1 /* 2 * Copyright (c) 1998,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1994 John S. Dyson 35 * Copyright (c) 1990 University of Utah. 36 * Copyright (c) 1991, 1993 37 * The Regents of the University of California. All rights reserved. 38 * 39 * This code is derived from software contributed to Berkeley by 40 * the Systems Programming Group of the University of Utah Computer 41 * Science Department. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * New Swap System 72 * Matthew Dillon 73 * 74 * Radix Bitmap 'blists'. 75 * 76 * - The new swapper uses the new radix bitmap code. This should scale 77 * to arbitrarily small or arbitrarily large swap spaces and an almost 78 * arbitrary degree of fragmentation. 79 * 80 * Features: 81 * 82 * - on the fly reallocation of swap during putpages. The new system 83 * does not try to keep previously allocated swap blocks for dirty 84 * pages. 85 * 86 * - on the fly deallocation of swap 87 * 88 * - No more garbage collection required. Unnecessarily allocated swap 89 * blocks only exist for dirty vm_page_t's now and these are already 90 * cycled (in a high-load system) by the pager. We also do on-the-fly 91 * removal of invalidated swap blocks when a page is destroyed 92 * or renamed. 93 * 94 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 95 * 96 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 97 * 98 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $ 99 * $DragonFly: src/sys/vm/swap_pager.c,v 1.32 2008/07/01 02:02:56 dillon Exp $ 100 */ 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/conf.h> 105 #include <sys/kernel.h> 106 #include <sys/proc.h> 107 #include <sys/buf.h> 108 #include <sys/vnode.h> 109 #include <sys/malloc.h> 110 #include <sys/vmmeter.h> 111 #include <sys/sysctl.h> 112 #include <sys/blist.h> 113 #include <sys/lock.h> 114 #include <sys/thread2.h> 115 116 #ifndef MAX_PAGEOUT_CLUSTER 117 #define MAX_PAGEOUT_CLUSTER 16 118 #endif 119 120 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 121 122 #include "opt_swap.h" 123 #include <vm/vm.h> 124 #include <vm/vm_object.h> 125 #include <vm/vm_page.h> 126 #include <vm/vm_pager.h> 127 #include <vm/vm_pageout.h> 128 #include <vm/swap_pager.h> 129 #include <vm/vm_extern.h> 130 #include <vm/vm_zone.h> 131 132 #include <sys/buf2.h> 133 #include <vm/vm_page2.h> 134 135 #define SWM_FREE 0x02 /* free, period */ 136 #define SWM_POP 0x04 /* pop out */ 137 138 #define AUTOCHAINDONE ((struct buf *)(intptr_t)-1) 139 140 /* 141 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks 142 * in the old system. 143 */ 144 145 extern int vm_swap_size; /* number of free swap blocks, in pages */ 146 147 int swap_pager_full; /* swap space exhaustion (task killing) */ 148 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 149 static int nsw_rcount; /* free read buffers */ 150 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 151 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 152 static int nsw_wcount_async_max;/* assigned maximum */ 153 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 154 static int sw_alloc_interlock; /* swap pager allocation interlock */ 155 156 struct blist *swapblist; 157 static struct swblock **swhash; 158 static int swhash_mask; 159 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 160 161 extern struct vnode *swapdev_vp; /* from vm_swap.c */ 162 163 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 164 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 165 166 /* 167 * "named" and "unnamed" anon region objects. Try to reduce the overhead 168 * of searching a named list by hashing it just a little. 169 */ 170 171 #define NOBJLISTS 8 172 173 #define NOBJLIST(handle) \ 174 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 175 176 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 177 struct pagerlst swap_pager_un_object_list; 178 vm_zone_t swap_zone; 179 180 /* 181 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 182 * calls hooked from other parts of the VM system and do not appear here. 183 * (see vm/swap_pager.h). 184 */ 185 186 static vm_object_t 187 swap_pager_alloc (void *handle, off_t size, 188 vm_prot_t prot, off_t offset); 189 static void swap_pager_dealloc (vm_object_t object); 190 static int swap_pager_getpages (vm_object_t, vm_page_t *, int, int); 191 static void swap_pager_init (void); 192 static void swap_pager_unswapped (vm_page_t); 193 static void swap_pager_strategy (vm_object_t, struct bio *); 194 static void swap_chain_iodone(struct bio *biox); 195 196 struct pagerops swappagerops = { 197 swap_pager_init, /* early system initialization of pager */ 198 swap_pager_alloc, /* allocate an OBJT_SWAP object */ 199 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 200 swap_pager_getpages, /* pagein */ 201 swap_pager_putpages, /* pageout */ 202 swap_pager_haspage, /* get backing store status for page */ 203 swap_pager_unswapped, /* remove swap related to page */ 204 swap_pager_strategy /* pager strategy call */ 205 }; 206 207 /* 208 * dmmax is in page-sized chunks with the new swap system. It was 209 * dev-bsized chunks in the old. dmmax is always a power of 2. 210 * 211 * swap_*() routines are externally accessible. swp_*() routines are 212 * internal. 213 */ 214 215 int dmmax; 216 static int dmmax_mask; 217 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 218 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 219 220 static __inline void swp_sizecheck (void); 221 static void swp_pager_sync_iodone (struct bio *bio); 222 static void swp_pager_async_iodone (struct bio *bio); 223 224 /* 225 * Swap bitmap functions 226 */ 227 228 static __inline void swp_pager_freeswapspace (daddr_t blk, int npages); 229 static __inline daddr_t swp_pager_getswapspace (int npages); 230 231 /* 232 * Metadata functions 233 */ 234 235 static void swp_pager_meta_build (vm_object_t, vm_pindex_t, daddr_t); 236 static void swp_pager_meta_free (vm_object_t, vm_pindex_t, daddr_t); 237 static void swp_pager_meta_free_all (vm_object_t); 238 static daddr_t swp_pager_meta_ctl (vm_object_t, vm_pindex_t, int); 239 240 /* 241 * SWP_SIZECHECK() - update swap_pager_full indication 242 * 243 * update the swap_pager_almost_full indication and warn when we are 244 * about to run out of swap space, using lowat/hiwat hysteresis. 245 * 246 * Clear swap_pager_full ( task killing ) indication when lowat is met. 247 * 248 * No restrictions on call 249 * This routine may not block. 250 * This routine must be called at splvm() 251 */ 252 253 static __inline void 254 swp_sizecheck(void) 255 { 256 if (vm_swap_size < nswap_lowat) { 257 if (swap_pager_almost_full == 0) { 258 kprintf("swap_pager: out of swap space\n"); 259 swap_pager_almost_full = 1; 260 } 261 } else { 262 swap_pager_full = 0; 263 if (vm_swap_size > nswap_hiwat) 264 swap_pager_almost_full = 0; 265 } 266 } 267 268 /* 269 * SWAP_PAGER_INIT() - initialize the swap pager! 270 * 271 * Expected to be started from system init. NOTE: This code is run 272 * before much else so be careful what you depend on. Most of the VM 273 * system has yet to be initialized at this point. 