1 /* 2 * Copyright (c) 1998,2004 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1994 John S. Dyson 35 * Copyright (c) 1990 University of Utah. 36 * Copyright (c) 1991, 1993 37 * The Regents of the University of California. All rights reserved. 38 * 39 * This code is derived from software contributed to Berkeley by 40 * the Systems Programming Group of the University of Utah Computer 41 * Science Department. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * New Swap System 72 * Matthew Dillon 73 * 74 * Radix Bitmap 'blists'. 75 * 76 * - The new swapper uses the new radix bitmap code. This should scale 77 * to arbitrarily small or arbitrarily large swap spaces and an almost 78 * arbitrary degree of fragmentation. 79 * 80 * Features: 81 * 82 * - on the fly reallocation of swap during putpages. The new system 83 * does not try to keep previously allocated swap blocks for dirty 84 * pages. 85 * 86 * - on the fly deallocation of swap 87 * 88 * - No more garbage collection required. Unnecessarily allocated swap 89 * blocks only exist for dirty vm_page_t's now and these are already 90 * cycled (in a high-load system) by the pager. We also do on-the-fly 91 * removal of invalidated swap blocks when a page is destroyed 92 * or renamed. 93 * 94 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 95 * 96 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 97 * 98 * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $ 99 * $DragonFly: src/sys/vm/swap_pager.c,v 1.20 2006/03/27 01:54:18 dillon Exp $ 100 */ 101 102 #include <sys/param.h> 103 #include <sys/systm.h> 104 #include <sys/conf.h> 105 #include <sys/kernel.h> 106 #include <sys/proc.h> 107 #include <sys/buf.h> 108 #include <sys/vnode.h> 109 #include <sys/malloc.h> 110 #include <sys/vmmeter.h> 111 #include <sys/sysctl.h> 112 #include <sys/blist.h> 113 #include <sys/lock.h> 114 #include <sys/thread2.h> 115 116 #ifndef MAX_PAGEOUT_CLUSTER 117 #define MAX_PAGEOUT_CLUSTER 16 118 #endif 119 120 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 121 122 #include "opt_swap.h" 123 #include <vm/vm.h> 124 #include <vm/vm_object.h> 125 #include <vm/vm_page.h> 126 #include <vm/vm_pager.h> 127 #include <vm/vm_pageout.h> 128 #include <vm/swap_pager.h> 129 #include <vm/vm_extern.h> 130 #include <vm/vm_zone.h> 131 132 #include <sys/buf2.h> 133 #include <vm/vm_page2.h> 134 135 #define SWM_FREE 0x02 /* free, period */ 136 #define SWM_POP 0x04 /* pop out */ 137 138 /* 139 * vm_swap_size is in page-sized chunks now. It was DEV_BSIZE'd chunks 140 * in the old system. 141 */ 142 143 extern int vm_swap_size; /* number of free swap blocks, in pages */ 144 145 int swap_pager_full; /* swap space exhaustion (task killing) */ 146 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/ 147 static int nsw_rcount; /* free read buffers */ 148 static int nsw_wcount_sync; /* limit write buffers / synchronous */ 149 static int nsw_wcount_async; /* limit write buffers / asynchronous */ 150 static int nsw_wcount_async_max;/* assigned maximum */ 151 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 152 static int sw_alloc_interlock; /* swap pager allocation interlock */ 153 154 struct blist *swapblist; 155 static struct swblock **swhash; 156 static int swhash_mask; 157 static int swap_async_max = 4; /* maximum in-progress async I/O's */ 158 159 extern struct vnode *swapdev_vp; /* from vm_swap.c */ 160 161 SYSCTL_INT(_vm, OID_AUTO, swap_async_max, 162 CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops"); 163 164 /* 165 * "named" and "unnamed" anon region objects. Try to reduce the overhead 166 * of searching a named list by hashing it just a little. 167 */ 168 169 #define NOBJLISTS 8 170 171 #define NOBJLIST(handle) \ 172 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 173 174 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 175 struct pagerlst swap_pager_un_object_list; 176 vm_zone_t swap_zone; 177 178 /* 179 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 180 * calls hooked from other parts of the VM system and do not appear here. 181 * (see vm/swap_pager.h). 182 */ 183 184 static vm_object_t 185 swap_pager_alloc (void *handle, off_t size, 186 vm_prot_t prot, off_t offset); 187 static void swap_pager_dealloc (vm_object_t object); 188 static int swap_pager_getpages (vm_object_t, vm_page_t *, int, int); 189 static void swap_pager_init (void); 190 static void swap_pager_unswapped (vm_page_t); 191 static void swap_pager_strategy (vm_object_t, struct bio *); 192 static void swap_chain_iodone(struct bio *biox); 193 194 struct pagerops swappagerops = { 195 swap_pager_init, /* early system initialization of pager */ 196 swap_pager_alloc, /* allocate an OBJT_SWAP object */ 197 swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 198 swap_pager_getpages, /* pagein */ 199 swap_pager_putpages, /* pageout */ 200 swap_pager_haspage, /* get backing store status for page */ 201 swap_pager_unswapped, /* remove swap related to page */ 202 swap_pager_strategy /* pager strategy call */ 203 }; 204 205 /* 206 * dmmax is in page-sized chunks with the new swap system. It was 207 * dev-bsized chunks in the old. dmmax is always a power of 2. 208 * 209 * swap_*() routines are externally accessible. swp_*() routines are 210 * internal. 211 */ 212 213 int dmmax; 214 static int dmmax_mask; 215 int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 216 int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 217 218 static __inline void swp_sizecheck (void); 219 static void swp_pager_sync_iodone (struct bio *bio); 220 static void swp_pager_async_iodone (struct bio *bio); 221 222 /* 223 * Swap bitmap functions 224 */ 225 226 static __inline void swp_pager_freeswapspace (daddr_t blk, int npages); 227 static __inline daddr_t swp_pager_getswapspace (int npages); 228 229 /* 230 * Metadata functions 231 */ 232 233 static void swp_pager_meta_build (vm_object_t, vm_pindex_t, daddr_t); 234 static void swp_pager_meta_free (vm_object_t, vm_pindex_t, daddr_t); 235 static void swp_pager_meta_free_all (vm_object_t); 236 static daddr_t swp_pager_meta_ctl (vm_object_t, vm_pindex_t, int); 237 238 /* 239 * SWP_SIZECHECK() - update swap_pager_full indication 240 * 241 * update the swap_pager_almost_full indication and warn when we are 242 * about to run out of swap space, using lowat/hiwat hysteresis. 243 * 244 * Clear swap_pager_full ( task killing ) indication when lowat is met. 245 * 246 * No restrictions on call 247 * This routine may not block. 248 * This routine must be called at splvm() 249 */ 250 251 static __inline void 252 swp_sizecheck(void) 253 { 254 if (vm_swap_size < nswap_lowat) { 255 if (swap_pager_almost_full == 0) { 256 printf("swap_pager: out of swap space\n"); 257 swap_pager_almost_full = 1; 258 } 259 } else { 260 swap_pager_full = 0; 261 if (vm_swap_size > nswap_hiwat) 262 swap_pager_almost_full = 0; 263 } 264 } 265 266 /* 267 * SWAP_PAGER_INIT() - initialize the swap pager! 268 * 269 * Expected to be started from system init. NOTE: This code is run 270 * before much else so be careful what you depend on. Most of the VM 271 * system has yet to be initialized at this point. 