1 /* 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)nfs_vnops.c 8.16 (Berkeley) 5/27/95 37 * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $ 38 */ 39 40 41 /* 42 * vnode op calls for Sun NFS version 2 and 3 43 */ 44 45 #include "opt_inet.h" 46 47 #include <sys/param.h> 48 #include <sys/kernel.h> 49 #include <sys/systm.h> 50 #include <sys/resourcevar.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/buf.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/namei.h> 57 #include <sys/nlookup.h> 58 #include <sys/socket.h> 59 #include <sys/vnode.h> 60 #include <sys/dirent.h> 61 #include <sys/fcntl.h> 62 #include <sys/lockf.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/conf.h> 66 67 #include <vm/vm.h> 68 #include <vm/vm_extern.h> 69 70 #include <sys/buf2.h> 71 72 #include <vfs/fifofs/fifo.h> 73 #include <vfs/ufs/dir.h> 74 75 #undef DIRBLKSIZ 76 77 #include "rpcv2.h" 78 #include "nfsproto.h" 79 #include "nfs.h" 80 #include "nfsmount.h" 81 #include "nfsnode.h" 82 #include "xdr_subs.h" 83 #include "nfsm_subs.h" 84 85 #include <net/if.h> 86 #include <netinet/in.h> 87 #include <netinet/in_var.h> 88 89 #include <sys/thread2.h> 90 91 /* Defs */ 92 #define TRUE 1 93 #define FALSE 0 94 95 static int nfsfifo_read (struct vop_read_args *); 96 static int nfsfifo_write (struct vop_write_args *); 97 static int nfsfifo_close (struct vop_close_args *); 98 static int nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *); 99 static int nfs_lookup (struct vop_old_lookup_args *); 100 static int nfs_create (struct vop_old_create_args *); 101 static int nfs_mknod (struct vop_old_mknod_args *); 102 static int nfs_open (struct vop_open_args *); 103 static int nfs_close (struct vop_close_args *); 104 static int nfs_access (struct vop_access_args *); 105 static int nfs_getattr (struct vop_getattr_args *); 106 static int nfs_setattr (struct vop_setattr_args *); 107 static int nfs_read (struct vop_read_args *); 108 static int nfs_mmap (struct vop_mmap_args *); 109 static int nfs_fsync (struct vop_fsync_args *); 110 static int nfs_remove (struct vop_old_remove_args *); 111 static int nfs_link (struct vop_old_link_args *); 112 static int nfs_rename (struct vop_old_rename_args *); 113 static int nfs_mkdir (struct vop_old_mkdir_args *); 114 static int nfs_rmdir (struct vop_old_rmdir_args *); 115 static int nfs_symlink (struct vop_old_symlink_args *); 116 static int nfs_readdir (struct vop_readdir_args *); 117 static int nfs_bmap (struct vop_bmap_args *); 118 static int nfs_strategy (struct vop_strategy_args *); 119 static int nfs_lookitup (struct vnode *, const char *, int, 120 struct ucred *, struct thread *, struct nfsnode **); 121 static int nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *); 122 static int nfs_laccess (struct vop_access_args *); 123 static int nfs_readlink (struct vop_readlink_args *); 124 static int nfs_print (struct vop_print_args *); 125 static int nfs_advlock (struct vop_advlock_args *); 126 127 static int nfs_nresolve (struct vop_nresolve_args *); 128 /* 129 * Global vfs data structures for nfs 130 */ 131 struct vop_ops nfsv2_vnode_vops = { 132 .vop_default = vop_defaultop, 133 .vop_access = nfs_access, 134 .vop_advlock = nfs_advlock, 135 .vop_bmap = nfs_bmap, 136 .vop_close = nfs_close, 137 .vop_old_create = nfs_create, 138 .vop_fsync = nfs_fsync, 139 .vop_getattr = nfs_getattr, 140 .vop_getpages = vop_stdgetpages, 141 .vop_putpages = vop_stdputpages, 142 .vop_inactive = nfs_inactive, 143 .vop_old_link = nfs_link, 144 .vop_old_lookup = nfs_lookup, 145 .vop_old_mkdir = nfs_mkdir, 146 .vop_old_mknod = nfs_mknod, 147 .vop_mmap = nfs_mmap, 148 .vop_open = nfs_open, 149 .vop_print = nfs_print, 150 .vop_read = nfs_read, 151 .vop_readdir = nfs_readdir, 152 .vop_readlink = nfs_readlink, 153 .vop_reclaim = nfs_reclaim, 154 .vop_old_remove = nfs_remove, 155 .vop_old_rename = nfs_rename, 156 .vop_old_rmdir = nfs_rmdir, 157 .vop_setattr = nfs_setattr, 158 .vop_strategy = nfs_strategy, 159 .vop_old_symlink = nfs_symlink, 160 .vop_write = nfs_write, 161 .vop_nresolve = nfs_nresolve 162 }; 163 164 /* 165 * Special device vnode ops 166 */ 167 struct vop_ops nfsv2_spec_vops = { 168 .vop_default = vop_defaultop, 169 .vop_access = nfs_laccess, 170 .vop_close = nfs_close, 171 .vop_fsync = nfs_fsync, 172 .vop_getattr = nfs_getattr, 173 .vop_inactive = nfs_inactive, 174 .vop_print = nfs_print, 175 .vop_read = vop_stdnoread, 176 .vop_reclaim = nfs_reclaim, 177 .vop_setattr = nfs_setattr, 178 .vop_write = vop_stdnowrite 179 }; 180 181 struct vop_ops nfsv2_fifo_vops = { 182 .vop_default = fifo_vnoperate, 183 .vop_access = nfs_laccess, 184 .vop_close = nfsfifo_close, 185 .vop_fsync = nfs_fsync, 186 .vop_getattr = nfs_getattr, 187 .vop_inactive = nfs_inactive, 188 .vop_print = nfs_print, 189 .vop_read = nfsfifo_read, 190 .vop_reclaim = nfs_reclaim, 191 .vop_setattr = nfs_setattr, 192 .vop_write = nfsfifo_write 193 }; 194 195 static int nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp, 196 struct componentname *cnp, 197 struct vattr *vap); 198 static int nfs_removerpc (struct vnode *dvp, const char *name, 199 int namelen, 200 struct ucred *cred, struct thread *td); 201 static int nfs_renamerpc (struct vnode *fdvp, const char *fnameptr, 202 int fnamelen, struct vnode *tdvp, 203 const char *tnameptr, int tnamelen, 204 struct ucred *cred, struct thread *td); 205 static int nfs_renameit (struct vnode *sdvp, 206 struct componentname *scnp, 207 struct sillyrename *sp); 208 209 SYSCTL_DECL(_vfs_nfs); 210 211 static int nfs_flush_on_rename = 1; 212 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW, 213 &nfs_flush_on_rename, 0, "flush fvp prior to rename"); 214 static int nfs_flush_on_hlink = 0; 215 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW, 216 &nfs_flush_on_hlink, 0, "flush fvp prior to hard link"); 217 218 static int nfsaccess_cache_timeout = NFS_DEFATTRTIMO; 219 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW, 220 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout"); 221 222 static int nfsneg_cache_timeout = NFS_MINATTRTIMO; 223 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW, 224 &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout"); 225 226 static int nfspos_cache_timeout = NFS_MINATTRTIMO; 227 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW, 228 &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout"); 229 230 static int nfsv3_commit_on_close = 0; 231 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW, 232 &nfsv3_commit_on_close, 0, "write+commit on close, else only write"); 233 #if 0 234 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD, 235 &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count"); 236 237 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD, 238 &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count"); 239 #endif 240 241 #define NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY \ 242 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE \ 243 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP) 244 245 /* 246 * Returns whether a name component is a degenerate '.' or '..'. 247 */ 248 static __inline 249 int 250 nlcdegenerate(struct nlcomponent *nlc) 251 { 252 if (nlc->nlc_namelen == 1 && nlc->nlc_nameptr[0] == '.') 253 return(1); 254 if (nlc->nlc_namelen == 2 && 255 nlc->nlc_nameptr[0] == '.' && nlc->nlc_nameptr[1] == '.') 256 return(1); 257 return(0); 258 } 259 260 static int 261 nfs3_access_otw(struct vnode *vp, int wmode, 262 struct thread *td, struct ucred *cred) 263 { 264 struct nfsnode *np = VTONFS(vp); 265 int attrflag; 266 int error = 0; 267 u_int32_t *tl; 268 u_int32_t rmode; 269 struct nfsm_info info; 270 271 info.mrep = NULL; 272 info.v3 = 1; 273 274 nfsstats.rpccnt[NFSPROC_ACCESS]++; 275 nfsm_reqhead(&info, vp, NFSPROC_ACCESS, 276 NFSX_FH(info.v3) + NFSX_UNSIGNED); 277 ERROROUT(nfsm_fhtom(&info, vp)); 278 tl = nfsm_build(&info, NFSX_UNSIGNED); 279 *tl = txdr_unsigned(wmode); 280 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_ACCESS, td, cred, &error)); 281 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK)); 282 if (error == 0) { 283 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); 284 rmode = fxdr_unsigned(u_int32_t, *tl); 285 np->n_mode = rmode; 286 np->n_modeuid = cred->cr_uid; 287 np->n_modestamp = mycpu->gd_time_seconds; 288 } 289 m_freem(info.mrep); 290 info.mrep = NULL; 291 nfsmout: 292 return error; 293 } 294 295 /* 296 * nfs access vnode op. 297 * For nfs version 2, just return ok. File accesses may fail later. 298 * For nfs version 3, use the access rpc to check accessibility. If file modes 299 * are changed on the server, accesses might still fail later. 300 * 301 * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred) 302 */ 303 static int 304 nfs_access(struct vop_access_args *ap) 305 { 306 struct ucred *cred; 307 struct vnode *vp = ap->a_vp; 308 thread_t td = curthread; 309 int error = 0; 310 u_int32_t mode, wmode; 311 struct nfsnode *np = VTONFS(vp); 312 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 313 int v3 = NFS_ISV3(vp); 314 315 lwkt_gettoken(&nmp->nm_token); 316 317 /* 318 * Disallow write attempts on filesystems mounted read-only; 319 * unless the file is a socket, fifo, or a block or character 320 * device resident on the filesystem. 321 */ 322 if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { 323 switch (vp->v_type) { 324 case VREG: 325 case VDIR: 326 case VLNK: 327 lwkt_reltoken(&nmp->nm_token); 328 return (EROFS); 329 default: 330 break; 331 } 332 } 333 334 /* 335 * The NFS protocol passes only the effective uid/gid over the wire but 336 * we need to check access against real ids if AT_EACCESS not set. 337 * Handle this case by cloning the credentials and setting the 338 * effective ids to the real ones. 339 */ 340 if (ap->a_flags & AT_EACCESS) { 341 cred = crhold(ap->a_cred); 342 } else { 343 cred = crdup(ap->a_cred); 344 cred->cr_uid = cred->cr_ruid; 345 cred->cr_gid = cred->cr_rgid; 346 } 347 348 /* 349 * For nfs v3, check to see if we have done this recently, and if 350 * so return our cached result instead of making an ACCESS call. 351 * If not, do an access rpc, otherwise you are stuck emulating 352 * ufs_access() locally using the vattr. This may not be correct, 353 * since the server may apply other access criteria such as 354 * client uid-->server uid mapping that we do not know about. 355 */ 356 if (v3) { 357 if (ap->a_mode & VREAD) 358 mode = NFSV3ACCESS_READ; 359 else 360 mode = 0; 361 if (vp->v_type != VDIR) { 362 if (ap->a_mode & VWRITE) 363 mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND); 364 if (ap->a_mode & VEXEC) 365 mode |= NFSV3ACCESS_EXECUTE; 366 } else { 367 if (ap->a_mode & VWRITE) 368 mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND | 369 NFSV3ACCESS_DELETE); 370 if (ap->a_mode & VEXEC) 371 mode |= NFSV3ACCESS_LOOKUP; 372 } 373 /* XXX safety belt, only make blanket request if caching */ 374 if (nfsaccess_cache_timeout > 0) { 375 wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY | 376 NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE | 377 NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP; 378 } else { 379 wmode = mode; 380 } 381 382 /* 383 * Does our cached result allow us to give a definite yes to 384 * this request? 385 */ 386 if (np->n_modestamp && 387 (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) && 388 (cred->cr_uid == np->n_modeuid) && 389 ((np->n_mode & mode) == mode)) { 390 nfsstats.accesscache_hits++; 391 } else { 392 /* 393 * Either a no, or a don't know. Go to the wire. 394 */ 395 nfsstats.accesscache_misses++; 396 error = nfs3_access_otw(vp, wmode, td, cred); 397 if (!error) { 398 if ((np->n_mode & mode) != mode) { 399 error = EACCES; 400 } 401 } 402 } 403 } else { 404 if ((error = nfs_laccess(ap)) != 0) { 405 crfree(cred); 406 lwkt_reltoken(&nmp->nm_token); 407 return (error); 408 } 409 410 /* 411 * Attempt to prevent a mapped root from accessing a file 412 * which it shouldn't. We try to read a byte from the file 413 * if the user is root and the file is not zero length. 414 * After calling nfs_laccess, we should have the correct 415 * file size cached. 416 */ 417 if (cred->cr_uid == 0 && (ap->a_mode & VREAD) 418 && VTONFS(vp)->n_size > 0) { 419 struct iovec aiov; 420 struct uio auio; 421 char buf[1]; 422 423 aiov.iov_base = buf; 424 aiov.iov_len = 1; 425 auio.uio_iov = &aiov; 426 auio.uio_iovcnt = 1; 427 auio.uio_offset = 0; 428 auio.uio_resid = 1; 429 auio.uio_segflg = UIO_SYSSPACE; 430 auio.uio_rw = UIO_READ; 431 auio.uio_td = td; 432 433 if (vp->v_type == VREG) { 434 error = nfs_readrpc_uio(vp, &auio); 435 } else if (vp->v_type == VDIR) { 436 char* bp; 437 bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK); 438 aiov.iov_base = bp; 439 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ; 440 error = nfs_readdirrpc_uio(vp, &auio); 441 kfree(bp, M_TEMP); 442 } else if (vp->v_type == VLNK) { 443 error = nfs_readlinkrpc_uio(vp, &auio); 444 } else { 445 error = EACCES; 446 } 447 } 448 } 449 /* 450 * [re]record creds for reading and/or writing if access 451 * was granted. Assume the NFS server will grant read access 452 * for execute requests. 