xref: /dflybsd-src/sys/vm/swap_pager.c (revision 4efe7afba0805dbbcb59524efb839339a65b0b04)
1 /*
2  * Copyright (c) 1998,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1994 John S. Dyson
35  * Copyright (c) 1990 University of Utah.
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * the Systems Programming Group of the University of Utah Computer
41  * Science Department.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *				New Swap System
72  *				Matthew Dillon
73  *
74  * Radix Bitmap 'blists'.
75  *
76  *	- The new swapper uses the new radix bitmap code.  This should scale
77  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
78  *	  arbitrary degree of fragmentation.
79  *
80  * Features:
81  *
82  *	- on the fly reallocation of swap during putpages.  The new system
83  *	  does not try to keep previously allocated swap blocks for dirty
84  *	  pages.
85  *
86  *	- on the fly deallocation of swap
87  *
88  *	- No more garbage collection required.  Unnecessarily allocated swap
89  *	  blocks only exist for dirty vm_page_t's now and these are already
90  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
91  *	  removal of invalidated swap blocks when a page is destroyed
92  *	  or renamed.
93  *
94  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
95  *
96  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
97  *
98  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
99  * $DragonFly: src/sys/vm/swap_pager.c,v 1.32 2008/07/01 02:02:56 dillon Exp $
100  */
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/conf.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/buf.h>
108 #include <sys/vnode.h>
109 #include <sys/malloc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/sysctl.h>
112 #include <sys/blist.h>
113 #include <sys/lock.h>
114 #include <sys/thread2.h>
115 
116 #ifndef MAX_PAGEOUT_CLUSTER
117 #define MAX_PAGEOUT_CLUSTER 16
118 #endif
119 
120 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
121 
122 #include "opt_swap.h"
123 #include <vm/vm.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_page.h>
126 #include <vm/vm_pager.h>
127 #include <vm/vm_pageout.h>
128 #include <vm/swap_pager.h>
129 #include <vm/vm_extern.h>
130 #include <vm/vm_zone.h>
131 
132 #include <sys/buf2.h>
133 #include <vm/vm_page2.h>
134 
135 #define SWM_FREE	0x02	/* free, period			*/
136 #define SWM_POP		0x04	/* pop out			*/
137 
138 #define AUTOCHAINDONE	((struct buf *)(intptr_t)-1)
139 
140 /*
141  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
142  * in the old system.
143  */
144 
145 extern int vm_swap_size;	/* number of free swap blocks, in pages */
146 
147 int swap_pager_full;		/* swap space exhaustion (task killing) */
148 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
149 static int nsw_rcount;		/* free read buffers			*/
150 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
151 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
152 static int nsw_wcount_async_max;/* assigned maximum			*/
153 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
154 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
155 
156 struct blist *swapblist;
157 static struct swblock **swhash;
158 static int swhash_mask;
159 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
160 
161 extern struct vnode *swapdev_vp;	/* from vm_swap.c */
162 
163 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
164         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
165 
166 /*
167  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
168  * of searching a named list by hashing it just a little.
169  */
170 
171 #define NOBJLISTS		8
172 
173 #define NOBJLIST(handle)	\
174 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
175 
176 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
177 struct pagerlst		swap_pager_un_object_list;
178 vm_zone_t		swap_zone;
179 
180 /*
181  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
182  * calls hooked from other parts of the VM system and do not appear here.
183  * (see vm/swap_pager.h).
184  */
185 
186 static vm_object_t
187 		swap_pager_alloc (void *handle, off_t size,
188 				  vm_prot_t prot, off_t offset);
189 static void	swap_pager_dealloc (vm_object_t object);
190 static int	swap_pager_getpages (vm_object_t, vm_page_t *, int, int);
191 static void	swap_pager_init (void);
192 static void	swap_pager_unswapped (vm_page_t);
193 static void	swap_pager_strategy (vm_object_t, struct bio *);
194 static void	swap_chain_iodone(struct bio *biox);
195 
196 struct pagerops swappagerops = {
197 	swap_pager_init,	/* early system initialization of pager	*/
198 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
199 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
200 	swap_pager_getpages,	/* pagein				*/
201 	swap_pager_putpages,	/* pageout				*/
202 	swap_pager_haspage,	/* get backing store status for page	*/
203 	swap_pager_unswapped,	/* remove swap related to page		*/
204 	swap_pager_strategy	/* pager strategy call			*/
205 };
206 
207 /*
208  * dmmax is in page-sized chunks with the new swap system.  It was
209  * dev-bsized chunks in the old.  dmmax is always a power of 2.
210  *
211  * swap_*() routines are externally accessible.  swp_*() routines are
212  * internal.
213  */
214 
215 int dmmax;
216 static int dmmax_mask;
217 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
218 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
219 
220 static __inline void	swp_sizecheck (void);
221 static void	swp_pager_sync_iodone (struct bio *bio);
222 static void	swp_pager_async_iodone (struct bio *bio);
223 
224 /*
225  * Swap bitmap functions
226  */
227 
228 static __inline void	swp_pager_freeswapspace (daddr_t blk, int npages);
229 static __inline daddr_t	swp_pager_getswapspace (int npages);
230 
231 /*
232  * Metadata functions
233  */
234 
235 static void swp_pager_meta_build (vm_object_t, vm_pindex_t, daddr_t);
236 static void swp_pager_meta_free (vm_object_t, vm_pindex_t, daddr_t);
237 static void swp_pager_meta_free_all (vm_object_t);
238 static daddr_t swp_pager_meta_ctl (vm_object_t, vm_pindex_t, int);
239 
240 /*
241  * SWP_SIZECHECK() -	update swap_pager_full indication
242  *
243  *	update the swap_pager_almost_full indication and warn when we are
244  *	about to run out of swap space, using lowat/hiwat hysteresis.
245  *
246  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
247  *
248  *	No restrictions on call
249  *	This routine may not block.
250  *	This routine must be called at splvm()
251  */
252 
253 static __inline void
254 swp_sizecheck(void)
255 {
256 	if (vm_swap_size < nswap_lowat) {
257 		if (swap_pager_almost_full == 0) {
258 			kprintf("swap_pager: out of swap space\n");
259 			swap_pager_almost_full = 1;
260 		}
261 	} else {
262 		swap_pager_full = 0;
263 		if (vm_swap_size > nswap_hiwat)
264 			swap_pager_almost_full = 0;
265 	}
266 }
267 
268 /*
269  * SWAP_PAGER_INIT() -	initialize the swap pager!
270  *
271  *	Expected to be started from system init.  NOTE:  This code is run
272  *	before much else so be careful what you depend on.  Most of the VM
273  *	system has yet to be initialized at this point.
274  */
275 
276 static void
277 swap_pager_init(void)
278 {
279 	/*
280 	 * Initialize object lists
281 	 */
282 	int i;
283 
284 	for (i = 0; i < NOBJLISTS; ++i)
285 		TAILQ_INIT(&swap_pager_object_list[i]);
286 	TAILQ_INIT(&swap_pager_un_object_list);
287 
288 	/*
289 	 * Device Stripe, in PAGE_SIZE'd blocks
290 	 */
291 
292 	dmmax = SWB_NPAGES * 2;
293 	dmmax_mask = ~(dmmax - 1);
294 }
295 
296 /*
297  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
298  *
299  *	Expected to be started from pageout process once, prior to entering
300  *	its main loop.
301  */
302 
303 void
304 swap_pager_swap_init(void)
305 {
306 	int n, n2;
307 
308 	/*
309 	 * Number of in-transit swap bp operations.  Don't
310 	 * exhaust the pbufs completely.  Make sure we
311 	 * initialize workable values (0 will work for hysteresis
312 	 * but it isn't very efficient).
313 	 *
314 	 * The nsw_cluster_max is constrained by the number of pages an XIO
315 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
316 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
317 	 * constrained by the swap device interleave stripe size.
318 	 *
319 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
320 	 * designed to prevent other I/O from having high latencies due to
321 	 * our pageout I/O.  The value 4 works well for one or two active swap
322 	 * devices but is probably a little low if you have more.  Even so,
323 	 * a higher value would probably generate only a limited improvement
324 	 * with three or four active swap devices since the system does not
325 	 * typically have to pageout at extreme bandwidths.   We will want
326 	 * at least 2 per swap devices, and 4 is a pretty good value if you
327 	 * have one NFS swap device due to the command/ack latency over NFS.
