1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1998-2010 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to The DragonFly Project 7 * by Matthew Dillon <dillon@backplane.com> 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in 17 * the documentation and/or other materials provided with the 18 * distribution. 19 * 3. Neither the name of The DragonFly Project nor the names of its 20 * contributors may be used to endorse or promote products derived 21 * from this software without specific, prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * Copyright (c) 1994 John S. Dyson 37 * Copyright (c) 1990 University of Utah. 38 * Copyright (c) 1991, 1993 39 * The Regents of the University of California. All rights reserved. 40 * 41 * This code is derived from software contributed to Berkeley by 42 * the Systems Programming Group of the University of Utah Computer 43 * Science Department. 44 * 45 * Redistribution and use in source and binary forms, with or without 46 * modification, are permitted provided that the following conditions 47 * are met: 48 * 1. Redistributions of source code must retain the above copyright 49 * notice, this list of conditions and the following disclaimer. 50 * 2. Redistributions in binary form must reproduce the above copyright 51 * notice, this list of conditions and the following disclaimer in the 52 * documentation and/or other materials provided with the distribution. 53 * 3. Neither the name of the University nor the names of its contributors 54 * may be used to endorse or promote products derived from this software 55 * without specific prior written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 67 * SUCH DAMAGE. 68 * 69 * New Swap System 70 * Matthew Dillon 71 * 72 * Radix Bitmap 'blists'. 73 * 74 * - The new swapper uses the new radix bitmap code. This should scale 75 * to arbitrarily small or arbitrarily large swap spaces and an almost 76 * arbitrary degree of fragmentation. 77 * 78 * Features: 79 * 80 * - on the fly reallocation of swap during putpages. The new system 81 * does not try to keep previously allocated swap blocks for dirty 82 * pages. 83 * 84 * - on the fly deallocation of swap 85 * 86 * - No more garbage collection required. Unnecessarily allocated swap 87 * blocks only exist for dirty vm_page_t's now and these are already 88 * cycled (in a high-load system) by the pager. We also do on-the-fly 89 * removal of invalidated swap blocks when a page is destroyed 90 * or renamed. 91 * 92 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 93 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 94 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $ 95 */ 96 97 #include "opt_swap.h" 98 #include <sys/param.h> 99 #include <sys/systm.h> 100 #include <sys/conf.h> 101 #include <sys/kernel.h> 102 #include <sys/proc.h> 103 #include <sys/buf.h> 104 #include <sys/vnode.h> 105 #include <sys/malloc.h> 106 #include <sys/vmmeter.h> 107 #include <sys/sysctl.h> 108 #include <sys/blist.h> 109 #include <sys/lock.h> 110 #include <sys/kcollect.h> 111 112 #include <vm/vm.h> 113 #include <vm/vm_object.h> 114 #include <vm/vm_page.h> 115 #include <vm/vm_pager.h> 116 #include <vm/vm_pageout.h> 117 #include <vm/swap_pager.h> 118 #include <vm/vm_extern.h> 119 #include <vm/vm_zone.h> 120 #include <vm/vnode_pager.h> 121 122 #include <sys/buf2.h> 123 #include <vm/vm_page2.h> 124 125 #ifndef MAX_PAGEOUT_CLUSTER 126 #define MAX_PAGEOUT_CLUSTER SWB_NPAGES 127 #endif 128 129 #define SWM_FREE 0x02 /* free, period */ 130 #define SWM_POP 0x04 /* pop out */ 131 132 #define SWBIO_READ 0x01 133 #define SWBIO_WRITE 0x02 134 #define SWBIO_SYNC 0x04 135 #define SWBIO_TTC 0x08 /* for VM_PAGER_TRY_TO_CACHE */ 136 137 struct swfreeinfo { 138 vm_object_t object; 139 vm_pindex_t basei; 140 vm_pindex_t begi; 141 vm_pindex_t endi; /* inclusive */ 142 }; 143 144 struct swswapoffinfo { 145 vm_object_t object; 146 int devidx; 147 int shared; 148 }; 149 150 /* 151 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks 152 * in the old system. 153 */ 154 155 int swap_pager_full; /* swap space exhaustion (task killing) */ 156 int swap_fail_ticks; /* when we became exhausted */ 157 int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 158 swblk_t vm_swap_cache_use; 159 swblk_t vm_swap_anon_use; 160 static int vm_report_swap_allocs; 161 162 static struct krate kswaprate = { 1 }; 163 static int nsw_rcount; /* free read buffers */ 164 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 165 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 166 static int nsw_wcount_async_max;/* assigned maximum */ 167 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 168 169 struct blist *swapblist; 170 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 171 static int swap_burst_read = 0; /* allow burst reading */ 172 static swblk_t swapiterator; /* linearize allocations */ 173 int swap_user_async = 0; /* user swap pager operation can be async */ 174 175 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin"); 176 177 /* from vm_swap.c */ 178 extern struct vnode *swapdev_vp; 179 extern struct swdevt *swdevt; 180 extern int nswdev; 181 182 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0) 183 184 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 185 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 186 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read, 187 CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins"); 188 SYSCTL_INT(_vm, OID_AUTO, swap_user_async, 189 CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O"); 190 191 #if SWBLK_BITS == 64 192 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use, 193 CTLFLAG_RD, &vm_swap_cache_use, 0, ""); 194 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use, 195 CTLFLAG_RD, &vm_swap_anon_use, 0, ""); 196 SYSCTL_LONG(_vm, OID_AUTO, swap_size, 197 CTLFLAG_RD, &vm_swap_size, 0, ""); 198 #else 199 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use, 200 CTLFLAG_RD, &vm_swap_cache_use, 0, ""); 201 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use, 202 CTLFLAG_RD, &vm_swap_anon_use, 0, ""); 203 SYSCTL_INT(_vm, OID_AUTO, swap_size, 204 CTLFLAG_RD, &vm_swap_size, 0, ""); 205 #endif 206 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs, 207 CTLFLAG_RW, &vm_report_swap_allocs, 0, ""); 208 209 vm_zone_t swap_zone; 210 211 /* 212 * Red-Black tree for swblock entries 213 * 214 * The caller must hold vm_token 215 */ 216 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare, 217 vm_pindex_t, swb_index); 218 219 int 220 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2) 221 { 222 if (swb1->swb_index < swb2->swb_index) 223 return(-1); 224 if (swb1->swb_index > swb2->swb_index) 225 return(1); 226 return(0); 227 } 228 229 static 230 int 231 rb_swblock_scancmp(struct swblock *swb, void *data) 232 { 233 struct swfreeinfo *info = data; 234 235 if (swb->swb_index < info->basei) 236 return(-1); 237 if (swb->swb_index > info->endi) 238 return(1); 239 return(0); 240 } 241 242 static 243 int 244 rb_swblock_condcmp(struct swblock *swb, void *data) 245 { 246 struct swfreeinfo *info = data; 247 248 if (swb->swb_index < info->basei) 249 return(-1); 250 return(0); 251 } 252 253 /* 254 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 255 * calls hooked from other parts of the VM system and do not appear here. 256 * (see vm/swap_pager.h). 257 */ 258 259 static void swap_pager_dealloc (vm_object_t object); 260 static int swap_pager_getpage (vm_object_t, vm_page_t *, int); 261 static void swap_chain_iodone(struct bio *biox); 262 263 struct pagerops swappagerops = { 264 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 265 swap_pager_getpage, /* pagein */ 266 swap_pager_putpages, /* pageout */ 267 swap_pager_haspage /* get backing store status for page */ 268 }; 269 270 /* 271 * SWB_DMMAX is in page-sized chunks with the new swap system. It was 272 * dev-bsized chunks in the old. SWB_DMMAX is always a power of 2. 273 * 274 * swap_*() routines are externally accessible. swp_*() routines are 275 * internal. 276 */ 277 278 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 279 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 280 281 static __inline void swp_sizecheck (void); 282 static void swp_pager_async_iodone (struct bio *bio); 283 284 /* 285 * Swap bitmap functions 286 */ 287 288 static __inline void swp_pager_freeswapspace(vm_object_t object, 289 swblk_t blk, int npages); 290 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages); 291 292 /* 293 * Metadata functions 294 */ 295 296 static void swp_pager_meta_convert(vm_object_t); 297 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t); 298 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t); 299 static void swp_pager_meta_free_all(vm_object_t); 300 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 301 302 /* 303 * SWP_SIZECHECK() - update swap_pager_full indication 304 * 305 * update the swap_pager_almost_full indication and warn when we are 306 * about to run out of swap space, using lowat/hiwat hysteresis. 307 * 308 * Clear swap_pager_full ( task killing ) indication when lowat is met. 309 * 310 * No restrictions on call 311 * This routine may not block. 