272 */ 273 274 static void 275 swap_pager_init(void) 276 { 277 /* 278 * Initialize object lists 279 */ 280 int i; 281 282 for (i = 0; i < NOBJLISTS; ++i) 283 TAILQ_INIT(&swap_pager_object_list[i]); 284 TAILQ_INIT(&swap_pager_un_object_list); 285 286 /* 287 * Device Stripe, in PAGE_SIZE'd blocks 288 */ 289 290 dmmax = SWB_NPAGES * 2; 291 dmmax_mask = ~(dmmax - 1); 292 } 293 294 /* 295 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 296 * 297 * Expected to be started from pageout process once, prior to entering 298 * its main loop. 299 */ 300 301 void 302 swap_pager_swap_init(void) 303 { 304 int n, n2; 305 306 /* 307 * Number of in-transit swap bp operations. Don't 308 * exhaust the pbufs completely. Make sure we 309 * initialize workable values (0 will work for hysteresis 310 * but it isn't very efficient). 311 * 312 * The nsw_cluster_max is constrained by the number of pages an XIO 313 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined 314 * MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 315 * constrained by the swap device interleave stripe size. 316 * 317 * Currently we hardwire nsw_wcount_async to 4. This limit is 318 * designed to prevent other I/O from having high latencies due to 319 * our pageout I/O. The value 4 works well for one or two active swap 320 * devices but is probably a little low if you have more. Even so, 321 * a higher value would probably generate only a limited improvement 322 * with three or four active swap devices since the system does not 323 * typically have to pageout at extreme bandwidths. We will want 324 * at least 2 per swap devices, and 4 is a pretty good value if you 325 * have one NFS swap device due to the command/ack latency over NFS. 326 * So it all works out pretty well. 327 */ 328 329 nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER); 330 331 nsw_rcount = (nswbuf + 1) / 2; 332 nsw_wcount_sync = (nswbuf + 3) / 4; 333 nsw_wcount_async = 4; 334 nsw_wcount_async_max = nsw_wcount_async; 335 336 /* 337 * Initialize our zone. Right now I'm just guessing on the number 338 * we need based on the number of pages in the system. Each swblock 339 * can hold 16 pages, so this is probably overkill. This reservation 340 * is typically limited to around 32MB by default. 341 */ 342 n = vmstats.v_page_count / 2; 343 if (maxswzone && n > maxswzone / sizeof(struct swblock)) 344 n = maxswzone / sizeof(struct swblock); 345 n2 = n; 346 347 do { 348 swap_zone = zinit( 349 "SWAPMETA", 350 sizeof(struct swblock), 351 n, 352 ZONE_INTERRUPT, 353 1); 354 if (swap_zone != NULL) 355 break; 356 /* 357 * if the allocation failed, try a zone two thirds the 358 * size of the previous attempt. 359 */ 360 n -= ((n + 2) / 3); 361 } while (n > 0); 362 363 if (swap_zone == NULL) 364 panic("swap_pager_swap_init: swap_zone == NULL"); 365 if (n2 != n) 366 printf("Swap zone entries reduced from %d to %d.\n", n2, n); 367 n2 = n; 368 369 /* 370 * Initialize our meta-data hash table. The swapper does not need to 371 * be quite as efficient as the VM system, so we do not use an 372 * oversized hash table. 373 * 374 * n: size of hash table, must be power of 2 375 * swhash_mask: hash table index mask 376 */ 377 378 for (n = 1; n < n2 / 8; n *= 2) 379 ; 380 381 swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK); 382 bzero(swhash, sizeof(struct swblock *) * n); 383 384 swhash_mask = n - 1; 385 } 386 387 /* 388 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 389 * its metadata structures. 390 * 391 * This routine is called from the mmap and fork code to create a new 392 * OBJT_SWAP object. We do this by creating an OBJT_DEFAULT object 393 * and then converting it with swp_pager_meta_build(). 394 * 395 * This routine may block in vm_object_allocate() and create a named 396 * object lookup race, so we must interlock. We must also run at 397 * splvm() for the object lookup to handle races with interrupts, but 398 * we do not have to maintain splvm() in between the lookup and the 399 * add because (I believe) it is not possible to attempt to create 400 * a new swap object w/handle when a default object with that handle 401 * already exists. 402 */ 403 404 static vm_object_t 405 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset) 406 { 407 vm_object_t object; 408 409 if (handle) { 410 /* 411 * Reference existing named region or allocate new one. There 412 * should not be a race here against swp_pager_meta_build() 413 * as called from vm_page_remove() in regards to the lookup 414 * of the handle. 415 */ 416 417 while (sw_alloc_interlock) { 418 sw_alloc_interlock = -1; 419 tsleep(&sw_alloc_interlock, 0, "swpalc", 0); 420 } 421 sw_alloc_interlock = 1; 422 423 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 424 425 if (object != NULL) { 426 vm_object_reference(object); 427 } else { 428 object = vm_object_allocate(OBJT_DEFAULT, 429 OFF_TO_IDX(offset + PAGE_MASK + size)); 430 object->handle = handle; 431 432 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 433 } 434 435 if (sw_alloc_interlock < 0) 436 wakeup(&sw_alloc_interlock); 437 438 sw_alloc_interlock = 0; 439 } else { 440 object = vm_object_allocate(OBJT_DEFAULT, 441 OFF_TO_IDX(offset + PAGE_MASK + size)); 442 443 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 444 } 445 446 return (object); 447 } 448 449 /* 450 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 451 * 452 * The swap backing for the object is destroyed. The code is 453 * designed such that we can reinstantiate it later, but this 454 * routine is typically called only when the entire object is 455 * about to be destroyed. 456 * 457 * This routine may block, but no longer does. 458 * 459 * The object must be locked or unreferenceable. 460 */ 461 462 static void 463 swap_pager_dealloc(vm_object_t object) 464 { 465 /* 466 * Remove from list right away so lookups will fail if we block for 467 * pageout completion. 468 */ 469 470 if (object->handle == NULL) { 471 TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list); 472 } else { 473 TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list); 474 } 475 476 vm_object_pip_wait(object, "swpdea"); 477 478 /* 479 * Free all remaining metadata. We only bother to free it from 480 * the swap meta data. We do not attempt to free swapblk's still 481 * associated with vm_page_t's for this object. We do not care 482 * if paging is still in progress on some objects. 483 */ 484 crit_enter(); 485 swp_pager_meta_free_all(object); 486 crit_exit(); 487 } 488 489 /************************************************************************ 490 * SWAP PAGER BITMAP ROUTINES * 491 ************************************************************************/ 492 493 /* 494 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 495 * 496 * Allocate swap for the requested number of pages. The starting 497 * swap block number (a page index) is returned or SWAPBLK_NONE 498 * if the allocation failed. 499 * 500 * Also has the side effect of advising that somebody made a mistake 501 * when they configured swap and didn't configure enough. 502 * 503 * Must be called at splvm() to avoid races with bitmap frees from 504 * vm_page_remove() aka swap_pager_page_removed(). 