328 	 * So it all works out pretty well.
329 	 */
330 
331 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
332 
333 	nsw_rcount = (nswbuf + 1) / 2;
334 	nsw_wcount_sync = (nswbuf + 3) / 4;
335 	nsw_wcount_async = 4;
336 	nsw_wcount_async_max = nsw_wcount_async;
337 
338 	/*
339 	 * Initialize our zone.  Right now I'm just guessing on the number
340 	 * we need based on the number of pages in the system.  Each swblock
341 	 * can hold 16 pages, so this is probably overkill.  This reservation
342 	 * is typically limited to around 32MB by default.
343 	 */
344 	n = vmstats.v_page_count / 2;
345 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
346 		n = maxswzone / sizeof(struct swblock);
347 	n2 = n;
348 
349 	do {
350 		swap_zone = zinit(
351 			"SWAPMETA",
352 			sizeof(struct swblock),
353 			n,
354 			ZONE_INTERRUPT,
355 			1);
356 		if (swap_zone != NULL)
357 			break;
358 		/*
359 		 * if the allocation failed, try a zone two thirds the
360 		 * size of the previous attempt.
361 		 */
362 		n -= ((n + 2) / 3);
363 	} while (n > 0);
364 
365 	if (swap_zone == NULL)
366 		panic("swap_pager_swap_init: swap_zone == NULL");
367 	if (n2 != n)
368 		kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
369 	n2 = n;
370 
371 	/*
372 	 * Initialize our meta-data hash table.  The swapper does not need to
373 	 * be quite as efficient as the VM system, so we do not use an
374 	 * oversized hash table.
375 	 *
376 	 * 	n: 		size of hash table, must be power of 2
377 	 *	swhash_mask:	hash table index mask
378 	 */
379 
380 	for (n = 1; n < n2 / 8; n *= 2)
381 		;
382 
383 	swhash = kmalloc(sizeof(struct swblock *) * n, M_VMPGDATA,
384 	    M_WAITOK | M_ZERO);
385 
386 	swhash_mask = n - 1;
387 }
388 
389 /*
390  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
391  *			its metadata structures.
392  *
393  *	This routine is called from the mmap and fork code to create a new
394  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
395  *	and then converting it with swp_pager_meta_build().
396  *
397  *	This routine may block in vm_object_allocate() and create a named
398  *	object lookup race, so we must interlock.   We must also run at
399  *	splvm() for the object lookup to handle races with interrupts, but
400  *	we do not have to maintain splvm() in between the lookup and the
401  *	add because (I believe) it is not possible to attempt to create
402  *	a new swap object w/handle when a default object with that handle
403  *	already exists.
404  */
405 
406 static vm_object_t
407 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
408 {
409 	vm_object_t object;
410 
411 	if (handle) {
412 		/*
413 		 * Reference existing named region or allocate new one.  There
414 		 * should not be a race here against swp_pager_meta_build()
415 		 * as called from vm_page_remove() in regards to the lookup
416 		 * of the handle.
417 		 */
418 
419 		while (sw_alloc_interlock) {
420 			sw_alloc_interlock = -1;
421 			tsleep(&sw_alloc_interlock, 0, "swpalc", 0);
422 		}
423 		sw_alloc_interlock = 1;
424 
425 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
426 
427 		if (object != NULL) {
428 			vm_object_reference(object);
429 		} else {
430 			object = vm_object_allocate(OBJT_DEFAULT,
431 				OFF_TO_IDX(offset + PAGE_MASK + size));
432 			object->handle = handle;
433 
434 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
435 		}
436 
437 		if (sw_alloc_interlock < 0)
438 			wakeup(&sw_alloc_interlock);
439 
440 		sw_alloc_interlock = 0;
441 	} else {
442 		object = vm_object_allocate(OBJT_DEFAULT,
443 			OFF_TO_IDX(offset + PAGE_MASK + size));
444 
445 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
446 	}
447 
448 	return (object);
449 }
450 
451 /*
452  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
453  *
454  *	The swap backing for the object is destroyed.  The code is
455  *	designed such that we can reinstantiate it later, but this
456  *	routine is typically called only when the entire object is
457  *	about to be destroyed.
458  *
459  *	This routine may block, but no longer does.
460  *
461  *	The object must be locked or unreferenceable.
462  */
463 
464 static void
465 swap_pager_dealloc(vm_object_t object)
466 {
467 	/*
468 	 * Remove from list right away so lookups will fail if we block for
469 	 * pageout completion.
470 	 */
471 
472 	if (object->handle == NULL) {
473 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
474 	} else {
475 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
476 	}
477 
478 	vm_object_pip_wait(object, "swpdea");
479 
480 	/*
481 	 * Free all remaining metadata.  We only bother to free it from
482 	 * the swap meta data.  We do not attempt to free swapblk's still
483 	 * associated with vm_page_t's for this object.  We do not care
484 	 * if paging is still in progress on some objects.
485 	 */
486 	crit_enter();
487 	swp_pager_meta_free_all(object);
488 	crit_exit();
489 }
490 
491 /************************************************************************
492  *			SWAP PAGER BITMAP ROUTINES			*
493  ************************************************************************/
494 
495 /*
496  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
497  *
498  *	Allocate swap for the requested number of pages.  The starting
499  *	swap block number (a page index) is returned or SWAPBLK_NONE
500  *	if the allocation failed.
501  *
502  *	Also has the side effect of advising that somebody made a mistake
503  *	when they configured swap and didn't configure enough.
504  *
505  *	Must be called at splvm() to avoid races with bitmap frees from
506  *	vm_page_remove() aka swap_pager_page_removed().
507  *
508  *	This routine may not block
509  *	This routine must be called at splvm().
510  */
511 
512 static __inline daddr_t
513 swp_pager_getswapspace(int npages)
514 {
515 	daddr_t blk;
516 
517 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
518 		if (swap_pager_full != 2) {
519 			kprintf("swap_pager_getswapspace: failed\n");
520 			swap_pager_full = 2;
521 			swap_pager_almost_full = 1;
522 		}
523 	} else {
524 		vm_swap_size -= npages;
525 		swp_sizecheck();
526 	}
527 	return(blk);
528 }
529 
530 /*
531  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
532  *
533  *	This routine returns the specified swap blocks back to the bitmap.
534  *
535  *	Note:  This routine may not block (it could in the old swap code),
536  *	and through the use of the new blist routines it does not block.
537  *
538  *	We must be called at splvm() to avoid races with bitmap frees from
539  *	vm_page_remove() aka swap_pager_page_removed().
540  *
541  *	This routine may not block
542  *	This routine must be called at splvm().
543  */
544 
545 static __inline void
546 swp_pager_freeswapspace(daddr_t blk, int npages)
547 {
548 	blist_free(swapblist, blk, npages);
549 	vm_swap_size += npages;
550 	swp_sizecheck();
551 }
552 
553 /*
554  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
555  *				range within an object.
556  *
557  *	This is a globally accessible routine.
558  *
559  *	This routine removes swapblk assignments from swap metadata.
560  *
561  *	The external callers of this routine typically have already destroyed
562  *	or renamed vm_page_t's associated with this range in the object so
563  *	we should be ok.
564  *
565  *	This routine may be called at any spl.  We up our spl to splvm temporarily
566  *	in order to perform the metadata removal.
567  */
568 
569 void
570 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
571 {
572 	crit_enter();
573 	swp_pager_meta_free(object, start, size);
574 	crit_exit();
575 }
576 
577 /*
578  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
579  *
580  *	Assigns swap blocks to the specified range within the object.  The
581  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
582  *
583  *	Returns 0 on success, -1 on failure.
584  */
585 
586 int
587 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
588 {
589 	int n = 0;
590 	daddr_t blk = SWAPBLK_NONE;
591 	vm_pindex_t beg = start;	/* save start index */
592 
593 	crit_enter();
594 	while (size) {
595 		if (n == 0) {
596 			n = BLIST_MAX_ALLOC;
597 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
598 				n >>= 1;
599 				if (n == 0) {
600 					swp_pager_meta_free(object, beg, start - beg);
601 					crit_exit();
602 					return(-1);
603 				}
604 			}
605 		}
606 		swp_pager_meta_build(object, start, blk);
607 		--size;
608 		++start;
609 		++blk;
610 		--n;
611 	}
612 	swp_pager_meta_free(object, start, n);
613 	crit_exit();
614 	return(0);
615 }
616 
617 /*
618  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
619  *			and destroy the source.
