xref: /dflybsd-src/sys/vfs/nfs/nfs_vnops.c (revision b792147d2d9a225bb5c9a0d9ab69d4dbf010979e)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.80 2008/10/18 01:13:54 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsspec_read (struct vop_read_args *);
98 static int	nfsspec_write (struct vop_write_args *);
99 static int	nfsfifo_read (struct vop_read_args *);
100 static int	nfsfifo_write (struct vop_write_args *);
101 static int	nfsspec_close (struct vop_close_args *);
102 static int	nfsfifo_close (struct vop_close_args *);
103 #define nfs_poll vop_nopoll
104 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
105 static	int	nfs_lookup (struct vop_old_lookup_args *);
106 static	int	nfs_create (struct vop_old_create_args *);
107 static	int	nfs_mknod (struct vop_old_mknod_args *);
108 static	int	nfs_open (struct vop_open_args *);
109 static	int	nfs_close (struct vop_close_args *);
110 static	int	nfs_access (struct vop_access_args *);
111 static	int	nfs_getattr (struct vop_getattr_args *);
112 static	int	nfs_setattr (struct vop_setattr_args *);
113 static	int	nfs_read (struct vop_read_args *);
114 static	int	nfs_mmap (struct vop_mmap_args *);
115 static	int	nfs_fsync (struct vop_fsync_args *);
116 static	int	nfs_remove (struct vop_old_remove_args *);
117 static	int	nfs_link (struct vop_old_link_args *);
118 static	int	nfs_rename (struct vop_old_rename_args *);
119 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
120 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
121 static	int	nfs_symlink (struct vop_old_symlink_args *);
122 static	int	nfs_readdir (struct vop_readdir_args *);
123 static	int	nfs_bmap (struct vop_bmap_args *);
124 static	int	nfs_strategy (struct vop_strategy_args *);
125 static	int	nfs_lookitup (struct vnode *, const char *, int,
126 			struct ucred *, struct thread *, struct nfsnode **);
127 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
128 static int	nfsspec_access (struct vop_access_args *);
129 static int	nfs_readlink (struct vop_readlink_args *);
130 static int	nfs_print (struct vop_print_args *);
131 static int	nfs_advlock (struct vop_advlock_args *);
132 
133 static	int	nfs_nresolve (struct vop_nresolve_args *);
134 /*
135  * Global vfs data structures for nfs
136  */
137 struct vop_ops nfsv2_vnode_vops = {
138 	.vop_default =		vop_defaultop,
139 	.vop_access =		nfs_access,
140 	.vop_advlock =		nfs_advlock,
141 	.vop_bmap =		nfs_bmap,
142 	.vop_close =		nfs_close,
143 	.vop_old_create =	nfs_create,
144 	.vop_fsync =		nfs_fsync,
145 	.vop_getattr =		nfs_getattr,
146 	.vop_getpages =		nfs_getpages,
147 	.vop_putpages =		nfs_putpages,
148 	.vop_inactive =		nfs_inactive,
149 	.vop_old_link =		nfs_link,
150 	.vop_old_lookup =	nfs_lookup,
151 	.vop_old_mkdir =	nfs_mkdir,
152 	.vop_old_mknod =	nfs_mknod,
153 	.vop_mmap =		nfs_mmap,
154 	.vop_open =		nfs_open,
155 	.vop_poll =		nfs_poll,
156 	.vop_print =		nfs_print,
157 	.vop_read =		nfs_read,
158 	.vop_readdir =		nfs_readdir,
159 	.vop_readlink =		nfs_readlink,
160 	.vop_reclaim =		nfs_reclaim,
161 	.vop_old_remove =	nfs_remove,
162 	.vop_old_rename =	nfs_rename,
163 	.vop_old_rmdir =	nfs_rmdir,
164 	.vop_setattr =		nfs_setattr,
165 	.vop_strategy =		nfs_strategy,
166 	.vop_old_symlink =	nfs_symlink,
167 	.vop_write =		nfs_write,
168 	.vop_nresolve =		nfs_nresolve
169 };
170 
171 /*
172  * Special device vnode ops
173  */
174 struct vop_ops nfsv2_spec_vops = {
175 	.vop_default =		spec_vnoperate,
176 	.vop_access =		nfsspec_access,
177 	.vop_close =		nfsspec_close,
178 	.vop_fsync =		nfs_fsync,
179 	.vop_getattr =		nfs_getattr,
180 	.vop_inactive =		nfs_inactive,
181 	.vop_print =		nfs_print,
182 	.vop_read =		nfsspec_read,
183 	.vop_reclaim =		nfs_reclaim,
184 	.vop_setattr =		nfs_setattr,
185 	.vop_write =		nfsspec_write
186 };
187 
188 struct vop_ops nfsv2_fifo_vops = {
189 	.vop_default =		fifo_vnoperate,
190 	.vop_access =		nfsspec_access,
191 	.vop_close =		nfsfifo_close,
192 	.vop_fsync =		nfs_fsync,
193 	.vop_getattr =		nfs_getattr,
194 	.vop_inactive =		nfs_inactive,
195 	.vop_print =		nfs_print,
196 	.vop_read =		nfsfifo_read,
197 	.vop_reclaim =		nfs_reclaim,
198 	.vop_setattr =		nfs_setattr,
199 	.vop_write =		nfsfifo_write
200 };
201 
202 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
203 				  struct componentname *cnp,
204 				  struct vattr *vap);
205 static int	nfs_removerpc (struct vnode *dvp, const char *name,
206 				   int namelen,
207 				   struct ucred *cred, struct thread *td);
208 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
209 				   int fnamelen, struct vnode *tdvp,
210 				   const char *tnameptr, int tnamelen,
211 				   struct ucred *cred, struct thread *td);
212 static int	nfs_renameit (struct vnode *sdvp,
213 				  struct componentname *scnp,
214 				  struct sillyrename *sp);
215 
216 /*
217  * Global variables
218  */
219 extern u_int32_t nfs_true, nfs_false;
220 extern u_int32_t nfs_xdrneg1;
221 extern struct nfsstats nfsstats;
222 extern nfstype nfsv3_type[9];
223 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
224 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
225 int nfs_numasync = 0;
226 
227 SYSCTL_DECL(_vfs_nfs);
228 
229 static int nfs_flush_on_rename = 1;
230 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
231 	   &nfs_flush_on_rename, 0, "flush fvp prior to rename");
232 static int nfs_flush_on_hlink = 0;
233 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW,
234 	   &nfs_flush_on_hlink, 0, "flush fvp prior to hard link");
235 
236 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
237 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
238 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
239 
240 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
241 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
242 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
243 
244 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
245 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
246 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
247 
248 static int	nfsv3_commit_on_close = 0;
249 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
250 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
251 #if 0
252 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
253 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
254 
255 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
256 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
257 #endif
258 
259 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
260 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
261 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
262 static int
263 nfs3_access_otw(struct vnode *vp, int wmode,
264 		struct thread *td, struct ucred *cred)
265 {
266 	const int v3 = 1;
267 	u_int32_t *tl;
268 	int error = 0, attrflag;
269 
270 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
271 	caddr_t bpos, dpos, cp2;
272 	int32_t t1, t2;
273 	caddr_t cp;
274 	u_int32_t rmode;
275 	struct nfsnode *np = VTONFS(vp);
276 
277 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
278 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
279 	nfsm_fhtom(vp, v3);
280 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
281 	*tl = txdr_unsigned(wmode);
282 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
283 	nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
284 	if (!error) {
285 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
286 		rmode = fxdr_unsigned(u_int32_t, *tl);
287 		np->n_mode = rmode;
288 		np->n_modeuid = cred->cr_uid;
289 		np->n_modestamp = mycpu->gd_time_seconds;
290 	}
291 	m_freem(mrep);
292 nfsmout:
293 	return error;
294 }
295 
296 /*
297  * nfs access vnode op.
298  * For nfs version 2, just return ok. File accesses may fail later.
299  * For nfs version 3, use the access rpc to check accessibility. If file modes
300  * are changed on the server, accesses might still fail later.
301  *
302  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
303  */
304 static int
305 nfs_access(struct vop_access_args *ap)
306 {
307 	struct vnode *vp = ap->a_vp;
308 	thread_t td = curthread;
309 	int error = 0;
310 	u_int32_t mode, wmode;
311 	int v3 = NFS_ISV3(vp);
312 	struct nfsnode *np = VTONFS(vp);
313 
314 	/*
315 	 * Disallow write attempts on filesystems mounted read-only;
316 	 * unless the file is a socket, fifo, or a block or character
317 	 * device resident on the filesystem.
318 	 */
319 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
320 		switch (vp->v_type) {
321 		case VREG:
322 		case VDIR:
323 		case VLNK:
324 			return (EROFS);
325 		default:
326 			break;
327 		}
328 	}
329 	/*
330 	 * For nfs v3, check to see if we have done this recently, and if
331 	 * so return our cached result instead of making an ACCESS call.
332 	 * If not, do an access rpc, otherwise you are stuck emulating
333 	 * ufs_access() locally using the vattr. This may not be correct,
334 	 * since the server may apply other access criteria such as
335 	 * client uid-->server uid mapping that we do not know about.
336 	 */
337 	if (v3) {
338 		if (ap->a_mode & VREAD)
339 			mode = NFSV3ACCESS_READ;
340 		else
341 			mode = 0;
342 		if (vp->v_type != VDIR) {
343 			if (ap->a_mode & VWRITE)
344 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
345 			if (ap->a_mode & VEXEC)
346 				mode |= NFSV3ACCESS_EXECUTE;
347 		} else {
348 			if (ap->a_mode & VWRITE)
349 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
350 					 NFSV3ACCESS_DELETE);
351 			if (ap->a_mode & VEXEC)
352 				mode |= NFSV3ACCESS_LOOKUP;
353 		}
354 		/* XXX safety belt, only make blanket request if caching */
355 		if (nfsaccess_cache_timeout > 0) {
356 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
357 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
358 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
359 		} else {
360 			wmode = mode;
361 		}
362 
363 		/*
364 		 * Does our cached result allow us to give a definite yes to
365 		 * this request?
366 		 */
367 		if (np->n_modestamp &&
368 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
369 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
370 		   ((np->n_mode & mode) == mode)) {
371 			nfsstats.accesscache_hits++;
372 		} else {
373 			/*
374 			 * Either a no, or a don't know.  Go to the wire.
375 			 */
376 			nfsstats.accesscache_misses++;
377 		        error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
378 			if (!error) {
379 				if ((np->n_mode & mode) != mode) {
380 					error = EACCES;
381 				}
382 			}
383 		}
384 	} else {
385 		if ((error = nfsspec_access(ap)) != 0)
386 			return (error);
387 
388 		/*
389 		 * Attempt to prevent a mapped root from accessing a file
390 		 * which it shouldn't.  We try to read a byte from the file
391 		 * if the user is root and the file is not zero length.
392 		 * After calling nfsspec_access, we should have the correct
393 		 * file size cached.
394 		 */
395 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
396 		    && VTONFS(vp)->n_size > 0) {
397 			struct iovec aiov;
398 			struct uio auio;
399 			char buf[1];
400 
401 			aiov.iov_base = buf;
402 			aiov.iov_len = 1;
403 			auio.uio_iov = &aiov;
404 			auio.uio_iovcnt = 1;
405 			auio.uio_offset = 0;
406 			auio.uio_resid = 1;
407 			auio.uio_segflg = UIO_SYSSPACE;
408 			auio.uio_rw = UIO_READ;
409 			auio.uio_td = td;
410 
411 			if (vp->v_type == VREG) {
412 				error = nfs_readrpc(vp, &auio);
413 			} else if (vp->v_type == VDIR) {
414 				char* bp;
415 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
416 				aiov.iov_base = bp;
417 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
418 				error = nfs_readdirrpc(vp, &auio);
419 				kfree(bp, M_TEMP);
420 			} else if (vp->v_type == VLNK) {
421 				error = nfs_readlinkrpc(vp, &auio);
422 			} else {
423 				error = EACCES;
424 			}
425 		}
426 	}
427 	/*
428 	 * [re]record creds for reading and/or writing if access
429 	 * was granted.  Assume the NFS server will grant read access
430 	 * for execute requests.