312 * SMP races are ok. 313 */ 314 static __inline void 315 swp_sizecheck(void) 316 { 317 if (vm_swap_size < nswap_lowat) { 318 if (swap_pager_almost_full == 0) { 319 kprintf("swap_pager: out of swap space\n"); 320 swap_pager_almost_full = 1; 321 swap_fail_ticks = ticks; 322 } 323 } else { 324 swap_pager_full = 0; 325 if (vm_swap_size > nswap_hiwat) 326 swap_pager_almost_full = 0; 327 } 328 } 329 330 /* 331 * Long-term data collection on 10-second interval. Return the value 332 * for KCOLLECT_SWAPPCT and set the values for SWAPANO and SWAPCCAC. 333 * 334 * Return total swap in the scale field. This can change if swap is 335 * regularly added or removed and may cause some historical confusion 336 * in that case, but SWAPPCT will always be historically accurate. 337 */ 338 339 #define PTOB(value) ((uint64_t)(value) << PAGE_SHIFT) 340 341 static uint64_t 342 collect_swap_callback(int n) 343 { 344 uint64_t total = vm_swap_max; 345 uint64_t anon = vm_swap_anon_use; 346 uint64_t cache = vm_swap_cache_use; 347 348 if (total == 0) /* avoid divide by zero */ 349 total = 1; 350 kcollect_setvalue(KCOLLECT_SWAPANO, PTOB(anon)); 351 kcollect_setvalue(KCOLLECT_SWAPCAC, PTOB(cache)); 352 kcollect_setscale(KCOLLECT_SWAPANO, 353 KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, PTOB(total))); 354 kcollect_setscale(KCOLLECT_SWAPCAC, 355 KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, PTOB(total))); 356 return (((anon + cache) * 10000 + (total >> 1)) / total); 357 } 358 359 /* 360 * SWAP_PAGER_INIT() - initialize the swap pager! 361 * 362 * Expected to be started from system init. NOTE: This code is run 363 * before much else so be careful what you depend on. Most of the VM 364 * system has yet to be initialized at this point. 365 * 366 * Called from the low level boot code only. 367 */ 368 static void 369 swap_pager_init(void *arg __unused) 370 { 371 kcollect_register(KCOLLECT_SWAPPCT, "swapuse", collect_swap_callback, 372 KCOLLECT_SCALE(KCOLLECT_SWAPPCT_FORMAT, 0)); 373 kcollect_register(KCOLLECT_SWAPANO, "swapano", NULL, 374 KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, 0)); 375 kcollect_register(KCOLLECT_SWAPCAC, "swapcac", NULL, 376 KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, 0)); 377 } 378 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL); 379 380 /* 381 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 382 * 383 * Expected to be started from pageout process once, prior to entering 384 * its main loop. 385 * 386 * Called from the low level boot code only. 387 */ 388 void 389 swap_pager_swap_init(void) 390 { 391 int n, n2; 392 393 /* 394 * Number of in-transit swap bp operations. Don't 395 * exhaust the pbufs completely. Make sure we 396 * initialize workable values (0 will work for hysteresis 397 * but it isn't very efficient). 398 * 399 * The nsw_cluster_max is constrained by the number of pages an XIO 400 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined 401 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 402 * constrained by the swap device interleave stripe size. 403 * 404 * Currently we hardwire nsw_wcount_async to 4. This limit is 405 * designed to prevent other I/O from having high latencies due to 406 * our pageout I/O. The value 4 works well for one or two active swap 407 * devices but is probably a little low if you have more. Even so, 408 * a higher value would probably generate only a limited improvement 409 * with three or four active swap devices since the system does not 410 * typically have to pageout at extreme bandwidths. We will want 411 * at least 2 per swap devices, and 4 is a pretty good value if you 412 * have one NFS swap device due to the command/ack latency over NFS. 413 * So it all works out pretty well. 414 */ 415 416 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 417 418 nsw_rcount = (nswbuf_kva + 1) / 2; 419 nsw_wcount_sync = (nswbuf_kva + 3) / 4; 420 nsw_wcount_async = 4; 421 nsw_wcount_async_max = nsw_wcount_async; 422 423 /* 424 * The zone is dynamically allocated so generally size it to 425 * maxswzone (32MB to 256GB of KVM). Set a minimum size based 426 * on physical memory of around 8x (each swblock can hold 16 pages). 427 * 428 * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio 429 * has increased dramatically. 430 */ 431 n = vmstats.v_page_count / 2; 432 if (maxswzone && n < maxswzone / sizeof(struct swblock)) 433 n = maxswzone / sizeof(struct swblock); 434 n2 = n; 435 436 do { 437 swap_zone = zinit( 438 "SWAPMETA", 439 sizeof(struct swblock), 440 n, 441 ZONE_INTERRUPT); 442 if (swap_zone != NULL) 443 break; 444 /* 445 * if the allocation failed, try a zone two thirds the 446 * size of the previous attempt. 447 */ 448 n -= ((n + 2) / 3); 449 } while (n > 0); 450 451 if (swap_zone == NULL) 452 panic("swap_pager_swap_init: swap_zone == NULL"); 453 if (n2 != n) 454 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n); 455 } 456 457 /* 458 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 459 * its metadata structures. 460 * 461 * This routine is called from the mmap and fork code to create a new 462 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 463 * and then converting it with swp_pager_meta_convert(). 464 * 465 * We only support unnamed objects. 466 * 467 * No restrictions. 468 */ 469 vm_object_t 470 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset) 471 { 472 vm_object_t object; 473 474 KKASSERT(handle == NULL); 475 object = vm_object_allocate_hold(OBJT_DEFAULT, 476 OFF_TO_IDX(offset + PAGE_MASK + size)); 477 swp_pager_meta_convert(object); 478 vm_object_drop(object); 479 480 return (object); 481 } 482 483 /* 484 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 485 * 486 * The swap backing for the object is destroyed. The code is 487 * designed such that we can reinstantiate it later, but this 488 * routine is typically called only when the entire object is 489 * about to be destroyed. 490 * 491 * The object must be locked or unreferenceable. 492 * No other requirements. 493 */ 494 static void 495 swap_pager_dealloc(vm_object_t object) 496 { 497 vm_object_hold(object); 498 vm_object_pip_wait(object, "swpdea"); 499 500 /* 501 * Free all remaining metadata. We only bother to free it from 502 * the swap meta data. We do not attempt to free swapblk's still 503 * associated with vm_page_t's for this object. We do not care 504 * if paging is still in progress on some objects. 505 */ 506 swp_pager_meta_free_all(object); 507 vm_object_drop(object); 508 } 509 510 /************************************************************************ 511 * SWAP PAGER BITMAP ROUTINES * 512 ************************************************************************/ 513 514 /* 515 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 516 * 517 * Allocate swap for the requested number of pages. The starting 518 * swap block number (a page index) is returned or SWAPBLK_NONE 519 * if the allocation failed. 520 * 521 * Also has the side effect of advising that somebody made a mistake 522 * when they configured swap and didn't configure enough. 523 * 524 * The caller must hold the object. 525 * This routine may not block. 526 */ 527 static __inline swblk_t 528 swp_pager_getswapspace(vm_object_t object, int npages) 529 { 530 swblk_t blk; 531 532 lwkt_gettoken(&vm_token); 533 blk = blist_allocat(swapblist, npages, swapiterator); 534 if (blk == SWAPBLK_NONE) 535 blk = blist_allocat(swapblist, npages, 0); 536 if (blk == SWAPBLK_NONE) { 537 if (swap_pager_full != 2) { 538 if (vm_swap_max == 0) { 539 krateprintf(&kswaprate, 540 "Warning: The system would like to " 541 "page to swap but no swap space " 542 "is configured!\n"); 543 } else { 544 krateprintf(&kswaprate, 545 "swap_pager_getswapspace: " 546 "swap full allocating %d pages\n", 547 npages); 548 } 549 swap_pager_full = 2; 550 if (swap_pager_almost_full == 0) 551 swap_fail_ticks = ticks; 552 swap_pager_almost_full = 1; 553 } 554 } else { 555 /* swapiterator = blk; disable for now, doesn't work well */ 556 swapacctspace(blk, -npages); 557 if (object->type == OBJT_SWAP) 558 vm_swap_anon_use += npages; 559 else 560 vm_swap_cache_use += npages; 561 swp_sizecheck(); 562 } 563 lwkt_reltoken(&vm_token); 564 return(blk); 565 } 566 567 /* 568 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 569 * 570 * This routine returns the specified swap blocks back to the bitmap. 571 * 572 * Note: This routine may not block (it could in the old swap code), 573 * and through the use of the new blist routines it does not block. 574 * 575 * This routine may not block. 576 */ 577 578 static __inline void 579 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages) 580 { 581 struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)]; 582 583 lwkt_gettoken(&vm_token); 584 sp->sw_nused -= npages; 585 if (object->type == OBJT_SWAP) 586 vm_swap_anon_use -= npages; 587 else 588 vm_swap_cache_use -= npages; 589 590 if (sp->sw_flags & SW_CLOSING) { 591 lwkt_reltoken(&vm_token); 592 return; 593 } 594 595 blist_free(swapblist, blk, npages); 596 vm_swap_size += npages; 597 swp_sizecheck(); 598 lwkt_reltoken(&vm_token); 599 } 600 601 /* 602 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 603 * range within an object. 604 * 605 * This is a globally accessible routine. 606 * 607 * This routine removes swapblk assignments from swap metadata. 608 * 609 * The external callers of this routine typically have already destroyed 610 * or renamed vm_page_t's associated with this range in the object so 611 * we should be ok. 612 * 613 * No requirements. 614 */ 615 void 616 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size) 617 { 618 vm_object_hold(object); 619 swp_pager_meta_free(object, start, size); 620 vm_object_drop(object); 621 } 622 623 /* 624 * No requirements. 