xref: /dflybsd-src/sys/vfs/nfs/nfs_vnops.c (revision bfc09ba0a4d805c1860f88e64d6ae9a407d3567d)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.80 2008/10/18 01:13:54 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsfifo_read (struct vop_read_args *);
98 static int	nfsfifo_write (struct vop_write_args *);
99 static int	nfsfifo_close (struct vop_close_args *);
100 #define nfs_poll vop_nopoll
101 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
102 static	int	nfs_lookup (struct vop_old_lookup_args *);
103 static	int	nfs_create (struct vop_old_create_args *);
104 static	int	nfs_mknod (struct vop_old_mknod_args *);
105 static	int	nfs_open (struct vop_open_args *);
106 static	int	nfs_close (struct vop_close_args *);
107 static	int	nfs_access (struct vop_access_args *);
108 static	int	nfs_getattr (struct vop_getattr_args *);
109 static	int	nfs_setattr (struct vop_setattr_args *);
110 static	int	nfs_read (struct vop_read_args *);
111 static	int	nfs_mmap (struct vop_mmap_args *);
112 static	int	nfs_fsync (struct vop_fsync_args *);
113 static	int	nfs_remove (struct vop_old_remove_args *);
114 static	int	nfs_link (struct vop_old_link_args *);
115 static	int	nfs_rename (struct vop_old_rename_args *);
116 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
117 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
118 static	int	nfs_symlink (struct vop_old_symlink_args *);
119 static	int	nfs_readdir (struct vop_readdir_args *);
120 static	int	nfs_bmap (struct vop_bmap_args *);
121 static	int	nfs_strategy (struct vop_strategy_args *);
122 static	int	nfs_lookitup (struct vnode *, const char *, int,
123 			struct ucred *, struct thread *, struct nfsnode **);
124 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
125 static int	nfs_laccess (struct vop_access_args *);
126 static int	nfs_readlink (struct vop_readlink_args *);
127 static int	nfs_print (struct vop_print_args *);
128 static int	nfs_advlock (struct vop_advlock_args *);
129 
130 static	int	nfs_nresolve (struct vop_nresolve_args *);
131 /*
132  * Global vfs data structures for nfs
133  */
134 struct vop_ops nfsv2_vnode_vops = {
135 	.vop_default =		vop_defaultop,
136 	.vop_access =		nfs_access,
137 	.vop_advlock =		nfs_advlock,
138 	.vop_bmap =		nfs_bmap,
139 	.vop_close =		nfs_close,
140 	.vop_old_create =	nfs_create,
141 	.vop_fsync =		nfs_fsync,
142 	.vop_getattr =		nfs_getattr,
143 	.vop_getpages =		nfs_getpages,
144 	.vop_putpages =		nfs_putpages,
145 	.vop_inactive =		nfs_inactive,
146 	.vop_old_link =		nfs_link,
147 	.vop_old_lookup =	nfs_lookup,
148 	.vop_old_mkdir =	nfs_mkdir,
149 	.vop_old_mknod =	nfs_mknod,
150 	.vop_mmap =		nfs_mmap,
151 	.vop_open =		nfs_open,
152 	.vop_poll =		nfs_poll,
153 	.vop_print =		nfs_print,
154 	.vop_read =		nfs_read,
155 	.vop_readdir =		nfs_readdir,
156 	.vop_readlink =		nfs_readlink,
157 	.vop_reclaim =		nfs_reclaim,
158 	.vop_old_remove =	nfs_remove,
159 	.vop_old_rename =	nfs_rename,
160 	.vop_old_rmdir =	nfs_rmdir,
161 	.vop_setattr =		nfs_setattr,
162 	.vop_strategy =		nfs_strategy,
163 	.vop_old_symlink =	nfs_symlink,
164 	.vop_write =		nfs_write,
165 	.vop_nresolve =		nfs_nresolve
166 };
167 
168 /*
169  * Special device vnode ops
170  */
171 struct vop_ops nfsv2_spec_vops = {
172 	.vop_default =		vop_defaultop,
173 	.vop_access =		nfs_laccess,
174 	.vop_close =		nfs_close,
175 	.vop_fsync =		nfs_fsync,
176 	.vop_getattr =		nfs_getattr,
177 	.vop_inactive =		nfs_inactive,
178 	.vop_print =		nfs_print,
179 	.vop_read =		vop_stdnoread,
180 	.vop_reclaim =		nfs_reclaim,
181 	.vop_setattr =		nfs_setattr,
182 	.vop_write =		vop_stdnowrite
183 };
184 
185 struct vop_ops nfsv2_fifo_vops = {
186 	.vop_default =		fifo_vnoperate,
187 	.vop_access =		nfs_laccess,
188 	.vop_close =		nfsfifo_close,
189 	.vop_fsync =		nfs_fsync,
190 	.vop_getattr =		nfs_getattr,
191 	.vop_inactive =		nfs_inactive,
192 	.vop_print =		nfs_print,
193 	.vop_read =		nfsfifo_read,
194 	.vop_reclaim =		nfs_reclaim,
195 	.vop_setattr =		nfs_setattr,
196 	.vop_write =		nfsfifo_write
197 };
198 
199 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
200 				  struct componentname *cnp,
201 				  struct vattr *vap);
202 static int	nfs_removerpc (struct vnode *dvp, const char *name,
203 				   int namelen,
204 				   struct ucred *cred, struct thread *td);
205 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
206 				   int fnamelen, struct vnode *tdvp,
207 				   const char *tnameptr, int tnamelen,
208 				   struct ucred *cred, struct thread *td);
209 static int	nfs_renameit (struct vnode *sdvp,
210 				  struct componentname *scnp,
211 				  struct sillyrename *sp);
212 
213 SYSCTL_DECL(_vfs_nfs);
214 
215 static int nfs_flush_on_rename = 1;
216 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
217 	   &nfs_flush_on_rename, 0, "flush fvp prior to rename");
218 static int nfs_flush_on_hlink = 0;
219 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW,
220 	   &nfs_flush_on_hlink, 0, "flush fvp prior to hard link");
221 
222 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
223 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
224 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
225 
226 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
227 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
228 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
229 
230 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
231 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
232 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
233 
234 static int	nfsv3_commit_on_close = 0;
235 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
236 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
237 #if 0
238 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
239 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
240 
241 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
242 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
243 #endif
244 
245 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
246 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
247 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
248 static int
249 nfs3_access_otw(struct vnode *vp, int wmode,
250 		struct thread *td, struct ucred *cred)
251 {
252 	struct nfsnode *np = VTONFS(vp);
253 	int attrflag;
254 	int error = 0;
255 	u_int32_t *tl;
256 	u_int32_t rmode;
257 	struct nfsm_info info;
258 
259 	info.mrep = NULL;
260 	info.v3 = 1;
261 
262 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
263 	nfsm_reqhead(&info, vp, NFSPROC_ACCESS,
264 		     NFSX_FH(info.v3) + NFSX_UNSIGNED);
265 	ERROROUT(nfsm_fhtom(&info, vp));
266 	tl = nfsm_build(&info, NFSX_UNSIGNED);
267 	*tl = txdr_unsigned(wmode);
268 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_ACCESS, td, cred, &error));
269 	ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK));
270 	if (error == 0) {
271 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
272 		rmode = fxdr_unsigned(u_int32_t, *tl);
273 		np->n_mode = rmode;
274 		np->n_modeuid = cred->cr_uid;
275 		np->n_modestamp = mycpu->gd_time_seconds;
276 	}
277 	m_freem(info.mrep);
278 	info.mrep = NULL;
279 nfsmout:
280 	return error;
281 }
282 
283 /*
284  * nfs access vnode op.
285  * For nfs version 2, just return ok. File accesses may fail later.
286  * For nfs version 3, use the access rpc to check accessibility. If file modes
287  * are changed on the server, accesses might still fail later.
288  *
289  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
290  */
291 static int
292 nfs_access(struct vop_access_args *ap)
293 {
294 	struct vnode *vp = ap->a_vp;
295 	thread_t td = curthread;
296 	int error = 0;
297 	u_int32_t mode, wmode;
298 	struct nfsnode *np = VTONFS(vp);
299 	int v3 = NFS_ISV3(vp);
300 
301 	/*
302 	 * Disallow write attempts on filesystems mounted read-only;
303 	 * unless the file is a socket, fifo, or a block or character
304 	 * device resident on the filesystem.
305 	 */
306 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
307 		switch (vp->v_type) {
308 		case VREG:
309 		case VDIR:
310 		case VLNK:
311 			return (EROFS);
312 		default:
313 			break;
314 		}
315 	}
316 	/*
317 	 * For nfs v3, check to see if we have done this recently, and if
318 	 * so return our cached result instead of making an ACCESS call.
319 	 * If not, do an access rpc, otherwise you are stuck emulating
320 	 * ufs_access() locally using the vattr. This may not be correct,
321 	 * since the server may apply other access criteria such as
322 	 * client uid-->server uid mapping that we do not know about.
323 	 */
324 	if (v3) {
325 		if (ap->a_mode & VREAD)
326 			mode = NFSV3ACCESS_READ;
327 		else
328 			mode = 0;
329 		if (vp->v_type != VDIR) {
330 			if (ap->a_mode & VWRITE)
331 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
332 			if (ap->a_mode & VEXEC)
333 				mode |= NFSV3ACCESS_EXECUTE;
334 		} else {
335 			if (ap->a_mode & VWRITE)
336 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
337 					 NFSV3ACCESS_DELETE);
338 			if (ap->a_mode & VEXEC)
339 				mode |= NFSV3ACCESS_LOOKUP;
340 		}
341 		/* XXX safety belt, only make blanket request if caching */
342 		if (nfsaccess_cache_timeout > 0) {
343 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
344 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
345 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
346 		} else {
347 			wmode = mode;
348 		}
349 
350 		/*
351 		 * Does our cached result allow us to give a definite yes to
352 		 * this request?
353 		 */
354 		if (np->n_modestamp &&
355 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
356 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
357 		   ((np->n_mode & mode) == mode)) {
358 			nfsstats.accesscache_hits++;
359 		} else {
360 			/*
361 			 * Either a no, or a don't know.  Go to the wire.
362 			 */
363 			nfsstats.accesscache_misses++;
364 		        error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
365 			if (!error) {
366 				if ((np->n_mode & mode) != mode) {
367 					error = EACCES;
368 				}
369 			}
370 		}
371 	} else {
372 		if ((error = nfs_laccess(ap)) != 0)
373 			return (error);
374 
375 		/*
376 		 * Attempt to prevent a mapped root from accessing a file
377 		 * which it shouldn't.  We try to read a byte from the file
378 		 * if the user is root and the file is not zero length.
379 		 * After calling nfs_laccess, we should have the correct
380 		 * file size cached.
381 		 */
382 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
383 		    && VTONFS(vp)->n_size > 0) {
384 			struct iovec aiov;
385 			struct uio auio;
386 			char buf[1];
387 
388 			aiov.iov_base = buf;
389 			aiov.iov_len = 1;
390 			auio.uio_iov = &aiov;
391 			auio.uio_iovcnt = 1;
392 			auio.uio_offset = 0;
393 			auio.uio_resid = 1;
394 			auio.uio_segflg = UIO_SYSSPACE;
395 			auio.uio_rw = UIO_READ;
396 			auio.uio_td = td;
397 
398 			if (vp->v_type == VREG) {
399 				error = nfs_readrpc_uio(vp, &auio);
400 			} else if (vp->v_type == VDIR) {
401 				char* bp;
402 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
403 				aiov.iov_base = bp;
404 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
405 				error = nfs_readdirrpc_uio(vp, &auio);
406 				kfree(bp, M_TEMP);
407 			} else if (vp->v_type == VLNK) {
408 				error = nfs_readlinkrpc_uio(vp, &auio);
409 			} else {
410 				error = EACCES;
411 			}
412 		}
413 	}
414 	/*
415 	 * [re]record creds for reading and/or writing if access
416 	 * was granted.  Assume the NFS server will grant read access
417 	 * for execute requests.
418 	 */
419 	if (error == 0) {
420 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
421 			crhold(ap->a_cred);
422 			if (np->n_rucred)
423 				crfree(np->n_rucred);
424 			np->n_rucred = ap->a_cred;
425 		}
426 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
427 			crhold(ap->a_cred);
428 			if (np->n_wucred)
429 				crfree(np->n_wucred);
430 			np->n_wucred = ap->a_cred;
431 		}
432 	}
433 	return(error);
434 }
435 
436 /*
437  * nfs open vnode op
438  * Check to see if the type is ok
439  * and that deletion is not in progress.
440  * For paged in text files, you will need to flush the page cache
441  * if consistency is lost.
442  *
443  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
444  *	    struct file *a_fp)
445  */
446 /* ARGSUSED */
447 static int
448 nfs_open(struct vop_open_args *ap)
449 {
450 	struct vnode *vp = ap->a_vp;
451 	struct nfsnode *np = VTONFS(vp);
452 	struct vattr vattr;
453 	int error;
454 
455 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
456 #ifdef DIAGNOSTIC
457 		kprintf("open eacces vtyp=%d\n",vp->v_type);
458 #endif
459 		return (EOPNOTSUPP);
460 	}
461 
462 	/*
463 	 * Save valid creds for reading and writing for later RPCs.
464 	 */
465 	if ((ap->a_mode & FREAD) && ap->a_cred != np->n_rucred) {
466 		crhold(ap->a_cred);
467 		if (np->n_rucred)
468 			crfree(np->n_rucred);
469 		np->n_rucred = ap->a_cred;
470 	}
471 	if ((ap->a_mode & FWRITE) && ap->a_cred != np->n_wucred) {
472 		crhold(ap->a_cred);
473 		if (np->n_wucred)
474 			crfree(np->n_wucred);
475 		np->n_wucred = ap->a_cred;
476 	}
477 
478 	/*
479 	 * Clear the attribute cache only if opening with write access.  It
480 	 * is unclear if we should do this at all here, but we certainly
481 	 * should not clear the cache unconditionally simply because a file
482 	 * is being opened.