620  *
621  *	Copy any valid swapblks from the source to the destination.  In
622  *	cases where both the source and destination have a valid swapblk,
623  *	we keep the destination's.
624  *
625  *	This routine is allowed to block.  It may block allocating metadata
626  *	indirectly through swp_pager_meta_build() or if paging is still in
627  *	progress on the source.
628  *
629  *	This routine can be called at any spl
630  *
631  *	XXX vm_page_collapse() kinda expects us not to block because we
632  *	supposedly do not need to allocate memory, but for the moment we
633  *	*may* have to get a little memory from the zone allocator, but
634  *	it is taken from the interrupt memory.  We should be ok.
635  *
636  *	The source object contains no vm_page_t's (which is just as well)
637  *
638  *	The source object is of type OBJT_SWAP.
639  *
640  *	The source and destination objects must be locked or
641  *	inaccessible (XXX are they ?)
642  */
643 
644 void
645 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
646     vm_pindex_t offset, int destroysource)
647 {
648 	vm_pindex_t i;
649 
650 	crit_enter();
651 
652 	/*
653 	 * If destroysource is set, we remove the source object from the
654 	 * swap_pager internal queue now.
655 	 */
656 
657 	if (destroysource) {
658 		if (srcobject->handle == NULL) {
659 			TAILQ_REMOVE(
660 			    &swap_pager_un_object_list,
661 			    srcobject,
662 			    pager_object_list
663 			);
664 		} else {
665 			TAILQ_REMOVE(
666 			    NOBJLIST(srcobject->handle),
667 			    srcobject,
668 			    pager_object_list
669 			);
670 		}
671 	}
672 
673 	/*
674 	 * transfer source to destination.
675 	 */
676 
677 	for (i = 0; i < dstobject->size; ++i) {
678 		daddr_t dstaddr;
679 
680 		/*
681 		 * Locate (without changing) the swapblk on the destination,
682 		 * unless it is invalid in which case free it silently, or
683 		 * if the destination is a resident page, in which case the
684 		 * source is thrown away.
685 		 */
686 
687 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
688 
689 		if (dstaddr == SWAPBLK_NONE) {
690 			/*
691 			 * Destination has no swapblk and is not resident,
692 			 * copy source.
693 			 */
694 			daddr_t srcaddr;
695 
696 			srcaddr = swp_pager_meta_ctl(
697 			    srcobject,
698 			    i + offset,
699 			    SWM_POP
700 			);
701 
702 			if (srcaddr != SWAPBLK_NONE)
703 				swp_pager_meta_build(dstobject, i, srcaddr);
704 		} else {
705 			/*
706 			 * Destination has valid swapblk or it is represented
707 			 * by a resident page.  We destroy the sourceblock.
708 			 */
709 
710 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
711 		}
712 	}
713 
714 	/*
715 	 * Free left over swap blocks in source.
716 	 *
717 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
718 	 * double-remove the object from the swap queues.
719 	 */
720 
721 	if (destroysource) {
722 		swp_pager_meta_free_all(srcobject);
723 		/*
724 		 * Reverting the type is not necessary, the caller is going
725 		 * to destroy srcobject directly, but I'm doing it here
726 		 * for consistency since we've removed the object from its
727 		 * queues.
728 		 */
729 		srcobject->type = OBJT_DEFAULT;
730 	}
731 	crit_exit();
732 }
733 
734 /*
735  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
736  *				the requested page.
737  *
738  *	We determine whether good backing store exists for the requested
739  *	page and return TRUE if it does, FALSE if it doesn't.
740  *
741  *	If TRUE, we also try to determine how much valid, contiguous backing
742  *	store exists before and after the requested page within a reasonable
743  *	distance.  We do not try to restrict it to the swap device stripe
744  *	(that is handled in getpages/putpages).  It probably isn't worth
745  *	doing here.
746  */
747 
748 boolean_t
749 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
750     int *after)
751 {
752 	daddr_t blk0;
753 
754 	/*
755 	 * do we have good backing store at the requested index ?
756 	 */
757 
758 	crit_enter();
759 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
760 
761 	if (blk0 == SWAPBLK_NONE) {
762 		crit_exit();
763 		if (before)
764 			*before = 0;
765 		if (after)
766 			*after = 0;
767 		return (FALSE);
768 	}
769 
770 	/*
771 	 * find backwards-looking contiguous good backing store
772 	 */
773 
774 	if (before != NULL) {
775 		int i;
776 
777 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
778 			daddr_t blk;
779 
780 			if (i > pindex)
781 				break;
782 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
783 			if (blk != blk0 - i)
784 				break;
785 		}
786 		*before = (i - 1);
787 	}
788 
789 	/*
790 	 * find forward-looking contiguous good backing store
791 	 */
792 
793 	if (after != NULL) {
794 		int i;
795 
796 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
797 			daddr_t blk;
798 
799 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
800 			if (blk != blk0 + i)
801 				break;
802 		}
803 		*after = (i - 1);
804 	}
805 	crit_exit();
806 	return (TRUE);
807 }
808 
809 /*
810  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
811  *
812  *	This removes any associated swap backing store, whether valid or
813  *	not, from the page.
814  *
815  *	This routine is typically called when a page is made dirty, at
816  *	which point any associated swap can be freed.  MADV_FREE also
817  *	calls us in a special-case situation
818  *
819  *	NOTE!!!  If the page is clean and the swap was valid, the caller
820  *	should make the page dirty before calling this routine.  This routine
821  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
822  *	depends on it.
823  *
824  *	This routine may not block
825  *	This routine must be called at splvm()
826  */
827 
828 static void
829 swap_pager_unswapped(vm_page_t m)
830 {
831 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
832 }
833 
834 /*
835  * SWAP_PAGER_STRATEGY() - read, write, free blocks
836  *
837  *	This implements the vm_pager_strategy() interface to swap and allows
838  *	other parts of the system to directly access swap as backing store
839  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
840  *	cacheless interface ( i.e. caching occurs at higher levels ).
841  *	Therefore we do not maintain any resident pages.  All I/O goes
842  *	directly to and from the swap device.
843  *
844  *	We currently attempt to run I/O synchronously or asynchronously as
845  *	the caller requests.  This isn't perfect because we loose error
846  *	sequencing when we run multiple ops in parallel to satisfy a request.
847  *	But this is swap, so we let it all hang out.
848  */
849 
850 static void
851 swap_pager_strategy(vm_object_t object, struct bio *bio)
852 {
853 	struct buf *bp = bio->bio_buf;
854 	struct bio *nbio;
855 	vm_pindex_t start;
856 	vm_pindex_t biox_blkno = 0;
857 	int count;
858 	char *data;
859 	struct bio *biox = NULL;
860 	struct buf *bufx = NULL;
861 	struct bio_track *track;
862 
863 	/*
864 	 * tracking for swapdev vnode I/Os
865 	 */
866 	if (bp->b_cmd == BUF_CMD_READ)
867 		track = &swapdev_vp->v_track_read;
868 	else
869 		track = &swapdev_vp->v_track_write;
870 
871 	if (bp->b_bcount & PAGE_MASK) {
872 		bp->b_error = EINVAL;
873 		bp->b_flags |= B_ERROR | B_INVAL;
874 		biodone(bio);
875 		kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
876 			"not page bounded\n",
877 			bp, (long long)bio->bio_offset, (int)bp->b_bcount);
878 		return;
879 	}
880 
881 	/*
882 	 * Clear error indication, initialize page index, count, data pointer.
883 	 */
884 	bp->b_error = 0;
885 	bp->b_flags &= ~B_ERROR;
886 	bp->b_resid = bp->b_bcount;
887 
888 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
889 	count = howmany(bp->b_bcount, PAGE_SIZE);
890 	data = bp->b_data;
891 
892 	crit_enter();
893 
894 	/*
895 	 * Deal with BUF_CMD_FREEBLKS
896 	 */
897 	if (bp->b_cmd == BUF_CMD_FREEBLKS) {
898 		/*
899 		 * FREE PAGE(s) - destroy underlying swap that is no longer
900 		 *		  needed.