625 */ 626 void 627 swap_pager_freespace_all(vm_object_t object) 628 { 629 vm_object_hold(object); 630 swp_pager_meta_free_all(object); 631 vm_object_drop(object); 632 } 633 634 /* 635 * This function conditionally frees swap cache swap starting at 636 * (*basei) in the object. (count) swap blocks will be nominally freed. 637 * The actual number of blocks freed can be more or less than the 638 * requested number. 639 * 640 * This function nominally returns the number of blocks freed. However, 641 * the actual number of blocks freed may be less then the returned value. 642 * If the function is unable to exhaust the object or if it is able to 643 * free (approximately) the requested number of blocks it returns 644 * a value n > count. 645 * 646 * If we exhaust the object we will return a value n <= count. 647 * 648 * The caller must hold the object. 649 * 650 * WARNING! If count == 0 then -1 can be returned as a degenerate case, 651 * callers should always pass a count value > 0. 652 */ 653 static int swap_pager_condfree_callback(struct swblock *swap, void *data); 654 655 int 656 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count) 657 { 658 struct swfreeinfo info; 659 int n; 660 int t; 661 662 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 663 664 info.object = object; 665 info.basei = *basei; /* skip up to this page index */ 666 info.begi = count; /* max swap pages to destroy */ 667 info.endi = count * 8; /* max swblocks to scan */ 668 669 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp, 670 swap_pager_condfree_callback, &info); 671 *basei = info.basei; 672 673 /* 674 * Take the higher difference swblocks vs pages 675 */ 676 n = count - (int)info.begi; 677 t = count * 8 - (int)info.endi; 678 if (n < t) 679 n = t; 680 if (n < 1) 681 n = 1; 682 return(n); 683 } 684 685 /* 686 * The idea is to free whole meta-block to avoid fragmenting 687 * the swap space or disk I/O. We only do this if NO VM pages 688 * are present. 689 * 690 * We do not have to deal with clearing PG_SWAPPED in related VM 691 * pages because there are no related VM pages. 692 * 693 * The caller must hold the object. 694 */ 695 static int 696 swap_pager_condfree_callback(struct swblock *swap, void *data) 697 { 698 struct swfreeinfo *info = data; 699 vm_object_t object = info->object; 700 int i; 701 702 for (i = 0; i < SWAP_META_PAGES; ++i) { 703 if (vm_page_lookup(object, swap->swb_index + i)) 704 break; 705 } 706 info->basei = swap->swb_index + SWAP_META_PAGES; 707 if (i == SWAP_META_PAGES) { 708 info->begi -= swap->swb_count; 709 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES); 710 } 711 --info->endi; 712 if ((int)info->begi < 0 || (int)info->endi < 0) 713 return(-1); 714 lwkt_yield(); 715 return(0); 716 } 717 718 /* 719 * Called by vm_page_alloc() when a new VM page is inserted 720 * into a VM object. Checks whether swap has been assigned to 721 * the page and sets PG_SWAPPED as necessary. 722 * 723 * (m) must be busied by caller and remains busied on return. 724 */ 725 void 726 swap_pager_page_inserted(vm_page_t m) 727 { 728 if (m->object->swblock_count) { 729 vm_object_hold(m->object); 730 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE) 731 vm_page_flag_set(m, PG_SWAPPED); 732 vm_object_drop(m->object); 733 } 734 } 735 736 /* 737 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 738 * 739 * Assigns swap blocks to the specified range within the object. The 740 * swap blocks are not zerod. Any previous swap assignment is destroyed. 741 * 742 * Returns 0 on success, -1 on failure. 743 * 744 * The caller is responsible for avoiding races in the specified range. 745 * No other requirements. 746 */ 747 int 748 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 749 { 750 int n = 0; 751 swblk_t blk = SWAPBLK_NONE; 752 vm_pindex_t beg = start; /* save start index */ 753 754 vm_object_hold(object); 755 756 while (size) { 757 if (n == 0) { 758 n = BLIST_MAX_ALLOC; 759 while ((blk = swp_pager_getswapspace(object, n)) == 760 SWAPBLK_NONE) 761 { 762 n >>= 1; 763 if (n == 0) { 764 swp_pager_meta_free(object, beg, 765 start - beg); 766 vm_object_drop(object); 767 return(-1); 768 } 769 } 770 } 771 swp_pager_meta_build(object, start, blk); 772 --size; 773 ++start; 774 ++blk; 775 --n; 776 } 777 swp_pager_meta_free(object, start, n); 778 vm_object_drop(object); 779 return(0); 780 } 781 782 /* 783 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 784 * and destroy the source. 785 * 786 * Copy any valid swapblks from the source to the destination. In 787 * cases where both the source and destination have a valid swapblk, 788 * we keep the destination's. 789 * 790 * This routine is allowed to block. It may block allocating metadata 791 * indirectly through swp_pager_meta_build() or if paging is still in 792 * progress on the source. 793 * 794 * XXX vm_page_collapse() kinda expects us not to block because we 795 * supposedly do not need to allocate memory, but for the moment we 796 * *may* have to get a little memory from the zone allocator, but 797 * it is taken from the interrupt memory. We should be ok. 798 * 799 * The source object contains no vm_page_t's (which is just as well) 800 * The source object is of type OBJT_SWAP. 801 * 802 * The source and destination objects must be held by the caller. 803 */ 804 void 805 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 806 vm_pindex_t base_index, int destroysource) 807 { 808 vm_pindex_t i; 809 810 ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject)); 811 ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject)); 812 813 /* 814 * transfer source to destination. 815 */ 816 for (i = 0; i < dstobject->size; ++i) { 817 swblk_t dstaddr; 818 819 /* 820 * Locate (without changing) the swapblk on the destination, 821 * unless it is invalid in which case free it silently, or 822 * if the destination is a resident page, in which case the 823 * source is thrown away. 824 */ 825 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 826 827 if (dstaddr == SWAPBLK_NONE) { 828 /* 829 * Destination has no swapblk and is not resident, 830 * copy source. 831 */ 832 swblk_t srcaddr; 833 834 srcaddr = swp_pager_meta_ctl(srcobject, 835 base_index + i, SWM_POP); 836 837 if (srcaddr != SWAPBLK_NONE) 838 swp_pager_meta_build(dstobject, i, srcaddr); 839 } else { 840 /* 841 * Destination has valid swapblk or it is represented 842 * by a resident page. We destroy the sourceblock. 843 */ 844 swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE); 845 } 846 } 847 848 /* 849 * Free left over swap blocks in source. 850 * 851 * We have to revert the type to OBJT_DEFAULT so we do not accidently 852 * double-remove the object from the swap queues. 853 */ 854 if (destroysource) { 855 /* 856 * Reverting the type is not necessary, the caller is going 857 * to destroy srcobject directly, but I'm doing it here 858 * for consistency since we've removed the object from its 859 * queues. 860 */ 861 swp_pager_meta_free_all(srcobject); 862 if (srcobject->type == OBJT_SWAP) 863 srcobject->type = OBJT_DEFAULT; 864 } 865 } 866 867 /* 868 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 869 * the requested page. 870 * 871 * We determine whether good backing store exists for the requested 872 * page and return TRUE if it does, FALSE if it doesn't. 873 * 874 * If TRUE, we also try to determine how much valid, contiguous backing 875 * store exists before and after the requested page within a reasonable 876 * distance. We do not try to restrict it to the swap device stripe 877 * (that is handled in getpages/putpages). It probably isn't worth 878 * doing here. 879 * 880 * No requirements. 881 */ 882 boolean_t 883 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex) 884 { 885 swblk_t blk0; 886 887 /* 888 * do we have good backing store at the requested index ? 889 */ 890 vm_object_hold(object); 891 blk0 = swp_pager_meta_ctl(object, pindex, 0); 892 893 if (blk0 == SWAPBLK_NONE) { 894 vm_object_drop(object); 895 return (FALSE); 896 } 897 vm_object_drop(object); 898 return (TRUE); 899 } 900 901 /* 902 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 903 * 904 * This removes any associated swap backing store, whether valid or 905 * not, from the page. This operates on any VM object, not just OBJT_SWAP 906 * objects. 907 * 908 * This routine is typically called when a page is made dirty, at 909 * which point any associated swap can be freed. MADV_FREE also 910 * calls us in a special-case situation 911 * 912 * NOTE!!! If the page is clean and the swap was valid, the caller 913 * should make the page dirty before calling this routine. 914 * This routine does NOT change the m->dirty status of the page. 915 * Also: MADV_FREE depends on it. 916 * 917 * The page must be busied. 918 * The caller can hold the object to avoid blocking, else we might block. 919 * No other requirements. 920 */ 921 void 922 swap_pager_unswapped(vm_page_t m) 923 { 924 if (m->flags & PG_SWAPPED) { 925 vm_object_hold(m->object); 926 KKASSERT(m->flags & PG_SWAPPED); 927 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 928 vm_page_flag_clear(m, PG_SWAPPED); 929 vm_object_drop(m->object); 930 } 931 } 932 933 /* 934 * SWAP_PAGER_STRATEGY() - read, write, free blocks 935 * 936 * This implements a VM OBJECT strategy function using swap backing store. 