505 * 506 * This routine may not block 507 * This routine must be called at splvm(). 508 */ 509 510 static __inline daddr_t 511 swp_pager_getswapspace(int npages) 512 { 513 daddr_t blk; 514 515 if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) { 516 if (swap_pager_full != 2) { 517 printf("swap_pager_getswapspace: failed\n"); 518 swap_pager_full = 2; 519 swap_pager_almost_full = 1; 520 } 521 } else { 522 vm_swap_size -= npages; 523 swp_sizecheck(); 524 } 525 return(blk); 526 } 527 528 /* 529 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 530 * 531 * This routine returns the specified swap blocks back to the bitmap. 532 * 533 * Note: This routine may not block (it could in the old swap code), 534 * and through the use of the new blist routines it does not block. 535 * 536 * We must be called at splvm() to avoid races with bitmap frees from 537 * vm_page_remove() aka swap_pager_page_removed(). 538 * 539 * This routine may not block 540 * This routine must be called at splvm(). 541 */ 542 543 static __inline void 544 swp_pager_freeswapspace(daddr_t blk, int npages) 545 { 546 blist_free(swapblist, blk, npages); 547 vm_swap_size += npages; 548 swp_sizecheck(); 549 } 550 551 /* 552 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 553 * range within an object. 554 * 555 * This is a globally accessible routine. 556 * 557 * This routine removes swapblk assignments from swap metadata. 558 * 559 * The external callers of this routine typically have already destroyed 560 * or renamed vm_page_t's associated with this range in the object so 561 * we should be ok. 562 * 563 * This routine may be called at any spl. We up our spl to splvm temporarily 564 * in order to perform the metadata removal. 565 */ 566 567 void 568 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 569 { 570 crit_enter(); 571 swp_pager_meta_free(object, start, size); 572 crit_exit(); 573 } 574 575 /* 576 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 577 * 578 * Assigns swap blocks to the specified range within the object. The 579 * swap blocks are not zerod. Any previous swap assignment is destroyed. 580 * 581 * Returns 0 on success, -1 on failure. 582 */ 583 584 int 585 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 586 { 587 int n = 0; 588 daddr_t blk = SWAPBLK_NONE; 589 vm_pindex_t beg = start; /* save start index */ 590 591 crit_enter(); 592 while (size) { 593 if (n == 0) { 594 n = BLIST_MAX_ALLOC; 595 while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) { 596 n >>= 1; 597 if (n == 0) { 598 swp_pager_meta_free(object, beg, start - beg); 599 crit_exit(); 600 return(-1); 601 } 602 } 603 } 604 swp_pager_meta_build(object, start, blk); 605 --size; 606 ++start; 607 ++blk; 608 --n; 609 } 610 swp_pager_meta_free(object, start, n); 611 crit_exit(); 612 return(0); 613 } 614 615 /* 616 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 617 * and destroy the source. 618 * 619 * Copy any valid swapblks from the source to the destination. In 620 * cases where both the source and destination have a valid swapblk, 621 * we keep the destination's. 622 * 623 * This routine is allowed to block. It may block allocating metadata 624 * indirectly through swp_pager_meta_build() or if paging is still in 625 * progress on the source. 626 * 627 * This routine can be called at any spl 628 * 629 * XXX vm_page_collapse() kinda expects us not to block because we 630 * supposedly do not need to allocate memory, but for the moment we 631 * *may* have to get a little memory from the zone allocator, but 632 * it is taken from the interrupt memory. We should be ok. 633 * 634 * The source object contains no vm_page_t's (which is just as well) 635 * 636 * The source object is of type OBJT_SWAP. 637 * 638 * The source and destination objects must be locked or 639 * inaccessible (XXX are they ?) 640 */ 641 642 void 643 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 644 vm_pindex_t offset, int destroysource) 645 { 646 vm_pindex_t i; 647 648 crit_enter(); 649 650 /* 651 * If destroysource is set, we remove the source object from the 652 * swap_pager internal queue now. 653 */ 654 655 if (destroysource) { 656 if (srcobject->handle == NULL) { 657 TAILQ_REMOVE( 658 &swap_pager_un_object_list, 659 srcobject, 660 pager_object_list 661 ); 662 } else { 663 TAILQ_REMOVE( 664 NOBJLIST(srcobject->handle), 665 srcobject, 666 pager_object_list 667 ); 668 } 669 } 670 671 /* 672 * transfer source to destination. 673 */ 674 675 for (i = 0; i < dstobject->size; ++i) { 676 daddr_t dstaddr; 677 678 /* 679 * Locate (without changing) the swapblk on the destination, 680 * unless it is invalid in which case free it silently, or 681 * if the destination is a resident page, in which case the 682 * source is thrown away. 683 */ 684 685 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 686 687 if (dstaddr == SWAPBLK_NONE) { 688 /* 689 * Destination has no swapblk and is not resident, 690 * copy source. 691 */ 692 daddr_t srcaddr; 693 694 srcaddr = swp_pager_meta_ctl( 695 srcobject, 696 i + offset, 697 SWM_POP 698 ); 699 700 if (srcaddr != SWAPBLK_NONE) 701 swp_pager_meta_build(dstobject, i, srcaddr); 702 } else { 703 /* 704 * Destination has valid swapblk or it is represented 705 * by a resident page. We destroy the sourceblock. 706 */ 707 708 swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE); 709 } 710 } 711 712 /* 713 * Free left over swap blocks in source. 714 * 715 * We have to revert the type to OBJT_DEFAULT so we do not accidently 716 * double-remove the object from the swap queues. 717 */ 718 719 if (destroysource) { 720 swp_pager_meta_free_all(srcobject); 721 /* 722 * Reverting the type is not necessary, the caller is going 723 * to destroy srcobject directly, but I'm doing it here 724 * for consistency since we've removed the object from its 725 * queues. 726 */ 727 srcobject->type = OBJT_DEFAULT; 728 } 729 crit_exit(); 730 } 731 732 /* 733 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 734 * the requested page. 735 * 736 * We determine whether good backing store exists for the requested 737 * page and return TRUE if it does, FALSE if it doesn't. 738 * 739 * If TRUE, we also try to determine how much valid, contiguous backing 740 * store exists before and after the requested page within a reasonable 741 * distance. We do not try to restrict it to the swap device stripe 742 * (that is handled in getpages/putpages). It probably isn't worth 743 * doing here. 744 */ 745 746 boolean_t 747 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 748 int *after) 749 { 750 daddr_t blk0; 751 752 /* 753 * do we have good backing store at the requested index ? 