483 	 */
484 	if (ap->a_mode & FWRITE)
485 		np->n_attrstamp = 0;
486 
487 	/*
488 	 * For normal NFS, reconcile changes made locally verses
489 	 * changes made remotely.  Note that VOP_GETATTR only goes
490 	 * to the wire if the cached attribute has timed out or been
491 	 * cleared.
492 	 *
493 	 * If local modifications have been made clear the attribute
494 	 * cache to force an attribute and modified time check.  If
495 	 * GETATTR detects that the file has been changed by someone
496 	 * other then us it will set NRMODIFIED.
497 	 *
498 	 * If we are opening a directory and local changes have been
499 	 * made we have to invalidate the cache in order to ensure
500 	 * that we get the most up-to-date information from the
501 	 * server.  XXX
502 	 */
503 	if (np->n_flag & NLMODIFIED) {
504 		np->n_attrstamp = 0;
505 		if (vp->v_type == VDIR) {
506 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
507 			if (error == EINTR)
508 				return (error);
509 			nfs_invaldir(vp);
510 		}
511 	}
512 	error = VOP_GETATTR(vp, &vattr);
513 	if (error)
514 		return (error);
515 	if (np->n_flag & NRMODIFIED) {
516 		if (vp->v_type == VDIR)
517 			nfs_invaldir(vp);
518 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
519 		if (error == EINTR)
520 			return (error);
521 		np->n_flag &= ~NRMODIFIED;
522 	}
523 
524 	return (vop_stdopen(ap));
525 }
526 
527 /*
528  * nfs close vnode op
529  * What an NFS client should do upon close after writing is a debatable issue.
530  * Most NFS clients push delayed writes to the server upon close, basically for
531  * two reasons:
532  * 1 - So that any write errors may be reported back to the client process
533  *     doing the close system call. By far the two most likely errors are
534  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
535  * 2 - To put a worst case upper bound on cache inconsistency between
536  *     multiple clients for the file.
537  * There is also a consistency problem for Version 2 of the protocol w.r.t.
538  * not being able to tell if other clients are writing a file concurrently,
539  * since there is no way of knowing if the changed modify time in the reply
540  * is only due to the write for this client.
541  * (NFS Version 3 provides weak cache consistency data in the reply that
542  *  should be sufficient to detect and handle this case.)
543  *
544  * The current code does the following:
545  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
546  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
547  *                     or commit them (this satisfies 1 and 2 except for the
548  *                     case where the server crashes after this close but
549  *                     before the commit RPC, which is felt to be "good
550  *                     enough". Changing the last argument to nfs_flush() to
551  *                     a 1 would force a commit operation, if it is felt a
552  *                     commit is necessary now.
553  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
554  *                     1 should be dealt with via an fsync() system call for
555  *                     cases where write errors are important.
556  *
557  * nfs_close(struct vnode *a_vp, int a_fflag)
558  */
559 /* ARGSUSED */
560 static int
561 nfs_close(struct vop_close_args *ap)
562 {
563 	struct vnode *vp = ap->a_vp;
564 	struct nfsnode *np = VTONFS(vp);
565 	int error = 0;
566 	thread_t td = curthread;
567 
568 	if (vp->v_type == VREG) {
569 	    if (np->n_flag & NLMODIFIED) {
570 		if (NFS_ISV3(vp)) {
571 		    /*
572 		     * Under NFSv3 we have dirty buffers to dispose of.  We
573 		     * must flush them to the NFS server.  We have the option
574 		     * of waiting all the way through the commit rpc or just
575 		     * waiting for the initial write.  The default is to only
576 		     * wait through the initial write so the data is in the
577 		     * server's cache, which is roughly similar to the state
578 		     * a standard disk subsystem leaves the file in on close().
579 		     *
580 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
581 		     * potential races with other processes, and certainly
582 		     * cannot clear it if we don't commit.
583 		     */
584 		    int cm = nfsv3_commit_on_close ? 1 : 0;
585 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
586 		    /* np->n_flag &= ~NLMODIFIED; */
587 		} else {
588 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
589 		}
590 		np->n_attrstamp = 0;
591 	    }
592 	    if (np->n_flag & NWRITEERR) {
593 		np->n_flag &= ~NWRITEERR;
594 		error = np->n_error;
595 	    }
596 	}
597 	vop_stdclose(ap);
598 	return (error);
599 }
600 
601 /*
602  * nfs getattr call from vfs.
603  *
604  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
605  */
606 static int
607 nfs_getattr(struct vop_getattr_args *ap)
608 {
609 	struct vnode *vp = ap->a_vp;
610 	struct nfsnode *np = VTONFS(vp);
611 	int error = 0;
612 	thread_t td = curthread;
613 	struct nfsm_info info;
614 
615 	info.mrep = NULL;
616 	info.v3 = NFS_ISV3(vp);
617 
618 	/*
619 	 * Update local times for special files.
620 	 */
621 	if (np->n_flag & (NACC | NUPD))
622 		np->n_flag |= NCHG;
623 	/*
624 	 * First look in the cache.
625 	 */
626 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
627 		return (0);
628 
629 	if (info.v3 && nfsaccess_cache_timeout > 0) {
630 		nfsstats.accesscache_misses++;
631 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
632 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
633 			return (0);
634 	}
635 
636 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
637 	nfsm_reqhead(&info, vp, NFSPROC_GETATTR, NFSX_FH(info.v3));
638 	ERROROUT(nfsm_fhtom(&info, vp));
639 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_GETATTR, td,
640 				nfs_vpcred(vp, ND_CHECK), &error));
641 	if (error == 0) {
642 		ERROROUT(nfsm_loadattr(&info, vp, ap->a_vap));
643 	}
644 	m_freem(info.mrep);
645 	info.mrep = NULL;
646 nfsmout:
647 	return (error);
648 }
649 
650 /*
651  * nfs setattr call.
652  *
653  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
654  */
655 static int
656 nfs_setattr(struct vop_setattr_args *ap)
657 {
658 	struct vnode *vp = ap->a_vp;
659 	struct nfsnode *np = VTONFS(vp);
660 	struct vattr *vap = ap->a_vap;
661 	int error = 0;
662 	u_quad_t tsize;
663 	thread_t td = curthread;
664 
665 #ifndef nolint
666 	tsize = (u_quad_t)0;
667 #endif
668 
669 	/*
670 	 * Setting of flags is not supported.
671 	 */
672 	if (vap->va_flags != VNOVAL)
673 		return (EOPNOTSUPP);
674 
675 	/*
676 	 * Disallow write attempts if the filesystem is mounted read-only.
677 	 */
678   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
679 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
680 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
681 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
682 		return (EROFS);
683 
684 	if (vap->va_size != VNOVAL) {
685 		/*
686 		 * truncation requested
687 		 */
688  		switch (vp->v_type) {
689  		case VDIR:
690  			return (EISDIR);
691  		case VCHR:
692  		case VBLK:
693  		case VSOCK:
694  		case VFIFO:
695 			if (vap->va_mtime.tv_sec == VNOVAL &&
696 			    vap->va_atime.tv_sec == VNOVAL &&
697 			    vap->va_mode == (mode_t)VNOVAL &&
698 			    vap->va_uid == (uid_t)VNOVAL &&
699 			    vap->va_gid == (gid_t)VNOVAL)
700 				return (0);
701  			vap->va_size = VNOVAL;
702  			break;
703  		default:
704 			/*
705 			 * Disallow write attempts if the filesystem is
706 			 * mounted read-only.
707 			 */
708 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
709 				return (EROFS);
710 
711 			/*
712 			 * This is nasty.  The RPCs we send to flush pending
713 			 * data often return attribute information which is
714 			 * cached via a callback to nfs_loadattrcache(), which
715 			 * has the effect of changing our notion of the file
716 			 * size.  Due to flushed appends and other operations
717 			 * the file size can be set to virtually anything,
718 			 * including values that do not match either the old
719 			 * or intended file size.
720 			 *
721 			 * When this condition is detected we must loop to
722 			 * try the operation again.  Hopefully no more
723 			 * flushing is required on the loop so it works the
724 			 * second time around.  THIS CASE ALMOST ALWAYS
725 			 * HAPPENS!
726 			 */
727 			tsize = np->n_size;
728 again:
729 			error = nfs_meta_setsize(vp, td, vap->va_size);
730 
731  			if (np->n_flag & NLMODIFIED) {
732  			    if (vap->va_size == 0)
733  				error = nfs_vinvalbuf(vp, 0, 1);
734  			    else
735  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
736  			}
737 			/*
738 			 * note: this loop case almost always happens at
739 			 * least once per truncation.
740 			 */
741 			if (error == 0 && np->n_size != vap->va_size)
742 				goto again;
743 			np->n_vattr.va_size = vap->va_size;
744 			break;
745 		}
746 	} else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
747 		/*
748 		 * What to do.  If we are modifying the mtime we lose
749 		 * mtime detection of changes made by the server or other
750 		 * clients.  But programs like rsync/rdist/cpdup are going
751 		 * to call utimes a lot.  We don't want to piecemeal sync.
752 		 *
753 		 * For now sync if any prior remote changes were detected,
754 		 * but allow us to lose track of remote changes made during
755 		 * the utimes operation.
756 		 */
757 		if (np->n_flag & NRMODIFIED)
758 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
759 		if (error == EINTR)
760 			return (error);
761 		if (error == 0) {
762 			if (vap->va_mtime.tv_sec != VNOVAL) {
763 				np->n_mtime = vap->va_mtime.tv_sec;
764 			}
765 		}
766 	}
767 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
768 
769 	/*
770 	 * Sanity check if a truncation was issued.  This should only occur
771 	 * if multiple processes are racing on the same file.
772 	 */
773 	if (error == 0 && vap->va_size != VNOVAL &&
774 	    np->n_size != vap->va_size) {
775 		kprintf("NFS ftruncate: server disagrees on the file size: "
776 			"%lld/%lld/%lld\n",
777 			(long long)tsize,
778 			(long long)vap->va_size,
779 			(long long)np->n_size);
780 		goto again;
781 	}
782 	if (error && vap->va_size != VNOVAL) {
783 		np->n_size = np->n_vattr.va_size = tsize;
784 		vnode_pager_setsize(vp, np->n_size);
785 	}
786 	return (error);
787 }
788 
789 /*
790  * Do an nfs setattr rpc.
791  */
792 static int
793 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
794 	       struct ucred *cred, struct thread *td)
795 {
796 	struct nfsv2_sattr *sp;
797 	struct nfsnode *np = VTONFS(vp);
798 	u_int32_t *tl;
799 	int error = 0, wccflag = NFSV3_WCCRATTR;
800 	struct nfsm_info info;
801 
802 	info.mrep = NULL;
803 	info.v3 = NFS_ISV3(vp);
804 
805 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
806 	nfsm_reqhead(&info, vp, NFSPROC_SETATTR,
807 		     NFSX_FH(info.v3) + NFSX_SATTR(info.v3));
808 	ERROROUT(nfsm_fhtom(&info, vp));
809 	if (info.v3) {
810 		nfsm_v3attrbuild(&info, vap, TRUE);
811 		tl = nfsm_build(&info, NFSX_UNSIGNED);
812 		*tl = nfs_false;
813 	} else {
814 		sp = nfsm_build(&info, NFSX_V2SATTR);
815 		if (vap->va_mode == (mode_t)VNOVAL)
816 			sp->sa_mode = nfs_xdrneg1;
817 		else
818 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
819 		if (vap->va_uid == (uid_t)VNOVAL)
820 			sp->sa_uid = nfs_xdrneg1;
821 		else
822 			sp->sa_uid = txdr_unsigned(vap->va_uid);
823 		if (vap->va_gid == (gid_t)VNOVAL)
824 			sp->sa_gid = nfs_xdrneg1;
825 		else
826 			sp->sa_gid = txdr_unsigned(vap->va_gid);
827 		sp->sa_size = txdr_unsigned(vap->va_size);
828 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
829 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
830 	}
831 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_SETATTR, td, cred, &error));
832 	if (info.v3) {
833 		np->n_modestamp = 0;
834 		ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
835 	} else {
836 		ERROROUT(nfsm_loadattr(&info, vp, NULL));
837 	}
838 	m_freem(info.mrep);
839 	info.mrep = NULL;
840 nfsmout:
841 	return (error);
842 }
843 
844 static
845 void
846 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
847 {
848 	if (nctimeout == 0)
849 		nctimeout = 1;
850 	else
851 		nctimeout *= hz;
852 	cache_setvp(nch, vp);
853 	cache_settimeout(nch, nctimeout);
854 }
855 
856 /*
857  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
858  * nfs_lookup() until all remaining new api calls are implemented.
859  *
860  * Resolve a namecache entry.  This function is passed a locked ncp and
861  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
862  */
863 static int
864 nfs_nresolve(struct vop_nresolve_args *ap)
865 {
866 	struct thread *td = curthread;
867 	struct namecache *ncp;
868 	struct ucred *cred;
869 	struct nfsnode *np;
870 	struct vnode *dvp;
871 	struct vnode *nvp;
872 	nfsfh_t *fhp;
873 	int attrflag;
874 	int fhsize;
875 	int error;
876 	int tmp_error;
877 	int len;
878 	struct nfsm_info info;
879 
880 	cred = ap->a_cred;
881 	dvp = ap->a_dvp;
882 
883 	if ((error = vget(dvp, LK_SHARED)) != 0)
884 		return (error);
885 
886 	info.mrep = NULL;
887 	info.v3 = NFS_ISV3(dvp);
888 
889 	nvp = NULL;
890 	nfsstats.lookupcache_misses++;
891 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
892 	ncp = ap->a_nch->ncp;
893 	len = ncp->nc_nlen;
894 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
895 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
896 	ERROROUT(nfsm_fhtom(&info, dvp));
897 	ERROROUT(nfsm_strtom(&info, ncp->nc_name, len, NFS_MAXNAMLEN));
898 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td,
899 				ap->a_cred, &error));
900 	if (error) {
901 		/*
902 		 * Cache negatve lookups to reduce NFS traffic, but use
903 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
904 		 * XXX we should add a namecache flag for no-caching
905 		 * to uncache the negative hit as soon as possible, but
906 		 * we cannot simply destroy the entry because it is used
907 		 * as a placeholder by the caller.