901 		 */
902 		swp_pager_meta_free(object, start, count);
903 		crit_exit();
904 		bp->b_resid = 0;
905 		biodone(bio);
906 		return;
907 	}
908 
909 	/*
910 	 * We need to be able to create a new cluster of I/O's.  We cannot
911 	 * use the caller fields of the passed bio so push a new one.
912 	 *
913 	 * Because nbio is just a placeholder for the cluster links,
914 	 * we can biodone() the original bio instead of nbio to make
915 	 * things a bit more efficient.
916 	 */
917 	nbio = push_bio(bio);
918 	nbio->bio_offset = bio->bio_offset;
919 	nbio->bio_caller_info1.cluster_head = NULL;
920 	nbio->bio_caller_info2.cluster_tail = NULL;
921 
922 	/*
923 	 * Execute read or write
924 	 */
925 
926 	while (count > 0) {
927 		daddr_t blk;
928 
929 		/*
930 		 * Obtain block.  If block not found and writing, allocate a
931 		 * new block and build it into the object.
932 		 */
933 
934 		blk = swp_pager_meta_ctl(object, start, 0);
935 		if ((blk == SWAPBLK_NONE) && bp->b_cmd != BUF_CMD_READ) {
936 			blk = swp_pager_getswapspace(1);
937 			if (blk == SWAPBLK_NONE) {
938 				bp->b_error = ENOMEM;
939 				bp->b_flags |= B_ERROR;
940 				break;
941 			}
942 			swp_pager_meta_build(object, start, blk);
943 		}
944 
945 		/*
946 		 * Do we have to flush our current collection?  Yes if:
947 		 *
948 		 *	- no swap block at this index
949 		 *	- swap block is not contiguous
950 		 *	- we cross a physical disk boundry in the
951 		 *	  stripe.
952 		 */
953 
954 		if (
955 		    biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
956 		     ((biox_blkno ^ blk) & dmmax_mask)
957 		    )
958 		) {
959 			crit_exit();
960 			if (bp->b_cmd == BUF_CMD_READ) {
961 				++mycpu->gd_cnt.v_swapin;
962 				mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
963 			} else {
964 				++mycpu->gd_cnt.v_swapout;
965 				mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
966 				bufx->b_dirtyend = bufx->b_bcount;
967 			}
968 
969 			/*
970 			 * Flush the biox to the swap device.
971 			 */
972 			if (bufx->b_bcount) {
973 				if (bufx->b_cmd != BUF_CMD_READ)
974 					bufx->b_dirtyend = bufx->b_bcount;
975 				BUF_KERNPROC(bufx);
976 				vn_strategy(swapdev_vp, biox);
977 			} else {
978 				biodone(biox);
979 			}
980 			crit_enter();
981 			biox = NULL;
982 			bufx = NULL;
983 		}
984 
985 		/*
986 		 * Add new swapblk to biox, instantiating biox if necessary.
987 		 * Zero-fill reads are able to take a shortcut.
988 		 */
989 		if (blk == SWAPBLK_NONE) {
990 			/*
991 			 * We can only get here if we are reading.  Since
992 			 * we are at splvm() we can safely modify b_resid,
993 			 * even if chain ops are in progress.
994 			 */
995 			bzero(data, PAGE_SIZE);
996 			bp->b_resid -= PAGE_SIZE;
997 		} else {
998 			if (biox == NULL) {
999 				/* XXX chain count > 4, wait to <= 4 */
1000 
1001 				bufx = getpbuf(NULL);
1002 				biox = &bufx->b_bio1;
1003 				cluster_append(nbio, bufx);
1004 				bufx->b_flags |= (bufx->b_flags & B_ORDERED) |
1005 						B_ASYNC;
1006 				bufx->b_cmd = bp->b_cmd;
1007 				biox->bio_done = swap_chain_iodone;
1008 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1009 				biox->bio_caller_info1.cluster_parent = nbio;
1010 				biox_blkno = blk;
1011 				bufx->b_bcount = 0;
1012 				bufx->b_data = data;
1013 			}
1014 			bufx->b_bcount += PAGE_SIZE;
1015 		}
1016 		--count;
1017 		++start;
1018 		data += PAGE_SIZE;
1019 	}
1020 
1021 	/*
1022 	 *  Flush out last buffer
1023 	 */
1024 	crit_exit();
1025 
1026 	if (biox) {
1027 		if ((bp->b_flags & B_ASYNC) == 0)
1028 			bufx->b_flags &= ~B_ASYNC;
1029 		if (bufx->b_cmd == BUF_CMD_READ) {
1030 			++mycpu->gd_cnt.v_swapin;
1031 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1032 		} else {
1033 			++mycpu->gd_cnt.v_swapout;
1034 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1035 			bufx->b_dirtyend = bufx->b_bcount;
1036 		}
1037 		if (bufx->b_bcount) {
1038 			if (bufx->b_cmd != BUF_CMD_READ)
1039 				bufx->b_dirtyend = bufx->b_bcount;
1040 			BUF_KERNPROC(bufx);
1041 			vn_strategy(swapdev_vp, biox);
1042 		} else {
1043 			biodone(biox);
1044 		}
1045 		/* biox, bufx = NULL */
1046 	}
1047 
1048 	/*
1049 	 * Wait for completion.  Now that we are no longer using
1050 	 * cluster_append, use the cluster_tail field to indicate
1051 	 * auto-completion if there are still I/O's in progress.
1052 	 */
1053 	if (bp->b_flags & B_ASYNC) {
1054 		crit_enter();
1055 		if (nbio->bio_caller_info1.cluster_head == NULL) {
1056 			biodone(bio);
1057 		} else {
1058 			nbio->bio_caller_info2.cluster_tail = AUTOCHAINDONE;
1059 		}
1060 		crit_exit();
1061 	} else {
1062 		crit_enter();
1063 		while (nbio->bio_caller_info1.cluster_head != NULL) {
1064 			bp->b_flags |= B_WANT;
1065 			tsleep(bp, 0, "bpchain", 0);
1066 		}
1067 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1068 			bp->b_flags |= B_ERROR;
1069 			bp->b_error = EINVAL;
1070 		}
1071 		biodone(bio);
1072 		crit_exit();
1073 	}
1074 }
1075 
1076 static void
1077 swap_chain_iodone(struct bio *biox)
1078 {
1079 	struct buf **nextp;
1080 	struct buf *bufx;	/* chained sub-buffer */
1081 	struct bio *nbio;	/* parent nbio with chain glue */
1082 	struct buf *bp;		/* original bp associated with nbio */
1083 
1084 	bufx = biox->bio_buf;
1085 	nbio = biox->bio_caller_info1.cluster_parent;
1086 	bp = nbio->bio_buf;
1087 
1088 	/*
1089 	 * Update the original buffer
1090 	 */
1091         KKASSERT(bp != NULL);
1092 	if (bufx->b_flags & B_ERROR) {
1093 		bp->b_flags |= B_ERROR;
1094 		bp->b_error = bufx->b_error;
1095 	} else if (bufx->b_resid != 0) {
1096 		bp->b_flags |= B_ERROR;
1097 		bp->b_error = EINVAL;
1098 	} else {
1099 		bp->b_resid -= bufx->b_bcount;
1100 	}
1101 
1102 	/*
1103 	 * Remove us from the chain.  It is sufficient to clean up
1104 	 * cluster_head.  Once the chain is operational cluster_tail
1105 	 * may be used to indicate AUTOCHAINDONE.  Note that I/O's
1106 	 * can complete while the swap system is still appending new
1107 	 * BIOs to the chain.
1108 	 */
1109 	nextp = &nbio->bio_caller_info1.cluster_head;
1110 	while (*nextp != bufx) {
1111 		KKASSERT(*nextp != NULL);
1112 		nextp = &(*nextp)->b_cluster_next;
1113 	}
1114 	*nextp = bufx->b_cluster_next;
1115 	if (bp->b_flags & B_WANT) {
1116 		bp->b_flags &= ~B_WANT;
1117 		wakeup(bp);
1118 	}
1119 
1120 	/*
1121 	 * Clean up bufx.  If this was the last buffer in the chain
1122 	 * and AUTOCHAINDONE was set, finish off the original I/O
1123 	 * as well.
