xref: /dflybsd-src/sys/vfs/nullfs/null_vnops.c (revision 9d509a69ab2b7b806df8f2de570667d384d4d4f1)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * John Heidemann of the UCLA Ficus project.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)null_vnops.c	8.6 (Berkeley) 5/27/95
37  *
38  * Ancestors:
39  *	@(#)lofs_vnops.c	1.2 (Berkeley) 6/18/92
40  * $FreeBSD: src/sys/miscfs/nullfs/null_vnops.c,v 1.38.2.6 2002/07/31 00:32:28 semenu Exp $
41  * $DragonFly: src/sys/vfs/nullfs/null_vnops.c,v 1.13 2004/08/17 18:57:34 dillon Exp $
42  *	...and...
43  *	@(#)null_vnodeops.c 1.20 92/07/07 UCLA Ficus project
44  *
45  * $FreeBSD: src/sys/miscfs/nullfs/null_vnops.c,v 1.38.2.6 2002/07/31 00:32:28 semenu Exp $
46  */
47 
48 /*
49  * Null Layer
50  *
51  * (See mount_null(8) for more information.)
52  *
53  * The null layer duplicates a portion of the file system
54  * name space under a new name.  In this respect, it is
55  * similar to the loopback file system.  It differs from
56  * the loopback fs in two respects:  it is implemented using
57  * a stackable layers techniques, and its "null-node"s stack above
58  * all lower-layer vnodes, not just over directory vnodes.
59  *
60  * The null layer has two purposes.  First, it serves as a demonstration
61  * of layering by proving a layer which does nothing.  (It actually
62  * does everything the loopback file system does, which is slightly
63  * more than nothing.)  Second, the null layer can serve as a prototype
64  * layer.  Since it provides all necessary layer framework,
65  * new file system layers can be created very easily be starting
66  * with a null layer.
67  *
68  * The remainder of this man page examines the null layer as a basis
69  * for constructing new layers.
70  *
71  *
72  * INSTANTIATING NEW NULL LAYERS
73  *
74  * New null layers are created with mount_null(8).
75  * Mount_null(8) takes two arguments, the pathname
76  * of the lower vfs (target-pn) and the pathname where the null
77  * layer will appear in the namespace (alias-pn).  After
78  * the null layer is put into place, the contents
79  * of target-pn subtree will be aliased under alias-pn.
80  *
81  *
82  * OPERATION OF A NULL LAYER
83  *
84  * The null layer is the minimum file system layer,
85  * simply bypassing all possible operations to the lower layer
86  * for processing there.  The majority of its activity centers
87  * on the bypass routine, through which nearly all vnode operations
88  * pass.
89  *
90  * The bypass routine accepts arbitrary vnode operations for
91  * handling by the lower layer.  It begins by examing vnode
92  * operation arguments and replacing any null-nodes by their
93  * lower-layer equivlants.  It then invokes the operation
94  * on the lower layer.  Finally, it replaces the null-nodes
95  * in the arguments and, if a vnode is return by the operation,
96  * stacks a null-node on top of the returned vnode.
97  *
98  * Although bypass handles most operations, vop_getattr, vop_lock,
99  * vop_unlock, vop_inactive, vop_reclaim, and vop_print are not
100  * bypassed. Vop_getattr must change the fsid being returned.
101  * Vop_lock and vop_unlock must handle any locking for the
102  * current vnode as well as pass the lock request down.
103  * Vop_inactive and vop_reclaim are not bypassed so that
104  * they can handle freeing null-layer specific data. Vop_print
105  * is not bypassed to avoid excessive debugging information.
106  * Also, certain vnode operations change the locking state within
107  * the operation (create, mknod, remove, link, rename, mkdir, rmdir,
108  * and symlink). Ideally these operations should not change the
109  * lock state, but should be changed to let the caller of the
110  * function unlock them. Otherwise all intermediate vnode layers
111  * (such as union, umapfs, etc) must catch these functions to do
112  * the necessary locking at their layer.
