1 /*- 2 * Copyright (c) 2005, 2006 The NetBSD Foundation, Inc. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to The NetBSD Foundation 6 * by Julio M. Merino Vidal, developed as part of Google's Summer of Code 7 * 2005 program. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 * 30 * $NetBSD: tmpfs_vnops.c,v 1.39 2007/07/23 15:41:01 jmmv Exp $ 31 */ 32 33 /* 34 * tmpfs vnode interface. 35 */ 36 37 #include <sys/kernel.h> 38 #include <sys/kern_syscall.h> 39 #include <sys/param.h> 40 #include <sys/uio.h> 41 #include <sys/fcntl.h> 42 #include <sys/lockf.h> 43 #include <sys/priv.h> 44 #include <sys/proc.h> 45 #include <sys/resourcevar.h> 46 #include <sys/sched.h> 47 #include <sys/stat.h> 48 #include <sys/systm.h> 49 #include <sys/sysctl.h> 50 #include <sys/unistd.h> 51 #include <sys/vfsops.h> 52 #include <sys/vnode.h> 53 #include <sys/mountctl.h> 54 55 #include <vm/vm.h> 56 #include <vm/vm_extern.h> 57 #include <vm/vm_object.h> 58 #include <vm/vm_page.h> 59 #include <vm/vm_pageout.h> 60 #include <vm/vm_pager.h> 61 #include <vm/swap_pager.h> 62 63 #include <sys/buf2.h> 64 #include <vm/vm_page2.h> 65 66 #include <vfs/fifofs/fifo.h> 67 #include <vfs/tmpfs/tmpfs_vnops.h> 68 #include "tmpfs.h" 69 70 static void tmpfs_strategy_done(struct bio *bio); 71 static void tmpfs_move_pages(vm_object_t src, vm_object_t dst, int movflags); 72 73 /* 74 * bufcache_mode: 75 * 0 Normal page queue operation on flush. Try to keep in memory, 76 * but run through the buffer cache if the system is under memory 77 * pressure. 78 * 79 * 1 Be a bit more aggressive running writes through the buffer 80 * cache when the system is under memory pressure. 81 * 82 * 2 Always page to swap (not recommended). 83 */ 84 __read_mostly static int tmpfs_cluster_rd_enable = 1; 85 __read_mostly static int tmpfs_cluster_wr_enable = 1; 86 __read_mostly int tmpfs_bufcache_mode = 1; 87 SYSCTL_NODE(_vfs, OID_AUTO, tmpfs, CTLFLAG_RW, 0, "TMPFS filesystem"); 88 SYSCTL_INT(_vfs_tmpfs, OID_AUTO, cluster_rd_enable, CTLFLAG_RW, 89 &tmpfs_cluster_rd_enable, 0, ""); 90 SYSCTL_INT(_vfs_tmpfs, OID_AUTO, cluster_wr_enable, CTLFLAG_RW, 91 &tmpfs_cluster_wr_enable, 0, ""); 92 SYSCTL_INT(_vfs_tmpfs, OID_AUTO, bufcache_mode, CTLFLAG_RW, 93 &tmpfs_bufcache_mode, 0, ""); 94 95 #define TMPFS_MOVF_FROMBACKING 0x0001 96 #define TMPFS_MOVF_DEACTIVATE 0x0002 97 98 99 static __inline 100 void 101 tmpfs_knote(struct vnode *vp, int flags) 102 { 103 if (flags) 104 KNOTE(&vp->v_pollinfo.vpi_kqinfo.ki_note, flags); 105 } 106 107 108 /* --------------------------------------------------------------------- */ 109 110 static int 111 tmpfs_nresolve(struct vop_nresolve_args *ap) 112 { 113 struct vnode *dvp = ap->a_dvp; 114 struct vnode *vp = NULL; 115 struct namecache *ncp = ap->a_nch->ncp; 116 struct tmpfs_node *tnode; 117 struct tmpfs_dirent *de; 118 struct tmpfs_node *dnode; 119 int error; 120 121 dnode = VP_TO_TMPFS_DIR(dvp); 122 123 TMPFS_NODE_LOCK_SH(dnode); 124 loop: 125 de = tmpfs_dir_lookup(dnode, NULL, ncp); 126 if (de == NULL) { 127 error = ENOENT; 128 } else { 129 /* 130 * Allocate a vnode for the node we found. Use 131 * tmpfs_alloc_vp()'s deadlock handling mode. 132 */ 133 tnode = de->td_node; 134 error = tmpfs_alloc_vp(dvp->v_mount, dnode, tnode, 135 LK_EXCLUSIVE | LK_RETRY, &vp); 136 if (error == EAGAIN) 137 goto loop; 138 if (error) 139 goto out; 140 KKASSERT(vp); 141 } 142 143 out: 144 TMPFS_NODE_UNLOCK(dnode); 145 146 if ((dnode->tn_status & TMPFS_NODE_ACCESSED) == 0) { 147 TMPFS_NODE_LOCK(dnode); 148 dnode->tn_status |= TMPFS_NODE_ACCESSED; 149 TMPFS_NODE_UNLOCK(dnode); 150 } 151 152 /* 153 * Store the result of this lookup in the cache. Avoid this if the 154 * request was for creation, as it does not improve timings on 155 * emprical tests. 156 */ 157 if (vp) { 158 vn_unlock(vp); 159 cache_setvp(ap->a_nch, vp); 160 vrele(vp); 161 } else if (error == ENOENT) { 162 cache_setvp(ap->a_nch, NULL); 163 } 164 return (error); 165 } 166 167 static int 168 tmpfs_nlookupdotdot(struct vop_nlookupdotdot_args *ap) 169 { 170 struct vnode *dvp = ap->a_dvp; 171 struct vnode **vpp = ap->a_vpp; 172 struct tmpfs_node *dnode = VP_TO_TMPFS_NODE(dvp); 173 struct ucred *cred = ap->a_cred; 174 int error; 175 176 *vpp = NULL; 177 178 /* Check accessibility of requested node as a first step. */ 179 error = VOP_ACCESS(dvp, VEXEC, cred); 180 if (error != 0) 181 return error; 182 183 if (dnode->tn_dir.tn_parent != NULL) { 184 /* Allocate a new vnode on the matching entry. */ 185 error = tmpfs_alloc_vp(dvp->v_mount, 186 NULL, dnode->tn_dir.tn_parent, 187 LK_EXCLUSIVE | LK_RETRY, vpp); 188 189 if (*vpp) 190 vn_unlock(*vpp); 191 } 192 return (*vpp == NULL) ? ENOENT : 0; 193 } 194 195 /* --------------------------------------------------------------------- */ 196 197 static int 198 tmpfs_ncreate(struct vop_ncreate_args *ap) 199 { 200 struct vnode *dvp = ap->a_dvp; 201 struct vnode **vpp = ap->a_vpp; 202 struct namecache *ncp = ap->a_nch->ncp; 203 struct vattr *vap = ap->a_vap; 204 struct ucred *cred = ap->a_cred; 205 int error; 206 207 KKASSERT(vap->va_type == VREG || vap->va_type == VSOCK); 208 209 error = tmpfs_alloc_file(dvp, vpp, vap, ncp, cred, NULL); 210 if (error == 0) { 211 cache_setunresolved(ap->a_nch); 212 cache_setvp(ap->a_nch, *vpp); 213 tmpfs_knote(dvp, NOTE_WRITE); 214 } 215 return (error); 216 } 217 /* --------------------------------------------------------------------- */ 218 219 static int 220 tmpfs_nmknod(struct vop_nmknod_args *ap) 221 { 222 struct vnode *dvp = ap->a_dvp; 223 struct vnode **vpp = ap->a_vpp; 224 struct namecache *ncp = ap->a_nch->ncp; 225 struct vattr *vap = ap->a_vap; 226 struct ucred *cred = ap->a_cred; 227 int error; 228 229 if (vap->va_type != VBLK && vap->va_type != VCHR && 230 vap->va_type != VFIFO) { 231 return (EINVAL); 232 } 233 234 error = tmpfs_alloc_file(dvp, vpp, vap, ncp, cred, NULL); 235 if (error == 0) { 236 cache_setunresolved(ap->a_nch); 237 cache_setvp(ap->a_nch, *vpp); 238 tmpfs_knote(dvp, NOTE_WRITE); 239 } 240 return error; 241 } 242 243 /* --------------------------------------------------------------------- */ 244 245 static int 246 tmpfs_open(struct vop_open_args *ap) 247 { 248 struct vnode *vp = ap->a_vp; 249 int mode = ap->a_mode; 250 struct tmpfs_node *node; 251 int error; 252 253 node = VP_TO_TMPFS_NODE(vp); 254 255 #if 0 256 /* The file is still active but all its names have been removed 257 * (e.g. by a "rmdir $(pwd)"). It cannot be opened any more as 258 * it is about to die. */ 259 if (node->tn_links < 1) 260 return (ENOENT); 261 #endif 262 263 /* If the file is marked append-only, deny write requests. */ 264 if ((node->tn_flags & APPEND) && 265 (mode & (FWRITE | O_APPEND)) == FWRITE) { 266 error = EPERM; 267 } else { 268 if (node->tn_reg.tn_pages_in_aobj) { 269 TMPFS_NODE_LOCK(node); 270 if (node->tn_reg.tn_pages_in_aobj) { 271 tmpfs_move_pages(node->tn_reg.tn_aobj, 272 vp->v_object, 273 TMPFS_MOVF_FROMBACKING); 274 node->tn_reg.tn_pages_in_aobj = 0; 275 } 276 TMPFS_NODE_UNLOCK(node); 277 } 278 error = vop_stdopen(ap); 279 } 280 281 return (error); 282 } 283 284 /* --------------------------------------------------------------------- */ 285 286 static int 287 tmpfs_close(struct vop_close_args *ap) 288 { 289 struct vnode *vp = ap->a_vp; 290 struct tmpfs_node *node; 291 int error; 292 293 node = VP_TO_TMPFS_NODE(vp); 294 295 if (node->tn_links > 0) { 296 /* 297 * Update node times. No need to do it if the node has 298 * been deleted, because it will vanish after we return. 