object_hash[n];
2152 
2153 		lwkt_gettoken(&hash->token);
2154 		TAILQ_INSERT_HEAD(&hash->list, &marker, object_list);
2155 
2156 		while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) {
2157 			if (object->type == OBJT_MARKER)
2158 				goto skip;
2159 			if (object->type != OBJT_SWAP &&
2160 			    object->type != OBJT_VNODE)
2161 				goto skip;
2162 			vm_object_hold(object);
2163 			if (object->type != OBJT_SWAP &&
2164 			    object->type != OBJT_VNODE) {
2165 				vm_object_drop(object);
2166 				goto skip;
2167 			}
2168 
2169 			/*
2170 			 * Object is special in that we can't just pagein
2171 			 * into vm_page's in it (tmpfs, vn).
2172 			 */
2173 			if ((object->flags & OBJ_NOPAGEIN) &&
2174 			    RB_ROOT(&object->swblock_root)) {
2175 				vm_object_drop(object);
2176 				goto skip;
2177 			}
2178 
2179 			info.object = object;
2180 			info.shared = 0;
2181 			info.devidx = devidx;
2182 			swblock_rb_tree_RB_SCAN(&object->swblock_root,
2183 					    NULL, swp_pager_swapoff_callback,
2184 					    &info);
2185 			vm_object_drop(object);
2186 skip:
2187 			if (object == TAILQ_NEXT(&marker, object_list)) {
2188 				TAILQ_REMOVE(&hash->list, &marker, object_list);
2189 				TAILQ_INSERT_AFTER(&hash->list, object,
2190 						   &marker, object_list);
2191 			}
2192 		}
2193 		TAILQ_REMOVE(&hash->list, &marker, object_list);
2194 		lwkt_reltoken(&hash->token);
2195 	}
2196 
2197 	/*
2198 	 * If we fail to locate all swblocks we just fail gracefully and
2199 	 * do not bother to restore paging on the swap device.  If the
2200 	 * user wants to retry the user can retry.
2201 	 */
2202 	if (swdevt[devidx].sw_nused)
2203 		return (1);
2204 	else
2205 		return (0);
2206 }
2207 
2208 static
2209 int
2210 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2211 {
2212 	struct swswapoffinfo *info = data;
2213 	vm_object_t object = info->object;
2214 	vm_pindex_t index;
2215 	swblk_t v;
2216 	int i;
2217 
2218 	index = swap->swb_index;
2219 	for (i = 0; i < SWAP_META_PAGES; ++i) {
2220 		/*
2221 		 * Make sure we don't race a dying object.  This will
2222 		 * kill the scan of the object's swap blocks entirely.
2223 		 */
2224 		if (object->flags & OBJ_DEAD)
2225 			return(-1);
2226 
2227 		/*
2228 		 * Fault the page, which can obviously block.  If the swap
2229 		 * structure disappears break out.
2230 		 */
2231 		v = swap->swb_pages[i];
2232 		if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2233 			swp_pager_fault_page(object, &info->shared,
2234 					     swap->swb_index + i);
2235 			/* swap ptr might go away */
2236 			if (RB_LOOKUP(swblock_rb_tree,
2237 				      &object->swblock_root, index) != swap) {
2238 				break;
2239 			}
2240 		}
2241 	}
2242 	return(0);
2243 }
2244 
2245 /************************************************************************
2246  *				SWAP META DATA 				*
2247  ************************************************************************
2248  *
2249  *	These routines manipulate the swap metadata stored in the
2250  *	OBJT_SWAP object.
2251  *
2252  *	Swap metadata is implemented with a global hash and not directly
2253  *	linked into the object.  Instead the object simply contains
2254  *	appropriate tracking counters.
2255  */
2256 
2257 /*
2258  * Lookup the swblock containing the specified swap block index.
2259  *
2260  * The caller must hold the object.
2261  */
2262 static __inline
2263 struct swblock *
2264 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2265 {
2266 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2267 	index &= ~(vm_pindex_t)SWAP_META_MASK;
2268 	return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2269 }
2270 
2271 /*
2272  * Remove a swblock from the RB tree.
2273  *
2274  * The caller must hold the object.
2275  */
2276 static __inline
2277 void
2278 swp_pager_remove(vm_object_t object, struct swblock *swap)
2279 {
2280 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2281 	RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2282 }
2283 
2284 /*
2285  * Convert default object to swap object if necessary
2286  *
2287  * The caller must hold the object.