113  *
114  *
115  * INSTANTIATING VNODE STACKS
116  *
117  * Mounting associates the null layer with a lower layer,
118  * effect stacking two VFSes.  Vnode stacks are instead
119  * created on demand as files are accessed.
120  *
121  * The initial mount creates a single vnode stack for the
122  * root of the new null layer.  All other vnode stacks
123  * are created as a result of vnode operations on
124  * this or other null vnode stacks.
125  *
126  * New vnode stacks come into existance as a result of
127  * an operation which returns a vnode.
128  * The bypass routine stacks a null-node above the new
129  * vnode before returning it to the caller.
130  *
131  * For example, imagine mounting a null layer with
132  * "mount_null /usr/include /dev/layer/null".
133  * Changing directory to /dev/layer/null will assign
134  * the root null-node (which was created when the null layer was mounted).
135  * Now consider opening "sys".  A vop_lookup would be
136  * done on the root null-node.  This operation would bypass through
137  * to the lower layer which would return a vnode representing
138  * the UFS "sys".  Null_bypass then builds a null-node
139  * aliasing the UFS "sys" and returns this to the caller.
140  * Later operations on the null-node "sys" will repeat this
141  * process when constructing other vnode stacks.
142  *
143  *
144  * CREATING OTHER FILE SYSTEM LAYERS
145  *
146  * One of the easiest ways to construct new file system layers is to make
147  * a copy of the null layer, rename all files and variables, and
148  * then begin modifing the copy.  Sed can be used to easily rename
149  * all variables.
150  *
151  * The umap layer is an example of a layer descended from the
152  * null layer.
153  *
154  *
155  * INVOKING OPERATIONS ON LOWER LAYERS
156  *
157  * There are two techniques to invoke operations on a lower layer
158  * when the operation cannot be completely bypassed.  Each method
159  * is appropriate in different situations.  In both cases,
160  * it is the responsibility of the aliasing layer to make
161  * the operation arguments "correct" for the lower layer
162  * by mapping an vnode arguments to the lower layer.
163  *
164  * The first approach is to call the aliasing layer's bypass routine.
165  * This method is most suitable when you wish to invoke the operation
166  * currently being handled on the lower layer.  It has the advantage
167  * that the bypass routine already must do argument mapping.
168  * An example of this is null_getattrs in the null layer.
169  *
170  * A second approach is to directly invoke vnode operations on
171  * the lower layer with the VOP_OPERATIONNAME interface.
172  * The advantage of this method is that it is easy to invoke
173  * arbitrary operations on the lower layer.  The disadvantage
174  * is that vnode arguments must be manualy mapped.
175  *
176  */
177 
178 #include <sys/param.h>
179 #include <sys/systm.h>
180 #include <sys/kernel.h>
181 #include <sys/sysctl.h>
182 #include <sys/vnode.h>
183 #include <sys/mount.h>
184 #include <sys/proc.h>
185 #include <sys/namei.h>
186 #include <sys/malloc.h>
187 #include <sys/buf.h>
188 #include "null.h"
189 
190 static int null_bug_bypass = 0;   /* for debugging: enables bypass printf'ing */
191 SYSCTL_INT(_debug, OID_AUTO, nullfs_bug_bypass, CTLFLAG_RW,
192 	&null_bug_bypass, 0, "");
193 
194 static int	null_access(struct vop_access_args *ap);
195 static int	null_createvobject(struct vop_createvobject_args *ap);
196 static int	null_destroyvobject(struct vop_destroyvobject_args *ap);
197 static int	null_getattr(struct vop_getattr_args *ap);
198 static int	null_getvobject(struct vop_getvobject_args *ap);
199 static int	null_inactive(struct vop_inactive_args *ap);
200 static int	null_islocked(struct vop_islocked_args *ap);
201 static int	null_lock(struct vop_lock_args *ap);
202 static int	null_lookup(struct vop_lookup_args *ap);
203 static int	null_open(struct vop_open_args *ap);
204 static int	null_print(struct vop_print_args *ap);
205 static int	null_reclaim(struct vop_reclaim_args *ap);
206 static int	null_rename(struct vop_rename_args *ap);
207 static int	null_setattr(struct vop_setattr_args *ap);
208 static int	null_unlock(struct vop_unlock_args *ap);
209 
210 /*
211  * This is the 10-Apr-92 bypass routine.