453 */ 454 if (error == 0) { 455 if ((ap->a_mode & (VREAD|VEXEC)) && cred != np->n_rucred) { 456 crhold(cred); 457 if (np->n_rucred) 458 crfree(np->n_rucred); 459 np->n_rucred = cred; 460 } 461 if ((ap->a_mode & VWRITE) && cred != np->n_wucred) { 462 crhold(cred); 463 if (np->n_wucred) 464 crfree(np->n_wucred); 465 np->n_wucred = cred; 466 } 467 } 468 lwkt_reltoken(&nmp->nm_token); 469 crfree(cred); 470 return(error); 471 } 472 473 /* 474 * nfs open vnode op 475 * Check to see if the type is ok 476 * and that deletion is not in progress. 477 * For paged in text files, you will need to flush the page cache 478 * if consistency is lost. 479 * 480 * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred, 481 * struct file *a_fp) 482 */ 483 /* ARGSUSED */ 484 static int 485 nfs_open(struct vop_open_args *ap) 486 { 487 struct vnode *vp = ap->a_vp; 488 struct nfsnode *np = VTONFS(vp); 489 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 490 struct vattr vattr; 491 int error; 492 493 lwkt_gettoken(&nmp->nm_token); 494 495 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) { 496 #ifdef DIAGNOSTIC 497 kprintf("open eacces vtyp=%d\n",vp->v_type); 498 #endif 499 lwkt_reltoken(&nmp->nm_token); 500 return (EOPNOTSUPP); 501 } 502 503 /* 504 * Save valid creds for reading and writing for later RPCs. 505 */ 506 if ((ap->a_mode & FREAD) && ap->a_cred != np->n_rucred) { 507 crhold(ap->a_cred); 508 if (np->n_rucred) 509 crfree(np->n_rucred); 510 np->n_rucred = ap->a_cred; 511 } 512 if ((ap->a_mode & FWRITE) && ap->a_cred != np->n_wucred) { 513 crhold(ap->a_cred); 514 if (np->n_wucred) 515 crfree(np->n_wucred); 516 np->n_wucred = ap->a_cred; 517 } 518 519 /* 520 * Clear the attribute cache only if opening with write access. It 521 * is unclear if we should do this at all here, but we certainly 522 * should not clear the cache unconditionally simply because a file 523 * is being opened. 524 */ 525 if (ap->a_mode & FWRITE) 526 np->n_attrstamp = 0; 527 528 /* 529 * For normal NFS, reconcile changes made locally verses 530 * changes made remotely. Note that VOP_GETATTR only goes 531 * to the wire if the cached attribute has timed out or been 532 * cleared. 533 * 534 * If local modifications have been made clear the attribute 535 * cache to force an attribute and modified time check. If 536 * GETATTR detects that the file has been changed by someone 537 * other then us it will set NRMODIFIED. 538 * 539 * If we are opening a directory and local changes have been 540 * made we have to invalidate the cache in order to ensure 541 * that we get the most up-to-date information from the 542 * server. XXX 543 */ 544 if (np->n_flag & NLMODIFIED) { 545 np->n_attrstamp = 0; 546 if (vp->v_type == VDIR) { 547 error = nfs_vinvalbuf(vp, V_SAVE, 1); 548 if (error == EINTR) 549 return (error); 550 nfs_invaldir(vp); 551 } 552 } 553 error = VOP_GETATTR(vp, &vattr); 554 if (error) { 555 lwkt_reltoken(&nmp->nm_token); 556 return (error); 557 } 558 if (np->n_flag & NRMODIFIED) { 559 if (vp->v_type == VDIR) 560 nfs_invaldir(vp); 561 error = nfs_vinvalbuf(vp, V_SAVE, 1); 562 if (error == EINTR) { 563 lwkt_reltoken(&nmp->nm_token); 564 return (error); 565 } 566 np->n_flag &= ~NRMODIFIED; 567 } 568 error = vop_stdopen(ap); 569 lwkt_reltoken(&nmp->nm_token); 570 571 return error; 572 } 573 574 /* 575 * nfs close vnode op 576 * What an NFS client should do upon close after writing is a debatable issue. 577 * Most NFS clients push delayed writes to the server upon close, basically for 578 * two reasons: 579 * 1 - So that any write errors may be reported back to the client process 580 * doing the close system call. By far the two most likely errors are 581 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure. 582 * 2 - To put a worst case upper bound on cache inconsistency between 583 * multiple clients for the file. 584 * There is also a consistency problem for Version 2 of the protocol w.r.t. 585 * not being able to tell if other clients are writing a file concurrently, 586 * since there is no way of knowing if the changed modify time in the reply 587 * is only due to the write for this client. 588 * (NFS Version 3 provides weak cache consistency data in the reply that 589 * should be sufficient to detect and handle this case.) 590 * 591 * The current code does the following: 592 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers 593 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate 594 * or commit them (this satisfies 1 and 2 except for the 595 * case where the server crashes after this close but 596 * before the commit RPC, which is felt to be "good 597 * enough". Changing the last argument to nfs_flush() to 598 * a 1 would force a commit operation, if it is felt a 599 * commit is necessary now. 600 * for NQNFS - do nothing now, since 2 is dealt with via leases and 601 * 1 should be dealt with via an fsync() system call for 602 * cases where write errors are important. 603 * 604 * nfs_close(struct vnode *a_vp, int a_fflag) 605 */ 606 /* ARGSUSED */ 607 static int 608 nfs_close(struct vop_close_args *ap) 609 { 610 struct vnode *vp = ap->a_vp; 611 struct nfsnode *np = VTONFS(vp); 612 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 613 int error = 0; 614 thread_t td = curthread; 615 616 lwkt_gettoken(&nmp->nm_token); 617 618 if (vp->v_type == VREG) { 619 if (np->n_flag & NLMODIFIED) { 620 if (NFS_ISV3(vp)) { 621 /* 622 * Under NFSv3 we have dirty buffers to dispose of. We 623 * must flush them to the NFS server. We have the option 624 * of waiting all the way through the commit rpc or just 625 * waiting for the initial write. The default is to only 626 * wait through the initial write so the data is in the 627 * server's cache, which is roughly similar to the state 628 * a standard disk subsystem leaves the file in on close(). 629 * 630 * We cannot clear the NLMODIFIED bit in np->n_flag due to 631 * potential races with other processes, and certainly 632 * cannot clear it if we don't commit. 633 */ 634 int cm = nfsv3_commit_on_close ? 1 : 0; 635 error = nfs_flush(vp, MNT_WAIT, td, cm); 636 /* np->n_flag &= ~NLMODIFIED; */ 637 } else { 638 error = nfs_vinvalbuf(vp, V_SAVE, 1); 639 } 640 np->n_attrstamp = 0; 641 } 642 if (np->n_flag & NWRITEERR) { 643 np->n_flag &= ~NWRITEERR; 644 error = np->n_error; 645 } 646 } 647 vop_stdclose(ap); 648 lwkt_reltoken(&nmp->nm_token); 649 650 return (error); 651 } 652 653 /* 654 * nfs getattr call from vfs. 655 * 656 * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap) 657 */ 658 static int 659 nfs_getattr(struct vop_getattr_args *ap) 660 { 661 struct vnode *vp = ap->a_vp; 662 struct nfsnode *np = VTONFS(vp); 663 struct nfsmount *nmp; 664 int error = 0; 665 thread_t td = curthread; 666 struct nfsm_info info; 667 668 info.mrep = NULL; 669 info.v3 = NFS_ISV3(vp); 670 nmp = VFSTONFS(vp->v_mount); 671 672 lwkt_gettoken(&nmp->nm_token); 673 674 /* 675 * Update local times for special files. 676 */ 677 if (np->n_flag & (NACC | NUPD)) 678 np->n_flag |= NCHG; 679 /* 680 * First look in the cache. 681 */ 682 if (nfs_getattrcache(vp, ap->a_vap) == 0) 683 goto done; 684 685 if (info.v3 && nfsaccess_cache_timeout > 0) { 686 nfsstats.accesscache_misses++; 687 nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK)); 688 if (nfs_getattrcache(vp, ap->a_vap) == 0) 689 goto done; 690 } 691 692 nfsstats.rpccnt[NFSPROC_GETATTR]++; 693 nfsm_reqhead(&info, vp, NFSPROC_GETATTR, NFSX_FH(info.v3)); 694 ERROROUT(nfsm_fhtom(&info, vp)); 695 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_GETATTR, td, 696 nfs_vpcred(vp, ND_CHECK), &error)); 697 if (error == 0) { 698 ERROROUT(nfsm_loadattr(&info, vp, ap->a_vap)); 699 } 700 m_freem(info.mrep); 701 info.mrep = NULL; 702 done: 703 /* 704 * NFS doesn't support chflags flags. If the nfs mount was 705 * made -o cache set the UF_CACHE bit for swapcache. 706 */ 707 if ((nmp->nm_flag & NFSMNT_CACHE) && (vp->v_flag & VROOT)) 708 ap->a_vap->va_flags |= UF_CACHE; 709 nfsmout: 710 lwkt_reltoken(&nmp->nm_token); 711 return (error); 712 } 713 714 /* 715 * nfs setattr call. 716 * 717 * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred) 718 */ 719 static int 720 nfs_setattr(struct vop_setattr_args *ap) 721 { 722 struct vnode *vp = ap->a_vp; 723 struct nfsnode *np = VTONFS(vp); 724 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 725 struct vattr *vap = ap->a_vap; 726 int biosize = vp->v_mount->mnt_stat.f_iosize; 727 int error = 0; 728 int boff; 729 off_t tsize; 730 thread_t td = curthread; 731 732 #ifndef nolint 733 tsize = (off_t)0; 734 #endif 735 /* 736 * Setting of flags is not supported. 737 */ 738 if (vap->va_flags != VNOVAL) 739 return (EOPNOTSUPP); 740 741 /* 742 * Disallow write attempts if the filesystem is mounted read-only. 743 */ 744 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 745 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 746 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 747 (vp->v_mount->mnt_flag & MNT_RDONLY)) 748 return (EROFS); 749 750 lwkt_gettoken(&nmp->nm_token); 751 752 if (vap->va_size != VNOVAL) { 753 /* 754 * truncation requested 755 */ 756 switch (vp->v_type) { 757 case VDIR: 758 lwkt_reltoken(&nmp->nm_token); 759 return (EISDIR); 760 case VCHR: 761 case VBLK: 762 case VSOCK: 763 case VFIFO: 764 if (vap->va_mtime.tv_sec == VNOVAL && 765 vap->va_atime.tv_sec == VNOVAL && 766 vap->va_mode == (mode_t)VNOVAL && 767 vap->va_uid == (uid_t)VNOVAL && 768 vap->va_gid == (gid_t)VNOVAL) { 769 lwkt_reltoken(&nmp->nm_token); 770 return (0); 771 } 772 vap->va_size = VNOVAL; 773 break; 774 default: 775 /* 776 * Disallow write attempts if the filesystem is 777 * mounted read-only. 778 */ 779 if (vp->v_mount->mnt_flag & MNT_RDONLY) { 780 lwkt_reltoken(&nmp->nm_token); 781 return (EROFS); 782 } 783 784 tsize = np->n_size; 785 again: 786 boff = (int)vap->va_size & (biosize - 1); 787 error = nfs_meta_setsize(vp, td, vap->va_size, 0); 788 789 #if 0 790 if (np->n_flag & NLMODIFIED) { 791 if (vap->va_size == 0) 792 error = nfs_vinvalbuf(vp, 0, 1); 793 else 794 error = nfs_vinvalbuf(vp, V_SAVE, 1); 795 } 796 #endif 797 /* 798 * note: this loop case almost always happens at 799 * least once per truncation. 800 */ 801 if (error == 0 && np->n_size != vap->va_size) 802 goto again; 803 np->n_vattr.va_size = vap->va_size; 804 break; 805 } 806 } else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) { 807 /* 808 * What to do. If we are modifying the mtime we lose 809 * mtime detection of changes made by the server or other 810 * clients. But programs like rsync/rdist/cpdup are going 811 * to call utimes a lot. We don't want to piecemeal sync. 812 * 813 * For now sync if any prior remote changes were detected, 814 * but allow us to lose track of remote changes made during 815 * the utimes operation. 816 */ 817 if (np->n_flag & NRMODIFIED) 818 error = nfs_vinvalbuf(vp, V_SAVE, 1); 819 if (error == EINTR) 820 return (error); 821 if (error == 0) { 822 if (vap->va_mtime.tv_sec != VNOVAL) { 823 np->n_mtime = vap->va_mtime.tv_sec; 824 } 825 } 826 } 827 error = nfs_setattrrpc(vp, vap, ap->a_cred, td); 828 829 /* 830 * Sanity check if a truncation was issued. This should only occur 831 * if multiple processes are racing on the same file. 832 */ 833 if (error == 0 && vap->va_size != VNOVAL && 834 np->n_size != vap->va_size) { 835 kprintf("NFS ftruncate: server disagrees on the file size: " 836 "%jd/%jd/%jd\n", 837 (intmax_t)tsize, 838 (intmax_t)vap->va_size, 839 (intmax_t)np->n_size); 840 goto again; 841 } 842 if (error && vap->va_size != VNOVAL) { 843 np->n_size = np->n_vattr.va_size = tsize; 844 nfs_meta_setsize(vp, td, np->n_size, 0); 845 } 846 lwkt_reltoken(&nmp->nm_token); 847 848 return (error); 849 } 850 851 /* 852 * Do an nfs setattr rpc. 853 */ 854 static int 855 nfs_setattrrpc(struct vnode *vp, struct vattr *vap, 856 struct ucred *cred, struct thread *td) 857 { 858 struct nfsv2_sattr *sp; 859 struct nfsnode *np = VTONFS(vp); 860 u_int32_t *tl; 861 int error = 0, wccflag = NFSV3_WCCRATTR; 862 struct nfsm_info info; 863 864 info.mrep = NULL; 865 info.v3 = NFS_ISV3(vp); 866 867 nfsstats.rpccnt[NFSPROC_SETATTR]++; 868 nfsm_reqhead(&info, vp, NFSPROC_SETATTR, 869 NFSX_FH(info.v3) + NFSX_SATTR(info.v3)); 870 ERROROUT(nfsm_fhtom(&info, vp)); 871 if (info.v3) { 872 nfsm_v3attrbuild(&info, vap, TRUE); 873 tl = nfsm_build(&info, NFSX_UNSIGNED); 874 *tl = nfs_false; 875 } else { 876 sp = nfsm_build(&info, NFSX_V2SATTR); 877 if (vap->va_mode == (mode_t)VNOVAL) 878 sp->sa_mode = nfs_xdrneg1; 879 else 880 sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode); 881 if (vap->va_uid == (uid_t)VNOVAL) 882 sp->sa_uid = nfs_xdrneg1; 883 else 884 sp->sa_uid = txdr_unsigned(vap->va_uid); 885 if (vap->va_gid == (gid_t)VNOVAL) 886 sp->sa_gid = nfs_xdrneg1; 887 else 888 sp->sa_gid = txdr_unsigned(vap->va_gid); 889 sp->sa_size = txdr_unsigned(vap->va_size); 890 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 891 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 892 } 893 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_SETATTR, td, cred, &error)); 894 if (info.v3) { 895 np->n_modestamp = 0; 896 ERROROUT(nfsm_wcc_data(&info, vp, &wccflag)); 897 } else { 898 ERROROUT(nfsm_loadattr(&info, vp, NULL)); 899 } 900 m_freem(info.mrep); 901 info.mrep = NULL; 902 nfsmout: 903 return (error); 904 } 905 906 static 907 void 908 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout) 909 { 910 if (nctimeout == 0) 911 nctimeout = 1; 912 else 913 nctimeout *= hz; 914 cache_setvp(nch, vp); 915 cache_settimeout(nch, nctimeout); 916 } 917 918 /* 919 * NEW API CALL - replaces nfs_lookup(). However, we cannot remove 920 * nfs_lookup() until all remaining new api calls are implemented. 