431 	 */
432 	if (error == 0) {
433 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
434 			crhold(ap->a_cred);
435 			if (np->n_rucred)
436 				crfree(np->n_rucred);
437 			np->n_rucred = ap->a_cred;
438 		}
439 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
440 			crhold(ap->a_cred);
441 			if (np->n_wucred)
442 				crfree(np->n_wucred);
443 			np->n_wucred = ap->a_cred;
444 		}
445 	}
446 	return(error);
447 }
448 
449 /*
450  * nfs open vnode op
451  * Check to see if the type is ok
452  * and that deletion is not in progress.
453  * For paged in text files, you will need to flush the page cache
454  * if consistency is lost.
455  *
456  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
457  *	    struct file *a_fp)
458  */
459 /* ARGSUSED */
460 static int
461 nfs_open(struct vop_open_args *ap)
462 {
463 	struct vnode *vp = ap->a_vp;
464 	struct nfsnode *np = VTONFS(vp);
465 	struct vattr vattr;
466 	int error;
467 
468 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
469 #ifdef DIAGNOSTIC
470 		kprintf("open eacces vtyp=%d\n",vp->v_type);
471 #endif
472 		return (EOPNOTSUPP);
473 	}
474 
475 	/*
476 	 * Save valid creds for reading and writing for later RPCs.
477 	 */
478 	if ((ap->a_mode & FREAD) && ap->a_cred != np->n_rucred) {
479 		crhold(ap->a_cred);
480 		if (np->n_rucred)
481 			crfree(np->n_rucred);
482 		np->n_rucred = ap->a_cred;
483 	}
484 	if ((ap->a_mode & FWRITE) && ap->a_cred != np->n_wucred) {
485 		crhold(ap->a_cred);
486 		if (np->n_wucred)
487 			crfree(np->n_wucred);
488 		np->n_wucred = ap->a_cred;
489 	}
490 
491 	/*
492 	 * Clear the attribute cache only if opening with write access.  It
493 	 * is unclear if we should do this at all here, but we certainly
494 	 * should not clear the cache unconditionally simply because a file
495 	 * is being opened.
496 	 */
497 	if (ap->a_mode & FWRITE)
498 		np->n_attrstamp = 0;
499 
500 	/*
501 	 * For normal NFS, reconcile changes made locally verses
502 	 * changes made remotely.  Note that VOP_GETATTR only goes
503 	 * to the wire if the cached attribute has timed out or been
504 	 * cleared.
505 	 *
506 	 * If local modifications have been made clear the attribute
507 	 * cache to force an attribute and modified time check.  If
508 	 * GETATTR detects that the file has been changed by someone
509 	 * other then us it will set NRMODIFIED.
510 	 *
511 	 * If we are opening a directory and local changes have been
512 	 * made we have to invalidate the cache in order to ensure
513 	 * that we get the most up-to-date information from the
514 	 * server.  XXX
515 	 */
516 	if (np->n_flag & NLMODIFIED) {
517 		np->n_attrstamp = 0;
518 		if (vp->v_type == VDIR) {
519 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
520 			if (error == EINTR)
521 				return (error);
522 			nfs_invaldir(vp);
523 		}
524 	}
525 	error = VOP_GETATTR(vp, &vattr);
526 	if (error)
527 		return (error);
528 	if (np->n_flag & NRMODIFIED) {
529 		if (vp->v_type == VDIR)
530 			nfs_invaldir(vp);
531 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
532 		if (error == EINTR)
533 			return (error);
534 		np->n_flag &= ~NRMODIFIED;
535 	}
536 
537 	return (vop_stdopen(ap));
538 }
539 
540 /*
541  * nfs close vnode op
542  * What an NFS client should do upon close after writing is a debatable issue.
543  * Most NFS clients push delayed writes to the server upon close, basically for
544  * two reasons:
545  * 1 - So that any write errors may be reported back to the client process
546  *     doing the close system call. By far the two most likely errors are
547  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
548  * 2 - To put a worst case upper bound on cache inconsistency between
549  *     multiple clients for the file.
550  * There is also a consistency problem for Version 2 of the protocol w.r.t.
551  * not being able to tell if other clients are writing a file concurrently,
552  * since there is no way of knowing if the changed modify time in the reply
553  * is only due to the write for this client.
554  * (NFS Version 3 provides weak cache consistency data in the reply that
555  *  should be sufficient to detect and handle this case.)
556  *
557  * The current code does the following:
558  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
559  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
560  *                     or commit them (this satisfies 1 and 2 except for the
561  *                     case where the server crashes after this close but
562  *                     before the commit RPC, which is felt to be "good
563  *                     enough". Changing the last argument to nfs_flush() to
564  *                     a 1 would force a commit operation, if it is felt a
565  *                     commit is necessary now.
566  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
567  *                     1 should be dealt with via an fsync() system call for
568  *                     cases where write errors are important.
569  *
570  * nfs_close(struct vnode *a_vp, int a_fflag)
571  */
572 /* ARGSUSED */
573 static int
574 nfs_close(struct vop_close_args *ap)
575 {
576 	struct vnode *vp = ap->a_vp;
577 	struct nfsnode *np = VTONFS(vp);
578 	int error = 0;
579 	thread_t td = curthread;
580 
581 	if (vp->v_type == VREG) {
582 	    if (np->n_flag & NLMODIFIED) {
583 		if (NFS_ISV3(vp)) {
584 		    /*
585 		     * Under NFSv3 we have dirty buffers to dispose of.  We
586 		     * must flush them to the NFS server.  We have the option
587 		     * of waiting all the way through the commit rpc or just
588 		     * waiting for the initial write.  The default is to only
589 		     * wait through the initial write so the data is in the
590 		     * server's cache, which is roughly similar to the state
591 		     * a standard disk subsystem leaves the file in on close().
592 		     *
593 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
594 		     * potential races with other processes, and certainly
595 		     * cannot clear it if we don't commit.
596 		     */
597 		    int cm = nfsv3_commit_on_close ? 1 : 0;
598 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
599 		    /* np->n_flag &= ~NLMODIFIED; */
600 		} else {
601 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
602 		}
603 		np->n_attrstamp = 0;
604 	    }
605 	    if (np->n_flag & NWRITEERR) {
606 		np->n_flag &= ~NWRITEERR;
607 		error = np->n_error;
608 	    }
609 	}
610 	vop_stdclose(ap);
611 	return (error);
612 }
613 
614 /*
615  * nfs getattr call from vfs.
616  *
617  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
618  */
619 static int
620 nfs_getattr(struct vop_getattr_args *ap)
621 {
622 	struct vnode *vp = ap->a_vp;
623 	struct nfsnode *np = VTONFS(vp);
624 	caddr_t cp;
625 	u_int32_t *tl;
626 	int32_t t1, t2;
627 	caddr_t bpos, dpos;
628 	int error = 0;
629 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
630 	int v3 = NFS_ISV3(vp);
631 	thread_t td = curthread;
632 
633 	/*
634 	 * Update local times for special files.
635 	 */
636 	if (np->n_flag & (NACC | NUPD))
637 		np->n_flag |= NCHG;
638 	/*
639 	 * First look in the cache.
640 	 */
641 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
642 		return (0);
643 
644 	if (v3 && nfsaccess_cache_timeout > 0) {
645 		nfsstats.accesscache_misses++;
646 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
647 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
648 			return (0);
649 	}
650 
651 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
652 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
653 	nfsm_fhtom(vp, v3);
654 	nfsm_request(vp, NFSPROC_GETATTR, td, nfs_vpcred(vp, ND_CHECK));
655 	if (!error) {
656 		nfsm_loadattr(vp, ap->a_vap);
657 	}
658 	m_freem(mrep);
659 nfsmout:
660 	return (error);
661 }
662 
663 /*
664  * nfs setattr call.
665  *
666  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
667  */
668 static int
669 nfs_setattr(struct vop_setattr_args *ap)
670 {
671 	struct vnode *vp = ap->a_vp;
672 	struct nfsnode *np = VTONFS(vp);
673 	struct vattr *vap = ap->a_vap;
674 	int error = 0;
675 	u_quad_t tsize;
676 	thread_t td = curthread;
677 
678 #ifndef nolint
679 	tsize = (u_quad_t)0;
680 #endif
681 
682 	/*
683 	 * Setting of flags is not supported.
684 	 */
685 	if (vap->va_flags != VNOVAL)
686 		return (EOPNOTSUPP);
687 
688 	/*
689 	 * Disallow write attempts if the filesystem is mounted read-only.
690 	 */
691   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
692 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
693 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
694 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
695 		return (EROFS);
696 
697 	if (vap->va_size != VNOVAL) {
698 		/*
699 		 * truncation requested
700 		 */
701  		switch (vp->v_type) {
702  		case VDIR:
703  			return (EISDIR);
704  		case VCHR:
705  		case VBLK:
706  		case VSOCK:
707  		case VFIFO:
708 			if (vap->va_mtime.tv_sec == VNOVAL &&
709 			    vap->va_atime.tv_sec == VNOVAL &&
710 			    vap->va_mode == (mode_t)VNOVAL &&
711 			    vap->va_uid == (uid_t)VNOVAL &&
712 			    vap->va_gid == (gid_t)VNOVAL)
713 				return (0);
714  			vap->va_size = VNOVAL;
715  			break;
716  		default:
717 			/*
718 			 * Disallow write attempts if the filesystem is
719 			 * mounted read-only.
720 			 */
721 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
722 				return (EROFS);
723 
724 			/*
725 			 * This is nasty.  The RPCs we send to flush pending
726 			 * data often return attribute information which is
727 			 * cached via a callback to nfs_loadattrcache(), which
728 			 * has the effect of changing our notion of the file
729 			 * size.  Due to flushed appends and other operations
730 			 * the file size can be set to virtually anything,
731 			 * including values that do not match either the old
732 			 * or intended file size.
733 			 *
734 			 * When this condition is detected we must loop to
735 			 * try the operation again.  Hopefully no more
736 			 * flushing is required on the loop so it works the
737 			 * second time around.  THIS CASE ALMOST ALWAYS
738 			 * HAPPENS!
739 			 */
740 			tsize = np->n_size;
741 again:
742 			error = nfs_meta_setsize(vp, td, vap->va_size);
743 
744  			if (np->n_flag & NLMODIFIED) {
745  			    if (vap->va_size == 0)
746  				error = nfs_vinvalbuf(vp, 0, 1);
747  			    else
748  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
749  			}
750 			/*
751 			 * note: this loop case almost always happens at
752 			 * least once per truncation.
753 			 */
754 			if (error == 0 && np->n_size != vap->va_size)
755 				goto again;
756 			np->n_vattr.va_size = vap->va_size;
757 			break;
758 		}
759 	} else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
760 		/*
761 		 * What to do.  If we are modifying the mtime we lose
762 		 * mtime detection of changes made by the server or other
763 		 * clients.  But programs like rsync/rdist/cpdup are going
764 		 * to call utimes a lot.  We don't want to piecemeal sync.
765 		 *
766 		 * For now sync if any prior remote changes were detected,
767 		 * but allow us to lose track of remote changes made during
768 		 * the utimes operation.
769 		 */
770 		if (np->n_flag & NRMODIFIED)
771 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
772 		if (error == EINTR)
773 			return (error);
774 		if (error == 0) {
775 			if (vap->va_mtime.tv_sec != VNOVAL) {
776 				np->n_mtime = vap->va_mtime.tv_sec;
777 			}
778 		}
779 	}
780 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
781 
782 	/*
783 	 * Sanity check if a truncation was issued.  This should only occur
784 	 * if multiple processes are racing on the same file.
785 	 */
786 	if (error == 0 && vap->va_size != VNOVAL &&
787 	    np->n_size != vap->va_size) {
788 		kprintf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size);
789 		goto again;
790 	}
791 	if (error && vap->va_size != VNOVAL) {
792 		np->n_size = np->n_vattr.va_size = tsize;
793 		vnode_pager_setsize(vp, np->n_size);
794 	}
795 	return (error);
796 }
797 
798 /*
799  * Do an nfs setattr rpc.