1124 	 *
1125 	 * nbio was just a fake BIO layer to hold the cluster links,
1126 	 * we can issue the biodone() on the layer above it.
1127 	 */
1128 	if (nbio->bio_caller_info1.cluster_head == NULL &&
1129 	    nbio->bio_caller_info2.cluster_tail == AUTOCHAINDONE
1130 	) {
1131 		nbio->bio_caller_info2.cluster_tail = NULL;
1132 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1133 			bp->b_flags |= B_ERROR;
1134 			bp->b_error = EINVAL;
1135 		}
1136 		biodone(nbio->bio_prev);
1137         }
1138         bufx->b_flags &= ~B_ASYNC;
1139         relpbuf(bufx, NULL);
1140 }
1141 
1142 /*
1143  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1144  *
1145  *	Attempt to retrieve (m, count) pages from backing store, but make
1146  *	sure we retrieve at least m[reqpage].  We try to load in as large
1147  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1148  *	belongs to the same object.
1149  *
1150  *	The code is designed for asynchronous operation and
1151  *	immediate-notification of 'reqpage' but tends not to be
1152  *	used that way.  Please do not optimize-out this algorithmic
1153  *	feature, I intend to improve on it in the future.
1154  *
1155  *	The parent has a single vm_object_pip_add() reference prior to
1156  *	calling us and we should return with the same.
1157  *
1158  *	The parent has BUSY'd the pages.  We should return with 'm'
1159  *	left busy, but the others adjusted.
1160  */
1161 
1162 static int
1163 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1164 {
1165 	struct buf *bp;
1166 	struct bio *bio;
1167 	vm_page_t mreq;
1168 	int i;
1169 	int j;
1170 	daddr_t blk;
1171 	vm_offset_t kva;
1172 	vm_pindex_t lastpindex;
1173 
1174 	mreq = m[reqpage];
1175 
1176 	if (mreq->object != object) {
1177 		panic("swap_pager_getpages: object mismatch %p/%p",
1178 		    object,
1179 		    mreq->object
1180 		);
1181 	}
1182 
1183 	/*
1184 	 * Calculate range to retrieve.  The pages have already been assigned
1185 	 * their swapblks.  We require a *contiguous* range that falls entirely
1186 	 * within a single device stripe.   If we do not supply it, bad things
1187 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1188 	 * loops are set up such that the case(s) are handled implicitly.
1189 	 *
1190 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1191 	 * not need to be, but it will go a little faster if it is.
1192 	 */
1193 	crit_enter();
1194 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1195 
1196 	for (i = reqpage - 1; i >= 0; --i) {
1197 		daddr_t iblk;
1198 
1199 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1200 		if (blk != iblk + (reqpage - i))
1201 			break;
1202 		if ((blk ^ iblk) & dmmax_mask)
1203 			break;
1204 	}
1205 	++i;
1206 
1207 	for (j = reqpage + 1; j < count; ++j) {
1208 		daddr_t jblk;
1209 
1210 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1211 		if (blk != jblk - (j - reqpage))
1212 			break;
1213 		if ((blk ^ jblk) & dmmax_mask)
1214 			break;
1215 	}
1216 
1217 	/*
1218 	 * free pages outside our collection range.   Note: we never free
1219 	 * mreq, it must remain busy throughout.
1220 	 */
1221 
1222 	{
1223 		int k;
1224 
1225 		for (k = 0; k < i; ++k)
1226 			vm_page_free(m[k]);
1227 		for (k = j; k < count; ++k)
1228 			vm_page_free(m[k]);
1229 	}
1230 	crit_exit();
1231 
1232 
1233 	/*
1234 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1235 	 * still busy, but the others unbusied.
1236 	 */
1237 
1238 	if (blk == SWAPBLK_NONE)
1239 		return(VM_PAGER_FAIL);
1240 
1241 	/*
1242 	 * Get a swap buffer header to perform the IO
1243 	 */
1244 
1245 	bp = getpbuf(&nsw_rcount);
1246 	bio = &bp->b_bio1;
1247 	kva = (vm_offset_t) bp->b_data;
1248 
1249 	/*
1250 	 * map our page(s) into kva for input
1251 	 */
1252 
1253 	pmap_qenter(kva, m + i, j - i);
1254 
1255 	bp->b_data = (caddr_t) kva;
1256 	bp->b_bcount = PAGE_SIZE * (j - i);
1257 	bio->bio_done = swp_pager_async_iodone;
1258 	bio->bio_offset = (off_t)(blk - (reqpage - i)) << PAGE_SHIFT;
1259 	bio->bio_driver_info = (void *)(intptr_t)(reqpage - i);
1260 
1261 	{
1262 		int k;
1263 
1264 		for (k = i; k < j; ++k) {
1265 			bp->b_xio.xio_pages[k - i] = m[k];
1266 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1267 		}
1268 	}
1269 	bp->b_xio.xio_npages = j - i;
1270 
1271 	mycpu->gd_cnt.v_swapin++;
1272 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1273 
1274 	/*
1275 	 * We still hold the lock on mreq, and our automatic completion routine
1276 	 * does not remove it.
1277 	 */
1278 
1279 	vm_object_pip_add(mreq->object, bp->b_xio.xio_npages);
1280 	lastpindex = m[j-1]->pindex;
1281 
1282 	/*
1283 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1284 	 * this point because we automatically release it on completion.
1285 	 * Instead, we look at the one page we are interested in which we
1286 	 * still hold a lock on even through the I/O completion.
1287 	 *
1288 	 * The other pages in our m[] array are also released on completion,
1289 	 * so we cannot assume they are valid anymore either.
1290 	 */
1291 
1292 	bp->b_cmd = BUF_CMD_READ;
1293 	BUF_KERNPROC(bp);
1294 	vn_strategy(swapdev_vp, bio);
1295 
1296 	/*
1297 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1298 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1299 	 * is set in the meta-data.
1300 	 */
1301 
1302 	crit_enter();
1303 
1304 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1305 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1306 		mycpu->gd_cnt.v_intrans++;
1307 		if (tsleep(mreq, 0, "swread", hz*20)) {
1308 			kprintf(
1309 			    "swap_pager: indefinite wait buffer: "
1310 				" offset: %lld, size: %ld\n",
1311 			    (long long)bio->bio_offset,
1312 			    (long)bp->b_bcount
1313 			);
1314 		}
1315 	}
1316 
1317 	crit_exit();
1318 
1319 	/*
1320 	 * mreq is left bussied after completion, but all the other pages
1321 	 * are freed.  If we had an unrecoverable read error the page will
1322 	 * not be valid.
1323 	 */
1324 
1325 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1326 		return(VM_PAGER_ERROR);
1327 	} else {
1328 		return(VM_PAGER_OK);
1329 	}
1330 
1331 	/*
1332 	 * A final note: in a low swap situation, we cannot deallocate swap
1333 	 * and mark a page dirty here because the caller is likely to mark
1334 	 * the page clean when we return, causing the page to possibly revert
1335 	 * to all-zero's later.
1336 	 */
1337 }
1338 
1339 /*
1340  *	swap_pager_putpages:
1341  *
1342  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1343  *
1344  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1345  *	are automatically converted to SWAP objects.
1346  *
1347  *	In a low memory situation we may block in vn_strategy(), but the new
1348  *	vm_page reservation system coupled with properly written VFS devices
1349  *	should ensure that no low-memory deadlock occurs.  This is an area
1350  *	which needs work.
1351  *
1352  *	The parent has N vm_object_pip_add() references prior to
1353  *	calling us and will remove references for rtvals[] that are
1354  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1355  *	completion.
1356  *
1357  *	The parent has soft-busy'd the pages it passes us and will unbusy
1358  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1359  *	We need to unbusy the rest on I/O completion.