299 */ 300 tmpfs_update(vp); 301 } 302 303 error = vop_stdclose(ap); 304 305 return (error); 306 } 307 308 /* --------------------------------------------------------------------- */ 309 310 int 311 tmpfs_access(struct vop_access_args *ap) 312 { 313 struct vnode *vp = ap->a_vp; 314 int error; 315 struct tmpfs_node *node; 316 317 node = VP_TO_TMPFS_NODE(vp); 318 319 switch (vp->v_type) { 320 case VDIR: 321 /* FALLTHROUGH */ 322 case VLNK: 323 /* FALLTHROUGH */ 324 case VREG: 325 if ((ap->a_mode & VWRITE) && 326 (vp->v_mount->mnt_flag & MNT_RDONLY)) { 327 error = EROFS; 328 goto out; 329 } 330 break; 331 332 case VBLK: 333 /* FALLTHROUGH */ 334 case VCHR: 335 /* FALLTHROUGH */ 336 case VSOCK: 337 /* FALLTHROUGH */ 338 case VFIFO: 339 break; 340 341 default: 342 error = EINVAL; 343 goto out; 344 } 345 346 if ((ap->a_mode & VWRITE) && (node->tn_flags & IMMUTABLE)) { 347 error = EPERM; 348 goto out; 349 } 350 351 error = vop_helper_access(ap, node->tn_uid, node->tn_gid, 352 node->tn_mode, 0); 353 out: 354 return error; 355 } 356 357 /* --------------------------------------------------------------------- */ 358 359 int 360 tmpfs_getattr(struct vop_getattr_args *ap) 361 { 362 struct vnode *vp = ap->a_vp; 363 struct vattr *vap = ap->a_vap; 364 struct tmpfs_node *node; 365 366 node = VP_TO_TMPFS_NODE(vp); 367 368 tmpfs_update(vp); 369 370 vap->va_type = vp->v_type; 371 vap->va_mode = node->tn_mode; 372 vap->va_nlink = node->tn_links; 373 vap->va_uid = node->tn_uid; 374 vap->va_gid = node->tn_gid; 375 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 376 vap->va_fileid = node->tn_id; 377 vap->va_size = node->tn_size; 378 vap->va_blocksize = PAGE_SIZE; 379 vap->va_atime.tv_sec = node->tn_atime; 380 vap->va_atime.tv_nsec = node->tn_atimensec; 381 vap->va_mtime.tv_sec = node->tn_mtime; 382 vap->va_mtime.tv_nsec = node->tn_mtimensec; 383 vap->va_ctime.tv_sec = node->tn_ctime; 384 vap->va_ctime.tv_nsec = node->tn_ctimensec; 385 vap->va_gen = node->tn_gen; 386 vap->va_flags = node->tn_flags; 387 if (vp->v_type == VBLK || vp->v_type == VCHR) { 388 vap->va_rmajor = umajor(node->tn_rdev); 389 vap->va_rminor = uminor(node->tn_rdev); 390 } 391 vap->va_bytes = round_page(node->tn_size); 392 vap->va_filerev = 0; 393 394 return 0; 395 } 396 397 /* --------------------------------------------------------------------- */ 398 399 int 400 tmpfs_getattr_quick(struct vop_getattr_args *ap) 401 { 402 struct vnode *vp = ap->a_vp; 403 struct vattr *vap = ap->a_vap; 404 struct tmpfs_node *node; 405 406 node = VP_TO_TMPFS_NODE(vp); 407 408 tmpfs_update(vp); 409 410 vap->va_type = vp->v_type; 411 vap->va_mode = node->tn_mode; 412 vap->va_nlink = node->tn_links; 413 vap->va_uid = node->tn_uid; 414 vap->va_gid = node->tn_gid; 415 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; 416 vap->va_fileid = node->tn_id; 417 vap->va_size = node->tn_size; 418 vap->va_blocksize = PAGE_SIZE; 419 vap->va_gen = node->tn_gen; 420 vap->va_flags = node->tn_flags; 421 if (vp->v_type == VBLK || vp->v_type == VCHR) { 422 vap->va_rmajor = umajor(node->tn_rdev); 423 vap->va_rminor = uminor(node->tn_rdev); 424 } 425 vap->va_bytes = -1; 426 vap->va_filerev = 0; 427 428 return 0; 429 } 430 431 432 /* --------------------------------------------------------------------- */ 433 434 int 435 tmpfs_setattr(struct vop_setattr_args *ap) 436 { 437 struct vnode *vp = ap->a_vp; 438 struct vattr *vap = ap->a_vap; 439 struct ucred *cred = ap->a_cred; 440 struct tmpfs_node *node = VP_TO_TMPFS_NODE(vp); 441 int error = 0; 442 int kflags = 0; 443 444 TMPFS_NODE_LOCK(node); 445 if (error == 0 && (vap->va_flags != VNOVAL)) { 446 error = tmpfs_chflags(vp, vap->va_flags, cred); 447 kflags |= NOTE_ATTRIB; 448 } 449 450 if (error == 0 && (vap->va_size != VNOVAL)) { 451 /* restore any saved pages before proceeding */ 452 if (node->tn_reg.tn_pages_in_aobj) { 453 tmpfs_move_pages(node->tn_reg.tn_aobj, vp->v_object, 454 TMPFS_MOVF_FROMBACKING | 455 TMPFS_MOVF_DEACTIVATE); 456 node->tn_reg.tn_pages_in_aobj = 0; 457 } 458 if (vap->va_size > node->tn_size) 459 kflags |= NOTE_WRITE | NOTE_EXTEND; 460 else 461 kflags |= NOTE_WRITE; 462 error = tmpfs_chsize(vp, vap->va_size, cred); 463 } 464 465 if (error == 0 && (vap->va_uid != (uid_t)VNOVAL || 466 vap->va_gid != (gid_t)VNOVAL)) { 467 error = tmpfs_chown(vp, vap->va_uid, vap->va_gid, cred); 468 kflags |= NOTE_ATTRIB; 469 } 470 471 if (error == 0 && (vap->va_mode != (mode_t)VNOVAL)) { 472 error = tmpfs_chmod(vp, vap->va_mode, cred); 473 kflags |= NOTE_ATTRIB; 474 } 475 476 if (error == 0 && ((vap->va_atime.tv_sec != VNOVAL && 477 vap->va_atime.tv_nsec != VNOVAL) || 478 (vap->va_mtime.tv_sec != VNOVAL && 479 vap->va_mtime.tv_nsec != VNOVAL) )) { 480 error = tmpfs_chtimes(vp, &vap->va_atime, &vap->va_mtime, 481 vap->va_vaflags, cred); 482 kflags |= NOTE_ATTRIB; 483 } 484 485 /* 486 * Update the node times. We give preference to the error codes 487 * generated by this function rather than the ones that may arise 488 * from tmpfs_update. 489 */ 490 tmpfs_update(vp); 491 TMPFS_NODE_UNLOCK(node); 492 tmpfs_knote(vp, kflags); 493 494 return (error); 495 } 496 497 /* --------------------------------------------------------------------- */ 498 499 /* 500 * fsync is usually a NOP, but we must take action when unmounting or 501 * when recycling. 502 */ 503 static int 504 tmpfs_fsync(struct vop_fsync_args *ap) 505 { 506 struct tmpfs_node *node; 507 struct vnode *vp = ap->a_vp; 508 509 node = VP_TO_TMPFS_NODE(vp); 510 511 /* 512 * tmpfs vnodes typically remain dirty, avoid long syncer scans 513 * by forcing removal from the syncer list. 514 */ 515 vn_syncer_remove(vp, 1); 516 517 tmpfs_update(vp); 518 if (vp->v_type == VREG) { 519 if (vp->v_flag & VRECLAIMED) { 520 if (node->tn_links == 0) 521 tmpfs_truncate(vp, 0); 522 else 523 vfsync(ap->a_vp, ap->a_waitfor, 1, NULL, NULL); 524 } 525 } 526 527 return 0; 528 } 529 530 /* --------------------------------------------------------------------- */ 531 532 static int 533 tmpfs_read(struct vop_read_args *ap) 534 { 535 struct buf *bp; 536 struct vnode *vp = ap->a_vp; 537 struct uio *uio = ap->a_uio; 538 struct tmpfs_node *node; 539 off_t base_offset; 540 size_t offset; 541 size_t len; 542 size_t resid; 543 int error; 544 int seqcount; 545 546 /* 547 * Check the basics 548 */ 549 if (uio->uio_offset < 0) 550 return (EINVAL); 551 if (vp->v_type != VREG) 552 return (EINVAL); 553 554 /* 555 * Extract node, try to shortcut the operation through 556 * the VM page cache, allowing us to avoid buffer cache 557 * overheads. 558 */ 559 node = VP_TO_TMPFS_NODE(vp); 560 resid = uio->uio_resid; 561 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 562 error = vop_helper_read_shortcut(ap); 563 if (error) 564 return error; 565 if (uio->uio_resid == 0) { 566 if (resid) 567 goto finished; 568 return error; 569 } 570 571 /* 572 * restore any saved pages before proceeding 573 */ 574 if (node->tn_reg.tn_pages_in_aobj) { 575 TMPFS_NODE_LOCK(node); 576 if (node->tn_reg.tn_pages_in_aobj) { 577 tmpfs_move_pages(node->tn_reg.tn_aobj, vp->v_object, 578 TMPFS_MOVF_FROMBACKING); 579 node->tn_reg.tn_pages_in_aobj = 0; 580 } 581 TMPFS_NODE_UNLOCK(node); 582 } 583 584 /* 585 * Fall-through to our normal read code. 586 */ 587 while (uio->uio_resid > 0 && uio->uio_offset < node->tn_size) { 588 /* 589 * Use buffer cache I/O (via tmpfs_strategy) 590 */ 591 offset = (size_t)uio->uio_offset & TMPFS_BLKMASK64; 592 base_offset = (off_t)uio->uio_offset - offset; 593 bp = getcacheblk(vp, base_offset, 594 node->tn_blksize, GETBLK_KVABIO); 595 if (bp == NULL) { 596 if (tmpfs_cluster_rd_enable) { 597 error = cluster_readx(vp, node->tn_size, 598 base_offset, 599 node->tn_blksize, 600 B_NOTMETA | B_KVABIO, 601 uio->uio_resid, 602 seqcount * MAXBSIZE, 603 &bp); 604 } else { 605 error = bread_kvabio(vp, base_offset, 606 node->tn_blksize, &bp); 607 } 608 if (error) { 609 brelse(bp); 610 kprintf("tmpfs_read bread error %d\n", error); 611 break; 612 } 613 614 /* 615 * tmpfs pretty much fiddles directly with the VM 616 * system, don't let it exhaust it or we won't play 617 * nice with other processes. 