908 		 *
909 		 * The refactored nfs code will overwrite a non-zero error
910 		 * with 0 when we use ERROROUT(), so don't here.
911 		 */
912 		if (error == ENOENT)
913 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
914 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
915 					     NFS_LATTR_NOSHRINK);
916 		if (tmp_error) {
917 			error = tmp_error;
918 			goto nfsmout;
919 		}
920 		m_freem(info.mrep);
921 		info.mrep = NULL;
922 		goto nfsmout;
923 	}
924 
925 	/*
926 	 * Success, get the file handle, do various checks, and load
927 	 * post-operation data from the reply packet.  Theoretically
928 	 * we should never be looking up "." so, theoretically, we
929 	 * should never get the same file handle as our directory.  But
930 	 * we check anyway. XXX
931 	 *
932 	 * Note that no timeout is set for the positive cache hit.  We
933 	 * assume, theoretically, that ESTALE returns will be dealt with
934 	 * properly to handle NFS races and in anycase we cannot depend
935 	 * on a timeout to deal with NFS open/create/excl issues so instead
936 	 * of a bad hack here the rest of the NFS client code needs to do
937 	 * the right thing.
938 	 */
939 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
940 
941 	np = VTONFS(dvp);
942 	if (NFS_CMPFH(np, fhp, fhsize)) {
943 		vref(dvp);
944 		nvp = dvp;
945 	} else {
946 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
947 		if (error) {
948 			m_freem(info.mrep);
949 			info.mrep = NULL;
950 			vput(dvp);
951 			return (error);
952 		}
953 		nvp = NFSTOV(np);
954 	}
955 	if (info.v3) {
956 		ERROROUT(nfsm_postop_attr(&info, nvp, &attrflag,
957 					  NFS_LATTR_NOSHRINK));
958 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
959 					  NFS_LATTR_NOSHRINK));
960 	} else {
961 		ERROROUT(nfsm_loadattr(&info, nvp, NULL));
962 	}
963 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
964 	m_freem(info.mrep);
965 	info.mrep = NULL;
966 nfsmout:
967 	vput(dvp);
968 	if (nvp) {
969 		if (nvp == dvp)
970 			vrele(nvp);
971 		else
972 			vput(nvp);
973 	}
974 	return (error);
975 }
976 
977 /*
978  * 'cached' nfs directory lookup
979  *
980  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
981  *
982  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
983  *	      struct componentname *a_cnp)
984  */
985 static int
986 nfs_lookup(struct vop_old_lookup_args *ap)
987 {
988 	struct componentname *cnp = ap->a_cnp;
989 	struct vnode *dvp = ap->a_dvp;
990 	struct vnode **vpp = ap->a_vpp;
991 	int flags = cnp->cn_flags;
992 	struct vnode *newvp;
993 	struct nfsmount *nmp;
994 	long len;
995 	nfsfh_t *fhp;
996 	struct nfsnode *np;
997 	int lockparent, wantparent, attrflag, fhsize;
998 	int error;
999 	int tmp_error;
1000 	struct nfsm_info info;
1001 
1002 	info.mrep = NULL;
1003 	info.v3 = NFS_ISV3(dvp);
1004 	error = 0;
1005 
1006 	/*
1007 	 * Read-only mount check and directory check.
1008 	 */
1009 	*vpp = NULLVP;
1010 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
1011 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
1012 		return (EROFS);
1013 
1014 	if (dvp->v_type != VDIR)
1015 		return (ENOTDIR);
1016 
1017 	/*
1018 	 * Look it up in the cache.  Note that ENOENT is only returned if we
1019 	 * previously entered a negative hit (see later on).  The additional
1020 	 * nfsneg_cache_timeout check causes previously cached results to
1021 	 * be instantly ignored if the negative caching is turned off.
1022 	 */
1023 	lockparent = flags & CNP_LOCKPARENT;
1024 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1025 	nmp = VFSTONFS(dvp->v_mount);
1026 	np = VTONFS(dvp);
1027 
1028 	/*
1029 	 * Go to the wire.
1030 	 */
1031 	error = 0;
1032 	newvp = NULLVP;
1033 	nfsstats.lookupcache_misses++;
1034 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1035 	len = cnp->cn_namelen;
1036 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
1037 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1038 	ERROROUT(nfsm_fhtom(&info, dvp));
1039 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
1040 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, cnp->cn_td,
1041 				cnp->cn_cred, &error));
1042 	if (error) {
1043 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
1044 					     NFS_LATTR_NOSHRINK);
1045 		if (tmp_error) {
1046 			error = tmp_error;
1047 			goto nfsmout;
1048 		}
1049 
1050 		m_freem(info.mrep);
1051 		info.mrep = NULL;
1052 		goto nfsmout;
1053 	}
1054 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
1055 
1056 	/*
1057 	 * Handle RENAME case...
1058 	 */
1059 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1060 		if (NFS_CMPFH(np, fhp, fhsize)) {
1061 			m_freem(info.mrep);
1062 			info.mrep = NULL;
1063 			return (EISDIR);
1064 		}
1065 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1066 		if (error) {
1067 			m_freem(info.mrep);
1068 			info.mrep = NULL;
1069 			return (error);
1070 		}
1071 		newvp = NFSTOV(np);
1072 		if (info.v3) {
1073 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1074 						  NFS_LATTR_NOSHRINK));
1075 			ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1076 						  NFS_LATTR_NOSHRINK));
1077 		} else {
1078 			ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1079 		}
1080 		*vpp = newvp;
1081 		m_freem(info.mrep);
1082 		info.mrep = NULL;
1083 		if (!lockparent) {
1084 			vn_unlock(dvp);
1085 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1086 		}
1087 		return (0);
1088 	}
1089 
1090 	if (flags & CNP_ISDOTDOT) {
1091 		vn_unlock(dvp);
1092 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1093 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1094 		if (error) {
1095 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1096 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1097 			return (error); /* NOTE: return error from nget */
1098 		}
1099 		newvp = NFSTOV(np);
1100 		if (lockparent) {
1101 			error = vn_lock(dvp, LK_EXCLUSIVE);
1102 			if (error) {
1103 				vput(newvp);
1104 				return (error);
1105 			}
1106 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1107 		}
1108 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1109 		vref(dvp);
1110 		newvp = dvp;
1111 	} else {
1112 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1113 		if (error) {
1114 			m_freem(info.mrep);
1115 			info.mrep = NULL;
1116 			return (error);
1117 		}
1118 		if (!lockparent) {
1119 			vn_unlock(dvp);
1120 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1121 		}
1122 		newvp = NFSTOV(np);
1123 	}
1124 	if (info.v3) {
1125 		ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1126 					  NFS_LATTR_NOSHRINK));
1127 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1128 					  NFS_LATTR_NOSHRINK));
1129 	} else {
1130 		ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1131 	}
1132 #if 0
1133 	/* XXX MOVE TO nfs_nremove() */
1134 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1135 	    cnp->cn_nameiop != NAMEI_DELETE) {
1136 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1137 	}
1138 #endif
1139 	*vpp = newvp;
1140 	m_freem(info.mrep);
1141 	info.mrep = NULL;
1142 nfsmout:
1143 	if (error) {
1144 		if (newvp != NULLVP) {
1145 			vrele(newvp);
1146 			*vpp = NULLVP;
1147 		}
1148 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1149 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1150 		    error == ENOENT) {
1151 			if (!lockparent) {
1152 				vn_unlock(dvp);
1153 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1154 			}
1155 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1156 				error = EROFS;
1157 			else
1158 				error = EJUSTRETURN;
1159 		}
1160 	}
1161 	return (error);
1162 }
1163 
1164 /*
1165  * nfs read call.
1166  * Just call nfs_bioread() to do the work.
1167  *
1168  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1169  *	    struct ucred *a_cred)
1170  */
1171 static int
1172 nfs_read(struct vop_read_args *ap)
1173 {
1174 	struct vnode *vp = ap->a_vp;
1175 
1176 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1177 }
1178 
1179 /*
1180  * nfs readlink call
1181  *
1182  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1183  */
1184 static int
1185 nfs_readlink(struct vop_readlink_args *ap)
1186 {
1187 	struct vnode *vp = ap->a_vp;
1188 
1189 	if (vp->v_type != VLNK)
1190 		return (EINVAL);
1191 	return (nfs_bioread(vp, ap->a_uio, 0));
1192 }
1193 
1194 /*
1195  * Do a readlink rpc.
1196  * Called by nfs_doio() from below the buffer cache.
1197  */
1198 int
1199 nfs_readlinkrpc_uio(struct vnode *vp, struct uio *uiop)
1200 {
1201 	int error = 0, len, attrflag;
1202 	struct nfsm_info info;
1203 
1204 	info.mrep = NULL;
1205 	info.v3 = NFS_ISV3(vp);
1206 
1207 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1208 	nfsm_reqhead(&info, vp, NFSPROC_READLINK, NFSX_FH(info.v3));
1209 	ERROROUT(nfsm_fhtom(&info, vp));
1210 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READLINK, uiop->uio_td,
1211 				nfs_vpcred(vp, ND_CHECK), &error));
1212 	if (info.v3) {
1213 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1214 					  NFS_LATTR_NOSHRINK));
1215 	}
1216 	if (!error) {
1217 		NEGATIVEOUT(len = nfsm_strsiz(&info, NFS_MAXPATHLEN));
1218 		if (len == NFS_MAXPATHLEN) {
1219 			struct nfsnode *np = VTONFS(vp);
1220 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1221 				len = np->n_size;
1222 		}
1223 		ERROROUT(nfsm_mtouio(&info, uiop, len));
1224 	}
1225 	m_freem(info.mrep);
1226 	info.mrep = NULL;
1227 nfsmout:
1228 	return (error);
1229 }
1230 
1231 /*
1232  * nfs synchronous read rpc using UIO
1233  */
1234 int
1235 nfs_readrpc_uio(struct vnode *vp, struct uio *uiop)
1236 {
1237 	u_int32_t *tl;
1238 	struct nfsmount *nmp;
1239 	int error = 0, len, retlen, tsiz, eof, attrflag;
1240 	struct nfsm_info info;
1241 	off_t tmp_off;
1242 
1243 	info.mrep = NULL;
1244 	info.v3 = NFS_ISV3(vp);
1245 
1246 #ifndef nolint
1247 	eof = 0;
1248 #endif
1249 	nmp = VFSTONFS(vp->v_mount);
1250 	tsiz = uiop->uio_resid;
1251 	tmp_off = uiop->uio_offset + tsiz;
1252 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uiop->uio_offset)
1253 		return (EFBIG);
1254 	tmp_off = uiop->uio_offset;
1255 	while (tsiz > 0) {
1256 		nfsstats.rpccnt[NFSPROC_READ]++;
1257 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1258 		nfsm_reqhead(&info, vp, NFSPROC_READ,
1259 			     NFSX_FH(info.v3) + NFSX_UNSIGNED * 3);
1260 		ERROROUT(nfsm_fhtom(&info, vp));
1261 		tl = nfsm_build(&info, NFSX_UNSIGNED * 3);
1262 		if (info.v3) {
1263 			txdr_hyper(uiop->uio_offset, tl);
1264 			*(tl + 2) = txdr_unsigned(len);
1265 		} else {
1266 			*tl++ = txdr_unsigned(uiop->uio_offset);
1267 			*tl++ = txdr_unsigned(len);
1268 			*tl = 0;
1269 		}
1270 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READ, uiop->uio_td,
1271 					nfs_vpcred(vp, ND_READ), &error));
1272 		if (info.v3) {
1273 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1274 						 NFS_LATTR_NOSHRINK));
1275 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
1276 			eof = fxdr_unsigned(int, *(tl + 1));
1277 		} else {
1278 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1279 		}
1280 		NEGATIVEOUT(retlen = nfsm_strsiz(&info, len));
1281 		ERROROUT(nfsm_mtouio(&info, uiop, retlen));
1282 		m_freem(info.mrep);
1283 		info.mrep = NULL;
1284 
1285 		/*
1286 		 * Handle short-read from server (NFSv3).  If EOF is not
1287 		 * flagged (and no error occurred), but retlen is less
1288 		 * then the request size, we must zero-fill the remainder.
1289 		 */
1290 		if (retlen < len && info.v3 && eof == 0) {
1291 			ERROROUT(uiomovez(len - retlen, uiop));
1292 			retlen = len;
1293 		}
1294 		tsiz -= retlen;
1295 
1296 		/*
1297 		 * Terminate loop on EOF or zero-length read.
1298 		 *
1299 		 * For NFSv2 a short-read indicates EOF, not zero-fill,
1300 		 * and also terminates the loop.