212  *    This version has been optimized for speed, throwing away some
213  * safety checks.  It should still always work, but it's not as
214  * robust to programmer errors.
215  *
216  * In general, we map all vnodes going down and unmap them on the way back.
217  * As an exception to this, vnodes can be marked "unmapped" by setting
218  * the Nth bit in operation's vdesc_flags.
219  *
220  * Also, some BSD vnode operations have the side effect of vrele'ing
221  * their arguments.  With stacking, the reference counts are held
222  * by the upper node, not the lower one, so we must handle these
223  * side-effects here.  This is not of concern in Sun-derived systems
224  * since there are no such side-effects.
225  *
226  * This makes the following assumptions:
227  * - only one returned vpp
228  * - no INOUT vpp's (Sun's vop_open has one of these)
229  * - the vnode operation vector of the first vnode should be used
230  *   to determine what implementation of the op should be invoked
231  * - all mapped vnodes are of our vnode-type (NEEDSWORK:
232  *   problems on rmdir'ing mount points and renaming?)
233  *
234  * null_bypass(struct vnodeop_desc *a_desc, ...)
235  */
236 int
237 null_bypass(struct vop_generic_args *ap)
238 {
239 	register struct vnode **this_vp_p;
240 	int error;
241 	struct vnode *old_vps[VDESC_MAX_VPS];
242 	struct vnode **vps_p[VDESC_MAX_VPS];
243 	struct vnode ***vppp;
244 	struct vnodeop_desc *descp = ap->a_desc;
245 	int reles, i;
246 
247 	if (null_bug_bypass)
248 		printf ("null_bypass: %s\n", descp->vdesc_name);
249 
250 #ifdef DIAGNOSTIC
251 	/*
252 	 * We require at least one vp.
253 	 */
254 	if (descp->vdesc_vp_offsets == NULL ||
255 	    descp->vdesc_vp_offsets[0] == VDESC_NO_OFFSET)
256 		panic ("null_bypass: no vp's in map");
257 #endif
258 
259 	/*
260 	 * Map the vnodes going in.
261 	 * Later, we'll invoke the operation based on
262 	 * the first mapped vnode's operation vector.
263 	 */
264 	reles = descp->vdesc_flags;
265 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
266 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
267 			break;   /* bail out at end of list */
268 		vps_p[i] = this_vp_p =
269 			VOPARG_OFFSETTO(struct vnode**,descp->vdesc_vp_offsets[i],ap);
270 		/*
271 		 * We're not guaranteed that any but the first vnode
272 		 * are of our type.  Check for and don't map any
273 		 * that aren't.  (We must always map first vp or vclean fails.)
274 		 */
275 		if (i && (*this_vp_p == NULLVP ||
276 		    (*this_vp_p)->v_tag != VT_NULL)) {
277 			old_vps[i] = NULLVP;
278 		} else {
279 			old_vps[i] = *this_vp_p;
280 			*(vps_p[i]) = NULLVPTOLOWERVP(*this_vp_p);
281 			/*
282 			 * XXX - Several operations have the side effect
283 			 * of vrele'ing their vp's.  We must account for
284 			 * that.  (This should go away in the future.)
285 			 */
286 			if (reles & VDESC_VP0_WILLRELE)
287 				vref(*this_vp_p);
288 		}
289 
290 	}
291 
292 	/*
293 	 * Call the operation on the lower layer with the modified
294 	 * argument structure.  We have to adjust a_fm to point to the
295 	 * lower vp's vop_ops structure.
