xref: /dflybsd-src/sys/vm/swap_pager.c (revision 41871674d0079dec70d55eb824f39d07dc7b3310)
1 /*
2  * Copyright (c) 1998,2004 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * Copyright (c) 1994 John S. Dyson
35  * Copyright (c) 1990 University of Utah.
36  * Copyright (c) 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  *
39  * This code is derived from software contributed to Berkeley by
40  * the Systems Programming Group of the University of Utah Computer
41  * Science Department.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *				New Swap System
72  *				Matthew Dillon
73  *
74  * Radix Bitmap 'blists'.
75  *
76  *	- The new swapper uses the new radix bitmap code.  This should scale
77  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
78  *	  arbitrary degree of fragmentation.
79  *
80  * Features:
81  *
82  *	- on the fly reallocation of swap during putpages.  The new system
83  *	  does not try to keep previously allocated swap blocks for dirty
84  *	  pages.
85  *
86  *	- on the fly deallocation of swap
87  *
88  *	- No more garbage collection required.  Unnecessarily allocated swap
89  *	  blocks only exist for dirty vm_page_t's now and these are already
90  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
91  *	  removal of invalidated swap blocks when a page is destroyed
92  *	  or renamed.
93  *
94  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
95  *
96  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
97  *
98  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
99  * $DragonFly: src/sys/vm/swap_pager.c,v 1.20 2006/03/27 01:54:18 dillon Exp $
100  */
101 
102 #include <sys/param.h>
103 #include <sys/systm.h>
104 #include <sys/conf.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/buf.h>
108 #include <sys/vnode.h>
109 #include <sys/malloc.h>
110 #include <sys/vmmeter.h>
111 #include <sys/sysctl.h>
112 #include <sys/blist.h>
113 #include <sys/lock.h>
114 #include <sys/thread2.h>
115 
116 #ifndef MAX_PAGEOUT_CLUSTER
117 #define MAX_PAGEOUT_CLUSTER 16
118 #endif
119 
120 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
121 
122 #include "opt_swap.h"
123 #include <vm/vm.h>
124 #include <vm/vm_object.h>
125 #include <vm/vm_page.h>
126 #include <vm/vm_pager.h>
127 #include <vm/vm_pageout.h>
128 #include <vm/swap_pager.h>
129 #include <vm/vm_extern.h>
130 #include <vm/vm_zone.h>
131 
132 #include <sys/buf2.h>
133 #include <vm/vm_page2.h>
134 
135 #define SWM_FREE	0x02	/* free, period			*/
136 #define SWM_POP		0x04	/* pop out			*/
137 
138 /*
139  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
140  * in the old system.
141  */
142 
143 extern int vm_swap_size;	/* number of free swap blocks, in pages */
144 
145 int swap_pager_full;		/* swap space exhaustion (task killing) */
146 static int swap_pager_almost_full; /* swap space exhaustion (w/ hysteresis)*/
147 static int nsw_rcount;		/* free read buffers			*/
148 static int nsw_wcount_sync;	/* limit write buffers / synchronous	*/
149 static int nsw_wcount_async;	/* limit write buffers / asynchronous	*/
150 static int nsw_wcount_async_max;/* assigned maximum			*/
151 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
152 static int sw_alloc_interlock;	/* swap pager allocation interlock	*/
153 
154 struct blist *swapblist;
155 static struct swblock **swhash;
156 static int swhash_mask;
157 static int swap_async_max = 4;	/* maximum in-progress async I/O's	*/
158 
159 extern struct vnode *swapdev_vp;	/* from vm_swap.c */
160 
161 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
162         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
163 
164 /*
165  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
166  * of searching a named list by hashing it just a little.
167  */
168 
169 #define NOBJLISTS		8
170 
171 #define NOBJLIST(handle)	\
172 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
173 
174 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
175 struct pagerlst		swap_pager_un_object_list;
176 vm_zone_t		swap_zone;
177 
178 /*
179  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
180  * calls hooked from other parts of the VM system and do not appear here.
181  * (see vm/swap_pager.h).
182  */
183 
184 static vm_object_t
185 		swap_pager_alloc (void *handle, off_t size,
186 				  vm_prot_t prot, off_t offset);
187 static void	swap_pager_dealloc (vm_object_t object);
188 static int	swap_pager_getpages (vm_object_t, vm_page_t *, int, int);
189 static void	swap_pager_init (void);
190 static void	swap_pager_unswapped (vm_page_t);
191 static void	swap_pager_strategy (vm_object_t, struct bio *);
192 static void	swap_chain_iodone(struct bio *biox);
193 
194 struct pagerops swappagerops = {
195 	swap_pager_init,	/* early system initialization of pager	*/
196 	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
197 	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
198 	swap_pager_getpages,	/* pagein				*/
199 	swap_pager_putpages,	/* pageout				*/
200 	swap_pager_haspage,	/* get backing store status for page	*/
201 	swap_pager_unswapped,	/* remove swap related to page		*/
202 	swap_pager_strategy	/* pager strategy call			*/
203 };
204 
205 /*
206  * dmmax is in page-sized chunks with the new swap system.  It was
207  * dev-bsized chunks in the old.  dmmax is always a power of 2.
208  *
209  * swap_*() routines are externally accessible.  swp_*() routines are
210  * internal.
211  */
212 
213 int dmmax;
214 static int dmmax_mask;
215 int nswap_lowat = 128;		/* in pages, swap_pager_almost_full warn */
216 int nswap_hiwat = 512;		/* in pages, swap_pager_almost_full warn */
217 
218 static __inline void	swp_sizecheck (void);
219 static void	swp_pager_sync_iodone (struct bio *bio);
220 static void	swp_pager_async_iodone (struct bio *bio);
221 
222 /*
223  * Swap bitmap functions
224  */
225 
226 static __inline void	swp_pager_freeswapspace (daddr_t blk, int npages);
227 static __inline daddr_t	swp_pager_getswapspace (int npages);
228 
229 /*
230  * Metadata functions
231  */
232 
233 static void swp_pager_meta_build (vm_object_t, vm_pindex_t, daddr_t);
234 static void swp_pager_meta_free (vm_object_t, vm_pindex_t, daddr_t);
235 static void swp_pager_meta_free_all (vm_object_t);
236 static daddr_t swp_pager_meta_ctl (vm_object_t, vm_pindex_t, int);
237 
238 /*
239  * SWP_SIZECHECK() -	update swap_pager_full indication
240  *
241  *	update the swap_pager_almost_full indication and warn when we are
242  *	about to run out of swap space, using lowat/hiwat hysteresis.
243  *
244  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
245  *
246  *	No restrictions on call
247  *	This routine may not block.
248  *	This routine must be called at splvm()
249  */
250 
251 static __inline void
252 swp_sizecheck(void)
253 {
254 	if (vm_swap_size < nswap_lowat) {
255 		if (swap_pager_almost_full == 0) {
256 			printf("swap_pager: out of swap space\n");
257 			swap_pager_almost_full = 1;
258 		}
259 	} else {
260 		swap_pager_full = 0;
261 		if (vm_swap_size > nswap_hiwat)
262 			swap_pager_almost_full = 0;
263 	}
264 }
265 
266 /*
267  * SWAP_PAGER_INIT() -	initialize the swap pager!
268  *
269  *	Expected to be started from system init.  NOTE:  This code is run
270  *	before much else so be careful what you depend on.  Most of the VM
271  *	system has yet to be initialized at this point.
272  */
273 
274 static void
275 swap_pager_init(void)
276 {
277 	/*
278 	 * Initialize object lists
279 	 */
280 	int i;
281 
282 	for (i = 0; i < NOBJLISTS; ++i)
283 		TAILQ_INIT(&swap_pager_object_list[i]);
284 	TAILQ_INIT(&swap_pager_un_object_list);
285 
286 	/*
287 	 * Device Stripe, in PAGE_SIZE'd blocks
288 	 */
289 
290 	dmmax = SWB_NPAGES * 2;
291 	dmmax_mask = ~(dmmax - 1);
292 }
293 
294 /*
295  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
296  *
297  *	Expected to be started from pageout process once, prior to entering
298  *	its main loop.
299  */
300 
301 void
302 swap_pager_swap_init(void)
303 {
304 	int n, n2;
305 
306 	/*
307 	 * Number of in-transit swap bp operations.  Don't
308 	 * exhaust the pbufs completely.  Make sure we
309 	 * initialize workable values (0 will work for hysteresis
310 	 * but it isn't very efficient).
311 	 *
312 	 * The nsw_cluster_max is constrained by the number of pages an XIO
313 	 * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
314 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
315 	 * constrained by the swap device interleave stripe size.