937 * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP 938 * types. Only BUF_CMD_{READ,WRITE,FREEBLKS} is supported, any other 939 * requests will return EINVAL. 940 * 941 * This is intended to be a cacheless interface (i.e. caching occurs at 942 * higher levels), and is also used as a swap-based SSD cache for vnode 943 * and device objects. 944 * 945 * All I/O goes directly to and from the swap device. 946 * 947 * We currently attempt to run I/O synchronously or asynchronously as 948 * the caller requests. This isn't perfect because we loose error 949 * sequencing when we run multiple ops in parallel to satisfy a request. 950 * But this is swap, so we let it all hang out. 951 * 952 * NOTE: This function supports the KVABIO API wherein bp->b_data might 953 * not be synchronized to the current cpu. 954 * 955 * No requirements. 956 */ 957 void 958 swap_pager_strategy(vm_object_t object, struct bio *bio) 959 { 960 struct buf *bp = bio->bio_buf; 961 struct bio *nbio; 962 vm_pindex_t start; 963 vm_pindex_t biox_blkno = 0; 964 int count; 965 char *data; 966 struct bio *biox; 967 struct buf *bufx; 968 #if 0 969 struct bio_track *track; 970 #endif 971 972 #if 0 973 /* 974 * tracking for swapdev vnode I/Os 975 */ 976 if (bp->b_cmd == BUF_CMD_READ) 977 track = &swapdev_vp->v_track_read; 978 else 979 track = &swapdev_vp->v_track_write; 980 #endif 981 982 /* 983 * Only supported commands 984 */ 985 if (bp->b_cmd != BUF_CMD_FREEBLKS && 986 bp->b_cmd != BUF_CMD_READ && 987 bp->b_cmd != BUF_CMD_WRITE) { 988 bp->b_error = EINVAL; 989 bp->b_flags |= B_ERROR | B_INVAL; 990 biodone(bio); 991 return; 992 } 993 994 /* 995 * bcount must be an integral number of pages. 996 */ 997 if (bp->b_bcount & PAGE_MASK) { 998 bp->b_error = EINVAL; 999 bp->b_flags |= B_ERROR | B_INVAL; 1000 biodone(bio); 1001 kprintf("swap_pager_strategy: bp %p offset %lld size %d, " 1002 "not page bounded\n", 1003 bp, (long long)bio->bio_offset, (int)bp->b_bcount); 1004 return; 1005 } 1006 1007 /* 1008 * Clear error indication, initialize page index, count, data pointer. 1009 */ 1010 bp->b_error = 0; 1011 bp->b_flags &= ~B_ERROR; 1012 bp->b_resid = bp->b_bcount; 1013 1014 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT); 1015 count = howmany(bp->b_bcount, PAGE_SIZE); 1016 1017 /* 1018 * WARNING! Do not dereference *data without issuing a bkvasync() 1019 */ 1020 data = bp->b_data; 1021 1022 /* 1023 * Deal with BUF_CMD_FREEBLKS 1024 */ 1025 if (bp->b_cmd == BUF_CMD_FREEBLKS) { 1026 /* 1027 * FREE PAGE(s) - destroy underlying swap that is no longer 1028 * needed. 1029 */ 1030 vm_object_hold(object); 1031 swp_pager_meta_free(object, start, count); 1032 vm_object_drop(object); 1033 bp->b_resid = 0; 1034 biodone(bio); 1035 return; 1036 } 1037 1038 /* 1039 * We need to be able to create a new cluster of I/O's. We cannot 1040 * use the caller fields of the passed bio so push a new one. 1041 * 1042 * Because nbio is just a placeholder for the cluster links, 1043 * we can biodone() the original bio instead of nbio to make 1044 * things a bit more efficient. 1045 */ 1046 nbio = push_bio(bio); 1047 nbio->bio_offset = bio->bio_offset; 1048 nbio->bio_caller_info1.cluster_head = NULL; 1049 nbio->bio_caller_info2.cluster_tail = NULL; 1050 1051 biox = NULL; 1052 bufx = NULL; 1053 1054 /* 1055 * Execute read or write 1056 */ 1057 vm_object_hold(object); 1058 1059 while (count > 0) { 1060 swblk_t blk; 1061 1062 /* 1063 * Obtain block. If block not found and writing, allocate a 1064 * new block and build it into the object. 1065 */ 1066 blk = swp_pager_meta_ctl(object, start, 0); 1067 if ((blk == SWAPBLK_NONE) && bp->b_cmd == BUF_CMD_WRITE) { 1068 blk = swp_pager_getswapspace(object, 1); 1069 if (blk == SWAPBLK_NONE) { 1070 bp->b_error = ENOMEM; 1071 bp->b_flags |= B_ERROR; 1072 break; 1073 } 1074 swp_pager_meta_build(object, start, blk); 1075 } 1076 1077 /* 1078 * Do we have to flush our current collection? Yes if: 1079 * 1080 * - no swap block at this index 1081 * - swap block is not contiguous 1082 * - we cross a physical disk boundry in the 1083 * stripe. 1084 */ 1085 if (biox && 1086 (biox_blkno + btoc(bufx->b_bcount) != blk || 1087 ((biox_blkno ^ blk) & ~SWB_DMMASK))) { 1088 switch(bp->b_cmd) { 1089 case BUF_CMD_READ: 1090 ++mycpu->gd_cnt.v_swapin; 1091 mycpu->gd_cnt.v_swappgsin += 1092 btoc(bufx->b_bcount); 1093 break; 1094 case BUF_CMD_WRITE: 1095 ++mycpu->gd_cnt.v_swapout; 1096 mycpu->gd_cnt.v_swappgsout += 1097 btoc(bufx->b_bcount); 1098 bufx->b_dirtyend = bufx->b_bcount; 1099 break; 1100 default: 1101 /* NOT REACHED */ 1102 break; 1103 } 1104 1105 /* 1106 * Finished with this buf. 1107 */ 1108 KKASSERT(bufx->b_bcount != 0); 1109 if (bufx->b_cmd != BUF_CMD_READ) 1110 bufx->b_dirtyend = bufx->b_bcount; 1111 biox = NULL; 1112 bufx = NULL; 1113 } 1114 1115 /* 1116 * Add new swapblk to biox, instantiating biox if necessary. 1117 * Zero-fill reads are able to take a shortcut. 1118 */ 1119 if (blk == SWAPBLK_NONE) { 1120 /* 1121 * We can only get here if we are reading. 1122 */ 1123 bkvasync(bp); 1124 bzero(data, PAGE_SIZE); 1125 bp->b_resid -= PAGE_SIZE; 1126 } else { 1127 if (biox == NULL) { 1128 /* XXX chain count > 4, wait to <= 4 */ 1129 1130 bufx = getpbuf(NULL); 1131 bufx->b_flags |= B_KVABIO; 1132 biox = &bufx->b_bio1; 1133 cluster_append(nbio, bufx); 1134 bufx->b_cmd = bp->b_cmd; 1135 biox->bio_done = swap_chain_iodone; 1136 biox->bio_offset = (off_t)blk << PAGE_SHIFT; 1137 biox->bio_caller_info1.cluster_parent = nbio; 1138 biox_blkno = blk; 1139 bufx->b_bcount = 0; 1140 bufx->b_data = data; 1141 } 1142 bufx->b_bcount += PAGE_SIZE; 1143 } 1144 --count; 1145 ++start; 1146 data += PAGE_SIZE; 1147 } 1148 1149 vm_object_drop(object); 1150 1151 /* 1152 * Flush out last buffer 1153 */ 1154 if (biox) { 1155 if (bufx->b_cmd == BUF_CMD_READ) { 1156 ++mycpu->gd_cnt.v_swapin; 1157 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount); 1158 } else { 1159 ++mycpu->gd_cnt.v_swapout; 1160 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount); 1161 bufx->b_dirtyend = bufx->b_bcount; 1162 } 1163 KKASSERT(bufx->b_bcount); 1164 if (bufx->b_cmd != BUF_CMD_READ) 1165 bufx->b_dirtyend = bufx->b_bcount; 1166 /* biox, bufx = NULL */ 1167 } 1168 1169 /* 1170 * Now initiate all the I/O. Be careful looping on our chain as 1171 * I/O's may complete while we are still initiating them. 1172 * 1173 * If the request is a 100% sparse read no bios will be present 1174 * and we just biodone() the buffer. 1175 */ 1176 nbio->bio_caller_info2.cluster_tail = NULL; 1177 bufx = nbio->bio_caller_info1.cluster_head; 1178 1179 if (bufx) { 1180 while (bufx) { 1181 biox = &bufx->b_bio1; 1182 BUF_KERNPROC(bufx); 1183 bufx = bufx->b_cluster_next; 1184 vn_strategy(swapdev_vp, biox); 1185 } 1186 } else { 1187 biodone(bio); 1188 } 1189 1190 /* 1191 * Completion of the cluster will also call biodone_chain(nbio). 1192 * We never call biodone(nbio) so we don't have to worry about 1193 * setting up a bio_done callback. It's handled in the sub-IO. 1194 */ 1195 /**/ 1196 } 1197 1198 /* 1199 * biodone callback 1200 * 1201 * No requirements. 1202 */ 1203 static void 1204 swap_chain_iodone(struct bio *biox) 1205 { 1206 struct buf **nextp; 1207 struct buf *bufx; /* chained sub-buffer */ 1208 struct bio *nbio; /* parent nbio with chain glue */ 1209 struct buf *bp; /* original bp associated with nbio */ 1210 int chain_empty; 1211 1212 bufx = biox->bio_buf; 1213 nbio = biox->bio_caller_info1.cluster_parent; 1214 bp = nbio->bio_buf; 1215 1216 /* 1217 * Update the original buffer 1218 */ 1219 KKASSERT(bp != NULL); 1220 if (bufx->b_flags & B_ERROR) { 1221 atomic_set_int(&bufx->b_flags, B_ERROR); 1222 bp->b_error = bufx->b_error; /* race ok */ 1223 } else if (bufx->b_resid != 0) { 1224 atomic_set_int(&bufx->b_flags, B_ERROR); 1225 bp->b_error = EINVAL; /* race ok */ 1226 } else { 1227 atomic_subtract_int(&bp->b_resid, bufx->b_bcount); 1228 } 1229 1230 /* 1231 * Remove us from the chain. 1232 */ 1233 spin_lock(&swapbp_spin); 1234 nextp = &nbio->bio_caller_info1.cluster_head; 1235 while (*nextp != bufx) { 1236 KKASSERT(*nextp != NULL); 1237 nextp = &(*nextp)->b_cluster_next; 1238 } 1239 *nextp = bufx->b_cluster_next; 1240 chain_empty = (nbio->bio_caller_info1.cluster_head == NULL); 1241 spin_unlock(&swapbp_spin); 1242 1243 /* 1244 * Clean up bufx. If the chain is now empty we finish out 1245 * the parent. Note that we may be racing other completions 1246 * so we must use the chain_empty status from above. 1247 */ 1248 if (chain_empty) { 1249 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) { 1250 atomic_set_int(&bp->b_flags, B_ERROR); 1251 bp->b_error = EINVAL; 1252 } 1253 biodone_chain(nbio); 1254 } 1255 relpbuf(bufx, NULL); 1256 } 1257 1258 /* 1259 * SWAP_PAGER_GETPAGES() - bring page in from swap 1260 * 1261 * The requested page may have to be brought in from swap. Calculate the 1262 * swap block and bring in additional pages if possible. All pages must 1263 * have contiguous swap block assignments and reside in the same object. 1264 * 1265 * The caller has a single vm_object_pip_add() reference prior to 1266 * calling us and we should return with the same. 1267 * 1268 * The caller has BUSY'd the page. We should return with (*mpp) left busy, 1269 * and any additinal pages unbusied. 1270 * 1271 * If the caller encounters a PG_RAM page it will pass it to us even though 1272 * it may be valid and dirty. We cannot overwrite the page in this case! 1273 * The case is used to allow us to issue pure read-aheads. 