274 */ 275 276 static void 277 swap_pager_init(void) 278 { 279 /* 280 * Initialize object lists 281 */ 282 int i; 283 284 for (i = 0; i < NOBJLISTS; ++i) 285 TAILQ_INIT(&swap_pager_object_list[i]); 286 TAILQ_INIT(&swap_pager_un_object_list); 287 288 /* 289 * Device Stripe, in PAGE_SIZE'd blocks 290 */ 291 292 dmmax = SWB_NPAGES * 2; 293 dmmax_mask = ~(dmmax - 1); 294 } 295 296 /* 297 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 298 * 299 * Expected to be started from pageout process once, prior to entering 300 * its main loop. 301 */ 302 303 void 304 swap_pager_swap_init(void) 305 { 306 int n, n2; 307 308 /* 309 * Number of in-transit swap bp operations. Don't 310 * exhaust the pbufs completely. Make sure we 311 * initialize workable values (0 will work for hysteresis 312 * but it isn't very efficient). 313 * 314 * The nsw_cluster_max is constrained by the number of pages an XIO 315 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined 316 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 317 * constrained by the swap device interleave stripe size. 318 * 319 * Currently we hardwire nsw_wcount_async to 4. This limit is 320 * designed to prevent other I/O from having high latencies due to 321 * our pageout I/O. The value 4 works well for one or two active swap 322 * devices but is probably a little low if you have more. Even so, 323 * a higher value would probably generate only a limited improvement 324 * with three or four active swap devices since the system does not 325 * typically have to pageout at extreme bandwidths. We will want 326 * at least 2 per swap devices, and 4 is a pretty good value if you 327 * have one NFS swap device due to the command/ack latency over NFS. 328 * So it all works out pretty well. 329 */ 330 331 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 332 333 nsw_rcount = (nswbuf + 1) / 2; 334 nsw_wcount_sync = (nswbuf + 3) / 4; 335 nsw_wcount_async = 4; 336 nsw_wcount_async_max = nsw_wcount_async; 337 338 /* 339 * Initialize our zone. Right now I'm just guessing on the number 340 * we need based on the number of pages in the system. Each swblock 341 * can hold 16 pages, so this is probably overkill. This reservation 342 * is typically limited to around 32MB by default. 343 */ 344 n = vmstats.v_page_count / 2; 345 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 346 n = maxswzone / sizeof(struct swblock); 347 n2 = n; 348 349 do { 350 swap_zone = zinit( 351 "SWAPMETA", 352 sizeof(struct swblock), 353 n, 354 ZONE_INTERRUPT, 355 1); 356 if (swap_zone != NULL) 357 break; 358 /* 359 * if the allocation failed, try a zone two thirds the 360 * size of the previous attempt. 361 */ 362 n -= ((n + 2) / 3); 363 } while (n > 0); 364 365 if (swap_zone == NULL) 366 panic("swap_pager_swap_init: swap_zone == NULL"); 367 if (n2 != n) 368 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n); 369 n2 = n; 370 371 /* 372 * Initialize our meta-data hash table. The swapper does not need to 373 * be quite as efficient as the VM system, so we do not use an 374 * oversized hash table. 375 * 376 * n: size of hash table, must be power of 2 377 * swhash_mask: hash table index mask 378 */ 379 380 for (n = 1; n < n2 / 8; n *= 2) 381 ; 382 383 swhash = kmalloc(sizeof(struct swblock *) * n, M_VMPGDATA, 384 M_WAITOK | M_ZERO); 385 386 swhash_mask = n - 1; 387 } 388 389 /* 390 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 391 * its metadata structures. 392 * 393 * This routine is called from the mmap and fork code to create a new 394 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 395 * and then converting it with swp_pager_meta_build(). 396 * 397 * This routine may block in vm_object_allocate() and create a named 398 * object lookup race, so we must interlock. We must also run at 399 * splvm() for the object lookup to handle races with interrupts, but 400 * we do not have to maintain splvm() in between the lookup and the 401 * add because (I believe) it is not possible to attempt to create 402 * a new swap object w/handle when a default object with that handle 403 * already exists. 404 */ 405 406 static vm_object_t 407 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset) 408 { 409 vm_object_t object; 410 411 if (handle) { 412 /* 413 * Reference existing named region or allocate new one. There 414 * should not be a race here against swp_pager_meta_build() 415 * as called from vm_page_remove() in regards to the lookup 416 * of the handle. 417 */ 418 419 while (sw_alloc_interlock) { 420 sw_alloc_interlock = -1; 421 tsleep(&sw_alloc_interlock, 0, "swpalc", 0); 422 } 423 sw_alloc_interlock = 1; 424 425 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 426 427 if (object != NULL) { 428 vm_object_reference(object); 429 } else { 430 object = vm_object_allocate(OBJT_DEFAULT, 431 OFF_TO_IDX(offset + PAGE_MASK + size)); 432 object->handle = handle; 433 434 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 435 } 436 437 if (sw_alloc_interlock < 0) 438 wakeup(&sw_alloc_interlock); 439 440 sw_alloc_interlock = 0; 441 } else { 442 object = vm_object_allocate(OBJT_DEFAULT, 443 OFF_TO_IDX(offset + PAGE_MASK + size)); 444 445 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 446 } 447 448 return (object); 449 } 450 451 /* 452 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 453 * 454 * The swap backing for the object is destroyed. The code is 455 * designed such that we can reinstantiate it later, but this 456 * routine is typically called only when the entire object is 457 * about to be destroyed. 458 * 459 * This routine may block, but no longer does. 460 * 461 * The object must be locked or unreferenceable. 462 */ 463 464 static void 465 swap_pager_dealloc(vm_object_t object) 466 { 467 /* 468 * Remove from list right away so lookups will fail if we block for 469 * pageout completion. 470 */ 471 472 if (object->handle == NULL) { 473 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list); 474 } else { 475 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 476 } 477 478 vm_object_pip_wait(object, "swpdea"); 479 480 /* 481 * Free all remaining metadata. We only bother to free it from 482 * the swap meta data. We do not attempt to free swapblk's still 483 * associated with vm_page_t's for this object. We do not care 484 * if paging is still in progress on some objects. 485 */ 486 crit_enter(); 487 swp_pager_meta_free_all(object); 488 crit_exit(); 489 } 490 491 /************************************************************************ 492 * SWAP PAGER BITMAP ROUTINES * 493 ************************************************************************/ 494 495 /* 496 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 497 * 498 * Allocate swap for the requested number of pages. The starting 499 * swap block number (a page index) is returned or SWAPBLK_NONE 500 * if the allocation failed. 501 * 502 * Also has the side effect of advising that somebody made a mistake 503 * when they configured swap and didn't configure enough. 504 * 505 * Must be called at splvm() to avoid races with bitmap frees from 506 * vm_page_remove() aka swap_pager_page_removed(). 507 * 508 * This routine may not block 509 * This routine must be called at splvm(). 