296 	 */
297 	if (vps_p[0] && *vps_p[0]) {
298 		ap->a_ops = (*(vps_p[0]))->v_ops;
299 		error = vop_vnoperate_ap(ap);
300 	} else {
301 		printf("null_bypass: no map for %s\n", descp->vdesc_name);
302 		error = EINVAL;
303 	}
304 
305 	/*
306 	 * Maintain the illusion of call-by-value
307 	 * by restoring vnodes in the argument structure
308 	 * to their original value.
309 	 */
310 	reles = descp->vdesc_flags;
311 	for (i = 0; i < VDESC_MAX_VPS; reles >>= 1, i++) {
312 		if (descp->vdesc_vp_offsets[i] == VDESC_NO_OFFSET)
313 			break;   /* bail out at end of list */
314 		if (old_vps[i]) {
315 			*(vps_p[i]) = old_vps[i];
316 #if 0
317 			if (reles & VDESC_VP0_WILLUNLOCK)
318 				VOP_UNLOCK(*(vps_p[i]), NULL, LK_THISLAYER, curproc);
319 #endif
320 			if (reles & VDESC_VP0_WILLRELE)
321 				vrele(*(vps_p[i]));
322 		}
323 	}
324 
325 	/*
326 	 * Map the possible out-going vpp
327 	 * (Assumes that the lower layer always returns
328 	 * a vref'ed vpp unless it gets an error.)
329 	 */
330 	if (descp->vdesc_vpp_offset != VDESC_NO_OFFSET &&
331 	    !(descp->vdesc_flags & VDESC_NOMAP_VPP) &&
332 	    !error) {
333 		/*
334 		 * XXX - even though some ops have vpp returned vp's,
335 		 * several ops actually vrele this before returning.
336 		 * We must avoid these ops.
337 		 * (This should go away when these ops are regularized.)
338 		 */
339 		if (descp->vdesc_flags & VDESC_VPP_WILLRELE)
340 			goto out;
341 		vppp = VOPARG_OFFSETTO(struct vnode***,
342 				 descp->vdesc_vpp_offset,ap);
343 		if (*vppp)
344 			error = null_node_create(old_vps[0]->v_mount, **vppp, *vppp);
345 	}
346 
347  out:
348 	return (error);
349 }
350 
351 /*
352  * We have to carry on the locking protocol on the null layer vnodes
353  * as we progress through the tree. We also have to enforce read-only
354  * if this layer is mounted read-only.
355  *
356  * null_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
357  *		struct componentname *a_cnp)
358  */
359 static int
360 null_lookup(struct vop_lookup_args *ap)
361 {
362 	struct componentname *cnp = ap->a_cnp;
363 	struct vnode *dvp = ap->a_dvp;
364 	struct thread *td = cnp->cn_td;
365 	int flags = cnp->cn_flags;
366 	struct vnode *vp, *ldvp, *lvp;
367 	int error;
368 
369 	if ((flags & CNP_ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
370 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
371 		return (EROFS);
372 	/*
373 	 * Although it is possible to call null_bypass(), we'll do
374 	 * a direct call to reduce overhead
375 	 */
376 	ldvp = NULLVPTOLOWERVP(dvp);
377 	vp = lvp = NULL;
378 	error = VOP_LOOKUP(ldvp, NCPNULL, &lvp, NCPPNULL, cnp);
379 	if (error == EJUSTRETURN && (flags & CNP_ISLASTCN) &&
380 	    (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
381 	    (cnp->cn_nameiop == NAMEI_CREATE || cnp->cn_nameiop == NAMEI_RENAME))
382 		error = EROFS;
383 
384 	/*
385 	 * Rely only on the PDIRUNLOCK flag which should be carefully
386 	 * tracked by underlying filesystem.