800  */
801 static int
802 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
803 	       struct ucred *cred, struct thread *td)
804 {
805 	struct nfsv2_sattr *sp;
806 	struct nfsnode *np = VTONFS(vp);
807 	caddr_t cp;
808 	int32_t t1, t2;
809 	caddr_t bpos, dpos, cp2;
810 	u_int32_t *tl;
811 	int error = 0, wccflag = NFSV3_WCCRATTR;
812 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
813 	int v3 = NFS_ISV3(vp);
814 
815 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
816 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
817 	nfsm_fhtom(vp, v3);
818 	if (v3) {
819 		nfsm_v3attrbuild(vap, TRUE);
820 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
821 		*tl = nfs_false;
822 	} else {
823 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
824 		if (vap->va_mode == (mode_t)VNOVAL)
825 			sp->sa_mode = nfs_xdrneg1;
826 		else
827 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
828 		if (vap->va_uid == (uid_t)VNOVAL)
829 			sp->sa_uid = nfs_xdrneg1;
830 		else
831 			sp->sa_uid = txdr_unsigned(vap->va_uid);
832 		if (vap->va_gid == (gid_t)VNOVAL)
833 			sp->sa_gid = nfs_xdrneg1;
834 		else
835 			sp->sa_gid = txdr_unsigned(vap->va_gid);
836 		sp->sa_size = txdr_unsigned(vap->va_size);
837 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
838 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
839 	}
840 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
841 	if (v3) {
842 		np->n_modestamp = 0;
843 		nfsm_wcc_data(vp, wccflag);
844 	} else
845 		nfsm_loadattr(vp, NULL);
846 	m_freem(mrep);
847 nfsmout:
848 	return (error);
849 }
850 
851 static
852 void
853 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
854 {
855 	if (nctimeout == 0)
856 		nctimeout = 1;
857 	else
858 		nctimeout *= hz;
859 	cache_setvp(nch, vp);
860 	cache_settimeout(nch, nctimeout);
861 }
862 
863 /*
864  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
865  * nfs_lookup() until all remaining new api calls are implemented.
866  *
867  * Resolve a namecache entry.  This function is passed a locked ncp and
868  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
869  */
870 static int
871 nfs_nresolve(struct vop_nresolve_args *ap)
872 {
873 	struct thread *td = curthread;
874 	struct namecache *ncp;
875 	struct ucred *cred;
876 	struct nfsnode *np;
877 	struct vnode *dvp;
878 	struct vnode *nvp;
879 	nfsfh_t *fhp;
880 	int attrflag;
881 	int fhsize;
882 	int error;
883 	int len;
884 	int v3;
885 	/******NFSM MACROS********/
886 	struct mbuf *mb, *mrep, *mreq, *mb2, *md;
887 	caddr_t bpos, dpos, cp, cp2;
888 	u_int32_t *tl;
889 	int32_t t1, t2;
890 
891 	cred = ap->a_cred;
892 	dvp = ap->a_dvp;
893 
894 	if ((error = vget(dvp, LK_SHARED)) != 0)
895 		return (error);
896 
897 	nvp = NULL;
898 	v3 = NFS_ISV3(dvp);
899 	nfsstats.lookupcache_misses++;
900 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
901 	ncp = ap->a_nch->ncp;
902 	len = ncp->nc_nlen;
903 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
904 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
905 	nfsm_fhtom(dvp, v3);
906 	nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
907 	nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
908 	if (error) {
909 		/*
910 		 * Cache negatve lookups to reduce NFS traffic, but use
911 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
912 		 * XXX we should add a namecache flag for no-caching
913 		 * to uncache the negative hit as soon as possible, but
914 		 * we cannot simply destroy the entry because it is used
915 		 * as a placeholder by the caller.
916 		 */
917 		if (error == ENOENT)
918 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
919 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
920 		m_freem(mrep);
921 		goto nfsmout;
922 	}
923 
924 	/*
925 	 * Success, get the file handle, do various checks, and load
926 	 * post-operation data from the reply packet.  Theoretically
927 	 * we should never be looking up "." so, theoretically, we
928 	 * should never get the same file handle as our directory.  But
929 	 * we check anyway. XXX
930 	 *
931 	 * Note that no timeout is set for the positive cache hit.  We
932 	 * assume, theoretically, that ESTALE returns will be dealt with
933 	 * properly to handle NFS races and in anycase we cannot depend
934 	 * on a timeout to deal with NFS open/create/excl issues so instead
935 	 * of a bad hack here the rest of the NFS client code needs to do
936 	 * the right thing.
937 	 */
938 	nfsm_getfh(fhp, fhsize, v3);
939 
940 	np = VTONFS(dvp);
941 	if (NFS_CMPFH(np, fhp, fhsize)) {
942 		vref(dvp);
943 		nvp = dvp;
944 	} else {
945 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
946 		if (error) {
947 			m_freem(mrep);
948 			vput(dvp);
949 			return (error);
950 		}
951 		nvp = NFSTOV(np);
952 	}
953 	if (v3) {
954 		nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
955 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
956 	} else {
957 		nfsm_loadattr(nvp, NULL);
958 	}
959 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
960 	m_freem(mrep);
961 nfsmout:
962 	vput(dvp);
963 	if (nvp) {
964 		if (nvp == dvp)
965 			vrele(nvp);
966 		else
967 			vput(nvp);
968 	}
969 	return (error);
970 }
971 
972 /*
973  * 'cached' nfs directory lookup
974  *
975  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
976  *
977  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
978  *	      struct componentname *a_cnp)
979  */
980 static int
981 nfs_lookup(struct vop_old_lookup_args *ap)
982 {
983 	struct componentname *cnp = ap->a_cnp;
984 	struct vnode *dvp = ap->a_dvp;
985 	struct vnode **vpp = ap->a_vpp;
986 	int flags = cnp->cn_flags;
987 	struct vnode *newvp;
988 	u_int32_t *tl;
989 	caddr_t cp;
990 	int32_t t1, t2;
991 	struct nfsmount *nmp;
992 	caddr_t bpos, dpos, cp2;
993 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
994 	long len;
995 	nfsfh_t *fhp;
996 	struct nfsnode *np;
997 	int lockparent, wantparent, error = 0, attrflag, fhsize;
998 	int v3 = NFS_ISV3(dvp);
999 
1000 	/*
1001 	 * Read-only mount check and directory check.
1002 	 */
1003 	*vpp = NULLVP;
1004 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
1005 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
1006 		return (EROFS);
1007 
1008 	if (dvp->v_type != VDIR)
1009 		return (ENOTDIR);
1010 
1011 	/*
1012 	 * Look it up in the cache.  Note that ENOENT is only returned if we
1013 	 * previously entered a negative hit (see later on).  The additional
1014 	 * nfsneg_cache_timeout check causes previously cached results to
1015 	 * be instantly ignored if the negative caching is turned off.
1016 	 */
1017 	lockparent = flags & CNP_LOCKPARENT;
1018 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1019 	nmp = VFSTONFS(dvp->v_mount);
1020 	np = VTONFS(dvp);
1021 
1022 	/*
1023 	 * Go to the wire.
1024 	 */
1025 	error = 0;
1026 	newvp = NULLVP;
1027 	nfsstats.lookupcache_misses++;
1028 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1029 	len = cnp->cn_namelen;
1030 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
1031 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1032 	nfsm_fhtom(dvp, v3);
1033 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1034 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
1035 	if (error) {
1036 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1037 		m_freem(mrep);
1038 		goto nfsmout;
1039 	}
1040 	nfsm_getfh(fhp, fhsize, v3);
1041 
1042 	/*
1043 	 * Handle RENAME case...
1044 	 */
1045 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1046 		if (NFS_CMPFH(np, fhp, fhsize)) {
1047 			m_freem(mrep);
1048 			return (EISDIR);
1049 		}
1050 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1051 		if (error) {
1052 			m_freem(mrep);
1053 			return (error);
1054 		}
1055 		newvp = NFSTOV(np);
1056 		if (v3) {
1057 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1058 			nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1059 		} else
1060 			nfsm_loadattr(newvp, NULL);
1061 		*vpp = newvp;
1062 		m_freem(mrep);
1063 		if (!lockparent) {
1064 			vn_unlock(dvp);
1065 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1066 		}
1067 		return (0);
1068 	}
1069 
1070 	if (flags & CNP_ISDOTDOT) {
1071 		vn_unlock(dvp);
1072 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1073 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1074 		if (error) {
1075 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1076 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1077 			return (error); /* NOTE: return error from nget */
1078 		}
1079 		newvp = NFSTOV(np);
1080 		if (lockparent) {
1081 			error = vn_lock(dvp, LK_EXCLUSIVE);
1082 			if (error) {
1083 				vput(newvp);
1084 				return (error);
1085 			}
1086 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1087 		}
1088 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1089 		vref(dvp);
1090 		newvp = dvp;
1091 	} else {
1092 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1093 		if (error) {
1094 			m_freem(mrep);
1095 			return (error);
1096 		}
1097 		if (!lockparent) {
1098 			vn_unlock(dvp);
1099 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1100 		}
1101 		newvp = NFSTOV(np);
1102 	}
1103 	if (v3) {
1104 		nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1105 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1106 	} else
1107 		nfsm_loadattr(newvp, NULL);
1108 #if 0
1109 	/* XXX MOVE TO nfs_nremove() */
1110 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1111 	    cnp->cn_nameiop != NAMEI_DELETE) {
1112 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1113 	}
1114 #endif
1115 	*vpp = newvp;
1116 	m_freem(mrep);
1117 nfsmout:
1118 	if (error) {
1119 		if (newvp != NULLVP) {
1120 			vrele(newvp);
1121 			*vpp = NULLVP;
1122 		}
1123 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1124 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1125 		    error == ENOENT) {
1126 			if (!lockparent) {
1127 				vn_unlock(dvp);
1128 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1129 			}
1130 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1131 				error = EROFS;
1132 			else
1133 				error = EJUSTRETURN;
1134 		}
1135 	}
1136 	return (error);
1137 }
1138 
1139 /*
1140  * nfs read call.
1141  * Just call nfs_bioread() to do the work.
1142  *
1143  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1144  *	    struct ucred *a_cred)
1145  */
1146 static int
1147 nfs_read(struct vop_read_args *ap)
1148 {
1149 	struct vnode *vp = ap->a_vp;
1150 
1151 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1152 }
1153 
1154 /*
1155  * nfs readlink call
1156  *
1157  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1158  */
1159 static int
1160 nfs_readlink(struct vop_readlink_args *ap)
1161 {
1162 	struct vnode *vp = ap->a_vp;
1163 
1164 	if (vp->v_type != VLNK)
1165 		return (EINVAL);
1166 	return (nfs_bioread(vp, ap->a_uio, 0));
1167 }
1168 
1169 /*
1170  * Do a readlink rpc.
1171  * Called by nfs_doio() from below the buffer cache.