921 * 922 * Resolve a namecache entry. This function is passed a locked ncp and 923 * must call nfs_cache_setvp() on it as appropriate to resolve the entry. 924 */ 925 static int 926 nfs_nresolve(struct vop_nresolve_args *ap) 927 { 928 struct thread *td = curthread; 929 struct namecache *ncp; 930 struct nfsmount *nmp; 931 struct ucred *cred; 932 struct nfsnode *np; 933 struct vnode *dvp; 934 struct vnode *nvp; 935 nfsfh_t *fhp; 936 int attrflag; 937 int fhsize; 938 int error; 939 int tmp_error; 940 int len; 941 struct nfsm_info info; 942 943 cred = ap->a_cred; 944 dvp = ap->a_dvp; 945 nmp = VFSTONFS(dvp->v_mount); 946 947 lwkt_gettoken(&nmp->nm_token); 948 949 if ((error = vget(dvp, LK_SHARED)) != 0) { 950 lwkt_reltoken(&nmp->nm_token); 951 return (error); 952 } 953 954 info.mrep = NULL; 955 info.v3 = NFS_ISV3(dvp); 956 957 nvp = NULL; 958 nfsstats.lookupcache_misses++; 959 nfsstats.rpccnt[NFSPROC_LOOKUP]++; 960 ncp = ap->a_nch->ncp; 961 len = ncp->nc_nlen; 962 nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP, 963 NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len)); 964 ERROROUT(nfsm_fhtom(&info, dvp)); 965 ERROROUT(nfsm_strtom(&info, ncp->nc_name, len, NFS_MAXNAMLEN)); 966 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td, 967 ap->a_cred, &error)); 968 if (error) { 969 /* 970 * Cache negatve lookups to reduce NFS traffic, but use 971 * a fast timeout. Otherwise use a timeout of 1 tick. 972 * XXX we should add a namecache flag for no-caching 973 * to uncache the negative hit as soon as possible, but 974 * we cannot simply destroy the entry because it is used 975 * as a placeholder by the caller. 976 * 977 * The refactored nfs code will overwrite a non-zero error 978 * with 0 when we use ERROROUT(), so don't here. 979 */ 980 if (error == ENOENT) 981 nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout); 982 tmp_error = nfsm_postop_attr(&info, dvp, &attrflag, 983 NFS_LATTR_NOSHRINK); 984 if (tmp_error) { 985 error = tmp_error; 986 goto nfsmout; 987 } 988 m_freem(info.mrep); 989 info.mrep = NULL; 990 goto nfsmout; 991 } 992 993 /* 994 * Success, get the file handle, do various checks, and load 995 * post-operation data from the reply packet. Theoretically 996 * we should never be looking up "." so, theoretically, we 997 * should never get the same file handle as our directory. But 998 * we check anyway. XXX 999 * 1000 * Note that no timeout is set for the positive cache hit. We 1001 * assume, theoretically, that ESTALE returns will be dealt with 1002 * properly to handle NFS races and in anycase we cannot depend 1003 * on a timeout to deal with NFS open/create/excl issues so instead 1004 * of a bad hack here the rest of the NFS client code needs to do 1005 * the right thing. 1006 */ 1007 NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp)); 1008 1009 np = VTONFS(dvp); 1010 if (NFS_CMPFH(np, fhp, fhsize)) { 1011 vref(dvp); 1012 nvp = dvp; 1013 } else { 1014 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np, NULL); 1015 if (error) { 1016 m_freem(info.mrep); 1017 info.mrep = NULL; 1018 vput(dvp); 1019 lwkt_reltoken(&nmp->nm_token); 1020 return (error); 1021 } 1022 nvp = NFSTOV(np); 1023 } 1024 if (info.v3) { 1025 ERROROUT(nfsm_postop_attr(&info, nvp, &attrflag, 1026 NFS_LATTR_NOSHRINK)); 1027 ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag, 1028 NFS_LATTR_NOSHRINK)); 1029 } else { 1030 ERROROUT(nfsm_loadattr(&info, nvp, NULL)); 1031 } 1032 nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout); 1033 m_freem(info.mrep); 1034 info.mrep = NULL; 1035 nfsmout: 1036 lwkt_reltoken(&nmp->nm_token); 1037 vput(dvp); 1038 if (nvp) { 1039 if (nvp == dvp) 1040 vrele(nvp); 1041 else 1042 vput(nvp); 1043 } 1044 return (error); 1045 } 1046 1047 /* 1048 * 'cached' nfs directory lookup 1049 * 1050 * NOTE: cannot be removed until NFS implements all the new n*() API calls. 1051 * 1052 * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp, 1053 * struct componentname *a_cnp) 1054 */ 1055 static int 1056 nfs_lookup(struct vop_old_lookup_args *ap) 1057 { 1058 struct componentname *cnp = ap->a_cnp; 1059 struct vnode *dvp = ap->a_dvp; 1060 struct vnode **vpp = ap->a_vpp; 1061 int flags = cnp->cn_flags; 1062 struct vnode *newvp; 1063 struct vnode *notvp; 1064 struct nfsmount *nmp; 1065 long len; 1066 nfsfh_t *fhp; 1067 struct nfsnode *np; 1068 int lockparent, wantparent, attrflag, fhsize; 1069 int error; 1070 int tmp_error; 1071 struct nfsm_info info; 1072 1073 info.mrep = NULL; 1074 info.v3 = NFS_ISV3(dvp); 1075 error = 0; 1076 1077 notvp = (cnp->cn_flags & CNP_NOTVP) ? cnp->cn_notvp : NULL; 1078 1079 /* 1080 * Read-only mount check and directory check. 1081 */ 1082 *vpp = NULLVP; 1083 if ((dvp->v_mount->mnt_flag & MNT_RDONLY) && 1084 (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME)) 1085 return (EROFS); 1086 1087 if (dvp->v_type != VDIR) 1088 return (ENOTDIR); 1089 1090 /* 1091 * Look it up in the cache. Note that ENOENT is only returned if we 1092 * previously entered a negative hit (see later on). The additional 1093 * nfsneg_cache_timeout check causes previously cached results to 1094 * be instantly ignored if the negative caching is turned off. 1095 */ 1096 lockparent = flags & CNP_LOCKPARENT; 1097 wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT); 1098 nmp = VFSTONFS(dvp->v_mount); 1099 np = VTONFS(dvp); 1100 1101 lwkt_gettoken(&nmp->nm_token); 1102 1103 /* 1104 * Go to the wire. 1105 */ 1106 error = 0; 1107 newvp = NULLVP; 1108 nfsstats.lookupcache_misses++; 1109 nfsstats.rpccnt[NFSPROC_LOOKUP]++; 1110 len = cnp->cn_namelen; 1111 nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP, 1112 NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len)); 1113 ERROROUT(nfsm_fhtom(&info, dvp)); 1114 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN)); 1115 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, cnp->cn_td, 1116 cnp->cn_cred, &error)); 1117 if (error) { 1118 tmp_error = nfsm_postop_attr(&info, dvp, &attrflag, 1119 NFS_LATTR_NOSHRINK); 1120 if (tmp_error) { 1121 error = tmp_error; 1122 goto nfsmout; 1123 } 1124 1125 m_freem(info.mrep); 1126 info.mrep = NULL; 1127 goto nfsmout; 1128 } 1129 NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp)); 1130 1131 /* 1132 * Handle RENAME case... 1133 */ 1134 if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) { 1135 if (NFS_CMPFH(np, fhp, fhsize)) { 1136 m_freem(info.mrep); 1137 info.mrep = NULL; 1138 lwkt_reltoken(&nmp->nm_token); 1139 return (EISDIR); 1140 } 1141 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np, notvp); 1142 if (error) { 1143 m_freem(info.mrep); 1144 info.mrep = NULL; 1145 lwkt_reltoken(&nmp->nm_token); 1146 return (error); 1147 } 1148 newvp = NFSTOV(np); 1149 if (info.v3) { 1150 ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag, 1151 NFS_LATTR_NOSHRINK)); 1152 ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag, 1153 NFS_LATTR_NOSHRINK)); 1154 } else { 1155 ERROROUT(nfsm_loadattr(&info, newvp, NULL)); 1156 } 1157 *vpp = newvp; 1158 m_freem(info.mrep); 1159 info.mrep = NULL; 1160 if (!lockparent) { 1161 vn_unlock(dvp); 1162 cnp->cn_flags |= CNP_PDIRUNLOCK; 1163 } 1164 lwkt_reltoken(&nmp->nm_token); 1165 return (0); 1166 } 1167 1168 if (flags & CNP_ISDOTDOT) { 1169 vn_unlock(dvp); 1170 cnp->cn_flags |= CNP_PDIRUNLOCK; 1171 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np, notvp); 1172 if (error) { 1173 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); 1174 cnp->cn_flags &= ~CNP_PDIRUNLOCK; 1175 lwkt_reltoken(&nmp->nm_token); 1176 return (error); /* NOTE: return error from nget */ 1177 } 1178 newvp = NFSTOV(np); 1179 if (lockparent) { 1180 error = vn_lock(dvp, LK_EXCLUSIVE); 1181 if (error) { 1182 vput(newvp); 1183 lwkt_reltoken(&nmp->nm_token); 1184 return (error); 1185 } 1186 cnp->cn_flags |= CNP_PDIRUNLOCK; 1187 } 1188 } else if (NFS_CMPFH(np, fhp, fhsize)) { 1189 vref(dvp); 1190 newvp = dvp; 1191 } else { 1192 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np, notvp); 1193 if (error) { 1194 m_freem(info.mrep); 1195 info.mrep = NULL; 1196 lwkt_reltoken(&nmp->nm_token); 1197 return (error); 1198 } 1199 if (!lockparent) { 1200 vn_unlock(dvp); 1201 cnp->cn_flags |= CNP_PDIRUNLOCK; 1202 } 1203 newvp = NFSTOV(np); 1204 } 1205 if (info.v3) { 1206 ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag, 1207 NFS_LATTR_NOSHRINK)); 1208 ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag, 1209 NFS_LATTR_NOSHRINK)); 1210 } else { 1211 ERROROUT(nfsm_loadattr(&info, newvp, NULL)); 1212 } 1213 #if 0 1214 /* XXX MOVE TO nfs_nremove() */ 1215 if ((cnp->cn_flags & CNP_MAKEENTRY) && 1216 cnp->cn_nameiop != NAMEI_DELETE) { 1217 np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */ 1218 } 1219 #endif 1220 *vpp = newvp; 1221 m_freem(info.mrep); 1222 info.mrep = NULL; 1223 nfsmout: 1224 if (error) { 1225 if (newvp != NULLVP) { 1226 vrele(newvp); 1227 *vpp = NULLVP; 1228 } 1229 if ((cnp->cn_nameiop == NAMEI_CREATE || 1230 cnp->cn_nameiop == NAMEI_RENAME) && 1231 error == ENOENT) { 1232 if (!lockparent) { 1233 vn_unlock(dvp); 1234 cnp->cn_flags |= CNP_PDIRUNLOCK; 1235 } 1236 if (dvp->v_mount->mnt_flag & MNT_RDONLY) 1237 error = EROFS; 1238 else 1239 error = EJUSTRETURN; 1240 } 1241 } 1242 lwkt_reltoken(&nmp->nm_token); 1243 return (error); 1244 } 1245 1246 /* 1247 * nfs read call. 1248 * Just call nfs_bioread() to do the work. 1249 * 1250 * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 1251 * struct ucred *a_cred) 1252 */ 1253 static int 1254 nfs_read(struct vop_read_args *ap) 1255 { 1256 struct vnode *vp = ap->a_vp; 1257 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1258 int error; 1259 1260 lwkt_gettoken(&nmp->nm_token); 1261 error = nfs_bioread(vp, ap->a_uio, ap->a_ioflag); 1262 lwkt_reltoken(&nmp->nm_token); 1263 1264 return error; 1265 } 1266 1267 /* 1268 * nfs readlink call 1269 * 1270 * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred) 1271 */ 1272 static int 1273 nfs_readlink(struct vop_readlink_args *ap) 1274 { 1275 struct vnode *vp = ap->a_vp; 1276 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1277 int error; 1278 1279 if (vp->v_type != VLNK) 1280 return (EINVAL); 1281 1282 lwkt_gettoken(&nmp->nm_token); 1283 error = nfs_bioread(vp, ap->a_uio, 0); 1284 lwkt_reltoken(&nmp->nm_token); 1285 1286 return error; 1287 } 1288 1289 /* 1290 * Do a readlink rpc. 1291 * Called by nfs_doio() from below the buffer cache. 1292 */ 1293 int 1294 nfs_readlinkrpc_uio(struct vnode *vp, struct uio *uiop) 1295 { 1296 int error = 0, len, attrflag; 1297 struct nfsm_info info; 1298 1299 info.mrep = NULL; 1300 info.v3 = NFS_ISV3(vp); 1301 1302 nfsstats.rpccnt[NFSPROC_READLINK]++; 1303 nfsm_reqhead(&info, vp, NFSPROC_READLINK, NFSX_FH(info.v3)); 1304 ERROROUT(nfsm_fhtom(&info, vp)); 1305 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READLINK, uiop->uio_td, 1306 nfs_vpcred(vp, ND_CHECK), &error)); 1307 if (info.v3) { 1308 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, 1309 NFS_LATTR_NOSHRINK)); 1310 } 1311 if (!error) { 1312 NEGATIVEOUT(len = nfsm_strsiz(&info, NFS_MAXPATHLEN)); 1313 if (len == NFS_MAXPATHLEN) { 1314 struct nfsnode *np = VTONFS(vp); 1315 if (np->n_size && np->n_size < NFS_MAXPATHLEN) 1316 len = np->n_size; 1317 } 1318 ERROROUT(nfsm_mtouio(&info, uiop, len)); 1319 } 1320 m_freem(info.mrep); 1321 info.mrep = NULL; 1322 nfsmout: 1323 return (error); 1324 } 1325 1326 /* 1327 * nfs synchronous read rpc using UIO 1328 */ 1329 int 1330 nfs_readrpc_uio(struct vnode *vp, struct uio *uiop) 1331 { 1332 u_int32_t *tl; 1333 struct nfsmount *nmp; 1334 int error = 0, len, retlen, tsiz, eof, attrflag; 1335 struct nfsm_info info; 1336 off_t tmp_off; 1337 1338 info.mrep = NULL; 1339 info.v3 = NFS_ISV3(vp); 1340 1341 #ifndef nolint 1342 eof = 0; 1343 #endif 1344 nmp = VFSTONFS(vp->v_mount); 1345 1346 tsiz = uiop->uio_resid; 1347 tmp_off = uiop->uio_offset + tsiz; 1348 if (tmp_off > nmp->nm_maxfilesize || tmp_off < uiop->uio_offset) 1349 return (EFBIG); 1350 tmp_off = uiop->uio_offset; 1351 while (tsiz > 0) { 1352 nfsstats.rpccnt[NFSPROC_READ]++; 1353 len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz; 1354 nfsm_reqhead(&info, vp, NFSPROC_READ, 1355 NFSX_FH(info.v3) + NFSX_UNSIGNED * 3); 1356 ERROROUT(nfsm_fhtom(&info, vp)); 1357 tl = nfsm_build(&info, NFSX_UNSIGNED * 3); 1358 if (info.v3) { 1359 txdr_hyper(uiop->uio_offset, tl); 1360 *(tl + 2) = txdr_unsigned(len); 1361 } else { 1362 *tl++ = txdr_unsigned(uiop->uio_offset); 1363 *tl++ = txdr_unsigned(len); 1364 *tl = 0; 1365 } 1366 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READ, uiop->uio_td, 1367 nfs_vpcred(vp, ND_READ), &error)); 1368 if (info.v3) { 1369 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, 1370 NFS_LATTR_NOSHRINK)); 1371 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED)); 1372 eof = fxdr_unsigned(int, *(tl + 1)); 1373 } else { 1374 ERROROUT(nfsm_loadattr(&info, vp, NULL)); 1375 } 1376 NEGATIVEOUT(retlen = nfsm_strsiz(&info, len)); 1377 ERROROUT(nfsm_mtouio(&info, uiop, retlen)); 1378 m_freem(info.mrep); 1379 info.mrep = NULL; 1380 1381 /* 1382 * Handle short-read from server (NFSv3). If EOF is not 1383 * flagged (and no error occurred), but retlen is less 1384 * then the request size, we must zero-fill the remainder. 