754 */ 755 756 crit_enter(); 757 blk0 = swp_pager_meta_ctl(object, pindex, 0); 758 759 if (blk0 == SWAPBLK_NONE) { 760 crit_exit(); 761 if (before) 762 *before = 0; 763 if (after) 764 *after = 0; 765 return (FALSE); 766 } 767 768 /* 769 * find backwards-looking contiguous good backing store 770 */ 771 772 if (before != NULL) { 773 int i; 774 775 for (i = 1; i < (SWB_NPAGES/2); ++i) { 776 daddr_t blk; 777 778 if (i > pindex) 779 break; 780 blk = swp_pager_meta_ctl(object, pindex - i, 0); 781 if (blk != blk0 - i) 782 break; 783 } 784 *before = (i - 1); 785 } 786 787 /* 788 * find forward-looking contiguous good backing store 789 */ 790 791 if (after != NULL) { 792 int i; 793 794 for (i = 1; i < (SWB_NPAGES/2); ++i) { 795 daddr_t blk; 796 797 blk = swp_pager_meta_ctl(object, pindex + i, 0); 798 if (blk != blk0 + i) 799 break; 800 } 801 *after = (i - 1); 802 } 803 crit_exit(); 804 return (TRUE); 805 } 806 807 /* 808 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 809 * 810 * This removes any associated swap backing store, whether valid or 811 * not, from the page. 812 * 813 * This routine is typically called when a page is made dirty, at 814 * which point any associated swap can be freed. MADV_FREE also 815 * calls us in a special-case situation 816 * 817 * NOTE!!! If the page is clean and the swap was valid, the caller 818 * should make the page dirty before calling this routine. This routine 819 * does NOT change the m->dirty status of the page. Also: MADV_FREE 820 * depends on it. 821 * 822 * This routine may not block 823 * This routine must be called at splvm() 824 */ 825 826 static void 827 swap_pager_unswapped(vm_page_t m) 828 { 829 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE); 830 } 831 832 /* 833 * SWAP_PAGER_STRATEGY() - read, write, free blocks 834 * 835 * This implements the vm_pager_strategy() interface to swap and allows 836 * other parts of the system to directly access swap as backing store 837 * through vm_objects of type OBJT_SWAP. This is intended to be a 838 * cacheless interface ( i.e. caching occurs at higher levels ). 839 * Therefore we do not maintain any resident pages. All I/O goes 840 * directly to and from the swap device. 841 * 842 * We currently attempt to run I/O synchronously or asynchronously as 843 * the caller requests. This isn't perfect because we loose error 844 * sequencing when we run multiple ops in parallel to satisfy a request. 845 * But this is swap, so we let it all hang out. 846 */ 847 848 static void 849 swap_pager_strategy(vm_object_t object, struct bio *bio) 850 { 851 struct buf *bp = bio->bio_buf; 852 struct bio *nbio; 853 vm_pindex_t start; 854 vm_pindex_t biox_blkno = 0; 855 int count; 856 char *data; 857 struct bio *biox = NULL; 858 struct buf *bufx = NULL; 859 struct bio_track *track; 860 861 /* 862 * tracking for swapdev vnode I/Os 863 */ 864 if (bp->b_flags & B_READ) 865 track = &swapdev_vp->v_track_read; 866 else 867 track = &swapdev_vp->v_track_write; 868 869 if (bp->b_bcount & PAGE_MASK) { 870 bp->b_error = EINVAL; 871 bp->b_flags |= B_ERROR | B_INVAL; 872 biodone(bio); 873 printf("swap_pager_strategy: bp %p b_vp %p offset %lld size %d, not page bounded\n", bp, bp->b_vp, bio->bio_offset, (int)bp->b_bcount); 874 return; 875 } 876 877 /* 878 * Clear error indication, initialize page index, count, data pointer. 879 */ 880 bp->b_error = 0; 881 bp->b_flags &= ~B_ERROR; 882 bp->b_resid = bp->b_bcount; 883 884 start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT); 885 count = howmany(bp->b_bcount, PAGE_SIZE); 886 data = bp->b_data; 887 888 crit_enter(); 889 890 /* 891 * Deal with B_FREEBUF 892 */ 893 if (bp->b_flags & B_FREEBUF) { 894 /* 895 * FREE PAGE(s) - destroy underlying swap that is no longer 896 * needed. 897 */ 898 swp_pager_meta_free(object, start, count); 899 crit_exit(); 900 bp->b_resid = 0; 901 biodone(bio); 902 return; 903 } 904 905 /* 906 * We need to be able to create a new cluster of I/O's. We cannot 907 * use the caller fields of the passed bio so push a new one. 908 * 909 * Because nbio is just a placeholder for the cluster links, 910 * we can biodone() the original bio instead of nbio to make 911 * things a bit more efficient. 912 */ 913 nbio = push_bio(bio); 914 nbio->bio_offset = bio->bio_offset; 915 nbio->bio_caller_info1.cluster_head = NULL; 916 nbio->bio_caller_info2.cluster_tail = NULL; 917 918 /* 919 * Execute read or write 920 */ 921 922 while (count > 0) { 923 daddr_t blk; 924 925 /* 926 * Obtain block. If block not found and writing, allocate a 927 * new block and build it into the object. 928 */ 929 930 blk = swp_pager_meta_ctl(object, start, 0); 931 if ((blk == SWAPBLK_NONE) && (bp->b_flags & B_READ) == 0) { 932 blk = swp_pager_getswapspace(1); 933 if (blk == SWAPBLK_NONE) { 934 bp->b_error = ENOMEM; 935 bp->b_flags |= B_ERROR; 936 break; 937 } 938 swp_pager_meta_build(object, start, blk); 939 } 940 941 /* 942 * Do we have to flush our current collection? Yes if: 943 * 944 * - no swap block at this index 945 * - swap block is not contiguous 946 * - we cross a physical disk boundry in the 947 * stripe. 948 */ 949 950 if ( 951 biox && (biox_blkno + btoc(bufx->b_bcount) != blk || 952 ((biox_blkno ^ blk) & dmmax_mask) 953 ) 954 ) { 955 crit_exit(); 956 if (bp->b_flags & B_READ) { 957 ++mycpu->gd_cnt.v_swapin; 958 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount); 959 } else { 960 ++mycpu->gd_cnt.v_swapout; 961 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount); 962 bufx->b_dirtyend = bufx->b_bcount; 963 } 964 965 /* 966 * Flush the biox to the swap device. 967 */ 968 if (bufx->b_bcount) { 969 bufx->b_bufsize = bufx->b_bcount; 970 if ((bufx->b_flags & B_READ) == 0) 971 bufx->b_dirtyend = bufx->b_bcount; 972 BUF_KERNPROC(bufx); 973 vn_strategy(bufx->b_vp, biox); 974 } else { 975 biodone(biox); 976 } 977 crit_enter(); 978 biox = NULL; 979 bufx = NULL; 980 } 981 982 /* 983 * Add new swapblk to biox, instantiating biox if necessary. 984 * Zero-fill reads are able to take a shortcut. 985 */ 986 if (blk == SWAPBLK_NONE) { 987 /* 988 * We can only get here if we are reading. Since 989 * we are at splvm() we can safely modify b_resid, 990 * even if chain ops are in progress. 991 */ 992 bzero(data, PAGE_SIZE); 993 bp->b_resid -= PAGE_SIZE; 994 } else { 995 if (biox == NULL) { 996 /* XXX chain count > 4, wait to <= 4 */ 997 998 bufx = getpbuf(NULL); 999 biox = &bufx->b_bio1; 1000 cluster_append(nbio, bufx); 1001 bufx->b_flags = (bufx->b_flags & B_ORDERED) | 1002 (bp->b_flags & B_READ) | 1003 B_ASYNC; 1004 pbgetvp(swapdev_vp, bufx); 1005 biox->bio_done = swap_chain_iodone; 1006 biox->bio_offset = (off_t)blk << PAGE_SHIFT; 1007 biox->bio_caller_info1.cluster_parent = nbio; 1008 biox_blkno = blk; 1009 bufx->b_bcount = 0; 1010 bufx->b_data = data; 1011 } 1012 bufx->b_bcount += PAGE_SIZE; 1013 } 1014 --count; 1015 ++start; 1016 data += PAGE_SIZE; 1017 } 1018 1019 /* 1020 * Flush out last buffer 1021 */ 1022 crit_exit(); 1023 1024 if (biox) { 1025 if ((bp->b_flags & B_ASYNC) == 0) 1026 bufx->b_flags &= ~B_ASYNC; 1027 if (bufx->b_flags & B_READ) { 1028 ++mycpu->gd_cnt.v_swapin; 1029 mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount); 1030 } else { 1031 ++mycpu->gd_cnt.v_swapout; 1032 mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount); 1033 bufx->b_dirtyend = bufx->b_bcount; 1034 } 1035 if (bufx->b_bcount) { 1036 bufx->b_bufsize = bufx->b_bcount; 1037 if ((bufx->b_flags & B_READ) == 0) 1038 bufx->b_dirtyend = bufx->b_bcount; 1039 BUF_KERNPROC(bufx); 1040 vn_strategy(bufx->b_vp, biox); 1041 } else { 1042 biodone(biox); 1043 } 1044 /* biox, bufx = NULL */ 1045 } 1046 1047 /* 1048 * Wait for completion. 