1301 		 */
1302 		if (info.v3) {
1303 			if (eof || retlen == 0)
1304 				tsiz = 0;
1305 		} else if (retlen < len) {
1306 			tsiz = 0;
1307 		}
1308 	}
1309 nfsmout:
1310 	return (error);
1311 }
1312 
1313 /*
1314  * nfs write call
1315  */
1316 int
1317 nfs_writerpc_uio(struct vnode *vp, struct uio *uiop,
1318 		 int *iomode, int *must_commit)
1319 {
1320 	u_int32_t *tl;
1321 	int32_t backup;
1322 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1323 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1324 	int  committed = NFSV3WRITE_FILESYNC;
1325 	struct nfsm_info info;
1326 
1327 	info.mrep = NULL;
1328 	info.v3 = NFS_ISV3(vp);
1329 
1330 #ifndef DIAGNOSTIC
1331 	if (uiop->uio_iovcnt != 1)
1332 		panic("nfs: writerpc iovcnt > 1");
1333 #endif
1334 	*must_commit = 0;
1335 	tsiz = uiop->uio_resid;
1336 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1337 		return (EFBIG);
1338 	while (tsiz > 0) {
1339 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1340 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1341 		nfsm_reqhead(&info, vp, NFSPROC_WRITE,
1342 			     NFSX_FH(info.v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1343 		ERROROUT(nfsm_fhtom(&info, vp));
1344 		if (info.v3) {
1345 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
1346 			txdr_hyper(uiop->uio_offset, tl);
1347 			tl += 2;
1348 			*tl++ = txdr_unsigned(len);
1349 			*tl++ = txdr_unsigned(*iomode);
1350 			*tl = txdr_unsigned(len);
1351 		} else {
1352 			u_int32_t x;
1353 
1354 			tl = nfsm_build(&info, 4 * NFSX_UNSIGNED);
1355 			/* Set both "begin" and "current" to non-garbage. */
1356 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1357 			*tl++ = x;	/* "begin offset" */
1358 			*tl++ = x;	/* "current offset" */
1359 			x = txdr_unsigned(len);
1360 			*tl++ = x;	/* total to this offset */
1361 			*tl = x;	/* size of this write */
1362 		}
1363 		ERROROUT(nfsm_uiotom(&info, uiop, len));
1364 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_WRITE, uiop->uio_td,
1365 					nfs_vpcred(vp, ND_WRITE), &error));
1366 		if (info.v3) {
1367 			/*
1368 			 * The write RPC returns a before and after mtime.  The
1369 			 * nfsm_wcc_data() macro checks the before n_mtime
1370 			 * against the before time and stores the after time
1371 			 * in the nfsnode's cached vattr and n_mtime field.
1372 			 * The NRMODIFIED bit will be set if the before
1373 			 * time did not match the original mtime.
1374 			 */
1375 			wccflag = NFSV3_WCCCHK;
1376 			ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
1377 			if (error == 0) {
1378 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1379 				rlen = fxdr_unsigned(int, *tl++);
1380 				if (rlen == 0) {
1381 					error = NFSERR_IO;
1382 					m_freem(info.mrep);
1383 					info.mrep = NULL;
1384 					break;
1385 				} else if (rlen < len) {
1386 					backup = len - rlen;
1387 					uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1388 					uiop->uio_iov->iov_len += backup;
1389 					uiop->uio_offset -= backup;
1390 					uiop->uio_resid += backup;
1391 					len = rlen;
1392 				}
1393 				commit = fxdr_unsigned(int, *tl++);
1394 
1395 				/*
1396 				 * Return the lowest committment level
1397 				 * obtained by any of the RPCs.
1398 				 */
1399 				if (committed == NFSV3WRITE_FILESYNC)
1400 					committed = commit;
1401 				else if (committed == NFSV3WRITE_DATASYNC &&
1402 					commit == NFSV3WRITE_UNSTABLE)
1403 					committed = commit;
1404 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1405 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1406 					NFSX_V3WRITEVERF);
1407 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1408 				} else if (bcmp((caddr_t)tl,
1409 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1410 				    *must_commit = 1;
1411 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1412 					NFSX_V3WRITEVERF);
1413 				}
1414 			}
1415 		} else {
1416 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1417 		}
1418 		m_freem(info.mrep);
1419 		info.mrep = NULL;
1420 		if (error)
1421 			break;
1422 		tsiz -= len;
1423 	}
1424 nfsmout:
1425 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1426 		committed = NFSV3WRITE_FILESYNC;
1427 	*iomode = committed;
1428 	if (error)
1429 		uiop->uio_resid = tsiz;
1430 	return (error);
1431 }
1432 
1433 /*
1434  * nfs mknod rpc
1435  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1436  * mode set to specify the file type and the size field for rdev.
1437  */
1438 static int
1439 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1440 	     struct vattr *vap)
1441 {
1442 	struct nfsv2_sattr *sp;
1443 	u_int32_t *tl;
1444 	struct vnode *newvp = NULL;
1445 	struct nfsnode *np = NULL;
1446 	struct vattr vattr;
1447 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1448 	int rmajor, rminor;
1449 	struct nfsm_info info;
1450 
1451 	info.mrep = NULL;
1452 	info.v3 = NFS_ISV3(dvp);
1453 
1454 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1455 		rmajor = txdr_unsigned(vap->va_rmajor);
1456 		rminor = txdr_unsigned(vap->va_rminor);
1457 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1458 		rmajor = nfs_xdrneg1;
1459 		rminor = nfs_xdrneg1;
1460 	} else {
1461 		return (EOPNOTSUPP);
1462 	}
1463 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1464 		return (error);
1465 	}
1466 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1467 	nfsm_reqhead(&info, dvp, NFSPROC_MKNOD,
1468 		     NFSX_FH(info.v3) + 4 * NFSX_UNSIGNED +
1469 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1470 	ERROROUT(nfsm_fhtom(&info, dvp));
1471 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1472 			     NFS_MAXNAMLEN));
1473 	if (info.v3) {
1474 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1475 		*tl++ = vtonfsv3_type(vap->va_type);
1476 		nfsm_v3attrbuild(&info, vap, FALSE);
1477 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1478 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1479 			*tl++ = txdr_unsigned(vap->va_rmajor);
1480 			*tl = txdr_unsigned(vap->va_rminor);
1481 		}
1482 	} else {
1483 		sp = nfsm_build(&info, NFSX_V2SATTR);
1484 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1485 		sp->sa_uid = nfs_xdrneg1;
1486 		sp->sa_gid = nfs_xdrneg1;
1487 		sp->sa_size = makeudev(rmajor, rminor);
1488 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1489 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1490 	}
1491 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKNOD, cnp->cn_td,
1492 				cnp->cn_cred, &error));
1493 	if (!error) {
1494 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1495 		if (!gotvp) {
1496 			if (newvp) {
1497 				vput(newvp);
1498 				newvp = NULL;
1499 			}
1500 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1501 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1502 			if (!error)
1503 				newvp = NFSTOV(np);
1504 		}
1505 	}
1506 	if (info.v3) {
1507 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1508 	}
1509 	m_freem(info.mrep);
1510 	info.mrep = NULL;
1511 nfsmout:
1512 	if (error) {
1513 		if (newvp)
1514 			vput(newvp);
1515 	} else {
1516 		*vpp = newvp;
1517 	}
1518 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1519 	if (!wccflag)
1520 		VTONFS(dvp)->n_attrstamp = 0;
1521 	return (error);
1522 }
1523 
1524 /*
1525  * nfs mknod vop
1526  * just call nfs_mknodrpc() to do the work.
1527  *
1528  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1529  *	     struct componentname *a_cnp, struct vattr *a_vap)
1530  */
1531 /* ARGSUSED */
1532 static int
1533 nfs_mknod(struct vop_old_mknod_args *ap)
1534 {
1535 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1536 }
1537 
1538 static u_long create_verf;
1539 /*
1540  * nfs file create call
1541  *
1542  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1543  *	      struct componentname *a_cnp, struct vattr *a_vap)
1544  */
1545 static int
1546 nfs_create(struct vop_old_create_args *ap)
1547 {
1548 	struct vnode *dvp = ap->a_dvp;
1549 	struct vattr *vap = ap->a_vap;
1550 	struct componentname *cnp = ap->a_cnp;
1551 	struct nfsv2_sattr *sp;
1552 	u_int32_t *tl;
1553 	struct nfsnode *np = NULL;
1554 	struct vnode *newvp = NULL;
1555 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1556 	struct vattr vattr;
1557 	struct nfsm_info info;
1558 
1559 	info.mrep = NULL;
1560 	info.v3 = NFS_ISV3(dvp);
1561 
1562 	/*
1563 	 * Oops, not for me..
1564 	 */
1565 	if (vap->va_type == VSOCK)
1566 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1567 
1568 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1569 		return (error);
1570 	}
1571 	if (vap->va_vaflags & VA_EXCLUSIVE)
1572 		fmode |= O_EXCL;
1573 again:
1574 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1575 	nfsm_reqhead(&info, dvp, NFSPROC_CREATE,
1576 		     NFSX_FH(info.v3) + 2 * NFSX_UNSIGNED +
1577 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1578 	ERROROUT(nfsm_fhtom(&info, dvp));
1579 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1580 			     NFS_MAXNAMLEN));
1581 	if (info.v3) {
1582 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1583 		if (fmode & O_EXCL) {
1584 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1585 			tl = nfsm_build(&info, NFSX_V3CREATEVERF);
1586 #ifdef INET
1587 			if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1588 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1589 			else
1590 #endif
1591 				*tl++ = create_verf;
1592 			*tl = ++create_verf;
1593 		} else {
1594 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1595 			nfsm_v3attrbuild(&info, vap, FALSE);
1596 		}
1597 	} else {
1598 		sp = nfsm_build(&info, NFSX_V2SATTR);
1599 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1600 		sp->sa_uid = nfs_xdrneg1;
1601 		sp->sa_gid = nfs_xdrneg1;
1602 		sp->sa_size = 0;
1603 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1604 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1605 	}
1606 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_CREATE, cnp->cn_td,
1607 				cnp->cn_cred, &error));
1608 	if (error == 0) {
1609 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1610 		if (!gotvp) {
1611 			if (newvp) {
1612 				vput(newvp);
1613 				newvp = NULL;
1614 			}
1615 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1616 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1617 			if (!error)
1618 				newvp = NFSTOV(np);
1619 		}
1620 	}
1621 	if (info.v3) {
1622 		if (error == 0)
1623 			error = nfsm_wcc_data(&info, dvp, &wccflag);
1624 		else
1625 			(void)nfsm_wcc_data(&info, dvp, &wccflag);
1626 	}
1627 	m_freem(info.mrep);
1628 	info.mrep = NULL;
1629 nfsmout:
1630 	if (error) {
1631 		if (info.v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1632 			KKASSERT(newvp == NULL);
1633 			fmode &= ~O_EXCL;
1634 			goto again;
1635 		}
1636 	} else if (info.v3 && (fmode & O_EXCL)) {
1637 		/*
1638 		 * We are normally called with only a partially initialized
1639 		 * VAP.  Since the NFSv3 spec says that server may use the
1640 		 * file attributes to store the verifier, the spec requires
1641 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1642 		 * in atime, but we can't really assume that all servers will
1643 		 * so we ensure that our SETATTR sets both atime and mtime.
1644 		 */
1645 		if (vap->va_mtime.tv_sec == VNOVAL)
1646 			vfs_timestamp(&vap->va_mtime);
1647 		if (vap->va_atime.tv_sec == VNOVAL)
1648 			vap->va_atime = vap->va_mtime;
1649 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1650 	}
1651 	if (error == 0) {
1652 		/*
1653 		 * The new np may have enough info for access
1654 		 * checks, make sure rucred and wucred are
1655 		 * initialized for read and write rpc's.
1656 		 */
1657 		np = VTONFS(newvp);
1658 		if (np->n_rucred == NULL)
1659 			np->n_rucred = crhold(cnp->cn_cred);
1660 		if (np->n_wucred == NULL)
1661 			np->n_wucred = crhold(cnp->cn_cred);
1662 		*ap->a_vpp = newvp;
1663 	} else if (newvp) {
1664 		vput(newvp);
1665 	}
1666 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1667 	if (!wccflag)
1668 		VTONFS(dvp)->n_attrstamp = 0;
1669 	return (error);
1670 }
1671 
1672 /*
1673  * nfs file remove call
1674  * To try and make nfs semantics closer to ufs semantics, a file that has
1675  * other processes using the vnode is renamed instead of removed and then
1676  * removed later on the last close.
1677  * - If v_sysref.refcnt > 1
1678  *	  If a rename is not already in the works
1679  *	     call nfs_sillyrename() to set it up
1680  *     else
1681  *	  do the remove rpc
1682  *
1683  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1684  *	      struct componentname *a_cnp)
1685  */
1686 static int
1687 nfs_remove(struct vop_old_remove_args *ap)
1688 {
1689 	struct vnode *vp = ap->a_vp;
1690 	struct vnode *dvp = ap->a_dvp;
1691 	struct componentname *cnp = ap->a_cnp;
1692 	struct nfsnode *np = VTONFS(vp);
1693 	int error = 0;
1694 	struct vattr vattr;
1695 
1696 #ifndef DIAGNOSTIC
1697 	if (vp->v_sysref.refcnt < 1)
1698 		panic("nfs_remove: bad v_sysref.refcnt");
1699 #endif
1700 	if (vp->v_type == VDIR)
1701 		error = EPERM;
1702 	else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1703 	    VOP_GETATTR(vp, &vattr) == 0 &&
1704 	    vattr.va_nlink > 1)) {
1705 		/*
1706 		 * throw away biocache buffers, mainly to avoid
1707 		 * unnecessary delayed writes later.
1708 		 */
1709 		error = nfs_vinvalbuf(vp, 0, 1);
1710 		/* Do the rpc */
1711 		if (error != EINTR)
1712 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1713 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1714 		/*
1715 		 * Kludge City: If the first reply to the remove rpc is lost..
1716 		 *   the reply to the retransmitted request will be ENOENT
1717 		 *   since the file was in fact removed
1718 		 *   Therefore, we cheat and return success.