1385 */ 1386 if (retlen < len && info.v3 && eof == 0) { 1387 ERROROUT(uiomovez(len - retlen, uiop)); 1388 retlen = len; 1389 } 1390 tsiz -= retlen; 1391 1392 /* 1393 * Terminate loop on EOF or zero-length read. 1394 * 1395 * For NFSv2 a short-read indicates EOF, not zero-fill, 1396 * and also terminates the loop. 1397 */ 1398 if (info.v3) { 1399 if (eof || retlen == 0) 1400 tsiz = 0; 1401 } else if (retlen < len) { 1402 tsiz = 0; 1403 } 1404 } 1405 nfsmout: 1406 return (error); 1407 } 1408 1409 /* 1410 * nfs write call 1411 */ 1412 int 1413 nfs_writerpc_uio(struct vnode *vp, struct uio *uiop, 1414 int *iomode, int *must_commit) 1415 { 1416 u_int32_t *tl; 1417 int32_t backup; 1418 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1419 int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit; 1420 int committed = NFSV3WRITE_FILESYNC; 1421 struct nfsm_info info; 1422 1423 info.mrep = NULL; 1424 info.v3 = NFS_ISV3(vp); 1425 1426 #ifndef DIAGNOSTIC 1427 if (uiop->uio_iovcnt != 1) 1428 panic("nfs: writerpc iovcnt > 1"); 1429 #endif 1430 *must_commit = 0; 1431 tsiz = uiop->uio_resid; 1432 if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize) 1433 return (EFBIG); 1434 while (tsiz > 0) { 1435 nfsstats.rpccnt[NFSPROC_WRITE]++; 1436 len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz; 1437 nfsm_reqhead(&info, vp, NFSPROC_WRITE, 1438 NFSX_FH(info.v3) + 5 * NFSX_UNSIGNED + 1439 nfsm_rndup(len)); 1440 ERROROUT(nfsm_fhtom(&info, vp)); 1441 if (info.v3) { 1442 tl = nfsm_build(&info, 5 * NFSX_UNSIGNED); 1443 txdr_hyper(uiop->uio_offset, tl); 1444 tl += 2; 1445 *tl++ = txdr_unsigned(len); 1446 *tl++ = txdr_unsigned(*iomode); 1447 *tl = txdr_unsigned(len); 1448 } else { 1449 u_int32_t x; 1450 1451 tl = nfsm_build(&info, 4 * NFSX_UNSIGNED); 1452 /* Set both "begin" and "current" to non-garbage. */ 1453 x = txdr_unsigned((u_int32_t)uiop->uio_offset); 1454 *tl++ = x; /* "begin offset" */ 1455 *tl++ = x; /* "current offset" */ 1456 x = txdr_unsigned(len); 1457 *tl++ = x; /* total to this offset */ 1458 *tl = x; /* size of this write */ 1459 } 1460 ERROROUT(nfsm_uiotom(&info, uiop, len)); 1461 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_WRITE, uiop->uio_td, 1462 nfs_vpcred(vp, ND_WRITE), &error)); 1463 if (info.v3) { 1464 /* 1465 * The write RPC returns a before and after mtime. The 1466 * nfsm_wcc_data() macro checks the before n_mtime 1467 * against the before time and stores the after time 1468 * in the nfsnode's cached vattr and n_mtime field. 1469 * The NRMODIFIED bit will be set if the before 1470 * time did not match the original mtime. 1471 */ 1472 wccflag = NFSV3_WCCCHK; 1473 ERROROUT(nfsm_wcc_data(&info, vp, &wccflag)); 1474 if (error == 0) { 1475 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF)); 1476 rlen = fxdr_unsigned(int, *tl++); 1477 if (rlen == 0) { 1478 error = NFSERR_IO; 1479 m_freem(info.mrep); 1480 info.mrep = NULL; 1481 break; 1482 } else if (rlen < len) { 1483 backup = len - rlen; 1484 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup; 1485 uiop->uio_iov->iov_len += backup; 1486 uiop->uio_offset -= backup; 1487 uiop->uio_resid += backup; 1488 len = rlen; 1489 } 1490 commit = fxdr_unsigned(int, *tl++); 1491 1492 /* 1493 * Return the lowest committment level 1494 * obtained by any of the RPCs. 1495 */ 1496 if (committed == NFSV3WRITE_FILESYNC) 1497 committed = commit; 1498 else if (committed == NFSV3WRITE_DATASYNC && 1499 commit == NFSV3WRITE_UNSTABLE) 1500 committed = commit; 1501 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){ 1502 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, 1503 NFSX_V3WRITEVERF); 1504 nmp->nm_state |= NFSSTA_HASWRITEVERF; 1505 } else if (bcmp((caddr_t)tl, 1506 (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) { 1507 *must_commit = 1; 1508 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, 1509 NFSX_V3WRITEVERF); 1510 } 1511 } 1512 } else { 1513 ERROROUT(nfsm_loadattr(&info, vp, NULL)); 1514 } 1515 m_freem(info.mrep); 1516 info.mrep = NULL; 1517 if (error) 1518 break; 1519 tsiz -= len; 1520 } 1521 nfsmout: 1522 if (vp->v_mount->mnt_flag & MNT_ASYNC) 1523 committed = NFSV3WRITE_FILESYNC; 1524 *iomode = committed; 1525 if (error) 1526 uiop->uio_resid = tsiz; 1527 return (error); 1528 } 1529 1530 /* 1531 * nfs mknod rpc 1532 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the 1533 * mode set to specify the file type and the size field for rdev. 1534 */ 1535 static int 1536 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1537 struct vattr *vap) 1538 { 1539 struct nfsv2_sattr *sp; 1540 u_int32_t *tl; 1541 struct vnode *newvp = NULL; 1542 struct nfsnode *np = NULL; 1543 struct vattr vattr; 1544 int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0; 1545 int rmajor, rminor; 1546 struct nfsm_info info; 1547 1548 info.mrep = NULL; 1549 info.v3 = NFS_ISV3(dvp); 1550 1551 if (vap->va_type == VCHR || vap->va_type == VBLK) { 1552 rmajor = txdr_unsigned(vap->va_rmajor); 1553 rminor = txdr_unsigned(vap->va_rminor); 1554 } else if (vap->va_type == VFIFO || vap->va_type == VSOCK) { 1555 rmajor = nfs_xdrneg1; 1556 rminor = nfs_xdrneg1; 1557 } else { 1558 return (EOPNOTSUPP); 1559 } 1560 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) { 1561 return (error); 1562 } 1563 nfsstats.rpccnt[NFSPROC_MKNOD]++; 1564 nfsm_reqhead(&info, dvp, NFSPROC_MKNOD, 1565 NFSX_FH(info.v3) + 4 * NFSX_UNSIGNED + 1566 nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3)); 1567 ERROROUT(nfsm_fhtom(&info, dvp)); 1568 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen, 1569 NFS_MAXNAMLEN)); 1570 if (info.v3) { 1571 tl = nfsm_build(&info, NFSX_UNSIGNED); 1572 *tl++ = vtonfsv3_type(vap->va_type); 1573 nfsm_v3attrbuild(&info, vap, FALSE); 1574 if (vap->va_type == VCHR || vap->va_type == VBLK) { 1575 tl = nfsm_build(&info, 2 * NFSX_UNSIGNED); 1576 *tl++ = txdr_unsigned(vap->va_rmajor); 1577 *tl = txdr_unsigned(vap->va_rminor); 1578 } 1579 } else { 1580 sp = nfsm_build(&info, NFSX_V2SATTR); 1581 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 1582 sp->sa_uid = nfs_xdrneg1; 1583 sp->sa_gid = nfs_xdrneg1; 1584 sp->sa_size = makeudev(rmajor, rminor); 1585 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 1586 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 1587 } 1588 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKNOD, cnp->cn_td, 1589 cnp->cn_cred, &error)); 1590 if (!error) { 1591 ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp)); 1592 if (!gotvp) { 1593 if (newvp) { 1594 vput(newvp); 1595 newvp = NULL; 1596 } 1597 error = nfs_lookitup(dvp, cnp->cn_nameptr, 1598 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np); 1599 if (!error) 1600 newvp = NFSTOV(np); 1601 } 1602 } 1603 if (info.v3) { 1604 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag)); 1605 } 1606 m_freem(info.mrep); 1607 info.mrep = NULL; 1608 nfsmout: 1609 if (error) { 1610 if (newvp) 1611 vput(newvp); 1612 } else { 1613 *vpp = newvp; 1614 } 1615 VTONFS(dvp)->n_flag |= NLMODIFIED; 1616 if (!wccflag) 1617 VTONFS(dvp)->n_attrstamp = 0; 1618 return (error); 1619 } 1620 1621 /* 1622 * nfs mknod vop 1623 * just call nfs_mknodrpc() to do the work. 1624 * 1625 * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp, 1626 * struct componentname *a_cnp, struct vattr *a_vap) 1627 */ 1628 /* ARGSUSED */ 1629 static int 1630 nfs_mknod(struct vop_old_mknod_args *ap) 1631 { 1632 struct nfsmount *nmp = VFSTONFS(ap->a_dvp->v_mount); 1633 int error; 1634 1635 lwkt_gettoken(&nmp->nm_token); 1636 error = nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap); 1637 lwkt_reltoken(&nmp->nm_token); 1638 1639 return error; 1640 } 1641 1642 static u_long create_verf; 1643 /* 1644 * nfs file create call 1645 * 1646 * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp, 1647 * struct componentname *a_cnp, struct vattr *a_vap) 1648 */ 1649 static int 1650 nfs_create(struct vop_old_create_args *ap) 1651 { 1652 struct vnode *dvp = ap->a_dvp; 1653 struct vattr *vap = ap->a_vap; 1654 struct nfsmount *nmp = VFSTONFS(dvp->v_mount); 1655 struct componentname *cnp = ap->a_cnp; 1656 struct nfsv2_sattr *sp; 1657 u_int32_t *tl; 1658 struct nfsnode *np = NULL; 1659 struct vnode *newvp = NULL; 1660 int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0; 1661 struct vattr vattr; 1662 struct nfsm_info info; 1663 1664 info.mrep = NULL; 1665 info.v3 = NFS_ISV3(dvp); 1666 lwkt_gettoken(&nmp->nm_token); 1667 1668 /* 1669 * Oops, not for me.. 1670 */ 1671 if (vap->va_type == VSOCK) { 1672 error = nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap); 1673 lwkt_reltoken(&nmp->nm_token); 1674 return error; 1675 } 1676 1677 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) { 1678 lwkt_reltoken(&nmp->nm_token); 1679 return (error); 1680 } 1681 if (vap->va_vaflags & VA_EXCLUSIVE) 1682 fmode |= O_EXCL; 1683 again: 1684 nfsstats.rpccnt[NFSPROC_CREATE]++; 1685 nfsm_reqhead(&info, dvp, NFSPROC_CREATE, 1686 NFSX_FH(info.v3) + 2 * NFSX_UNSIGNED + 1687 nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3)); 1688 ERROROUT(nfsm_fhtom(&info, dvp)); 1689 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen, 1690 NFS_MAXNAMLEN)); 1691 if (info.v3) { 1692 tl = nfsm_build(&info, NFSX_UNSIGNED); 1693 if (fmode & O_EXCL) { 1694 *tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE); 1695 tl = nfsm_build(&info, NFSX_V3CREATEVERF); 1696 #ifdef INET 1697 if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid])) 1698 *tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr; 1699 else 1700 #endif 1701 *tl++ = create_verf; 1702 *tl = ++create_verf; 1703 } else { 1704 *tl = txdr_unsigned(NFSV3CREATE_UNCHECKED); 1705 nfsm_v3attrbuild(&info, vap, FALSE); 1706 } 1707 } else { 1708 sp = nfsm_build(&info, NFSX_V2SATTR); 1709 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 1710 sp->sa_uid = nfs_xdrneg1; 1711 sp->sa_gid = nfs_xdrneg1; 1712 sp->sa_size = 0; 1713 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 1714 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 1715 } 1716 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_CREATE, cnp->cn_td, 1717 cnp->cn_cred, &error)); 1718 if (error == 0) { 1719 ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp)); 1720 if (!gotvp) { 1721 if (newvp) { 1722 vput(newvp); 1723 newvp = NULL; 1724 } 1725 error = nfs_lookitup(dvp, cnp->cn_nameptr, 1726 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np); 1727 if (!error) 1728 newvp = NFSTOV(np); 1729 } 1730 } 1731 if (info.v3) { 1732 if (error == 0) 1733 error = nfsm_wcc_data(&info, dvp, &wccflag); 1734 else 1735 (void)nfsm_wcc_data(&info, dvp, &wccflag); 1736 } 1737 m_freem(info.mrep); 1738 info.mrep = NULL; 1739 nfsmout: 1740 if (error) { 1741 if (info.v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) { 1742 KKASSERT(newvp == NULL); 1743 fmode &= ~O_EXCL; 1744 goto again; 1745 } 1746 } else if (info.v3 && (fmode & O_EXCL)) { 1747 /* 1748 * We are normally called with only a partially initialized 1749 * VAP. Since the NFSv3 spec says that server may use the 1750 * file attributes to store the verifier, the spec requires 1751 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1752 * in atime, but we can't really assume that all servers will 1753 * so we ensure that our SETATTR sets both atime and mtime. 1754 */ 1755 if (vap->va_mtime.tv_sec == VNOVAL) 1756 vfs_timestamp(&vap->va_mtime); 1757 if (vap->va_atime.tv_sec == VNOVAL) 1758 vap->va_atime = vap->va_mtime; 1759 error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td); 1760 } 1761 if (error == 0) { 1762 /* 1763 * The new np may have enough info for access 1764 * checks, make sure rucred and wucred are 1765 * initialized for read and write rpc's. 1766 */ 1767 np = VTONFS(newvp); 1768 if (np->n_rucred == NULL) 1769 np->n_rucred = crhold(cnp->cn_cred); 1770 if (np->n_wucred == NULL) 1771 np->n_wucred = crhold(cnp->cn_cred); 1772 *ap->a_vpp = newvp; 1773 } else if (newvp) { 1774 vput(newvp); 1775 } 1776 VTONFS(dvp)->n_flag |= NLMODIFIED; 1777 if (!wccflag) 1778 VTONFS(dvp)->n_attrstamp = 0; 1779 lwkt_reltoken(&nmp->nm_token); 1780 return (error); 1781 } 1782 1783 /* 1784 * nfs file remove call 1785 * To try and make nfs semantics closer to ufs semantics, a file that has 1786 * other processes using the vnode is renamed instead of removed and then 1787 * removed later on the last close. 1788 * - If v_sysref.refcnt > 1 1789 * If a rename is not already in the works 1790 * call nfs_sillyrename() to set it up 1791 * else 1792 * do the remove rpc 1793 * 1794 * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp, 1795 * struct componentname *a_cnp) 1796 */ 1797 static int 1798 nfs_remove(struct vop_old_remove_args *ap) 1799 { 1800 struct vnode *vp = ap->a_vp; 1801 struct vnode *dvp = ap->a_dvp; 1802 struct nfsmount *nmp = VFSTONFS(dvp->v_mount); 1803 struct componentname *cnp = ap->a_cnp; 1804 struct nfsnode *np = VTONFS(vp); 1805 int error = 0; 1806 struct vattr vattr; 1807 1808 lwkt_gettoken(&nmp->nm_token); 1809 #ifndef DIAGNOSTIC 1810 if (vp->v_sysref.refcnt < 1) 1811 panic("nfs_remove: bad v_sysref.refcnt"); 1812 #endif 1813 if (vp->v_type == VDIR) { 1814 error = EPERM; 1815 } else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename && 1816 VOP_GETATTR(vp, &vattr) == 0 && vattr.va_nlink > 1)) { 1817 /* 1818 * throw away biocache buffers, mainly to avoid 1819 * unnecessary delayed writes later. 