1172  */
1173 int
1174 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1175 {
1176 	u_int32_t *tl;
1177 	caddr_t cp;
1178 	int32_t t1, t2;
1179 	caddr_t bpos, dpos, cp2;
1180 	int error = 0, len, attrflag;
1181 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1182 	int v3 = NFS_ISV3(vp);
1183 
1184 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1185 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1186 	nfsm_fhtom(vp, v3);
1187 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1188 	if (v3)
1189 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1190 	if (!error) {
1191 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1192 		if (len == NFS_MAXPATHLEN) {
1193 			struct nfsnode *np = VTONFS(vp);
1194 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1195 				len = np->n_size;
1196 		}
1197 		nfsm_mtouio(uiop, len);
1198 	}
1199 	m_freem(mrep);
1200 nfsmout:
1201 	return (error);
1202 }
1203 
1204 /*
1205  * nfs read rpc call
1206  * Ditto above
1207  */
1208 int
1209 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1210 {
1211 	u_int32_t *tl;
1212 	caddr_t cp;
1213 	int32_t t1, t2;
1214 	caddr_t bpos, dpos, cp2;
1215 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1216 	struct nfsmount *nmp;
1217 	int error = 0, len, retlen, tsiz, eof, attrflag;
1218 	int v3 = NFS_ISV3(vp);
1219 
1220 #ifndef nolint
1221 	eof = 0;
1222 #endif
1223 	nmp = VFSTONFS(vp->v_mount);
1224 	tsiz = uiop->uio_resid;
1225 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1226 		return (EFBIG);
1227 	while (tsiz > 0) {
1228 		nfsstats.rpccnt[NFSPROC_READ]++;
1229 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1230 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1231 		nfsm_fhtom(vp, v3);
1232 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1233 		if (v3) {
1234 			txdr_hyper(uiop->uio_offset, tl);
1235 			*(tl + 2) = txdr_unsigned(len);
1236 		} else {
1237 			*tl++ = txdr_unsigned(uiop->uio_offset);
1238 			*tl++ = txdr_unsigned(len);
1239 			*tl = 0;
1240 		}
1241 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1242 		if (v3) {
1243 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1244 			if (error) {
1245 				m_freem(mrep);
1246 				goto nfsmout;
1247 			}
1248 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1249 			eof = fxdr_unsigned(int, *(tl + 1));
1250 		} else
1251 			nfsm_loadattr(vp, NULL);
1252 		nfsm_strsiz(retlen, nmp->nm_rsize);
1253 		nfsm_mtouio(uiop, retlen);
1254 		m_freem(mrep);
1255 		tsiz -= retlen;
1256 		if (v3) {
1257 			if (eof || retlen == 0) {
1258 				tsiz = 0;
1259 			}
1260 		} else if (retlen < len) {
1261 			tsiz = 0;
1262 		}
1263 	}
1264 nfsmout:
1265 	return (error);
1266 }
1267 
1268 /*
1269  * nfs write call
1270  */
1271 int
1272 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1273 {
1274 	u_int32_t *tl;
1275 	caddr_t cp;
1276 	int32_t t1, t2, backup;
1277 	caddr_t bpos, dpos, cp2;
1278 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1279 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1280 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1281 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1282 
1283 #ifndef DIAGNOSTIC
1284 	if (uiop->uio_iovcnt != 1)
1285 		panic("nfs: writerpc iovcnt > 1");
1286 #endif
1287 	*must_commit = 0;
1288 	tsiz = uiop->uio_resid;
1289 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1290 		return (EFBIG);
1291 	while (tsiz > 0) {
1292 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1293 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1294 		nfsm_reqhead(vp, NFSPROC_WRITE,
1295 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1296 		nfsm_fhtom(vp, v3);
1297 		if (v3) {
1298 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1299 			txdr_hyper(uiop->uio_offset, tl);
1300 			tl += 2;
1301 			*tl++ = txdr_unsigned(len);
1302 			*tl++ = txdr_unsigned(*iomode);
1303 			*tl = txdr_unsigned(len);
1304 		} else {
1305 			u_int32_t x;
1306 
1307 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1308 			/* Set both "begin" and "current" to non-garbage. */
1309 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1310 			*tl++ = x;	/* "begin offset" */
1311 			*tl++ = x;	/* "current offset" */
1312 			x = txdr_unsigned(len);
1313 			*tl++ = x;	/* total to this offset */
1314 			*tl = x;	/* size of this write */
1315 		}
1316 		nfsm_uiotom(uiop, len);
1317 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1318 		if (v3) {
1319 			/*
1320 			 * The write RPC returns a before and after mtime.  The
1321 			 * nfsm_wcc_data() macro checks the before n_mtime
1322 			 * against the before time and stores the after time
1323 			 * in the nfsnode's cached vattr and n_mtime field.
1324 			 * The NRMODIFIED bit will be set if the before
1325 			 * time did not match the original mtime.
1326 			 */
1327 			wccflag = NFSV3_WCCCHK;
1328 			nfsm_wcc_data(vp, wccflag);
1329 			if (!error) {
1330 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1331 					+ NFSX_V3WRITEVERF);
1332 				rlen = fxdr_unsigned(int, *tl++);
1333 				if (rlen == 0) {
1334 					error = NFSERR_IO;
1335 					m_freem(mrep);
1336 					break;
1337 				} else if (rlen < len) {
1338 					backup = len - rlen;
1339 					uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1340 					uiop->uio_iov->iov_len += backup;
1341 					uiop->uio_offset -= backup;
1342 					uiop->uio_resid += backup;
1343 					len = rlen;
1344 				}
1345 				commit = fxdr_unsigned(int, *tl++);
1346 
1347 				/*
1348 				 * Return the lowest committment level
1349 				 * obtained by any of the RPCs.
1350 				 */
1351 				if (committed == NFSV3WRITE_FILESYNC)
1352 					committed = commit;
1353 				else if (committed == NFSV3WRITE_DATASYNC &&
1354 					commit == NFSV3WRITE_UNSTABLE)
1355 					committed = commit;
1356 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1357 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1358 					NFSX_V3WRITEVERF);
1359 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1360 				} else if (bcmp((caddr_t)tl,
1361 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1362 				    *must_commit = 1;
1363 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1364 					NFSX_V3WRITEVERF);
1365 				}
1366 			}
1367 		} else {
1368 			nfsm_loadattr(vp, NULL);
1369 		}
1370 		m_freem(mrep);
1371 		if (error)
1372 			break;
1373 		tsiz -= len;
1374 	}
1375 nfsmout:
1376 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1377 		committed = NFSV3WRITE_FILESYNC;
1378 	*iomode = committed;
1379 	if (error)
1380 		uiop->uio_resid = tsiz;
1381 	return (error);
1382 }
1383 
1384 /*
1385  * nfs mknod rpc
1386  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1387  * mode set to specify the file type and the size field for rdev.
1388  */
1389 static int
1390 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1391 	     struct vattr *vap)
1392 {
1393 	struct nfsv2_sattr *sp;
1394 	u_int32_t *tl;
1395 	caddr_t cp;
1396 	int32_t t1, t2;
1397 	struct vnode *newvp = NULL;
1398 	struct nfsnode *np = NULL;
1399 	struct vattr vattr;
1400 	char *cp2;
1401 	caddr_t bpos, dpos;
1402 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1403 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1404 	int rmajor, rminor;
1405 	int v3 = NFS_ISV3(dvp);
1406 
1407 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1408 		rmajor = txdr_unsigned(vap->va_rmajor);
1409 		rminor = txdr_unsigned(vap->va_rminor);
1410 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1411 		rmajor = nfs_xdrneg1;
1412 		rminor = nfs_xdrneg1;
1413 	} else {
1414 		return (EOPNOTSUPP);
1415 	}
1416 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1417 		return (error);
1418 	}
1419 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1420 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1421 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1422 	nfsm_fhtom(dvp, v3);
1423 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1424 	if (v3) {
1425 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1426 		*tl++ = vtonfsv3_type(vap->va_type);
1427 		nfsm_v3attrbuild(vap, FALSE);
1428 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1429 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1430 			*tl++ = txdr_unsigned(vap->va_rmajor);
1431 			*tl = txdr_unsigned(vap->va_rminor);
1432 		}
1433 	} else {
1434 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1435 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1436 		sp->sa_uid = nfs_xdrneg1;
1437 		sp->sa_gid = nfs_xdrneg1;
1438 		sp->sa_size = makeudev(rmajor, rminor);
1439 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1440 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1441 	}
1442 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1443 	if (!error) {
1444 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1445 		if (!gotvp) {
1446 			if (newvp) {
1447 				vput(newvp);
1448 				newvp = NULL;
1449 			}
1450 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1451 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1452 			if (!error)
1453 				newvp = NFSTOV(np);
1454 		}
1455 	}
1456 	if (v3)
1457 		nfsm_wcc_data(dvp, wccflag);
1458 	m_freem(mrep);
1459 nfsmout:
1460 	if (error) {
1461 		if (newvp)
1462 			vput(newvp);
1463 	} else {
1464 		*vpp = newvp;
1465 	}
1466 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1467 	if (!wccflag)
1468 		VTONFS(dvp)->n_attrstamp = 0;
1469 	return (error);
1470 }
1471 
1472 /*
1473  * nfs mknod vop
1474  * just call nfs_mknodrpc() to do the work.
1475  *
1476  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1477  *	     struct componentname *a_cnp, struct vattr *a_vap)
1478  */
1479 /* ARGSUSED */
1480 static int
1481 nfs_mknod(struct vop_old_mknod_args *ap)
1482 {
1483 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1484 }
1485 
1486 static u_long create_verf;
1487 /*
1488  * nfs file create call
1489  *
1490  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1491  *	      struct componentname *a_cnp, struct vattr *a_vap)
1492  */
1493 static int
1494 nfs_create(struct vop_old_create_args *ap)
1495 {
1496 	struct vnode *dvp = ap->a_dvp;
1497 	struct vattr *vap = ap->a_vap;
1498 	struct componentname *cnp = ap->a_cnp;
1499 	struct nfsv2_sattr *sp;
1500 	u_int32_t *tl;
1501 	caddr_t cp;
1502 	int32_t t1, t2;
1503 	struct nfsnode *np = NULL;
1504 	struct vnode *newvp = NULL;
1505 	caddr_t bpos, dpos, cp2;
1506 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1507 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1508 	struct vattr vattr;
1509 	int v3 = NFS_ISV3(dvp);
1510 
1511 	/*
1512 	 * Oops, not for me..
1513 	 */
1514 	if (vap->va_type == VSOCK)
1515 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1516 
1517 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1518 		return (error);
1519 	}
1520 	if (vap->va_vaflags & VA_EXCLUSIVE)
1521 		fmode |= O_EXCL;
1522 again:
1523 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1524 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1525 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1526 	nfsm_fhtom(dvp, v3);
1527 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1528 	if (v3) {
1529 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1530 		if (fmode & O_EXCL) {
1531 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1532 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1533 #ifdef INET
1534 			if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1535 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1536 			else
1537 #endif
1538 				*tl++ = create_verf;
1539 			*tl = ++create_verf;
1540 		} else {
1541 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1542 			nfsm_v3attrbuild(vap, FALSE);
1543 		}
1544 	} else {
1545 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1546 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1547 		sp->sa_uid = nfs_xdrneg1;
1548 		sp->sa_gid = nfs_xdrneg1;
1549 		sp->sa_size = 0;
1550 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1551 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1552 	}
1553 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1554 	if (!error) {
1555 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1556 		if (!gotvp) {
1557 			if (newvp) {
1558 				vput(newvp);
1559 				newvp = NULL;
1560 			}
1561 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1562 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1563 			if (!error)
1564 				newvp = NFSTOV(np);
1565 		}
1566 	}
1567 	if (v3)
1568 		nfsm_wcc_data(dvp, wccflag);
1569 	m_freem(mrep);
1570 nfsmout:
1571 	if (error) {
1572 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1573 			KKASSERT(newvp == NULL);
1574 			fmode &= ~O_EXCL;
1575 			goto again;
1576 		}
1577 	} else if (v3 && (fmode & O_EXCL)) {
1578 		/*
1579 		 * We are normally called with only a partially initialized
1580 		 * VAP.  Since the NFSv3 spec says that server may use the
1581 		 * file attributes to store the verifier, the spec requires
1582 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1583 		 * in atime, but we can't really assume that all servers will
1584 		 * so we ensure that our SETATTR sets both atime and mtime.
1585 		 */
1586 		if (vap->va_mtime.tv_sec == VNOVAL)
1587 			vfs_timestamp(&vap->va_mtime);
1588 		if (vap->va_atime.tv_sec == VNOVAL)
1589 			vap->va_atime = vap->va_mtime;
1590 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1591 	}
1592 	if (error == 0) {
1593 		/*
1594 		 * The new np may have enough info for access
1595 		 * checks, make sure rucred and wucred are
1596 		 * initialized for read and write rpc's.
1597 		 */
1598 		np = VTONFS(newvp);
1599 		if (np->n_rucred == NULL)
1600 			np->n_rucred = crhold(cnp->cn_cred);
1601 		if (np->n_wucred == NULL)
1602 			np->n_wucred = crhold(cnp->cn_cred);
1603 		*ap->a_vpp = newvp;
1604 	} else if (newvp) {
1605 		vput(newvp);
1606 	}
1607 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1608 	if (!wccflag)
1609 		VTONFS(dvp)->n_attrstamp = 0;
1610 	return (error);
1611 }
1612 
1613 /*
1614  * nfs file remove call
1615  * To try and make nfs semantics closer to ufs semantics, a file that has
1616  * other processes using the vnode is renamed instead of removed and then
1617  * removed later on the last close.