1274 * 1275 * NOTE! XXX This code does not entirely pipeline yet due to the fact that 1276 * the PG_RAM page is validated at the same time as mreq. What we 1277 * really need to do is issue a separate read-ahead pbuf. 1278 * 1279 * No requirements. 1280 */ 1281 static int 1282 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess) 1283 { 1284 struct buf *bp; 1285 struct bio *bio; 1286 vm_page_t mreq; 1287 vm_page_t m; 1288 vm_offset_t kva; 1289 swblk_t blk; 1290 int i; 1291 int j; 1292 int raonly; 1293 int error; 1294 u_int32_t busy_count; 1295 vm_page_t marray[XIO_INTERNAL_PAGES]; 1296 1297 mreq = *mpp; 1298 1299 vm_object_hold(object); 1300 if (mreq->object != object) { 1301 panic("swap_pager_getpages: object mismatch %p/%p", 1302 object, 1303 mreq->object 1304 ); 1305 } 1306 1307 /* 1308 * We don't want to overwrite a fully valid page as it might be 1309 * dirty. This case can occur when e.g. vm_fault hits a perfectly 1310 * valid page with PG_RAM set. 1311 * 1312 * In this case we see if the next page is a suitable page-in 1313 * candidate and if it is we issue read-ahead. PG_RAM will be 1314 * set on the last page of the read-ahead to continue the pipeline. 1315 */ 1316 if (mreq->valid == VM_PAGE_BITS_ALL) { 1317 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) { 1318 vm_object_drop(object); 1319 return(VM_PAGER_OK); 1320 } 1321 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0); 1322 if (blk == SWAPBLK_NONE) { 1323 vm_object_drop(object); 1324 return(VM_PAGER_OK); 1325 } 1326 m = vm_page_lookup_busy_try(object, mreq->pindex + 1, 1327 TRUE, &error); 1328 if (error) { 1329 vm_object_drop(object); 1330 return(VM_PAGER_OK); 1331 } else if (m == NULL) { 1332 /* 1333 * Use VM_ALLOC_QUICK to avoid blocking on cache 1334 * page reuse. 1335 */ 1336 m = vm_page_alloc(object, mreq->pindex + 1, 1337 VM_ALLOC_QUICK); 1338 if (m == NULL) { 1339 vm_object_drop(object); 1340 return(VM_PAGER_OK); 1341 } 1342 } else { 1343 if (m->valid) { 1344 vm_page_wakeup(m); 1345 vm_object_drop(object); 1346 return(VM_PAGER_OK); 1347 } 1348 vm_page_unqueue_nowakeup(m); 1349 } 1350 /* page is busy */ 1351 mreq = m; 1352 raonly = 1; 1353 } else { 1354 raonly = 0; 1355 } 1356 1357 /* 1358 * Try to block-read contiguous pages from swap if sequential, 1359 * otherwise just read one page. Contiguous pages from swap must 1360 * reside within a single device stripe because the I/O cannot be 1361 * broken up across multiple stripes. 1362 * 1363 * Note that blk and iblk can be SWAPBLK_NONE but the loop is 1364 * set up such that the case(s) are handled implicitly. 1365 */ 1366 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1367 marray[0] = mreq; 1368 1369 for (i = 1; i <= swap_burst_read && 1370 i < XIO_INTERNAL_PAGES && 1371 mreq->pindex + i < object->size; ++i) { 1372 swblk_t iblk; 1373 1374 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0); 1375 if (iblk != blk + i) 1376 break; 1377 if ((blk ^ iblk) & ~SWB_DMMASK) 1378 break; 1379 m = vm_page_lookup_busy_try(object, mreq->pindex + i, 1380 TRUE, &error); 1381 if (error) { 1382 break; 1383 } else if (m == NULL) { 1384 /* 1385 * Use VM_ALLOC_QUICK to avoid blocking on cache 1386 * page reuse. 1387 */ 1388 m = vm_page_alloc(object, mreq->pindex + i, 1389 VM_ALLOC_QUICK); 1390 if (m == NULL) 1391 break; 1392 } else { 1393 if (m->valid) { 1394 vm_page_wakeup(m); 1395 break; 1396 } 1397 vm_page_unqueue_nowakeup(m); 1398 } 1399 /* page is busy */ 1400 marray[i] = m; 1401 } 1402 if (i > 1) 1403 vm_page_flag_set(marray[i - 1], PG_RAM); 1404 1405 /* 1406 * If mreq is the requested page and we have nothing to do return 1407 * VM_PAGER_FAIL. If raonly is set mreq is just another read-ahead 1408 * page and must be cleaned up. 1409 */ 1410 if (blk == SWAPBLK_NONE) { 1411 KKASSERT(i == 1); 1412 if (raonly) { 1413 vnode_pager_freepage(mreq); 1414 vm_object_drop(object); 1415 return(VM_PAGER_OK); 1416 } else { 1417 vm_object_drop(object); 1418 return(VM_PAGER_FAIL); 1419 } 1420 } 1421 1422 /* 1423 * Map our page(s) into kva for input 1424 * 1425 * Use the KVABIO API to avoid synchronizing the pmap. 1426 */ 1427 bp = getpbuf_kva(&nsw_rcount); 1428 bio = &bp->b_bio1; 1429 kva = (vm_offset_t) bp->b_kvabase; 1430 bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t)); 1431 pmap_qenter_noinval(kva, bp->b_xio.xio_pages, i); 1432 1433 bp->b_data = (caddr_t)kva; 1434 bp->b_bcount = PAGE_SIZE * i; 1435 bp->b_xio.xio_npages = i; 1436 bp->b_flags |= B_KVABIO; 1437 bio->bio_done = swp_pager_async_iodone; 1438 bio->bio_offset = (off_t)blk << PAGE_SHIFT; 1439 bio->bio_caller_info1.index = SWBIO_READ; 1440 1441 /* 1442 * Set index. If raonly set the index beyond the array so all 1443 * the pages are treated the same, otherwise the original mreq is 1444 * at index 0. 1445 */ 1446 if (raonly) 1447 bio->bio_driver_info = (void *)(intptr_t)i; 1448 else 1449 bio->bio_driver_info = (void *)(intptr_t)0; 1450 1451 for (j = 0; j < i; ++j) { 1452 atomic_set_int(&bp->b_xio.xio_pages[j]->busy_count, 1453 PBUSY_SWAPINPROG); 1454 } 1455 1456 mycpu->gd_cnt.v_swapin++; 1457 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages; 1458 1459 /* 1460 * We still hold the lock on mreq, and our automatic completion routine 1461 * does not remove it. 1462 */ 1463 vm_object_pip_add(object, bp->b_xio.xio_npages); 1464 1465 /* 1466 * perform the I/O. NOTE!!! bp cannot be considered valid after 1467 * this point because we automatically release it on completion. 1468 * Instead, we look at the one page we are interested in which we 1469 * still hold a lock on even through the I/O completion. 1470 * 1471 * The other pages in our m[] array are also released on completion, 1472 * so we cannot assume they are valid anymore either. 1473 */ 1474 bp->b_cmd = BUF_CMD_READ; 1475 BUF_KERNPROC(bp); 1476 vn_strategy(swapdev_vp, bio); 1477 1478 /* 1479 * Wait for the page we want to complete. PBUSY_SWAPINPROG is always 1480 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1481 * is set in the meta-data. 1482 * 1483 * If this is a read-ahead only we return immediately without 1484 * waiting for I/O. 1485 */ 1486 if (raonly) { 1487 vm_object_drop(object); 1488 return(VM_PAGER_OK); 1489 } 1490 1491 /* 1492 * Read-ahead includes originally requested page case. 1493 */ 1494 for (;;) { 1495 busy_count = mreq->busy_count; 1496 cpu_ccfence(); 1497 if ((busy_count & PBUSY_SWAPINPROG) == 0) 1498 break; 1499 tsleep_interlock(mreq, 0); 1500 if (!atomic_cmpset_int(&mreq->busy_count, busy_count, 1501 busy_count | 1502 PBUSY_SWAPINPROG | PBUSY_WANTED)) { 1503 continue; 1504 } 1505 atomic_set_int(&mreq->flags, PG_REFERENCED); 1506 mycpu->gd_cnt.v_intrans++; 1507 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) { 1508 kprintf( 1509 "swap_pager: indefinite wait buffer: " 1510 " bp %p offset: %lld, size: %ld\n", 1511 bp, 1512 (long long)bio->bio_offset, 1513 (long)bp->b_bcount 1514 ); 1515 } 1516 } 1517 1518 /* 1519 * Disallow speculative reads prior to the SWAPINPROG test. 1520 */ 1521 cpu_lfence(); 1522 1523 /* 1524 * mreq is left busied after completion, but all the other pages 1525 * are freed. If we had an unrecoverable read error the page will 1526 * not be valid. 1527 */ 1528 vm_object_drop(object); 1529 if (mreq->valid != VM_PAGE_BITS_ALL) 1530 return(VM_PAGER_ERROR); 1531 else 1532 return(VM_PAGER_OK); 1533 1534 /* 1535 * A final note: in a low swap situation, we cannot deallocate swap 1536 * and mark a page dirty here because the caller is likely to mark 1537 * the page clean when we return, causing the page to possibly revert 1538 * to all-zero's later. 1539 */ 1540 } 1541 1542 /* 1543 * swap_pager_putpages: 1544 * 1545 * Assign swap (if necessary) and initiate I/O on the specified pages. 1546 * 1547 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1548 * are automatically converted to SWAP objects. 1549 * 1550 * In a low memory situation we may block in vn_strategy(), but the new 1551 * vm_page reservation system coupled with properly written VFS devices 1552 * should ensure that no low-memory deadlock occurs. This is an area 1553 * which needs work. 1554 * 1555 * The parent has N vm_object_pip_add() references prior to 1556 * calling us and will remove references for rtvals[] that are 1557 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1558 * completion. 1559 * 1560 * The parent has soft-busy'd the pages it passes us and will unbusy 1561 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1562 * We need to unbusy the rest on I/O completion. 1563 * 1564 * No requirements. 1565 */ 1566 void 1567 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1568 int flags, int *rtvals) 1569 { 1570 int i; 1571 int n = 0; 1572 1573 vm_object_hold(object); 1574 1575 if (count && m[0]->object != object) { 1576 panic("swap_pager_getpages: object mismatch %p/%p", 1577 object, 1578 m[0]->object 1579 ); 1580 } 1581 1582 /* 1583 * Step 1 1584 * 1585 * Turn object into OBJT_SWAP 1586 * Check for bogus sysops 1587 * 1588 * Force sync if not pageout process, we don't want any single 1589 * non-pageout process to be able to hog the I/O subsystem! This 1590 * can be overridden by setting. 1591 */ 1592 if (object->type == OBJT_DEFAULT) { 1593 if (object->type == OBJT_DEFAULT) 1594 swp_pager_meta_convert(object); 1595 } 1596 1597 /* 1598 * Normally we force synchronous swap I/O if this is not the 1599 * pageout daemon to prevent any single user process limited 1600 * via RLIMIT_RSS from hogging swap write bandwidth. 