316 	 *
317 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
318 	 * designed to prevent other I/O from having high latencies due to
319 	 * our pageout I/O.  The value 4 works well for one or two active swap
320 	 * devices but is probably a little low if you have more.  Even so,
321 	 * a higher value would probably generate only a limited improvement
322 	 * with three or four active swap devices since the system does not
323 	 * typically have to pageout at extreme bandwidths.   We will want
324 	 * at least 2 per swap devices, and 4 is a pretty good value if you
325 	 * have one NFS swap device due to the command/ack latency over NFS.
326 	 * So it all works out pretty well.
327 	 */
328 
329 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
330 
331 	nsw_rcount = (nswbuf + 1) / 2;
332 	nsw_wcount_sync = (nswbuf + 3) / 4;
333 	nsw_wcount_async = 4;
334 	nsw_wcount_async_max = nsw_wcount_async;
335 
336 	/*
337 	 * Initialize our zone.  Right now I'm just guessing on the number
338 	 * we need based on the number of pages in the system.  Each swblock
339 	 * can hold 16 pages, so this is probably overkill.  This reservation
340 	 * is typically limited to around 32MB by default.
341 	 */
342 	n = vmstats.v_page_count / 2;
343 	if (maxswzone && n > maxswzone / sizeof(struct swblock))
344 		n = maxswzone / sizeof(struct swblock);
345 	n2 = n;
346 
347 	do {
348 		swap_zone = zinit(
349 			"SWAPMETA",
350 			sizeof(struct swblock),
351 			n,
352 			ZONE_INTERRUPT,
353 			1);
354 		if (swap_zone != NULL)
355 			break;
356 		/*
357 		 * if the allocation failed, try a zone two thirds the
358 		 * size of the previous attempt.
359 		 */
360 		n -= ((n + 2) / 3);
361 	} while (n > 0);
362 
363 	if (swap_zone == NULL)
364 		panic("swap_pager_swap_init: swap_zone == NULL");
365 	if (n2 != n)
366 		printf("Swap zone entries reduced from %d to %d.\n", n2, n);
367 	n2 = n;
368 
369 	/*
370 	 * Initialize our meta-data hash table.  The swapper does not need to
371 	 * be quite as efficient as the VM system, so we do not use an
372 	 * oversized hash table.
373 	 *
374 	 * 	n: 		size of hash table, must be power of 2
375 	 *	swhash_mask:	hash table index mask
376 	 */
377 
378 	for (n = 1; n < n2 / 8; n *= 2)
379 		;
380 
381 	swhash = malloc(sizeof(struct swblock *) * n, M_VMPGDATA, M_WAITOK);
382 	bzero(swhash, sizeof(struct swblock *) * n);
383 
384 	swhash_mask = n - 1;
385 }
386 
387 /*
388  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
389  *			its metadata structures.
390  *
391  *	This routine is called from the mmap and fork code to create a new
392  *	OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
393  *	and then converting it with swp_pager_meta_build().
394  *
395  *	This routine may block in vm_object_allocate() and create a named
396  *	object lookup race, so we must interlock.   We must also run at
397  *	splvm() for the object lookup to handle races with interrupts, but
398  *	we do not have to maintain splvm() in between the lookup and the
399  *	add because (I believe) it is not possible to attempt to create
400  *	a new swap object w/handle when a default object with that handle
401  *	already exists.
402  */
403 
404 static vm_object_t
405 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
406 {
407 	vm_object_t object;
408 
409 	if (handle) {
410 		/*
411 		 * Reference existing named region or allocate new one.  There
412 		 * should not be a race here against swp_pager_meta_build()
413 		 * as called from vm_page_remove() in regards to the lookup
414 		 * of the handle.
415 		 */
416 
417 		while (sw_alloc_interlock) {
418 			sw_alloc_interlock = -1;
419 			tsleep(&sw_alloc_interlock, 0, "swpalc", 0);
420 		}
421 		sw_alloc_interlock = 1;
422 
423 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
424 
425 		if (object != NULL) {
426 			vm_object_reference(object);
427 		} else {
428 			object = vm_object_allocate(OBJT_DEFAULT,
429 				OFF_TO_IDX(offset + PAGE_MASK + size));
430 			object->handle = handle;
431 
432 			swp_pager_meta_build(object, 0, SWAPBLK_NONE);
433 		}
434 
435 		if (sw_alloc_interlock < 0)
436 			wakeup(&sw_alloc_interlock);
437 
438 		sw_alloc_interlock = 0;
439 	} else {
440 		object = vm_object_allocate(OBJT_DEFAULT,
441 			OFF_TO_IDX(offset + PAGE_MASK + size));
442 
443 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
444 	}
445 
446 	return (object);
447 }
448 
449 /*
450  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
451  *
452  *	The swap backing for the object is destroyed.  The code is
453  *	designed such that we can reinstantiate it later, but this
454  *	routine is typically called only when the entire object is
455  *	about to be destroyed.
456  *
457  *	This routine may block, but no longer does.
458  *
459  *	The object must be locked or unreferenceable.
460  */
461 
462 static void
463 swap_pager_dealloc(vm_object_t object)
464 {
465 	/*
466 	 * Remove from list right away so lookups will fail if we block for
467 	 * pageout completion.
468 	 */
469 
470 	if (object->handle == NULL) {
471 		TAILQ_REMOVE(&swap_pager_un_object_list, object, pager_object_list);
472 	} else {
473 		TAILQ_REMOVE(NOBJLIST(object->handle), object, pager_object_list);
474 	}
475 
476 	vm_object_pip_wait(object, "swpdea");
477 
478 	/*
479 	 * Free all remaining metadata.  We only bother to free it from
480 	 * the swap meta data.  We do not attempt to free swapblk's still
481 	 * associated with vm_page_t's for this object.  We do not care
482 	 * if paging is still in progress on some objects.
483 	 */
484 	crit_enter();
485 	swp_pager_meta_free_all(object);
486 	crit_exit();
487 }
488 
489 /************************************************************************
490  *			SWAP PAGER BITMAP ROUTINES			*
491  ************************************************************************/
492 
493 /*
494  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
495  *
496  *	Allocate swap for the requested number of pages.  The starting
497  *	swap block number (a page index) is returned or SWAPBLK_NONE
498  *	if the allocation failed.
499  *
500  *	Also has the side effect of advising that somebody made a mistake
501  *	when they configured swap and didn't configure enough.
502  *
503  *	Must be called at splvm() to avoid races with bitmap frees from
504  *	vm_page_remove() aka swap_pager_page_removed().
505  *
506  *	This routine may not block
507  *	This routine must be called at splvm().
508  */
509 
510 static __inline daddr_t
511 swp_pager_getswapspace(int npages)
512 {
513 	daddr_t blk;
514 
515 	if ((blk = blist_alloc(swapblist, npages)) == SWAPBLK_NONE) {
516 		if (swap_pager_full != 2) {
517 			printf("swap_pager_getswapspace: failed\n");
518 			swap_pager_full = 2;
519 			swap_pager_almost_full = 1;
520 		}
521 	} else {
522 		vm_swap_size -= npages;
523 		swp_sizecheck();
524 	}
525 	return(blk);
526 }
527 
528 /*
529  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
530  *
531  *	This routine returns the specified swap blocks back to the bitmap.
532  *
533  *	Note:  This routine may not block (it could in the old swap code),
534  *	and through the use of the new blist routines it does not block.
535  *
536  *	We must be called at splvm() to avoid races with bitmap frees from
537  *	vm_page_remove() aka swap_pager_page_removed().
538  *
539  *	This routine may not block
540  *	This routine must be called at splvm().
541  */
542 
543 static __inline void
544 swp_pager_freeswapspace(daddr_t blk, int npages)
545 {
546 	blist_free(swapblist, blk, npages);
547 	vm_swap_size += npages;
548 	swp_sizecheck();
549 }
550 
551 /*
552  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
553  *				range within an object.
554  *
555  *	This is a globally accessible routine.
556  *
557  *	This routine removes swapblk assignments from swap metadata.
558  *
559  *	The external callers of this routine typically have already destroyed
560  *	or renamed vm_page_t's associated with this range in the object so
561  *	we should be ok.
562  *
563  *	This routine may be called at any spl.  We up our spl to splvm temporarily
564  *	in order to perform the metadata removal.
565  */
566 
567 void
568 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
569 {
570 	crit_enter();
571 	swp_pager_meta_free(object, start, size);
572 	crit_exit();
573 }
574 
575 /*
576  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
577  *
578  *	Assigns swap blocks to the specified range within the object.  The
579  *	swap blocks are not zerod.  Any previous swap assignment is destroyed.