1719 		 */
1720 		if (error == ENOENT)
1721 			error = 0;
1722 	} else if (!np->n_sillyrename) {
1723 		error = nfs_sillyrename(dvp, vp, cnp);
1724 	}
1725 	np->n_attrstamp = 0;
1726 	return (error);
1727 }
1728 
1729 /*
1730  * nfs file remove rpc called from nfs_inactive
1731  */
1732 int
1733 nfs_removeit(struct sillyrename *sp)
1734 {
1735 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1736 		sp->s_cred, NULL));
1737 }
1738 
1739 /*
1740  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1741  */
1742 static int
1743 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1744 	      struct ucred *cred, struct thread *td)
1745 {
1746 	int error = 0, wccflag = NFSV3_WCCRATTR;
1747 	struct nfsm_info info;
1748 
1749 	info.mrep = NULL;
1750 	info.v3 = NFS_ISV3(dvp);
1751 
1752 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1753 	nfsm_reqhead(&info, dvp, NFSPROC_REMOVE,
1754 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1755 	ERROROUT(nfsm_fhtom(&info, dvp));
1756 	ERROROUT(nfsm_strtom(&info, name, namelen, NFS_MAXNAMLEN));
1757 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_REMOVE, td, cred, &error));
1758 	if (info.v3) {
1759 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1760 	}
1761 	m_freem(info.mrep);
1762 	info.mrep = NULL;
1763 nfsmout:
1764 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1765 	if (!wccflag)
1766 		VTONFS(dvp)->n_attrstamp = 0;
1767 	return (error);
1768 }
1769 
1770 /*
1771  * nfs file rename call
1772  *
1773  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1774  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1775  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1776  */
1777 static int
1778 nfs_rename(struct vop_old_rename_args *ap)
1779 {
1780 	struct vnode *fvp = ap->a_fvp;
1781 	struct vnode *tvp = ap->a_tvp;
1782 	struct vnode *fdvp = ap->a_fdvp;
1783 	struct vnode *tdvp = ap->a_tdvp;
1784 	struct componentname *tcnp = ap->a_tcnp;
1785 	struct componentname *fcnp = ap->a_fcnp;
1786 	int error;
1787 
1788 	/* Check for cross-device rename */
1789 	if ((fvp->v_mount != tdvp->v_mount) ||
1790 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1791 		error = EXDEV;
1792 		goto out;
1793 	}
1794 
1795 	/*
1796 	 * We shouldn't have to flush fvp on rename for most server-side
1797 	 * filesystems as the file handle should not change.  Unfortunately
1798 	 * the inode for some filesystems (msdosfs) might be tied to the
1799 	 * file name or directory position so to be completely safe
1800 	 * vfs.nfs.flush_on_rename is set by default.  Clear to improve
1801 	 * performance.
1802 	 *
1803 	 * We must flush tvp on rename because it might become stale on the
1804 	 * server after the rename.
1805 	 */
1806 	if (nfs_flush_on_rename)
1807 	    VOP_FSYNC(fvp, MNT_WAIT, 0);
1808 	if (tvp)
1809 	    VOP_FSYNC(tvp, MNT_WAIT, 0);
1810 
1811 	/*
1812 	 * If the tvp exists and is in use, sillyrename it before doing the
1813 	 * rename of the new file over it.
1814 	 *
1815 	 * XXX Can't sillyrename a directory.
1816 	 *
1817 	 * We do not attempt to do any namecache purges in this old API
1818 	 * routine.  The new API compat functions have access to the actual
1819 	 * namecache structures and will do it for us.
1820 	 */
1821 	if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1822 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1823 		vput(tvp);
1824 		tvp = NULL;
1825 	} else if (tvp) {
1826 		;
1827 	}
1828 
1829 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1830 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1831 		tcnp->cn_td);
1832 
1833 out:
1834 	if (tdvp == tvp)
1835 		vrele(tdvp);
1836 	else
1837 		vput(tdvp);
1838 	if (tvp)
1839 		vput(tvp);
1840 	vrele(fdvp);
1841 	vrele(fvp);
1842 	/*
1843 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1844 	 */
1845 	if (error == ENOENT)
1846 		error = 0;
1847 	return (error);
1848 }
1849 
1850 /*
1851  * nfs file rename rpc called from nfs_remove() above
1852  */
1853 static int
1854 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1855 	     struct sillyrename *sp)
1856 {
1857 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1858 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1859 }
1860 
1861 /*
1862  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1863  */
1864 static int
1865 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1866 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1867 	      struct ucred *cred, struct thread *td)
1868 {
1869 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1870 	struct nfsm_info info;
1871 
1872 	info.mrep = NULL;
1873 	info.v3 = NFS_ISV3(fdvp);
1874 
1875 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1876 	nfsm_reqhead(&info, fdvp, NFSPROC_RENAME,
1877 		    (NFSX_FH(info.v3) + NFSX_UNSIGNED)*2 +
1878 		    nfsm_rndup(fnamelen) + nfsm_rndup(tnamelen));
1879 	ERROROUT(nfsm_fhtom(&info, fdvp));
1880 	ERROROUT(nfsm_strtom(&info, fnameptr, fnamelen, NFS_MAXNAMLEN));
1881 	ERROROUT(nfsm_fhtom(&info, tdvp));
1882 	ERROROUT(nfsm_strtom(&info, tnameptr, tnamelen, NFS_MAXNAMLEN));
1883 	NEGKEEPOUT(nfsm_request(&info, fdvp, NFSPROC_RENAME, td, cred, &error));
1884 	if (info.v3) {
1885 		ERROROUT(nfsm_wcc_data(&info, fdvp, &fwccflag));
1886 		ERROROUT(nfsm_wcc_data(&info, tdvp, &twccflag));
1887 	}
1888 	m_freem(info.mrep);
1889 	info.mrep = NULL;
1890 nfsmout:
1891 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1892 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1893 	if (!fwccflag)
1894 		VTONFS(fdvp)->n_attrstamp = 0;
1895 	if (!twccflag)
1896 		VTONFS(tdvp)->n_attrstamp = 0;
1897 	return (error);
1898 }
1899 
1900 /*
1901  * nfs hard link create call
1902  *
1903  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1904  *	    struct componentname *a_cnp)
1905  */
1906 static int
1907 nfs_link(struct vop_old_link_args *ap)
1908 {
1909 	struct vnode *vp = ap->a_vp;
1910 	struct vnode *tdvp = ap->a_tdvp;
1911 	struct componentname *cnp = ap->a_cnp;
1912 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1913 	struct nfsm_info info;
1914 
1915 	if (vp->v_mount != tdvp->v_mount) {
1916 		return (EXDEV);
1917 	}
1918 
1919 	/*
1920 	 * The attribute cache may get out of sync with the server on link.
1921 	 * Pushing writes to the server before handle was inherited from
1922 	 * long long ago and it is unclear if we still need to do this.
1923 	 * Defaults to off.
1924 	 */
1925 	if (nfs_flush_on_hlink)
1926 		VOP_FSYNC(vp, MNT_WAIT, 0);
1927 
1928 	info.mrep = NULL;
1929 	info.v3 = NFS_ISV3(vp);
1930 
1931 	nfsstats.rpccnt[NFSPROC_LINK]++;
1932 	nfsm_reqhead(&info, vp, NFSPROC_LINK,
1933 		     NFSX_FH(info.v3) * 2 + NFSX_UNSIGNED +
1934 		     nfsm_rndup(cnp->cn_namelen));
1935 	ERROROUT(nfsm_fhtom(&info, vp));
1936 	ERROROUT(nfsm_fhtom(&info, tdvp));
1937 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1938 			     NFS_MAXNAMLEN));
1939 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_LINK, cnp->cn_td,
1940 				cnp->cn_cred, &error));
1941 	if (info.v3) {
1942 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1943 					 NFS_LATTR_NOSHRINK));
1944 		ERROROUT(nfsm_wcc_data(&info, tdvp, &wccflag));
1945 	}
1946 	m_freem(info.mrep);
1947 	info.mrep = NULL;
1948 nfsmout:
1949 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1950 	if (!attrflag)
1951 		VTONFS(vp)->n_attrstamp = 0;
1952 	if (!wccflag)
1953 		VTONFS(tdvp)->n_attrstamp = 0;
1954 	/*
1955 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1956 	 */
1957 	if (error == EEXIST)
1958 		error = 0;
1959 	return (error);
1960 }
1961 
1962 /*
1963  * nfs symbolic link create call
1964  *
1965  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1966  *		struct componentname *a_cnp, struct vattr *a_vap,
1967  *		char *a_target)
1968  */
1969 static int
1970 nfs_symlink(struct vop_old_symlink_args *ap)
1971 {
1972 	struct vnode *dvp = ap->a_dvp;
1973 	struct vattr *vap = ap->a_vap;
1974 	struct componentname *cnp = ap->a_cnp;
1975 	struct nfsv2_sattr *sp;
1976 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1977 	struct vnode *newvp = NULL;
1978 	struct nfsm_info info;
1979 
1980 	info.mrep = NULL;
1981 	info.v3 = NFS_ISV3(dvp);
1982 
1983 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1984 	slen = strlen(ap->a_target);
1985 	nfsm_reqhead(&info, dvp, NFSPROC_SYMLINK,
1986 		     NFSX_FH(info.v3) + 2*NFSX_UNSIGNED +
1987 		     nfsm_rndup(cnp->cn_namelen) +
1988 		     nfsm_rndup(slen) + NFSX_SATTR(info.v3));
1989 	ERROROUT(nfsm_fhtom(&info, dvp));
1990 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1991 			     NFS_MAXNAMLEN));
1992 	if (info.v3) {
1993 		nfsm_v3attrbuild(&info, vap, FALSE);
1994 	}
1995 	ERROROUT(nfsm_strtom(&info, ap->a_target, slen, NFS_MAXPATHLEN));
1996 	if (info.v3 == 0) {
1997 		sp = nfsm_build(&info, NFSX_V2SATTR);
1998 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1999 		sp->sa_uid = nfs_xdrneg1;
2000 		sp->sa_gid = nfs_xdrneg1;
2001 		sp->sa_size = nfs_xdrneg1;
2002 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2003 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2004 	}
2005 
2006 	/*
2007 	 * Issue the NFS request and get the rpc response.
2008 	 *
2009 	 * Only NFSv3 responses returning an error of 0 actually return
2010 	 * a file handle that can be converted into newvp without having
2011 	 * to do an extra lookup rpc.
2012 	 */
2013 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_SYMLINK, cnp->cn_td,
2014 				cnp->cn_cred, &error));
2015 	if (info.v3) {
2016 		if (error == 0) {
2017 		       ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2018 		}
2019 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2020 	}
2021 
2022 	/*
2023 	 * out code jumps -> here, mrep is also freed.
2024 	 */
2025 
2026 	m_freem(info.mrep);
2027 	info.mrep = NULL;
2028 nfsmout:
2029 
2030 	/*
2031 	 * If we get an EEXIST error, silently convert it to no-error
2032 	 * in case of an NFS retry.
2033 	 */
2034 	if (error == EEXIST)
2035 		error = 0;
2036 
2037 	/*
2038 	 * If we do not have (or no longer have) an error, and we could
2039 	 * not extract the newvp from the response due to the request being
2040 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
2041 	 * to obtain a newvp to return.
2042 	 */
2043 	if (error == 0 && newvp == NULL) {
2044 		struct nfsnode *np = NULL;
2045 
2046 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2047 		    cnp->cn_cred, cnp->cn_td, &np);
2048 		if (!error)
2049 			newvp = NFSTOV(np);
2050 	}
2051 	if (error) {
2052 		if (newvp)
2053 			vput(newvp);
2054 	} else {
2055 		*ap->a_vpp = newvp;
2056 	}
2057 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2058 	if (!wccflag)
2059 		VTONFS(dvp)->n_attrstamp = 0;
2060 	return (error);
2061 }
2062 
2063 /*
2064  * nfs make dir call
2065  *
2066  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
2067  *	     struct componentname *a_cnp, struct vattr *a_vap)
2068  */
2069 static int
2070 nfs_mkdir(struct vop_old_mkdir_args *ap)
2071 {
2072 	struct vnode *dvp = ap->a_dvp;
2073 	struct vattr *vap = ap->a_vap;
2074 	struct componentname *cnp = ap->a_cnp;
2075 	struct nfsv2_sattr *sp;
2076 	struct nfsnode *np = NULL;
2077 	struct vnode *newvp = NULL;
2078 	struct vattr vattr;
2079 	int error = 0, wccflag = NFSV3_WCCRATTR;
2080 	int gotvp = 0;
2081 	int len;
2082 	struct nfsm_info info;
2083 
2084 	info.mrep = NULL;
2085 	info.v3 = NFS_ISV3(dvp);
2086 
2087 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2088 		return (error);
2089 	}
2090 	len = cnp->cn_namelen;
2091 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2092 	nfsm_reqhead(&info, dvp, NFSPROC_MKDIR,
2093 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2094 		     nfsm_rndup(len) + NFSX_SATTR(info.v3));
2095 	ERROROUT(nfsm_fhtom(&info, dvp));
2096 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
2097 	if (info.v3) {
2098 		nfsm_v3attrbuild(&info, vap, FALSE);
2099 	} else {
2100 		sp = nfsm_build(&info, NFSX_V2SATTR);
2101 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2102 		sp->sa_uid = nfs_xdrneg1;
2103 		sp->sa_gid = nfs_xdrneg1;
2104 		sp->sa_size = nfs_xdrneg1;
2105 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2106 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2107 	}
2108 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKDIR, cnp->cn_td,
2109 		    cnp->cn_cred, &error));
2110 	if (error == 0) {
2111 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2112 	}
2113 	if (info.v3) {
2114 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2115 	}
2116 	m_freem(info.mrep);
2117 	info.mrep = NULL;
2118 nfsmout:
2119 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2120 	if (!wccflag)
2121 		VTONFS(dvp)->n_attrstamp = 0;
2122 	/*
2123 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2124 	 * if we can succeed in looking up the directory.