618 * 619 * Only do this if the VOP is coming from a normal 620 * read/write. The VM system handles the case for 621 * UIO_NOCOPY. 622 */ 623 if (uio->uio_segflg != UIO_NOCOPY) 624 vm_wait_nominal(); 625 } 626 bp->b_flags |= B_CLUSTEROK; 627 bkvasync(bp); 628 629 /* 630 * Figure out how many bytes we can actually copy this loop. 631 */ 632 len = node->tn_blksize - offset; 633 if (len > uio->uio_resid) 634 len = uio->uio_resid; 635 if (len > node->tn_size - uio->uio_offset) 636 len = (size_t)(node->tn_size - uio->uio_offset); 637 638 error = uiomovebp(bp, (char *)bp->b_data + offset, len, uio); 639 bqrelse(bp); 640 if (error) { 641 kprintf("tmpfs_read uiomove error %d\n", error); 642 break; 643 } 644 } 645 646 finished: 647 if ((node->tn_status & TMPFS_NODE_ACCESSED) == 0) { 648 TMPFS_NODE_LOCK(node); 649 node->tn_status |= TMPFS_NODE_ACCESSED; 650 TMPFS_NODE_UNLOCK(node); 651 } 652 return (error); 653 } 654 655 static int 656 tmpfs_write(struct vop_write_args *ap) 657 { 658 struct buf *bp; 659 struct vnode *vp = ap->a_vp; 660 struct uio *uio = ap->a_uio; 661 struct thread *td = uio->uio_td; 662 struct tmpfs_node *node; 663 boolean_t extended; 664 off_t oldsize; 665 int error; 666 off_t base_offset; 667 size_t offset; 668 size_t len; 669 struct rlimit limit; 670 int trivial = 0; 671 int kflags = 0; 672 int seqcount; 673 674 error = 0; 675 if (uio->uio_resid == 0) { 676 return error; 677 } 678 679 node = VP_TO_TMPFS_NODE(vp); 680 681 if (vp->v_type != VREG) 682 return (EINVAL); 683 seqcount = ap->a_ioflag >> IO_SEQSHIFT; 684 685 TMPFS_NODE_LOCK(node); 686 687 /* 688 * restore any saved pages before proceeding 689 */ 690 if (node->tn_reg.tn_pages_in_aobj) { 691 tmpfs_move_pages(node->tn_reg.tn_aobj, vp->v_object, 692 TMPFS_MOVF_FROMBACKING); 693 node->tn_reg.tn_pages_in_aobj = 0; 694 } 695 696 oldsize = node->tn_size; 697 if (ap->a_ioflag & IO_APPEND) 698 uio->uio_offset = node->tn_size; 699 700 /* 701 * Check for illegal write offsets. 702 */ 703 if (uio->uio_offset + uio->uio_resid > 704 VFS_TO_TMPFS(vp->v_mount)->tm_maxfilesize) { 705 error = EFBIG; 706 goto done; 707 } 708 709 /* 710 * NOTE: Ignore if UIO does not come from a user thread (e.g. VN). 711 */ 712 if (vp->v_type == VREG && td != NULL && td->td_lwp != NULL) { 713 error = kern_getrlimit(RLIMIT_FSIZE, &limit); 714 if (error) 715 goto done; 716 if (uio->uio_offset + uio->uio_resid > limit.rlim_cur) { 717 ksignal(td->td_proc, SIGXFSZ); 718 error = EFBIG; 719 goto done; 720 } 721 } 722 723 /* 724 * Extend the file's size if necessary 725 */ 726 extended = ((uio->uio_offset + uio->uio_resid) > node->tn_size); 727 728 while (uio->uio_resid > 0) { 729 /* 730 * Don't completely blow out running buffer I/O 731 * when being hit from the pageout daemon. 732 */ 733 if (uio->uio_segflg == UIO_NOCOPY && 734 (ap->a_ioflag & IO_RECURSE) == 0) { 735 bwillwrite(node->tn_blksize); 736 } 737 738 /* 739 * Use buffer cache I/O (via tmpfs_strategy) 740 * 741 * Calculate the maximum bytes we can write to the buffer at 742 * this offset (after resizing). 743 */ 744 offset = (size_t)uio->uio_offset & TMPFS_BLKMASK64; 745 base_offset = (off_t)uio->uio_offset - offset; 746 len = uio->uio_resid; 747 if (len > TMPFS_BLKSIZE - offset) 748 len = TMPFS_BLKSIZE - offset; 749 750 if ((uio->uio_offset + len) > node->tn_size) { 751 trivial = (uio->uio_offset <= node->tn_size); 752 error = tmpfs_reg_resize(vp, uio->uio_offset + len, 753 trivial); 754 if (error) 755 break; 756 } 757 758 /* 759 * Read to fill in any gaps. Theoretically we could 760 * optimize this if the write covers the entire buffer 761 * and is not a UIO_NOCOPY write, however this can lead 762 * to a security violation exposing random kernel memory 763 * (whatever junk was in the backing VM pages before). 764 * 765 * So just use bread() to do the right thing. 766 */ 767 error = bread_kvabio(vp, base_offset, node->tn_blksize, &bp); 768 bkvasync(bp); 769 error = uiomovebp(bp, (char *)bp->b_data + offset, len, uio); 770 if (error) { 771 kprintf("tmpfs_write uiomove error %d\n", error); 772 brelse(bp); 773 break; 774 } 775 776 if (uio->uio_offset > node->tn_size) { 777 node->tn_size = uio->uio_offset; 778 kflags |= NOTE_EXTEND; 779 } 780 kflags |= NOTE_WRITE; 781 782 /* 783 * UIO_NOCOPY is a sensitive state due to potentially being 784 * issued from the pageout daemon while in a low-memory 785 * situation. However, in order to cluster the I/O nicely 786 * (e.g. 64KB+ writes instead of 16KB writes), we still try 787 * to follow the same semantics that any other filesystem 788 * might use. 789 * 790 * For the normal case we buwrite(), dirtying the underlying 791 * VM pages instead of dirtying the buffer and releasing the 792 * buffer as a clean buffer. This allows tmpfs to use 793 * essentially all available memory to cache file data. 794 * If we used bdwrite() the buffer cache would wind up 795 * flushing the data to swap too quickly. 796 * 797 * But because tmpfs can seriously load the VM system we 798 * fall-back to using bdwrite() when free memory starts 799 * to get low. This shifts the load away from the VM system 800 * and makes tmpfs act more like a normal filesystem with 801 * regards to disk activity. 802 * 803 * tmpfs pretty much fiddles directly with the VM 804 * system, don't let it exhaust it or we won't play 805 * nice with other processes. Only do this if the 806 * VOP is coming from a normal read/write. The VM system 807 * handles the case for UIO_NOCOPY. 808 */ 809 bp->b_flags |= B_CLUSTEROK; 810 if (uio->uio_segflg == UIO_NOCOPY) { 811 /* 812 * Flush from the pageout daemon, deal with potentially 813 * very heavy tmpfs write activity causing long stalls 814 * in the pageout daemon before pages get to free/cache. 815 * 816 * We have to be careful not to bypass the page queues 817 * entirely or we can cause write-read thrashing and 818 * delay the paging of data that is more pageable then 819 * our current data. 820 * 821 * (a) Under severe pressure setting B_DIRECT will 822 * cause a buffer release to try to free the 823 * underlying pages. 824 * 825 * (b) Under modest memory pressure the B_AGE flag 826 * we retire the buffer and its underlying pages 827 * more quickly than normal. 828 * 829 * We could also force this by setting B_NOTMETA 830 * but that might have other unintended side- 831 * effects (e.g. setting PG_NOTMETA on the VM page). 832 * 833 * (c) For the pageout->putpages->generic_putpages-> 834 * UIO_NOCOPY-write (here), issuing an immediate 835 * write prevents any real clustering from 836 * happening because the buffers probably aren't 837 * (yet) marked dirty, or lost due to prior use 838 * of buwrite(). Try to use the normal 839 * cluster_write() mechanism for performance. 