387 	 */
388 	if (cnp->cn_flags & CNP_PDIRUNLOCK)
389 		VOP_UNLOCK(dvp, NULL, LK_THISLAYER, td);
390 	if ((error == 0 || error == EJUSTRETURN) && lvp != NULL) {
391 		if (ldvp == lvp) {
392 			*ap->a_vpp = dvp;
393 			vref(dvp);
394 			vrele(lvp);
395 		} else {
396 			error = null_node_create(dvp->v_mount, lvp, &vp);
397 			if (error == 0)
398 				*ap->a_vpp = vp;
399 		}
400 	}
401 	return (error);
402 }
403 
404 /*
405  * Setattr call. Disallow write attempts if the layer is mounted read-only.
406  *
407  * null_setattr(struct vnodeop_desc *a_desc, struct vnode *a_vp,
408  *		struct vattr *a_vap, struct ucred *a_cred,
409  *		struct thread *a_td)
410  */
411 int
412 null_setattr(struct vop_setattr_args *ap)
413 {
414 	struct vnode *vp = ap->a_vp;
415 	struct vattr *vap = ap->a_vap;
416 
417   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
418 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
419 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
420 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
421 		return (EROFS);
422 	if (vap->va_size != VNOVAL) {
423  		switch (vp->v_type) {
424  		case VDIR:
425  			return (EISDIR);
426  		case VCHR:
427  		case VBLK:
428  		case VSOCK:
429  		case VFIFO:
430 			if (vap->va_flags != VNOVAL)
431 				return (EOPNOTSUPP);
432 			return (0);
433 		case VREG:
434 		case VLNK:
435  		default:
436 			/*
437 			 * Disallow write attempts if the filesystem is
438 			 * mounted read-only.
439 			 */
440 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
441 				return (EROFS);
442 		}
443 	}
444 
445 	return (null_bypass(&ap->a_head));
446 }
447 
448 /*
449  *  We handle getattr only to change the fsid.
450  *
451  * null_getattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred,
452  *		struct thread *a_td)
453  */
454 static int
455 null_getattr(struct vop_getattr_args *ap)
456 {
457 	int error;
458 
459 	if ((error = null_bypass(&ap->a_head)) != 0)
460 		return (error);
461 
462 	ap->a_vap->va_fsid = ap->a_vp->v_mount->mnt_stat.f_fsid.val[0];
463 	return (0);
464 }
465 
466 /*
467  * Handle to disallow write access if mounted read-only.
468  *
469  * null_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
470  *		struct thread *a_td)
471  */
472 static int
473 null_access(struct vop_access_args *ap)
474 {
475 	struct vnode *vp = ap->a_vp;
476 	mode_t mode = ap->a_mode;
477 
478 	/*
479 	 * Disallow write attempts on read-only layers;
480 	 * unless the file is a socket, fifo, or a block or
481 	 * character device resident on the file system.
482 	 */
483 	if (mode & VWRITE) {
484 		switch (vp->v_type) {
485 		case VDIR:
486 		case VLNK:
487 		case VREG:
488 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
489 				return (EROFS);
490 			break;
491 		default:
492 			break;
493 		}
494 	}
495 	return (null_bypass(&ap->a_head));
496 }
497 
498 /*
499  * We must handle open to be able to catch MNT_NODEV and friends.
500  *
501  * null_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
502  *	     struct thread *a_td)
503  */
504 static int
505 null_open(struct vop_open_args *ap)
506 {
507 	struct vnode *vp = ap->a_vp;
508 	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
509 
510 	if ((vp->v_mount->mnt_flag & MNT_NODEV) &&
511 	    (lvp->v_type == VBLK || lvp->v_type == VCHR))
512 		return ENXIO;
513 
514 	return (null_bypass(&ap->a_head));
515 }
516 
517 /*
518  * We handle this to eliminate null FS to lower FS
519  * file moving. Don't know why we don't allow this,
520  * possibly we should.