1049 */ 1050 if (bp->b_flags & B_ASYNC) { 1051 crit_enter(); 1052 if (nbio->bio_caller_info1.cluster_head == NULL) { 1053 biodone(bio); 1054 } else { 1055 bp->b_xflags |= BX_AUTOCHAINDONE; 1056 } 1057 crit_exit(); 1058 } else { 1059 crit_enter(); 1060 while (nbio->bio_caller_info1.cluster_head != NULL) { 1061 bp->b_flags |= B_WANT; 1062 tsleep(bp, 0, "bpchain", 0); 1063 } 1064 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) { 1065 bp->b_flags |= B_ERROR; 1066 bp->b_error = EINVAL; 1067 } 1068 biodone(bio); 1069 crit_exit(); 1070 } 1071 } 1072 1073 static void 1074 swap_chain_iodone(struct bio *biox) 1075 { 1076 struct buf **nextp; 1077 struct buf *bufx; /* chained sub-buffer */ 1078 struct bio *nbio; /* parent nbio with chain glue */ 1079 struct buf *bp; /* original bp associated with nbio */ 1080 1081 bufx = biox->bio_buf; 1082 nbio = biox->bio_caller_info1.cluster_parent; 1083 bp = nbio->bio_buf; 1084 1085 /* 1086 * Update the original buffer 1087 */ 1088 KKASSERT(bp != NULL); 1089 if (bufx->b_flags & B_ERROR) { 1090 bp->b_flags |= B_ERROR; 1091 bp->b_error = bufx->b_error; 1092 } else if (bufx->b_resid != 0) { 1093 bp->b_flags |= B_ERROR; 1094 bp->b_error = EINVAL; 1095 } else { 1096 bp->b_resid -= bufx->b_bcount; 1097 } 1098 1099 /* 1100 * Remove us from the chain. It is sufficient to clean up 1101 * cluster_head. We do not have to clean up cluster_tail. 1102 */ 1103 nextp = &nbio->bio_caller_info1.cluster_head; 1104 while (*nextp != bufx) { 1105 KKASSERT(*nextp != NULL); 1106 nextp = &(*nextp)->b_cluster_next; 1107 } 1108 *nextp = bufx->b_cluster_next; 1109 if (bp->b_flags & B_WANT) { 1110 bp->b_flags &= ~B_WANT; 1111 wakeup(bp); 1112 } 1113 1114 /* 1115 * Clean up bufx. If this was the last buffer in the chain 1116 * and BX_AUTOCHAINDONE was set, finish off the original I/O 1117 * as well. 1118 * 1119 * nbio was just a fake BIO layer to hold the cluster links, 1120 * we can issue the biodone() on the layer above it. 1121 */ 1122 if (nbio->bio_caller_info1.cluster_head == NULL && 1123 (bp->b_xflags & BX_AUTOCHAINDONE)) { 1124 bp->b_xflags &= ~BX_AUTOCHAINDONE; 1125 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) { 1126 bp->b_flags |= B_ERROR; 1127 bp->b_error = EINVAL; 1128 } 1129 biodone(nbio->bio_prev); 1130 } 1131 bufx->b_flags |= B_DONE; 1132 bufx->b_flags &= ~B_ASYNC; 1133 relpbuf(bufx, NULL); 1134 } 1135 1136 /* 1137 * SWAP_PAGER_GETPAGES() - bring pages in from swap 1138 * 1139 * Attempt to retrieve (m, count) pages from backing store, but make 1140 * sure we retrieve at least m[reqpage]. We try to load in as large 1141 * a chunk surrounding m[reqpage] as is contiguous in swap and which 1142 * belongs to the same object. 1143 * 1144 * The code is designed for asynchronous operation and 1145 * immediate-notification of 'reqpage' but tends not to be 1146 * used that way. Please do not optimize-out this algorithmic 1147 * feature, I intend to improve on it in the future. 1148 * 1149 * The parent has a single vm_object_pip_add() reference prior to 1150 * calling us and we should return with the same. 1151 * 1152 * The parent has BUSY'd the pages. We should return with 'm' 1153 * left busy, but the others adjusted. 1154 */ 1155 1156 static int 1157 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage) 1158 { 1159 struct buf *bp; 1160 struct bio *bio; 1161 vm_page_t mreq; 1162 int i; 1163 int j; 1164 daddr_t blk; 1165 vm_offset_t kva; 1166 vm_pindex_t lastpindex; 1167 1168 mreq = m[reqpage]; 1169 1170 if (mreq->object != object) { 1171 panic("swap_pager_getpages: object mismatch %p/%p", 1172 object, 1173 mreq->object 1174 ); 1175 } 1176 /* 1177 * Calculate range to retrieve. The pages have already been assigned 1178 * their swapblks. We require a *contiguous* range that falls entirely 1179 * within a single device stripe. If we do not supply it, bad things 1180 * happen. Note that blk, iblk & jblk can be SWAPBLK_NONE, but the 1181 * loops are set up such that the case(s) are handled implicitly. 1182 * 1183 * The swp_*() calls must be made at splvm(). vm_page_free() does 1184 * not need to be, but it will go a little faster if it is. 1185 */ 1186 1187 crit_enter(); 1188 blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0); 1189 1190 for (i = reqpage - 1; i >= 0; --i) { 1191 daddr_t iblk; 1192 1193 iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0); 1194 if (blk != iblk + (reqpage - i)) 1195 break; 1196 if ((blk ^ iblk) & dmmax_mask) 1197 break; 1198 } 1199 ++i; 1200 1201 for (j = reqpage + 1; j < count; ++j) { 1202 daddr_t jblk; 1203 1204 jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0); 1205 if (blk != jblk - (j - reqpage)) 1206 break; 1207 if ((blk ^ jblk) & dmmax_mask) 1208 break; 1209 } 1210 1211 /* 1212 * free pages outside our collection range. Note: we never free 1213 * mreq, it must remain busy throughout. 1214 */ 1215 1216 { 1217 int k; 1218 1219 for (k = 0; k < i; ++k) 1220 vm_page_free(m[k]); 1221 for (k = j; k < count; ++k) 1222 vm_page_free(m[k]); 1223 } 1224 crit_exit(); 1225 1226 1227 /* 1228 * Return VM_PAGER_FAIL if we have nothing to do. Return mreq 1229 * still busy, but the others unbusied. 1230 */ 1231 1232 if (blk == SWAPBLK_NONE) 1233 return(VM_PAGER_FAIL); 1234 1235 /* 1236 * Get a swap buffer header to perform the IO 1237 */ 1238 1239 bp = getpbuf(&nsw_rcount); 1240 bio = &bp->b_bio1; 1241 kva = (vm_offset_t) bp->b_data; 1242 1243 /* 1244 * map our page(s) into kva for input 1245 * 1246 * NOTE: B_PAGING is set by pbgetvp() 1247 */ 1248 1249 pmap_qenter(kva, m + i, j - i); 1250 1251 bp->b_flags = B_READ; 1252 bp->b_data = (caddr_t) kva; 1253 bp->b_bcount = PAGE_SIZE * (j - i); 1254 bp->b_bufsize = PAGE_SIZE * (j - i); 1255 bio->bio_done = swp_pager_async_iodone; 1256 bio->bio_offset = (off_t)(blk - (reqpage - i)) << PAGE_SHIFT; 1257 bio->bio_driver_info = (void *)(reqpage - i); 1258 1259 { 1260 int k; 1261 1262 for (k = i; k < j; ++k) { 1263 bp->b_xio.xio_pages[k - i] = m[k]; 1264 vm_page_flag_set(m[k], PG_SWAPINPROG); 1265 } 1266 } 1267 bp->b_xio.xio_npages = j - i; 1268 1269 pbgetvp(swapdev_vp, bp); 1270 1271 mycpu->gd_cnt.v_swapin++; 1272 mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages; 1273 1274 /* 1275 * We still hold the lock on mreq, and our automatic completion routine 1276 * does not remove it. 1277 */ 1278 1279 vm_object_pip_add(mreq->object, bp->b_xio.xio_npages); 1280 lastpindex = m[j-1]->pindex; 1281 1282 /* 1283 * perform the I/O. NOTE!!! bp cannot be considered valid after 1284 * this point because we automatically release it on completion. 1285 * Instead, we look at the one page we are interested in which we 1286 * still hold a lock on even through the I/O completion. 1287 * 1288 * The other pages in our m[] array are also released on completion, 1289 * so we cannot assume they are valid anymore either. 