840 * 841 * Hopefully this will unblock the VM system more 842 * quickly under extreme tmpfs write load. 843 */ 844 if (tmpfs_bufcache_mode >= 1) { 845 if (vm_page_count_min(vm_page_free_hysteresis)) 846 bp->b_flags |= B_DIRECT | B_TTC; 847 if (vm_pages_needed || vm_paging_needed(0)) 848 bp->b_flags |= B_AGE; 849 } 850 bp->b_act_count = 0; /* buffer->deactivate pgs */ 851 if (tmpfs_cluster_wr_enable && 852 (ap->a_ioflag & (IO_SYNC | IO_DIRECT)) == 0) { 853 cluster_write(bp, node->tn_size, 854 node->tn_blksize, seqcount); 855 } else { 856 cluster_awrite(bp); 857 } 858 } else if (vm_pages_needed || vm_paging_needed(0) || 859 tmpfs_bufcache_mode >= 2) { 860 /* 861 * If the pageout daemon is running we cycle the 862 * write through the buffer cache normally to 863 * pipeline the flush, thus avoiding adding any 864 * more memory pressure to the pageout daemon. 865 */ 866 bp->b_act_count = 0; /* buffer->deactivate pgs */ 867 if (tmpfs_cluster_wr_enable) { 868 cluster_write(bp, node->tn_size, 869 node->tn_blksize, seqcount); 870 } else { 871 bdwrite(bp); 872 } 873 } else { 874 /* 875 * Otherwise run the buffer directly through to the 876 * backing VM store, leaving the buffer clean so 877 * buffer limits do not force early flushes to swap. 878 */ 879 buwrite(bp); 880 /*vm_wait_nominal();*/ 881 } 882 883 if (bp->b_error) { 884 kprintf("tmpfs_write bwrite error %d\n", bp->b_error); 885 break; 886 } 887 } 888 889 if (error) { 890 if (extended) { 891 (void)tmpfs_reg_resize(vp, oldsize, trivial); 892 kflags &= ~NOTE_EXTEND; 893 } 894 goto done; 895 } 896 897 /* 898 * Currently we don't set the mtime on files modified via mmap() 899 * because we can't tell the difference between those modifications 900 * and an attempt by the pageout daemon to flush tmpfs pages to 901 * swap. 902 * 903 * This is because in order to defer flushes as long as possible 904 * buwrite() works by marking the underlying VM pages dirty in 905 * order to be able to dispose of the buffer cache buffer without 906 * flushing it. 907 */ 908 if (uio->uio_segflg == UIO_NOCOPY) { 909 if (vp->v_flag & VLASTWRITETS) { 910 node->tn_mtime = vp->v_lastwrite_ts.tv_sec; 911 node->tn_mtimensec = vp->v_lastwrite_ts.tv_nsec; 912 } 913 } else { 914 node->tn_status |= TMPFS_NODE_MODIFIED; 915 vclrflags(vp, VLASTWRITETS); 916 } 917 918 if (extended) 919 node->tn_status |= TMPFS_NODE_CHANGED; 920 921 if (node->tn_mode & (S_ISUID | S_ISGID)) { 922 if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) 923 node->tn_mode &= ~(S_ISUID | S_ISGID); 924 } 925 done: 926 TMPFS_NODE_UNLOCK(node); 927 if (kflags) 928 tmpfs_knote(vp, kflags); 929 930 return(error); 931 } 932 933 static int 934 tmpfs_advlock(struct vop_advlock_args *ap) 935 { 936 struct tmpfs_node *node; 937 struct vnode *vp = ap->a_vp; 938 int error; 939 940 node = VP_TO_TMPFS_NODE(vp); 941 error = (lf_advlock(ap, &node->tn_advlock, node->tn_size)); 942 943 return (error); 944 } 945 946 /* 947 * The strategy function is typically only called when memory pressure 948 * forces the system to attempt to pageout pages. It can also be called 949 * by [n]vtruncbuf() when a truncation cuts a page in half. Normal write 950 * operations 951 * 952 * We set VKVABIO for VREG files so bp->b_data may not be synchronized to 953 * our cpu. swap_pager_strategy() is all we really use, and it directly 954 * supports this. 955 */ 956 static int 957 tmpfs_strategy(struct vop_strategy_args *ap) 958 { 959 struct bio *bio = ap->a_bio; 960 struct bio *nbio; 961 struct buf *bp = bio->bio_buf; 962 struct vnode *vp = ap->a_vp; 963 struct tmpfs_node *node; 964 vm_object_t uobj; 965 vm_page_t m; 966 int i; 967 968 if (vp->v_type != VREG) { 969 bp->b_resid = bp->b_bcount; 970 bp->b_flags |= B_ERROR | B_INVAL; 971 bp->b_error = EINVAL; 972 biodone(bio); 973 return(0); 974 } 975 976 node = VP_TO_TMPFS_NODE(vp); 977 978 uobj = node->tn_reg.tn_aobj; 979 980 /* 981 * Don't bother flushing to swap if there is no swap, just 982 * ensure that the pages are marked as needing a commit (still). 983 */ 984 if (bp->b_cmd == BUF_CMD_WRITE && vm_swap_size == 0) { 985 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 986 m = bp->b_xio.xio_pages[i]; 987 vm_page_need_commit(m); 988 } 989 bp->b_resid = 0; 990 bp->b_error = 0; 991 biodone(bio); 992 } else { 993 #if 0 994 /* 995 * XXX removed, this does not work well because under heavy 996 * filesystem loads it often 997 * forces the data to be read right back in again after 998 * being written due to bypassing normal LRU operation. 999 * 1000 * Tell the buffer cache to try to recycle the pages 1001 * to PQ_CACHE on release. 1002 */ 1003 if (tmpfs_bufcache_mode >= 2 || 1004 (tmpfs_bufcache_mode == 1 && vm_paging_needed(0))) { 1005 bp->b_flags |= B_TTC; 1006 } 1007 #endif 1008 nbio = push_bio(bio); 1009 nbio->bio_done = tmpfs_strategy_done; 1010 nbio->bio_offset = bio->bio_offset; 1011 swap_pager_strategy(uobj, nbio); 1012 } 1013 return 0; 1014 } 1015 1016 /* 1017 * If we were unable to commit the pages to swap make sure they are marked 1018 * as needing a commit (again). If we were, clear the flag to allow the 1019 * pages to be freed. 1020 * 1021 * Do not error-out the buffer. In particular, vinvalbuf() needs to 1022 * always work. 1023 */ 1024 static void 1025 tmpfs_strategy_done(struct bio *bio) 1026 { 1027 struct buf *bp; 1028 vm_page_t m; 1029 int i; 1030 1031 bp = bio->bio_buf; 1032 1033 if (bp->b_flags & B_ERROR) { 1034 bp->b_flags &= ~B_ERROR; 1035 bp->b_error = 0; 1036 bp->b_resid = 0; 1037 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 1038 m = bp->b_xio.xio_pages[i]; 1039 vm_page_need_commit(m); 1040 } 1041 } else { 1042 for (i = 0; i < bp->b_xio.xio_npages; ++i) { 1043 m = bp->b_xio.xio_pages[i]; 1044 vm_page_clear_commit(m); 1045 } 1046 } 1047 bio = pop_bio(bio); 1048 biodone(bio); 1049 } 1050 1051 /* 1052 * To make write clustering work well make the backing store look 1053 * contiguous to the cluster_*() code. The swap_strategy() function 1054 * will take it from there. 1055 * 1056 * Use MAXBSIZE-sized chunks as a micro-optimization to make random 1057 * flushes leave full-sized gaps. 1058 */ 1059 static int 1060 tmpfs_bmap(struct vop_bmap_args *ap) 1061 { 1062 if (ap->a_doffsetp != NULL) 1063 *ap->a_doffsetp = ap->a_loffset; 1064 if (ap->a_runp != NULL) 1065 *ap->a_runp = MAXBSIZE - (ap->a_loffset & (MAXBSIZE - 1)); 1066 if (ap->a_runb != NULL) 1067 *ap->a_runb = ap->a_loffset & (MAXBSIZE - 1); 1068 1069 return 0; 1070 } 1071 1072 /* --------------------------------------------------------------------- */ 1073 1074 static int 1075 tmpfs_nremove(struct vop_nremove_args *ap) 1076 { 1077 struct vnode *dvp = ap->a_dvp; 1078 struct namecache *ncp = ap->a_nch->ncp; 1079 struct vnode *vp; 1080 int error; 1081 struct tmpfs_dirent *de; 1082 struct tmpfs_mount *tmp; 1083 struct tmpfs_node *dnode; 1084 struct tmpfs_node *node; 1085 1086 /* 1087 * We have to acquire the vp from ap->a_nch because we will likely 1088 * unresolve the namecache entry, and a vrele/vput is needed to 1089 * trigger the tmpfs_inactive/tmpfs_reclaim sequence. 