1820 */ 1821 error = nfs_vinvalbuf(vp, 0, 1); 1822 /* Do the rpc */ 1823 if (error != EINTR) 1824 error = nfs_removerpc(dvp, cnp->cn_nameptr, 1825 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td); 1826 /* 1827 * Kludge City: If the first reply to the remove rpc is lost.. 1828 * the reply to the retransmitted request will be ENOENT 1829 * since the file was in fact removed 1830 * Therefore, we cheat and return success. 1831 */ 1832 if (error == ENOENT) 1833 error = 0; 1834 } else if (!np->n_sillyrename) { 1835 error = nfs_sillyrename(dvp, vp, cnp); 1836 } 1837 np->n_attrstamp = 0; 1838 lwkt_reltoken(&nmp->nm_token); 1839 1840 return (error); 1841 } 1842 1843 /* 1844 * nfs file remove rpc called from nfs_inactive 1845 */ 1846 int 1847 nfs_removeit(struct sillyrename *sp) 1848 { 1849 return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen, 1850 sp->s_cred, NULL)); 1851 } 1852 1853 /* 1854 * Nfs remove rpc, called from nfs_remove() and nfs_removeit(). 1855 */ 1856 static int 1857 nfs_removerpc(struct vnode *dvp, const char *name, int namelen, 1858 struct ucred *cred, struct thread *td) 1859 { 1860 int error = 0, wccflag = NFSV3_WCCRATTR; 1861 struct nfsm_info info; 1862 1863 info.mrep = NULL; 1864 info.v3 = NFS_ISV3(dvp); 1865 1866 nfsstats.rpccnt[NFSPROC_REMOVE]++; 1867 nfsm_reqhead(&info, dvp, NFSPROC_REMOVE, 1868 NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(namelen)); 1869 ERROROUT(nfsm_fhtom(&info, dvp)); 1870 ERROROUT(nfsm_strtom(&info, name, namelen, NFS_MAXNAMLEN)); 1871 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_REMOVE, td, cred, &error)); 1872 if (info.v3) { 1873 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag)); 1874 } 1875 m_freem(info.mrep); 1876 info.mrep = NULL; 1877 nfsmout: 1878 VTONFS(dvp)->n_flag |= NLMODIFIED; 1879 if (!wccflag) 1880 VTONFS(dvp)->n_attrstamp = 0; 1881 return (error); 1882 } 1883 1884 /* 1885 * nfs file rename call 1886 * 1887 * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp, 1888 * struct componentname *a_fcnp, struct vnode *a_tdvp, 1889 * struct vnode *a_tvp, struct componentname *a_tcnp) 1890 */ 1891 static int 1892 nfs_rename(struct vop_old_rename_args *ap) 1893 { 1894 struct vnode *fvp = ap->a_fvp; 1895 struct vnode *tvp = ap->a_tvp; 1896 struct vnode *fdvp = ap->a_fdvp; 1897 struct vnode *tdvp = ap->a_tdvp; 1898 struct componentname *tcnp = ap->a_tcnp; 1899 struct componentname *fcnp = ap->a_fcnp; 1900 struct nfsmount *nmp = VFSTONFS(fdvp->v_mount); 1901 int error; 1902 1903 lwkt_gettoken(&nmp->nm_token); 1904 1905 /* Check for cross-device rename */ 1906 if ((fvp->v_mount != tdvp->v_mount) || 1907 (tvp && (fvp->v_mount != tvp->v_mount))) { 1908 error = EXDEV; 1909 goto out; 1910 } 1911 1912 /* 1913 * We shouldn't have to flush fvp on rename for most server-side 1914 * filesystems as the file handle should not change. Unfortunately 1915 * the inode for some filesystems (msdosfs) might be tied to the 1916 * file name or directory position so to be completely safe 1917 * vfs.nfs.flush_on_rename is set by default. Clear to improve 1918 * performance. 1919 * 1920 * We must flush tvp on rename because it might become stale on the 1921 * server after the rename. 1922 */ 1923 if (nfs_flush_on_rename) 1924 VOP_FSYNC(fvp, MNT_WAIT, 0); 1925 if (tvp) 1926 VOP_FSYNC(tvp, MNT_WAIT, 0); 1927 1928 /* 1929 * If the tvp exists and is in use, sillyrename it before doing the 1930 * rename of the new file over it. 1931 * 1932 * XXX Can't sillyrename a directory. 1933 * 1934 * We do not attempt to do any namecache purges in this old API 1935 * routine. The new API compat functions have access to the actual 1936 * namecache structures and will do it for us. 1937 */ 1938 if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename && 1939 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) { 1940 vput(tvp); 1941 tvp = NULL; 1942 } else if (tvp) { 1943 ; 1944 } 1945 1946 error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen, 1947 tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred, 1948 tcnp->cn_td); 1949 1950 out: 1951 lwkt_reltoken(&nmp->nm_token); 1952 if (tdvp == tvp) 1953 vrele(tdvp); 1954 else 1955 vput(tdvp); 1956 if (tvp) 1957 vput(tvp); 1958 vrele(fdvp); 1959 vrele(fvp); 1960 /* 1961 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry. 1962 */ 1963 if (error == ENOENT) 1964 error = 0; 1965 return (error); 1966 } 1967 1968 /* 1969 * nfs file rename rpc called from nfs_remove() above 1970 */ 1971 static int 1972 nfs_renameit(struct vnode *sdvp, struct componentname *scnp, 1973 struct sillyrename *sp) 1974 { 1975 return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen, 1976 sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td)); 1977 } 1978 1979 /* 1980 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit(). 1981 */ 1982 static int 1983 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen, 1984 struct vnode *tdvp, const char *tnameptr, int tnamelen, 1985 struct ucred *cred, struct thread *td) 1986 { 1987 int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR; 1988 struct nfsm_info info; 1989 1990 info.mrep = NULL; 1991 info.v3 = NFS_ISV3(fdvp); 1992 1993 nfsstats.rpccnt[NFSPROC_RENAME]++; 1994 nfsm_reqhead(&info, fdvp, NFSPROC_RENAME, 1995 (NFSX_FH(info.v3) + NFSX_UNSIGNED)*2 + 1996 nfsm_rndup(fnamelen) + nfsm_rndup(tnamelen)); 1997 ERROROUT(nfsm_fhtom(&info, fdvp)); 1998 ERROROUT(nfsm_strtom(&info, fnameptr, fnamelen, NFS_MAXNAMLEN)); 1999 ERROROUT(nfsm_fhtom(&info, tdvp)); 2000 ERROROUT(nfsm_strtom(&info, tnameptr, tnamelen, NFS_MAXNAMLEN)); 2001 NEGKEEPOUT(nfsm_request(&info, fdvp, NFSPROC_RENAME, td, cred, &error)); 2002 if (info.v3) { 2003 ERROROUT(nfsm_wcc_data(&info, fdvp, &fwccflag)); 2004 ERROROUT(nfsm_wcc_data(&info, tdvp, &twccflag)); 2005 } 2006 m_freem(info.mrep); 2007 info.mrep = NULL; 2008 nfsmout: 2009 VTONFS(fdvp)->n_flag |= NLMODIFIED; 2010 VTONFS(tdvp)->n_flag |= NLMODIFIED; 2011 if (!fwccflag) 2012 VTONFS(fdvp)->n_attrstamp = 0; 2013 if (!twccflag) 2014 VTONFS(tdvp)->n_attrstamp = 0; 2015 return (error); 2016 } 2017 2018 /* 2019 * nfs hard link create call 2020 * 2021 * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp, 2022 * struct componentname *a_cnp) 2023 */ 2024 static int 2025 nfs_link(struct vop_old_link_args *ap) 2026 { 2027 struct vnode *vp = ap->a_vp; 2028 struct vnode *tdvp = ap->a_tdvp; 2029 struct nfsmount *nmp = VFSTONFS(tdvp->v_mount); 2030 struct componentname *cnp = ap->a_cnp; 2031 int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0; 2032 struct nfsm_info info; 2033 2034 if (vp->v_mount != tdvp->v_mount) { 2035 return (EXDEV); 2036 } 2037 lwkt_gettoken(&nmp->nm_token); 2038 2039 /* 2040 * The attribute cache may get out of sync with the server on link. 2041 * Pushing writes to the server before handle was inherited from 2042 * long long ago and it is unclear if we still need to do this. 2043 * Defaults to off. 2044 */ 2045 if (nfs_flush_on_hlink) 2046 VOP_FSYNC(vp, MNT_WAIT, 0); 2047 2048 info.mrep = NULL; 2049 info.v3 = NFS_ISV3(vp); 2050 2051 nfsstats.rpccnt[NFSPROC_LINK]++; 2052 nfsm_reqhead(&info, vp, NFSPROC_LINK, 2053 NFSX_FH(info.v3) * 2 + NFSX_UNSIGNED + 2054 nfsm_rndup(cnp->cn_namelen)); 2055 ERROROUT(nfsm_fhtom(&info, vp)); 2056 ERROROUT(nfsm_fhtom(&info, tdvp)); 2057 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen, 2058 NFS_MAXNAMLEN)); 2059 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_LINK, cnp->cn_td, 2060 cnp->cn_cred, &error)); 2061 if (info.v3) { 2062 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, 2063 NFS_LATTR_NOSHRINK)); 2064 ERROROUT(nfsm_wcc_data(&info, tdvp, &wccflag)); 2065 } 2066 m_freem(info.mrep); 2067 info.mrep = NULL; 2068 nfsmout: 2069 VTONFS(tdvp)->n_flag |= NLMODIFIED; 2070 if (!attrflag) 2071 VTONFS(vp)->n_attrstamp = 0; 2072 if (!wccflag) 2073 VTONFS(tdvp)->n_attrstamp = 0; 2074 /* 2075 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry. 2076 */ 2077 if (error == EEXIST) 2078 error = 0; 2079 lwkt_reltoken(&nmp->nm_token); 2080 return (error); 2081 } 2082 2083 /* 2084 * nfs symbolic link create call 2085 * 2086 * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp, 2087 * struct componentname *a_cnp, struct vattr *a_vap, 2088 * char *a_target) 2089 */ 2090 static int 2091 nfs_symlink(struct vop_old_symlink_args *ap) 2092 { 2093 struct vnode *dvp = ap->a_dvp; 2094 struct vattr *vap = ap->a_vap; 2095 struct nfsmount *nmp = VFSTONFS(dvp->v_mount); 2096 struct componentname *cnp = ap->a_cnp; 2097 struct nfsv2_sattr *sp; 2098 int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp; 2099 struct vnode *newvp = NULL; 2100 struct nfsm_info info; 2101 2102 info.mrep = NULL; 2103 info.v3 = NFS_ISV3(dvp); 2104 lwkt_gettoken(&nmp->nm_token); 2105 2106 nfsstats.rpccnt[NFSPROC_SYMLINK]++; 2107 slen = strlen(ap->a_target); 2108 nfsm_reqhead(&info, dvp, NFSPROC_SYMLINK, 2109 NFSX_FH(info.v3) + 2*NFSX_UNSIGNED + 2110 nfsm_rndup(cnp->cn_namelen) + 2111 nfsm_rndup(slen) + NFSX_SATTR(info.v3)); 2112 ERROROUT(nfsm_fhtom(&info, dvp)); 2113 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen, 2114 NFS_MAXNAMLEN)); 2115 if (info.v3) { 2116 nfsm_v3attrbuild(&info, vap, FALSE); 2117 } 2118 ERROROUT(nfsm_strtom(&info, ap->a_target, slen, NFS_MAXPATHLEN)); 2119 if (info.v3 == 0) { 2120 sp = nfsm_build(&info, NFSX_V2SATTR); 2121 sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode); 2122 sp->sa_uid = nfs_xdrneg1; 2123 sp->sa_gid = nfs_xdrneg1; 2124 sp->sa_size = nfs_xdrneg1; 2125 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 2126 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 2127 } 2128 2129 /* 2130 * Issue the NFS request and get the rpc response. 2131 * 2132 * Only NFSv3 responses returning an error of 0 actually return 2133 * a file handle that can be converted into newvp without having 2134 * to do an extra lookup rpc. 2135 */ 2136 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_SYMLINK, cnp->cn_td, 2137 cnp->cn_cred, &error)); 2138 if (info.v3) { 2139 if (error == 0) { 2140 ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp)); 2141 } 2142 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag)); 2143 } 2144 2145 /* 2146 * out code jumps -> here, mrep is also freed. 2147 */ 2148 2149 m_freem(info.mrep); 2150 info.mrep = NULL; 2151 nfsmout: 2152 2153 /* 2154 * If we get an EEXIST error, silently convert it to no-error 2155 * in case of an NFS retry. 2156 */ 2157 if (error == EEXIST) 2158 error = 0; 2159 2160 /* 2161 * If we do not have (or no longer have) an error, and we could 2162 * not extract the newvp from the response due to the request being 2163 * NFSv2 or the error being EEXIST. We have to do a lookup in order 2164 * to obtain a newvp to return. 2165 */ 2166 if (error == 0 && newvp == NULL) { 2167 struct nfsnode *np = NULL; 2168 2169 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 2170 cnp->cn_cred, cnp->cn_td, &np); 2171 if (!error) 2172 newvp = NFSTOV(np); 2173 } 2174 if (error) { 2175 if (newvp) 2176 vput(newvp); 2177 } else { 2178 *ap->a_vpp = newvp; 2179 } 2180 VTONFS(dvp)->n_flag |= NLMODIFIED; 2181 if (!wccflag) 2182 VTONFS(dvp)->n_attrstamp = 0; 2183 lwkt_reltoken(&nmp->nm_token); 2184 2185 return (error); 2186 } 2187 2188 /* 2189 * nfs make dir call 2190 * 2191 * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp, 2192 * struct componentname *a_cnp, struct vattr *a_vap) 2193 */ 2194 static int 2195 nfs_mkdir(struct vop_old_mkdir_args *ap) 2196 { 2197 struct vnode *dvp = ap->a_dvp; 2198 struct vattr *vap = ap->a_vap; 2199 struct nfsmount *nmp = VFSTONFS(dvp->v_mount); 2200 struct componentname *cnp = ap->a_cnp; 2201 struct nfsv2_sattr *sp; 2202 struct nfsnode *np = NULL; 2203 struct vnode *newvp = NULL; 2204 struct vattr vattr; 2205 int error = 0, wccflag = NFSV3_WCCRATTR; 2206 int gotvp = 0; 2207 int len; 2208 struct nfsm_info info; 2209 2210 info.mrep = NULL; 2211 info.v3 = NFS_ISV3(dvp); 2212 lwkt_gettoken(&nmp->nm_token); 2213 2214 if ((error = VOP_GETATTR(dvp, &vattr)) != 0) { 2215 lwkt_reltoken(&nmp->nm_token); 2216 return (error); 2217 } 2218 len = cnp->cn_namelen; 2219 nfsstats.rpccnt[NFSPROC_MKDIR]++; 2220 nfsm_reqhead(&info, dvp, NFSPROC_MKDIR, 2221 NFSX_FH(info.v3) + NFSX_UNSIGNED + 2222 nfsm_rndup(len) + NFSX_SATTR(info.v3)); 2223 ERROROUT(nfsm_fhtom(&info, dvp)); 2224 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN)); 2225 if (info.v3) { 2226 nfsm_v3attrbuild(&info, vap, FALSE); 2227 } else { 2228 sp = nfsm_build(&info, NFSX_V2SATTR); 2229 sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode); 2230 sp->sa_uid = nfs_xdrneg1; 2231 sp->sa_gid = nfs_xdrneg1; 2232 sp->sa_size = nfs_xdrneg1; 2233 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 2234 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 2235 } 2236 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKDIR, cnp->cn_td, 2237 cnp->cn_cred, &error)); 2238 if (error == 0) { 2239 ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp)); 2240 } 2241 if (info.v3) { 2242 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag)); 2243 } 2244 m_freem(info.mrep); 2245 info.mrep = NULL; 2246 nfsmout: 2247 VTONFS(dvp)->n_flag |= NLMODIFIED; 2248 if (!wccflag) 2249 VTONFS(dvp)->n_attrstamp = 0; 2250 /* 2251 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry 2252 * if we can succeed in looking up the directory. 