510 */ 511 512 static __inline daddr_t 513 swp_pager_getswapspace(int npages) 514 { 515 daddr_t blk; 516 517 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) { 518 if (swap_pager_full != 2) { 519 kprintf("swap_pager_getswapspace: failed\n"); 520 swap_pager_full = 2; 521 swap_pager_almost_full = 1; 522 } 523 } else { 524 vm_swap_size -= npages; 525 swp_sizecheck(); 526 } 527 return(blk); 528 } 529 530 /* 531 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 532 * 533 * This routine returns the specified swap blocks back to the bitmap. 534 * 535 * Note: This routine may not block (it could in the old swap code), 536 * and through the use of the new blist routines it does not block. 537 * 538 * We must be called at splvm() to avoid races with bitmap frees from 539 * vm_page_remove() aka swap_pager_page_removed(). 540 * 541 * This routine may not block 542 * This routine must be called at splvm(). 543 */ 544 545 static __inline void 546 swp_pager_freeswapspace(daddr_t blk, int npages) 547 { 548 blist_free(swapblist, blk, npages); 549 vm_swap_size += npages; 550 swp_sizecheck(); 551 } 552 553 /* 554 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 555 * range within an object. 556 * 557 * This is a globally accessible routine. 558 * 559 * This routine removes swapblk assignments from swap metadata. 560 * 561 * The external callers of this routine typically have already destroyed 562 * or renamed vm_page_t's associated with this range in the object so 563 * we should be ok. 564 * 565 * This routine may be called at any spl. We up our spl to splvm temporarily 566 * in order to perform the metadata removal. 567 */ 568 569 void 570 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 571 { 572 crit_enter(); 573 swp_pager_meta_free(object, start, size); 574 crit_exit(); 575 } 576 577 /* 578 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 579 * 580 * Assigns swap blocks to the specified range within the object. The 581 * swap blocks are not zerod. Any previous swap assignment is destroyed. 582 * 583 * Returns 0 on success, -1 on failure. 584 */ 585 586 int 587 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 588 { 589 int n = 0; 590 daddr_t blk = SWAPBLK_NONE; 591 vm_pindex_t beg = start; /* save start index */ 592 593 crit_enter(); 594 while (size) { 595 if (n == 0) { 596 n = BLIST_MAX_ALLOC; 597 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 598 n >>= 1; 599 if (n == 0) { 600 swp_pager_meta_free(object, beg, start - beg); 601 crit_exit(); 602 return(-1); 603 } 604 } 605 } 606 swp_pager_meta_build(object, start, blk); 607 --size; 608 ++start; 609 ++blk; 610 --n; 611 } 612 swp_pager_meta_free(object, start, n); 613 crit_exit(); 614 return(0); 615 } 616 617 /* 618 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 619 * and destroy the source. 620 * 621 * Copy any valid swapblks from the source to the destination. In 622 * cases where both the source and destination have a valid swapblk, 623 * we keep the destination's. 624 * 625 * This routine is allowed to block. It may block allocating metadata 626 * indirectly through swp_pager_meta_build() or if paging is still in 627 * progress on the source. 628 * 629 * This routine can be called at any spl 630 * 631 * XXX vm_page_collapse() kinda expects us not to block because we 632 * supposedly do not need to allocate memory, but for the moment we 633 * *may* have to get a little memory from the zone allocator, but 634 * it is taken from the interrupt memory. We should be ok. 635 * 636 * The source object contains no vm_page_t's (which is just as well) 637 * 638 * The source object is of type OBJT_SWAP. 639 * 640 * The source and destination objects must be locked or 641 * inaccessible (XXX are they ?) 642 */ 643 644 void 645 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 646 vm_pindex_t offset, int destroysource) 647 { 648 vm_pindex_t i; 649 650 crit_enter(); 651 652 /* 653 * If destroysource is set, we remove the source object from the 654 * swap_pager internal queue now. 655 */ 656 657 if (destroysource) { 658 if (srcobject->handle == NULL) { 659 TAILQ_REMOVE( 660 &swap_pager_un_object_list, 661 srcobject, 662 pager_object_list 663 ); 664 } else { 665 TAILQ_REMOVE( 666 NOBJLIST(srcobject->handle), 667 srcobject, 668 pager_object_list 669 ); 670 } 671 } 672 673 /* 674 * transfer source to destination. 675 */ 676 677 for (i = 0; i < dstobject->size; ++i) { 678 daddr_t dstaddr; 679 680 /* 681 * Locate (without changing) the swapblk on the destination, 682 * unless it is invalid in which case free it silently, or 683 * if the destination is a resident page, in which case the 684 * source is thrown away. 685 */ 686 687 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 688 689 if (dstaddr == SWAPBLK_NONE) { 690 /* 691 * Destination has no swapblk and is not resident, 692 * copy source. 693 */ 694 daddr_t srcaddr; 695 696 srcaddr = swp_pager_meta_ctl( 697 srcobject, 698 i + offset, 699 SWM_POP 700 ); 701 702 if (srcaddr != SWAPBLK_NONE) 703 swp_pager_meta_build(dstobject, i, srcaddr); 704 } else { 705 /* 706 * Destination has valid swapblk or it is represented 707 * by a resident page. We destroy the sourceblock. 708 */ 709 710 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 711 } 712 } 713 714 /* 715 * Free left over swap blocks in source. 716 * 717 * We have to revert the type to OBJT_DEFAULT so we do not accidently 718 * double-remove the object from the swap queues. 719 */ 720 721 if (destroysource) { 722 swp_pager_meta_free_all(srcobject); 723 /* 724 * Reverting the type is not necessary, the caller is going 725 * to destroy srcobject directly, but I'm doing it here 726 * for consistency since we've removed the object from its 727 * queues. 728 */ 729 srcobject->type = OBJT_DEFAULT; 730 } 731 crit_exit(); 732 } 733 734 /* 735 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 736 * the requested page. 737 * 738 * We determine whether good backing store exists for the requested 739 * page and return TRUE if it does, FALSE if it doesn't. 740 * 741 * If TRUE, we also try to determine how much valid, contiguous backing 742 * store exists before and after the requested page within a reasonable 743 * distance. We do not try to restrict it to the swap device stripe 744 * (that is handled in getpages/putpages). It probably isn't worth 745 * doing here. 746 */ 747 748 boolean_t 749 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 750 int *after) 751 { 752 daddr_t blk0; 753 754 /* 755 * do we have good backing store at the requested index ? 