2288  */
2289 static void
2290 swp_pager_meta_convert(vm_object_t object)
2291 {
2292 	if (object->type == OBJT_DEFAULT) {
2293 		object->type = OBJT_SWAP;
2294 		KKASSERT(object->swblock_count == 0);
2295 	}
2296 }
2297 
2298 /*
2299  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2300  *
2301  *	We first convert the object to a swap object if it is a default
2302  *	object.  Vnode objects do not need to be converted.
2303  *
2304  *	The specified swapblk is added to the object's swap metadata.  If
2305  *	the swapblk is not valid, it is freed instead.  Any previously
2306  *	assigned swapblk is freed.
2307  *
2308  * The caller must hold the object.
2309  */
2310 static void
2311 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2312 {
2313 	struct swblock *swap;
2314 	struct swblock *oswap;
2315 	vm_pindex_t v;
2316 
2317 	KKASSERT(swapblk != SWAPBLK_NONE);
2318 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2319 
2320 	/*
2321 	 * Convert object if necessary
2322 	 */
2323 	if (object->type == OBJT_DEFAULT)
2324 		swp_pager_meta_convert(object);
2325 
2326 	/*
2327 	 * Locate swblock.  If not found create, but if we aren't adding
2328 	 * anything just return.  If we run out of space in the map we wait
2329 	 * and, since the hash table may have changed, retry.
2330 	 */
2331 retry:
2332 	swap = swp_pager_lookup(object, index);
2333 
2334 	if (swap == NULL) {
2335 		int i;
2336 
2337 		swap = zalloc(swap_zone);
2338 		if (swap == NULL) {
2339 			vm_wait(0);
2340 			goto retry;
2341 		}
2342 		swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2343 		swap->swb_count = 0;
2344 
2345 		++object->swblock_count;
2346 
2347 		for (i = 0; i < SWAP_META_PAGES; ++i)
2348 			swap->swb_pages[i] = SWAPBLK_NONE;
2349 		oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2350 		KKASSERT(oswap == NULL);
2351 	}
2352 
2353 	/*
2354 	 * Delete prior contents of metadata.
2355 	 *
2356 	 * NOTE: Decrement swb_count after the freeing operation (which
2357 	 *	 might block) to prevent racing destruction of the swblock.
2358 	 */
2359 	index &= SWAP_META_MASK;
2360 
2361 	while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2362 		swap->swb_pages[index] = SWAPBLK_NONE;
2363 		/* can block */
2364 		swp_pager_freeswapspace(object, v, 1);
2365 		--swap->swb_count;
2366 		--mycpu->gd_vmtotal.t_vm;
2367 	}
2368 
2369 	/*
2370 	 * Enter block into metadata
2371 	 */
2372 	swap->swb_pages[index] = swapblk;
2373 	if (swapblk != SWAPBLK_NONE) {
2374 		++swap->swb_count;
2375 		++mycpu->gd_vmtotal.t_vm;
2376 	}
2377 }
2378 
2379 /*
2380  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2381  *
2382  *	The requested range of blocks is freed, with any associated swap
2383  *	returned to the swap bitmap.
2384  *
2385  *	This routine will free swap metadata structures as they are cleaned
2386  *	out.  This routine does *NOT* operate on swap metadata associated
2387  *	with resident pages.
2388  *
2389  * The caller must hold the object.
2390  */
2391 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2392 
2393 static void
2394 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2395 {
2396 	struct swfreeinfo info;
2397 
2398 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2399 
2400 	/*
2401 	 * Nothing to do
2402 	 */
2403 	if (object->swblock_count == 0) {
2404 		KKASSERT(RB_EMPTY(&object->swblock_root));
2405 		return;
2406 	}
2407 	if (count == 0)
2408 		return;
2409 
2410 	/*
2411 	 * Setup for RB tree scan.  Note that the pindex range can be huge
2412 	 * due to the 64 bit page index space so we cannot safely iterate.
2413 	 */
2414 	info.object = object;
2415 	info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2416 	info.begi = index;
2417 	info.endi = index + count - 1;
2418 	swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2419 				swp_pager_meta_free_callback, &info);
2420 }
2421 
2422 /*
2423  * The caller must hold the object.
2424  */
2425 static
2426 int
2427 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2428 {
2429 	struct swfreeinfo *info = data;
2430 	vm_object_t object = info->object;
2431 	int index;
2432 	int eindex;
2433 
2434 	/*
2435 	 * Figure out the range within the swblock.  The wider scan may
2436 	 * return edge-case swap blocks when the start and/or end points
2437 	 * are in the middle of a block.