2125 	 */
2126 	if (error == EEXIST || (!error && !gotvp)) {
2127 		if (newvp) {
2128 			vrele(newvp);
2129 			newvp = NULL;
2130 		}
2131 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2132 			cnp->cn_td, &np);
2133 		if (!error) {
2134 			newvp = NFSTOV(np);
2135 			if (newvp->v_type != VDIR)
2136 				error = EEXIST;
2137 		}
2138 	}
2139 	if (error) {
2140 		if (newvp)
2141 			vrele(newvp);
2142 	} else
2143 		*ap->a_vpp = newvp;
2144 	return (error);
2145 }
2146 
2147 /*
2148  * nfs remove directory call
2149  *
2150  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2151  *	     struct componentname *a_cnp)
2152  */
2153 static int
2154 nfs_rmdir(struct vop_old_rmdir_args *ap)
2155 {
2156 	struct vnode *vp = ap->a_vp;
2157 	struct vnode *dvp = ap->a_dvp;
2158 	struct componentname *cnp = ap->a_cnp;
2159 	int error = 0, wccflag = NFSV3_WCCRATTR;
2160 	struct nfsm_info info;
2161 
2162 	info.mrep = NULL;
2163 	info.v3 = NFS_ISV3(dvp);
2164 
2165 	if (dvp == vp)
2166 		return (EINVAL);
2167 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2168 	nfsm_reqhead(&info, dvp, NFSPROC_RMDIR,
2169 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2170 		     nfsm_rndup(cnp->cn_namelen));
2171 	ERROROUT(nfsm_fhtom(&info, dvp));
2172 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2173 		 NFS_MAXNAMLEN));
2174 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_RMDIR, cnp->cn_td,
2175 				cnp->cn_cred, &error));
2176 	if (info.v3) {
2177 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2178 	}
2179 	m_freem(info.mrep);
2180 	info.mrep = NULL;
2181 nfsmout:
2182 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2183 	if (!wccflag)
2184 		VTONFS(dvp)->n_attrstamp = 0;
2185 	/*
2186 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2187 	 */
2188 	if (error == ENOENT)
2189 		error = 0;
2190 	return (error);
2191 }
2192 
2193 /*
2194  * nfs readdir call
2195  *
2196  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2197  */
2198 static int
2199 nfs_readdir(struct vop_readdir_args *ap)
2200 {
2201 	struct vnode *vp = ap->a_vp;
2202 	struct nfsnode *np = VTONFS(vp);
2203 	struct uio *uio = ap->a_uio;
2204 	int tresid, error;
2205 	struct vattr vattr;
2206 
2207 	if (vp->v_type != VDIR)
2208 		return (EPERM);
2209 
2210 	if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2211 		return (error);
2212 
2213 	/*
2214 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2215 	 * and then check that is still valid, or if this is an NQNFS mount
2216 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2217 	 * VOP_GETATTR() does not necessarily go to the wire.
2218 	 */
2219 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2220 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2221 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2222 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2223 		) {
2224 			nfsstats.direofcache_hits++;
2225 			goto done;
2226 		}
2227 	}
2228 
2229 	/*
2230 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2231 	 * own cache coherency checks so we do not have to.
2232 	 */
2233 	tresid = uio->uio_resid;
2234 	error = nfs_bioread(vp, uio, 0);
2235 
2236 	if (!error && uio->uio_resid == tresid)
2237 		nfsstats.direofcache_misses++;
2238 done:
2239 	vn_unlock(vp);
2240 	return (error);
2241 }
2242 
2243 /*
2244  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2245  *
2246  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2247  * offset/block and converts the nfs formatted directory entries for userland
2248  * consumption as well as deals with offsets into the middle of blocks.
2249  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2250  * be block-bounded.  It must convert to cookies for the actual RPC.
2251  */
2252 int
2253 nfs_readdirrpc_uio(struct vnode *vp, struct uio *uiop)
2254 {
2255 	int len, left;
2256 	struct nfs_dirent *dp = NULL;
2257 	u_int32_t *tl;
2258 	nfsuint64 *cookiep;
2259 	caddr_t cp;
2260 	nfsuint64 cookie;
2261 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2262 	struct nfsnode *dnp = VTONFS(vp);
2263 	u_quad_t fileno;
2264 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2265 	int attrflag;
2266 	struct nfsm_info info;
2267 
2268 	info.mrep = NULL;
2269 	info.v3 = NFS_ISV3(vp);
2270 
2271 #ifndef DIAGNOSTIC
2272 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2273 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2274 		panic("nfs readdirrpc bad uio");
2275 #endif
2276 
2277 	/*
2278 	 * If there is no cookie, assume directory was stale.
2279 	 */
2280 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2281 	if (cookiep)
2282 		cookie = *cookiep;
2283 	else
2284 		return (NFSERR_BAD_COOKIE);
2285 	/*
2286 	 * Loop around doing readdir rpc's of size nm_readdirsize
2287 	 * truncated to a multiple of DIRBLKSIZ.
2288 	 * The stopping criteria is EOF or buffer full.
2289 	 */
2290 	while (more_dirs && bigenough) {
2291 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2292 		nfsm_reqhead(&info, vp, NFSPROC_READDIR,
2293 			     NFSX_FH(info.v3) + NFSX_READDIR(info.v3));
2294 		ERROROUT(nfsm_fhtom(&info, vp));
2295 		if (info.v3) {
2296 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
2297 			*tl++ = cookie.nfsuquad[0];
2298 			*tl++ = cookie.nfsuquad[1];
2299 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2300 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2301 		} else {
2302 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
2303 			*tl++ = cookie.nfsuquad[0];
2304 		}
2305 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2306 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIR,
2307 					uiop->uio_td,
2308 					nfs_vpcred(vp, ND_READ), &error));
2309 		if (info.v3) {
2310 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2311 						  NFS_LATTR_NOSHRINK));
2312 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2313 			dnp->n_cookieverf.nfsuquad[0] = *tl++;
2314 			dnp->n_cookieverf.nfsuquad[1] = *tl;
2315 		}
2316 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2317 		more_dirs = fxdr_unsigned(int, *tl);
2318 
2319 		/* loop thru the dir entries, converting them to std form */
2320 		while (more_dirs && bigenough) {
2321 			if (info.v3) {
2322 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2323 				fileno = fxdr_hyper(tl);
2324 				len = fxdr_unsigned(int, *(tl + 2));
2325 			} else {
2326 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2327 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2328 				len = fxdr_unsigned(int, *tl);
2329 			}
2330 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2331 				error = EBADRPC;
2332 				m_freem(info.mrep);
2333 				info.mrep = NULL;
2334 				goto nfsmout;
2335 			}
2336 
2337 			/*
2338 			 * len is the number of bytes in the path element
2339 			 * name, not including the \0 termination.
2340 			 *
2341 			 * tlen is the number of bytes w have to reserve for
2342 			 * the path element name.
2343 			 */
2344 			tlen = nfsm_rndup(len);
2345 			if (tlen == len)
2346 				tlen += 4;	/* To ensure null termination */
2347 
2348 			/*
2349 			 * If the entry would cross a DIRBLKSIZ boundary,
2350 			 * extend the previous nfs_dirent to cover the
2351 			 * remaining space.
2352 			 */
2353 			left = DIRBLKSIZ - blksiz;
2354 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2355 				dp->nfs_reclen += left;
2356 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2357 				uiop->uio_iov->iov_len -= left;
2358 				uiop->uio_offset += left;
2359 				uiop->uio_resid -= left;
2360 				blksiz = 0;
2361 			}
2362 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2363 				bigenough = 0;
2364 			if (bigenough) {
2365 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2366 				dp->nfs_ino = fileno;
2367 				dp->nfs_namlen = len;
2368 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2369 				dp->nfs_type = DT_UNKNOWN;
2370 				blksiz += dp->nfs_reclen;
2371 				if (blksiz == DIRBLKSIZ)
2372 					blksiz = 0;
2373 				uiop->uio_offset += sizeof(struct nfs_dirent);
2374 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2375 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2376 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2377 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2378 
2379 				/*
2380 				 * The uiop has advanced by nfs_dirent + len
2381 				 * but really needs to advance by
2382 				 * nfs_dirent + tlen
2383 				 */
2384 				cp = uiop->uio_iov->iov_base;
2385 				tlen -= len;
2386 				*cp = '\0';	/* null terminate */
2387 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2388 				uiop->uio_iov->iov_len -= tlen;
2389 				uiop->uio_offset += tlen;
2390 				uiop->uio_resid -= tlen;
2391 			} else {
2392 				/*
2393 				 * NFS strings must be rounded up (nfsm_myouio
2394 				 * handled that in the bigenough case).
2395 				 */
2396 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2397 			}
2398 			if (info.v3) {
2399 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2400 			} else {
2401 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2402 			}
2403 
2404 			/*
2405 			 * If we were able to accomodate the last entry,
2406 			 * get the cookie for the next one.  Otherwise
2407 			 * hold-over the cookie for the one we were not
2408 			 * able to accomodate.
2409 			 */
2410 			if (bigenough) {
2411 				cookie.nfsuquad[0] = *tl++;
2412 				if (info.v3)
2413 					cookie.nfsuquad[1] = *tl++;
2414 			} else if (info.v3) {
2415 				tl += 2;
2416 			} else {
2417 				tl++;
2418 			}
2419 			more_dirs = fxdr_unsigned(int, *tl);
2420 		}
2421 		/*
2422 		 * If at end of rpc data, get the eof boolean
2423 		 */
2424 		if (!more_dirs) {
2425 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2426 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2427 		}
2428 		m_freem(info.mrep);
2429 		info.mrep = NULL;
2430 	}
2431 	/*
2432 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2433 	 * by increasing d_reclen for the last record.
2434 	 */
2435 	if (blksiz > 0) {
2436 		left = DIRBLKSIZ - blksiz;
2437 		dp->nfs_reclen += left;
2438 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2439 		uiop->uio_iov->iov_len -= left;
2440 		uiop->uio_offset += left;
2441 		uiop->uio_resid -= left;
2442 	}
2443 
2444 	if (bigenough) {
2445 		/*
2446 		 * We hit the end of the directory, update direofoffset.
2447 		 */
2448 		dnp->n_direofoffset = uiop->uio_offset;
2449 	} else {
2450 		/*
2451 		 * There is more to go, insert the link cookie so the
2452 		 * next block can be read.
2453 		 */
2454 		if (uiop->uio_resid > 0)
2455 			kprintf("EEK! readdirrpc resid > 0\n");
2456 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2457 		*cookiep = cookie;
2458 	}
2459 nfsmout:
2460 	return (error);
2461 }
2462 
2463 /*
2464  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2465  */
2466 int
2467 nfs_readdirplusrpc_uio(struct vnode *vp, struct uio *uiop)
2468 {
2469 	int len, left;
2470 	struct nfs_dirent *dp;
2471 	u_int32_t *tl;
2472 	struct vnode *newvp;
2473 	nfsuint64 *cookiep;
2474 	caddr_t dpossav1, dpossav2;
2475 	caddr_t cp;
2476 	struct mbuf *mdsav1, *mdsav2;
2477 	nfsuint64 cookie;
2478 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2479 	struct nfsnode *dnp = VTONFS(vp), *np;
2480 	nfsfh_t *fhp;
2481 	u_quad_t fileno;
2482 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2483 	int attrflag, fhsize;
2484 	struct nchandle nch;
2485 	struct nchandle dnch;
2486 	struct nlcomponent nlc;
2487 	struct nfsm_info info;
2488 
2489 	info.mrep = NULL;
2490 	info.v3 = 1;
2491 
2492 #ifndef nolint
2493 	dp = NULL;
2494 #endif
2495 #ifndef DIAGNOSTIC
2496 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2497 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2498 		panic("nfs readdirplusrpc bad uio");
2499 #endif
2500 	/*
2501 	 * Obtain the namecache record for the directory so we have something
2502 	 * to use as a basis for creating the entries.  This function will
2503 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2504 	 * from the tree and cannot be used for upward traversals, and the
2505 	 * ncp may be unnamed.  Note that other unrelated operations may
2506 	 * cause the ncp to be named at any time.
2507 	 */
2508 	cache_fromdvp(vp, NULL, 0, &dnch);
2509 	bzero(&nlc, sizeof(nlc));
2510 	newvp = NULLVP;
2511 
2512 	/*
2513 	 * If there is no cookie, assume directory was stale.
2514 	 */
2515 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2516 	if (cookiep)
2517 		cookie = *cookiep;
2518 	else
2519 		return (NFSERR_BAD_COOKIE);
2520 	/*
2521 	 * Loop around doing readdir rpc's of size nm_readdirsize
2522 	 * truncated to a multiple of DIRBLKSIZ.
2523 	 * The stopping criteria is EOF or buffer full.
2524 	 */
2525 	while (more_dirs && bigenough) {
2526 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2527 		nfsm_reqhead(&info, vp, NFSPROC_READDIRPLUS,
2528 			     NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2529 		ERROROUT(nfsm_fhtom(&info, vp));
2530 		tl = nfsm_build(&info, 6 * NFSX_UNSIGNED);
2531 		*tl++ = cookie.nfsuquad[0];
2532 		*tl++ = cookie.nfsuquad[1];
2533 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2534 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2535 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2536 		*tl = txdr_unsigned(nmp->nm_rsize);
2537 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIRPLUS,
2538 					uiop->uio_td,
2539 					nfs_vpcred(vp, ND_READ), &error));
2540 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2541 					  NFS_LATTR_NOSHRINK));
2542 		NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2543 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2544 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2545 		more_dirs = fxdr_unsigned(int, *tl);
2546 
2547 		/* loop thru the dir entries, doctoring them to 4bsd form */
2548 		while (more_dirs && bigenough) {
2549 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2550 			fileno = fxdr_hyper(tl);
2551 			len = fxdr_unsigned(int, *(tl + 2));
2552 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2553 				error = EBADRPC;
2554 				m_freem(info.mrep);
2555 				info.mrep = NULL;
2556 				goto nfsmout;
2557 			}
2558 			tlen = nfsm_rndup(len);
2559 			if (tlen == len)
2560 				tlen += 4;	/* To ensure null termination*/
2561 			left = DIRBLKSIZ - blksiz;
2562 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2563 				dp->nfs_reclen += left;
2564 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2565 				uiop->uio_iov->iov_len -= left;
2566 				uiop->uio_offset += left;
2567 				uiop->uio_resid -= left;
2568 				blksiz = 0;
2569 			}
2570 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2571 				bigenough = 0;
2572 			if (bigenough) {
2573 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2574 				dp->nfs_ino = fileno;
2575 				dp->nfs_namlen = len;
2576 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2577 				dp->nfs_type = DT_UNKNOWN;
2578 				blksiz += dp->nfs_reclen;
2579 				if (blksiz == DIRBLKSIZ)
2580 					blksiz = 0;
2581 				uiop->uio_offset += sizeof(struct nfs_dirent);
2582 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2583 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2584 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2585 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2586 				nlc.nlc_namelen = len;
2587 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2588 				cp = uiop->uio_iov->iov_base;
2589 				tlen -= len;
2590 				*cp = '\0';
2591 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2592 				uiop->uio_iov->iov_len -= tlen;
2593 				uiop->uio_offset += tlen;
2594 				uiop->uio_resid -= tlen;
2595 			} else {
2596 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2597 			}
2598 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2599 			if (bigenough) {
2600 				cookie.nfsuquad[0] = *tl++;
2601 				cookie.nfsuquad[1] = *tl++;
2602 			} else
2603 				tl += 2;
2604 
2605 			/*
2606 			 * Since the attributes are before the file handle
2607 			 * (sigh), we must skip over the attributes and then
2608 			 * come back and get them.