1618  * - If v_sysref.refcnt > 1
1619  *	  If a rename is not already in the works
1620  *	     call nfs_sillyrename() to set it up
1621  *     else
1622  *	  do the remove rpc
1623  *
1624  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1625  *	      struct componentname *a_cnp)
1626  */
1627 static int
1628 nfs_remove(struct vop_old_remove_args *ap)
1629 {
1630 	struct vnode *vp = ap->a_vp;
1631 	struct vnode *dvp = ap->a_dvp;
1632 	struct componentname *cnp = ap->a_cnp;
1633 	struct nfsnode *np = VTONFS(vp);
1634 	int error = 0;
1635 	struct vattr vattr;
1636 
1637 #ifndef DIAGNOSTIC
1638 	if (vp->v_sysref.refcnt < 1)
1639 		panic("nfs_remove: bad v_sysref.refcnt");
1640 #endif
1641 	if (vp->v_type == VDIR)
1642 		error = EPERM;
1643 	else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1644 	    VOP_GETATTR(vp, &vattr) == 0 &&
1645 	    vattr.va_nlink > 1)) {
1646 		/*
1647 		 * throw away biocache buffers, mainly to avoid
1648 		 * unnecessary delayed writes later.
1649 		 */
1650 		error = nfs_vinvalbuf(vp, 0, 1);
1651 		/* Do the rpc */
1652 		if (error != EINTR)
1653 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1654 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1655 		/*
1656 		 * Kludge City: If the first reply to the remove rpc is lost..
1657 		 *   the reply to the retransmitted request will be ENOENT
1658 		 *   since the file was in fact removed
1659 		 *   Therefore, we cheat and return success.
1660 		 */
1661 		if (error == ENOENT)
1662 			error = 0;
1663 	} else if (!np->n_sillyrename) {
1664 		error = nfs_sillyrename(dvp, vp, cnp);
1665 	}
1666 	np->n_attrstamp = 0;
1667 	return (error);
1668 }
1669 
1670 /*
1671  * nfs file remove rpc called from nfs_inactive
1672  */
1673 int
1674 nfs_removeit(struct sillyrename *sp)
1675 {
1676 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1677 		sp->s_cred, NULL));
1678 }
1679 
1680 /*
1681  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1682  */
1683 static int
1684 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1685 	      struct ucred *cred, struct thread *td)
1686 {
1687 	u_int32_t *tl;
1688 	caddr_t cp;
1689 	int32_t t1, t2;
1690 	caddr_t bpos, dpos, cp2;
1691 	int error = 0, wccflag = NFSV3_WCCRATTR;
1692 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1693 	int v3 = NFS_ISV3(dvp);
1694 
1695 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1696 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1697 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1698 	nfsm_fhtom(dvp, v3);
1699 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1700 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1701 	if (v3)
1702 		nfsm_wcc_data(dvp, wccflag);
1703 	m_freem(mrep);
1704 nfsmout:
1705 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1706 	if (!wccflag)
1707 		VTONFS(dvp)->n_attrstamp = 0;
1708 	return (error);
1709 }
1710 
1711 /*
1712  * nfs file rename call
1713  *
1714  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1715  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1716  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1717  */
1718 static int
1719 nfs_rename(struct vop_old_rename_args *ap)
1720 {
1721 	struct vnode *fvp = ap->a_fvp;
1722 	struct vnode *tvp = ap->a_tvp;
1723 	struct vnode *fdvp = ap->a_fdvp;
1724 	struct vnode *tdvp = ap->a_tdvp;
1725 	struct componentname *tcnp = ap->a_tcnp;
1726 	struct componentname *fcnp = ap->a_fcnp;
1727 	int error;
1728 
1729 	/* Check for cross-device rename */
1730 	if ((fvp->v_mount != tdvp->v_mount) ||
1731 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1732 		error = EXDEV;
1733 		goto out;
1734 	}
1735 
1736 	/*
1737 	 * We shouldn't have to flush fvp on rename for most server-side
1738 	 * filesystems as the file handle should not change.  Unfortunately
1739 	 * the inode for some filesystems (msdosfs) might be tied to the
1740 	 * file name or directory position so to be completely safe
1741 	 * vfs.nfs.flush_on_rename is set by default.  Clear to improve
1742 	 * performance.
1743 	 *
1744 	 * We must flush tvp on rename because it might become stale on the
1745 	 * server after the rename.
1746 	 */
1747 	if (nfs_flush_on_rename)
1748 	    VOP_FSYNC(fvp, MNT_WAIT);
1749 	if (tvp)
1750 	    VOP_FSYNC(tvp, MNT_WAIT);
1751 
1752 	/*
1753 	 * If the tvp exists and is in use, sillyrename it before doing the
1754 	 * rename of the new file over it.
1755 	 *
1756 	 * XXX Can't sillyrename a directory.
1757 	 *
1758 	 * We do not attempt to do any namecache purges in this old API
1759 	 * routine.  The new API compat functions have access to the actual
1760 	 * namecache structures and will do it for us.
1761 	 */
1762 	if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1763 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1764 		vput(tvp);
1765 		tvp = NULL;
1766 	} else if (tvp) {
1767 		;
1768 	}
1769 
1770 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1771 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1772 		tcnp->cn_td);
1773 
1774 out:
1775 	if (tdvp == tvp)
1776 		vrele(tdvp);
1777 	else
1778 		vput(tdvp);
1779 	if (tvp)
1780 		vput(tvp);
1781 	vrele(fdvp);
1782 	vrele(fvp);
1783 	/*
1784 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1785 	 */
1786 	if (error == ENOENT)
1787 		error = 0;
1788 	return (error);
1789 }
1790 
1791 /*
1792  * nfs file rename rpc called from nfs_remove() above
1793  */
1794 static int
1795 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1796 	     struct sillyrename *sp)
1797 {
1798 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1799 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1800 }
1801 
1802 /*
1803  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1804  */
1805 static int
1806 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1807 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1808 	      struct ucred *cred, struct thread *td)
1809 {
1810 	u_int32_t *tl;
1811 	caddr_t cp;
1812 	int32_t t1, t2;
1813 	caddr_t bpos, dpos, cp2;
1814 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1815 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1816 	int v3 = NFS_ISV3(fdvp);
1817 
1818 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1819 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1820 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1821 		nfsm_rndup(tnamelen));
1822 	nfsm_fhtom(fdvp, v3);
1823 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1824 	nfsm_fhtom(tdvp, v3);
1825 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1826 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1827 	if (v3) {
1828 		nfsm_wcc_data(fdvp, fwccflag);
1829 		nfsm_wcc_data(tdvp, twccflag);
1830 	}
1831 	m_freem(mrep);
1832 nfsmout:
1833 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1834 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1835 	if (!fwccflag)
1836 		VTONFS(fdvp)->n_attrstamp = 0;
1837 	if (!twccflag)
1838 		VTONFS(tdvp)->n_attrstamp = 0;
1839 	return (error);
1840 }
1841 
1842 /*
1843  * nfs hard link create call
1844  *
1845  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1846  *	    struct componentname *a_cnp)
1847  */
1848 static int
1849 nfs_link(struct vop_old_link_args *ap)
1850 {
1851 	struct vnode *vp = ap->a_vp;
1852 	struct vnode *tdvp = ap->a_tdvp;
1853 	struct componentname *cnp = ap->a_cnp;
1854 	u_int32_t *tl;
1855 	caddr_t cp;
1856 	int32_t t1, t2;
1857 	caddr_t bpos, dpos, cp2;
1858 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1859 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1860 	int v3;
1861 
1862 	if (vp->v_mount != tdvp->v_mount) {
1863 		return (EXDEV);
1864 	}
1865 
1866 	/*
1867 	 * The attribute cache may get out of sync with the server on link.
1868 	 * Pushing writes to the server before handle was inherited from
1869 	 * long long ago and it is unclear if we still need to do this.
1870 	 * Defaults to off.
1871 	 */
1872 	if (nfs_flush_on_hlink)
1873 		VOP_FSYNC(vp, MNT_WAIT);
1874 
1875 	v3 = NFS_ISV3(vp);
1876 	nfsstats.rpccnt[NFSPROC_LINK]++;
1877 	nfsm_reqhead(vp, NFSPROC_LINK,
1878 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1879 	nfsm_fhtom(vp, v3);
1880 	nfsm_fhtom(tdvp, v3);
1881 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1882 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1883 	if (v3) {
1884 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1885 		nfsm_wcc_data(tdvp, wccflag);
1886 	}
1887 	m_freem(mrep);
1888 nfsmout:
1889 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1890 	if (!attrflag)
1891 		VTONFS(vp)->n_attrstamp = 0;
1892 	if (!wccflag)
1893 		VTONFS(tdvp)->n_attrstamp = 0;
1894 	/*
1895 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1896 	 */
1897 	if (error == EEXIST)
1898 		error = 0;
1899 	return (error);
1900 }
1901 
1902 /*
1903  * nfs symbolic link create call
1904  *
1905  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1906  *		struct componentname *a_cnp, struct vattr *a_vap,
1907  *		char *a_target)
1908  */
1909 static int
1910 nfs_symlink(struct vop_old_symlink_args *ap)
1911 {
1912 	struct vnode *dvp = ap->a_dvp;
1913 	struct vattr *vap = ap->a_vap;
1914 	struct componentname *cnp = ap->a_cnp;
1915 	struct nfsv2_sattr *sp;
1916 	u_int32_t *tl;
1917 	caddr_t cp;
1918 	int32_t t1, t2;
1919 	caddr_t bpos, dpos, cp2;
1920 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1921 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1922 	struct vnode *newvp = NULL;
1923 	int v3 = NFS_ISV3(dvp);
1924 
1925 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1926 	slen = strlen(ap->a_target);
1927 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1928 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1929 	nfsm_fhtom(dvp, v3);
1930 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1931 	if (v3) {
1932 		nfsm_v3attrbuild(vap, FALSE);
1933 	}
1934 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1935 	if (!v3) {
1936 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1937 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1938 		sp->sa_uid = nfs_xdrneg1;
1939 		sp->sa_gid = nfs_xdrneg1;
1940 		sp->sa_size = nfs_xdrneg1;
1941 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1942 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1943 	}
1944 
1945 	/*
1946 	 * Issue the NFS request and get the rpc response.
1947 	 *
1948 	 * Only NFSv3 responses returning an error of 0 actually return
1949 	 * a file handle that can be converted into newvp without having
1950 	 * to do an extra lookup rpc.
1951 	 */
1952 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1953 	if (v3) {
1954 		if (error == 0)
1955 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1956 		nfsm_wcc_data(dvp, wccflag);
1957 	}
1958 
1959 	/*
1960 	 * out code jumps -> here, mrep is also freed.
1961 	 */
1962 
1963 	m_freem(mrep);
1964 nfsmout:
1965 
1966 	/*
1967 	 * If we get an EEXIST error, silently convert it to no-error
1968 	 * in case of an NFS retry.
1969 	 */
1970 	if (error == EEXIST)
1971 		error = 0;
1972 
1973 	/*
1974 	 * If we do not have (or no longer have) an error, and we could
1975 	 * not extract the newvp from the response due to the request being
1976 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1977 	 * to obtain a newvp to return.
1978 	 */
1979 	if (error == 0 && newvp == NULL) {
1980 		struct nfsnode *np = NULL;
1981 
1982 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1983 		    cnp->cn_cred, cnp->cn_td, &np);
1984 		if (!error)
1985 			newvp = NFSTOV(np);
1986 	}
1987 	if (error) {
1988 		if (newvp)
1989 			vput(newvp);
1990 	} else {
1991 		*ap->a_vpp = newvp;
1992 	}
1993 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1994 	if (!wccflag)
1995 		VTONFS(dvp)->n_attrstamp = 0;
1996 	return (error);
1997 }
1998 
1999 /*
2000  * nfs make dir call
2001  *
2002  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
2003  *	     struct componentname *a_cnp, struct vattr *a_vap)
2004  */
2005 static int
2006 nfs_mkdir(struct vop_old_mkdir_args *ap)
2007 {
2008 	struct vnode *dvp = ap->a_dvp;
2009 	struct vattr *vap = ap->a_vap;
2010 	struct componentname *cnp = ap->a_cnp;
2011 	struct nfsv2_sattr *sp;
2012 	u_int32_t *tl;
2013 	caddr_t cp;
2014 	int32_t t1, t2;
2015 	int len;
2016 	struct nfsnode *np = NULL;
2017 	struct vnode *newvp = NULL;
2018 	caddr_t bpos, dpos, cp2;
2019 	int error = 0, wccflag = NFSV3_WCCRATTR;
2020 	int gotvp = 0;
2021 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2022 	struct vattr vattr;
2023 	int v3 = NFS_ISV3(dvp);
2024 
2025 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2026 		return (error);
2027 	}
2028 	len = cnp->cn_namelen;
2029 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2030 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
2031 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
2032 	nfsm_fhtom(dvp, v3);
2033 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
2034 	if (v3) {
2035 		nfsm_v3attrbuild(vap, FALSE);
2036 	} else {
2037 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
2038 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2039 		sp->sa_uid = nfs_xdrneg1;
2040 		sp->sa_gid = nfs_xdrneg1;
2041 		sp->sa_size = nfs_xdrneg1;
2042 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2043 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2044 	}
2045 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2046 	if (!error)
2047 		nfsm_mtofh(dvp, newvp, v3, gotvp);
2048 	if (v3)
2049 		nfsm_wcc_data(dvp, wccflag);
2050 	m_freem(mrep);
2051 nfsmout:
2052 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2053 	if (!wccflag)
2054 		VTONFS(dvp)->n_attrstamp = 0;
2055 	/*
2056 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2057 	 * if we can succeed in looking up the directory.