1090 * 1091 * We have to use vget to clear any inactive state on the vnode, 1092 * otherwise the vnode may remain inactive and thus tmpfs_inactive 1093 * will not get called when we release it. 1094 */ 1095 error = cache_vget(ap->a_nch, ap->a_cred, LK_SHARED, &vp); 1096 KKASSERT(vp->v_mount == dvp->v_mount); 1097 KKASSERT(error == 0); 1098 vn_unlock(vp); 1099 1100 if (vp->v_type == VDIR) { 1101 error = EISDIR; 1102 goto out2; 1103 } 1104 1105 dnode = VP_TO_TMPFS_DIR(dvp); 1106 node = VP_TO_TMPFS_NODE(vp); 1107 tmp = VFS_TO_TMPFS(vp->v_mount); 1108 1109 TMPFS_NODE_LOCK(dnode); 1110 TMPFS_NODE_LOCK(node); 1111 de = tmpfs_dir_lookup(dnode, node, ncp); 1112 if (de == NULL) { 1113 error = ENOENT; 1114 TMPFS_NODE_UNLOCK(node); 1115 TMPFS_NODE_UNLOCK(dnode); 1116 goto out; 1117 } 1118 1119 /* Files marked as immutable or append-only cannot be deleted. */ 1120 if ((node->tn_flags & (IMMUTABLE | APPEND | NOUNLINK)) || 1121 (dnode->tn_flags & APPEND)) { 1122 error = EPERM; 1123 TMPFS_NODE_UNLOCK(node); 1124 TMPFS_NODE_UNLOCK(dnode); 1125 goto out; 1126 } 1127 1128 /* Remove the entry from the directory; as it is a file, we do not 1129 * have to change the number of hard links of the directory. */ 1130 tmpfs_dir_detach(dnode, de); 1131 TMPFS_NODE_UNLOCK(dnode); 1132 1133 /* Free the directory entry we just deleted. Note that the node 1134 * referred by it will not be removed until the vnode is really 1135 * reclaimed. */ 1136 tmpfs_free_dirent(tmp, de); 1137 1138 if (node->tn_links > 0) 1139 node->tn_status |= TMPFS_NODE_CHANGED; 1140 TMPFS_NODE_UNLOCK(node); 1141 1142 cache_unlink(ap->a_nch); 1143 tmpfs_knote(vp, NOTE_DELETE); 1144 error = 0; 1145 1146 out: 1147 if (error == 0) 1148 tmpfs_knote(dvp, NOTE_WRITE); 1149 out2: 1150 vrele(vp); 1151 1152 return error; 1153 } 1154 1155 /* --------------------------------------------------------------------- */ 1156 1157 static int 1158 tmpfs_nlink(struct vop_nlink_args *ap) 1159 { 1160 struct vnode *dvp = ap->a_dvp; 1161 struct vnode *vp = ap->a_vp; 1162 struct namecache *ncp = ap->a_nch->ncp; 1163 struct tmpfs_dirent *de; 1164 struct tmpfs_node *node; 1165 struct tmpfs_node *dnode; 1166 int error; 1167 1168 KKASSERT(dvp != vp); /* XXX When can this be false? */ 1169 1170 node = VP_TO_TMPFS_NODE(vp); 1171 dnode = VP_TO_TMPFS_NODE(dvp); 1172 TMPFS_NODE_LOCK(dnode); 1173 1174 /* XXX: Why aren't the following two tests done by the caller? */ 1175 1176 /* Hard links of directories are forbidden. */ 1177 if (vp->v_type == VDIR) { 1178 error = EPERM; 1179 goto out; 1180 } 1181 1182 /* Cannot create cross-device links. */ 1183 if (dvp->v_mount != vp->v_mount) { 1184 error = EXDEV; 1185 goto out; 1186 } 1187 1188 /* Ensure that we do not overflow the maximum number of links imposed 1189 * by the system. */ 1190 KKASSERT(node->tn_links <= LINK_MAX); 1191 if (node->tn_links >= LINK_MAX) { 1192 error = EMLINK; 1193 goto out; 1194 } 1195 1196 /* We cannot create links of files marked immutable or append-only. */ 1197 if (node->tn_flags & (IMMUTABLE | APPEND)) { 1198 error = EPERM; 1199 goto out; 1200 } 1201 1202 /* Allocate a new directory entry to represent the node. */ 1203 error = tmpfs_alloc_dirent(VFS_TO_TMPFS(vp->v_mount), node, 1204 ncp->nc_name, ncp->nc_nlen, &de); 1205 if (error != 0) 1206 goto out; 1207 1208 /* Insert the new directory entry into the appropriate directory. */ 1209 tmpfs_dir_attach(dnode, de); 1210 1211 /* vp link count has changed, so update node times. */ 1212 1213 TMPFS_NODE_LOCK(node); 1214 node->tn_status |= TMPFS_NODE_CHANGED; 1215 TMPFS_NODE_UNLOCK(node); 1216 tmpfs_update(vp); 1217 1218 tmpfs_knote(vp, NOTE_LINK); 1219 cache_setunresolved(ap->a_nch); 1220 cache_setvp(ap->a_nch, vp); 1221 error = 0; 1222 1223 out: 1224 TMPFS_NODE_UNLOCK(dnode); 1225 if (error == 0) 1226 tmpfs_knote(dvp, NOTE_WRITE); 1227 return error; 1228 } 1229 1230 /* --------------------------------------------------------------------- */ 1231 1232 static int 1233 tmpfs_nrename(struct vop_nrename_args *ap) 1234 { 1235 struct vnode *fdvp = ap->a_fdvp; 1236 struct namecache *fncp = ap->a_fnch->ncp; 1237 struct vnode *fvp = fncp->nc_vp; 1238 struct vnode *tdvp = ap->a_tdvp; 1239 struct namecache *tncp = ap->a_tnch->ncp; 1240 struct vnode *tvp; 1241 struct tmpfs_dirent *de, *tde; 1242 struct tmpfs_mount *tmp; 1243 struct tmpfs_node *fdnode; 1244 struct tmpfs_node *tdnode; 1245 struct tmpfs_node *fnode; 1246 struct tmpfs_node *tnode; 1247 char *newname; 1248 char *oldname; 1249 int error; 1250 1251 KKASSERT(fdvp->v_mount == fvp->v_mount); 1252 1253 /* 1254 * Because tvp can get overwritten we have to vget it instead of 1255 * just vref or use it, otherwise it's VINACTIVE flag may not get 1256 * cleared and the node won't get destroyed. 1257 */ 1258 error = cache_vget(ap->a_tnch, ap->a_cred, LK_SHARED, &tvp); 1259 if (error == 0) { 1260 tnode = VP_TO_TMPFS_NODE(tvp); 1261 vn_unlock(tvp); 1262 } else { 1263 tnode = NULL; 1264 } 1265 1266 /* Disallow cross-device renames. 1267 * XXX Why isn't this done by the caller? */ 1268 if (fvp->v_mount != tdvp->v_mount || 1269 (tvp != NULL && fvp->v_mount != tvp->v_mount)) { 1270 error = EXDEV; 1271 goto out; 1272 } 1273 1274 tmp = VFS_TO_TMPFS(tdvp->v_mount); 1275 tdnode = VP_TO_TMPFS_DIR(tdvp); 1276 1277 /* If source and target are the same file, there is nothing to do. */ 1278 if (fvp == tvp) { 1279 error = 0; 1280 goto out; 1281 } 1282 1283 fdnode = VP_TO_TMPFS_DIR(fdvp); 1284 fnode = VP_TO_TMPFS_NODE(fvp); 1285 1286 tmpfs_lock4(fdnode, tdnode, fnode, tnode); 1287 1288 de = tmpfs_dir_lookup(fdnode, fnode, fncp); 1289 1290 /* Avoid manipulating '.' and '..' entries. */ 1291 if (de == NULL) { 1292 error = ENOENT; 1293 goto out_locked; 1294 } 1295 KKASSERT(de->td_node == fnode); 1296 1297 /* 1298 * If replacing an entry in the target directory and that entry 1299 * is a directory, it must be empty. 1300 * 1301 * Kern_rename gurantees the destination to be a directory 1302 * if the source is one (it does?). 1303 */ 1304 if (tvp != NULL) { 1305 KKASSERT(tnode != NULL); 1306 1307 if ((tnode->tn_flags & (NOUNLINK | IMMUTABLE | APPEND)) || 1308 (tdnode->tn_flags & (APPEND | IMMUTABLE))) { 1309 error = EPERM; 1310 goto out_locked; 1311 } 1312 1313 if (fnode->tn_type == VDIR && tnode->tn_type == VDIR) { 1314 if (tnode->tn_size > 0) { 1315 error = ENOTEMPTY; 1316 goto out_locked; 1317 } 1318 } else if (fnode->tn_type == VDIR && tnode->tn_type != VDIR) { 1319 error = ENOTDIR; 1320 goto out_locked; 1321 } else if (fnode->tn_type != VDIR && tnode->tn_type == VDIR) { 1322 error = EISDIR; 1323 goto out_locked; 1324 } else { 1325 KKASSERT(fnode->tn_type != VDIR && 1326 tnode->tn_type != VDIR); 1327 } 1328 } 1329 1330 if ((fnode->tn_flags & (NOUNLINK | IMMUTABLE | APPEND)) || 1331 (fdnode->tn_flags & (APPEND | IMMUTABLE))) { 1332 error = EPERM; 1333 goto out_locked; 1334 } 1335 1336 /* 1337 * Ensure that we have enough memory to hold the new name, if it 1338 * has to be changed. 1339 */ 1340 if (fncp->nc_nlen != tncp->nc_nlen || 1341 bcmp(fncp->nc_name, tncp->nc_name, fncp->nc_nlen) != 0) { 1342 newname = kmalloc(tncp->nc_nlen + 1, tmp->tm_name_zone, 1343 M_WAITOK | M_NULLOK); 1344 if (newname == NULL) { 1345 error = ENOSPC; 1346 goto out_locked; 1347 } 1348 bcopy(tncp->nc_name, newname, tncp->nc_nlen); 1349 newname[tncp->nc_nlen] = '\0'; 1350 } else { 1351 newname = NULL; 1352 } 1353 1354 /* 1355 * Unlink entry from source directory. Note that the kernel has 1356 * already checked for illegal recursion cases (renaming a directory 1357 * into a subdirectory of itself). 1358 */ 1359 if (fdnode != tdnode) { 1360 tmpfs_dir_detach(fdnode, de); 1361 } else { 1362 /* XXX depend on namecache lock */ 1363 KKASSERT(de == tmpfs_dir_lookup(fdnode, fnode, fncp)); 1364 RB_REMOVE(tmpfs_dirtree, &fdnode->tn_dir.tn_dirtree, de); 1365 RB_REMOVE(tmpfs_dirtree_cookie, 1366 &fdnode->tn_dir.tn_cookietree, de); 1367 } 1368 1369 /* 1370 * Handle any name change. Swap with newname, we will 1371 * deallocate it at the end. 1372 */ 1373 if (newname != NULL) { 1374 oldname = de->td_name; 1375 de->td_name = newname; 1376 de->td_namelen = (uint16_t)tncp->nc_nlen; 1377 newname = oldname; 1378 } 1379 1380 /* 1381 * If we are overwriting an entry, we have to remove the old one 1382 * from the target directory. 