756 */ 757 758 crit_enter(); 759 blk0 = swp_pager_meta_ctl(object, pindex, 0); 760 761 if (blk0 == SWAPBLK_NONE) { 762 crit_exit(); 763 if (before) 764 *before = 0; 765 if (after) 766 *after = 0; 767 return (FALSE); 768 } 769 770 /* 771 * find backwards-looking contiguous good backing store 772 */ 773 774 if (before != NULL) { 775 int i; 776 777 for (i = 1; i < (SWB_NPAGES/2); ++i) { 778 daddr_t blk; 779 780 if (i > pindex) 781 break; 782 blk = swp_pager_meta_ctl(object, pindex - i, 0); 783 if (blk != blk0 - i) 784 break; 785 } 786 *before = (i - 1); 787 } 788 789 /* 790 * find forward-looking contiguous good backing store 791 */ 792 793 if (after != NULL) { 794 int i; 795 796 for (i = 1; i < (SWB_NPAGES/2); ++i) { 797 daddr_t blk; 798 799 blk = swp_pager_meta_ctl(object, pindex + i, 0); 800 if (blk != blk0 + i) 801 break; 802 } 803 *after = (i - 1); 804 } 805 crit_exit(); 806 return (TRUE); 807 } 808 809 /* 810 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 811 * 812 * This removes any associated swap backing store, whether valid or 813 * not, from the page. 814 * 815 * This routine is typically called when a page is made dirty, at 816 * which point any associated swap can be freed. MADV_FREE also 817 * calls us in a special-case situation 818 * 819 * NOTE!!! If the page is clean and the swap was valid, the caller 820 * should make the page dirty before calling this routine. This routine 821 * does NOT change the m->dirty status of the page. Also: MADV_FREE 822 * depends on it. 823 * 824 * This routine may not block 825 * This routine must be called at splvm() 826 */ 827 828 static void 829 swap_pager_unswapped(vm_page_t m) 830 { 831 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 832 } 833 834 /* 835 * SWAP_PAGER_STRATEGY() - read, write, free blocks 836 * 837 * This implements the vm_pager_strategy() interface to swap and allows 838 * other parts of the system to directly access swap as backing store 839 * through vm_objects of type OBJT_SWAP. This is intended to be a 840 * cacheless interface ( i.e. caching occurs at higher levels ). 841 * Therefore we do not maintain any resident pages. All I/O goes 842 * directly to and from the swap device. 843 * 844 * We currently attempt to run I/O synchronously or asynchronously as 845 * the caller requests. This isn't perfect because we loose error 846 * sequencing when we run multiple ops in parallel to satisfy a request. 847 * But this is swap, so we let it all hang out. 848 */ 849 850 static void 851 swap_pager_strategy(vm_object_t object, struct bio *bio) 852 { 853 struct buf *bp = bio->bio_buf; 854 struct bio *nbio; 855 vm_pindex_t start; 856 vm_pindex_t biox_blkno = 0; 857 int count; 858 char *data; 859 struct bio *biox = NULL; 860 struct buf *bufx = NULL; 861 struct bio_track *track; 862 863 /* 864 * tracking for swapdev vnode I/Os 865 */ 866 if (bp->b_cmd == BUF_CMD_READ) 867 track = &swapdev_vp->v_track_read; 868 else 869 track = &swapdev_vp->v_track_write; 870 871 if (bp->b_bcount & PAGE_MASK) { 872 bp->b_error = EINVAL; 873 bp->b_flags |= B_ERROR | B_INVAL; 874 biodone(bio); 875 kprintf("swap_pager_strategy: bp %p offset %lld size %d, " 876 "not page bounded\n", 877 bp, (long long)bio->bio_offset, (int)bp->b_bcount); 878 return; 879 } 880 881 /* 882 * Clear error indication, initialize page index, count, data pointer. 883 */ 884 bp->b_error = 0; 885 bp->b_flags &= ~B_ERROR; 886 bp->b_resid = bp->b_bcount; 887 888 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT); 889 count = howmany(bp->b_bcount, PAGE_SIZE); 890 data = bp->b_data; 891 892 crit_enter(); 893 894 /* 895 * Deal with BUF_CMD_FREEBLKS 896 */ 897 if (bp->b_cmd == BUF_CMD_FREEBLKS) { 898 /* 899 * FREE PAGE(s) - destroy underlying swap that is no longer 900 * needed. 901 */ 902 swp_pager_meta_free(object, start, count); 903 crit_exit(); 904 bp->b_resid = 0; 905 biodone(bio); 906 return; 907 } 908 909 /* 910 * We need to be able to create a new cluster of I/O's. We cannot 911 * use the caller fields of the passed bio so push a new one. 912 * 913 * Because nbio is just a placeholder for the cluster links, 914 * we can biodone() the original bio instead of nbio to make 915 * things a bit more efficient. 916 */ 917 nbio = push_bio(bio); 918 nbio->bio_offset = bio->bio_offset; 919 nbio->bio_caller_info1.cluster_head = NULL; 920 nbio->bio_caller_info2.cluster_tail = NULL; 921 922 /* 923 * Execute read or write 924 */ 925 926 while (count > 0) { 927 daddr_t blk; 928 929 /* 930 * Obtain block. If block not found and writing, allocate a 931 * new block and build it into the object. 932 */ 933 934 blk = swp_pager_meta_ctl(object, start, 0); 935 if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) { 936 blk = swp_pager_getswapspace(1); 937 if (blk == SWAPBLK_NONE) { 938 bp->b_error = ENOMEM; 939 bp->b_flags |= B_ERROR; 940 break; 941 } 942 swp_pager_meta_build(object, start, blk); 943 } 944 945 /* 946 * Do we have to flush our current collection? Yes if: 947 * 948 * - no swap block at this index 949 * - swap block is not contiguous 950 * - we cross a physical disk boundry in the 951 * stripe. 952 */ 953 954 if ( 955 biox && (biox_blkno + btoc(bufx->b_bcount) != blk || 956 ((biox_blkno ^ blk) & dmmax_mask) 957 ) 958 ) { 959 crit_exit(); 960 if (bp->b_cmd == BUF_CMD_READ) { 961 ++mycpu->gd_cnt.v_swapin; 962 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount); 963 } else { 964 ++mycpu->gd_cnt.v_swapout; 965 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount); 966 bufx->b_dirtyend = bufx->b_bcount; 967 } 968 969 /* 970 * Flush the biox to the swap device. 971 */ 972 if (bufx->b_bcount) { 973 if (bufx->b_cmd != BUF_CMD_READ) 974 bufx->b_dirtyend = bufx->b_bcount; 975 BUF_KERNPROC(bufx); 976 vn_strategy(swapdev_vp, biox); 977 } else { 978 biodone(biox); 979 } 980 crit_enter(); 981 biox = NULL; 982 bufx = NULL; 983 } 984 985 /* 986 * Add new swapblk to biox, instantiating biox if necessary. 987 * Zero-fill reads are able to take a shortcut. 988 */ 989 if (blk == SWAPBLK_NONE) { 990 /* 991 * We can only get here if we are reading. Since 992 * we are at splvm() we can safely modify b_resid, 993 * even if chain ops are in progress. 994 */ 995 bzero(data, PAGE_SIZE); 996 bp->b_resid -= PAGE_SIZE; 997 } else { 998 if (biox == NULL) { 999 /* XXX chain count > 4, wait to <= 4 */ 1000 1001 bufx = getpbuf(NULL); 1002 biox = &bufx->b_bio1; 1003 cluster_append(nbio, bufx); 1004 bufx->b_flags |= (bufx->b_flags & B_ORDERED) | 1005 B_ASYNC; 1006 bufx->b_cmd = bp->b_cmd; 1007 biox->bio_done = swap_chain_iodone; 1008 biox->bio_offset = (off_t)blk << PAGE_SHIFT; 1009 biox->bio_caller_info1.cluster_parent = nbio; 1010 biox_blkno = blk; 1011 bufx->b_bcount = 0; 1012 bufx->b_data = data; 1013 } 1014 bufx->b_bcount += PAGE_SIZE; 1015 } 1016 --count; 1017 ++start; 1018 data += PAGE_SIZE; 1019 } 1020 1021 /* 1022 * Flush out last buffer 1023 */ 1024 crit_exit(); 1025 1026 if (biox) { 1027 if ((bp->b_flags & B_ASYNC) == 0) 1028 bufx->b_flags &= ~B_ASYNC; 1029 if (bufx->b_cmd == BUF_CMD_READ) { 1030 ++mycpu->gd_cnt.v_swapin; 1031 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount); 1032 } else { 1033 ++mycpu->gd_cnt.v_swapout; 1034 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount); 1035 bufx->b_dirtyend = bufx->b_bcount; 1036 } 1037 if (bufx->b_bcount) { 1038 if (bufx->b_cmd != BUF_CMD_READ) 1039 bufx->b_dirtyend = bufx->b_bcount; 1040 BUF_KERNPROC(bufx); 1041 vn_strategy(swapdev_vp, biox); 1042 } else { 1043 biodone(biox); 1044 } 1045 /* biox, bufx = NULL */ 1046 } 1047 1048 /* 1049 * Wait for completion. Now that we are no longer using 1050 * cluster_append, use the cluster_tail field to indicate 1051 * auto-completion if there are still I/O's in progress. 