2253 */ 2254 if (error == EEXIST || (!error && !gotvp)) { 2255 if (newvp) { 2256 vrele(newvp); 2257 newvp = NULL; 2258 } 2259 error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred, 2260 cnp->cn_td, &np); 2261 if (!error) { 2262 newvp = NFSTOV(np); 2263 if (newvp->v_type != VDIR) 2264 error = EEXIST; 2265 } 2266 } 2267 if (error) { 2268 if (newvp) 2269 vrele(newvp); 2270 } else { 2271 *ap->a_vpp = newvp; 2272 } 2273 lwkt_reltoken(&nmp->nm_token); 2274 return (error); 2275 } 2276 2277 /* 2278 * nfs remove directory call 2279 * 2280 * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp, 2281 * struct componentname *a_cnp) 2282 */ 2283 static int 2284 nfs_rmdir(struct vop_old_rmdir_args *ap) 2285 { 2286 struct vnode *vp = ap->a_vp; 2287 struct vnode *dvp = ap->a_dvp; 2288 struct nfsmount *nmp = VFSTONFS(dvp->v_mount); 2289 struct componentname *cnp = ap->a_cnp; 2290 int error = 0, wccflag = NFSV3_WCCRATTR; 2291 struct nfsm_info info; 2292 2293 info.mrep = NULL; 2294 info.v3 = NFS_ISV3(dvp); 2295 2296 if (dvp == vp) 2297 return (EINVAL); 2298 2299 lwkt_gettoken(&nmp->nm_token); 2300 2301 nfsstats.rpccnt[NFSPROC_RMDIR]++; 2302 nfsm_reqhead(&info, dvp, NFSPROC_RMDIR, 2303 NFSX_FH(info.v3) + NFSX_UNSIGNED + 2304 nfsm_rndup(cnp->cn_namelen)); 2305 ERROROUT(nfsm_fhtom(&info, dvp)); 2306 ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen, 2307 NFS_MAXNAMLEN)); 2308 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_RMDIR, cnp->cn_td, 2309 cnp->cn_cred, &error)); 2310 if (info.v3) { 2311 ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag)); 2312 } 2313 m_freem(info.mrep); 2314 info.mrep = NULL; 2315 nfsmout: 2316 VTONFS(dvp)->n_flag |= NLMODIFIED; 2317 if (!wccflag) 2318 VTONFS(dvp)->n_attrstamp = 0; 2319 /* 2320 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry. 2321 */ 2322 if (error == ENOENT) 2323 error = 0; 2324 lwkt_reltoken(&nmp->nm_token); 2325 2326 return (error); 2327 } 2328 2329 /* 2330 * nfs readdir call 2331 * 2332 * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred) 2333 */ 2334 static int 2335 nfs_readdir(struct vop_readdir_args *ap) 2336 { 2337 struct vnode *vp = ap->a_vp; 2338 struct nfsnode *np = VTONFS(vp); 2339 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2340 struct uio *uio = ap->a_uio; 2341 int tresid, error; 2342 struct vattr vattr; 2343 2344 if (vp->v_type != VDIR) 2345 return (EPERM); 2346 2347 if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0) 2348 return (error); 2349 2350 lwkt_gettoken(&nmp->nm_token); 2351 2352 /* 2353 * If we have a valid EOF offset cache we must call VOP_GETATTR() 2354 * and then check that is still valid, or if this is an NQNFS mount 2355 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR(). Note that 2356 * VOP_GETATTR() does not necessarily go to the wire. 2357 */ 2358 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset && 2359 (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) { 2360 if (VOP_GETATTR(vp, &vattr) == 0 && 2361 (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0 2362 ) { 2363 nfsstats.direofcache_hits++; 2364 goto done; 2365 } 2366 } 2367 2368 /* 2369 * Call nfs_bioread() to do the real work. nfs_bioread() does its 2370 * own cache coherency checks so we do not have to. 2371 */ 2372 tresid = uio->uio_resid; 2373 error = nfs_bioread(vp, uio, 0); 2374 2375 if (!error && uio->uio_resid == tresid) 2376 nfsstats.direofcache_misses++; 2377 done: 2378 lwkt_reltoken(&nmp->nm_token); 2379 vn_unlock(vp); 2380 2381 return (error); 2382 } 2383 2384 /* 2385 * Readdir rpc call. nfs_bioread->nfs_doio->nfs_readdirrpc. 2386 * 2387 * Note that for directories, nfs_bioread maintains the underlying nfs-centric 2388 * offset/block and converts the nfs formatted directory entries for userland 2389 * consumption as well as deals with offsets into the middle of blocks. 2390 * nfs_doio only deals with logical blocks. In particular, uio_offset will 2391 * be block-bounded. It must convert to cookies for the actual RPC. 2392 */ 2393 int 2394 nfs_readdirrpc_uio(struct vnode *vp, struct uio *uiop) 2395 { 2396 int len, left; 2397 struct nfs_dirent *dp = NULL; 2398 u_int32_t *tl; 2399 nfsuint64 *cookiep; 2400 caddr_t cp; 2401 nfsuint64 cookie; 2402 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2403 struct nfsnode *dnp = VTONFS(vp); 2404 u_quad_t fileno; 2405 int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1; 2406 int attrflag; 2407 struct nfsm_info info; 2408 2409 info.mrep = NULL; 2410 info.v3 = NFS_ISV3(vp); 2411 2412 #ifndef DIAGNOSTIC 2413 if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) || 2414 (uiop->uio_resid & (DIRBLKSIZ - 1))) 2415 panic("nfs readdirrpc bad uio"); 2416 #endif 2417 2418 /* 2419 * If there is no cookie, assume directory was stale. 2420 */ 2421 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0); 2422 if (cookiep) 2423 cookie = *cookiep; 2424 else 2425 return (NFSERR_BAD_COOKIE); 2426 /* 2427 * Loop around doing readdir rpc's of size nm_readdirsize 2428 * truncated to a multiple of DIRBLKSIZ. 2429 * The stopping criteria is EOF or buffer full. 2430 */ 2431 while (more_dirs && bigenough) { 2432 nfsstats.rpccnt[NFSPROC_READDIR]++; 2433 nfsm_reqhead(&info, vp, NFSPROC_READDIR, 2434 NFSX_FH(info.v3) + NFSX_READDIR(info.v3)); 2435 ERROROUT(nfsm_fhtom(&info, vp)); 2436 if (info.v3) { 2437 tl = nfsm_build(&info, 5 * NFSX_UNSIGNED); 2438 *tl++ = cookie.nfsuquad[0]; 2439 *tl++ = cookie.nfsuquad[1]; 2440 *tl++ = dnp->n_cookieverf.nfsuquad[0]; 2441 *tl++ = dnp->n_cookieverf.nfsuquad[1]; 2442 } else { 2443 /* 2444 * WARNING! HAMMER DIRECTORIES WILL NOT WORK WELL 2445 * WITH NFSv2!!! There's nothing I can really do 2446 * about it other than to hope the server supports 2447 * rdirplus w/NFSv2. 2448 */ 2449 tl = nfsm_build(&info, 2 * NFSX_UNSIGNED); 2450 *tl++ = cookie.nfsuquad[0]; 2451 } 2452 *tl = txdr_unsigned(nmp->nm_readdirsize); 2453 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIR, 2454 uiop->uio_td, 2455 nfs_vpcred(vp, ND_READ), &error)); 2456 if (info.v3) { 2457 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, 2458 NFS_LATTR_NOSHRINK)); 2459 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED)); 2460 dnp->n_cookieverf.nfsuquad[0] = *tl++; 2461 dnp->n_cookieverf.nfsuquad[1] = *tl; 2462 } 2463 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); 2464 more_dirs = fxdr_unsigned(int, *tl); 2465 2466 /* loop thru the dir entries, converting them to std form */ 2467 while (more_dirs && bigenough) { 2468 if (info.v3) { 2469 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED)); 2470 fileno = fxdr_hyper(tl); 2471 len = fxdr_unsigned(int, *(tl + 2)); 2472 } else { 2473 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED)); 2474 fileno = fxdr_unsigned(u_quad_t, *tl++); 2475 len = fxdr_unsigned(int, *tl); 2476 } 2477 if (len <= 0 || len > NFS_MAXNAMLEN) { 2478 error = EBADRPC; 2479 m_freem(info.mrep); 2480 info.mrep = NULL; 2481 goto nfsmout; 2482 } 2483 2484 /* 2485 * len is the number of bytes in the path element 2486 * name, not including the \0 termination. 2487 * 2488 * tlen is the number of bytes w have to reserve for 2489 * the path element name. 2490 */ 2491 tlen = nfsm_rndup(len); 2492 if (tlen == len) 2493 tlen += 4; /* To ensure null termination */ 2494 2495 /* 2496 * If the entry would cross a DIRBLKSIZ boundary, 2497 * extend the previous nfs_dirent to cover the 2498 * remaining space. 2499 */ 2500 left = DIRBLKSIZ - blksiz; 2501 if ((tlen + sizeof(struct nfs_dirent)) > left) { 2502 dp->nfs_reclen += left; 2503 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; 2504 uiop->uio_iov->iov_len -= left; 2505 uiop->uio_offset += left; 2506 uiop->uio_resid -= left; 2507 blksiz = 0; 2508 } 2509 if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid) 2510 bigenough = 0; 2511 if (bigenough) { 2512 dp = (struct nfs_dirent *)uiop->uio_iov->iov_base; 2513 dp->nfs_ino = fileno; 2514 dp->nfs_namlen = len; 2515 dp->nfs_reclen = tlen + sizeof(struct nfs_dirent); 2516 dp->nfs_type = DT_UNKNOWN; 2517 blksiz += dp->nfs_reclen; 2518 if (blksiz == DIRBLKSIZ) 2519 blksiz = 0; 2520 uiop->uio_offset += sizeof(struct nfs_dirent); 2521 uiop->uio_resid -= sizeof(struct nfs_dirent); 2522 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent); 2523 uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent); 2524 ERROROUT(nfsm_mtouio(&info, uiop, len)); 2525 2526 /* 2527 * The uiop has advanced by nfs_dirent + len 2528 * but really needs to advance by 2529 * nfs_dirent + tlen 2530 */ 2531 cp = uiop->uio_iov->iov_base; 2532 tlen -= len; 2533 *cp = '\0'; /* null terminate */ 2534 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen; 2535 uiop->uio_iov->iov_len -= tlen; 2536 uiop->uio_offset += tlen; 2537 uiop->uio_resid -= tlen; 2538 } else { 2539 /* 2540 * NFS strings must be rounded up (nfsm_myouio 2541 * handled that in the bigenough case). 2542 */ 2543 ERROROUT(nfsm_adv(&info, nfsm_rndup(len))); 2544 } 2545 if (info.v3) { 2546 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED)); 2547 } else { 2548 NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED)); 2549 } 2550 2551 /* 2552 * If we were able to accomodate the last entry, 2553 * get the cookie for the next one. Otherwise 2554 * hold-over the cookie for the one we were not 2555 * able to accomodate. 2556 */ 2557 if (bigenough) { 2558 cookie.nfsuquad[0] = *tl++; 2559 if (info.v3) 2560 cookie.nfsuquad[1] = *tl++; 2561 } else if (info.v3) { 2562 tl += 2; 2563 } else { 2564 tl++; 2565 } 2566 more_dirs = fxdr_unsigned(int, *tl); 2567 } 2568 /* 2569 * If at end of rpc data, get the eof boolean 2570 */ 2571 if (!more_dirs) { 2572 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); 2573 more_dirs = (fxdr_unsigned(int, *tl) == 0); 2574 } 2575 m_freem(info.mrep); 2576 info.mrep = NULL; 2577 } 2578 /* 2579 * Fill last record, iff any, out to a multiple of DIRBLKSIZ 2580 * by increasing d_reclen for the last record. 2581 */ 2582 if (blksiz > 0) { 2583 left = DIRBLKSIZ - blksiz; 2584 dp->nfs_reclen += left; 2585 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; 2586 uiop->uio_iov->iov_len -= left; 2587 uiop->uio_offset += left; 2588 uiop->uio_resid -= left; 2589 } 2590 2591 if (bigenough) { 2592 /* 2593 * We hit the end of the directory, update direofoffset. 2594 */ 2595 dnp->n_direofoffset = uiop->uio_offset; 2596 } else { 2597 /* 2598 * There is more to go, insert the link cookie so the 2599 * next block can be read. 2600 */ 2601 if (uiop->uio_resid > 0) 2602 kprintf("EEK! readdirrpc resid > 0\n"); 2603 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1); 2604 *cookiep = cookie; 2605 } 2606 nfsmout: 2607 return (error); 2608 } 2609 2610 /* 2611 * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc(). 2612 */ 2613 int 2614 nfs_readdirplusrpc_uio(struct vnode *vp, struct uio *uiop) 2615 { 2616 int len, left; 2617 struct nfs_dirent *dp; 2618 u_int32_t *tl; 2619 struct vnode *newvp; 2620 nfsuint64 *cookiep; 2621 caddr_t dpossav1, dpossav2; 2622 caddr_t cp; 2623 struct mbuf *mdsav1, *mdsav2; 2624 nfsuint64 cookie; 2625 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2626 struct nfsnode *dnp = VTONFS(vp), *np; 2627 nfsfh_t *fhp; 2628 u_quad_t fileno; 2629 int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i; 2630 int attrflag, fhsize; 2631 struct nchandle nch; 2632 struct nchandle dnch; 2633 struct nlcomponent nlc; 2634 struct nfsm_info info; 2635 2636 info.mrep = NULL; 2637 info.v3 = 1; 2638 2639 #ifndef nolint 2640 dp = NULL; 2641 #endif 2642 #ifndef DIAGNOSTIC 2643 if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) || 2644 (uiop->uio_resid & (DIRBLKSIZ - 1))) 2645 panic("nfs readdirplusrpc bad uio"); 2646 #endif 2647 /* 2648 * Obtain the namecache record for the directory so we have something 2649 * to use as a basis for creating the entries. This function will 2650 * return a held (but not locked) ncp. The ncp may be disconnected 2651 * from the tree and cannot be used for upward traversals, and the 2652 * ncp may be unnamed. Note that other unrelated operations may 2653 * cause the ncp to be named at any time. 2654 * 2655 * We have to lock the ncp to prevent a lock order reversal when 2656 * rdirplus does nlookups of the children, because the vnode is 2657 * locked and has to stay that way. 2658 */ 2659 cache_fromdvp(vp, NULL, 0, &dnch); 2660 bzero(&nlc, sizeof(nlc)); 2661 newvp = NULLVP; 2662 2663 /* 2664 * If there is no cookie, assume directory was stale. 2665 */ 2666 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0); 2667 if (cookiep) { 2668 cookie = *cookiep; 2669 } else { 2670 if (dnch.ncp) 2671 cache_drop(&dnch); 2672 return (NFSERR_BAD_COOKIE); 2673 } 2674 2675 /* 2676 * Loop around doing readdir rpc's of size nm_readdirsize 2677 * truncated to a multiple of DIRBLKSIZ. 