1601 */ 1602 if (curthread != pagethread && 1603 curthread != emergpager && 1604 swap_user_async == 0) { 1605 flags |= VM_PAGER_PUT_SYNC; 1606 } 1607 1608 /* 1609 * Step 2 1610 * 1611 * Update nsw parameters from swap_async_max sysctl values. 1612 * Do not let the sysop crash the machine with bogus numbers. 1613 */ 1614 if (swap_async_max != nsw_wcount_async_max) { 1615 int n; 1616 1617 /* 1618 * limit range 1619 */ 1620 if ((n = swap_async_max) > nswbuf_kva / 2) 1621 n = nswbuf_kva / 2; 1622 if (n < 1) 1623 n = 1; 1624 swap_async_max = n; 1625 1626 /* 1627 * Adjust difference ( if possible ). If the current async 1628 * count is too low, we may not be able to make the adjustment 1629 * at this time. 1630 * 1631 * vm_token needed for nsw_wcount sleep interlock 1632 */ 1633 lwkt_gettoken(&vm_token); 1634 n -= nsw_wcount_async_max; 1635 if (nsw_wcount_async + n >= 0) { 1636 nsw_wcount_async_max += n; 1637 pbuf_adjcount(&nsw_wcount_async, n); 1638 } 1639 lwkt_reltoken(&vm_token); 1640 } 1641 1642 /* 1643 * Step 3 1644 * 1645 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1646 * The page is left dirty until the pageout operation completes 1647 * successfully. 1648 */ 1649 1650 for (i = 0; i < count; i += n) { 1651 struct buf *bp; 1652 struct bio *bio; 1653 swblk_t blk; 1654 int j; 1655 1656 /* 1657 * Maximum I/O size is limited by a number of factors. 1658 */ 1659 1660 n = min(BLIST_MAX_ALLOC, count - i); 1661 n = min(n, nsw_cluster_max); 1662 1663 lwkt_gettoken(&vm_token); 1664 1665 /* 1666 * Get biggest block of swap we can. If we fail, fall 1667 * back and try to allocate a smaller block. Don't go 1668 * overboard trying to allocate space if it would overly 1669 * fragment swap. 1670 */ 1671 while ( 1672 (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE && 1673 n > 4 1674 ) { 1675 n >>= 1; 1676 } 1677 if (blk == SWAPBLK_NONE) { 1678 for (j = 0; j < n; ++j) 1679 rtvals[i+j] = VM_PAGER_FAIL; 1680 lwkt_reltoken(&vm_token); 1681 continue; 1682 } 1683 if (vm_report_swap_allocs > 0) { 1684 kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n); 1685 --vm_report_swap_allocs; 1686 } 1687 1688 /* 1689 * The I/O we are constructing cannot cross a physical 1690 * disk boundry in the swap stripe. 1691 */ 1692 if ((blk ^ (blk + n)) & ~SWB_DMMASK) { 1693 j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk; 1694 swp_pager_freeswapspace(object, blk + j, n - j); 1695 n = j; 1696 } 1697 1698 /* 1699 * All I/O parameters have been satisfied, build the I/O 1700 * request and assign the swap space. 1701 * 1702 * Use the KVABIO API to avoid synchronizing the pmap. 1703 */ 1704 if ((flags & VM_PAGER_PUT_SYNC)) 1705 bp = getpbuf_kva(&nsw_wcount_sync); 1706 else 1707 bp = getpbuf_kva(&nsw_wcount_async); 1708 bio = &bp->b_bio1; 1709 1710 lwkt_reltoken(&vm_token); 1711 1712 pmap_qenter_noinval((vm_offset_t)bp->b_data, &m[i], n); 1713 1714 bp->b_flags |= B_KVABIO; 1715 bp->b_bcount = PAGE_SIZE * n; 1716 bio->bio_offset = (off_t)blk << PAGE_SHIFT; 1717 1718 for (j = 0; j < n; ++j) { 1719 vm_page_t mreq = m[i+j]; 1720 1721 swp_pager_meta_build(mreq->object, mreq->pindex, 1722 blk + j); 1723 if (object->type == OBJT_SWAP) 1724 vm_page_dirty(mreq); 1725 rtvals[i+j] = VM_PAGER_OK; 1726 1727 atomic_set_int(&mreq->busy_count, PBUSY_SWAPINPROG); 1728 bp->b_xio.xio_pages[j] = mreq; 1729 } 1730 bp->b_xio.xio_npages = n; 1731 1732 mycpu->gd_cnt.v_swapout++; 1733 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages; 1734 1735 bp->b_dirtyoff = 0; /* req'd for NFS */ 1736 bp->b_dirtyend = bp->b_bcount; /* req'd for NFS */ 1737 bp->b_cmd = BUF_CMD_WRITE; 1738 bio->bio_caller_info1.index = SWBIO_WRITE; 1739 1740 /* 1741 * asynchronous 1742 */ 1743 if ((flags & VM_PAGER_PUT_SYNC) == 0) { 1744 bio->bio_done = swp_pager_async_iodone; 1745 BUF_KERNPROC(bp); 1746 vn_strategy(swapdev_vp, bio); 1747 1748 for (j = 0; j < n; ++j) 1749 rtvals[i+j] = VM_PAGER_PEND; 1750 continue; 1751 } 1752 1753 /* 1754 * Issue synchrnously. 1755 * 1756 * Wait for the sync I/O to complete, then update rtvals. 1757 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1758 * our async completion routine at the end, thus avoiding a 1759 * double-free. 1760 */ 1761 bio->bio_caller_info1.index |= SWBIO_SYNC; 1762 if (flags & VM_PAGER_TRY_TO_CACHE) 1763 bio->bio_caller_info1.index |= SWBIO_TTC; 1764 bio->bio_done = biodone_sync; 1765 bio->bio_flags |= BIO_SYNC; 1766 vn_strategy(swapdev_vp, bio); 1767 biowait(bio, "swwrt"); 1768 1769 for (j = 0; j < n; ++j) 1770 rtvals[i+j] = VM_PAGER_PEND; 1771 1772 /* 1773 * Now that we are through with the bp, we can call the 1774 * normal async completion, which frees everything up. 1775 */ 1776 swp_pager_async_iodone(bio); 1777 } 1778 vm_object_drop(object); 1779 } 1780 1781 /* 1782 * No requirements. 1783 * 1784 * Recalculate the low and high-water marks. 1785 */ 1786 void 1787 swap_pager_newswap(void) 1788 { 1789 /* 1790 * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the 1791 * limitation imposed by the blist code. Remember that this 1792 * will be divided by NSWAP_MAX (4), so each swap device is 1793 * limited to around a terrabyte. 1794 */ 1795 if (vm_swap_max) { 1796 nswap_lowat = (int64_t)vm_swap_max * 4 / 100; /* 4% left */ 1797 nswap_hiwat = (int64_t)vm_swap_max * 6 / 100; /* 6% left */ 1798 kprintf("swap low/high-water marks set to %d/%d\n", 1799 nswap_lowat, nswap_hiwat); 1800 } else { 1801 nswap_lowat = 128; 1802 nswap_hiwat = 512; 1803 } 1804 swp_sizecheck(); 1805 } 1806 1807 /* 1808 * swp_pager_async_iodone: 1809 * 1810 * Completion routine for asynchronous reads and writes from/to swap. 1811 * Also called manually by synchronous code to finish up a bp. 1812 * 1813 * For READ operations, the pages are BUSY'd. For WRITE operations, 1814 * the pages are vm_page_t->busy'd. For READ operations, we BUSY 1815 * unbusy all pages except the 'main' request page. For WRITE 1816 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1817 * because we marked them all VM_PAGER_PEND on return from putpages ). 1818 * 1819 * This routine may not block. 1820 * 1821 * No requirements. 1822 */ 1823 static void 1824 swp_pager_async_iodone(struct bio *bio) 1825 { 1826 struct buf *bp = bio->bio_buf; 1827 vm_object_t object = NULL; 1828 int i; 1829 int *nswptr; 1830 1831 /* 1832 * report error 1833 */ 1834 if (bp->b_flags & B_ERROR) { 1835 kprintf( 1836 "swap_pager: I/O error - %s failed; offset %lld," 1837 "size %ld, error %d\n", 1838 ((bio->bio_caller_info1.index & SWBIO_READ) ? 1839 "pagein" : "pageout"), 1840 (long long)bio->bio_offset, 1841 (long)bp->b_bcount, 1842 bp->b_error 1843 ); 1844 } 1845 1846 /* 1847 * set object. 1848 */ 1849 if (bp->b_xio.xio_npages) 1850 object = bp->b_xio.xio_pages[0]->object; 1851 1852 #if 0 1853 /* PMAP TESTING CODE (useful, keep it in but #if 0'd) */ 1854 if (bio->bio_caller_info1.index & SWBIO_WRITE) { 1855 if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) { 1856 kprintf("SWAPOUT: BADCRC %08x %08x\n", 1857 bio->bio_crc, 1858 iscsi_crc32(bp->b_data, bp->b_bcount)); 1859 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 1860 vm_page_t m = bp->b_xio.xio_pages[i]; 1861 if (m->flags & PG_WRITEABLE) 1862 kprintf("SWAPOUT: " 1863 "%d/%d %p writable\n", 1864 i, bp->b_xio.xio_npages, m); 1865 } 1866 } 1867 } 1868 #endif 1869 1870 /* 1871 * remove the mapping for kernel virtual 1872 */ 1873 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages); 1874 1875 /* 1876 * cleanup pages. If an error occurs writing to swap, we are in 1877 * very serious trouble. If it happens to be a disk error, though, 1878 * we may be able to recover by reassigning the swap later on. So 1879 * in this case we remove the m->swapblk assignment for the page 1880 * but do not free it in the rlist. The errornous block(s) are thus 1881 * never reallocated as swap. Redirty the page and continue. 1882 */ 1883 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 1884 vm_page_t m = bp->b_xio.xio_pages[i]; 1885 1886 if (bp->b_flags & B_ERROR) { 1887 /* 1888 * If an error occurs I'd love to throw the swapblk 1889 * away without freeing it back to swapspace, so it 1890 * can never be used again. But I can't from an 1891 * interrupt. 1892 */ 1893 1894 if (bio->bio_caller_info1.index & SWBIO_READ) { 1895 /* 1896 * When reading, reqpage needs to stay 1897 * locked for the parent, but all other 1898 * pages can be freed. We still want to 1899 * wakeup the parent waiting on the page, 1900 * though. ( also: pg_reqpage can be -1 and 1901 * not match anything ). 1902 * 1903 * We have to wake specifically requested pages 1904 * up too because we cleared SWAPINPROG and 1905 * someone may be waiting for that. 1906 * 1907 * NOTE: For reads, m->dirty will probably 1908 * be overridden by the original caller 1909 * of getpages so don't play cute tricks 1910 * here. 1911 * 1912 * NOTE: We can't actually free the page from 1913 * here, because this is an interrupt. 1914 * It is not legal to mess with 1915 * object->memq from an interrupt. 1916 * Deactivate the page instead. 1917 * 1918 * WARNING! The instant SWAPINPROG is 1919 * cleared another cpu may start 1920 * using the mreq page (it will 1921 * check m->valid immediately). 1922 */ 1923 1924 m->valid = 0; 1925 atomic_clear_int(&m->busy_count, 1926 PBUSY_SWAPINPROG); 1927 1928 /* 1929 * bio_driver_info holds the requested page 1930 * index. 