1052 */ 1053 if (bp->b_flags & B_ASYNC) { 1054 crit_enter(); 1055 if (nbio->bio_caller_info1.cluster_head == NULL) { 1056 biodone(bio); 1057 } else { 1058 nbio->bio_caller_info2.cluster_tail = AUTOCHAINDONE; 1059 } 1060 crit_exit(); 1061 } else { 1062 crit_enter(); 1063 while (nbio->bio_caller_info1.cluster_head != NULL) { 1064 bp->b_flags |= B_WANT; 1065 tsleep(bp, 0, "bpchain", 0); 1066 } 1067 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) { 1068 bp->b_flags |= B_ERROR; 1069 bp->b_error = EINVAL; 1070 } 1071 biodone(bio); 1072 crit_exit(); 1073 } 1074 } 1075 1076 static void 1077 swap_chain_iodone(struct bio *biox) 1078 { 1079 struct buf **nextp; 1080 struct buf *bufx; /* chained sub-buffer */ 1081 struct bio *nbio; /* parent nbio with chain glue */ 1082 struct buf *bp; /* original bp associated with nbio */ 1083 1084 bufx = biox->bio_buf; 1085 nbio = biox->bio_caller_info1.cluster_parent; 1086 bp = nbio->bio_buf; 1087 1088 /* 1089 * Update the original buffer 1090 */ 1091 KKASSERT(bp != NULL); 1092 if (bufx->b_flags & B_ERROR) { 1093 bp->b_flags |= B_ERROR; 1094 bp->b_error = bufx->b_error; 1095 } else if (bufx->b_resid != 0) { 1096 bp->b_flags |= B_ERROR; 1097 bp->b_error = EINVAL; 1098 } else { 1099 bp->b_resid -= bufx->b_bcount; 1100 } 1101 1102 /* 1103 * Remove us from the chain. It is sufficient to clean up 1104 * cluster_head. Once the chain is operational cluster_tail 1105 * may be used to indicate AUTOCHAINDONE. Note that I/O's 1106 * can complete while the swap system is still appending new 1107 * BIOs to the chain. 1108 */ 1109 nextp = &nbio->bio_caller_info1.cluster_head; 1110 while (*nextp != bufx) { 1111 KKASSERT(*nextp != NULL); 1112 nextp = &(*nextp)->b_cluster_next; 1113 } 1114 *nextp = bufx->b_cluster_next; 1115 if (bp->b_flags & B_WANT) { 1116 bp->b_flags &= ~B_WANT; 1117 wakeup(bp); 1118 } 1119 1120 /* 1121 * Clean up bufx. If this was the last buffer in the chain 1122 * and AUTOCHAINDONE was set, finish off the original I/O 1123 * as well. 1124 * 1125 * nbio was just a fake BIO layer to hold the cluster links, 1126 * we can issue the biodone() on the layer above it. 1127 */ 1128 if (nbio->bio_caller_info1.cluster_head == NULL && 1129 nbio->bio_caller_info2.cluster_tail == AUTOCHAINDONE 1130 ) { 1131 nbio->bio_caller_info2.cluster_tail = NULL; 1132 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) { 1133 bp->b_flags |= B_ERROR; 1134 bp->b_error = EINVAL; 1135 } 1136 biodone(nbio->bio_prev); 1137 } 1138 bufx->b_flags &= ~B_ASYNC; 1139 relpbuf(bufx, NULL); 1140 } 1141 1142 /* 1143 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1144 * 1145 * Attempt to retrieve (m, count) pages from backing store, but make 1146 * sure we retrieve at least m[reqpage]. We try to load in as large 1147 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1148 * belongs to the same object. 1149 * 1150 * The code is designed for asynchronous operation and 1151 * immediate-notification of 'reqpage' but tends not to be 1152 * used that way. Please do not optimize-out this algorithmic 1153 * feature, I intend to improve on it in the future. 1154 * 1155 * The parent has a single vm_object_pip_add() reference prior to 1156 * calling us and we should return with the same. 1157 * 1158 * The parent has BUSY'd the pages. We should return with 'm' 1159 * left busy, but the others adjusted. 1160 */ 1161 1162 static int 1163 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1164 { 1165 struct buf *bp; 1166 struct bio *bio; 1167 vm_page_t mreq; 1168 int i; 1169 int j; 1170 daddr_t blk; 1171 vm_offset_t kva; 1172 vm_pindex_t lastpindex; 1173 1174 mreq = m[reqpage]; 1175 1176 if (mreq->object != object) { 1177 panic("swap_pager_getpages: object mismatch %p/%p", 1178 object, 1179 mreq->object 1180 ); 1181 } 1182 1183 /* 1184 * Calculate range to retrieve. The pages have already been assigned 1185 * their swapblks. We require a *contiguous* range that falls entirely 1186 * within a single device stripe. If we do not supply it, bad things 1187 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1188 * loops are set up such that the case(s) are handled implicitly. 1189 * 1190 * The swp_*() calls must be made at splvm(). vm_page_free() does 1191 * not need to be, but it will go a little faster if it is. 1192 */ 1193 crit_enter(); 1194 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1195 1196 for (i = reqpage - 1; i >= 0; --i) { 1197 daddr_t iblk; 1198 1199 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1200 if (blk != iblk + (reqpage - i)) 1201 break; 1202 if ((blk ^ iblk) & dmmax_mask) 1203 break; 1204 } 1205 ++i; 1206 1207 for (j = reqpage + 1; j < count; ++j) { 1208 daddr_t jblk; 1209 1210 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1211 if (blk != jblk - (j - reqpage)) 1212 break; 1213 if ((blk ^ jblk) & dmmax_mask) 1214 break; 1215 } 1216 1217 /* 1218 * free pages outside our collection range. Note: we never free 1219 * mreq, it must remain busy throughout. 1220 */ 1221 1222 { 1223 int k; 1224 1225 for (k = 0; k < i; ++k) 1226 vm_page_free(m[k]); 1227 for (k = j; k < count; ++k) 1228 vm_page_free(m[k]); 1229 } 1230 crit_exit(); 1231 1232 1233 /* 1234 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1235 * still busy, but the others unbusied. 1236 */ 1237 1238 if (blk == SWAPBLK_NONE) 1239 return(VM_PAGER_FAIL); 1240 1241 /* 1242 * Get a swap buffer header to perform the IO 1243 */ 1244 1245 bp = getpbuf(&nsw_rcount); 1246 bio = &bp->b_bio1; 1247 kva = (vm_offset_t) bp->b_data; 1248 1249 /* 1250 * map our page(s) into kva for input 1251 */ 1252 1253 pmap_qenter(kva, m + i, j - i); 1254 1255 bp->b_data = (caddr_t) kva; 1256 bp->b_bcount = PAGE_SIZE * (j - i); 1257 bio->bio_done = swp_pager_async_iodone; 1258 bio->bio_offset = (off_t)(blk - (reqpage - i)) << PAGE_SHIFT; 1259 bio->bio_driver_info = (void *)(intptr_t)(reqpage - i); 1260 1261 { 1262 int k; 1263 1264 for (k = i; k < j; ++k) { 1265 bp->b_xio.xio_pages[k - i] = m[k]; 1266 vm_page_flag_set(m[k], PG_SWAPINPROG); 1267 } 1268 } 1269 bp->b_xio.xio_npages = j - i; 1270 1271 mycpu->gd_cnt.v_swapin++; 1272 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages; 1273 1274 /* 1275 * We still hold the lock on mreq, and our automatic completion routine 1276 * does not remove it. 1277 */ 1278 1279 vm_object_pip_add(mreq->object, bp->b_xio.xio_npages); 1280 lastpindex = m[j-1]->pindex; 1281 1282 /* 1283 * perform the I/O. NOTE!!! bp cannot be considered valid after 1284 * this point because we automatically release it on completion. 1285 * Instead, we look at the one page we are interested in which we 1286 * still hold a lock on even through the I/O completion. 1287 * 1288 * The other pages in our m[] array are also released on completion, 1289 * so we cannot assume they are valid anymore either. 1290 */ 1291 1292 bp->b_cmd = BUF_CMD_READ; 1293 BUF_KERNPROC(bp); 1294 vn_strategy(swapdev_vp, bio); 1295 1296 /* 1297 * wait for the page we want to complete. PG_SWAPINPROG is always 1298 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1299 * is set in the meta-data. 1300 */ 1301 1302 crit_enter(); 1303 1304 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1305 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1306 mycpu->gd_cnt.v_intrans++; 1307 if (tsleep(mreq, 0, "swread", hz*20)) { 1308 kprintf( 1309 "swap_pager: indefinite wait buffer: " 1310 " offset: %lld, size: %ld\n", 1311 (long long)bio->bio_offset, 1312 (long)bp->b_bcount 1313 ); 1314 } 1315 } 1316 1317 crit_exit(); 1318 1319 /* 1320 * mreq is left bussied after completion, but all the other pages 1321 * are freed. If we had an unrecoverable read error the page will 1322 * not be valid. 