1360  */
1361 void
1362 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1363 		    boolean_t sync, int *rtvals)
1364 {
1365 	int i;
1366 	int n = 0;
1367 
1368 	if (count && m[0]->object != object) {
1369 		panic("swap_pager_getpages: object mismatch %p/%p",
1370 		    object,
1371 		    m[0]->object
1372 		);
1373 	}
1374 
1375 	/*
1376 	 * Step 1
1377 	 *
1378 	 * Turn object into OBJT_SWAP
1379 	 * check for bogus sysops
1380 	 * force sync if not pageout process
1381 	 */
1382 
1383 	if (object->type != OBJT_SWAP)
1384 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1385 
1386 	if (curthread != pagethread)
1387 		sync = TRUE;
1388 
1389 	/*
1390 	 * Step 2
1391 	 *
1392 	 * Update nsw parameters from swap_async_max sysctl values.
1393 	 * Do not let the sysop crash the machine with bogus numbers.
1394 	 */
1395 
1396 	if (swap_async_max != nsw_wcount_async_max) {
1397 		int n;
1398 
1399 		/*
1400 		 * limit range
1401 		 */
1402 		if ((n = swap_async_max) > nswbuf / 2)
1403 			n = nswbuf / 2;
1404 		if (n < 1)
1405 			n = 1;
1406 		swap_async_max = n;
1407 
1408 		/*
1409 		 * Adjust difference ( if possible ).  If the current async
1410 		 * count is too low, we may not be able to make the adjustment
1411 		 * at this time.
1412 		 */
1413 		crit_enter();
1414 		n -= nsw_wcount_async_max;
1415 		if (nsw_wcount_async + n >= 0) {
1416 			nsw_wcount_async += n;
1417 			nsw_wcount_async_max += n;
1418 			wakeup(&nsw_wcount_async);
1419 		}
1420 		crit_exit();
1421 	}
1422 
1423 	/*
1424 	 * Step 3
1425 	 *
1426 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1427 	 * The page is left dirty until the pageout operation completes
1428 	 * successfully.
1429 	 */
1430 
1431 	for (i = 0; i < count; i += n) {
1432 		struct buf *bp;
1433 		struct bio *bio;
1434 		daddr_t blk;
1435 		int j;
1436 
1437 		/*
1438 		 * Maximum I/O size is limited by a number of factors.
1439 		 */
1440 
1441 		n = min(BLIST_MAX_ALLOC, count - i);
1442 		n = min(n, nsw_cluster_max);
1443 
1444 		crit_enter();
1445 
1446 		/*
1447 		 * Get biggest block of swap we can.  If we fail, fall
1448 		 * back and try to allocate a smaller block.  Don't go
1449 		 * overboard trying to allocate space if it would overly
1450 		 * fragment swap.
1451 		 */
1452 		while (
1453 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1454 		    n > 4
1455 		) {
1456 			n >>= 1;
1457 		}
1458 		if (blk == SWAPBLK_NONE) {
1459 			for (j = 0; j < n; ++j)
1460 				rtvals[i+j] = VM_PAGER_FAIL;
1461 			crit_exit();
1462 			continue;
1463 		}
1464 
1465 		/*
1466 		 * The I/O we are constructing cannot cross a physical
1467 		 * disk boundry in the swap stripe.  Note: we are still
1468 		 * at splvm().
1469 		 */
1470 		if ((blk ^ (blk + n)) & dmmax_mask) {
1471 			j = ((blk + dmmax) & dmmax_mask) - blk;
1472 			swp_pager_freeswapspace(blk + j, n - j);
1473 			n = j;
1474 		}
1475 
1476 		/*
1477 		 * All I/O parameters have been satisfied, build the I/O
1478 		 * request and assign the swap space.
1479 		 */
1480 
1481 		if (sync == TRUE)
1482 			bp = getpbuf(&nsw_wcount_sync);
1483 		else
1484 			bp = getpbuf(&nsw_wcount_async);
1485 		bio = &bp->b_bio1;
1486 
1487 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1488 
1489 		bp->b_bcount = PAGE_SIZE * n;
1490 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1491 
1492 		for (j = 0; j < n; ++j) {
1493 			vm_page_t mreq = m[i+j];
1494 
1495 			swp_pager_meta_build(
1496 			    mreq->object,
1497 			    mreq->pindex,
1498 			    blk + j
1499 			);
1500 			vm_page_dirty(mreq);
1501 			rtvals[i+j] = VM_PAGER_OK;
1502 
1503 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1504 			bp->b_xio.xio_pages[j] = mreq;
1505 		}
1506 		bp->b_xio.xio_npages = n;
1507 
1508 		mycpu->gd_cnt.v_swapout++;
1509 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1510 
1511 		crit_exit();
1512 
1513 		bp->b_dirtyoff = 0;		/* req'd for NFS */
1514 		bp->b_dirtyend = bp->b_bcount;	/* req'd for NFS */
1515 		bp->b_cmd = BUF_CMD_WRITE;
1516 
1517 		/*
1518 		 * asynchronous
1519 		 */
1520 		if (sync == FALSE) {
1521 			bp->b_flags |= B_ASYNC;
1522 			bio->bio_done = swp_pager_async_iodone;
1523 			BUF_KERNPROC(bp);
1524 			vn_strategy(swapdev_vp, bio);
1525 
1526 			for (j = 0; j < n; ++j)
1527 				rtvals[i+j] = VM_PAGER_PEND;
1528 			continue;
1529 		}
1530 
1531 		/*
1532 		 * synchronous
1533 		 */
1534 
1535 		bio->bio_done = swp_pager_sync_iodone;
1536 		vn_strategy(swapdev_vp, bio);
1537 
1538 		/*
1539 		 * Wait for the sync I/O to complete, then update rtvals.
1540 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1541 		 * our async completion routine at the end, thus avoiding a
1542 		 * double-free.
1543 		 */
1544 		crit_enter();
1545 
1546 		while (bp->b_cmd != BUF_CMD_DONE)
1547 			tsleep(bp, 0, "swwrt", 0);
1548 
1549 		for (j = 0; j < n; ++j)
1550 			rtvals[i+j] = VM_PAGER_PEND;
1551 
1552 		/*
1553 		 * Now that we are through with the bp, we can call the
1554 		 * normal async completion, which frees everything up.
1555 		 */
1556 
1557 		swp_pager_async_iodone(bio);
1558 
1559 		crit_exit();
1560 	}
1561 }
1562 
1563 void
1564 swap_pager_newswap(void)
1565 {
1566 	swp_sizecheck();
1567 }
1568 
1569 /*
1570  *	swap_pager_sync_iodone:
1571  *
1572  *	Completion routine for synchronous reads and writes from/to swap.
1573  *	We just mark the bp is complete and wake up anyone waiting on it.
1574  *
1575  *	This routine may not block.  This routine is called at splbio()
1576  *	or better.
1577  */
1578 
1579 static void
1580 swp_pager_sync_iodone(struct bio *bio)
1581 {
1582 	struct buf *bp = bio->bio_buf;
1583 
1584 	bp->b_flags &= ~B_ASYNC;
1585 	bp->b_cmd = BUF_CMD_DONE;
1586 	wakeup(bp);
1587 }
1588 
1589 /*
1590  *	swp_pager_async_iodone:
1591  *
1592  *	Completion routine for asynchronous reads and writes from/to swap.
1593  *	Also called manually by synchronous code to finish up a bp.
1594  *
1595  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1596  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1597  *	unbusy all pages except the 'main' request page.  For WRITE
1598  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1599  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1600  *
1601  *	This routine may not block.
1602  */
1603 
1604 static void
1605 swp_pager_async_iodone(struct bio *bio)
1606 {
1607 	struct buf *bp = bio->bio_buf;
1608 	vm_object_t object = NULL;
1609 	int i;
1610 	int *nswptr;
1611 
1612 	/*
1613 	 * report error
1614 	 */
1615 	if (bp->b_flags & B_ERROR) {
1616 		kprintf(
1617 		    "swap_pager: I/O error - %s failed; offset %lld,"
1618 			"size %ld, error %d\n",
1619 		    ((bp->b_cmd == BUF_CMD_READ) ? "pagein" : "pageout"),
1620 		    (long long)bio->bio_offset,
1621 		    (long)bp->b_bcount,
1622 		    bp->b_error
1623 		);
1624 	}
1625 
1626 	/*
1627 	 * set object, raise to splvm().