2058 	 */
2059 	if (error == EEXIST || (!error && !gotvp)) {
2060 		if (newvp) {
2061 			vrele(newvp);
2062 			newvp = NULL;
2063 		}
2064 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2065 			cnp->cn_td, &np);
2066 		if (!error) {
2067 			newvp = NFSTOV(np);
2068 			if (newvp->v_type != VDIR)
2069 				error = EEXIST;
2070 		}
2071 	}
2072 	if (error) {
2073 		if (newvp)
2074 			vrele(newvp);
2075 	} else
2076 		*ap->a_vpp = newvp;
2077 	return (error);
2078 }
2079 
2080 /*
2081  * nfs remove directory call
2082  *
2083  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2084  *	     struct componentname *a_cnp)
2085  */
2086 static int
2087 nfs_rmdir(struct vop_old_rmdir_args *ap)
2088 {
2089 	struct vnode *vp = ap->a_vp;
2090 	struct vnode *dvp = ap->a_dvp;
2091 	struct componentname *cnp = ap->a_cnp;
2092 	u_int32_t *tl;
2093 	caddr_t cp;
2094 	int32_t t1, t2;
2095 	caddr_t bpos, dpos, cp2;
2096 	int error = 0, wccflag = NFSV3_WCCRATTR;
2097 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2098 	int v3 = NFS_ISV3(dvp);
2099 
2100 	if (dvp == vp)
2101 		return (EINVAL);
2102 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2103 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2104 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2105 	nfsm_fhtom(dvp, v3);
2106 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2107 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2108 	if (v3)
2109 		nfsm_wcc_data(dvp, wccflag);
2110 	m_freem(mrep);
2111 nfsmout:
2112 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2113 	if (!wccflag)
2114 		VTONFS(dvp)->n_attrstamp = 0;
2115 	/*
2116 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2117 	 */
2118 	if (error == ENOENT)
2119 		error = 0;
2120 	return (error);
2121 }
2122 
2123 /*
2124  * nfs readdir call
2125  *
2126  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2127  */
2128 static int
2129 nfs_readdir(struct vop_readdir_args *ap)
2130 {
2131 	struct vnode *vp = ap->a_vp;
2132 	struct nfsnode *np = VTONFS(vp);
2133 	struct uio *uio = ap->a_uio;
2134 	int tresid, error;
2135 	struct vattr vattr;
2136 
2137 	if (vp->v_type != VDIR)
2138 		return (EPERM);
2139 
2140 	if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2141 		return (error);
2142 
2143 	/*
2144 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2145 	 * and then check that is still valid, or if this is an NQNFS mount
2146 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2147 	 * VOP_GETATTR() does not necessarily go to the wire.
2148 	 */
2149 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2150 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2151 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2152 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2153 		) {
2154 			nfsstats.direofcache_hits++;
2155 			goto done;
2156 		}
2157 	}
2158 
2159 	/*
2160 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2161 	 * own cache coherency checks so we do not have to.
2162 	 */
2163 	tresid = uio->uio_resid;
2164 	error = nfs_bioread(vp, uio, 0);
2165 
2166 	if (!error && uio->uio_resid == tresid)
2167 		nfsstats.direofcache_misses++;
2168 done:
2169 	vn_unlock(vp);
2170 	return (error);
2171 }
2172 
2173 /*
2174  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2175  *
2176  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2177  * offset/block and converts the nfs formatted directory entries for userland
2178  * consumption as well as deals with offsets into the middle of blocks.
2179  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2180  * be block-bounded.  It must convert to cookies for the actual RPC.
2181  */
2182 int
2183 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2184 {
2185 	int len, left;
2186 	struct nfs_dirent *dp = NULL;
2187 	u_int32_t *tl;
2188 	caddr_t cp;
2189 	int32_t t1, t2;
2190 	nfsuint64 *cookiep;
2191 	caddr_t bpos, dpos, cp2;
2192 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2193 	nfsuint64 cookie;
2194 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2195 	struct nfsnode *dnp = VTONFS(vp);
2196 	u_quad_t fileno;
2197 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2198 	int attrflag;
2199 	int v3 = NFS_ISV3(vp);
2200 
2201 #ifndef DIAGNOSTIC
2202 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2203 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2204 		panic("nfs readdirrpc bad uio");
2205 #endif
2206 
2207 	/*
2208 	 * If there is no cookie, assume directory was stale.
2209 	 */
2210 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2211 	if (cookiep)
2212 		cookie = *cookiep;
2213 	else
2214 		return (NFSERR_BAD_COOKIE);
2215 	/*
2216 	 * Loop around doing readdir rpc's of size nm_readdirsize
2217 	 * truncated to a multiple of DIRBLKSIZ.
2218 	 * The stopping criteria is EOF or buffer full.
2219 	 */
2220 	while (more_dirs && bigenough) {
2221 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2222 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2223 			NFSX_READDIR(v3));
2224 		nfsm_fhtom(vp, v3);
2225 		if (v3) {
2226 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2227 			*tl++ = cookie.nfsuquad[0];
2228 			*tl++ = cookie.nfsuquad[1];
2229 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2230 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2231 		} else {
2232 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2233 			*tl++ = cookie.nfsuquad[0];
2234 		}
2235 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2236 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2237 		if (v3) {
2238 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2239 			if (!error) {
2240 				nfsm_dissect(tl, u_int32_t *,
2241 				    2 * NFSX_UNSIGNED);
2242 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2243 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2244 			} else {
2245 				m_freem(mrep);
2246 				goto nfsmout;
2247 			}
2248 		}
2249 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2250 		more_dirs = fxdr_unsigned(int, *tl);
2251 
2252 		/* loop thru the dir entries, converting them to std form */
2253 		while (more_dirs && bigenough) {
2254 			if (v3) {
2255 				nfsm_dissect(tl, u_int32_t *,
2256 				    3 * NFSX_UNSIGNED);
2257 				fileno = fxdr_hyper(tl);
2258 				len = fxdr_unsigned(int, *(tl + 2));
2259 			} else {
2260 				nfsm_dissect(tl, u_int32_t *,
2261 				    2 * NFSX_UNSIGNED);
2262 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2263 				len = fxdr_unsigned(int, *tl);
2264 			}
2265 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2266 				error = EBADRPC;
2267 				m_freem(mrep);
2268 				goto nfsmout;
2269 			}
2270 
2271 			/*
2272 			 * len is the number of bytes in the path element
2273 			 * name, not including the \0 termination.
2274 			 *
2275 			 * tlen is the number of bytes w have to reserve for
2276 			 * the path element name.
2277 			 */
2278 			tlen = nfsm_rndup(len);
2279 			if (tlen == len)
2280 				tlen += 4;	/* To ensure null termination */
2281 
2282 			/*
2283 			 * If the entry would cross a DIRBLKSIZ boundary,
2284 			 * extend the previous nfs_dirent to cover the
2285 			 * remaining space.
2286 			 */
2287 			left = DIRBLKSIZ - blksiz;
2288 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2289 				dp->nfs_reclen += left;
2290 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2291 				uiop->uio_iov->iov_len -= left;
2292 				uiop->uio_offset += left;
2293 				uiop->uio_resid -= left;
2294 				blksiz = 0;
2295 			}
2296 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2297 				bigenough = 0;
2298 			if (bigenough) {
2299 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2300 				dp->nfs_ino = fileno;
2301 				dp->nfs_namlen = len;
2302 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2303 				dp->nfs_type = DT_UNKNOWN;
2304 				blksiz += dp->nfs_reclen;
2305 				if (blksiz == DIRBLKSIZ)
2306 					blksiz = 0;
2307 				uiop->uio_offset += sizeof(struct nfs_dirent);
2308 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2309 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2310 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2311 				nfsm_mtouio(uiop, len);
2312 
2313 				/*
2314 				 * The uiop has advanced by nfs_dirent + len
2315 				 * but really needs to advance by
2316 				 * nfs_dirent + tlen
2317 				 */
2318 				cp = uiop->uio_iov->iov_base;
2319 				tlen -= len;
2320 				*cp = '\0';	/* null terminate */
2321 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2322 				uiop->uio_iov->iov_len -= tlen;
2323 				uiop->uio_offset += tlen;
2324 				uiop->uio_resid -= tlen;
2325 			} else {
2326 				/*
2327 				 * NFS strings must be rounded up (nfsm_myouio
2328 				 * handled that in the bigenough case).
2329 				 */
2330 				nfsm_adv(nfsm_rndup(len));
2331 			}
2332 			if (v3) {
2333 				nfsm_dissect(tl, u_int32_t *,
2334 				    3 * NFSX_UNSIGNED);
2335 			} else {
2336 				nfsm_dissect(tl, u_int32_t *,
2337 				    2 * NFSX_UNSIGNED);
2338 			}
2339 
2340 			/*
2341 			 * If we were able to accomodate the last entry,
2342 			 * get the cookie for the next one.  Otherwise
2343 			 * hold-over the cookie for the one we were not
2344 			 * able to accomodate.
2345 			 */
2346 			if (bigenough) {
2347 				cookie.nfsuquad[0] = *tl++;
2348 				if (v3)
2349 					cookie.nfsuquad[1] = *tl++;
2350 			} else if (v3) {
2351 				tl += 2;
2352 			} else {
2353 				tl++;
2354 			}
2355 			more_dirs = fxdr_unsigned(int, *tl);
2356 		}
2357 		/*
2358 		 * If at end of rpc data, get the eof boolean
2359 		 */
2360 		if (!more_dirs) {
2361 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2362 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2363 		}
2364 		m_freem(mrep);
2365 	}
2366 	/*
2367 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2368 	 * by increasing d_reclen for the last record.
2369 	 */
2370 	if (blksiz > 0) {
2371 		left = DIRBLKSIZ - blksiz;
2372 		dp->nfs_reclen += left;
2373 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2374 		uiop->uio_iov->iov_len -= left;
2375 		uiop->uio_offset += left;
2376 		uiop->uio_resid -= left;
2377 	}
2378 
2379 	if (bigenough) {
2380 		/*
2381 		 * We hit the end of the directory, update direofoffset.
2382 		 */
2383 		dnp->n_direofoffset = uiop->uio_offset;
2384 	} else {
2385 		/*
2386 		 * There is more to go, insert the link cookie so the
2387 		 * next block can be read.
2388 		 */
2389 		if (uiop->uio_resid > 0)
2390 			kprintf("EEK! readdirrpc resid > 0\n");
2391 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2392 		*cookiep = cookie;
2393 	}
2394 nfsmout:
2395 	return (error);
2396 }
2397 
2398 /*
2399  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2400  */
2401 int
2402 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2403 {
2404 	int len, left;
2405 	struct nfs_dirent *dp;
2406 	u_int32_t *tl;
2407 	caddr_t cp;
2408 	int32_t t1, t2;
2409 	struct vnode *newvp;
2410 	nfsuint64 *cookiep;
2411 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2412 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2413 	nfsuint64 cookie;
2414 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2415 	struct nfsnode *dnp = VTONFS(vp), *np;
2416 	nfsfh_t *fhp;
2417 	u_quad_t fileno;
2418 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2419 	int attrflag, fhsize;
2420 	struct nchandle nch;
2421 	struct nchandle dnch;
2422 	struct nlcomponent nlc;
2423 
2424 #ifndef nolint
2425 	dp = NULL;
2426 #endif
2427 #ifndef DIAGNOSTIC
2428 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2429 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2430 		panic("nfs readdirplusrpc bad uio");
2431 #endif
2432 	/*
2433 	 * Obtain the namecache record for the directory so we have something
2434 	 * to use as a basis for creating the entries.  This function will
2435 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2436 	 * from the tree and cannot be used for upward traversals, and the
2437 	 * ncp may be unnamed.  Note that other unrelated operations may
2438 	 * cause the ncp to be named at any time.