1323 */ 1324 1325 if (mreq->valid != VM_PAGE_BITS_ALL) { 1326 return(VM_PAGER_ERROR); 1327 } else { 1328 return(VM_PAGER_OK); 1329 } 1330 1331 /* 1332 * A final note: in a low swap situation, we cannot deallocate swap 1333 * and mark a page dirty here because the caller is likely to mark 1334 * the page clean when we return, causing the page to possibly revert 1335 * to all-zero's later. 1336 */ 1337 } 1338 1339 /* 1340 * swap_pager_putpages: 1341 * 1342 * Assign swap (if necessary) and initiate I/O on the specified pages. 1343 * 1344 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1345 * are automatically converted to SWAP objects. 1346 * 1347 * In a low memory situation we may block in vn_strategy(), but the new 1348 * vm_page reservation system coupled with properly written VFS devices 1349 * should ensure that no low-memory deadlock occurs. This is an area 1350 * which needs work. 1351 * 1352 * The parent has N vm_object_pip_add() references prior to 1353 * calling us and will remove references for rtvals[] that are 1354 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1355 * completion. 1356 * 1357 * The parent has soft-busy'd the pages it passes us and will unbusy 1358 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1359 * We need to unbusy the rest on I/O completion. 1360 */ 1361 void 1362 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, 1363 boolean_t sync, int *rtvals) 1364 { 1365 int i; 1366 int n = 0; 1367 1368 if (count && m[0]->object != object) { 1369 panic("swap_pager_getpages: object mismatch %p/%p", 1370 object, 1371 m[0]->object 1372 ); 1373 } 1374 1375 /* 1376 * Step 1 1377 * 1378 * Turn object into OBJT_SWAP 1379 * check for bogus sysops 1380 * force sync if not pageout process 1381 */ 1382 1383 if (object->type != OBJT_SWAP) 1384 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1385 1386 if (curthread != pagethread) 1387 sync = TRUE; 1388 1389 /* 1390 * Step 2 1391 * 1392 * Update nsw parameters from swap_async_max sysctl values. 1393 * Do not let the sysop crash the machine with bogus numbers. 1394 */ 1395 1396 if (swap_async_max != nsw_wcount_async_max) { 1397 int n; 1398 1399 /* 1400 * limit range 1401 */ 1402 if ((n = swap_async_max) > nswbuf / 2) 1403 n = nswbuf / 2; 1404 if (n < 1) 1405 n = 1; 1406 swap_async_max = n; 1407 1408 /* 1409 * Adjust difference ( if possible ). If the current async 1410 * count is too low, we may not be able to make the adjustment 1411 * at this time. 1412 */ 1413 crit_enter(); 1414 n -= nsw_wcount_async_max; 1415 if (nsw_wcount_async + n >= 0) { 1416 nsw_wcount_async += n; 1417 nsw_wcount_async_max += n; 1418 wakeup(&nsw_wcount_async); 1419 } 1420 crit_exit(); 1421 } 1422 1423 /* 1424 * Step 3 1425 * 1426 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1427 * The page is left dirty until the pageout operation completes 1428 * successfully. 1429 */ 1430 1431 for (i = 0; i < count; i += n) { 1432 struct buf *bp; 1433 struct bio *bio; 1434 daddr_t blk; 1435 int j; 1436 1437 /* 1438 * Maximum I/O size is limited by a number of factors. 1439 */ 1440 1441 n = min(BLIST_MAX_ALLOC, count - i); 1442 n = min(n, nsw_cluster_max); 1443 1444 crit_enter(); 1445 1446 /* 1447 * Get biggest block of swap we can. If we fail, fall 1448 * back and try to allocate a smaller block. Don't go 1449 * overboard trying to allocate space if it would overly 1450 * fragment swap. 1451 */ 1452 while ( 1453 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1454 n > 4 1455 ) { 1456 n >>= 1; 1457 } 1458 if (blk == SWAPBLK_NONE) { 1459 for (j = 0; j < n; ++j) 1460 rtvals[i+j] = VM_PAGER_FAIL; 1461 crit_exit(); 1462 continue; 1463 } 1464 1465 /* 1466 * The I/O we are constructing cannot cross a physical 1467 * disk boundry in the swap stripe. Note: we are still 1468 * at splvm(). 1469 */ 1470 if ((blk ^ (blk + n)) & dmmax_mask) { 1471 j = ((blk + dmmax) & dmmax_mask) - blk; 1472 swp_pager_freeswapspace(blk + j, n - j); 1473 n = j; 1474 } 1475 1476 /* 1477 * All I/O parameters have been satisfied, build the I/O 1478 * request and assign the swap space. 1479 */ 1480 1481 if (sync == TRUE) 1482 bp = getpbuf(&nsw_wcount_sync); 1483 else 1484 bp = getpbuf(&nsw_wcount_async); 1485 bio = &bp->b_bio1; 1486 1487 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1488 1489 bp->b_bcount = PAGE_SIZE * n; 1490 bio->bio_offset = (off_t)blk << PAGE_SHIFT; 1491 1492 for (j = 0; j < n; ++j) { 1493 vm_page_t mreq = m[i+j]; 1494 1495 swp_pager_meta_build( 1496 mreq->object, 1497 mreq->pindex, 1498 blk + j 1499 ); 1500 vm_page_dirty(mreq); 1501 rtvals[i+j] = VM_PAGER_OK; 1502 1503 vm_page_flag_set(mreq, PG_SWAPINPROG); 1504 bp->b_xio.xio_pages[j] = mreq; 1505 } 1506 bp->b_xio.xio_npages = n; 1507 1508 mycpu->gd_cnt.v_swapout++; 1509 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages; 1510 1511 crit_exit(); 1512 1513 bp->b_dirtyoff = 0; /* req'd for NFS */ 1514 bp->b_dirtyend = bp->b_bcount; /* req'd for NFS */ 1515 bp->b_cmd = BUF_CMD_WRITE; 1516 1517 /* 1518 * asynchronous 1519 */ 1520 if (sync == FALSE) { 1521 bp->b_flags |= B_ASYNC; 1522 bio->bio_done = swp_pager_async_iodone; 1523 BUF_KERNPROC(bp); 1524 vn_strategy(swapdev_vp, bio); 1525 1526 for (j = 0; j < n; ++j) 1527 rtvals[i+j] = VM_PAGER_PEND; 1528 continue; 1529 } 1530 1531 /* 1532 * synchronous 1533 */ 1534 1535 bio->bio_done = swp_pager_sync_iodone; 1536 vn_strategy(swapdev_vp, bio); 1537 1538 /* 1539 * Wait for the sync I/O to complete, then update rtvals. 1540 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1541 * our async completion routine at the end, thus avoiding a 1542 * double-free. 1543 */ 1544 crit_enter(); 1545 1546 while (bp->b_cmd != BUF_CMD_DONE) 1547 tsleep(bp, 0, "swwrt", 0); 1548 1549 for (j = 0; j < n; ++j) 1550 rtvals[i+j] = VM_PAGER_PEND; 1551 1552 /* 1553 * Now that we are through with the bp, we can call the 1554 * normal async completion, which frees everything up. 1555 */ 1556 1557 swp_pager_async_iodone(bio); 1558 1559 crit_exit(); 1560 } 1561 } 1562 1563 void 1564 swap_pager_newswap(void) 1565 { 1566 swp_sizecheck(); 1567 } 1568 1569 /* 1570 * swap_pager_sync_iodone: 1571 * 1572 * Completion routine for synchronous reads and writes from/to swap. 1573 * We just mark the bp is complete and wake up anyone waiting on it. 1574 * 1575 * This routine may not block. This routine is called at splbio() 1576 * or better. 1577 */ 1578 1579 static void 1580 swp_pager_sync_iodone(struct bio *bio) 1581 { 1582 struct buf *bp = bio->bio_buf; 1583 1584 bp->b_flags &= ~B_ASYNC; 1585 bp->b_cmd = BUF_CMD_DONE; 1586 wakeup(bp); 1587 } 1588 1589 /* 1590 * swp_pager_async_iodone: 1591 * 1592 * Completion routine for asynchronous reads and writes from/to swap. 1593 * Also called manually by synchronous code to finish up a bp. 1594 * 1595 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1596 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1597 * unbusy all pages except the 'main' request page. For WRITE 1598 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1599 * because we marked them all VM_PAGER_PEND on return from putpages ). 