580  *
581  *	Returns 0 on success, -1 on failure.
582  */
583 
584 int
585 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
586 {
587 	int n = 0;
588 	daddr_t blk = SWAPBLK_NONE;
589 	vm_pindex_t beg = start;	/* save start index */
590 
591 	crit_enter();
592 	while (size) {
593 		if (n == 0) {
594 			n = BLIST_MAX_ALLOC;
595 			while ((blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE) {
596 				n >>= 1;
597 				if (n == 0) {
598 					swp_pager_meta_free(object, beg, start - beg);
599 					crit_exit();
600 					return(-1);
601 				}
602 			}
603 		}
604 		swp_pager_meta_build(object, start, blk);
605 		--size;
606 		++start;
607 		++blk;
608 		--n;
609 	}
610 	swp_pager_meta_free(object, start, n);
611 	crit_exit();
612 	return(0);
613 }
614 
615 /*
616  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
617  *			and destroy the source.
618  *
619  *	Copy any valid swapblks from the source to the destination.  In
620  *	cases where both the source and destination have a valid swapblk,
621  *	we keep the destination's.
622  *
623  *	This routine is allowed to block.  It may block allocating metadata
624  *	indirectly through swp_pager_meta_build() or if paging is still in
625  *	progress on the source.
626  *
627  *	This routine can be called at any spl
628  *
629  *	XXX vm_page_collapse() kinda expects us not to block because we
630  *	supposedly do not need to allocate memory, but for the moment we
631  *	*may* have to get a little memory from the zone allocator, but
632  *	it is taken from the interrupt memory.  We should be ok.
633  *
634  *	The source object contains no vm_page_t's (which is just as well)
635  *
636  *	The source object is of type OBJT_SWAP.
637  *
638  *	The source and destination objects must be locked or
639  *	inaccessible (XXX are they ?)
640  */
641 
642 void
643 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
644     vm_pindex_t offset, int destroysource)
645 {
646 	vm_pindex_t i;
647 
648 	crit_enter();
649 
650 	/*
651 	 * If destroysource is set, we remove the source object from the
652 	 * swap_pager internal queue now.
653 	 */
654 
655 	if (destroysource) {
656 		if (srcobject->handle == NULL) {
657 			TAILQ_REMOVE(
658 			    &swap_pager_un_object_list,
659 			    srcobject,
660 			    pager_object_list
661 			);
662 		} else {
663 			TAILQ_REMOVE(
664 			    NOBJLIST(srcobject->handle),
665 			    srcobject,
666 			    pager_object_list
667 			);
668 		}
669 	}
670 
671 	/*
672 	 * transfer source to destination.
673 	 */
674 
675 	for (i = 0; i < dstobject->size; ++i) {
676 		daddr_t dstaddr;
677 
678 		/*
679 		 * Locate (without changing) the swapblk on the destination,
680 		 * unless it is invalid in which case free it silently, or
681 		 * if the destination is a resident page, in which case the
682 		 * source is thrown away.
683 		 */
684 
685 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
686 
687 		if (dstaddr == SWAPBLK_NONE) {
688 			/*
689 			 * Destination has no swapblk and is not resident,
690 			 * copy source.
691 			 */
692 			daddr_t srcaddr;
693 
694 			srcaddr = swp_pager_meta_ctl(
695 			    srcobject,
696 			    i + offset,
697 			    SWM_POP
698 			);
699 
700 			if (srcaddr != SWAPBLK_NONE)
701 				swp_pager_meta_build(dstobject, i, srcaddr);
702 		} else {
703 			/*
704 			 * Destination has valid swapblk or it is represented
705 			 * by a resident page.  We destroy the sourceblock.
706 			 */
707 
708 			swp_pager_meta_ctl(srcobject, i + offset, SWM_FREE);
709 		}
710 	}
711 
712 	/*
713 	 * Free left over swap blocks in source.
714 	 *
715 	 * We have to revert the type to OBJT_DEFAULT so we do not accidently
716 	 * double-remove the object from the swap queues.
717 	 */
718 
719 	if (destroysource) {
720 		swp_pager_meta_free_all(srcobject);
721 		/*
722 		 * Reverting the type is not necessary, the caller is going
723 		 * to destroy srcobject directly, but I'm doing it here
724 		 * for consistency since we've removed the object from its
725 		 * queues.
726 		 */
727 		srcobject->type = OBJT_DEFAULT;
728 	}
729 	crit_exit();
730 }
731 
732 /*
733  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
734  *				the requested page.
735  *
736  *	We determine whether good backing store exists for the requested
737  *	page and return TRUE if it does, FALSE if it doesn't.
738  *
739  *	If TRUE, we also try to determine how much valid, contiguous backing
740  *	store exists before and after the requested page within a reasonable
741  *	distance.  We do not try to restrict it to the swap device stripe
742  *	(that is handled in getpages/putpages).  It probably isn't worth
743  *	doing here.
744  */
745 
746 boolean_t
747 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
748     int *after)
749 {
750 	daddr_t blk0;
751 
752 	/*
753 	 * do we have good backing store at the requested index ?
754 	 */
755 
756 	crit_enter();
757 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
758 
759 	if (blk0 == SWAPBLK_NONE) {
760 		crit_exit();
761 		if (before)
762 			*before = 0;
763 		if (after)
764 			*after = 0;
765 		return (FALSE);
766 	}
767 
768 	/*
769 	 * find backwards-looking contiguous good backing store
770 	 */
771 
772 	if (before != NULL) {
773 		int i;
774 
775 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
776 			daddr_t blk;
777 
778 			if (i > pindex)
779 				break;
780 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
781 			if (blk != blk0 - i)
782 				break;
783 		}
784 		*before = (i - 1);
785 	}
786 
787 	/*
788 	 * find forward-looking contiguous good backing store
789 	 */
790 
791 	if (after != NULL) {
792 		int i;
793 
794 		for (i = 1; i < (SWB_NPAGES/2); ++i) {
795 			daddr_t blk;
796 
797 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
798 			if (blk != blk0 + i)
799 				break;
800 		}
801 		*after = (i - 1);
802 	}
803 	crit_exit();
804 	return (TRUE);
805 }
806 
807 /*
808  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
809  *
810  *	This removes any associated swap backing store, whether valid or
811  *	not, from the page.
812  *
813  *	This routine is typically called when a page is made dirty, at
814  *	which point any associated swap can be freed.  MADV_FREE also
815  *	calls us in a special-case situation
816  *
817  *	NOTE!!!  If the page is clean and the swap was valid, the caller
818  *	should make the page dirty before calling this routine.  This routine
819  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
820  *	depends on it.
821  *
822  *	This routine may not block
823  *	This routine must be called at splvm()
824  */
825 
826 static void
827 swap_pager_unswapped(vm_page_t m)
828 {
829 	swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
830 }
831 
832 /*
833  * SWAP_PAGER_STRATEGY() - read, write, free blocks
834  *
835  *	This implements the vm_pager_strategy() interface to swap and allows
836  *	other parts of the system to directly access swap as backing store
837  *	through vm_objects of type OBJT_SWAP.  This is intended to be a
838  *	cacheless interface ( i.e. caching occurs at higher levels ).
839  *	Therefore we do not maintain any resident pages.  All I/O goes
840  *	directly to and from the swap device.
841  *
842  *	We currently attempt to run I/O synchronously or asynchronously as
843  *	the caller requests.  This isn't perfect because we loose error
844  *	sequencing when we run multiple ops in parallel to satisfy a request.
845  *	But this is swap, so we let it all hang out.
846  */
847 
848 static void
849 swap_pager_strategy(vm_object_t object, struct bio *bio)
850 {
851 	struct buf *bp = bio->bio_buf;
852 	struct bio *nbio;
853 	vm_pindex_t start;
854 	vm_pindex_t biox_blkno = 0;
855 	int count;
856 	char *data;
857 	struct bio *biox = NULL;
858 	struct buf *bufx = NULL;
859 	struct bio_track *track;
860 
861 	/*
862 	 * tracking for swapdev vnode I/Os
863 	 */
864 	if (bp->b_flags & B_READ)
865 		track = &swapdev_vp->v_track_read;
866 	else
867 		track = &swapdev_vp->v_track_write;
868 
869 	if (bp->b_bcount & PAGE_MASK) {
870 		bp->b_error = EINVAL;
871 		bp->b_flags |= B_ERROR | B_INVAL;
872 		biodone(bio);
873 		printf("swap_pager_strategy: bp %p b_vp %p offset %lld size %d, not page bounded\n", bp, bp->b_vp, bio->bio_offset, (int)bp->b_bcount);
874 		return;
875 	}
876 
877 	/*
878 	 * Clear error indication, initialize page index, count, data pointer.