2439 	 */
2440 	cache_fromdvp(vp, NULL, 0, &dnch);
2441 	bzero(&nlc, sizeof(nlc));
2442 	newvp = NULLVP;
2443 
2444 	/*
2445 	 * If there is no cookie, assume directory was stale.
2446 	 */
2447 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2448 	if (cookiep)
2449 		cookie = *cookiep;
2450 	else
2451 		return (NFSERR_BAD_COOKIE);
2452 	/*
2453 	 * Loop around doing readdir rpc's of size nm_readdirsize
2454 	 * truncated to a multiple of DIRBLKSIZ.
2455 	 * The stopping criteria is EOF or buffer full.
2456 	 */
2457 	while (more_dirs && bigenough) {
2458 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2459 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2460 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2461 		nfsm_fhtom(vp, 1);
2462  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2463 		*tl++ = cookie.nfsuquad[0];
2464 		*tl++ = cookie.nfsuquad[1];
2465 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2466 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2467 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2468 		*tl = txdr_unsigned(nmp->nm_rsize);
2469 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2470 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2471 		if (error) {
2472 			m_freem(mrep);
2473 			goto nfsmout;
2474 		}
2475 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2476 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2477 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2478 		more_dirs = fxdr_unsigned(int, *tl);
2479 
2480 		/* loop thru the dir entries, doctoring them to 4bsd form */
2481 		while (more_dirs && bigenough) {
2482 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2483 			fileno = fxdr_hyper(tl);
2484 			len = fxdr_unsigned(int, *(tl + 2));
2485 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2486 				error = EBADRPC;
2487 				m_freem(mrep);
2488 				goto nfsmout;
2489 			}
2490 			tlen = nfsm_rndup(len);
2491 			if (tlen == len)
2492 				tlen += 4;	/* To ensure null termination*/
2493 			left = DIRBLKSIZ - blksiz;
2494 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2495 				dp->nfs_reclen += left;
2496 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2497 				uiop->uio_iov->iov_len -= left;
2498 				uiop->uio_offset += left;
2499 				uiop->uio_resid -= left;
2500 				blksiz = 0;
2501 			}
2502 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2503 				bigenough = 0;
2504 			if (bigenough) {
2505 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2506 				dp->nfs_ino = fileno;
2507 				dp->nfs_namlen = len;
2508 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2509 				dp->nfs_type = DT_UNKNOWN;
2510 				blksiz += dp->nfs_reclen;
2511 				if (blksiz == DIRBLKSIZ)
2512 					blksiz = 0;
2513 				uiop->uio_offset += sizeof(struct nfs_dirent);
2514 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2515 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2516 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2517 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2518 				nlc.nlc_namelen = len;
2519 				nfsm_mtouio(uiop, len);
2520 				cp = uiop->uio_iov->iov_base;
2521 				tlen -= len;
2522 				*cp = '\0';
2523 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2524 				uiop->uio_iov->iov_len -= tlen;
2525 				uiop->uio_offset += tlen;
2526 				uiop->uio_resid -= tlen;
2527 			} else
2528 				nfsm_adv(nfsm_rndup(len));
2529 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2530 			if (bigenough) {
2531 				cookie.nfsuquad[0] = *tl++;
2532 				cookie.nfsuquad[1] = *tl++;
2533 			} else
2534 				tl += 2;
2535 
2536 			/*
2537 			 * Since the attributes are before the file handle
2538 			 * (sigh), we must skip over the attributes and then
2539 			 * come back and get them.
2540 			 */
2541 			attrflag = fxdr_unsigned(int, *tl);
2542 			if (attrflag) {
2543 			    dpossav1 = dpos;
2544 			    mdsav1 = md;
2545 			    nfsm_adv(NFSX_V3FATTR);
2546 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2547 			    doit = fxdr_unsigned(int, *tl);
2548 			    if (doit) {
2549 				nfsm_getfh(fhp, fhsize, 1);
2550 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2551 				    vref(vp);
2552 				    newvp = vp;
2553 				    np = dnp;
2554 				} else {
2555 				    error = nfs_nget(vp->v_mount, fhp,
2556 					fhsize, &np);
2557 				    if (error)
2558 					doit = 0;
2559 				    else
2560 					newvp = NFSTOV(np);
2561 				}
2562 			    }
2563 			    if (doit && bigenough) {
2564 				dpossav2 = dpos;
2565 				dpos = dpossav1;
2566 				mdsav2 = md;
2567 				md = mdsav1;
2568 				nfsm_loadattr(newvp, NULL);
2569 				dpos = dpossav2;
2570 				md = mdsav2;
2571 				dp->nfs_type =
2572 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2573 				if (dnch.ncp) {
2574 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2575 					nlc.nlc_namelen, nlc.nlc_namelen,
2576 					nlc.nlc_nameptr);
2577 				    nch = cache_nlookup(&dnch, &nlc);
2578 				    cache_setunresolved(&nch);
2579 				    nfs_cache_setvp(&nch, newvp,
2580 						    nfspos_cache_timeout);
2581 				    cache_put(&nch);
2582 				} else {
2583 				    kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2584 					" %*.*s\n",
2585 					nlc.nlc_namelen, nlc.nlc_namelen,
2586 					nlc.nlc_nameptr);
2587 				}
2588 			    }
2589 			} else {
2590 			    /* Just skip over the file handle */
2591 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2592 			    i = fxdr_unsigned(int, *tl);
2593 			    nfsm_adv(nfsm_rndup(i));
2594 			}
2595 			if (newvp != NULLVP) {
2596 			    if (newvp == vp)
2597 				vrele(newvp);
2598 			    else
2599 				vput(newvp);
2600 			    newvp = NULLVP;
2601 			}
2602 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2603 			more_dirs = fxdr_unsigned(int, *tl);
2604 		}
2605 		/*
2606 		 * If at end of rpc data, get the eof boolean
2607 		 */
2608 		if (!more_dirs) {
2609 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2610 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2611 		}
2612 		m_freem(mrep);
2613 	}
2614 	/*
2615 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2616 	 * by increasing d_reclen for the last record.
2617 	 */
2618 	if (blksiz > 0) {
2619 		left = DIRBLKSIZ - blksiz;
2620 		dp->nfs_reclen += left;
2621 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2622 		uiop->uio_iov->iov_len -= left;
2623 		uiop->uio_offset += left;
2624 		uiop->uio_resid -= left;
2625 	}
2626 
2627 	/*
2628 	 * We are now either at the end of the directory or have filled the
2629 	 * block.
2630 	 */
2631 	if (bigenough)
2632 		dnp->n_direofoffset = uiop->uio_offset;
2633 	else {
2634 		if (uiop->uio_resid > 0)
2635 			kprintf("EEK! readdirplusrpc resid > 0\n");
2636 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2637 		*cookiep = cookie;
2638 	}
2639 nfsmout:
2640 	if (newvp != NULLVP) {
2641 	        if (newvp == vp)
2642 			vrele(newvp);
2643 		else
2644 			vput(newvp);
2645 		newvp = NULLVP;
2646 	}
2647 	if (dnch.ncp)
2648 		cache_drop(&dnch);
2649 	return (error);
2650 }
2651 
2652 /*
2653  * Silly rename. To make the NFS filesystem that is stateless look a little
2654  * more like the "ufs" a remove of an active vnode is translated to a rename
2655  * to a funny looking filename that is removed by nfs_inactive on the
2656  * nfsnode. There is the potential for another process on a different client
2657  * to create the same funny name between the nfs_lookitup() fails and the
2658  * nfs_rename() completes, but...
2659  */
2660 static int
2661 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2662 {
2663 	struct sillyrename *sp;
2664 	struct nfsnode *np;
2665 	int error;
2666 
2667 	/*
2668 	 * We previously purged dvp instead of vp.  I don't know why, it
2669 	 * completely destroys performance.  We can't do it anyway with the
2670 	 * new VFS API since we would be breaking the namecache topology.
2671 	 */
2672 	cache_purge(vp);	/* XXX */
2673 	np = VTONFS(vp);
2674 #ifndef DIAGNOSTIC
2675 	if (vp->v_type == VDIR)
2676 		panic("nfs: sillyrename dir");
2677 #endif
2678 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2679 		M_NFSREQ, M_WAITOK);
2680 	sp->s_cred = crdup(cnp->cn_cred);
2681 	sp->s_dvp = dvp;
2682 	vref(dvp);
2683 
2684 	/* Fudge together a funny name */
2685 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2686 
2687 	/* Try lookitups until we get one that isn't there */
2688 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2689 		cnp->cn_td, NULL) == 0) {
2690 		sp->s_name[4]++;
2691 		if (sp->s_name[4] > 'z') {
2692 			error = EINVAL;
2693 			goto bad;
2694 		}
2695 	}
2696 	error = nfs_renameit(dvp, cnp, sp);
2697 	if (error)
2698 		goto bad;
2699 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2700 		cnp->cn_td, &np);
2701 	np->n_sillyrename = sp;
2702 	return (0);
2703 bad:
2704 	vrele(sp->s_dvp);
2705 	crfree(sp->s_cred);
2706 	kfree((caddr_t)sp, M_NFSREQ);
2707 	return (error);
2708 }
2709 
2710 /*
2711  * Look up a file name and optionally either update the file handle or
2712  * allocate an nfsnode, depending on the value of npp.
2713  * npp == NULL	--> just do the lookup
2714  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2715  *			handled too
2716  * *npp != NULL --> update the file handle in the vnode
2717  */
2718 static int
2719 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2720 	     struct thread *td, struct nfsnode **npp)
2721 {
2722 	u_int32_t *tl;
2723 	caddr_t cp;
2724 	int32_t t1, t2;
2725 	struct vnode *newvp = NULL;
2726 	struct nfsnode *np, *dnp = VTONFS(dvp);
2727 	caddr_t bpos, dpos, cp2;
2728 	int error = 0, fhlen, attrflag;
2729 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2730 	nfsfh_t *nfhp;
2731 	int v3 = NFS_ISV3(dvp);
2732 
2733 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2734 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2735 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2736 	nfsm_fhtom(dvp, v3);
2737 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2738 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2739 	if (npp && !error) {
2740 		nfsm_getfh(nfhp, fhlen, v3);
2741 		if (*npp) {
2742 		    np = *npp;
2743 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2744 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2745 			np->n_fhp = &np->n_fh;
2746 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2747 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2748 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2749 		    np->n_fhsize = fhlen;
2750 		    newvp = NFSTOV(np);
2751 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2752 		    vref(dvp);
2753 		    newvp = dvp;
2754 		} else {
2755 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2756 		    if (error) {
2757 			m_freem(mrep);
2758 			return (error);
2759 		    }
2760 		    newvp = NFSTOV(np);
2761 		}
2762 		if (v3) {
2763 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2764 			if (!attrflag && *npp == NULL) {
2765 				m_freem(mrep);
2766 				if (newvp == dvp)
2767 					vrele(newvp);
2768 				else
2769 					vput(newvp);
2770 				return (ENOENT);
2771 			}
2772 		} else
2773 			nfsm_loadattr(newvp, NULL);
2774 	}
2775 	m_freem(mrep);
2776 nfsmout:
2777 	if (npp && *npp == NULL) {
2778 		if (error) {
2779 			if (newvp) {
2780 				if (newvp == dvp)
2781 					vrele(newvp);
2782 				else
2783 					vput(newvp);
2784 			}
2785 		} else
2786 			*npp = np;
2787 	}
2788 	return (error);
2789 }
2790 
2791 /*
2792  * Nfs Version 3 commit rpc
2793  */
2794 int
2795 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2796 {
2797 	caddr_t cp;
2798 	u_int32_t *tl;
2799 	int32_t t1, t2;
2800 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2801 	caddr_t bpos, dpos, cp2;
2802 	int error = 0, wccflag = NFSV3_WCCRATTR;
2803 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2804 
2805 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2806 		return (0);
2807 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2808 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2809 	nfsm_fhtom(vp, 1);
2810 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2811 	txdr_hyper(offset, tl);
2812 	tl += 2;
2813 	*tl = txdr_unsigned(cnt);
2814 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2815 	nfsm_wcc_data(vp, wccflag);
2816 	if (!error) {
2817 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2818 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2819 			NFSX_V3WRITEVERF)) {
2820 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2821 				NFSX_V3WRITEVERF);
2822 			error = NFSERR_STALEWRITEVERF;
2823 		}
2824 	}
2825 	m_freem(mrep);
2826 nfsmout:
2827 	return (error);
2828 }
2829 
2830 /*
2831  * Kludge City..