521  *
522  * null_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
523  *		struct componentname *a_fcnp, struct vnode *a_tdvp,
524  *		struct vnode *a_tvp, struct componentname *a_tcnp)
525  */
526 static int
527 null_rename(struct vop_rename_args *ap)
528 {
529 	struct vnode *tdvp = ap->a_tdvp;
530 	struct vnode *fvp = ap->a_fvp;
531 	struct vnode *fdvp = ap->a_fdvp;
532 	struct vnode *tvp = ap->a_tvp;
533 
534 	/* Check for cross-device rename. */
535 	if ((fvp->v_mount != tdvp->v_mount) ||
536 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
537 		if (tdvp == tvp)
538 			vrele(tdvp);
539 		else
540 			vput(tdvp);
541 		if (tvp)
542 			vput(tvp);
543 		vrele(fdvp);
544 		vrele(fvp);
545 		return (EXDEV);
546 	}
547 
548 	return (null_bypass(&ap->a_head));
549 }
550 
551 /*
552  * We need to process our own vnode lock and then clear the
553  * interlock flag as it applies only to our vnode, not the
554  * vnodes below us on the stack.
555  *
556  * null_lock(struct vnode *a_vp, lwkt_tokref_t a_vlock, int a_flags,
557  *	     struct thread *a_td)
558  */
559 static int
560 null_lock(struct vop_lock_args *ap)
561 {
562 	struct vnode *vp = ap->a_vp;
563 	int flags = ap->a_flags;
564 	struct null_node *np = VTONULL(vp);
565 	struct vnode *lvp;
566 	int error;
567 
568 	if (flags & LK_THISLAYER) {
569 		if (vp->v_vnlock != NULL) {
570 			/* lock is shared across layers */
571 			if (flags & LK_INTERLOCK)
572 				lwkt_reltoken(ap->a_vlock);
573 			return 0;
574 		}
575 		error = lockmgr(&np->null_lock, flags & ~LK_THISLAYER,
576 		    ap->a_vlock, ap->a_td);
577 		return (error);
578 	}
579 
580 	if (vp->v_vnlock != NULL) {
581 		/*
582 		 * The lower level has exported a struct lock to us. Use
583 		 * it so that all vnodes in the stack lock and unlock
584 		 * simultaneously. Note: we don't DRAIN the lock as DRAIN
585 		 * decommissions the lock - just because our vnode is
586 		 * going away doesn't mean the struct lock below us is.
587 		 * LK_EXCLUSIVE is fine.
588 		 */
589 		if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
590 			NULLFSDEBUG("null_lock: avoiding LK_DRAIN\n");
591 			return(lockmgr(vp->v_vnlock,
592 				(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE,
593 				ap->a_vlock, ap->a_td));
594 		}
595 		return(lockmgr(vp->v_vnlock, flags, ap->a_vlock, ap->a_td));
596 	}
597 	/*
598 	 * To prevent race conditions involving doing a lookup
599 	 * on "..", we have to lock the lower node, then lock our
600 	 * node. Most of the time it won't matter that we lock our
601 	 * node (as any locking would need the lower one locked
602 	 * first). But we can LK_DRAIN the upper lock as a step
603 	 * towards decomissioning it.
604 	 */
605 	lvp = NULLVPTOLOWERVP(vp);
606 	if (lvp == NULL)
607 		return (lockmgr(&np->null_lock, flags, ap->a_vlock, ap->a_td));
608 	if (flags & LK_INTERLOCK) {
609 		VI_UNLOCK(ap->a_vlock, vp);
610 		flags &= ~LK_INTERLOCK;
611 	}
612 	if ((flags & LK_TYPE_MASK) == LK_DRAIN) {
613 		error = VOP_LOCK(lvp, ap->a_vlock,
614 			(flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE, ap->a_td);
615 	} else
616 		error = VOP_LOCK(lvp, ap->a_vlock, flags, ap->a_td);
617 	if (error)
618 		return (error);
619 	error = lockmgr(&np->null_lock, flags, ap->a_vlock, ap->a_td);
620 	if (error)
621 		VOP_UNLOCK(lvp, NULL, 0, ap->a_td);
622 	return (error);
623 }
624 
625 /*
626  * We need to process our own vnode unlock and then clear the
627  * interlock flag as it applies only to our vnode, not the
628  * vnodes below us on the stack.