1290 */ 1291 1292 BUF_KERNPROC(bp); 1293 vn_strategy(swapdev_vp, bio); 1294 1295 /* 1296 * wait for the page we want to complete. PG_SWAPINPROG is always 1297 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1298 * is set in the meta-data. 1299 */ 1300 1301 crit_enter(); 1302 1303 while ((mreq->flags & PG_SWAPINPROG) != 0) { 1304 vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED); 1305 mycpu->gd_cnt.v_intrans++; 1306 if (tsleep(mreq, 0, "swread", hz*20)) { 1307 printf( 1308 "swap_pager: indefinite wait buffer: " 1309 " offset: %lld, size: %d\n", 1310 bio->bio_offset, bp->b_bcount 1311 ); 1312 } 1313 } 1314 1315 crit_exit(); 1316 1317 /* 1318 * mreq is left bussied after completion, but all the other pages 1319 * are freed. If we had an unrecoverable read error the page will 1320 * not be valid. 1321 */ 1322 1323 if (mreq->valid != VM_PAGE_BITS_ALL) { 1324 return(VM_PAGER_ERROR); 1325 } else { 1326 return(VM_PAGER_OK); 1327 } 1328 1329 /* 1330 * A final note: in a low swap situation, we cannot deallocate swap 1331 * and mark a page dirty here because the caller is likely to mark 1332 * the page clean when we return, causing the page to possibly revert 1333 * to all-zero's later. 1334 */ 1335 } 1336 1337 /* 1338 * swap_pager_putpages: 1339 * 1340 * Assign swap (if necessary) and initiate I/O on the specified pages. 1341 * 1342 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1343 * are automatically converted to SWAP objects. 1344 * 1345 * In a low memory situation we may block in vn_strategy(), but the new 1346 * vm_page reservation system coupled with properly written VFS devices 1347 * should ensure that no low-memory deadlock occurs. This is an area 1348 * which needs work. 1349 * 1350 * The parent has N vm_object_pip_add() references prior to 1351 * calling us and will remove references for rtvals[] that are 1352 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1353 * completion. 1354 * 1355 * The parent has soft-busy'd the pages it passes us and will unbusy 1356 * those whos rtvals[] entry is not set to VM_PAGER_PEND on return. 1357 * We need to unbusy the rest on I/O completion. 1358 */ 1359 1360 void 1361 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, boolean_t sync, 1362 int *rtvals) 1363 { 1364 int i; 1365 int n = 0; 1366 1367 if (count && m[0]->object != object) { 1368 panic("swap_pager_getpages: object mismatch %p/%p", 1369 object, 1370 m[0]->object 1371 ); 1372 } 1373 /* 1374 * Step 1 1375 * 1376 * Turn object into OBJT_SWAP 1377 * check for bogus sysops 1378 * force sync if not pageout process 1379 */ 1380 1381 if (object->type != OBJT_SWAP) 1382 swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1383 1384 if (curthread != pagethread) 1385 sync = TRUE; 1386 1387 /* 1388 * Step 2 1389 * 1390 * Update nsw parameters from swap_async_max sysctl values. 1391 * Do not let the sysop crash the machine with bogus numbers. 1392 */ 1393 1394 if (swap_async_max != nsw_wcount_async_max) { 1395 int n; 1396 1397 /* 1398 * limit range 1399 */ 1400 if ((n = swap_async_max) > nswbuf / 2) 1401 n = nswbuf / 2; 1402 if (n < 1) 1403 n = 1; 1404 swap_async_max = n; 1405 1406 /* 1407 * Adjust difference ( if possible ). If the current async 1408 * count is too low, we may not be able to make the adjustment 1409 * at this time. 1410 */ 1411 crit_enter(); 1412 n -= nsw_wcount_async_max; 1413 if (nsw_wcount_async + n >= 0) { 1414 nsw_wcount_async += n; 1415 nsw_wcount_async_max += n; 1416 wakeup(&nsw_wcount_async); 1417 } 1418 crit_exit(); 1419 } 1420 1421 /* 1422 * Step 3 1423 * 1424 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1425 * The page is left dirty until the pageout operation completes 1426 * successfully. 1427 */ 1428 1429 for (i = 0; i < count; i += n) { 1430 struct buf *bp; 1431 struct bio *bio; 1432 daddr_t blk; 1433 int j; 1434 1435 /* 1436 * Maximum I/O size is limited by a number of factors. 1437 */ 1438 1439 n = min(BLIST_MAX_ALLOC, count - i); 1440 n = min(n, nsw_cluster_max); 1441 1442 crit_enter(); 1443 1444 /* 1445 * Get biggest block of swap we can. If we fail, fall 1446 * back and try to allocate a smaller block. Don't go 1447 * overboard trying to allocate space if it would overly 1448 * fragment swap. 1449 */ 1450 while ( 1451 (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE && 1452 n > 4 1453 ) { 1454 n >>= 1; 1455 } 1456 if (blk == SWAPBLK_NONE) { 1457 for (j = 0; j < n; ++j) 1458 rtvals[i+j] = VM_PAGER_FAIL; 1459 crit_exit(); 1460 continue; 1461 } 1462 1463 /* 1464 * The I/O we are constructing cannot cross a physical 1465 * disk boundry in the swap stripe. Note: we are still 1466 * at splvm(). 1467 */ 1468 if ((blk ^ (blk + n)) & dmmax_mask) { 1469 j = ((blk + dmmax) & dmmax_mask) - blk; 1470 swp_pager_freeswapspace(blk + j, n - j); 1471 n = j; 1472 } 1473 1474 /* 1475 * All I/O parameters have been satisfied, build the I/O 1476 * request and assign the swap space. 1477 * 1478 * NOTE: B_PAGING is set by pbgetvp() 1479 */ 1480 1481 if (sync == TRUE) { 1482 bp = getpbuf(&nsw_wcount_sync); 1483 } else { 1484 bp = getpbuf(&nsw_wcount_async); 1485 bp->b_flags = B_ASYNC; 1486 } 1487 bio = &bp->b_bio1; 1488 1489 pmap_qenter((vm_offset_t)bp->b_data, &m[i], n); 1490 1491 bp->b_bcount = PAGE_SIZE * n; 1492 bp->b_bufsize = PAGE_SIZE * n; 1493 bio->bio_offset = (off_t)blk << PAGE_SHIFT; 1494 1495 pbgetvp(swapdev_vp, bp); 1496 1497 for (j = 0; j < n; ++j) { 1498 vm_page_t mreq = m[i+j]; 1499 1500 swp_pager_meta_build( 1501 mreq->object, 1502 mreq->pindex, 1503 blk + j 1504 ); 1505 vm_page_dirty(mreq); 1506 rtvals[i+j] = VM_PAGER_OK; 1507 1508 vm_page_flag_set(mreq, PG_SWAPINPROG); 1509 bp->b_xio.xio_pages[j] = mreq; 1510 } 1511 bp->b_xio.xio_npages = n; 1512 /* 1513 * Must set dirty range for NFS to work. 1514 */ 1515 bp->b_dirtyoff = 0; 1516 bp->b_dirtyend = bp->b_bcount; 1517 1518 mycpu->gd_cnt.v_swapout++; 1519 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages; 1520 1521 crit_exit(); 1522 1523 /* 1524 * asynchronous 1525 */ 1526 1527 if (sync == FALSE) { 1528 bio->bio_done = swp_pager_async_iodone; 1529 BUF_KERNPROC(bp); 1530 vn_strategy(swapdev_vp, bio); 1531 1532 for (j = 0; j < n; ++j) 1533 rtvals[i+j] = VM_PAGER_PEND; 1534 continue; 1535 } 1536 1537 /* 1538 * synchronous 1539 */ 1540 1541 bio->bio_done = swp_pager_sync_iodone; 1542 vn_strategy(swapdev_vp, bio); 1543 1544 /* 1545 * Wait for the sync I/O to complete, then update rtvals. 1546 * We just set the rtvals[] to VM_PAGER_PEND so we can call 1547 * our async completion routine at the end, thus avoiding a 1548 * double-free. 1549 */ 1550 crit_enter(); 1551 1552 while ((bp->b_flags & B_DONE) == 0) { 1553 tsleep(bp, 0, "swwrt", 0); 1554 } 1555 1556 for (j = 0; j < n; ++j) 1557 rtvals[i+j] = VM_PAGER_PEND; 1558 1559 /* 1560 * Now that we are through with the bp, we can call the 1561 * normal async completion, which frees everything up. 1562 */ 1563 1564 swp_pager_async_iodone(bio); 1565 1566 crit_exit(); 1567 } 1568 } 1569 1570 /* 1571 * swap_pager_sync_iodone: 1572 * 1573 * Completion routine for synchronous reads and writes from/to swap. 1574 * We just mark the bp is complete and wake up anyone waiting on it. 1575 * 1576 * This routine may not block. This routine is called at splbio() or better. 