1628 	 */
1629 
1630 	if (bp->b_xio.xio_npages)
1631 		object = bp->b_xio.xio_pages[0]->object;
1632 	crit_enter();
1633 
1634 	/*
1635 	 * remove the mapping for kernel virtual
1636 	 */
1637 
1638 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1639 
1640 	/*
1641 	 * cleanup pages.  If an error occurs writing to swap, we are in
1642 	 * very serious trouble.  If it happens to be a disk error, though,
1643 	 * we may be able to recover by reassigning the swap later on.  So
1644 	 * in this case we remove the m->swapblk assignment for the page
1645 	 * but do not free it in the rlist.  The errornous block(s) are thus
1646 	 * never reallocated as swap.  Redirty the page and continue.
1647 	 */
1648 
1649 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1650 		vm_page_t m = bp->b_xio.xio_pages[i];
1651 
1652 		vm_page_flag_clear(m, PG_SWAPINPROG);
1653 
1654 		if (bp->b_flags & B_ERROR) {
1655 			/*
1656 			 * If an error occurs I'd love to throw the swapblk
1657 			 * away without freeing it back to swapspace, so it
1658 			 * can never be used again.  But I can't from an
1659 			 * interrupt.
1660 			 */
1661 
1662 			if (bp->b_cmd == BUF_CMD_READ) {
1663 				/*
1664 				 * When reading, reqpage needs to stay
1665 				 * locked for the parent, but all other
1666 				 * pages can be freed.  We still want to
1667 				 * wakeup the parent waiting on the page,
1668 				 * though.  ( also: pg_reqpage can be -1 and
1669 				 * not match anything ).
1670 				 *
1671 				 * We have to wake specifically requested pages
1672 				 * up too because we cleared PG_SWAPINPROG and
1673 				 * someone may be waiting for that.
1674 				 *
1675 				 * NOTE: for reads, m->dirty will probably
1676 				 * be overridden by the original caller of
1677 				 * getpages so don't play cute tricks here.
1678 				 *
1679 				 * NOTE: We can't actually free the page from
1680 				 * here, because this is an interrupt.  It
1681 				 * is not legal to mess with object->memq
1682 				 * from an interrupt.  Deactivate the page
1683 				 * instead.
1684 				 */
1685 
1686 				m->valid = 0;
1687 				vm_page_flag_clear(m, PG_ZERO);
1688 
1689 				/*
1690 				 * bio_driver_info holds the requested page
1691 				 * index.
1692 				 */
1693 				if (i != (int)(intptr_t)bio->bio_driver_info) {
1694 					vm_page_deactivate(m);
1695 					vm_page_wakeup(m);
1696 				} else {
1697 					vm_page_flash(m);
1698 				}
1699 				/*
1700 				 * If i == bp->b_pager.pg_reqpage, do not wake
1701 				 * the page up.  The caller needs to.
1702 				 */
1703 			} else {
1704 				/*
1705 				 * If a write error occurs, reactivate page
1706 				 * so it doesn't clog the inactive list,
1707 				 * then finish the I/O.
1708 				 */
1709 				vm_page_dirty(m);
1710 				kprintf("f");
1711 				vm_page_activate(m);
1712 				vm_page_io_finish(m);
1713 			}
1714 		} else if (bp->b_cmd == BUF_CMD_READ) {
1715 			/*
1716 			 * NOTE: for reads, m->dirty will probably be
1717 			 * overridden by the original caller of getpages so
1718 			 * we cannot set them in order to free the underlying
1719 			 * swap in a low-swap situation.  I don't think we'd
1720 			 * want to do that anyway, but it was an optimization
1721 			 * that existed in the old swapper for a time before
1722 			 * it got ripped out due to precisely this problem.
1723 			 *
1724 			 * clear PG_ZERO in page.
1725 			 *
1726 			 * If not the requested page then deactivate it.
1727 			 *
1728 			 * Note that the requested page, reqpage, is left
1729 			 * busied, but we still have to wake it up.  The
1730 			 * other pages are released (unbusied) by
1731 			 * vm_page_wakeup().  We do not set reqpage's
1732 			 * valid bits here, it is up to the caller.
1733 			 */
1734 
1735 			/*
1736 			 * NOTE: can't call pmap_clear_modify(m) from an
1737 			 * interrupt thread, the pmap code may have to map
1738 			 * non-kernel pmaps and currently asserts the case.
1739 			 */
1740 			/*pmap_clear_modify(m);*/
1741 			m->valid = VM_PAGE_BITS_ALL;
1742 			vm_page_undirty(m);
1743 			vm_page_flag_clear(m, PG_ZERO);
1744 
1745 			/*
1746 			 * We have to wake specifically requested pages
1747 			 * up too because we cleared PG_SWAPINPROG and
1748 			 * could be waiting for it in getpages.  However,
1749 			 * be sure to not unbusy getpages specifically
1750 			 * requested page - getpages expects it to be
1751 			 * left busy.
1752 			 *
1753 			 * bio_driver_info holds the requested page
1754 			 */
1755 			if (i != (int)(intptr_t)bio->bio_driver_info) {
1756 				vm_page_deactivate(m);
1757 				vm_page_wakeup(m);
1758 			} else {
1759 				vm_page_flash(m);
1760 			}
1761 		} else {
1762 			/*
1763 			 * Mark the page clean but do not mess with the
1764 			 * pmap-layer's modified state.  That state should
1765 			 * also be clear since the caller protected the
1766 			 * page VM_PROT_READ, but allow the case.
1767 			 *
1768 			 * We are in an interrupt, avoid pmap operations.
1769 			 *
1770 			 * If we have a severe page deficit, deactivate the
1771 			 * page.  Do not try to cache it (which would also
1772 			 * involve a pmap op), because the page might still
1773 			 * be read-heavy.
1774 			 */
1775 			vm_page_undirty(m);
1776 			vm_page_io_finish(m);
1777 			if (vm_page_count_severe())
1778 				vm_page_deactivate(m);
1779 #if 0
1780 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1781 				vm_page_protect(m, VM_PROT_READ);
1782 #endif
1783 		}
1784 	}
1785 
1786 	/*
1787 	 * adjust pip.  NOTE: the original parent may still have its own
1788 	 * pip refs on the object.
1789 	 */
1790 
1791 	if (object)
1792 		vm_object_pip_wakeupn(object, bp->b_xio.xio_npages);
1793 
1794 	/*
1795 	 * release the physical I/O buffer
1796 	 */
1797 	if (bp->b_cmd == BUF_CMD_READ)
1798 		nswptr = &nsw_rcount;
1799 	else if (bp->b_flags & B_ASYNC)
1800 		nswptr = &nsw_wcount_async;
1801 	else
1802 		nswptr = &nsw_wcount_sync;
1803 	bp->b_cmd = BUF_CMD_DONE;
1804 	relpbuf(bp, nswptr);
1805 	crit_exit();
1806 }
1807 
1808 /************************************************************************
1809  *				SWAP META DATA 				*
1810  ************************************************************************
1811  *
1812  *	These routines manipulate the swap metadata stored in the
1813  *	OBJT_SWAP object.  All swp_*() routines must be called at
1814  *	splvm() because swap can be freed up by the low level vm_page
1815  *	code which might be called from interrupts beyond what splbio() covers.
1816  *
1817  *	Swap metadata is implemented with a global hash and not directly
1818  *	linked into the object.  Instead the object simply contains
1819  *	appropriate tracking counters.
1820  */
1821 
1822 /*
1823  * SWP_PAGER_HASH() -	hash swap meta data
1824  *
1825  *	This is an inline helper function which hashes the swapblk given
1826  *	the object and page index.  It returns a pointer to a pointer
1827  *	to the object, or a pointer to a NULL pointer if it could not
1828  *	find a swapblk.
1829  *
1830  *	This routine must be called at splvm().
1831  */
1832 
1833 static __inline struct swblock **
1834 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1835 {
1836 	struct swblock **pswap;
1837 	struct swblock *swap;
1838 
1839 	index &= ~SWAP_META_MASK;
1840 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1841 
1842 	while ((swap = *pswap) != NULL) {
1843 		if (swap->swb_object == object &&
1844 		    swap->swb_index == index
1845 		) {
1846 			break;
1847 		}
1848 		pswap = &swap->swb_hnext;
1849 	}
1850 	return(pswap);
1851 }
1852 
1853 /*
1854  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1855  *
1856  *	We first convert the object to a swap object if it is a default
1857  *	object.