879 	 */
880 	bp->b_error = 0;
881 	bp->b_flags &= ~B_ERROR;
882 	bp->b_resid = bp->b_bcount;
883 
884 	start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
885 	count = howmany(bp->b_bcount, PAGE_SIZE);
886 	data = bp->b_data;
887 
888 	crit_enter();
889 
890 	/*
891 	 * Deal with B_FREEBUF
892 	 */
893 	if (bp->b_flags & B_FREEBUF) {
894 		/*
895 		 * FREE PAGE(s) - destroy underlying swap that is no longer
896 		 *		  needed.
897 		 */
898 		swp_pager_meta_free(object, start, count);
899 		crit_exit();
900 		bp->b_resid = 0;
901 		biodone(bio);
902 		return;
903 	}
904 
905 	/*
906 	 * We need to be able to create a new cluster of I/O's.  We cannot
907 	 * use the caller fields of the passed bio so push a new one.
908 	 *
909 	 * Because nbio is just a placeholder for the cluster links,
910 	 * we can biodone() the original bio instead of nbio to make
911 	 * things a bit more efficient.
912 	 */
913 	nbio = push_bio(bio);
914 	nbio->bio_offset = bio->bio_offset;
915 	nbio->bio_caller_info1.cluster_head = NULL;
916 	nbio->bio_caller_info2.cluster_tail = NULL;
917 
918 	/*
919 	 * Execute read or write
920 	 */
921 
922 	while (count > 0) {
923 		daddr_t blk;
924 
925 		/*
926 		 * Obtain block.  If block not found and writing, allocate a
927 		 * new block and build it into the object.
928 		 */
929 
930 		blk = swp_pager_meta_ctl(object, start, 0);
931 		if ((blk == SWAPBLK_NONE) && (bp->b_flags & B_READ) == 0) {
932 			blk = swp_pager_getswapspace(1);
933 			if (blk == SWAPBLK_NONE) {
934 				bp->b_error = ENOMEM;
935 				bp->b_flags |= B_ERROR;
936 				break;
937 			}
938 			swp_pager_meta_build(object, start, blk);
939 		}
940 
941 		/*
942 		 * Do we have to flush our current collection?  Yes if:
943 		 *
944 		 *	- no swap block at this index
945 		 *	- swap block is not contiguous
946 		 *	- we cross a physical disk boundry in the
947 		 *	  stripe.
948 		 */
949 
950 		if (
951 		    biox && (biox_blkno + btoc(bufx->b_bcount) != blk ||
952 		     ((biox_blkno ^ blk) & dmmax_mask)
953 		    )
954 		) {
955 			crit_exit();
956 			if (bp->b_flags & B_READ) {
957 				++mycpu->gd_cnt.v_swapin;
958 				mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
959 			} else {
960 				++mycpu->gd_cnt.v_swapout;
961 				mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
962 				bufx->b_dirtyend = bufx->b_bcount;
963 			}
964 
965 			/*
966 			 * Flush the biox to the swap device.
967 			 */
968 			if (bufx->b_bcount) {
969 				bufx->b_bufsize = bufx->b_bcount;
970 				if ((bufx->b_flags & B_READ) == 0)
971 					bufx->b_dirtyend = bufx->b_bcount;
972 				BUF_KERNPROC(bufx);
973 				vn_strategy(bufx->b_vp, biox);
974 			} else {
975 				biodone(biox);
976 			}
977 			crit_enter();
978 			biox = NULL;
979 			bufx = NULL;
980 		}
981 
982 		/*
983 		 * Add new swapblk to biox, instantiating biox if necessary.
984 		 * Zero-fill reads are able to take a shortcut.
985 		 */
986 		if (blk == SWAPBLK_NONE) {
987 			/*
988 			 * We can only get here if we are reading.  Since
989 			 * we are at splvm() we can safely modify b_resid,
990 			 * even if chain ops are in progress.
991 			 */
992 			bzero(data, PAGE_SIZE);
993 			bp->b_resid -= PAGE_SIZE;
994 		} else {
995 			if (biox == NULL) {
996 				/* XXX chain count > 4, wait to <= 4 */
997 
998 				bufx = getpbuf(NULL);
999 				biox = &bufx->b_bio1;
1000 				cluster_append(nbio, bufx);
1001 				bufx->b_flags = (bufx->b_flags & B_ORDERED) |
1002 						(bp->b_flags & B_READ) |
1003 						B_ASYNC;
1004 				pbgetvp(swapdev_vp, bufx);
1005 				biox->bio_done = swap_chain_iodone;
1006 				biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1007 				biox->bio_caller_info1.cluster_parent = nbio;
1008 				biox_blkno = blk;
1009 				bufx->b_bcount = 0;
1010 				bufx->b_data = data;
1011 			}
1012 			bufx->b_bcount += PAGE_SIZE;
1013 		}
1014 		--count;
1015 		++start;
1016 		data += PAGE_SIZE;
1017 	}
1018 
1019 	/*
1020 	 *  Flush out last buffer
1021 	 */
1022 	crit_exit();
1023 
1024 	if (biox) {
1025 		if ((bp->b_flags & B_ASYNC) == 0)
1026 			bufx->b_flags &= ~B_ASYNC;
1027 		if (bufx->b_flags & B_READ) {
1028 			++mycpu->gd_cnt.v_swapin;
1029 			mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1030 		} else {
1031 			++mycpu->gd_cnt.v_swapout;
1032 			mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1033 			bufx->b_dirtyend = bufx->b_bcount;
1034 		}
1035 		if (bufx->b_bcount) {
1036 			bufx->b_bufsize = bufx->b_bcount;
1037 			if ((bufx->b_flags & B_READ) == 0)
1038 				bufx->b_dirtyend = bufx->b_bcount;
1039 			BUF_KERNPROC(bufx);
1040 			vn_strategy(bufx->b_vp, biox);
1041 		} else {
1042 			biodone(biox);
1043 		}
1044 		/* biox, bufx = NULL */
1045 	}
1046 
1047 	/*
1048 	 * Wait for completion.
1049 	 */
1050 	if (bp->b_flags & B_ASYNC) {
1051 		crit_enter();
1052 		if (nbio->bio_caller_info1.cluster_head == NULL) {
1053 			biodone(bio);
1054 		} else {
1055 			bp->b_xflags |= BX_AUTOCHAINDONE;
1056 		}
1057 		crit_exit();
1058 	} else {
1059 		crit_enter();
1060 		while (nbio->bio_caller_info1.cluster_head != NULL) {
1061 			bp->b_flags |= B_WANT;
1062 			tsleep(bp, 0, "bpchain", 0);
1063 		}
1064 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1065 			bp->b_flags |= B_ERROR;
1066 			bp->b_error = EINVAL;
1067 		}
1068 		biodone(bio);
1069 		crit_exit();
1070 	}
1071 }
1072 
1073 static void
1074 swap_chain_iodone(struct bio *biox)
1075 {
1076 	struct buf **nextp;
1077 	struct buf *bufx;	/* chained sub-buffer */
1078 	struct bio *nbio;	/* parent nbio with chain glue */
1079 	struct buf *bp;		/* original bp associated with nbio */
1080 
1081 	bufx = biox->bio_buf;
1082 	nbio = biox->bio_caller_info1.cluster_parent;
1083 	bp = nbio->bio_buf;
1084 
1085 	/*
1086 	 * Update the original buffer
1087 	 */
1088         KKASSERT(bp != NULL);
1089 	if (bufx->b_flags & B_ERROR) {
1090 		bp->b_flags |= B_ERROR;
1091 		bp->b_error = bufx->b_error;
1092 	} else if (bufx->b_resid != 0) {
1093 		bp->b_flags |= B_ERROR;
1094 		bp->b_error = EINVAL;
1095 	} else {
1096 		bp->b_resid -= bufx->b_bcount;
1097 	}
1098 
1099 	/*
1100 	 * Remove us from the chain.  It is sufficient to clean up
1101 	 * cluster_head.  We do not have to clean up cluster_tail.
1102 	 */
1103 	nextp = &nbio->bio_caller_info1.cluster_head;
1104 	while (*nextp != bufx) {
1105 		KKASSERT(*nextp != NULL);
1106 		nextp = &(*nextp)->b_cluster_next;
1107 	}
1108 	*nextp = bufx->b_cluster_next;
1109 	if (bp->b_flags & B_WANT) {
1110 		bp->b_flags &= ~B_WANT;
1111 		wakeup(bp);
1112 	}
1113 
1114 	/*
1115 	 * Clean up bufx.  If this was the last buffer in the chain
1116 	 * and BX_AUTOCHAINDONE was set, finish off the original I/O
1117 	 * as well.