629  *
630  * null_unlock(struct vnode *a_vp, lwkt_tokref_t a_vlock, int a_flags,
631  *		struct thread *a_td)
632  */
633 static int
634 null_unlock(struct vop_unlock_args *ap)
635 {
636 	struct vnode *vp = ap->a_vp;
637 	int flags = ap->a_flags;
638 	struct null_node *np = VTONULL(vp);
639 	struct vnode *lvp;
640 
641 	if (vp->v_vnlock != NULL) {
642 		if (flags & LK_THISLAYER)
643 			return 0;	/* the lock is shared across layers */
644 		flags &= ~LK_THISLAYER;
645 		return (lockmgr(vp->v_vnlock, flags | LK_RELEASE,
646 			ap->a_vlock, ap->a_td));
647 	}
648 	lvp = NULLVPTOLOWERVP(vp);
649 	if (lvp == NULL)
650 		return (lockmgr(&np->null_lock, flags | LK_RELEASE, ap->a_vlock, ap->a_td));
651 	if ((flags & LK_THISLAYER) == 0) {
652 		if (flags & LK_INTERLOCK) {
653 			VI_UNLOCK(ap->a_vlock, vp);
654 			flags &= ~LK_INTERLOCK;
655 		}
656 		VOP_UNLOCK(lvp, ap->a_vlock, flags, ap->a_td);
657 	} else {
658 		flags &= ~LK_THISLAYER;
659 	}
660 	ap->a_flags = flags;
661 	return (lockmgr(&np->null_lock, flags | LK_RELEASE, ap->a_vlock, ap->a_td));
662 }
663 
664 /*
665  * null_islocked(struct vnode *a_vp, struct thread *a_td)
666  */
667 static int
668 null_islocked(struct vop_islocked_args *ap)
669 {
670 	struct vnode *vp = ap->a_vp;
671 
672 	if (vp->v_vnlock != NULL)
673 		return (lockstatus(vp->v_vnlock, ap->a_td));
674 	return (lockstatus(&VTONULL(vp)->null_lock, ap->a_td));
675 }
676 
677 
678 /*
679  * There is no way to tell that someone issued remove/rmdir operation
680  * on the underlying filesystem. For now we just have to release lowevrp
681  * as soon as possible.
682  *
683  * null_inactive(struct vnode *a_vp, struct thread *a_td)
684  */
685 static int
686 null_inactive(struct vop_inactive_args *ap)
687 {
688 	struct vnode *vp = ap->a_vp;
689 	struct null_node *xp = VTONULL(vp);
690 	struct vnode *lowervp = xp->null_lowervp;
691 
692 	lockmgr(&null_hashlock, LK_EXCLUSIVE, NULL, ap->a_td);
693 	LIST_REMOVE(xp, null_hash);
694 	lockmgr(&null_hashlock, LK_RELEASE, NULL, ap->a_td);
695 
696 	xp->null_lowervp = NULLVP;
697 	if (vp->v_vnlock != NULL) {
698 		vp->v_vnlock = &xp->null_lock;	/* we no longer share the lock */
699 	} else {
700 		VOP_UNLOCK(vp, NULL, LK_THISLAYER, ap->a_td);
701 	}
702 
703 	vput(lowervp);
704 	/*
705 	 * Now it is safe to drop references to the lower vnode.
706 	 * VOP_INACTIVE() will be called by vrele() if necessary.