1600 * 1601 * This routine may not block. 1602 */ 1603 1604 static void 1605 swp_pager_async_iodone(struct bio *bio) 1606 { 1607 struct buf *bp = bio->bio_buf; 1608 vm_object_t object = NULL; 1609 int i; 1610 int *nswptr; 1611 1612 /* 1613 * report error 1614 */ 1615 if (bp->b_flags & B_ERROR) { 1616 kprintf( 1617 "swap_pager: I/O error - %s failed; offset %lld," 1618 "size %ld, error %d\n", 1619 ((bp->b_cmd == BUF_CMD_READ) ? "pagein" : "pageout"), 1620 (long long)bio->bio_offset, 1621 (long)bp->b_bcount, 1622 bp->b_error 1623 ); 1624 } 1625 1626 /* 1627 * set object, raise to splvm(). 1628 */ 1629 1630 if (bp->b_xio.xio_npages) 1631 object = bp->b_xio.xio_pages[0]->object; 1632 crit_enter(); 1633 1634 /* 1635 * remove the mapping for kernel virtual 1636 */ 1637 1638 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages); 1639 1640 /* 1641 * cleanup pages. If an error occurs writing to swap, we are in 1642 * very serious trouble. If it happens to be a disk error, though, 1643 * we may be able to recover by reassigning the swap later on. So 1644 * in this case we remove the m->swapblk assignment for the page 1645 * but do not free it in the rlist. The errornous block(s) are thus 1646 * never reallocated as swap. Redirty the page and continue. 1647 */ 1648 1649 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 1650 vm_page_t m = bp->b_xio.xio_pages[i]; 1651 1652 vm_page_flag_clear(m, PG_SWAPINPROG); 1653 1654 if (bp->b_flags & B_ERROR) { 1655 /* 1656 * If an error occurs I'd love to throw the swapblk 1657 * away without freeing it back to swapspace, so it 1658 * can never be used again. But I can't from an 1659 * interrupt. 1660 */ 1661 1662 if (bp->b_cmd == BUF_CMD_READ) { 1663 /* 1664 * When reading, reqpage needs to stay 1665 * locked for the parent, but all other 1666 * pages can be freed. We still want to 1667 * wakeup the parent waiting on the page, 1668 * though. ( also: pg_reqpage can be -1 and 1669 * not match anything ). 1670 * 1671 * We have to wake specifically requested pages 1672 * up too because we cleared PG_SWAPINPROG and 1673 * someone may be waiting for that. 1674 * 1675 * NOTE: for reads, m->dirty will probably 1676 * be overridden by the original caller of 1677 * getpages so don't play cute tricks here. 1678 * 1679 * NOTE: We can't actually free the page from 1680 * here, because this is an interrupt. It 1681 * is not legal to mess with object->memq 1682 * from an interrupt. Deactivate the page 1683 * instead. 1684 */ 1685 1686 m->valid = 0; 1687 vm_page_flag_clear(m, PG_ZERO); 1688 1689 /* 1690 * bio_driver_info holds the requested page 1691 * index. 1692 */ 1693 if (i != (int)(intptr_t)bio->bio_driver_info) { 1694 vm_page_deactivate(m); 1695 vm_page_wakeup(m); 1696 } else { 1697 vm_page_flash(m); 1698 } 1699 /* 1700 * If i == bp->b_pager.pg_reqpage, do not wake 1701 * the page up. The caller needs to. 1702 */ 1703 } else { 1704 /* 1705 * If a write error occurs, reactivate page 1706 * so it doesn't clog the inactive list, 1707 * then finish the I/O. 1708 */ 1709 vm_page_dirty(m); 1710 kprintf("f"); 1711 vm_page_activate(m); 1712 vm_page_io_finish(m); 1713 } 1714 } else if (bp->b_cmd == BUF_CMD_READ) { 1715 /* 1716 * NOTE: for reads, m->dirty will probably be 1717 * overridden by the original caller of getpages so 1718 * we cannot set them in order to free the underlying 1719 * swap in a low-swap situation. I don't think we'd 1720 * want to do that anyway, but it was an optimization 1721 * that existed in the old swapper for a time before 1722 * it got ripped out due to precisely this problem. 1723 * 1724 * clear PG_ZERO in page. 1725 * 1726 * If not the requested page then deactivate it. 1727 * 1728 * Note that the requested page, reqpage, is left 1729 * busied, but we still have to wake it up. The 1730 * other pages are released (unbusied) by 1731 * vm_page_wakeup(). We do not set reqpage's 1732 * valid bits here, it is up to the caller. 1733 */ 1734 1735 /* 1736 * NOTE: can't call pmap_clear_modify(m) from an 1737 * interrupt thread, the pmap code may have to map 1738 * non-kernel pmaps and currently asserts the case. 1739 */ 1740 /*pmap_clear_modify(m);*/ 1741 m->valid = VM_PAGE_BITS_ALL; 1742 vm_page_undirty(m); 1743 vm_page_flag_clear(m, PG_ZERO); 1744 1745 /* 1746 * We have to wake specifically requested pages 1747 * up too because we cleared PG_SWAPINPROG and 1748 * could be waiting for it in getpages. However, 1749 * be sure to not unbusy getpages specifically 1750 * requested page - getpages expects it to be 1751 * left busy. 1752 * 1753 * bio_driver_info holds the requested page 1754 */ 1755 if (i != (int)(intptr_t)bio->bio_driver_info) { 1756 vm_page_deactivate(m); 1757 vm_page_wakeup(m); 1758 } else { 1759 vm_page_flash(m); 1760 } 1761 } else { 1762 /* 1763 * Mark the page clean but do not mess with the 1764 * pmap-layer's modified state. That state should 1765 * also be clear since the caller protected the 1766 * page VM_PROT_READ, but allow the case. 1767 * 1768 * We are in an interrupt, avoid pmap operations. 1769 * 1770 * If we have a severe page deficit, deactivate the 1771 * page. Do not try to cache it (which would also 1772 * involve a pmap op), because the page might still 1773 * be read-heavy. 1774 */ 1775 vm_page_undirty(m); 1776 vm_page_io_finish(m); 1777 if (vm_page_count_severe()) 1778 vm_page_deactivate(m); 1779 #if 0 1780 if (!vm_page_count_severe() || !vm_page_try_to_cache(m)) 1781 vm_page_protect(m, VM_PROT_READ); 1782 #endif 1783 } 1784 } 1785 1786 /* 1787 * adjust pip. NOTE: the original parent may still have its own 1788 * pip refs on the object. 1789 */ 1790 1791 if (object) 1792 vm_object_pip_wakeupn(object, bp->b_xio.xio_npages); 1793 1794 /* 1795 * release the physical I/O buffer 1796 */ 1797 if (bp->b_cmd == BUF_CMD_READ) 1798 nswptr = &nsw_rcount; 1799 else if (bp->b_flags & B_ASYNC) 1800 nswptr = &nsw_wcount_async; 1801 else 1802 nswptr = &nsw_wcount_sync; 1803 bp->b_cmd = BUF_CMD_DONE; 1804 relpbuf(bp, nswptr); 1805 crit_exit(); 1806 } 1807 1808 /************************************************************************ 1809 * SWAP META DATA * 1810 ************************************************************************ 1811 * 1812 * These routines manipulate the swap metadata stored in the 1813 * OBJT_SWAP object. All swp_*() routines must be called at 1814 * splvm() because swap can be freed up by the low level vm_page 1815 * code which might be called from interrupts beyond what splbio() covers. 1816 * 1817 * Swap metadata is implemented with a global hash and not directly 1818 * linked into the object. Instead the object simply contains 1819 * appropriate tracking counters. 1820 */ 1821 1822 /* 1823 * SWP_PAGER_HASH() - hash swap meta data 1824 * 1825 * This is an inline helper function which hashes the swapblk given 1826 * the object and page index. It returns a pointer to a pointer 1827 * to the object, or a pointer to a NULL pointer if it could not 1828 * find a swapblk. 