1118 	 *
1119 	 * nbio was just a fake BIO layer to hold the cluster links,
1120 	 * we can issue the biodone() on the layer above it.
1121 	 */
1122 	if (nbio->bio_caller_info1.cluster_head == NULL &&
1123 	    (bp->b_xflags & BX_AUTOCHAINDONE)) {
1124 		bp->b_xflags &= ~BX_AUTOCHAINDONE;
1125 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1126 			bp->b_flags |= B_ERROR;
1127 			bp->b_error = EINVAL;
1128 		}
1129 		biodone(nbio->bio_prev);
1130         }
1131         bufx->b_flags |= B_DONE;
1132         bufx->b_flags &= ~B_ASYNC;
1133         relpbuf(bufx, NULL);
1134 }
1135 
1136 /*
1137  * SWAP_PAGER_GETPAGES() - bring pages in from swap
1138  *
1139  *	Attempt to retrieve (m, count) pages from backing store, but make
1140  *	sure we retrieve at least m[reqpage].  We try to load in as large
1141  *	a chunk surrounding m[reqpage] as is contiguous in swap and which
1142  *	belongs to the same object.
1143  *
1144  *	The code is designed for asynchronous operation and
1145  *	immediate-notification of 'reqpage' but tends not to be
1146  *	used that way.  Please do not optimize-out this algorithmic
1147  *	feature, I intend to improve on it in the future.
1148  *
1149  *	The parent has a single vm_object_pip_add() reference prior to
1150  *	calling us and we should return with the same.
1151  *
1152  *	The parent has BUSY'd the pages.  We should return with 'm'
1153  *	left busy, but the others adjusted.
1154  */
1155 
1156 static int
1157 swap_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
1158 {
1159 	struct buf *bp;
1160 	struct bio *bio;
1161 	vm_page_t mreq;
1162 	int i;
1163 	int j;
1164 	daddr_t blk;
1165 	vm_offset_t kva;
1166 	vm_pindex_t lastpindex;
1167 
1168 	mreq = m[reqpage];
1169 
1170 	if (mreq->object != object) {
1171 		panic("swap_pager_getpages: object mismatch %p/%p",
1172 		    object,
1173 		    mreq->object
1174 		);
1175 	}
1176 	/*
1177 	 * Calculate range to retrieve.  The pages have already been assigned
1178 	 * their swapblks.  We require a *contiguous* range that falls entirely
1179 	 * within a single device stripe.   If we do not supply it, bad things
1180 	 * happen.  Note that blk, iblk & jblk can be SWAPBLK_NONE, but the
1181 	 * loops are set up such that the case(s) are handled implicitly.
1182 	 *
1183 	 * The swp_*() calls must be made at splvm().  vm_page_free() does
1184 	 * not need to be, but it will go a little faster if it is.
1185 	 */
1186 
1187 	crit_enter();
1188 	blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1189 
1190 	for (i = reqpage - 1; i >= 0; --i) {
1191 		daddr_t iblk;
1192 
1193 		iblk = swp_pager_meta_ctl(m[i]->object, m[i]->pindex, 0);
1194 		if (blk != iblk + (reqpage - i))
1195 			break;
1196 		if ((blk ^ iblk) & dmmax_mask)
1197 			break;
1198 	}
1199 	++i;
1200 
1201 	for (j = reqpage + 1; j < count; ++j) {
1202 		daddr_t jblk;
1203 
1204 		jblk = swp_pager_meta_ctl(m[j]->object, m[j]->pindex, 0);
1205 		if (blk != jblk - (j - reqpage))
1206 			break;
1207 		if ((blk ^ jblk) & dmmax_mask)
1208 			break;
1209 	}
1210 
1211 	/*
1212 	 * free pages outside our collection range.   Note: we never free
1213 	 * mreq, it must remain busy throughout.
1214 	 */
1215 
1216 	{
1217 		int k;
1218 
1219 		for (k = 0; k < i; ++k)
1220 			vm_page_free(m[k]);
1221 		for (k = j; k < count; ++k)
1222 			vm_page_free(m[k]);
1223 	}
1224 	crit_exit();
1225 
1226 
1227 	/*
1228 	 * Return VM_PAGER_FAIL if we have nothing to do.  Return mreq
1229 	 * still busy, but the others unbusied.
1230 	 */
1231 
1232 	if (blk == SWAPBLK_NONE)
1233 		return(VM_PAGER_FAIL);
1234 
1235 	/*
1236 	 * Get a swap buffer header to perform the IO
1237 	 */
1238 
1239 	bp = getpbuf(&nsw_rcount);
1240 	bio = &bp->b_bio1;
1241 	kva = (vm_offset_t) bp->b_data;
1242 
1243 	/*
1244 	 * map our page(s) into kva for input
1245 	 *
1246 	 * NOTE: B_PAGING is set by pbgetvp()
1247 	 */
1248 
1249 	pmap_qenter(kva, m + i, j - i);
1250 
1251 	bp->b_flags = B_READ;
1252 	bp->b_data = (caddr_t) kva;
1253 	bp->b_bcount = PAGE_SIZE * (j - i);
1254 	bp->b_bufsize = PAGE_SIZE * (j - i);
1255 	bio->bio_done = swp_pager_async_iodone;
1256 	bio->bio_offset = (off_t)(blk - (reqpage - i)) << PAGE_SHIFT;
1257 	bio->bio_driver_info = (void *)(reqpage - i);
1258 
1259 	{
1260 		int k;
1261 
1262 		for (k = i; k < j; ++k) {
1263 			bp->b_xio.xio_pages[k - i] = m[k];
1264 			vm_page_flag_set(m[k], PG_SWAPINPROG);
1265 		}
1266 	}
1267 	bp->b_xio.xio_npages = j - i;
1268 
1269 	pbgetvp(swapdev_vp, bp);
1270 
1271 	mycpu->gd_cnt.v_swapin++;
1272 	mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1273 
1274 	/*
1275 	 * We still hold the lock on mreq, and our automatic completion routine
1276 	 * does not remove it.
1277 	 */
1278 
1279 	vm_object_pip_add(mreq->object, bp->b_xio.xio_npages);
1280 	lastpindex = m[j-1]->pindex;
1281 
1282 	/*
1283 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1284 	 * this point because we automatically release it on completion.
1285 	 * Instead, we look at the one page we are interested in which we
1286 	 * still hold a lock on even through the I/O completion.
1287 	 *
1288 	 * The other pages in our m[] array are also released on completion,
1289 	 * so we cannot assume they are valid anymore either.
1290 	 */
1291 
1292 	BUF_KERNPROC(bp);
1293 	vn_strategy(swapdev_vp, bio);
1294 
1295 	/*
1296 	 * wait for the page we want to complete.  PG_SWAPINPROG is always
1297 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1298 	 * is set in the meta-data.
1299 	 */
1300 
1301 	crit_enter();
1302 
1303 	while ((mreq->flags & PG_SWAPINPROG) != 0) {
1304 		vm_page_flag_set(mreq, PG_WANTED | PG_REFERENCED);
1305 		mycpu->gd_cnt.v_intrans++;
1306 		if (tsleep(mreq, 0, "swread", hz*20)) {
1307 			printf(
1308 			    "swap_pager: indefinite wait buffer: "
1309 				" offset: %lld, size: %d\n",
1310 			    bio->bio_offset, bp->b_bcount
1311 			);
1312 		}
1313 	}
1314 
1315 	crit_exit();
1316 
1317 	/*
1318 	 * mreq is left bussied after completion, but all the other pages
1319 	 * are freed.  If we had an unrecoverable read error the page will
1320 	 * not be valid.
1321 	 */
1322 
1323 	if (mreq->valid != VM_PAGE_BITS_ALL) {
1324 		return(VM_PAGER_ERROR);
1325 	} else {
1326 		return(VM_PAGER_OK);
1327 	}
1328 
1329 	/*
1330 	 * A final note: in a low swap situation, we cannot deallocate swap
1331 	 * and mark a page dirty here because the caller is likely to mark
1332 	 * the page clean when we return, causing the page to possibly revert
1333 	 * to all-zero's later.
1334 	 */
1335 }
1336 
1337 /*
1338  *	swap_pager_putpages:
1339  *
1340  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1341  *
1342  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1343  *	are automatically converted to SWAP objects.
1344  *
1345  *	In a low memory situation we may block in vn_strategy(), but the new
1346  *	vm_page reservation system coupled with properly written VFS devices
1347  *	should ensure that no low-memory deadlock occurs.  This is an area
1348  *	which needs work.