2438 	 */
2439 	if (swap->swb_index < info->begi)
2440 		index = (int)info->begi & SWAP_META_MASK;
2441 	else
2442 		index = 0;
2443 
2444 	if (swap->swb_index + SWAP_META_PAGES > info->endi)
2445 		eindex = (int)info->endi & SWAP_META_MASK;
2446 	else
2447 		eindex = SWAP_META_MASK;
2448 
2449 	/*
2450 	 * Scan and free the blocks.  The loop terminates early
2451 	 * if (swap) runs out of blocks and could be freed.
2452 	 *
2453 	 * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2454 	 *	 to deal with a zfree race.
2455 	 */
2456 	while (index <= eindex) {
2457 		swblk_t v = swap->swb_pages[index];
2458 
2459 		if (v != SWAPBLK_NONE) {
2460 			swap->swb_pages[index] = SWAPBLK_NONE;
2461 			/* can block */
2462 			swp_pager_freeswapspace(object, v, 1);
2463 			--mycpu->gd_vmtotal.t_vm;
2464 			if (--swap->swb_count == 0) {
2465 				swp_pager_remove(object, swap);
2466 				zfree(swap_zone, swap);
2467 				--object->swblock_count;
2468 				break;
2469 			}
2470 		}
2471 		++index;
2472 	}
2473 
2474 	/* swap may be invalid here due to zfree above */
2475 	lwkt_yield();
2476 
2477 	return(0);
2478 }
2479 
2480 /*
2481  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2482  *
2483  *	This routine locates and destroys all swap metadata associated with
2484  *	an object.
2485  *
2486  * NOTE: Decrement swb_count after the freeing operation (which
2487  *	 might block) to prevent racing destruction of the swblock.
2488  *
2489  * The caller must hold the object.
2490  */
2491 static void
2492 swp_pager_meta_free_all(vm_object_t object)
2493 {
2494 	struct swblock *swap;
2495 	int i;
2496 
2497 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2498 
2499 	while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2500 		swp_pager_remove(object, swap);
2501 		for (i = 0; i < SWAP_META_PAGES; ++i) {
2502 			swblk_t v = swap->swb_pages[i];
2503 			if (v != SWAPBLK_NONE) {
2504 				/* can block */
2505 				swp_pager_freeswapspace(object, v, 1);
2506 				--swap->swb_count;
2507 				--mycpu->gd_vmtotal.t_vm;
2508 			}
2509 		}
2510 		if (swap->swb_count != 0)
2511 			panic("swap_pager_meta_free_all: swb_count != 0");
2512 		zfree(swap_zone, swap);
2513 		--object->swblock_count;
2514 		lwkt_yield();
2515 	}
2516 	KKASSERT(object->swblock_count == 0);
2517 }
2518 
2519 /*
2520  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2521  *
2522  *	This routine is capable of looking up, popping, or freeing
2523  *	swapblk assignments in the swap meta data or in the vm_page_t.
2524  *	The routine typically returns the swapblk being looked-up, or popped,
2525  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2526  *	was invalid.  This routine will automatically free any invalid
2527  *	meta-data swapblks.
2528  *
2529  *	It is not possible to store invalid swapblks in the swap meta data
2530  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2531  *
2532  *	When acting on a busy resident page and paging is in progress, we
2533  *	have to wait until paging is complete but otherwise can act on the
2534  *	busy page.
2535  *
2536  *	SWM_FREE	remove and free swap block from metadata
2537  *	SWM_POP		remove from meta data but do not free.. pop it out
2538  *
2539  * The caller must hold the object.
2540  */
2541 static swblk_t
2542 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2543 {
2544 	struct swblock *swap;
2545 	swblk_t r1;
2546 
2547 	if (object->swblock_count == 0)
2548 		return(SWAPBLK_NONE);
2549 
2550 	r1 = SWAPBLK_NONE;
2551 	swap = swp_pager_lookup(object, index);
2552 
2553 	if (swap != NULL) {
2554 		index &= SWAP_META_MASK;
2555 		r1 = swap->swb_pages[index];
2556 
2557 		if (r1 != SWAPBLK_NONE) {
2558 			if (flags & (SWM_FREE|SWM_POP)) {
2559 				swap->swb_pages[index] = SWAPBLK_NONE;
2560 				--mycpu->gd_vmtotal.t_vm;
2561 				if (--swap->swb_count == 0) {
2562 					swp_pager_remove(object, swap);
2563 					zfree(swap_zone, swap);
2564 					--object->swblock_count;
2565 				}
2566 			}
2567 			/* swap ptr may be invalid */
2568 			if (flags & SWM_FREE) {
2569 				swp_pager_freeswapspace(object, r1, 1);
2570 				r1 = SWAPBLK_NONE;
2571 			}
2572 		}
2573 		/* swap ptr may be invalid */
2574 	}
2575 	return(r1);
2576 }
2577