1829 * 1830 * This routine must be called at splvm(). 1831 */ 1832 1833 static __inline struct swblock ** 1834 swp_pager_hash(vm_object_t object, vm_pindex_t index) 1835 { 1836 struct swblock **pswap; 1837 struct swblock *swap; 1838 1839 index &= ~SWAP_META_MASK; 1840 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 1841 1842 while ((swap = *pswap) != NULL) { 1843 if (swap->swb_object == object && 1844 swap->swb_index == index 1845 ) { 1846 break; 1847 } 1848 pswap = &swap->swb_hnext; 1849 } 1850 return(pswap); 1851 } 1852 1853 /* 1854 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1855 * 1856 * We first convert the object to a swap object if it is a default 1857 * object. 1858 * 1859 * The specified swapblk is added to the object's swap metadata. If 1860 * the swapblk is not valid, it is freed instead. Any previously 1861 * assigned swapblk is freed. 1862 * 1863 * This routine must be called at splvm(), except when used to convert 1864 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1865 1866 */ 1867 1868 static void 1869 swp_pager_meta_build( 1870 vm_object_t object, 1871 vm_pindex_t index, 1872 daddr_t swapblk 1873 ) { 1874 struct swblock *swap; 1875 struct swblock **pswap; 1876 1877 /* 1878 * Convert default object to swap object if necessary 1879 */ 1880 1881 if (object->type != OBJT_SWAP) { 1882 object->type = OBJT_SWAP; 1883 object->un_pager.swp.swp_bcount = 0; 1884 1885 if (object->handle != NULL) { 1886 TAILQ_INSERT_TAIL( 1887 NOBJLIST(object->handle), 1888 object, 1889 pager_object_list 1890 ); 1891 } else { 1892 TAILQ_INSERT_TAIL( 1893 &swap_pager_un_object_list, 1894 object, 1895 pager_object_list 1896 ); 1897 } 1898 } 1899 1900 /* 1901 * Locate hash entry. If not found create, but if we aren't adding 1902 * anything just return. If we run out of space in the map we wait 1903 * and, since the hash table may have changed, retry. 1904 */ 1905 1906 retry: 1907 pswap = swp_pager_hash(object, index); 1908 1909 if ((swap = *pswap) == NULL) { 1910 int i; 1911 1912 if (swapblk == SWAPBLK_NONE) 1913 return; 1914 1915 swap = *pswap = zalloc(swap_zone); 1916 if (swap == NULL) { 1917 vm_wait(0); 1918 goto retry; 1919 } 1920 swap->swb_hnext = NULL; 1921 swap->swb_object = object; 1922 swap->swb_index = index & ~SWAP_META_MASK; 1923 swap->swb_count = 0; 1924 1925 ++object->un_pager.swp.swp_bcount; 1926 1927 for (i = 0; i < SWAP_META_PAGES; ++i) 1928 swap->swb_pages[i] = SWAPBLK_NONE; 1929 } 1930 1931 /* 1932 * Delete prior contents of metadata 1933 */ 1934 1935 index &= SWAP_META_MASK; 1936 1937 if (swap->swb_pages[index] != SWAPBLK_NONE) { 1938 swp_pager_freeswapspace(swap->swb_pages[index], 1); 1939 --swap->swb_count; 1940 } 1941 1942 /* 1943 * Enter block into metadata 1944 */ 1945 1946 swap->swb_pages[index] = swapblk; 1947 if (swapblk != SWAPBLK_NONE) 1948 ++swap->swb_count; 1949 } 1950 1951 /* 1952 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1953 * 1954 * The requested range of blocks is freed, with any associated swap 1955 * returned to the swap bitmap. 1956 * 1957 * This routine will free swap metadata structures as they are cleaned 1958 * out. This routine does *NOT* operate on swap metadata associated 1959 * with resident pages. 1960 * 1961 * This routine must be called at splvm() 1962 */ 1963 1964 static void 1965 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1966 { 1967 if (object->type != OBJT_SWAP) 1968 return; 1969 1970 while (count > 0) { 1971 struct swblock **pswap; 1972 struct swblock *swap; 1973 1974 pswap = swp_pager_hash(object, index); 1975 1976 if ((swap = *pswap) != NULL) { 1977 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1978 1979 if (v != SWAPBLK_NONE) { 1980 swp_pager_freeswapspace(v, 1); 1981 swap->swb_pages[index & SWAP_META_MASK] = 1982 SWAPBLK_NONE; 1983 if (--swap->swb_count == 0) { 1984 *pswap = swap->swb_hnext; 1985 zfree(swap_zone, swap); 1986 --object->un_pager.swp.swp_bcount; 1987 } 1988 } 1989 --count; 1990 ++index; 1991 } else { 1992 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1993 count -= n; 1994 index += n; 1995 } 1996 } 1997 } 1998 1999 /* 2000 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 2001 * 2002 * This routine locates and destroys all swap metadata associated with 2003 * an object. 2004 * 2005 * This routine must be called at splvm() 2006 */ 2007 2008 static void 2009 swp_pager_meta_free_all(vm_object_t object) 2010 { 2011 daddr_t index = 0; 2012 2013 if (object->type != OBJT_SWAP) 2014 return; 2015 2016 while (object->un_pager.swp.swp_bcount) { 2017 struct swblock **pswap; 2018 struct swblock *swap; 2019 2020 pswap = swp_pager_hash(object, index); 2021 if ((swap = *pswap) != NULL) { 2022 int i; 2023 2024 for (i = 0; i < SWAP_META_PAGES; ++i) { 2025 daddr_t v = swap->swb_pages[i]; 2026 if (v != SWAPBLK_NONE) { 2027 --swap->swb_count; 2028 swp_pager_freeswapspace(v, 1); 2029 } 2030 } 2031 if (swap->swb_count != 0) 2032 panic("swap_pager_meta_free_all: swb_count != 0"); 2033 *pswap = swap->swb_hnext; 2034 zfree(swap_zone, swap); 2035 --object->un_pager.swp.swp_bcount; 2036 } 2037 index += SWAP_META_PAGES; 2038 if (index > 0x20000000) 2039 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 2040 } 2041 } 2042 2043 /* 2044 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2045 * 2046 * This routine is capable of looking up, popping, or freeing 2047 * swapblk assignments in the swap meta data or in the vm_page_t. 2048 * The routine typically returns the swapblk being looked-up, or popped, 2049 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2050 * was invalid. This routine will automatically free any invalid 2051 * meta-data swapblks. 2052 * 2053 * It is not possible to store invalid swapblks in the swap meta data 2054 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2055 * 2056 * When acting on a busy resident page and paging is in progress, we 2057 * have to wait until paging is complete but otherwise can act on the 2058 * busy page. 2059 * 2060 * This routine must be called at splvm(). 2061 * 2062 * SWM_FREE remove and free swap block from metadata 2063 * SWM_POP remove from meta data but do not free.. pop it out 2064 */ 2065 2066 static daddr_t 2067 swp_pager_meta_ctl( 2068 vm_object_t object, 2069 vm_pindex_t index, 2070 int flags 2071 ) { 2072 struct swblock **pswap; 2073 struct swblock *swap; 2074 daddr_t r1; 2075 2076 /* 2077 * The meta data only exists of the object is OBJT_SWAP 2078 * and even then might not be allocated yet. 2079 */ 2080 2081 if (object->type != OBJT_SWAP) 2082 return(SWAPBLK_NONE); 2083 2084 r1 = SWAPBLK_NONE; 2085 pswap = swp_pager_hash(object, index); 2086 2087 if ((swap = *pswap) != NULL) { 2088 index &= SWAP_META_MASK; 2089 r1 = swap->swb_pages[index]; 2090 2091 if (r1 != SWAPBLK_NONE) { 2092 if (flags & SWM_FREE) { 2093 swp_pager_freeswapspace(r1, 1); 2094 r1 = SWAPBLK_NONE; 2095 } 2096 if (flags & (SWM_FREE|SWM_POP)) { 2097 swap->swb_pages[index] = SWAPBLK_NONE; 2098 if (--swap->swb_count == 0) { 2099 *pswap = swap->swb_hnext; 2100 zfree(swap_zone, swap); 2101 --object->un_pager.swp.swp_bcount; 2102 } 2103 } 2104 } 2105 } 2106 return(r1); 2107 } 2108