1349  *
1350  *	The parent has N vm_object_pip_add() references prior to
1351  *	calling us and will remove references for rtvals[] that are
1352  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1353  *	completion.
1354  *
1355  *	The parent has soft-busy'd the pages it passes us and will unbusy
1356  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1357  *	We need to unbusy the rest on I/O completion.
1358  */
1359 
1360 void
1361 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count, boolean_t sync,
1362     int *rtvals)
1363 {
1364 	int i;
1365 	int n = 0;
1366 
1367 	if (count && m[0]->object != object) {
1368 		panic("swap_pager_getpages: object mismatch %p/%p",
1369 		    object,
1370 		    m[0]->object
1371 		);
1372 	}
1373 	/*
1374 	 * Step 1
1375 	 *
1376 	 * Turn object into OBJT_SWAP
1377 	 * check for bogus sysops
1378 	 * force sync if not pageout process
1379 	 */
1380 
1381 	if (object->type != OBJT_SWAP)
1382 		swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1383 
1384 	if (curthread != pagethread)
1385 		sync = TRUE;
1386 
1387 	/*
1388 	 * Step 2
1389 	 *
1390 	 * Update nsw parameters from swap_async_max sysctl values.
1391 	 * Do not let the sysop crash the machine with bogus numbers.
1392 	 */
1393 
1394 	if (swap_async_max != nsw_wcount_async_max) {
1395 		int n;
1396 
1397 		/*
1398 		 * limit range
1399 		 */
1400 		if ((n = swap_async_max) > nswbuf / 2)
1401 			n = nswbuf / 2;
1402 		if (n < 1)
1403 			n = 1;
1404 		swap_async_max = n;
1405 
1406 		/*
1407 		 * Adjust difference ( if possible ).  If the current async
1408 		 * count is too low, we may not be able to make the adjustment
1409 		 * at this time.
1410 		 */
1411 		crit_enter();
1412 		n -= nsw_wcount_async_max;
1413 		if (nsw_wcount_async + n >= 0) {
1414 			nsw_wcount_async += n;
1415 			nsw_wcount_async_max += n;
1416 			wakeup(&nsw_wcount_async);
1417 		}
1418 		crit_exit();
1419 	}
1420 
1421 	/*
1422 	 * Step 3
1423 	 *
1424 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1425 	 * The page is left dirty until the pageout operation completes
1426 	 * successfully.
1427 	 */
1428 
1429 	for (i = 0; i < count; i += n) {
1430 		struct buf *bp;
1431 		struct bio *bio;
1432 		daddr_t blk;
1433 		int j;
1434 
1435 		/*
1436 		 * Maximum I/O size is limited by a number of factors.
1437 		 */
1438 
1439 		n = min(BLIST_MAX_ALLOC, count - i);
1440 		n = min(n, nsw_cluster_max);
1441 
1442 		crit_enter();
1443 
1444 		/*
1445 		 * Get biggest block of swap we can.  If we fail, fall
1446 		 * back and try to allocate a smaller block.  Don't go
1447 		 * overboard trying to allocate space if it would overly
1448 		 * fragment swap.
1449 		 */
1450 		while (
1451 		    (blk = swp_pager_getswapspace(n)) == SWAPBLK_NONE &&
1452 		    n > 4
1453 		) {
1454 			n >>= 1;
1455 		}
1456 		if (blk == SWAPBLK_NONE) {
1457 			for (j = 0; j < n; ++j)
1458 				rtvals[i+j] = VM_PAGER_FAIL;
1459 			crit_exit();
1460 			continue;
1461 		}
1462 
1463 		/*
1464 		 * The I/O we are constructing cannot cross a physical
1465 		 * disk boundry in the swap stripe.  Note: we are still
1466 		 * at splvm().
1467 		 */
1468 		if ((blk ^ (blk + n)) & dmmax_mask) {
1469 			j = ((blk + dmmax) & dmmax_mask) - blk;
1470 			swp_pager_freeswapspace(blk + j, n - j);
1471 			n = j;
1472 		}
1473 
1474 		/*
1475 		 * All I/O parameters have been satisfied, build the I/O
1476 		 * request and assign the swap space.
1477 		 *
1478 		 * NOTE: B_PAGING is set by pbgetvp()
1479 		 */
1480 
1481 		if (sync == TRUE) {
1482 			bp = getpbuf(&nsw_wcount_sync);
1483 		} else {
1484 			bp = getpbuf(&nsw_wcount_async);
1485 			bp->b_flags = B_ASYNC;
1486 		}
1487 		bio = &bp->b_bio1;
1488 
1489 		pmap_qenter((vm_offset_t)bp->b_data, &m[i], n);
1490 
1491 		bp->b_bcount = PAGE_SIZE * n;
1492 		bp->b_bufsize = PAGE_SIZE * n;
1493 		bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1494 
1495 		pbgetvp(swapdev_vp, bp);
1496 
1497 		for (j = 0; j < n; ++j) {
1498 			vm_page_t mreq = m[i+j];
1499 
1500 			swp_pager_meta_build(
1501 			    mreq->object,
1502 			    mreq->pindex,
1503 			    blk + j
1504 			);
1505 			vm_page_dirty(mreq);
1506 			rtvals[i+j] = VM_PAGER_OK;
1507 
1508 			vm_page_flag_set(mreq, PG_SWAPINPROG);
1509 			bp->b_xio.xio_pages[j] = mreq;
1510 		}
1511 		bp->b_xio.xio_npages = n;
1512 		/*
1513 		 * Must set dirty range for NFS to work.
1514 		 */
1515 		bp->b_dirtyoff = 0;
1516 		bp->b_dirtyend = bp->b_bcount;
1517 
1518 		mycpu->gd_cnt.v_swapout++;
1519 		mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1520 
1521 		crit_exit();
1522 
1523 		/*
1524 		 * asynchronous
1525 		 */
1526 
1527 		if (sync == FALSE) {
1528 			bio->bio_done = swp_pager_async_iodone;
1529 			BUF_KERNPROC(bp);
1530 			vn_strategy(swapdev_vp, bio);
1531 
1532 			for (j = 0; j < n; ++j)
1533 				rtvals[i+j] = VM_PAGER_PEND;
1534 			continue;
1535 		}
1536 
1537 		/*
1538 		 * synchronous
1539 		 */
1540 
1541 		bio->bio_done = swp_pager_sync_iodone;
1542 		vn_strategy(swapdev_vp, bio);
1543 
1544 		/*
1545 		 * Wait for the sync I/O to complete, then update rtvals.
1546 		 * We just set the rtvals[] to VM_PAGER_PEND so we can call
1547 		 * our async completion routine at the end, thus avoiding a
1548 		 * double-free.
1549 		 */
1550 		crit_enter();
1551 
1552 		while ((bp->b_flags & B_DONE) == 0) {
1553 			tsleep(bp, 0, "swwrt", 0);
1554 		}
1555 
1556 		for (j = 0; j < n; ++j)
1557 			rtvals[i+j] = VM_PAGER_PEND;
1558 
1559 		/*
1560 		 * Now that we are through with the bp, we can call the
1561 		 * normal async completion, which frees everything up.
1562 		 */
1563 
1564 		swp_pager_async_iodone(bio);
1565 
1566 		crit_exit();
1567 	}
1568 }
1569 
1570 /*
1571  *	swap_pager_sync_iodone:
1572  *
1573  *	Completion routine for synchronous reads and writes from/to swap.
1574  *	We just mark the bp is complete and wake up anyone waiting on it.
1575  *
1576  *	This routine may not block.  This routine is called at splbio() or better.
1577  */
1578 
1579 static void
1580 swp_pager_sync_iodone(struct bio *bio)
1581 {
1582 	struct buf *bp = bio->bio_buf;
1583 
1584 	bp->b_flags |= B_DONE;
1585 	bp->b_flags &= ~B_ASYNC;
1586 	wakeup(bp);
1587 }
1588 
1589 /*
1590  *	swp_pager_async_iodone:
1591  *
1592  *	Completion routine for asynchronous reads and writes from/to swap.
1593  *	Also called manually by synchronous code to finish up a bp.
1594  *
1595  *	For READ operations, the pages are PG_BUSY'd.  For WRITE operations,
1596  *	the pages are vm_page_t->busy'd.  For READ operations, we PG_BUSY
1597  *	unbusy all pages except the 'main' request page.  For WRITE
1598  *	operations, we vm_page_t->busy'd unbusy all pages ( we can do this
1599  *	because we marked them all VM_PAGER_PEND on return from putpages ).
1600  *
1601  *	This routine may not block.