2609 			 */
2610 			attrflag = fxdr_unsigned(int, *tl);
2611 			if (attrflag) {
2612 			    dpossav1 = info.dpos;
2613 			    mdsav1 = info.md;
2614 			    ERROROUT(nfsm_adv(&info, NFSX_V3FATTR));
2615 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2616 			    doit = fxdr_unsigned(int, *tl);
2617 			    if (doit) {
2618 				NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
2619 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2620 				    vref(vp);
2621 				    newvp = vp;
2622 				    np = dnp;
2623 				} else {
2624 				    error = nfs_nget(vp->v_mount, fhp,
2625 					fhsize, &np);
2626 				    if (error)
2627 					doit = 0;
2628 				    else
2629 					newvp = NFSTOV(np);
2630 				}
2631 			    }
2632 			    if (doit && bigenough) {
2633 				dpossav2 = info.dpos;
2634 				info.dpos = dpossav1;
2635 				mdsav2 = info.md;
2636 				info.md = mdsav1;
2637 				ERROROUT(nfsm_loadattr(&info, newvp, NULL));
2638 				info.dpos = dpossav2;
2639 				info.md = mdsav2;
2640 				dp->nfs_type =
2641 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2642 				if (dnch.ncp) {
2643 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2644 					nlc.nlc_namelen, nlc.nlc_namelen,
2645 					nlc.nlc_nameptr);
2646 				    nch = cache_nlookup(&dnch, &nlc);
2647 				    cache_setunresolved(&nch);
2648 				    nfs_cache_setvp(&nch, newvp,
2649 						    nfspos_cache_timeout);
2650 				    cache_put(&nch);
2651 				} else {
2652 				    kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2653 					" %*.*s\n",
2654 					nlc.nlc_namelen, nlc.nlc_namelen,
2655 					nlc.nlc_nameptr);
2656 				}
2657 			    }
2658 			} else {
2659 			    /* Just skip over the file handle */
2660 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2661 			    i = fxdr_unsigned(int, *tl);
2662 			    ERROROUT(nfsm_adv(&info, nfsm_rndup(i)));
2663 			}
2664 			if (newvp != NULLVP) {
2665 			    if (newvp == vp)
2666 				vrele(newvp);
2667 			    else
2668 				vput(newvp);
2669 			    newvp = NULLVP;
2670 			}
2671 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2672 			more_dirs = fxdr_unsigned(int, *tl);
2673 		}
2674 		/*
2675 		 * If at end of rpc data, get the eof boolean
2676 		 */
2677 		if (!more_dirs) {
2678 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2679 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2680 		}
2681 		m_freem(info.mrep);
2682 		info.mrep = NULL;
2683 	}
2684 	/*
2685 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2686 	 * by increasing d_reclen for the last record.
2687 	 */
2688 	if (blksiz > 0) {
2689 		left = DIRBLKSIZ - blksiz;
2690 		dp->nfs_reclen += left;
2691 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2692 		uiop->uio_iov->iov_len -= left;
2693 		uiop->uio_offset += left;
2694 		uiop->uio_resid -= left;
2695 	}
2696 
2697 	/*
2698 	 * We are now either at the end of the directory or have filled the
2699 	 * block.
2700 	 */
2701 	if (bigenough)
2702 		dnp->n_direofoffset = uiop->uio_offset;
2703 	else {
2704 		if (uiop->uio_resid > 0)
2705 			kprintf("EEK! readdirplusrpc resid > 0\n");
2706 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2707 		*cookiep = cookie;
2708 	}
2709 nfsmout:
2710 	if (newvp != NULLVP) {
2711 	        if (newvp == vp)
2712 			vrele(newvp);
2713 		else
2714 			vput(newvp);
2715 		newvp = NULLVP;
2716 	}
2717 	if (dnch.ncp)
2718 		cache_drop(&dnch);
2719 	return (error);
2720 }
2721 
2722 /*
2723  * Silly rename. To make the NFS filesystem that is stateless look a little
2724  * more like the "ufs" a remove of an active vnode is translated to a rename
2725  * to a funny looking filename that is removed by nfs_inactive on the
2726  * nfsnode. There is the potential for another process on a different client
2727  * to create the same funny name between the nfs_lookitup() fails and the
2728  * nfs_rename() completes, but...
2729  */
2730 static int
2731 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2732 {
2733 	struct sillyrename *sp;
2734 	struct nfsnode *np;
2735 	int error;
2736 
2737 	/*
2738 	 * We previously purged dvp instead of vp.  I don't know why, it
2739 	 * completely destroys performance.  We can't do it anyway with the
2740 	 * new VFS API since we would be breaking the namecache topology.
2741 	 */
2742 	cache_purge(vp);	/* XXX */
2743 	np = VTONFS(vp);
2744 #ifndef DIAGNOSTIC
2745 	if (vp->v_type == VDIR)
2746 		panic("nfs: sillyrename dir");
2747 #endif
2748 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2749 		M_NFSREQ, M_WAITOK);
2750 	sp->s_cred = crdup(cnp->cn_cred);
2751 	sp->s_dvp = dvp;
2752 	vref(dvp);
2753 
2754 	/* Fudge together a funny name */
2755 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4",
2756 				(int)(intptr_t)cnp->cn_td);
2757 
2758 	/* Try lookitups until we get one that isn't there */
2759 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2760 		cnp->cn_td, NULL) == 0) {
2761 		sp->s_name[4]++;
2762 		if (sp->s_name[4] > 'z') {
2763 			error = EINVAL;
2764 			goto bad;
2765 		}
2766 	}
2767 	error = nfs_renameit(dvp, cnp, sp);
2768 	if (error)
2769 		goto bad;
2770 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2771 		cnp->cn_td, &np);
2772 	np->n_sillyrename = sp;
2773 	return (0);
2774 bad:
2775 	vrele(sp->s_dvp);
2776 	crfree(sp->s_cred);
2777 	kfree((caddr_t)sp, M_NFSREQ);
2778 	return (error);
2779 }
2780 
2781 /*
2782  * Look up a file name and optionally either update the file handle or
2783  * allocate an nfsnode, depending on the value of npp.
2784  * npp == NULL	--> just do the lookup
2785  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2786  *			handled too
2787  * *npp != NULL --> update the file handle in the vnode
2788  */
2789 static int
2790 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2791 	     struct thread *td, struct nfsnode **npp)
2792 {
2793 	struct vnode *newvp = NULL;
2794 	struct nfsnode *np, *dnp = VTONFS(dvp);
2795 	int error = 0, fhlen, attrflag;
2796 	nfsfh_t *nfhp;
2797 	struct nfsm_info info;
2798 
2799 	info.mrep = NULL;
2800 	info.v3 = NFS_ISV3(dvp);
2801 
2802 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2803 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
2804 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2805 	ERROROUT(nfsm_fhtom(&info, dvp));
2806 	ERROROUT(nfsm_strtom(&info, name, len, NFS_MAXNAMLEN));
2807 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td, cred, &error));
2808 	if (npp && !error) {
2809 		NEGATIVEOUT(fhlen = nfsm_getfh(&info, &nfhp));
2810 		if (*npp) {
2811 		    np = *npp;
2812 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2813 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2814 			np->n_fhp = &np->n_fh;
2815 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2816 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2817 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2818 		    np->n_fhsize = fhlen;
2819 		    newvp = NFSTOV(np);
2820 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2821 		    vref(dvp);
2822 		    newvp = dvp;
2823 		} else {
2824 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2825 		    if (error) {
2826 			m_freem(info.mrep);
2827 			info.mrep = NULL;
2828 			return (error);
2829 		    }
2830 		    newvp = NFSTOV(np);
2831 		}
2832 		if (info.v3) {
2833 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
2834 						  NFS_LATTR_NOSHRINK));
2835 			if (!attrflag && *npp == NULL) {
2836 				m_freem(info.mrep);
2837 				info.mrep = NULL;
2838 				if (newvp == dvp)
2839 					vrele(newvp);
2840 				else
2841 					vput(newvp);
2842 				return (ENOENT);
2843 			}
2844 		} else {
2845 			ERROROUT(error = nfsm_loadattr(&info, newvp, NULL));
2846 		}
2847 	}
2848 	m_freem(info.mrep);
2849 	info.mrep = NULL;
2850 nfsmout:
2851 	if (npp && *npp == NULL) {
2852 		if (error) {
2853 			if (newvp) {
2854 				if (newvp == dvp)
2855 					vrele(newvp);
2856 				else
2857 					vput(newvp);
2858 			}
2859 		} else
2860 			*npp = np;
2861 	}
2862 	return (error);
2863 }
2864 
2865 /*
2866  * Nfs Version 3 commit rpc
2867  *
2868  * We call it 'uio' to distinguish it from 'bio' but there is no real uio
2869  * involved.
2870  */
2871 int
2872 nfs_commitrpc_uio(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2873 {
2874 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2875 	int error = 0, wccflag = NFSV3_WCCRATTR;
2876 	struct nfsm_info info;
2877 	u_int32_t *tl;
2878 
2879 	info.mrep = NULL;
2880 	info.v3 = 1;
2881 
2882 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2883 		return (0);
2884 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2885 	nfsm_reqhead(&info, vp, NFSPROC_COMMIT, NFSX_FH(1));
2886 	ERROROUT(nfsm_fhtom(&info, vp));
2887 	tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
2888 	txdr_hyper(offset, tl);
2889 	tl += 2;
2890 	*tl = txdr_unsigned(cnt);
2891 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_COMMIT, td,
2892 				nfs_vpcred(vp, ND_WRITE), &error));
2893 	ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
2894 	if (!error) {
2895 		NULLOUT(tl = nfsm_dissect(&info, NFSX_V3WRITEVERF));
2896 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2897 			NFSX_V3WRITEVERF)) {
2898 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2899 				NFSX_V3WRITEVERF);
2900 			error = NFSERR_STALEWRITEVERF;
2901 		}
2902 	}
2903 	m_freem(info.mrep);
2904 	info.mrep = NULL;
2905 nfsmout:
2906 	return (error);
2907 }
2908 
2909 /*
2910  * Kludge City..
2911  * - make nfs_bmap() essentially a no-op that does no translation
2912  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2913  *   (Maybe I could use the process's page mapping, but I was concerned that
2914  *    Kernel Write might not be enabled and also figured copyout() would do
2915  *    a lot more work than bcopy() and also it currently happens in the
2916  *    context of the swapper process (2).
2917  *
2918  * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2919  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2920  */
2921 static int
2922 nfs_bmap(struct vop_bmap_args *ap)
2923 {
2924 	if (ap->a_doffsetp != NULL)
2925 		*ap->a_doffsetp = ap->a_loffset;
2926 	if (ap->a_runp != NULL)
2927 		*ap->a_runp = 0;
2928 	if (ap->a_runb != NULL)
2929 		*ap->a_runb = 0;
2930 	return (0);
2931 }
2932 
2933 /*
2934  * Strategy routine.
2935  */
2936 static int
2937 nfs_strategy(struct vop_strategy_args *ap)
2938 {
2939 	struct bio *bio = ap->a_bio;
2940 	struct bio *nbio;
2941 	struct buf *bp = bio->bio_buf;
2942 	struct thread *td;
2943 	int error;
2944 
2945 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2946 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2947 	KASSERT(BUF_REFCNT(bp) > 0,
2948 		("nfs_strategy: buffer %p not locked", bp));
2949 
2950 	if (bio->bio_flags & BIO_SYNC)
2951 		td = curthread;	/* XXX */
2952 	else
2953 		td = NULL;
2954 
2955         /*
2956 	 * We probably don't need to push an nbio any more since no
2957 	 * block conversion is required due to the use of 64 bit byte
2958 	 * offsets, but do it anyway.
2959 	 *
2960 	 * NOTE: When NFS callers itself via this strategy routines and
2961 	 *	 sets up a synchronous I/O, it expects the I/O to run
2962 	 *	 synchronously (its bio_done routine just assumes it),
2963 	 *	 so for now we have to honor the bit.
2964          */
2965 	nbio = push_bio(bio);
2966 	nbio->bio_offset = bio->bio_offset;
2967 	nbio->bio_flags = bio->bio_flags & BIO_SYNC;
2968 
2969 	/*
2970 	 * If the op is asynchronous and an i/o daemon is waiting
2971 	 * queue the request, wake it up and wait for completion
2972 	 * otherwise just do it ourselves.
2973 	 */
2974 	if (bio->bio_flags & BIO_SYNC) {
2975 		error = nfs_doio(ap->a_vp, nbio, td);
2976 	} else {
2977 		nfs_asyncio(ap->a_vp, nbio);
2978 		error = 0;
2979 	}
2980 	return (error);
2981 }
2982 
2983 /*
2984  * Mmap a file
2985  *
2986  * NB Currently unsupported.