1858  *
1859  *	The specified swapblk is added to the object's swap metadata.  If
1860  *	the swapblk is not valid, it is freed instead.  Any previously
1861  *	assigned swapblk is freed.
1862  *
1863  *	This routine must be called at splvm(), except when used to convert
1864  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1865 
1866  */
1867 
1868 static void
1869 swp_pager_meta_build(
1870 	vm_object_t object,
1871 	vm_pindex_t index,
1872 	daddr_t swapblk
1873 ) {
1874 	struct swblock *swap;
1875 	struct swblock **pswap;
1876 
1877 	/*
1878 	 * Convert default object to swap object if necessary
1879 	 */
1880 
1881 	if (object->type != OBJT_SWAP) {
1882 		object->type = OBJT_SWAP;
1883 		object->un_pager.swp.swp_bcount = 0;
1884 
1885 		if (object->handle != NULL) {
1886 			TAILQ_INSERT_TAIL(
1887 			    NOBJLIST(object->handle),
1888 			    object,
1889 			    pager_object_list
1890 			);
1891 		} else {
1892 			TAILQ_INSERT_TAIL(
1893 			    &swap_pager_un_object_list,
1894 			    object,
1895 			    pager_object_list
1896 			);
1897 		}
1898 	}
1899 
1900 	/*
1901 	 * Locate hash entry.  If not found create, but if we aren't adding
1902 	 * anything just return.  If we run out of space in the map we wait
1903 	 * and, since the hash table may have changed, retry.
1904 	 */
1905 
1906 retry:
1907 	pswap = swp_pager_hash(object, index);
1908 
1909 	if ((swap = *pswap) == NULL) {
1910 		int i;
1911 
1912 		if (swapblk == SWAPBLK_NONE)
1913 			return;
1914 
1915 		swap = *pswap = zalloc(swap_zone);
1916 		if (swap == NULL) {
1917 			vm_wait(0);
1918 			goto retry;
1919 		}
1920 		swap->swb_hnext = NULL;
1921 		swap->swb_object = object;
1922 		swap->swb_index = index & ~SWAP_META_MASK;
1923 		swap->swb_count = 0;
1924 
1925 		++object->un_pager.swp.swp_bcount;
1926 
1927 		for (i = 0; i < SWAP_META_PAGES; ++i)
1928 			swap->swb_pages[i] = SWAPBLK_NONE;
1929 	}
1930 
1931 	/*
1932 	 * Delete prior contents of metadata
1933 	 */
1934 
1935 	index &= SWAP_META_MASK;
1936 
1937 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1938 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1939 		--swap->swb_count;
1940 	}
1941 
1942 	/*
1943 	 * Enter block into metadata
1944 	 */
1945 
1946 	swap->swb_pages[index] = swapblk;
1947 	if (swapblk != SWAPBLK_NONE)
1948 		++swap->swb_count;
1949 }
1950 
1951 /*
1952  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1953  *
1954  *	The requested range of blocks is freed, with any associated swap
1955  *	returned to the swap bitmap.
1956  *
1957  *	This routine will free swap metadata structures as they are cleaned
1958  *	out.  This routine does *NOT* operate on swap metadata associated
1959  *	with resident pages.
1960  *
1961  *	This routine must be called at splvm()
1962  */
1963 
1964 static void
1965 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1966 {
1967 	if (object->type != OBJT_SWAP)
1968 		return;
1969 
1970 	while (count > 0) {
1971 		struct swblock **pswap;
1972 		struct swblock *swap;
1973 
1974 		pswap = swp_pager_hash(object, index);
1975 
1976 		if ((swap = *pswap) != NULL) {
1977 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1978 
1979 			if (v != SWAPBLK_NONE) {
1980 				swp_pager_freeswapspace(v, 1);
1981 				swap->swb_pages[index & SWAP_META_MASK] =
1982 					SWAPBLK_NONE;
1983 				if (--swap->swb_count == 0) {
1984 					*pswap = swap->swb_hnext;
1985 					zfree(swap_zone, swap);
1986 					--object->un_pager.swp.swp_bcount;
1987 				}
1988 			}
1989 			--count;
1990 			++index;
1991 		} else {
1992 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1993 			count -= n;
1994 			index += n;
1995 		}
1996 	}
1997 }
1998 
1999 /*
2000  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2001  *
2002  *	This routine locates and destroys all swap metadata associated with
2003  *	an object.
2004  *
2005  *	This routine must be called at splvm()
2006  */
2007 
2008 static void
2009 swp_pager_meta_free_all(vm_object_t object)
2010 {
2011 	daddr_t index = 0;
2012 
2013 	if (object->type != OBJT_SWAP)
2014 		return;
2015 
2016 	while (object->un_pager.swp.swp_bcount) {
2017 		struct swblock **pswap;
2018 		struct swblock *swap;
2019 
2020 		pswap = swp_pager_hash(object, index);
2021 		if ((swap = *pswap) != NULL) {
2022 			int i;
2023 
2024 			for (i = 0; i < SWAP_META_PAGES; ++i) {
2025 				daddr_t v = swap->swb_pages[i];
2026 				if (v != SWAPBLK_NONE) {
2027 					--swap->swb_count;
2028 					swp_pager_freeswapspace(v, 1);
2029 				}
2030 			}
2031 			if (swap->swb_count != 0)
2032 				panic("swap_pager_meta_free_all: swb_count != 0");
2033 			*pswap = swap->swb_hnext;
2034 			zfree(swap_zone, swap);
2035 			--object->un_pager.swp.swp_bcount;
2036 		}
2037 		index += SWAP_META_PAGES;
2038 		if (index > 0x20000000)
2039 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
2040 	}
2041 }
2042 
2043 /*
2044  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2045  *
2046  *	This routine is capable of looking up, popping, or freeing
2047  *	swapblk assignments in the swap meta data or in the vm_page_t.
2048  *	The routine typically returns the swapblk being looked-up, or popped,
2049  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2050  *	was invalid.  This routine will automatically free any invalid
2051  *	meta-data swapblks.
2052  *
2053  *	It is not possible to store invalid swapblks in the swap meta data
2054  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2055  *
2056  *	When acting on a busy resident page and paging is in progress, we
2057  *	have to wait until paging is complete but otherwise can act on the
2058  *	busy page.
2059  *
2060  *	This routine must be called at splvm().
2061  *
2062  *	SWM_FREE	remove and free swap block from metadata
2063  *	SWM_POP		remove from meta data but do not free.. pop it out
2064  */
2065 
2066 static daddr_t
2067 swp_pager_meta_ctl(
2068 	vm_object_t object,
2069 	vm_pindex_t index,
2070 	int flags
2071 ) {
2072 	struct swblock **pswap;
2073 	struct swblock *swap;
2074 	daddr_t r1;
2075 
2076 	/*
2077 	 * The meta data only exists of the object is OBJT_SWAP
2078 	 * and even then might not be allocated yet.
2079 	 */
2080 
2081 	if (object->type != OBJT_SWAP)
2082 		return(SWAPBLK_NONE);
2083 
2084 	r1 = SWAPBLK_NONE;
2085 	pswap = swp_pager_hash(object, index);
2086 
2087 	if ((swap = *pswap) != NULL) {
2088 		index &= SWAP_META_MASK;
2089 		r1 = swap->swb_pages[index];
2090 
2091 		if (r1 != SWAPBLK_NONE) {
2092 			if (flags & SWM_FREE) {
2093 				swp_pager_freeswapspace(r1, 1);
2094 				r1 = SWAPBLK_NONE;
2095 			}
2096 			if (flags & (SWM_FREE|SWM_POP)) {
2097 				swap->swb_pages[index] = SWAPBLK_NONE;
2098 				if (--swap->swb_count == 0) {
2099 					*pswap = swap->swb_hnext;
2100 					zfree(swap_zone, swap);
2101 					--object->un_pager.swp.swp_bcount;
2102 				}
2103 			}
2104 		}
2105 	}
2106 	return(r1);
2107 }
2108