1577 */ 1578 1579 static void 1580 swp_pager_sync_iodone(struct bio *bio) 1581 { 1582 struct buf *bp = bio->bio_buf; 1583 1584 bp->b_flags |= B_DONE; 1585 bp->b_flags &= ~B_ASYNC; 1586 wakeup(bp); 1587 } 1588 1589 /* 1590 * swp_pager_async_iodone: 1591 * 1592 * Completion routine for asynchronous reads and writes from/to swap. 1593 * Also called manually by synchronous code to finish up a bp. 1594 * 1595 * For READ operations, the pages are PG_BUSY'd. For WRITE operations, 1596 * the pages are vm_page_t->busy'd. For READ operations, we PG_BUSY 1597 * unbusy all pages except the 'main' request page. For WRITE 1598 * operations, we vm_page_t->busy'd unbusy all pages ( we can do this 1599 * because we marked them all VM_PAGER_PEND on return from putpages ). 1600 * 1601 * This routine may not block. 1602 */ 1603 1604 static void 1605 swp_pager_async_iodone(struct bio *bio) 1606 { 1607 struct buf *bp = bio->bio_buf; 1608 vm_object_t object = NULL; 1609 int i; 1610 1611 bp->b_flags |= B_DONE; 1612 1613 /* 1614 * report error 1615 */ 1616 1617 if (bp->b_flags & B_ERROR) { 1618 printf( 1619 "swap_pager: I/O error - %s failed; offset %lld," 1620 "size %ld, error %d\n", 1621 ((bp->b_flags & B_READ) ? "pagein" : "pageout"), 1622 bio->bio_offset, 1623 (long)bp->b_bcount, 1624 bp->b_error 1625 ); 1626 } 1627 1628 /* 1629 * set object, raise to splvm(). 1630 */ 1631 1632 if (bp->b_xio.xio_npages) 1633 object = bp->b_xio.xio_pages[0]->object; 1634 crit_enter(); 1635 1636 /* 1637 * remove the mapping for kernel virtual 1638 */ 1639 1640 pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages); 1641 1642 /* 1643 * cleanup pages. If an error occurs writing to swap, we are in 1644 * very serious trouble. If it happens to be a disk error, though, 1645 * we may be able to recover by reassigning the swap later on. So 1646 * in this case we remove the m->swapblk assignment for the page 1647 * but do not free it in the rlist. The errornous block(s) are thus 1648 * never reallocated as swap. Redirty the page and continue. 1649 */ 1650 1651 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 1652 vm_page_t m = bp->b_xio.xio_pages[i]; 1653 1654 vm_page_flag_clear(m, PG_SWAPINPROG); 1655 1656 if (bp->b_flags & B_ERROR) { 1657 /* 1658 * If an error occurs I'd love to throw the swapblk 1659 * away without freeing it back to swapspace, so it 1660 * can never be used again. But I can't from an 1661 * interrupt. 1662 */ 1663 1664 if (bp->b_flags & B_READ) { 1665 /* 1666 * When reading, reqpage needs to stay 1667 * locked for the parent, but all other 1668 * pages can be freed. We still want to 1669 * wakeup the parent waiting on the page, 1670 * though. ( also: pg_reqpage can be -1 and 1671 * not match anything ). 1672 * 1673 * We have to wake specifically requested pages 1674 * up too because we cleared PG_SWAPINPROG and 1675 * someone may be waiting for that. 1676 * 1677 * NOTE: for reads, m->dirty will probably 1678 * be overridden by the original caller of 1679 * getpages so don't play cute tricks here. 1680 * 1681 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE 1682 * AS THIS MESSES WITH object->memq, and it is 1683 * not legal to mess with object->memq from an 1684 * interrupt. 1685 */ 1686 1687 m->valid = 0; 1688 vm_page_flag_clear(m, PG_ZERO); 1689 1690 /* 1691 * bio_driver_info holds the requested page 1692 * index. 1693 */ 1694 if (i != (int)bio->bio_driver_info) 1695 vm_page_free(m); 1696 else 1697 vm_page_flash(m); 1698 /* 1699 * If i == bp->b_pager.pg_reqpage, do not wake 1700 * the page up. The caller needs to. 1701 */ 1702 } else { 1703 /* 1704 * If a write error occurs, reactivate page 1705 * so it doesn't clog the inactive list, 1706 * then finish the I/O. 1707 */ 1708 vm_page_dirty(m); 1709 vm_page_activate(m); 1710 vm_page_io_finish(m); 1711 } 1712 } else if (bp->b_flags & B_READ) { 1713 /* 1714 * For read success, clear dirty bits. Nobody should 1715 * have this page mapped but don't take any chances, 1716 * make sure the pmap modify bits are also cleared. 1717 * 1718 * NOTE: for reads, m->dirty will probably be 1719 * overridden by the original caller of getpages so 1720 * we cannot set them in order to free the underlying 1721 * swap in a low-swap situation. I don't think we'd 1722 * want to do that anyway, but it was an optimization 1723 * that existed in the old swapper for a time before 1724 * it got ripped out due to precisely this problem. 1725 * 1726 * clear PG_ZERO in page. 1727 * 1728 * If not the requested page then deactivate it. 1729 * 1730 * Note that the requested page, reqpage, is left 1731 * busied, but we still have to wake it up. The 1732 * other pages are released (unbusied) by 1733 * vm_page_wakeup(). We do not set reqpage's 1734 * valid bits here, it is up to the caller. 1735 */ 1736 1737 pmap_clear_modify(m); 1738 m->valid = VM_PAGE_BITS_ALL; 1739 vm_page_undirty(m); 1740 vm_page_flag_clear(m, PG_ZERO); 1741 1742 /* 1743 * We have to wake specifically requested pages 1744 * up too because we cleared PG_SWAPINPROG and 1745 * could be waiting for it in getpages. However, 1746 * be sure to not unbusy getpages specifically 1747 * requested page - getpages expects it to be 1748 * left busy. 1749 * 1750 * bio_driver_info holds the requested page 1751 */ 1752 if (i != (int)bio->bio_driver_info) { 1753 vm_page_deactivate(m); 1754 vm_page_wakeup(m); 1755 } else { 1756 vm_page_flash(m); 1757 } 1758 } else { 1759 /* 1760 * For write success, clear the modify and dirty 1761 * status, then finish the I/O ( which decrements the 1762 * busy count and possibly wakes waiter's up ). 1763 */ 1764 pmap_clear_modify(m); 1765 vm_page_undirty(m); 1766 vm_page_io_finish(m); 1767 if (!vm_page_count_severe() || !vm_page_try_to_cache(m)) 1768 vm_page_protect(m, VM_PROT_READ); 1769 } 1770 } 1771 1772 /* 1773 * adjust pip. NOTE: the original parent may still have its own 1774 * pip refs on the object. 1775 */ 1776 1777 if (object) 1778 vm_object_pip_wakeupn(object, bp->b_xio.xio_npages); 1779 1780 /* 1781 * release the physical I/O buffer 1782 */ 1783 1784 relpbuf( 1785 bp, 1786 ((bp->b_flags & B_READ) ? &nsw_rcount : 1787 ((bp->b_flags & B_ASYNC) ? 1788 &nsw_wcount_async : 1789 &nsw_wcount_sync 1790 ) 1791 ) 1792 ); 1793 crit_exit(); 1794 } 1795 1796 /************************************************************************ 1797 * SWAP META DATA * 1798 ************************************************************************ 1799 * 1800 * These routines manipulate the swap metadata stored in the 1801 * OBJT_SWAP object. All swp_*() routines must be called at 1802 * splvm() because swap can be freed up by the low level vm_page 1803 * code which might be called from interrupts beyond what splbio() covers. 1804 * 1805 * Swap metadata is implemented with a global hash and not directly 1806 * linked into the object. Instead the object simply contains 1807 * appropriate tracking counters. 1808 */ 1809 1810 /* 1811 * SWP_PAGER_HASH() - hash swap meta data 1812 * 1813 * This is an inline helper function which hashes the swapblk given 1814 * the object and page index. It returns a pointer to a pointer 1815 * to the object, or a pointer to a NULL pointer if it could not 1816 * find a swapblk. 1817 * 1818 * This routine must be called at splvm(). 