2987  *
2988  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
2989  */
2990 /* ARGSUSED */
2991 static int
2992 nfs_mmap(struct vop_mmap_args *ap)
2993 {
2994 	return (EINVAL);
2995 }
2996 
2997 /*
2998  * fsync vnode op. Just call nfs_flush() with commit == 1.
2999  *
3000  * nfs_fsync(struct vnode *a_vp, int a_waitfor)
3001  */
3002 /* ARGSUSED */
3003 static int
3004 nfs_fsync(struct vop_fsync_args *ap)
3005 {
3006 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
3007 }
3008 
3009 /*
3010  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
3011  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
3012  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
3013  * set the buffer contains data that has already been written to the server
3014  * and which now needs a commit RPC.
3015  *
3016  * If commit is 0 we only take one pass and only flush buffers containing new
3017  * dirty data.
3018  *
3019  * If commit is 1 we take two passes, issuing a commit RPC in the second
3020  * pass.
3021  *
3022  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
3023  * to completely flush all pending data.
3024  *
3025  * Note that the RB_SCAN code properly handles the case where the
3026  * callback might block and directly or indirectly (another thread) cause
3027  * the RB tree to change.
3028  */
3029 
3030 #ifndef NFS_COMMITBVECSIZ
3031 #define NFS_COMMITBVECSIZ	16
3032 #endif
3033 
3034 struct nfs_flush_info {
3035 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
3036 	struct thread *td;
3037 	struct vnode *vp;
3038 	int waitfor;
3039 	int slpflag;
3040 	int slptimeo;
3041 	int loops;
3042 	struct buf *bvary[NFS_COMMITBVECSIZ];
3043 	int bvsize;
3044 	off_t beg_off;
3045 	off_t end_off;
3046 };
3047 
3048 static int nfs_flush_bp(struct buf *bp, void *data);
3049 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
3050 
3051 int
3052 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
3053 {
3054 	struct nfsnode *np = VTONFS(vp);
3055 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
3056 	struct nfs_flush_info info;
3057 	lwkt_tokref vlock;
3058 	int error;
3059 
3060 	bzero(&info, sizeof(info));
3061 	info.td = td;
3062 	info.vp = vp;
3063 	info.waitfor = waitfor;
3064 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
3065 	info.loops = 0;
3066 	lwkt_gettoken(&vlock, &vp->v_token);
3067 
3068 	do {
3069 		/*
3070 		 * Flush mode
3071 		 */
3072 		info.mode = NFI_FLUSHNEW;
3073 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3074 				nfs_flush_bp, &info);
3075 
3076 		/*
3077 		 * Take a second pass if committing and no error occured.
3078 		 * Clean up any left over collection (whether an error
3079 		 * occurs or not).
3080 		 */
3081 		if (commit && error == 0) {
3082 			info.mode = NFI_COMMIT;
3083 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3084 					nfs_flush_bp, &info);
3085 			if (info.bvsize)
3086 				error = nfs_flush_docommit(&info, error);
3087 		}
3088 
3089 		/*
3090 		 * Wait for pending I/O to complete before checking whether
3091 		 * any further dirty buffers exist.
3092 		 */
3093 		while (waitfor == MNT_WAIT &&
3094 		       bio_track_active(&vp->v_track_write)) {
3095 			error = bio_track_wait(&vp->v_track_write,
3096 					       info.slpflag, info.slptimeo);
3097 			if (error) {
3098 				/*
3099 				 * We have to be able to break out if this
3100 				 * is an 'intr' mount.
3101 				 */
3102 				if (nfs_sigintr(nmp, NULL, td)) {
3103 					error = -EINTR;
3104 					break;
3105 				}
3106 
3107 				/*
3108 				 * Since we do not process pending signals,
3109 				 * once we get a PCATCH our tsleep() will no
3110 				 * longer sleep, switch to a fixed timeout
3111 				 * instead.
3112 				 */
3113 				if (info.slpflag == PCATCH) {
3114 					info.slpflag = 0;
3115 					info.slptimeo = 2 * hz;
3116 				}
3117 				error = 0;
3118 			}
3119 		}
3120 		++info.loops;
3121 		/*
3122 		 * Loop if we are flushing synchronous as well as committing,
3123 		 * and dirty buffers are still present.  Otherwise we might livelock.
3124 		 */
3125 	} while (waitfor == MNT_WAIT && commit &&
3126 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3127 
3128 	/*
3129 	 * The callbacks have to return a negative error to terminate the
3130 	 * RB scan.
3131 	 */
3132 	if (error < 0)
3133 		error = -error;
3134 
3135 	/*
3136 	 * Deal with any error collection
3137 	 */
3138 	if (np->n_flag & NWRITEERR) {
3139 		error = np->n_error;
3140 		np->n_flag &= ~NWRITEERR;
3141 	}
3142 	lwkt_reltoken(&vlock);
3143 	return (error);
3144 }
3145 
3146 static
3147 int
3148 nfs_flush_bp(struct buf *bp, void *data)
3149 {
3150 	struct nfs_flush_info *info = data;
3151 	int lkflags;
3152 	int error;
3153 	off_t toff;
3154 
3155 	error = 0;
3156 	switch(info->mode) {
3157 	case NFI_FLUSHNEW:
3158 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3159 		if (error && info->loops && info->waitfor == MNT_WAIT) {
3160 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3161 			if (error) {
3162 				lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3163 				if (info->slpflag & PCATCH)
3164 					lkflags |= LK_PCATCH;
3165 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3166 						     info->slptimeo);
3167 			}
3168 		}
3169 
3170 		/*
3171 		 * Ignore locking errors
3172 		 */
3173 		if (error) {
3174 			error = 0;
3175 			break;
3176 		}
3177 
3178 		/*
3179 		 * The buffer may have changed out from under us, even if
3180 		 * we did not block (MPSAFE).  Check again now that it is
3181 		 * locked.
3182 		 */
3183 		if (bp->b_vp == info->vp &&
3184 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == B_DELWRI) {
3185 			bremfree(bp);
3186 			bawrite(bp);
3187 		} else {
3188 			BUF_UNLOCK(bp);
3189 		}
3190 		break;
3191 	case NFI_COMMIT:
3192 		/*
3193 		 * Only process buffers in need of a commit which we can
3194 		 * immediately lock.  This may prevent a buffer from being
3195 		 * committed, but the normal flush loop will block on the
3196 		 * same buffer so we shouldn't get into an endless loop.
3197 		 */
3198 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3199 		    (B_DELWRI | B_NEEDCOMMIT)) {
3200 			break;
3201 		}
3202 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
3203 			break;
3204 
3205 		/*
3206 		 * We must recheck after successfully locking the buffer.
3207 		 */
3208 		if (bp->b_vp != info->vp ||
3209 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3210 		    (B_DELWRI | B_NEEDCOMMIT)) {
3211 			BUF_UNLOCK(bp);
3212 			break;
3213 		}
3214 
3215 		/*
3216 		 * NOTE: storing the bp in the bvary[] basically sets
3217 		 * it up for a commit operation.
3218 		 *
3219 		 * We must call vfs_busy_pages() now so the commit operation
3220 		 * is interlocked with user modifications to memory mapped
3221 		 * pages.
3222 		 *
3223 		 * Note: to avoid loopback deadlocks, we do not
3224 		 * assign b_runningbufspace.
3225 		 */
3226 		bremfree(bp);
3227 		bp->b_cmd = BUF_CMD_WRITE;
3228 		vfs_busy_pages(bp->b_vp, bp);
3229 		info->bvary[info->bvsize] = bp;
3230 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3231 		if (info->bvsize == 0 || toff < info->beg_off)
3232 			info->beg_off = toff;
3233 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3234 		if (info->bvsize == 0 || toff > info->end_off)
3235 			info->end_off = toff;
3236 		++info->bvsize;
3237 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3238 			error = nfs_flush_docommit(info, 0);
3239 			KKASSERT(info->bvsize == 0);
3240 		}
3241 	}
3242 	return (error);
3243 }
3244 
3245 static
3246 int
3247 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3248 {
3249 	struct vnode *vp;
3250 	struct buf *bp;
3251 	off_t bytes;
3252 	int retv;
3253 	int i;
3254 
3255 	vp = info->vp;
3256 
3257 	if (info->bvsize > 0) {
3258 		/*
3259 		 * Commit data on the server, as required.  Note that
3260 		 * nfs_commit will use the vnode's cred for the commit.
3261 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3262 		 */
3263 		bytes = info->end_off - info->beg_off;
3264 		if (bytes > 0x40000000)
3265 			bytes = 0x40000000;
3266 		if (error) {
3267 			retv = -error;
3268 		} else {
3269 			retv = nfs_commitrpc_uio(vp, info->beg_off,
3270 						 (int)bytes, info->td);
3271 			if (retv == NFSERR_STALEWRITEVERF)
3272 				nfs_clearcommit(vp->v_mount);
3273 		}
3274 
3275 		/*
3276 		 * Now, either mark the blocks I/O done or mark the
3277 		 * blocks dirty, depending on whether the commit
3278 		 * succeeded.
3279 		 */
3280 		for (i = 0; i < info->bvsize; ++i) {
3281 			bp = info->bvary[i];
3282 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3283 			if (retv) {
3284 				/*
3285 				 * Error, leave B_DELWRI intact
3286 				 */
3287 				vfs_unbusy_pages(bp);
3288 				bp->b_cmd = BUF_CMD_DONE;
3289 				brelse(bp);
3290 			} else {
3291 				/*
3292 				 * Success, remove B_DELWRI ( bundirty() ).
3293 				 *
3294 				 * b_dirtyoff/b_dirtyend seem to be NFS
3295 				 * specific.  We should probably move that
3296 				 * into bundirty(). XXX
3297 				 *
3298 				 * We are faking an I/O write, we have to
3299 				 * start the transaction in order to
3300 				 * immediately biodone() it.
3301 				 */
3302 				bundirty(bp);
3303 				bp->b_flags &= ~B_ERROR;
3304 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3305 				biodone(&bp->b_bio1);
3306 			}
3307 		}
3308 		info->bvsize = 0;
3309 	}
3310 	return (error);
3311 }
3312 
3313 /*
3314  * NFS advisory byte-level locks.
3315  * Currently unsupported.
3316  *
3317  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3318  *		int a_flags)
3319  */
3320 static int
3321 nfs_advlock(struct vop_advlock_args *ap)
3322 {
3323 	struct nfsnode *np = VTONFS(ap->a_vp);
3324 
3325 	/*
3326 	 * The following kludge is to allow diskless support to work
3327 	 * until a real NFS lockd is implemented. Basically, just pretend
3328 	 * that this is a local lock.
3329 	 */
3330 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3331 }
3332 
3333 /*
3334  * Print out the contents of an nfsnode.
3335  *
3336  * nfs_print(struct vnode *a_vp)
3337  */
3338 static int
3339 nfs_print(struct vop_print_args *ap)
3340 {
3341 	struct vnode *vp = ap->a_vp;
3342 	struct nfsnode *np = VTONFS(vp);
3343 
3344 	kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3345 		(long long)np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3346 	if (vp->v_type == VFIFO)
3347 		fifo_printinfo(vp);
3348 	kprintf("\n");
3349 	return (0);
3350 }
3351 
3352 /*
3353  * nfs special file access vnode op.
3354  *
3355  * nfs_laccess(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3356  */
3357 static int
3358 nfs_laccess(struct vop_access_args *ap)
3359 {
3360 	struct vattr vattr;
3361 	int error;
3362 
3363 	error = VOP_GETATTR(ap->a_vp, &vattr);
3364 	if (!error)
3365 		error = vop_helper_access(ap, vattr.va_uid, vattr.va_gid,
3366 				vattr.va_mode, 0);
3367 	return (error);
3368 }
3369 
3370 /*
3371  * Read wrapper for fifos.
3372  *
3373  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3374  *		struct ucred *a_cred)
3375  */
3376 static int
3377 nfsfifo_read(struct vop_read_args *ap)
3378 {
3379 	struct nfsnode *np = VTONFS(ap->a_vp);
3380 
3381 	/*
3382 	 * Set access flag.
3383 	 */
3384 	np->n_flag |= NACC;
3385 	getnanotime(&np->n_atim);
3386 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3387 }
3388 
3389 /*
3390  * Write wrapper for fifos.
3391  *
3392  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3393  *		 struct ucred *a_cred)
3394  */
3395 static int
3396 nfsfifo_write(struct vop_write_args *ap)
3397 {
3398 	struct nfsnode *np = VTONFS(ap->a_vp);
3399 
3400 	/*
3401 	 * Set update flag.
3402 	 */
3403 	np->n_flag |= NUPD;
3404 	getnanotime(&np->n_mtim);
3405 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3406 }
3407 
3408 /*
3409  * Close wrapper for fifos.
3410  *
3411  * Update the times on the nfsnode then do fifo close.
3412  *
3413  * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3414  */
3415 static int
3416 nfsfifo_close(struct vop_close_args *ap)
3417 {
3418 	struct vnode *vp = ap->a_vp;
3419 	struct nfsnode *np = VTONFS(vp);
3420 	struct vattr vattr;
3421 	struct timespec ts;
3422 
3423 	if (np->n_flag & (NACC | NUPD)) {
3424 		getnanotime(&ts);
3425 		if (np->n_flag & NACC)
3426 			np->n_atim = ts;
3427 		if (np->n_flag & NUPD)
3428 			np->n_mtim = ts;
3429 		np->n_flag |= NCHG;
3430 		if (vp->v_sysref.refcnt == 1 &&
3431 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3432 			VATTR_NULL(&vattr);
3433 			if (np->n_flag & NACC)
3434 				vattr.va_atime = np->n_atim;
3435 			if (np->n_flag & NUPD)
3436 				vattr.va_mtime = np->n_mtim;
3437 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3438 		}
3439 	}
3440 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3441 }
3442 
3443