2678 * The stopping criteria is EOF or buffer full. 2679 */ 2680 while (more_dirs && bigenough) { 2681 nfsstats.rpccnt[NFSPROC_READDIRPLUS]++; 2682 nfsm_reqhead(&info, vp, NFSPROC_READDIRPLUS, 2683 NFSX_FH(info.v3) + 6 * NFSX_UNSIGNED); 2684 ERROROUT(nfsm_fhtom(&info, vp)); 2685 tl = nfsm_build(&info, 6 * NFSX_UNSIGNED); 2686 *tl++ = cookie.nfsuquad[0]; 2687 *tl++ = cookie.nfsuquad[1]; 2688 *tl++ = dnp->n_cookieverf.nfsuquad[0]; 2689 *tl++ = dnp->n_cookieverf.nfsuquad[1]; 2690 *tl++ = txdr_unsigned(nmp->nm_readdirsize); 2691 *tl = txdr_unsigned(nmp->nm_rsize); 2692 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIRPLUS, 2693 uiop->uio_td, 2694 nfs_vpcred(vp, ND_READ), &error)); 2695 ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, 2696 NFS_LATTR_NOSHRINK)); 2697 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED)); 2698 dnp->n_cookieverf.nfsuquad[0] = *tl++; 2699 dnp->n_cookieverf.nfsuquad[1] = *tl++; 2700 more_dirs = fxdr_unsigned(int, *tl); 2701 2702 /* loop thru the dir entries, doctoring them to 4bsd form */ 2703 while (more_dirs && bigenough) { 2704 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED)); 2705 fileno = fxdr_hyper(tl); 2706 len = fxdr_unsigned(int, *(tl + 2)); 2707 if (len <= 0 || len > NFS_MAXNAMLEN) { 2708 error = EBADRPC; 2709 m_freem(info.mrep); 2710 info.mrep = NULL; 2711 goto nfsmout; 2712 } 2713 tlen = nfsm_rndup(len); 2714 if (tlen == len) 2715 tlen += 4; /* To ensure null termination*/ 2716 left = DIRBLKSIZ - blksiz; 2717 if ((tlen + sizeof(struct nfs_dirent)) > left) { 2718 dp->nfs_reclen += left; 2719 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; 2720 uiop->uio_iov->iov_len -= left; 2721 uiop->uio_offset += left; 2722 uiop->uio_resid -= left; 2723 blksiz = 0; 2724 } 2725 if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid) 2726 bigenough = 0; 2727 if (bigenough) { 2728 dp = (struct nfs_dirent *)uiop->uio_iov->iov_base; 2729 dp->nfs_ino = fileno; 2730 dp->nfs_namlen = len; 2731 dp->nfs_reclen = tlen + sizeof(struct nfs_dirent); 2732 dp->nfs_type = DT_UNKNOWN; 2733 blksiz += dp->nfs_reclen; 2734 if (blksiz == DIRBLKSIZ) 2735 blksiz = 0; 2736 uiop->uio_offset += sizeof(struct nfs_dirent); 2737 uiop->uio_resid -= sizeof(struct nfs_dirent); 2738 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent); 2739 uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent); 2740 nlc.nlc_nameptr = uiop->uio_iov->iov_base; 2741 nlc.nlc_namelen = len; 2742 ERROROUT(nfsm_mtouio(&info, uiop, len)); 2743 cp = uiop->uio_iov->iov_base; 2744 tlen -= len; 2745 *cp = '\0'; 2746 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen; 2747 uiop->uio_iov->iov_len -= tlen; 2748 uiop->uio_offset += tlen; 2749 uiop->uio_resid -= tlen; 2750 } else { 2751 ERROROUT(nfsm_adv(&info, nfsm_rndup(len))); 2752 } 2753 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED)); 2754 if (bigenough) { 2755 cookie.nfsuquad[0] = *tl++; 2756 cookie.nfsuquad[1] = *tl++; 2757 } else { 2758 tl += 2; 2759 } 2760 2761 /* 2762 * Since the attributes are before the file handle 2763 * (sigh), we must skip over the attributes and then 2764 * come back and get them. 2765 */ 2766 attrflag = fxdr_unsigned(int, *tl); 2767 if (attrflag) { 2768 dpossav1 = info.dpos; 2769 mdsav1 = info.md; 2770 ERROROUT(nfsm_adv(&info, NFSX_V3FATTR)); 2771 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); 2772 doit = fxdr_unsigned(int, *tl); 2773 if (doit) { 2774 NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp)); 2775 } 2776 if (doit && bigenough && !nlcdegenerate(&nlc) && 2777 !NFS_CMPFH(dnp, fhp, fhsize) 2778 ) { 2779 if (dnch.ncp) { 2780 #if 0 2781 kprintf("NFS/READDIRPLUS, ENTER %*.*s\n", 2782 nlc.nlc_namelen, nlc.nlc_namelen, 2783 nlc.nlc_nameptr); 2784 #endif 2785 /* 2786 * This is a bit hokey but there isn't 2787 * much we can do about it. We can't 2788 * hold the directory vp locked while 2789 * doing lookups and gets. 2790 */ 2791 nch = cache_nlookup_nonblock(&dnch, &nlc); 2792 if (nch.ncp == NULL) 2793 goto rdfail; 2794 cache_setunresolved(&nch); 2795 error = nfs_nget_nonblock(vp->v_mount, fhp, 2796 fhsize, &np, 2797 NULL); 2798 if (error) { 2799 cache_put(&nch); 2800 goto rdfail; 2801 } 2802 newvp = NFSTOV(np); 2803 dpossav2 = info.dpos; 2804 info.dpos = dpossav1; 2805 mdsav2 = info.md; 2806 info.md = mdsav1; 2807 ERROROUT(nfsm_loadattr(&info, newvp, NULL)); 2808 info.dpos = dpossav2; 2809 info.md = mdsav2; 2810 dp->nfs_type = 2811 IFTODT(VTTOIF(np->n_vattr.va_type)); 2812 nfs_cache_setvp(&nch, newvp, 2813 nfspos_cache_timeout); 2814 vput(newvp); 2815 newvp = NULLVP; 2816 cache_put(&nch); 2817 } else { 2818 rdfail: 2819 ; 2820 #if 0 2821 kprintf("Warning: NFS/rddirplus, " 2822 "UNABLE TO ENTER %*.*s\n", 2823 nlc.nlc_namelen, nlc.nlc_namelen, 2824 nlc.nlc_nameptr); 2825 #endif 2826 } 2827 } 2828 } else { 2829 /* Just skip over the file handle */ 2830 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); 2831 i = fxdr_unsigned(int, *tl); 2832 ERROROUT(nfsm_adv(&info, nfsm_rndup(i))); 2833 } 2834 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); 2835 more_dirs = fxdr_unsigned(int, *tl); 2836 } 2837 /* 2838 * If at end of rpc data, get the eof boolean 2839 */ 2840 if (!more_dirs) { 2841 NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED)); 2842 more_dirs = (fxdr_unsigned(int, *tl) == 0); 2843 } 2844 m_freem(info.mrep); 2845 info.mrep = NULL; 2846 } 2847 /* 2848 * Fill last record, iff any, out to a multiple of DIRBLKSIZ 2849 * by increasing d_reclen for the last record. 2850 */ 2851 if (blksiz > 0) { 2852 left = DIRBLKSIZ - blksiz; 2853 dp->nfs_reclen += left; 2854 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left; 2855 uiop->uio_iov->iov_len -= left; 2856 uiop->uio_offset += left; 2857 uiop->uio_resid -= left; 2858 } 2859 2860 /* 2861 * We are now either at the end of the directory or have filled the 2862 * block. 2863 */ 2864 if (bigenough) { 2865 dnp->n_direofoffset = uiop->uio_offset; 2866 } else { 2867 if (uiop->uio_resid > 0) 2868 kprintf("EEK! readdirplusrpc resid > 0\n"); 2869 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1); 2870 *cookiep = cookie; 2871 } 2872 nfsmout: 2873 if (newvp != NULLVP) { 2874 if (newvp == vp) 2875 vrele(newvp); 2876 else 2877 vput(newvp); 2878 newvp = NULLVP; 2879 } 2880 if (dnch.ncp) 2881 cache_drop(&dnch); 2882 return (error); 2883 } 2884 2885 /* 2886 * Silly rename. To make the NFS filesystem that is stateless look a little 2887 * more like the "ufs" a remove of an active vnode is translated to a rename 2888 * to a funny looking filename that is removed by nfs_inactive on the 2889 * nfsnode. There is the potential for another process on a different client 2890 * to create the same funny name between the nfs_lookitup() fails and the 2891 * nfs_rename() completes, but... 2892 */ 2893 static int 2894 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2895 { 2896 struct sillyrename *sp; 2897 struct nfsnode *np; 2898 int error; 2899 2900 /* 2901 * We previously purged dvp instead of vp. I don't know why, it 2902 * completely destroys performance. We can't do it anyway with the 2903 * new VFS API since we would be breaking the namecache topology. 2904 */ 2905 cache_purge(vp); /* XXX */ 2906 np = VTONFS(vp); 2907 #ifndef DIAGNOSTIC 2908 if (vp->v_type == VDIR) 2909 panic("nfs: sillyrename dir"); 2910 #endif 2911 sp = kmalloc(sizeof(struct sillyrename), M_NFSREQ, M_WAITOK); 2912 sp->s_cred = crdup(cnp->cn_cred); 2913 sp->s_dvp = dvp; 2914 vref(dvp); 2915 2916 /* Fudge together a funny name */ 2917 sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4", 2918 (int)(intptr_t)cnp->cn_td); 2919 2920 /* Try lookitups until we get one that isn't there */ 2921 while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2922 cnp->cn_td, NULL) == 0) { 2923 sp->s_name[4]++; 2924 if (sp->s_name[4] > 'z') { 2925 error = EINVAL; 2926 goto bad; 2927 } 2928 } 2929 error = nfs_renameit(dvp, cnp, sp); 2930 if (error) 2931 goto bad; 2932 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2933 cnp->cn_td, &np); 2934 np->n_sillyrename = sp; 2935 return (0); 2936 bad: 2937 vrele(sp->s_dvp); 2938 crfree(sp->s_cred); 2939 kfree((caddr_t)sp, M_NFSREQ); 2940 return (error); 2941 } 2942 2943 /* 2944 * Look up a file name and optionally either update the file handle or 2945 * allocate an nfsnode, depending on the value of npp. 2946 * npp == NULL --> just do the lookup 2947 * *npp == NULL --> allocate a new nfsnode and make sure attributes are 2948 * handled too 2949 * *npp != NULL --> update the file handle in the vnode 2950 */ 2951 static int 2952 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred, 2953 struct thread *td, struct nfsnode **npp) 2954 { 2955 struct vnode *newvp = NULL; 2956 struct nfsnode *np, *dnp = VTONFS(dvp); 2957 int error = 0, fhlen, attrflag; 2958 nfsfh_t *nfhp; 2959 struct nfsm_info info; 2960 2961 info.mrep = NULL; 2962 info.v3 = NFS_ISV3(dvp); 2963 2964 nfsstats.rpccnt[NFSPROC_LOOKUP]++; 2965 nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP, 2966 NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len)); 2967 ERROROUT(nfsm_fhtom(&info, dvp)); 2968 ERROROUT(nfsm_strtom(&info, name, len, NFS_MAXNAMLEN)); 2969 NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td, cred, &error)); 2970 if (npp && !error) { 2971 NEGATIVEOUT(fhlen = nfsm_getfh(&info, &nfhp)); 2972 if (*npp) { 2973 np = *npp; 2974 if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) { 2975 kfree((caddr_t)np->n_fhp, M_NFSBIGFH); 2976 np->n_fhp = &np->n_fh; 2977 } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH) 2978 np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK); 2979 bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen); 2980 np->n_fhsize = fhlen; 2981 newvp = NFSTOV(np); 2982 } else if (NFS_CMPFH(dnp, nfhp, fhlen)) { 2983 vref(dvp); 2984 newvp = dvp; 2985 } else { 2986 error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np, NULL); 2987 if (error) { 2988 m_freem(info.mrep); 2989 info.mrep = NULL; 2990 return (error); 2991 } 2992 newvp = NFSTOV(np); 2993 } 2994 if (info.v3) { 2995 ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag, 2996 NFS_LATTR_NOSHRINK)); 2997 if (!attrflag && *npp == NULL) { 2998 m_freem(info.mrep); 2999 info.mrep = NULL; 3000 if (newvp == dvp) 3001 vrele(newvp); 3002 else 3003 vput(newvp); 3004 return (ENOENT); 3005 } 3006 } else { 3007 ERROROUT(nfsm_loadattr(&info, newvp, NULL)); 3008 } 3009 } 3010 m_freem(info.mrep); 3011 info.mrep = NULL; 3012 nfsmout: 3013 if (npp && *npp == NULL) { 3014 if (error) { 3015 if (newvp) { 3016 if (newvp == dvp) 3017 vrele(newvp); 3018 else 3019 vput(newvp); 3020 } 3021 } else 3022 *npp = np; 3023 } 3024 return (error); 3025 } 3026 3027 /* 3028 * Nfs Version 3 commit rpc 3029 * 3030 * We call it 'uio' to distinguish it from 'bio' but there is no real uio 3031 * involved. 3032 */ 3033 int 3034 nfs_commitrpc_uio(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td) 3035 { 3036 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 3037 int error = 0, wccflag = NFSV3_WCCRATTR; 3038 struct nfsm_info info; 3039 u_int32_t *tl; 3040 3041 info.mrep = NULL; 3042 info.v3 = 1; 3043 3044 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) 3045 return (0); 3046 nfsstats.rpccnt[NFSPROC_COMMIT]++; 3047 nfsm_reqhead(&info, vp, NFSPROC_COMMIT, NFSX_FH(1)); 3048 ERROROUT(nfsm_fhtom(&info, vp)); 3049 tl = nfsm_build(&info, 3 * NFSX_UNSIGNED); 3050 txdr_hyper(offset, tl); 3051 tl += 2; 3052 *tl = txdr_unsigned(cnt); 3053 NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_COMMIT, td, 3054 nfs_vpcred(vp, ND_WRITE), &error)); 3055 ERROROUT(nfsm_wcc_data(&info, vp, &wccflag)); 3056 if (!error) { 3057 NULLOUT(tl = nfsm_dissect(&info, NFSX_V3WRITEVERF)); 3058 if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl, 3059 NFSX_V3WRITEVERF)) { 3060 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, 3061 NFSX_V3WRITEVERF); 3062 error = NFSERR_STALEWRITEVERF; 3063 } 3064 } 3065 m_freem(info.mrep); 3066 info.mrep = NULL; 3067 nfsmout: 3068 return (error); 3069 } 3070 3071 /* 3072 * Kludge City.. 3073 * - make nfs_bmap() essentially a no-op that does no translation 3074 * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc 3075 * (Maybe I could use the process's page mapping, but I was concerned that 3076 * Kernel Write might not be enabled and also figured copyout() would do 3077 * a lot more work than bcopy() and also it currently happens in the 3078 * context of the swapper process (2). 3079 * 3080 * nfs_bmap(struct vnode *a_vp, off_t a_loffset, 3081 * off_t *a_doffsetp, int *a_runp, int *a_runb) 3082 */ 3083 static int 3084 nfs_bmap(struct vop_bmap_args *ap) 3085 { 3086 /* no token lock required */ 3087 if (ap->a_doffsetp != NULL) 3088 *ap->a_doffsetp = ap->a_loffset; 3089 if (ap->a_runp != NULL) 3090 *ap->a_runp = 0; 3091 if (ap->a_runb != NULL) 3092 *ap->a_runb = 0; 3093 return (0); 3094 } 3095 3096 /* 3097 * Strategy routine. 3098 */ 3099 static int 3100 nfs_strategy(struct vop_strategy_args *ap) 3101 { 3102 struct bio *bio = ap->a_bio; 3103 struct bio *nbio; 3104 struct buf *bp __debugvar = bio->bio_buf; 3105 struct nfsmount *nmp = VFSTONFS(ap->a_vp->v_mount); 3106 struct thread *td; 3107 int error; 3108 3109 KASSERT(bp->b_cmd != BUF_CMD_DONE, 3110 ("nfs_strategy: buffer %p unexpectedly marked done", bp)); 3111 KASSERT(BUF_REFCNT(bp) > 0, 3112 ("nfs_strategy: buffer %p not locked", bp)); 3113 3114 if (bio->bio_flags & BIO_SYNC) 3115 td = curthread; /* XXX */ 3116 else 3117 td = NULL; 3118 3119 lwkt_gettoken(&nmp->nm_token); 3120 3121 /* 3122 * We probably don't need to push an nbio any more since no 3123 * block conversion is required due to the use of 64 bit byte 3124 * offsets, but do it anyway. 3125 * 3126 * NOTE: When NFS callers itself via this strategy routines and 3127 * sets up a synchronous I/O, it expects the I/O to run 3128 * synchronously (its bio_done routine just assumes it), 3129 * so for now we have to honor the bit. 3130 */ 3131 nbio = push_bio(bio); 3132 nbio->bio_offset = bio->bio_offset; 3133 nbio->bio_flags = bio->bio_flags & BIO_SYNC; 3134 3135 /* 3136 * If the op is asynchronous and an i/o daemon is waiting 3137 * queue the request, wake it up and wait for completion 3138 * otherwise just do it ourselves. 