1602  */
1603 
1604 static void
1605 swp_pager_async_iodone(struct bio *bio)
1606 {
1607 	struct buf *bp = bio->bio_buf;
1608 	vm_object_t object = NULL;
1609 	int i;
1610 
1611 	bp->b_flags |= B_DONE;
1612 
1613 	/*
1614 	 * report error
1615 	 */
1616 
1617 	if (bp->b_flags & B_ERROR) {
1618 		printf(
1619 		    "swap_pager: I/O error - %s failed; offset %lld,"
1620 			"size %ld, error %d\n",
1621 		    ((bp->b_flags & B_READ) ? "pagein" : "pageout"),
1622 		    bio->bio_offset,
1623 		    (long)bp->b_bcount,
1624 		    bp->b_error
1625 		);
1626 	}
1627 
1628 	/*
1629 	 * set object, raise to splvm().
1630 	 */
1631 
1632 	if (bp->b_xio.xio_npages)
1633 		object = bp->b_xio.xio_pages[0]->object;
1634 	crit_enter();
1635 
1636 	/*
1637 	 * remove the mapping for kernel virtual
1638 	 */
1639 
1640 	pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1641 
1642 	/*
1643 	 * cleanup pages.  If an error occurs writing to swap, we are in
1644 	 * very serious trouble.  If it happens to be a disk error, though,
1645 	 * we may be able to recover by reassigning the swap later on.  So
1646 	 * in this case we remove the m->swapblk assignment for the page
1647 	 * but do not free it in the rlist.  The errornous block(s) are thus
1648 	 * never reallocated as swap.  Redirty the page and continue.
1649 	 */
1650 
1651 	for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1652 		vm_page_t m = bp->b_xio.xio_pages[i];
1653 
1654 		vm_page_flag_clear(m, PG_SWAPINPROG);
1655 
1656 		if (bp->b_flags & B_ERROR) {
1657 			/*
1658 			 * If an error occurs I'd love to throw the swapblk
1659 			 * away without freeing it back to swapspace, so it
1660 			 * can never be used again.  But I can't from an
1661 			 * interrupt.
1662 			 */
1663 
1664 			if (bp->b_flags & B_READ) {
1665 				/*
1666 				 * When reading, reqpage needs to stay
1667 				 * locked for the parent, but all other
1668 				 * pages can be freed.  We still want to
1669 				 * wakeup the parent waiting on the page,
1670 				 * though.  ( also: pg_reqpage can be -1 and
1671 				 * not match anything ).
1672 				 *
1673 				 * We have to wake specifically requested pages
1674 				 * up too because we cleared PG_SWAPINPROG and
1675 				 * someone may be waiting for that.
1676 				 *
1677 				 * NOTE: for reads, m->dirty will probably
1678 				 * be overridden by the original caller of
1679 				 * getpages so don't play cute tricks here.
1680 				 *
1681 				 * XXX IT IS NOT LEGAL TO FREE THE PAGE HERE
1682 				 * AS THIS MESSES WITH object->memq, and it is
1683 				 * not legal to mess with object->memq from an
1684 				 * interrupt.
1685 				 */
1686 
1687 				m->valid = 0;
1688 				vm_page_flag_clear(m, PG_ZERO);
1689 
1690 				/*
1691 				 * bio_driver_info holds the requested page
1692 				 * index.
1693 				 */
1694 				if (i != (int)bio->bio_driver_info)
1695 					vm_page_free(m);
1696 				else
1697 					vm_page_flash(m);
1698 				/*
1699 				 * If i == bp->b_pager.pg_reqpage, do not wake
1700 				 * the page up.  The caller needs to.
1701 				 */
1702 			} else {
1703 				/*
1704 				 * If a write error occurs, reactivate page
1705 				 * so it doesn't clog the inactive list,
1706 				 * then finish the I/O.
1707 				 */
1708 				vm_page_dirty(m);
1709 				vm_page_activate(m);
1710 				vm_page_io_finish(m);
1711 			}
1712 		} else if (bp->b_flags & B_READ) {
1713 			/*
1714 			 * For read success, clear dirty bits.  Nobody should
1715 			 * have this page mapped but don't take any chances,
1716 			 * make sure the pmap modify bits are also cleared.
1717 			 *
1718 			 * NOTE: for reads, m->dirty will probably be
1719 			 * overridden by the original caller of getpages so
1720 			 * we cannot set them in order to free the underlying
1721 			 * swap in a low-swap situation.  I don't think we'd
1722 			 * want to do that anyway, but it was an optimization
1723 			 * that existed in the old swapper for a time before
1724 			 * it got ripped out due to precisely this problem.
1725 			 *
1726 			 * clear PG_ZERO in page.
1727 			 *
1728 			 * If not the requested page then deactivate it.
1729 			 *
1730 			 * Note that the requested page, reqpage, is left
1731 			 * busied, but we still have to wake it up.  The
1732 			 * other pages are released (unbusied) by
1733 			 * vm_page_wakeup().  We do not set reqpage's
1734 			 * valid bits here, it is up to the caller.
1735 			 */
1736 
1737 			pmap_clear_modify(m);
1738 			m->valid = VM_PAGE_BITS_ALL;
1739 			vm_page_undirty(m);
1740 			vm_page_flag_clear(m, PG_ZERO);
1741 
1742 			/*
1743 			 * We have to wake specifically requested pages
1744 			 * up too because we cleared PG_SWAPINPROG and
1745 			 * could be waiting for it in getpages.  However,
1746 			 * be sure to not unbusy getpages specifically
1747 			 * requested page - getpages expects it to be
1748 			 * left busy.
1749 			 *
1750 			 * bio_driver_info holds the requested page
1751 			 */
1752 			if (i != (int)bio->bio_driver_info) {
1753 				vm_page_deactivate(m);
1754 				vm_page_wakeup(m);
1755 			} else {
1756 				vm_page_flash(m);
1757 			}
1758 		} else {
1759 			/*
1760 			 * For write success, clear the modify and dirty
1761 			 * status, then finish the I/O ( which decrements the
1762 			 * busy count and possibly wakes waiter's up ).
1763 			 */
1764 			pmap_clear_modify(m);
1765 			vm_page_undirty(m);
1766 			vm_page_io_finish(m);
1767 			if (!vm_page_count_severe() || !vm_page_try_to_cache(m))
1768 				vm_page_protect(m, VM_PROT_READ);
1769 		}
1770 	}
1771 
1772 	/*
1773 	 * adjust pip.  NOTE: the original parent may still have its own
1774 	 * pip refs on the object.
1775 	 */
1776 
1777 	if (object)
1778 		vm_object_pip_wakeupn(object, bp->b_xio.xio_npages);
1779 
1780 	/*
1781 	 * release the physical I/O buffer
1782 	 */
1783 
1784 	relpbuf(
1785 	    bp,
1786 	    ((bp->b_flags & B_READ) ? &nsw_rcount :
1787 		((bp->b_flags & B_ASYNC) ?
1788 		    &nsw_wcount_async :
1789 		    &nsw_wcount_sync
1790 		)
1791 	    )
1792 	);
1793 	crit_exit();
1794 }
1795 
1796 /************************************************************************
1797  *				SWAP META DATA 				*
1798  ************************************************************************
1799  *
1800  *	These routines manipulate the swap metadata stored in the
1801  *	OBJT_SWAP object.  All swp_*() routines must be called at
1802  *	splvm() because swap can be freed up by the low level vm_page
1803  *	code which might be called from interrupts beyond what splbio() covers.
1804  *
1805  *	Swap metadata is implemented with a global hash and not directly
1806  *	linked into the object.  Instead the object simply contains
1807  *	appropriate tracking counters.
1808  */
1809 
1810 /*
1811  * SWP_PAGER_HASH() -	hash swap meta data
1812  *
1813  *	This is an inline helper function which hashes the swapblk given
1814  *	the object and page index.  It returns a pointer to a pointer
1815  *	to the object, or a pointer to a NULL pointer if it could not
1816  *	find a swapblk.
1817  *
1818  *	This routine must be called at splvm().
1819  */
1820 
1821 static __inline struct swblock **
1822 swp_pager_hash(vm_object_t object, vm_pindex_t index)
1823 {
1824 	struct swblock **pswap;
1825 	struct swblock *swap;
1826 
1827 	index &= ~SWAP_META_MASK;
1828 	pswap = &swhash[(index ^ (int)(intptr_t)object) & swhash_mask];
1829 
1830 	while ((swap = *pswap) != NULL) {
1831 		if (swap->swb_object == object &&
1832 		    swap->swb_index == index
1833 		) {
1834 			break;
1835 		}
1836 		pswap = &swap->swb_hnext;
1837 	}
1838 	return(pswap);
1839 }
1840 
1841 /*
1842  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1843  *
1844  *	We first convert the object to a swap object if it is a default
1845  *	object.