1383 */ 1384 if (tvp != NULL) { 1385 /* Remove the old entry from the target directory. */ 1386 tde = tmpfs_dir_lookup(tdnode, tnode, tncp); 1387 tmpfs_dir_detach(tdnode, tde); 1388 tmpfs_knote(tdnode->tn_vnode, NOTE_DELETE); 1389 1390 /* 1391 * Free the directory entry we just deleted. Note that the 1392 * node referred by it will not be removed until the vnode is 1393 * really reclaimed. 1394 */ 1395 tmpfs_free_dirent(VFS_TO_TMPFS(tvp->v_mount), tde); 1396 /*cache_inval_vp(tvp, CINV_DESTROY);*/ 1397 } 1398 1399 /* 1400 * Link entry to target directory. If the entry 1401 * represents a directory move the parent linkage 1402 * as well. 1403 */ 1404 if (fdnode != tdnode) { 1405 if (de->td_node->tn_type == VDIR) { 1406 TMPFS_VALIDATE_DIR(fnode); 1407 } 1408 tmpfs_dir_attach(tdnode, de); 1409 } else { 1410 tdnode->tn_status |= TMPFS_NODE_MODIFIED; 1411 RB_INSERT(tmpfs_dirtree, &tdnode->tn_dir.tn_dirtree, de); 1412 RB_INSERT(tmpfs_dirtree_cookie, 1413 &tdnode->tn_dir.tn_cookietree, de); 1414 } 1415 tmpfs_unlock4(fdnode, tdnode, fnode, tnode); 1416 1417 /* 1418 * Finish up 1419 */ 1420 if (newname) { 1421 kfree(newname, tmp->tm_name_zone); 1422 newname = NULL; 1423 } 1424 cache_rename(ap->a_fnch, ap->a_tnch); 1425 tmpfs_knote(ap->a_fdvp, NOTE_WRITE); 1426 tmpfs_knote(ap->a_tdvp, NOTE_WRITE); 1427 if (fnode->tn_vnode) 1428 tmpfs_knote(fnode->tn_vnode, NOTE_RENAME); 1429 if (tvp) 1430 vrele(tvp); 1431 return 0; 1432 1433 out_locked: 1434 tmpfs_unlock4(fdnode, tdnode, fnode, tnode); 1435 out: 1436 if (tvp) 1437 vrele(tvp); 1438 return error; 1439 } 1440 1441 /* --------------------------------------------------------------------- */ 1442 1443 static int 1444 tmpfs_nmkdir(struct vop_nmkdir_args *ap) 1445 { 1446 struct vnode *dvp = ap->a_dvp; 1447 struct vnode **vpp = ap->a_vpp; 1448 struct namecache *ncp = ap->a_nch->ncp; 1449 struct vattr *vap = ap->a_vap; 1450 struct ucred *cred = ap->a_cred; 1451 int error; 1452 1453 KKASSERT(vap->va_type == VDIR); 1454 1455 error = tmpfs_alloc_file(dvp, vpp, vap, ncp, cred, NULL); 1456 if (error == 0) { 1457 cache_setunresolved(ap->a_nch); 1458 cache_setvp(ap->a_nch, *vpp); 1459 tmpfs_knote(dvp, NOTE_WRITE | NOTE_LINK); 1460 } 1461 return error; 1462 } 1463 1464 /* --------------------------------------------------------------------- */ 1465 1466 static int 1467 tmpfs_nrmdir(struct vop_nrmdir_args *ap) 1468 { 1469 struct vnode *dvp = ap->a_dvp; 1470 struct namecache *ncp = ap->a_nch->ncp; 1471 struct vnode *vp; 1472 struct tmpfs_dirent *de; 1473 struct tmpfs_mount *tmp; 1474 struct tmpfs_node *dnode; 1475 struct tmpfs_node *node; 1476 int error; 1477 1478 /* 1479 * We have to acquire the vp from ap->a_nch because we will likely 1480 * unresolve the namecache entry, and a vrele/vput is needed to 1481 * trigger the tmpfs_inactive/tmpfs_reclaim sequence. 1482 * 1483 * We have to use vget to clear any inactive state on the vnode, 1484 * otherwise the vnode may remain inactive and thus tmpfs_inactive 1485 * will not get called when we release it. 1486 */ 1487 error = cache_vget(ap->a_nch, ap->a_cred, LK_SHARED, &vp); 1488 KKASSERT(error == 0); 1489 vn_unlock(vp); 1490 1491 /* 1492 * Prevalidate so we don't hit an assertion later 1493 */ 1494 if (vp->v_type != VDIR) { 1495 error = ENOTDIR; 1496 goto out; 1497 } 1498 1499 tmp = VFS_TO_TMPFS(dvp->v_mount); 1500 dnode = VP_TO_TMPFS_DIR(dvp); 1501 node = VP_TO_TMPFS_DIR(vp); 1502 1503 /* 1504 * 1505 */ 1506 TMPFS_NODE_LOCK(dnode); 1507 TMPFS_NODE_LOCK(node); 1508 1509 /* 1510 * Only empty directories can be removed. 1511 */ 1512 if (node->tn_size > 0) { 1513 error = ENOTEMPTY; 1514 goto out_locked; 1515 } 1516 1517 if ((dnode->tn_flags & APPEND) 1518 || (node->tn_flags & (NOUNLINK | IMMUTABLE | APPEND))) { 1519 error = EPERM; 1520 goto out_locked; 1521 } 1522 1523 /* 1524 * This invariant holds only if we are not trying to 1525 * remove "..". We checked for that above so this is safe now. 1526 */ 1527 KKASSERT(node->tn_dir.tn_parent == dnode); 1528 1529 /* 1530 * Get the directory entry associated with node (vp) 1531 */ 1532 de = tmpfs_dir_lookup(dnode, node, ncp); 1533 KKASSERT(TMPFS_DIRENT_MATCHES(de, ncp->nc_name, ncp->nc_nlen)); 1534 1535 /* Check flags to see if we are allowed to remove the directory. */ 1536 if ((dnode->tn_flags & APPEND) || 1537 node->tn_flags & (NOUNLINK | IMMUTABLE | APPEND)) { 1538 error = EPERM; 1539 goto out_locked; 1540 } 1541 1542 /* Detach the directory entry from the directory (dnode). */ 1543 tmpfs_dir_detach(dnode, de); 1544 1545 /* 1546 * Must set parent linkage to NULL (tested by ncreate to disallow 1547 * the creation of new files/dirs in a deleted directory) 1548 */ 1549 node->tn_status |= TMPFS_NODE_CHANGED; 1550 1551 dnode->tn_status |= TMPFS_NODE_ACCESSED | TMPFS_NODE_CHANGED | 1552 TMPFS_NODE_MODIFIED; 1553 1554 /* Free the directory entry we just deleted. Note that the node 1555 * referred by it will not be removed until the vnode is really 1556 * reclaimed. */ 1557 tmpfs_free_dirent(tmp, de); 1558 1559 /* Release the deleted vnode (will destroy the node, notify 1560 * interested parties and clean it from the cache). */ 1561 1562 dnode->tn_status |= TMPFS_NODE_CHANGED; 1563 1564 TMPFS_NODE_UNLOCK(node); 1565 TMPFS_NODE_UNLOCK(dnode); 1566 1567 tmpfs_update(dvp); 1568 cache_unlink(ap->a_nch); 1569 tmpfs_knote(dvp, NOTE_WRITE | NOTE_LINK); 1570 vrele(vp); 1571 return 0; 1572 1573 out_locked: 1574 TMPFS_NODE_UNLOCK(node); 1575 TMPFS_NODE_UNLOCK(dnode); 1576 1577 out: 1578 vrele(vp); 1579 1580 return error; 1581 } 1582 1583 /* --------------------------------------------------------------------- */ 1584 1585 static int 1586 tmpfs_nsymlink(struct vop_nsymlink_args *ap) 1587 { 1588 struct vnode *dvp = ap->a_dvp; 1589 struct vnode **vpp = ap->a_vpp; 1590 struct namecache *ncp = ap->a_nch->ncp; 1591 struct vattr *vap = ap->a_vap; 1592 struct ucred *cred = ap->a_cred; 1593 char *target = ap->a_target; 1594 int error; 1595 1596 vap->va_type = VLNK; 1597 error = tmpfs_alloc_file(dvp, vpp, vap, ncp, cred, target); 1598 if (error == 0) { 1599 tmpfs_knote(*vpp, NOTE_WRITE); 1600 cache_setunresolved(ap->a_nch); 1601 cache_setvp(ap->a_nch, *vpp); 1602 } 1603 return error; 1604 } 1605 1606 /* --------------------------------------------------------------------- */ 1607 1608 static int 1609 tmpfs_readdir(struct vop_readdir_args *ap) 1610 { 1611 struct vnode *vp = ap->a_vp; 1612 struct uio *uio = ap->a_uio; 1613 int *eofflag = ap->a_eofflag; 1614 off_t **cookies = ap->a_cookies; 1615 int *ncookies = ap->a_ncookies; 1616 struct tmpfs_mount *tmp; 1617 int error; 1618 off_t startoff; 1619 off_t cnt = 0; 1620 struct tmpfs_node *node; 1621 1622 /* This operation only makes sense on directory nodes. */ 1623 if (vp->v_type != VDIR) { 1624 return ENOTDIR; 1625 } 1626 1627 tmp = VFS_TO_TMPFS(vp->v_mount); 1628 node = VP_TO_TMPFS_DIR(vp); 1629 startoff = uio->uio_offset; 1630 1631 if (uio->uio_offset == TMPFS_DIRCOOKIE_DOT) { 1632 error = tmpfs_dir_getdotdent(node, uio); 1633 if (error != 0) { 1634 TMPFS_NODE_LOCK_SH(node); 1635 goto outok; 1636 } 1637 cnt++; 1638 } 1639 1640 if (uio->uio_offset == TMPFS_DIRCOOKIE_DOTDOT) { 1641 /* may lock parent, cannot hold node lock */ 1642 error = tmpfs_dir_getdotdotdent(tmp, node, uio); 1643 if (error != 0) { 1644 TMPFS_NODE_LOCK_SH(node); 1645 goto