1931 */ 1932 if (i != (int)(intptr_t)bio->bio_driver_info) { 1933 vm_page_deactivate(m); 1934 vm_page_wakeup(m); 1935 } else { 1936 vm_page_flash(m); 1937 } 1938 /* 1939 * If i == bp->b_pager.pg_reqpage, do not wake 1940 * the page up. The caller needs to. 1941 */ 1942 } else { 1943 /* 1944 * If a write error occurs remove the swap 1945 * assignment (note that PG_SWAPPED may or 1946 * may not be set depending on prior activity). 1947 * 1948 * Re-dirty OBJT_SWAP pages as there is no 1949 * other backing store, we can't throw the 1950 * page away. 1951 * 1952 * Non-OBJT_SWAP pages (aka swapcache) must 1953 * not be dirtied since they may not have 1954 * been dirty in the first place, and they 1955 * do have backing store (the vnode). 1956 */ 1957 vm_page_busy_wait(m, FALSE, "swadpg"); 1958 vm_object_hold(m->object); 1959 swp_pager_meta_ctl(m->object, m->pindex, 1960 SWM_FREE); 1961 vm_page_flag_clear(m, PG_SWAPPED); 1962 vm_object_drop(m->object); 1963 if (m->object->type == OBJT_SWAP) { 1964 vm_page_dirty(m); 1965 vm_page_activate(m); 1966 } 1967 vm_page_io_finish(m); 1968 atomic_clear_int(&m->busy_count, 1969 PBUSY_SWAPINPROG); 1970 vm_page_wakeup(m); 1971 } 1972 } else if (bio->bio_caller_info1.index & SWBIO_READ) { 1973 /* 1974 * NOTE: for reads, m->dirty will probably be 1975 * overridden by the original caller of getpages so 1976 * we cannot set them in order to free the underlying 1977 * swap in a low-swap situation. I don't think we'd 1978 * want to do that anyway, but it was an optimization 1979 * that existed in the old swapper for a time before 1980 * it got ripped out due to precisely this problem. 1981 * 1982 * If not the requested page then deactivate it. 1983 * 1984 * Note that the requested page, reqpage, is left 1985 * busied, but we still have to wake it up. The 1986 * other pages are released (unbusied) by 1987 * vm_page_wakeup(). We do not set reqpage's 1988 * valid bits here, it is up to the caller. 1989 */ 1990 1991 /* 1992 * NOTE: Can't call pmap_clear_modify(m) from an 1993 * interrupt thread, the pmap code may have to 1994 * map non-kernel pmaps and currently asserts 1995 * the case. 1996 * 1997 * WARNING! The instant SWAPINPROG is 1998 * cleared another cpu may start 1999 * using the mreq page (it will 2000 * check m->valid immediately). 2001 */ 2002 /*pmap_clear_modify(m);*/ 2003 m->valid = VM_PAGE_BITS_ALL; 2004 vm_page_undirty(m); 2005 vm_page_flag_set(m, PG_SWAPPED); 2006 atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG); 2007 2008 /* 2009 * We have to wake specifically requested pages 2010 * up too because we cleared SWAPINPROG and 2011 * could be waiting for it in getpages. However, 2012 * be sure to not unbusy getpages specifically 2013 * requested page - getpages expects it to be 2014 * left busy. 2015 * 2016 * bio_driver_info holds the requested page 2017 */ 2018 if (i != (int)(intptr_t)bio->bio_driver_info) { 2019 vm_page_deactivate(m); 2020 vm_page_wakeup(m); 2021 } else { 2022 vm_page_flash(m); 2023 } 2024 } else { 2025 /* 2026 * Mark the page clean but do not mess with the 2027 * pmap-layer's modified state. That state should 2028 * also be clear since the caller protected the 2029 * page VM_PROT_READ, but allow the case. 2030 * 2031 * We are in an interrupt, avoid pmap operations. 2032 * 2033 * If we have a severe page deficit, deactivate the 2034 * page. Do not try to cache it (which would also 2035 * involve a pmap op), because the page might still 2036 * be read-heavy. 2037 * 2038 * When using the swap to cache clean vnode pages 2039 * we do not mess with the page dirty bits. 2040 * 2041 * NOTE! Nobody is waiting for the key mreq page 2042 * on write completion. 2043 */ 2044 vm_page_busy_wait(m, FALSE, "swadpg"); 2045 if (m->object->type == OBJT_SWAP) 2046 vm_page_undirty(m); 2047 vm_page_flag_set(m, PG_SWAPPED); 2048 atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG); 2049 if (vm_page_count_severe()) 2050 vm_page_deactivate(m); 2051 vm_page_io_finish(m); 2052 if (bio->bio_caller_info1.index & SWBIO_TTC) 2053 vm_page_try_to_cache(m); 2054 else 2055 vm_page_wakeup(m); 2056 } 2057 } 2058 2059 /* 2060 * adjust pip. NOTE: the original parent may still have its own 2061 * pip refs on the object. 2062 */ 2063 2064 if (object) 2065 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages); 2066 2067 /* 2068 * Release the physical I/O buffer. 2069 * 2070 * NOTE: Due to synchronous operations in the write case b_cmd may 2071 * already be set to BUF_CMD_DONE and BIO_SYNC may have already 2072 * been cleared. 2073 * 2074 * Use vm_token to interlock nsw_rcount/wcount wakeup? 2075 */ 2076 lwkt_gettoken(&vm_token); 2077 if (bio->bio_caller_info1.index & SWBIO_READ) 2078 nswptr = &nsw_rcount; 2079 else if (bio->bio_caller_info1.index & SWBIO_SYNC) 2080 nswptr = &nsw_wcount_sync; 2081 else 2082 nswptr = &nsw_wcount_async; 2083 bp->b_cmd = BUF_CMD_DONE; 2084 relpbuf(bp, nswptr); 2085 lwkt_reltoken(&vm_token); 2086 } 2087 2088 /* 2089 * Fault-in a potentially swapped page and remove the swap reference. 2090 * (used by swapoff code) 2091 * 2092 * object must be held. 2093 */ 2094 static __inline void 2095 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex) 2096 { 2097 struct vnode *vp; 2098 vm_page_t m; 2099 int error; 2100 2101 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2102 2103 if (object->type == OBJT_VNODE) { 2104 /* 2105 * Any swap related to a vnode is due to swapcache. We must 2106 * vget() the vnode in case it is not active (otherwise 2107 * vref() will panic). Calling vm_object_page_remove() will 2108 * ensure that any swap ref is removed interlocked with the 2109 * page. clean_only is set to TRUE so we don't throw away 2110 * dirty pages. 2111 */ 2112 vp = object->handle; 2113 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE); 2114 if (error == 0) { 2115 vm_object_page_remove(object, pindex, pindex + 1, TRUE); 2116 vput(vp); 2117 } 2118 } else { 2119 /* 2120 * Otherwise it is a normal OBJT_SWAP object and we can 2121 * fault the page in and remove the swap. 2122 */ 2123 m = vm_fault_object_page(object, IDX_TO_OFF(pindex), 2124 VM_PROT_NONE, 2125 VM_FAULT_DIRTY | VM_FAULT_UNSWAP, 2126 sharedp, &error); 2127 if (m) 2128 vm_page_unhold(m); 2129 } 2130 } 2131 2132 /* 2133 * This removes all swap blocks related to a particular device. We have 2134 * to be careful of ripups during the scan. 2135 */ 2136 static int swp_pager_swapoff_callback(struct swblock *swap, void *data); 2137 2138 int 2139 swap_pager_swapoff(int devidx) 2140 { 2141 struct vm_object_hash *hash; 2142 struct swswapoffinfo info; 2143 struct vm_object marker; 2144 vm_object_t object; 2145 int n; 2146 2147 bzero(&marker, sizeof(marker)); 2148 marker.type = OBJT_MARKER; 2149 2150 for (n = 0; n < VMOBJ_HSIZE; ++n) { 2151 hash = &vm_object_hash[n]; 2152 2153 lwkt_gettoken(&hash->token); 2154 TAILQ_INSERT_HEAD(&hash->list, &marker, object_list); 2155 2156 while ((object = TAILQ_NEXT(&marker, object_list)) != NULL) { 2157 if (object->type == OBJT_MARKER) 2158 goto skip; 2159 if (object->type != OBJT_SWAP && 2160 object->type != OBJT_VNODE) 2161 goto skip; 2162 vm_object_hold(object); 2163 if (object->type != OBJT_SWAP && 2164 object->type != OBJT_VNODE) { 2165 vm_object_drop(object); 2166 goto skip; 2167 } 2168 2169 /* 2170 * Object is special in that we can't just pagein 2171 * into vm_page's in it (tmpfs, vn). 2172 */ 2173 if ((object->flags & OBJ_NOPAGEIN) && 2174 RB_ROOT(&object->swblock_root)) { 2175 vm_object_drop(object); 2176 goto skip; 2177 } 2178 2179 info.object = object; 2180 info.shared = 0; 2181 info.devidx = devidx; 2182 swblock_rb_tree_RB_SCAN(&object->swblock_root, 2183 NULL, swp_pager_swapoff_callback, 2184 &info); 2185 vm_object_drop(object); 2186 skip: 2187 if (object == TAILQ_NEXT(&marker, object_list)) { 2188 TAILQ_REMOVE(&hash->list, &marker, object_list); 2189 TAILQ_INSERT_AFTER(&hash->list, object, 2190 &marker, object_list); 2191 } 2192 } 2193 TAILQ_REMOVE(&hash->list, &marker, object_list); 2194 lwkt_reltoken(&hash->token); 2195 } 2196 2197 /* 2198 * If we fail to locate all swblocks we just fail gracefully and 2199 * do not bother to restore paging on the swap device. If the 2200 * user wants to retry the user can retry. 2201 */ 2202 if (swdevt[devidx].sw_nused) 2203 return (1); 2204 else 2205 return (0); 2206 } 2207 2208 static 2209 int 2210 swp_pager_swapoff_callback(struct swblock *swap, void *data) 2211 { 2212 struct swswapoffinfo *info = data; 2213 vm_object_t object = info->object; 2214 vm_pindex_t index; 2215 swblk_t v; 2216 int i; 2217 2218 index = swap->swb_index; 2219 for (i = 0; i < SWAP_META_PAGES; ++i) { 2220 /* 2221 * Make sure we don't race a dying object. This will 2222 * kill the scan of the object's swap blocks entirely. 2223 */ 2224 if (object->flags & OBJ_DEAD) 2225 return(-1); 2226 2227 /* 2228 * Fault the page, which can obviously block. If the swap 2229 * structure disappears break out. 2230 */ 2231 v = swap->swb_pages[i]; 2232 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) { 2233 swp_pager_fault_page(object, &info->shared, 2234 swap->swb_index + i); 2235 /* swap ptr might go away */ 2236 if (RB_LOOKUP(swblock_rb_tree, 2237 &object->swblock_root, index) != swap) { 2238 break; 2239 } 2240 } 2241 } 2242 return(0); 2243 } 2244 2245 /************************************************************************ 2246 * SWAP META DATA * 2247 ************************************************************************ 2248 * 2249 * These routines manipulate the swap metadata stored in the 2250 * OBJT_SWAP object. 