707 	 */
708 	vrele (lowervp);
709 
710 	return (0);
711 }
712 
713 /*
714  * We can free memory in null_inactive, but we do this
715  * here. (Possible to guard vp->v_data to point somewhere)
716  *
717  * null_reclaim(struct vnode *a_vp, struct thread *a_td)
718  */
719 static int
720 null_reclaim(struct vop_reclaim_args *ap)
721 {
722 	struct vnode *vp = ap->a_vp;
723 	void *vdata = vp->v_data;
724 
725 	vp->v_data = NULL;
726 	FREE(vdata, M_NULLFSNODE);
727 
728 	return (0);
729 }
730 
731 /*
732  * null_print(struct vnode *a_vp)
733  */
734 static int
735 null_print(struct vop_print_args *ap)
736 {
737 	struct vnode *vp = ap->a_vp;
738 
739 	printf ("\ttag VT_NULLFS, vp=%p, lowervp=%p\n", vp, NULLVPTOLOWERVP(vp));
740 	if (vp->v_vnlock != NULL) {
741 		printf("\tvnlock: ");
742 		lockmgr_printinfo(vp->v_vnlock);
743 	} else {
744 		printf("\tnull_lock: ");
745 		lockmgr_printinfo(&VTONULL(vp)->null_lock);
746 	}
747 	printf("\n");
748 	return (0);
749 }
750 
751 /*
752  * Let an underlying filesystem do the work
753  *
754  * null_createvobject(struct vnode *vp, struct ucred *cred, struct proc *p)
755  */
756 static int
757 null_createvobject(struct vop_createvobject_args *ap)
758 {
759 	struct vnode *vp = ap->a_vp;
760 	struct vnode *lowervp = VTONULL(vp) ? NULLVPTOLOWERVP(vp) : NULL;
761 	int error;
762 
763 	if (vp->v_type == VNON || lowervp == NULL)
764 		return 0;
765 	error = VOP_CREATEVOBJECT(lowervp, ap->a_td);
766 	if (error)
767 		return (error);
768 	vp->v_flag |= VOBJBUF;
769 	return (0);
770 }
771 
772 /*
773  * We have nothing to destroy and this operation shouldn't be bypassed.
774  *
775  * null_destroyvobject(struct vnode *vp)
776  */
777 static int
778 null_destroyvobject(struct vop_destroyvobject_args *ap)
779 {
780 	struct vnode *vp = ap->a_vp;
781 
782 	vp->v_flag &= ~VOBJBUF;
783 	return (0);
784 }
785 
786 /*
787  * null_getvobject(struct vnode *vp, struct vm_object **objpp)
788  */
789 static int
790 null_getvobject(struct vop_getvobject_args *ap)
791 {
792 	struct vnode *lvp = NULLVPTOLOWERVP(ap->a_vp);
793 
794 	if (lvp == NULL)
795 		return EINVAL;
796 	return (VOP_GETVOBJECT(lvp, ap->a_objpp));
797 }
798 
799 /*
800  * Global vfs data structures
801  */
802 struct vnodeopv_entry_desc null_vnodeop_entries[] = {
803 	{ &vop_default_desc,		(void *) null_bypass },
804 	{ &vop_access_desc,		(void *) null_access },
805 	{ &vop_createvobject_desc,	(void *) null_createvobject },
806 	{ &vop_destroyvobject_desc,	(void *) null_destroyvobject },
807 	{ &vop_getattr_desc,		(void *) null_getattr },
808 	{ &vop_getvobject_desc,		(void *) null_getvobject },
809 	{ &vop_inactive_desc,		(void *) null_inactive },
810 	{ &vop_islocked_desc,		(void *) null_islocked },
811 	{ &vop_lock_desc,		(void *) null_lock },
812 	{ &vop_lookup_desc,		(void *) null_lookup },
813 	{ &vop_open_desc,		(void *) null_open },
814 	{ &vop_print_desc,		(void *) null_print },
815 	{ &vop_reclaim_desc,		(void *) null_reclaim },
816 	{ &vop_rename_desc,		(void *) null_rename },
817 	{ &vop_setattr_desc,		(void *) null_setattr },
818 	{ &vop_unlock_desc,		(void *) null_unlock },
819 	{ NULL, NULL }
820 };
821 
822