outok; 1646 } 1647 cnt++; 1648 } 1649 1650 TMPFS_NODE_LOCK_SH(node); 1651 error = tmpfs_dir_getdents(node, uio, &cnt); 1652 1653 outok: 1654 KKASSERT(error >= -1); 1655 1656 if (error == -1) 1657 error = 0; 1658 1659 if (eofflag != NULL) 1660 *eofflag = 1661 (error == 0 && uio->uio_offset == TMPFS_DIRCOOKIE_EOF); 1662 1663 /* Update NFS-related variables. */ 1664 if (error == 0 && cookies != NULL && ncookies != NULL) { 1665 off_t i; 1666 off_t off = startoff; 1667 struct tmpfs_dirent *de = NULL; 1668 1669 *ncookies = cnt; 1670 *cookies = kmalloc(cnt * sizeof(off_t), M_TEMP, M_WAITOK); 1671 1672 for (i = 0; i < cnt; i++) { 1673 KKASSERT(off != TMPFS_DIRCOOKIE_EOF); 1674 if (off == TMPFS_DIRCOOKIE_DOT) { 1675 off = TMPFS_DIRCOOKIE_DOTDOT; 1676 } else { 1677 if (off == TMPFS_DIRCOOKIE_DOTDOT) { 1678 de = RB_MIN(tmpfs_dirtree_cookie, 1679 &node->tn_dir.tn_cookietree); 1680 } else if (de != NULL) { 1681 de = RB_NEXT(tmpfs_dirtree_cookie, 1682 &node->tn_dir.tn_cookietree, de); 1683 } else { 1684 de = tmpfs_dir_lookupbycookie(node, 1685 off); 1686 KKASSERT(de != NULL); 1687 de = RB_NEXT(tmpfs_dirtree_cookie, 1688 &node->tn_dir.tn_cookietree, de); 1689 } 1690 if (de == NULL) 1691 off = TMPFS_DIRCOOKIE_EOF; 1692 else 1693 off = tmpfs_dircookie(de); 1694 } 1695 (*cookies)[i] = off; 1696 } 1697 KKASSERT(uio->uio_offset == off); 1698 } 1699 TMPFS_NODE_UNLOCK(node); 1700 1701 if ((node->tn_status & TMPFS_NODE_ACCESSED) == 0) { 1702 TMPFS_NODE_LOCK(node); 1703 node->tn_status |= TMPFS_NODE_ACCESSED; 1704 TMPFS_NODE_UNLOCK(node); 1705 } 1706 return error; 1707 } 1708 1709 /* --------------------------------------------------------------------- */ 1710 1711 static int 1712 tmpfs_readlink(struct vop_readlink_args *ap) 1713 { 1714 struct vnode *vp = ap->a_vp; 1715 struct uio *uio = ap->a_uio; 1716 int error; 1717 struct tmpfs_node *node; 1718 1719 KKASSERT(uio->uio_offset == 0); 1720 KKASSERT(vp->v_type == VLNK); 1721 1722 node = VP_TO_TMPFS_NODE(vp); 1723 TMPFS_NODE_LOCK_SH(node); 1724 error = uiomove(node->tn_link, 1725 MIN(node->tn_size, uio->uio_resid), uio); 1726 TMPFS_NODE_UNLOCK(node); 1727 if ((node->tn_status & TMPFS_NODE_ACCESSED) == 0) { 1728 TMPFS_NODE_LOCK(node); 1729 node->tn_status |= TMPFS_NODE_ACCESSED; 1730 TMPFS_NODE_UNLOCK(node); 1731 } 1732 return error; 1733 } 1734 1735 /* --------------------------------------------------------------------- */ 1736 1737 static int 1738 tmpfs_inactive(struct vop_inactive_args *ap) 1739 { 1740 struct vnode *vp = ap->a_vp; 1741 struct tmpfs_node *node; 1742 struct mount *mp; 1743 1744 mp = vp->v_mount; 1745 lwkt_gettoken(&mp->mnt_token); 1746 node = VP_TO_TMPFS_NODE(vp); 1747 1748 /* 1749 * Degenerate case 1750 */ 1751 if (node == NULL) { 1752 vrecycle(vp); 1753 lwkt_reltoken(&mp->mnt_token); 1754 return(0); 1755 } 1756 1757 /* 1758 * Get rid of unreferenced deleted vnodes sooner rather than 1759 * later so the data memory can be recovered immediately. 1760 * 1761 * We must truncate the vnode to prevent the normal reclamation 1762 * path from flushing the data for the removed file to disk. 1763 */ 1764 TMPFS_NODE_LOCK(node); 1765 if (node->tn_links == 0) { 1766 node->tn_vpstate = TMPFS_VNODE_DOOMED; 1767 TMPFS_NODE_UNLOCK(node); 1768 if (node->tn_type == VREG) 1769 tmpfs_truncate(vp, 0); 1770 vrecycle(vp); 1771 } else { 1772 /* 1773 * We must retain any VM pages belonging to the vnode's 1774 * object as the vnode will destroy the object during a 1775 * later reclaim. We call vinvalbuf(V_SAVE) to clean 1776 * out the buffer cache. 1777 * 1778 * On DragonFlyBSD, vnodes are not immediately deactivated 1779 * on the 1->0 refs, so this is a relatively optimal 1780 * operation. We have to do this in tmpfs_inactive() 1781 * because the pages will have already been thrown away 1782 * at the time tmpfs_reclaim() is called. 1783 */ 1784 if (node->tn_type == VREG && 1785 node->tn_reg.tn_pages_in_aobj == 0) { 1786 vinvalbuf(vp, V_SAVE, 0, 0); 1787 KKASSERT(RB_EMPTY(&vp->v_rbdirty_tree)); 1788 KKASSERT(RB_EMPTY(&vp->v_rbclean_tree)); 1789 tmpfs_move_pages(vp->v_object, node->tn_reg.tn_aobj, 1790 TMPFS_MOVF_DEACTIVATE); 1791 node->tn_reg.tn_pages_in_aobj = 1; 1792 } 1793 1794 TMPFS_NODE_UNLOCK(node); 1795 } 1796 lwkt_reltoken(&mp->mnt_token); 1797 1798 return 0; 1799 } 1800 1801 /* --------------------------------------------------------------------- */ 1802 1803 int 1804 tmpfs_reclaim(struct vop_reclaim_args *ap) 1805 { 1806 struct vnode *vp = ap->a_vp; 1807 struct tmpfs_mount *tmp; 1808 struct tmpfs_node *node; 1809 struct mount *mp; 1810 1811 mp = vp->v_mount; 1812 lwkt_gettoken(&mp->mnt_token); 1813 1814 node = VP_TO_TMPFS_NODE(vp); 1815 tmp = VFS_TO_TMPFS(vp->v_mount); 1816 KKASSERT(mp == tmp->tm_mount); 1817 1818 TMPFS_NODE_LOCK(node); 1819 KKASSERT(node->tn_vnode == vp); 1820 node->tn_vnode = NULL; 1821 vp->v_data = NULL; 1822 1823 /* 1824 * If the node referenced by this vnode was deleted by the 1825 * user, we must free its associated data structures now that 1826 * the vnode is being reclaimed. 1827 * 1828 * Directories have an extra link ref. 1829 */ 1830 if (node->tn_links == 0) { 1831 node->tn_vpstate = TMPFS_VNODE_DOOMED; 1832 tmpfs_free_node(tmp, node); 1833 /* eats the lock */ 1834 } else { 1835 TMPFS_NODE_UNLOCK(node); 1836 } 1837 lwkt_reltoken(&mp->mnt_token); 1838 1839 KKASSERT(vp->v_data == NULL); 1840 return 0; 1841 } 1842 1843 /* --------------------------------------------------------------------- */ 1844 1845 static int 1846 tmpfs_mountctl(struct vop_mountctl_args *ap) 1847 { 1848 struct tmpfs_mount *tmp; 1849 struct mount *mp; 1850 int rc; 1851 1852 mp = ap->a_head.a_ops->head.vv_mount; 1853 lwkt_gettoken(&mp->mnt_token); 1854 1855 switch (ap->a_op) { 1856 case (MOUNTCTL_SET_EXPORT): 1857 tmp = (struct tmpfs_mount *) mp->mnt_data; 1858 1859 if (ap->a_ctllen != sizeof(struct export_args)) 1860 rc = (EINVAL); 1861 else 1862 rc = vfs_export(mp, &tmp->tm_export, 1863 (const struct export_args *) ap->a_ctl); 1864 break; 1865 default: 1866 rc = vop_stdmountctl(ap); 1867 break; 1868 } 1869 1870 lwkt_reltoken(&mp->mnt_token); 1871 return (rc); 1872 } 1873 1874 /* --------------------------------------------------------------------- */ 1875 1876 static int 1877 tmpfs_print(struct vop_print_args *ap) 1878 { 1879 struct vnode *vp = ap->a_vp; 1880 1881 struct tmpfs_node *node; 1882 1883 node = VP_TO_TMPFS_NODE(vp); 1884 1885 kprintf("tag VT_TMPFS, tmpfs_node %p, flags 0x%x, links %d\n", 1886 node, node->tn_flags, node->tn_links); 1887 kprintf("\tmode 0%o, owner %d, group %d, size %ju, status 0x%x\n", 1888 node->tn_mode, node->tn_uid, node->tn_gid, 1889 (uintmax_t)node->tn_size, node->tn_status); 1890 1891 if (vp->v_type == VFIFO) 1892 fifo_printinfo(vp); 1893 1894 kprintf("\n"); 1895 1896 return 0; 1897 } 1898 1899 /* --------------------------------------------------------------------- */ 1900 1901 static int 1902 tmpfs_pathconf(struct vop_pathconf_args *ap) 1903 { 1904 struct vnode *vp = ap->a_vp; 1905 int name = ap->a_name; 1906 register_t *retval = ap->a_retval; 1907 struct tmpfs_mount *tmp; 1908 int error; 1909 1910 error = 0; 1911 1912 switch (name) { 1913 case _PC_CHOWN_RESTRICTED: 1914 *retval = 1; 1915 break; 1916 1917 case _PC_FILESIZEBITS: 1918 tmp = VFS_TO_TMPFS(vp->v_mount); 1919 *retval = max(32, flsll(tmp->tm_pages_max * PAGE_SIZE) + 1); 1920 break; 1921 1922 case _PC_LINK_MAX: 1923 *retval = LINK_MAX; 1924 break; 1925 1926 case _PC_NAME_MAX: 1927 *retval = NAME_MAX; 1928 break; 1929 1930 case _PC_NO_TRUNC: 