2251 * 2252 * Swap metadata is implemented with a global hash and not directly 2253 * linked into the object. Instead the object simply contains 2254 * appropriate tracking counters. 2255 */ 2256 2257 /* 2258 * Lookup the swblock containing the specified swap block index. 2259 * 2260 * The caller must hold the object. 2261 */ 2262 static __inline 2263 struct swblock * 2264 swp_pager_lookup(vm_object_t object, vm_pindex_t index) 2265 { 2266 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2267 index &= ~(vm_pindex_t)SWAP_META_MASK; 2268 return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index)); 2269 } 2270 2271 /* 2272 * Remove a swblock from the RB tree. 2273 * 2274 * The caller must hold the object. 2275 */ 2276 static __inline 2277 void 2278 swp_pager_remove(vm_object_t object, struct swblock *swap) 2279 { 2280 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2281 RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap); 2282 } 2283 2284 /* 2285 * Convert default object to swap object if necessary 2286 * 2287 * The caller must hold the object. 2288 */ 2289 static void 2290 swp_pager_meta_convert(vm_object_t object) 2291 { 2292 if (object->type == OBJT_DEFAULT) { 2293 object->type = OBJT_SWAP; 2294 KKASSERT(object->swblock_count == 0); 2295 } 2296 } 2297 2298 /* 2299 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 2300 * 2301 * We first convert the object to a swap object if it is a default 2302 * object. Vnode objects do not need to be converted. 2303 * 2304 * The specified swapblk is added to the object's swap metadata. If 2305 * the swapblk is not valid, it is freed instead. Any previously 2306 * assigned swapblk is freed. 2307 * 2308 * The caller must hold the object. 2309 */ 2310 static void 2311 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk) 2312 { 2313 struct swblock *swap; 2314 struct swblock *oswap; 2315 vm_pindex_t v; 2316 2317 KKASSERT(swapblk != SWAPBLK_NONE); 2318 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2319 2320 /* 2321 * Convert object if necessary 2322 */ 2323 if (object->type == OBJT_DEFAULT) 2324 swp_pager_meta_convert(object); 2325 2326 /* 2327 * Locate swblock. If not found create, but if we aren't adding 2328 * anything just return. If we run out of space in the map we wait 2329 * and, since the hash table may have changed, retry. 2330 */ 2331 retry: 2332 swap = swp_pager_lookup(object, index); 2333 2334 if (swap == NULL) { 2335 int i; 2336 2337 swap = zalloc(swap_zone); 2338 if (swap == NULL) { 2339 vm_wait(0); 2340 goto retry; 2341 } 2342 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK; 2343 swap->swb_count = 0; 2344 2345 ++object->swblock_count; 2346 2347 for (i = 0; i < SWAP_META_PAGES; ++i) 2348 swap->swb_pages[i] = SWAPBLK_NONE; 2349 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap); 2350 KKASSERT(oswap == NULL); 2351 } 2352 2353 /* 2354 * Delete prior contents of metadata. 2355 * 2356 * NOTE: Decrement swb_count after the freeing operation (which 2357 * might block) to prevent racing destruction of the swblock. 2358 */ 2359 index &= SWAP_META_MASK; 2360 2361 while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) { 2362 swap->swb_pages[index] = SWAPBLK_NONE; 2363 /* can block */ 2364 swp_pager_freeswapspace(object, v, 1); 2365 --swap->swb_count; 2366 --mycpu->gd_vmtotal.t_vm; 2367 } 2368 2369 /* 2370 * Enter block into metadata 2371 */ 2372 swap->swb_pages[index] = swapblk; 2373 if (swapblk != SWAPBLK_NONE) { 2374 ++swap->swb_count; 2375 ++mycpu->gd_vmtotal.t_vm; 2376 } 2377 } 2378 2379 /* 2380 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 2381 * 2382 * The requested range of blocks is freed, with any associated swap 2383 * returned to the swap bitmap. 2384 * 2385 * This routine will free swap metadata structures as they are cleaned 2386 * out. This routine does *NOT* operate on swap metadata associated 2387 * with resident pages. 2388 * 2389 * The caller must hold the object. 2390 */ 2391 static int swp_pager_meta_free_callback(struct swblock *swb, void *data); 2392 2393 static void 2394 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count) 2395 { 2396 struct swfreeinfo info; 2397 2398 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2399 2400 /* 2401 * Nothing to do 2402 */ 2403 if (object->swblock_count == 0) { 2404 KKASSERT(RB_EMPTY(&object->swblock_root)); 2405 return; 2406 } 2407 if (count == 0) 2408 return; 2409 2410 /* 2411 * Setup for RB tree scan. Note that the pindex range can be huge 2412 * due to the 64 bit page index space so we cannot safely iterate. 2413 */ 2414 info.object = object; 2415 info.basei = index & ~(vm_pindex_t)SWAP_META_MASK; 2416 info.begi = index; 2417 info.endi = index + count - 1; 2418 swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp, 2419 swp_pager_meta_free_callback, &info); 2420 } 2421 2422 /* 2423 * The caller must hold the object. 2424 */ 2425 static 2426 int 2427 swp_pager_meta_free_callback(struct swblock *swap, void *data) 2428 { 2429 struct swfreeinfo *info = data; 2430 vm_object_t object = info->object; 2431 int index; 2432 int eindex; 2433 2434 /* 2435 * Figure out the range within the swblock. The wider scan may 2436 * return edge-case swap blocks when the start and/or end points 2437 * are in the middle of a block. 2438 */ 2439 if (swap->swb_index < info->begi) 2440 index = (int)info->begi & SWAP_META_MASK; 2441 else 2442 index = 0; 2443 2444 if (swap->swb_index + SWAP_META_PAGES > info->endi) 2445 eindex = (int)info->endi & SWAP_META_MASK; 2446 else 2447 eindex = SWAP_META_MASK; 2448 2449 /* 2450 * Scan and free the blocks. The loop terminates early 2451 * if (swap) runs out of blocks and could be freed. 2452 * 2453 * NOTE: Decrement swb_count after swp_pager_freeswapspace() 2454 * to deal with a zfree race. 2455 */ 2456 while (index <= eindex) { 2457 swblk_t v = swap->swb_pages[index]; 2458 2459 if (v != SWAPBLK_NONE) { 2460 swap->swb_pages[index] = SWAPBLK_NONE; 2461 /* can block */ 2462 swp_pager_freeswapspace(object, v, 1); 2463 --mycpu->gd_vmtotal.t_vm; 2464 if (--swap->swb_count == 0) { 2465 swp_pager_remove(object, swap); 2466 zfree(swap_zone, swap); 2467 --object->swblock_count; 2468 break; 2469 } 2470 } 2471 ++index; 2472 } 2473 2474 /* swap may be invalid here due to zfree above */ 2475 lwkt_yield(); 2476 2477 return(0); 2478 } 2479 2480 /* 2481 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 2482 * 2483 * This routine locates and destroys all swap metadata associated with 2484 * an object. 2485 * 2486 * NOTE: Decrement swb_count after the freeing operation (which 2487 * might block) to prevent racing destruction of the swblock. 2488 * 2489 * The caller must hold the object. 2490 */ 2491 static void 2492 swp_pager_meta_free_all(vm_object_t object) 2493 { 2494 struct swblock *swap; 2495 int i; 2496 2497 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 2498 2499 while ((swap = RB_ROOT(&object->swblock_root)) != NULL) { 2500 swp_pager_remove(object, swap); 2501 for (i = 0; i < SWAP_META_PAGES; ++i) { 2502 swblk_t v = swap->swb_pages[i]; 2503 if (v != SWAPBLK_NONE) { 2504 /* can block */ 2505 swp_pager_freeswapspace(object, v, 1); 2506 --swap->swb_count; 2507 --mycpu->gd_vmtotal.t_vm; 2508 } 2509 } 2510 if (swap->swb_count != 0) 2511 panic("swap_pager_meta_free_all: swb_count != 0"); 2512 zfree(swap_zone, swap); 2513 --object->swblock_count; 2514 lwkt_yield(); 2515 } 2516 KKASSERT(object->swblock_count == 0); 2517 } 2518 2519 /* 2520 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2521 * 2522 * This routine is capable of looking up, popping, or freeing 2523 * swapblk assignments in the swap meta data or in the vm_page_t. 2524 * The routine typically returns the swapblk being looked-up, or popped, 2525 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2526 * was invalid. This routine will automatically free any invalid 2527 * meta-data swapblks. 2528 * 2529 * It is not possible to store invalid swapblks in the swap meta data 2530 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2531 * 2532 * When acting on a busy resident page and paging is in progress, we 2533 * have to wait until paging is complete but otherwise can act on the 2534 * busy page. 2535 * 2536 * SWM_FREE remove and free swap block from metadata 2537 * SWM_POP remove from meta data but do not free.. pop it out 2538 * 2539 * The caller must hold the object. 2540 */ 2541 static swblk_t 2542 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags) 2543 { 2544 struct swblock *swap; 2545 swblk_t r1; 2546 2547 if (object->swblock_count == 0) 2548 return(SWAPBLK_NONE); 2549 2550 r1 = SWAPBLK_NONE; 2551 swap = swp_pager_lookup(object, index); 2552 2553 if (swap != NULL) { 2554 index &= SWAP_META_MASK; 2555 r1 = swap->swb_pages[index]; 2556 2557 if (r1 != SWAPBLK_NONE) { 2558 if (flags & (SWM_FREE|SWM_POP)) { 2559 swap->swb_pages[index] = SWAPBLK_NONE; 2560 --mycpu->gd_vmtotal.t_vm; 2561 if (--swap->swb_count == 0) { 2562 swp_pager_remove(object, swap); 2563 zfree(swap_zone, swap); 2564 --object->swblock_count; 2565 } 2566 } 2567 /* swap ptr may be invalid */ 2568 if (flags & SWM_FREE) { 2569 swp_pager_freeswapspace(object, r1, 1); 2570 r1 = SWAPBLK_NONE; 2571 } 2572 } 2573 /* swap ptr may be invalid */ 2574 } 2575 return(r1); 2576 } 2577