3139 */ 3140 if (bio->bio_flags & BIO_SYNC) { 3141 error = nfs_doio(ap->a_vp, nbio, td); 3142 } else { 3143 nfs_asyncio(ap->a_vp, nbio); 3144 error = 0; 3145 } 3146 lwkt_reltoken(&nmp->nm_token); 3147 3148 return (error); 3149 } 3150 3151 /* 3152 * Mmap a file 3153 * 3154 * NB Currently unsupported. 3155 * 3156 * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred) 3157 */ 3158 /* ARGSUSED */ 3159 static int 3160 nfs_mmap(struct vop_mmap_args *ap) 3161 { 3162 /* no token lock required */ 3163 return (EINVAL); 3164 } 3165 3166 /* 3167 * fsync vnode op. Just call nfs_flush() with commit == 1. 3168 * 3169 * nfs_fsync(struct vnode *a_vp, int a_waitfor) 3170 */ 3171 /* ARGSUSED */ 3172 static int 3173 nfs_fsync(struct vop_fsync_args *ap) 3174 { 3175 struct nfsmount *nmp = VFSTONFS(ap->a_vp->v_mount); 3176 int error; 3177 3178 lwkt_gettoken(&nmp->nm_token); 3179 error = nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1); 3180 lwkt_reltoken(&nmp->nm_token); 3181 3182 return error; 3183 } 3184 3185 /* 3186 * Flush all the blocks associated with a vnode. Dirty NFS buffers may be 3187 * in one of two states: If B_NEEDCOMMIT is clear then the buffer contains 3188 * new NFS data which needs to be written to the server. If B_NEEDCOMMIT is 3189 * set the buffer contains data that has already been written to the server 3190 * and which now needs a commit RPC. 3191 * 3192 * If commit is 0 we only take one pass and only flush buffers containing new 3193 * dirty data. 3194 * 3195 * If commit is 1 we take two passes, issuing a commit RPC in the second 3196 * pass. 3197 * 3198 * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required 3199 * to completely flush all pending data. 3200 * 3201 * Note that the RB_SCAN code properly handles the case where the 3202 * callback might block and directly or indirectly (another thread) cause 3203 * the RB tree to change. 3204 */ 3205 3206 #ifndef NFS_COMMITBVECSIZ 3207 #define NFS_COMMITBVECSIZ 16 3208 #endif 3209 3210 struct nfs_flush_info { 3211 enum { NFI_FLUSHNEW, NFI_COMMIT } mode; 3212 struct thread *td; 3213 struct vnode *vp; 3214 int waitfor; 3215 int slpflag; 3216 int slptimeo; 3217 int loops; 3218 struct buf *bvary[NFS_COMMITBVECSIZ]; 3219 int bvsize; 3220 off_t beg_off; 3221 off_t end_off; 3222 }; 3223 3224 static int nfs_flush_bp(struct buf *bp, void *data); 3225 static int nfs_flush_docommit(struct nfs_flush_info *info, int error); 3226 3227 int 3228 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit) 3229 { 3230 struct nfsnode *np = VTONFS(vp); 3231 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 3232 struct nfs_flush_info info; 3233 int error; 3234 3235 bzero(&info, sizeof(info)); 3236 info.td = td; 3237 info.vp = vp; 3238 info.waitfor = waitfor; 3239 info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0; 3240 info.loops = 0; 3241 lwkt_gettoken(&vp->v_token); 3242 3243 do { 3244 /* 3245 * Flush mode 3246 */ 3247 info.mode = NFI_FLUSHNEW; 3248 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, 3249 nfs_flush_bp, &info); 3250 3251 /* 3252 * Take a second pass if committing and no error occured. 3253 * Clean up any left over collection (whether an error 3254 * occurs or not). 3255 */ 3256 if (commit && error == 0) { 3257 info.mode = NFI_COMMIT; 3258 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, 3259 nfs_flush_bp, &info); 3260 if (info.bvsize) 3261 error = nfs_flush_docommit(&info, error); 3262 } 3263 3264 /* 3265 * Wait for pending I/O to complete before checking whether 3266 * any further dirty buffers exist. 3267 */ 3268 while (waitfor == MNT_WAIT && 3269 bio_track_active(&vp->v_track_write)) { 3270 error = bio_track_wait(&vp->v_track_write, 3271 info.slpflag, info.slptimeo); 3272 if (error) { 3273 /* 3274 * We have to be able to break out if this 3275 * is an 'intr' mount. 3276 */ 3277 if (nfs_sigintr(nmp, NULL, td)) { 3278 error = -EINTR; 3279 break; 3280 } 3281 3282 /* 3283 * Since we do not process pending signals, 3284 * once we get a PCATCH our tsleep() will no 3285 * longer sleep, switch to a fixed timeout 3286 * instead. 3287 */ 3288 if (info.slpflag == PCATCH) { 3289 info.slpflag = 0; 3290 info.slptimeo = 2 * hz; 3291 } 3292 error = 0; 3293 } 3294 } 3295 ++info.loops; 3296 /* 3297 * Loop if we are flushing synchronous as well as committing, 3298 * and dirty buffers are still present. Otherwise we might livelock. 3299 */ 3300 } while (waitfor == MNT_WAIT && commit && 3301 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree)); 3302 3303 /* 3304 * The callbacks have to return a negative error to terminate the 3305 * RB scan. 3306 */ 3307 if (error < 0) 3308 error = -error; 3309 3310 /* 3311 * Deal with any error collection 3312 */ 3313 if (np->n_flag & NWRITEERR) { 3314 error = np->n_error; 3315 np->n_flag &= ~NWRITEERR; 3316 } 3317 lwkt_reltoken(&vp->v_token); 3318 return (error); 3319 } 3320 3321 static 3322 int 3323 nfs_flush_bp(struct buf *bp, void *data) 3324 { 3325 struct nfs_flush_info *info = data; 3326 int lkflags; 3327 int error; 3328 off_t toff; 3329 3330 error = 0; 3331 switch(info->mode) { 3332 case NFI_FLUSHNEW: 3333 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT); 3334 if (error && info->loops && info->waitfor == MNT_WAIT) { 3335 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT); 3336 if (error) { 3337 lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 3338 if (info->slpflag & PCATCH) 3339 lkflags |= LK_PCATCH; 3340 error = BUF_TIMELOCK(bp, lkflags, "nfsfsync", 3341 info->slptimeo); 3342 } 3343 } 3344 3345 /* 3346 * Ignore locking errors 3347 */ 3348 if (error) { 3349 error = 0; 3350 break; 3351 } 3352 3353 /* 3354 * The buffer may have changed out from under us, even if 3355 * we did not block (MPSAFE). Check again now that it is 3356 * locked. 3357 */ 3358 if (bp->b_vp == info->vp && 3359 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == B_DELWRI) { 3360 bremfree(bp); 3361 bawrite(bp); 3362 } else { 3363 BUF_UNLOCK(bp); 3364 } 3365 break; 3366 case NFI_COMMIT: 3367 /* 3368 * Only process buffers in need of a commit which we can 3369 * immediately lock. This may prevent a buffer from being 3370 * committed, but the normal flush loop will block on the 3371 * same buffer so we shouldn't get into an endless loop. 3372 */ 3373 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != 3374 (B_DELWRI | B_NEEDCOMMIT)) { 3375 break; 3376 } 3377 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) 3378 break; 3379 3380 /* 3381 * We must recheck after successfully locking the buffer. 3382 */ 3383 if (bp->b_vp != info->vp || 3384 (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != 3385 (B_DELWRI | B_NEEDCOMMIT)) { 3386 BUF_UNLOCK(bp); 3387 break; 3388 } 3389 3390 /* 3391 * NOTE: storing the bp in the bvary[] basically sets 3392 * it up for a commit operation. 3393 * 3394 * We must call vfs_busy_pages() now so the commit operation 3395 * is interlocked with user modifications to memory mapped 3396 * pages. The b_dirtyoff/b_dirtyend range is not correct 3397 * until after the pages have been busied. 3398 * 3399 * Note: to avoid loopback deadlocks, we do not 3400 * assign b_runningbufspace. 3401 */ 3402 bremfree(bp); 3403 bp->b_cmd = BUF_CMD_WRITE; 3404 vfs_busy_pages(bp->b_vp, bp); 3405 info->bvary[info->bvsize] = bp; 3406 toff = bp->b_bio2.bio_offset + bp->b_dirtyoff; 3407 if (info->bvsize == 0 || toff < info->beg_off) 3408 info->beg_off = toff; 3409 toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff); 3410 if (info->bvsize == 0 || toff > info->end_off) 3411 info->end_off = toff; 3412 ++info->bvsize; 3413 if (info->bvsize == NFS_COMMITBVECSIZ) { 3414 error = nfs_flush_docommit(info, 0); 3415 KKASSERT(info->bvsize == 0); 3416 } 3417 } 3418 return (error); 3419 } 3420 3421 static 3422 int 3423 nfs_flush_docommit(struct nfs_flush_info *info, int error) 3424 { 3425 struct vnode *vp; 3426 struct buf *bp; 3427 off_t bytes; 3428 int retv; 3429 int i; 3430 3431 vp = info->vp; 3432 3433 if (info->bvsize > 0) { 3434 /* 3435 * Commit data on the server, as required. Note that 3436 * nfs_commit will use the vnode's cred for the commit. 3437 * The NFSv3 commit RPC is limited to a 32 bit byte count. 3438 */ 3439 bytes = info->end_off - info->beg_off; 3440 if (bytes > 0x40000000) 3441 bytes = 0x40000000; 3442 if (error) { 3443 retv = -error; 3444 } else { 3445 retv = nfs_commitrpc_uio(vp, info->beg_off, 3446 (int)bytes, info->td); 3447 if (retv == NFSERR_STALEWRITEVERF) 3448 nfs_clearcommit(vp->v_mount); 3449 } 3450 3451 /* 3452 * Now, either mark the blocks I/O done or mark the 3453 * blocks dirty, depending on whether the commit 3454 * succeeded. 3455 */ 3456 for (i = 0; i < info->bvsize; ++i) { 3457 bp = info->bvary[i]; 3458 if (retv || (bp->b_flags & B_NEEDCOMMIT) == 0) { 3459 /* 3460 * Either an error or the original 3461 * vfs_busy_pages() cleared B_NEEDCOMMIT 3462 * due to finding new dirty VM pages in 3463 * the buffer. 3464 * 3465 * Leave B_DELWRI intact. 3466 */ 3467 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 3468 vfs_unbusy_pages(bp); 3469 bp->b_cmd = BUF_CMD_DONE; 3470 bqrelse(bp); 3471 } else { 3472 /* 3473 * Success, remove B_DELWRI ( bundirty() ). 3474 * 3475 * b_dirtyoff/b_dirtyend seem to be NFS 3476 * specific. We should probably move that 3477 * into bundirty(). XXX 3478 * 3479 * We are faking an I/O write, we have to 3480 * start the transaction in order to 3481 * immediately biodone() it. 3482 */ 3483 bundirty(bp); 3484 bp->b_flags &= ~B_ERROR; 3485 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 3486 bp->b_dirtyoff = bp->b_dirtyend = 0; 3487 biodone(&bp->b_bio1); 3488 } 3489 } 3490 info->bvsize = 0; 3491 } 3492 return (error); 3493 } 3494 3495 /* 3496 * NFS advisory byte-level locks. 3497 * Currently unsupported. 3498 * 3499 * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl, 3500 * int a_flags) 3501 */ 3502 static int 3503 nfs_advlock(struct vop_advlock_args *ap) 3504 { 3505 struct nfsnode *np = VTONFS(ap->a_vp); 3506 3507 /* no token lock currently required */ 3508 /* 3509 * The following kludge is to allow diskless support to work 3510 * until a real NFS lockd is implemented. Basically, just pretend 3511 * that this is a local lock. 3512 */ 3513 return (lf_advlock(ap, &(np->n_lockf), np->n_size)); 3514 } 3515 3516 /* 3517 * Print out the contents of an nfsnode. 3518 * 3519 * nfs_print(struct vnode *a_vp) 3520 */ 3521 static int 3522 nfs_print(struct vop_print_args *ap) 3523 { 3524 struct vnode *vp = ap->a_vp; 3525 struct nfsnode *np = VTONFS(vp); 3526 3527 kprintf("tag VT_NFS, fileid %lld fsid 0x%x", 3528 (long long)np->n_vattr.va_fileid, np->n_vattr.va_fsid); 3529 if (vp->v_type == VFIFO) 3530 fifo_printinfo(vp); 3531 kprintf("\n"); 3532 return (0); 3533 } 3534 3535 /* 3536 * nfs special file access vnode op. 3537 * 3538 * nfs_laccess(struct vnode *a_vp, int a_mode, struct ucred *a_cred) 3539 */ 3540 static int 3541 nfs_laccess(struct vop_access_args *ap) 3542 { 3543 struct nfsmount *nmp = VFSTONFS(ap->a_vp->v_mount); 3544 struct vattr vattr; 3545 int error; 3546 3547 lwkt_gettoken(&nmp->nm_token); 3548 error = VOP_GETATTR(ap->a_vp, &vattr); 3549 if (error == 0) { 3550 error = vop_helper_access(ap, vattr.va_uid, vattr.va_gid, 3551 vattr.va_mode, 0); 3552 } 3553 lwkt_reltoken(&nmp->nm_token); 3554 3555 return (error); 3556 } 3557 3558 /* 3559 * Read wrapper for fifos. 3560 * 3561 * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 3562 * struct ucred *a_cred) 3563 */ 3564 static int 3565 nfsfifo_read(struct vop_read_args *ap) 3566 { 3567 struct nfsnode *np = VTONFS(ap->a_vp); 3568 3569 /* no token access required */ 3570 /* 3571 * Set access flag. 3572 */ 3573 np->n_flag |= NACC; 3574 getnanotime(&np->n_atim); 3575 return (VOCALL(&fifo_vnode_vops, &ap->a_head)); 3576 } 3577 3578 /* 3579 * Write wrapper for fifos. 3580 * 3581 * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 3582 * struct ucred *a_cred) 3583 */ 3584 static int 3585 nfsfifo_write(struct vop_write_args *ap) 3586 { 3587 struct nfsnode *np = VTONFS(ap->a_vp); 3588 3589 /* no token access required */ 3590 /* 3591 * Set update flag. 3592 */ 3593 np->n_flag |= NUPD; 3594 getnanotime(&np->n_mtim); 3595 return (VOCALL(&fifo_vnode_vops, &ap->a_head)); 3596 } 3597 3598 /* 3599 * Close wrapper for fifos. 3600 * 3601 * Update the times on the nfsnode then do fifo close. 3602 * 3603 * nfsfifo_close(struct vnode *a_vp, int a_fflag) 3604 */ 3605 static int 3606 nfsfifo_close(struct vop_close_args *ap) 3607 { 3608 struct vnode *vp = ap->a_vp; 3609 struct nfsnode *np = VTONFS(vp); 3610 struct vattr vattr; 3611 struct timespec ts; 3612 3613 /* no token access required */ 3614 3615 if (np->n_flag & (NACC | NUPD)) { 3616 getnanotime(&ts); 3617 if (np->n_flag & NACC) 3618 np->n_atim = ts; 3619 if (np->n_flag & NUPD) 3620 np->n_mtim = ts; 3621 np->n_flag |= NCHG; 3622 if (vp->v_sysref.refcnt == 1 && 3623 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 3624 VATTR_NULL(&vattr); 3625 if (np->n_flag & NACC) 3626 vattr.va_atime = np->n_atim; 3627 if (np->n_flag & NUPD) 3628 vattr.va_mtime = np->n_mtim; 3629 (void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE)); 3630 } 3631 } 3632 return (VOCALL(&fifo_vnode_vops, &ap->a_head)); 3633 } 3634 3635