1931 *retval = 1; 1932 break; 1933 1934 case _PC_PATH_MAX: 1935 *retval = PATH_MAX; 1936 break; 1937 1938 case _PC_PIPE_BUF: 1939 *retval = PIPE_BUF; 1940 break; 1941 1942 case _PC_SYNC_IO: 1943 *retval = 1; 1944 break; 1945 1946 case _PC_2_SYMLINKS: 1947 *retval = 1; 1948 break; 1949 1950 default: 1951 error = EINVAL; 1952 } 1953 1954 return error; 1955 } 1956 1957 /************************************************************************ 1958 * KQFILTER OPS * 1959 ************************************************************************/ 1960 1961 static void filt_tmpfsdetach(struct knote *kn); 1962 static int filt_tmpfsread(struct knote *kn, long hint); 1963 static int filt_tmpfswrite(struct knote *kn, long hint); 1964 static int filt_tmpfsvnode(struct knote *kn, long hint); 1965 1966 static struct filterops tmpfsread_filtops = 1967 { FILTEROP_ISFD | FILTEROP_MPSAFE, 1968 NULL, filt_tmpfsdetach, filt_tmpfsread }; 1969 static struct filterops tmpfswrite_filtops = 1970 { FILTEROP_ISFD | FILTEROP_MPSAFE, 1971 NULL, filt_tmpfsdetach, filt_tmpfswrite }; 1972 static struct filterops tmpfsvnode_filtops = 1973 { FILTEROP_ISFD | FILTEROP_MPSAFE, 1974 NULL, filt_tmpfsdetach, filt_tmpfsvnode }; 1975 1976 static int 1977 tmpfs_kqfilter (struct vop_kqfilter_args *ap) 1978 { 1979 struct vnode *vp = ap->a_vp; 1980 struct knote *kn = ap->a_kn; 1981 1982 switch (kn->kn_filter) { 1983 case EVFILT_READ: 1984 kn->kn_fop = &tmpfsread_filtops; 1985 break; 1986 case EVFILT_WRITE: 1987 kn->kn_fop = &tmpfswrite_filtops; 1988 break; 1989 case EVFILT_VNODE: 1990 kn->kn_fop = &tmpfsvnode_filtops; 1991 break; 1992 default: 1993 return (EOPNOTSUPP); 1994 } 1995 1996 kn->kn_hook = (caddr_t)vp; 1997 1998 knote_insert(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn); 1999 2000 return(0); 2001 } 2002 2003 static void 2004 filt_tmpfsdetach(struct knote *kn) 2005 { 2006 struct vnode *vp = (void *)kn->kn_hook; 2007 2008 knote_remove(&vp->v_pollinfo.vpi_kqinfo.ki_note, kn); 2009 } 2010 2011 static int 2012 filt_tmpfsread(struct knote *kn, long hint) 2013 { 2014 struct vnode *vp = (void *)kn->kn_hook; 2015 struct tmpfs_node *node = VP_TO_TMPFS_NODE(vp); 2016 off_t off; 2017 2018 if (hint == NOTE_REVOKE) { 2019 kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT); 2020 return(1); 2021 } 2022 2023 /* 2024 * Interlock against MP races when performing this function. 2025 */ 2026 TMPFS_NODE_LOCK_SH(node); 2027 off = node->tn_size - kn->kn_fp->f_offset; 2028 kn->kn_data = (off < INTPTR_MAX) ? off : INTPTR_MAX; 2029 if (kn->kn_sfflags & NOTE_OLDAPI) { 2030 TMPFS_NODE_UNLOCK(node); 2031 return(1); 2032 } 2033 if (kn->kn_data == 0) { 2034 kn->kn_data = (off < INTPTR_MAX) ? off : INTPTR_MAX; 2035 } 2036 TMPFS_NODE_UNLOCK(node); 2037 return (kn->kn_data != 0); 2038 } 2039 2040 static int 2041 filt_tmpfswrite(struct knote *kn, long hint) 2042 { 2043 if (hint == NOTE_REVOKE) 2044 kn->kn_flags |= (EV_EOF | EV_NODATA | EV_ONESHOT); 2045 kn->kn_data = 0; 2046 return (1); 2047 } 2048 2049 static int 2050 filt_tmpfsvnode(struct knote *kn, long hint) 2051 { 2052 if (kn->kn_sfflags & hint) 2053 kn->kn_fflags |= hint; 2054 if (hint == NOTE_REVOKE) { 2055 kn->kn_flags |= (EV_EOF | EV_NODATA); 2056 return (1); 2057 } 2058 return (kn->kn_fflags != 0); 2059 } 2060 2061 /* 2062 * Helper to move VM pages between objects 2063 * 2064 * NOTE: The vm_page_rename() dirties the page, so we can clear the 2065 * PG_NEED_COMMIT flag. If the pages are being moved into tn_aobj, 2066 * the pageout daemon will be able to page them out. 2067 */ 2068 static int 2069 tmpfs_move_pages_callback(vm_page_t p, void *data) 2070 { 2071 struct rb_vm_page_scan_info *info = data; 2072 vm_pindex_t pindex; 2073 2074 pindex = p->pindex; 2075 if (vm_page_busy_try(p, TRUE)) { 2076 vm_page_sleep_busy(p, TRUE, "tpgmov"); 2077 info->error = -1; 2078 return -1; 2079 } 2080 if (p->object != info->object || p->pindex != pindex) { 2081 vm_page_wakeup(p); 2082 info->error = -1; 2083 return -1; 2084 } 2085 2086 if ((info->pagerflags & TMPFS_MOVF_FROMBACKING) && 2087 (p->flags & PG_SWAPPED) && 2088 (p->flags & PG_NEED_COMMIT) == 0 && 2089 p->dirty == 0) { 2090 /* 2091 * If the page in the backing aobj was paged out to swap 2092 * it will be clean and it is better to free it rather 2093 * than re-dirty it. We will assume that the page was 2094 * paged out to swap for a reason! 2095 * 2096 * This helps avoid unnecessary swap thrashing on the page. 2097 */ 2098 vm_page_free(p); 2099 } else if ((info->pagerflags & TMPFS_MOVF_FROMBACKING) == 0 && 2100 (p->flags & PG_NEED_COMMIT) == 0 && 2101 p->dirty == 0) { 2102 /* 2103 * If the page associated with the vnode was cleaned via 2104 * a tmpfs_strategy() call, it exists as a swap block in 2105 * aobj and it is again better to free it rather than 2106 * re-dirty it. We will assume that the page was 2107 * paged out to swap for a reason! 2108 * 2109 * This helps avoid unnecessary swap thrashing on the page. 2110 */ 2111 vm_page_free(p); 2112 } else { 2113 /* 2114 * Rename the page, which will also ensure that it is flagged 2115 * as dirty and check whether a swap block association exists 2116 * in the target object or not, setting appropriate flags if 2117 * it does. 2118 */ 2119 vm_page_rename(p, info->dest_object, pindex); 2120 vm_page_clear_commit(p); 2121 if (info->pagerflags & TMPFS_MOVF_DEACTIVATE) 2122 vm_page_deactivate(p); 2123 vm_page_wakeup(p); 2124 /* page automaticaly made dirty */ 2125 } 2126 2127 return 0; 2128 } 2129 2130 static 2131 void 2132 tmpfs_move_pages(vm_object_t src, vm_object_t dst, int movflags) 2133 { 2134 struct rb_vm_page_scan_info info; 2135 2136 vm_object_hold(src); 2137 vm_object_hold(dst); 2138 info.object = src; 2139 info.dest_object = dst; 2140 info.pagerflags = movflags; 2141 do { 2142 if (src->paging_in_progress) 2143 vm_object_pip_wait(src, "objtfs"); 2144 info.error = 1; 2145 vm_page_rb_tree_RB_SCAN(&src->rb_memq, NULL, 2146 tmpfs_move_pages_callback, &info); 2147 } while (info.error < 0 || !RB_EMPTY(&src->rb_memq) || 2148 src->paging_in_progress); 2149 vm_object_drop(dst); 2150 vm_object_drop(src); 2151 } 2152 2153 /* --------------------------------------------------------------------- */ 2154 2155 /* 2156 * vnode operations vector used for files stored in a tmpfs file system. 2157 */ 2158 struct vop_ops tmpfs_vnode_vops = { 2159 .vop_default = vop_defaultop, 2160 .vop_getpages = vop_stdgetpages, 2161 .vop_putpages = vop_stdputpages, 2162 .vop_ncreate = tmpfs_ncreate, 2163 .vop_nresolve = tmpfs_nresolve, 2164 .vop_nlookupdotdot = tmpfs_nlookupdotdot, 2165 .vop_nmknod = tmpfs_nmknod, 2166 .vop_open = tmpfs_open, 2167 .vop_close = tmpfs_close, 2168 .vop_access = tmpfs_access, 2169 .vop_getattr = tmpfs_getattr, 2170 .vop_getattr_quick = tmpfs_getattr_quick, 2171 .vop_setattr = tmpfs_setattr, 2172 .vop_read = tmpfs_read, 2173 .vop_write = tmpfs_write, 2174 .vop_fsync = tmpfs_fsync, 2175 .vop_mountctl = tmpfs_mountctl, 2176 .vop_nremove = tmpfs_nremove, 2177 .vop_nlink = tmpfs_nlink, 2178 .vop_nrename = tmpfs_nrename, 2179 .vop_nmkdir = tmpfs_nmkdir, 2180 .vop_nrmdir = tmpfs_nrmdir, 2181 .vop_nsymlink = tmpfs_nsymlink, 2182 .vop_readdir = tmpfs_readdir, 2183 .vop_readlink = tmpfs_readlink, 2184 .vop_inactive = tmpfs_inactive, 2185 .vop_reclaim = tmpfs_reclaim, 2186 .vop_print = tmpfs_print, 2187 .vop_pathconf = tmpfs_pathconf, 2188 .vop_bmap = tmpfs_bmap, 2189 .vop_strategy = tmpfs_strategy, 2190 .vop_advlock = tmpfs_advlock, 2191 .vop_kqfilter = tmpfs_kqfilter 2192 }; 2193