1819 */ 1820 1821 static __inline struct swblock ** 1822 swp_pager_hash(vm_object_t object, vm_pindex_t index) 1823 { 1824 struct swblock **pswap; 1825 struct swblock *swap; 1826 1827 index &= ~SWAP_META_MASK; 1828 pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask]; 1829 1830 while ((swap = *pswap) != NULL) { 1831 if (swap->swb_object == object && 1832 swap->swb_index == index 1833 ) { 1834 break; 1835 } 1836 pswap = &swap->swb_hnext; 1837 } 1838 return(pswap); 1839 } 1840 1841 /* 1842 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1843 * 1844 * We first convert the object to a swap object if it is a default 1845 * object. 1846 * 1847 * The specified swapblk is added to the object's swap metadata. If 1848 * the swapblk is not valid, it is freed instead. Any previously 1849 * assigned swapblk is freed. 1850 * 1851 * This routine must be called at splvm(), except when used to convert 1852 * an OBJT_DEFAULT object into an OBJT_SWAP object. 1853 1854 */ 1855 1856 static void 1857 swp_pager_meta_build( 1858 vm_object_t object, 1859 vm_pindex_t index, 1860 daddr_t swapblk 1861 ) { 1862 struct swblock *swap; 1863 struct swblock **pswap; 1864 1865 /* 1866 * Convert default object to swap object if necessary 1867 */ 1868 1869 if (object->type != OBJT_SWAP) { 1870 object->type = OBJT_SWAP; 1871 object->un_pager.swp.swp_bcount = 0; 1872 1873 if (object->handle != NULL) { 1874 TAILQ_INSERT_TAIL( 1875 NOBJLIST(object->handle), 1876 object, 1877 pager_object_list 1878 ); 1879 } else { 1880 TAILQ_INSERT_TAIL( 1881 &swap_pager_un_object_list, 1882 object, 1883 pager_object_list 1884 ); 1885 } 1886 } 1887 1888 /* 1889 * Locate hash entry. If not found create, but if we aren't adding 1890 * anything just return. If we run out of space in the map we wait 1891 * and, since the hash table may have changed, retry. 1892 */ 1893 1894 retry: 1895 pswap = swp_pager_hash(object, index); 1896 1897 if ((swap = *pswap) == NULL) { 1898 int i; 1899 1900 if (swapblk == SWAPBLK_NONE) 1901 return; 1902 1903 swap = *pswap = zalloc(swap_zone); 1904 if (swap == NULL) { 1905 vm_wait(); 1906 goto retry; 1907 } 1908 swap->swb_hnext = NULL; 1909 swap->swb_object = object; 1910 swap->swb_index = index & ~SWAP_META_MASK; 1911 swap->swb_count = 0; 1912 1913 ++object->un_pager.swp.swp_bcount; 1914 1915 for (i = 0; i < SWAP_META_PAGES; ++i) 1916 swap->swb_pages[i] = SWAPBLK_NONE; 1917 } 1918 1919 /* 1920 * Delete prior contents of metadata 1921 */ 1922 1923 index &= SWAP_META_MASK; 1924 1925 if (swap->swb_pages[index] != SWAPBLK_NONE) { 1926 swp_pager_freeswapspace(swap->swb_pages[index], 1); 1927 --swap->swb_count; 1928 } 1929 1930 /* 1931 * Enter block into metadata 1932 */ 1933 1934 swap->swb_pages[index] = swapblk; 1935 if (swapblk != SWAPBLK_NONE) 1936 ++swap->swb_count; 1937 } 1938 1939 /* 1940 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1941 * 1942 * The requested range of blocks is freed, with any associated swap 1943 * returned to the swap bitmap. 1944 * 1945 * This routine will free swap metadata structures as they are cleaned 1946 * out. This routine does *NOT* operate on swap metadata associated 1947 * with resident pages. 1948 * 1949 * This routine must be called at splvm() 1950 */ 1951 1952 static void 1953 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count) 1954 { 1955 if (object->type != OBJT_SWAP) 1956 return; 1957 1958 while (count > 0) { 1959 struct swblock **pswap; 1960 struct swblock *swap; 1961 1962 pswap = swp_pager_hash(object, index); 1963 1964 if ((swap = *pswap) != NULL) { 1965 daddr_t v = swap->swb_pages[index & SWAP_META_MASK]; 1966 1967 if (v != SWAPBLK_NONE) { 1968 swp_pager_freeswapspace(v, 1); 1969 swap->swb_pages[index & SWAP_META_MASK] = 1970 SWAPBLK_NONE; 1971 if (--swap->swb_count == 0) { 1972 *pswap = swap->swb_hnext; 1973 zfree(swap_zone, swap); 1974 --object->un_pager.swp.swp_bcount; 1975 } 1976 } 1977 --count; 1978 ++index; 1979 } else { 1980 int n = SWAP_META_PAGES - (index & SWAP_META_MASK); 1981 count -= n; 1982 index += n; 1983 } 1984 } 1985 } 1986 1987 /* 1988 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 1989 * 1990 * This routine locates and destroys all swap metadata associated with 1991 * an object. 1992 * 1993 * This routine must be called at splvm() 1994 */ 1995 1996 static void 1997 swp_pager_meta_free_all(vm_object_t object) 1998 { 1999 daddr_t index = 0; 2000 2001 if (object->type != OBJT_SWAP) 2002 return; 2003 2004 while (object->un_pager.swp.swp_bcount) { 2005 struct swblock **pswap; 2006 struct swblock *swap; 2007 2008 pswap = swp_pager_hash(object, index); 2009 if ((swap = *pswap) != NULL) { 2010 int i; 2011 2012 for (i = 0; i < SWAP_META_PAGES; ++i) { 2013 daddr_t v = swap->swb_pages[i]; 2014 if (v != SWAPBLK_NONE) { 2015 --swap->swb_count; 2016 swp_pager_freeswapspace(v, 1); 2017 } 2018 } 2019 if (swap->swb_count != 0) 2020 panic("swap_pager_meta_free_all: swb_count != 0"); 2021 *pswap = swap->swb_hnext; 2022 zfree(swap_zone, swap); 2023 --object->un_pager.swp.swp_bcount; 2024 } 2025 index += SWAP_META_PAGES; 2026 if (index > 0x20000000) 2027 panic("swp_pager_meta_free_all: failed to locate all swap meta blocks"); 2028 } 2029 } 2030 2031 /* 2032 * SWP_PAGER_METACTL() - misc control of swap and vm_page_t meta data. 2033 * 2034 * This routine is capable of looking up, popping, or freeing 2035 * swapblk assignments in the swap meta data or in the vm_page_t. 2036 * The routine typically returns the swapblk being looked-up, or popped, 2037 * or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block 2038 * was invalid. This routine will automatically free any invalid 2039 * meta-data swapblks. 2040 * 2041 * It is not possible to store invalid swapblks in the swap meta data 2042 * (other then a literal 'SWAPBLK_NONE'), so we don't bother checking. 2043 * 2044 * When acting on a busy resident page and paging is in progress, we 2045 * have to wait until paging is complete but otherwise can act on the 2046 * busy page. 2047 * 2048 * This routine must be called at splvm(). 2049 * 2050 * SWM_FREE remove and free swap block from metadata 2051 * SWM_POP remove from meta data but do not free.. pop it out 2052 */ 2053 2054 static daddr_t 2055 swp_pager_meta_ctl( 2056 vm_object_t object, 2057 vm_pindex_t index, 2058 int flags 2059 ) { 2060 struct swblock **pswap; 2061 struct swblock *swap; 2062 daddr_t r1; 2063 2064 /* 2065 * The meta data only exists of the object is OBJT_SWAP 2066 * and even then might not be allocated yet. 2067 */ 2068 2069 if (object->type != OBJT_SWAP) 2070 return(SWAPBLK_NONE); 2071 2072 r1 = SWAPBLK_NONE; 2073 pswap = swp_pager_hash(object, index); 2074 2075 if ((swap = *pswap) != NULL) { 2076 index &= SWAP_META_MASK; 2077 r1 = swap->swb_pages[index]; 2078 2079 if (r1 != SWAPBLK_NONE) { 2080 if (flags & SWM_FREE) { 2081 swp_pager_freeswapspace(r1, 1); 2082 r1 = SWAPBLK_NONE; 2083 } 2084 if (flags & (SWM_FREE|SWM_POP)) { 2085 swap->swb_pages[index] = SWAPBLK_NONE; 2086 if (--swap->swb_count == 0) { 2087 *pswap = swap->swb_hnext; 2088 zfree(swap_zone, swap); 2089 --object->un_pager.swp.swp_bcount; 2090 } 2091 } 2092 } 2093 } 2094 return(r1); 2095 } 2096