1846  *
1847  *	The specified swapblk is added to the object's swap metadata.  If
1848  *	the swapblk is not valid, it is freed instead.  Any previously
1849  *	assigned swapblk is freed.
1850  *
1851  *	This routine must be called at splvm(), except when used to convert
1852  *	an OBJT_DEFAULT object into an OBJT_SWAP object.
1853 
1854  */
1855 
1856 static void
1857 swp_pager_meta_build(
1858 	vm_object_t object,
1859 	vm_pindex_t index,
1860 	daddr_t swapblk
1861 ) {
1862 	struct swblock *swap;
1863 	struct swblock **pswap;
1864 
1865 	/*
1866 	 * Convert default object to swap object if necessary
1867 	 */
1868 
1869 	if (object->type != OBJT_SWAP) {
1870 		object->type = OBJT_SWAP;
1871 		object->un_pager.swp.swp_bcount = 0;
1872 
1873 		if (object->handle != NULL) {
1874 			TAILQ_INSERT_TAIL(
1875 			    NOBJLIST(object->handle),
1876 			    object,
1877 			    pager_object_list
1878 			);
1879 		} else {
1880 			TAILQ_INSERT_TAIL(
1881 			    &swap_pager_un_object_list,
1882 			    object,
1883 			    pager_object_list
1884 			);
1885 		}
1886 	}
1887 
1888 	/*
1889 	 * Locate hash entry.  If not found create, but if we aren't adding
1890 	 * anything just return.  If we run out of space in the map we wait
1891 	 * and, since the hash table may have changed, retry.
1892 	 */
1893 
1894 retry:
1895 	pswap = swp_pager_hash(object, index);
1896 
1897 	if ((swap = *pswap) == NULL) {
1898 		int i;
1899 
1900 		if (swapblk == SWAPBLK_NONE)
1901 			return;
1902 
1903 		swap = *pswap = zalloc(swap_zone);
1904 		if (swap == NULL) {
1905 			vm_wait();
1906 			goto retry;
1907 		}
1908 		swap->swb_hnext = NULL;
1909 		swap->swb_object = object;
1910 		swap->swb_index = index & ~SWAP_META_MASK;
1911 		swap->swb_count = 0;
1912 
1913 		++object->un_pager.swp.swp_bcount;
1914 
1915 		for (i = 0; i < SWAP_META_PAGES; ++i)
1916 			swap->swb_pages[i] = SWAPBLK_NONE;
1917 	}
1918 
1919 	/*
1920 	 * Delete prior contents of metadata
1921 	 */
1922 
1923 	index &= SWAP_META_MASK;
1924 
1925 	if (swap->swb_pages[index] != SWAPBLK_NONE) {
1926 		swp_pager_freeswapspace(swap->swb_pages[index], 1);
1927 		--swap->swb_count;
1928 	}
1929 
1930 	/*
1931 	 * Enter block into metadata
1932 	 */
1933 
1934 	swap->swb_pages[index] = swapblk;
1935 	if (swapblk != SWAPBLK_NONE)
1936 		++swap->swb_count;
1937 }
1938 
1939 /*
1940  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1941  *
1942  *	The requested range of blocks is freed, with any associated swap
1943  *	returned to the swap bitmap.
1944  *
1945  *	This routine will free swap metadata structures as they are cleaned
1946  *	out.  This routine does *NOT* operate on swap metadata associated
1947  *	with resident pages.
1948  *
1949  *	This routine must be called at splvm()
1950  */
1951 
1952 static void
1953 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, daddr_t count)
1954 {
1955 	if (object->type != OBJT_SWAP)
1956 		return;
1957 
1958 	while (count > 0) {
1959 		struct swblock **pswap;
1960 		struct swblock *swap;
1961 
1962 		pswap = swp_pager_hash(object, index);
1963 
1964 		if ((swap = *pswap) != NULL) {
1965 			daddr_t v = swap->swb_pages[index & SWAP_META_MASK];
1966 
1967 			if (v != SWAPBLK_NONE) {
1968 				swp_pager_freeswapspace(v, 1);
1969 				swap->swb_pages[index & SWAP_META_MASK] =
1970 					SWAPBLK_NONE;
1971 				if (--swap->swb_count == 0) {
1972 					*pswap = swap->swb_hnext;
1973 					zfree(swap_zone, swap);
1974 					--object->un_pager.swp.swp_bcount;
1975 				}
1976 			}
1977 			--count;
1978 			++index;
1979 		} else {
1980 			int n = SWAP_META_PAGES - (index & SWAP_META_MASK);
1981 			count -= n;
1982 			index += n;
1983 		}
1984 	}
1985 }
1986 
1987 /*
1988  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
1989  *
1990  *	This routine locates and destroys all swap metadata associated with
1991  *	an object.
1992  *
1993  *	This routine must be called at splvm()
1994  */
1995 
1996 static void
1997 swp_pager_meta_free_all(vm_object_t object)
1998 {
1999 	daddr_t index = 0;
2000 
2001 	if (object->type != OBJT_SWAP)
2002 		return;
2003 
2004 	while (object->un_pager.swp.swp_bcount) {
2005 		struct swblock **pswap;
2006 		struct swblock *swap;
2007 
2008 		pswap = swp_pager_hash(object, index);
2009 		if ((swap = *pswap) != NULL) {
2010 			int i;
2011 
2012 			for (i = 0; i < SWAP_META_PAGES; ++i) {
2013 				daddr_t v = swap->swb_pages[i];
2014 				if (v != SWAPBLK_NONE) {
2015 					--swap->swb_count;
2016 					swp_pager_freeswapspace(v, 1);
2017 				}
2018 			}
2019 			if (swap->swb_count != 0)
2020 				panic("swap_pager_meta_free_all: swb_count != 0");
2021 			*pswap = swap->swb_hnext;
2022 			zfree(swap_zone, swap);
2023 			--object->un_pager.swp.swp_bcount;
2024 		}
2025 		index += SWAP_META_PAGES;
2026 		if (index > 0x20000000)
2027 			panic("swp_pager_meta_free_all: failed to locate all swap meta blocks");
2028 	}
2029 }
2030 
2031 /*
2032  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2033  *
2034  *	This routine is capable of looking up, popping, or freeing
2035  *	swapblk assignments in the swap meta data or in the vm_page_t.
2036  *	The routine typically returns the swapblk being looked-up, or popped,
2037  *	or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2038  *	was invalid.  This routine will automatically free any invalid
2039  *	meta-data swapblks.
2040  *
2041  *	It is not possible to store invalid swapblks in the swap meta data
2042  *	(other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2043  *
2044  *	When acting on a busy resident page and paging is in progress, we
2045  *	have to wait until paging is complete but otherwise can act on the
2046  *	busy page.
2047  *
2048  *	This routine must be called at splvm().
2049  *
2050  *	SWM_FREE	remove and free swap block from metadata
2051  *	SWM_POP		remove from meta data but do not free.. pop it out
2052  */
2053 
2054 static daddr_t
2055 swp_pager_meta_ctl(
2056 	vm_object_t object,
2057 	vm_pindex_t index,
2058 	int flags
2059 ) {
2060 	struct swblock **pswap;
2061 	struct swblock *swap;
2062 	daddr_t r1;
2063 
2064 	/*
2065 	 * The meta data only exists of the object is OBJT_SWAP
2066 	 * and even then might not be allocated yet.
2067 	 */
2068 
2069 	if (object->type != OBJT_SWAP)
2070 		return(SWAPBLK_NONE);
2071 
2072 	r1 = SWAPBLK_NONE;
2073 	pswap = swp_pager_hash(object, index);
2074 
2075 	if ((swap = *pswap) != NULL) {
2076 		index &= SWAP_META_MASK;
2077 		r1 = swap->swb_pages[index];
2078 
2079 		if (r1 != SWAPBLK_NONE) {
2080 			if (flags & SWM_FREE) {
2081 				swp_pager_freeswapspace(r1, 1);
2082 				r1 = SWAPBLK_NONE;
2083 			}
2084 			if (flags & (SWM_FREE|SWM_POP)) {
2085 				swap->swb_pages[index] = SWAPBLK_NONE;
2086 				if (--swap->swb_count == 0) {
2087 					*pswap = swap->swb_hnext;
2088 					zfree(swap_zone, swap);
2089 					--object->un_pager.swp.swp_bcount;
2090 				}
2091 			}
2092 		}
2093 	}
2094 	return(r1);
2095 }
2096