2832  * - make nfs_bmap() essentially a no-op that does no translation
2833  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2834  *   (Maybe I could use the process's page mapping, but I was concerned that
2835  *    Kernel Write might not be enabled and also figured copyout() would do
2836  *    a lot more work than bcopy() and also it currently happens in the
2837  *    context of the swapper process (2).
2838  *
2839  * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2840  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2841  */
2842 static int
2843 nfs_bmap(struct vop_bmap_args *ap)
2844 {
2845 	if (ap->a_doffsetp != NULL)
2846 		*ap->a_doffsetp = ap->a_loffset;
2847 	if (ap->a_runp != NULL)
2848 		*ap->a_runp = 0;
2849 	if (ap->a_runb != NULL)
2850 		*ap->a_runb = 0;
2851 	return (0);
2852 }
2853 
2854 /*
2855  * Strategy routine.
2856  *
2857  * For async requests when nfsiod(s) are running, queue the request by
2858  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2859  * request.
2860  */
2861 static int
2862 nfs_strategy(struct vop_strategy_args *ap)
2863 {
2864 	struct bio *bio = ap->a_bio;
2865 	struct bio *nbio;
2866 	struct buf *bp = bio->bio_buf;
2867 	struct thread *td;
2868 	int error = 0;
2869 
2870 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2871 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2872 	KASSERT(BUF_REFCNT(bp) > 0,
2873 		("nfs_strategy: buffer %p not locked", bp));
2874 
2875 	if (bp->b_flags & B_ASYNC)
2876 		td = NULL;
2877 	else
2878 		td = curthread;	/* XXX */
2879 
2880         /*
2881 	 * We probably don't need to push an nbio any more since no
2882 	 * block conversion is required due to the use of 64 bit byte
2883 	 * offsets, but do it anyway.
2884          */
2885 	nbio = push_bio(bio);
2886 	nbio->bio_offset = bio->bio_offset;
2887 
2888 	/*
2889 	 * If the op is asynchronous and an i/o daemon is waiting
2890 	 * queue the request, wake it up and wait for completion
2891 	 * otherwise just do it ourselves.
2892 	 */
2893 	if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(ap->a_vp, nbio, td))
2894 		error = nfs_doio(ap->a_vp, nbio, td);
2895 	return (error);
2896 }
2897 
2898 /*
2899  * Mmap a file
2900  *
2901  * NB Currently unsupported.
2902  *
2903  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
2904  */
2905 /* ARGSUSED */
2906 static int
2907 nfs_mmap(struct vop_mmap_args *ap)
2908 {
2909 	return (EINVAL);
2910 }
2911 
2912 /*
2913  * fsync vnode op. Just call nfs_flush() with commit == 1.
2914  *
2915  * nfs_fsync(struct vnode *a_vp, int a_waitfor)
2916  */
2917 /* ARGSUSED */
2918 static int
2919 nfs_fsync(struct vop_fsync_args *ap)
2920 {
2921 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
2922 }
2923 
2924 /*
2925  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
2926  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
2927  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
2928  * set the buffer contains data that has already been written to the server
2929  * and which now needs a commit RPC.
2930  *
2931  * If commit is 0 we only take one pass and only flush buffers containing new
2932  * dirty data.
2933  *
2934  * If commit is 1 we take two passes, issuing a commit RPC in the second
2935  * pass.
2936  *
2937  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2938  * to completely flush all pending data.
2939  *
2940  * Note that the RB_SCAN code properly handles the case where the
2941  * callback might block and directly or indirectly (another thread) cause
2942  * the RB tree to change.
2943  */
2944 
2945 #ifndef NFS_COMMITBVECSIZ
2946 #define NFS_COMMITBVECSIZ	16
2947 #endif
2948 
2949 struct nfs_flush_info {
2950 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2951 	struct thread *td;
2952 	struct vnode *vp;
2953 	int waitfor;
2954 	int slpflag;
2955 	int slptimeo;
2956 	int loops;
2957 	struct buf *bvary[NFS_COMMITBVECSIZ];
2958 	int bvsize;
2959 	off_t beg_off;
2960 	off_t end_off;
2961 };
2962 
2963 static int nfs_flush_bp(struct buf *bp, void *data);
2964 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2965 
2966 int
2967 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2968 {
2969 	struct nfsnode *np = VTONFS(vp);
2970 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2971 	struct nfs_flush_info info;
2972 	int error;
2973 
2974 	bzero(&info, sizeof(info));
2975 	info.td = td;
2976 	info.vp = vp;
2977 	info.waitfor = waitfor;
2978 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2979 	info.loops = 0;
2980 
2981 	do {
2982 		/*
2983 		 * Flush mode
2984 		 */
2985 		info.mode = NFI_FLUSHNEW;
2986 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2987 				nfs_flush_bp, &info);
2988 
2989 		/*
2990 		 * Take a second pass if committing and no error occured.
2991 		 * Clean up any left over collection (whether an error
2992 		 * occurs or not).
2993 		 */
2994 		if (commit && error == 0) {
2995 			info.mode = NFI_COMMIT;
2996 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2997 					nfs_flush_bp, &info);
2998 			if (info.bvsize)
2999 				error = nfs_flush_docommit(&info, error);
3000 		}
3001 
3002 		/*
3003 		 * Wait for pending I/O to complete before checking whether
3004 		 * any further dirty buffers exist.
3005 		 */
3006 		while (waitfor == MNT_WAIT && vp->v_track_write.bk_active) {
3007 			vp->v_track_write.bk_waitflag = 1;
3008 			error = tsleep(&vp->v_track_write,
3009 				info.slpflag, "nfsfsync", info.slptimeo);
3010 			if (error) {
3011 				/*
3012 				 * We have to be able to break out if this
3013 				 * is an 'intr' mount.
3014 				 */
3015 				if (nfs_sigintr(nmp, NULL, td)) {
3016 					error = -EINTR;
3017 					break;
3018 				}
3019 
3020 				/*
3021 				 * Since we do not process pending signals,
3022 				 * once we get a PCATCH our tsleep() will no
3023 				 * longer sleep, switch to a fixed timeout
3024 				 * instead.
3025 				 */
3026 				if (info.slpflag == PCATCH) {
3027 					info.slpflag = 0;
3028 					info.slptimeo = 2 * hz;
3029 				}
3030 				error = 0;
3031 			}
3032 		}
3033 		++info.loops;
3034 		/*
3035 		 * Loop if we are flushing synchronous as well as committing,
3036 		 * and dirty buffers are still present.  Otherwise we might livelock.
3037 		 */
3038 	} while (waitfor == MNT_WAIT && commit &&
3039 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3040 
3041 	/*
3042 	 * The callbacks have to return a negative error to terminate the
3043 	 * RB scan.
3044 	 */
3045 	if (error < 0)
3046 		error = -error;
3047 
3048 	/*
3049 	 * Deal with any error collection
3050 	 */
3051 	if (np->n_flag & NWRITEERR) {
3052 		error = np->n_error;
3053 		np->n_flag &= ~NWRITEERR;
3054 	}
3055 	return (error);
3056 }
3057 
3058 
3059 static
3060 int
3061 nfs_flush_bp(struct buf *bp, void *data)
3062 {
3063 	struct nfs_flush_info *info = data;
3064 	off_t toff;
3065 	int error;
3066 
3067 	error = 0;
3068 	switch(info->mode) {
3069 	case NFI_FLUSHNEW:
3070 		crit_enter();
3071 		if (info->loops && info->waitfor == MNT_WAIT) {
3072 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3073 			if (error) {
3074 				int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3075 				if (info->slpflag & PCATCH)
3076 					lkflags |= LK_PCATCH;
3077 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3078 						     info->slptimeo);
3079 			}
3080 		} else {
3081 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3082 		}
3083 		if (error == 0) {
3084 			KKASSERT(bp->b_vp == info->vp);
3085 
3086 			if ((bp->b_flags & B_DELWRI) == 0)
3087 				panic("nfs_fsync: not dirty");
3088 			if (bp->b_flags & B_NEEDCOMMIT) {
3089 				BUF_UNLOCK(bp);
3090 				crit_exit();
3091 				break;
3092 			}
3093 			bremfree(bp);
3094 
3095 			crit_exit();
3096 			bawrite(bp);
3097 		} else {
3098 			crit_exit();
3099 			error = 0;
3100 		}
3101 		break;
3102 	case NFI_COMMIT:
3103 		/*
3104 		 * Only process buffers in need of a commit which we can
3105 		 * immediately lock.  This may prevent a buffer from being
3106 		 * committed, but the normal flush loop will block on the
3107 		 * same buffer so we shouldn't get into an endless loop.
3108 		 */
3109 		crit_enter();
3110 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3111 		    (B_DELWRI | B_NEEDCOMMIT) ||
3112 		    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
3113 			crit_exit();
3114 			break;
3115 		}
3116 
3117 		KKASSERT(bp->b_vp == info->vp);
3118 		bremfree(bp);
3119 
3120 		/*
3121 		 * NOTE: storing the bp in the bvary[] basically sets
3122 		 * it up for a commit operation.
3123 		 *
3124 		 * We must call vfs_busy_pages() now so the commit operation
3125 		 * is interlocked with user modifications to memory mapped
3126 		 * pages.
3127 		 *
3128 		 * Note: to avoid loopback deadlocks, we do not
3129 		 * assign b_runningbufspace.
3130 		 */
3131 		bp->b_cmd = BUF_CMD_WRITE;
3132 		vfs_busy_pages(bp->b_vp, bp);
3133 		info->bvary[info->bvsize] = bp;
3134 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3135 		if (info->bvsize == 0 || toff < info->beg_off)
3136 			info->beg_off = toff;
3137 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3138 		if (info->bvsize == 0 || toff > info->end_off)
3139 			info->end_off = toff;
3140 		++info->bvsize;
3141 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3142 			error = nfs_flush_docommit(info, 0);
3143 			KKASSERT(info->bvsize == 0);
3144 		}
3145 		crit_exit();
3146 	}
3147 	return (error);
3148 }
3149 
3150 static
3151 int
3152 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3153 {
3154 	struct vnode *vp;
3155 	struct buf *bp;
3156 	off_t bytes;
3157 	int retv;
3158 	int i;
3159 
3160 	vp = info->vp;
3161 
3162 	if (info->bvsize > 0) {
3163 		/*
3164 		 * Commit data on the server, as required.  Note that
3165 		 * nfs_commit will use the vnode's cred for the commit.
3166 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3167 		 */
3168 		bytes = info->end_off - info->beg_off;
3169 		if (bytes > 0x40000000)
3170 			bytes = 0x40000000;
3171 		if (error) {
3172 			retv = -error;
3173 		} else {
3174 			retv = nfs_commit(vp, info->beg_off,
3175 					    (int)bytes, info->td);
3176 			if (retv == NFSERR_STALEWRITEVERF)
3177 				nfs_clearcommit(vp->v_mount);
3178 		}
3179 
3180 		/*
3181 		 * Now, either mark the blocks I/O done or mark the
3182 		 * blocks dirty, depending on whether the commit
3183 		 * succeeded.
3184 		 */
3185 		for (i = 0; i < info->bvsize; ++i) {
3186 			bp = info->bvary[i];
3187 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3188 			if (retv) {
3189 				/*
3190 				 * Error, leave B_DELWRI intact
3191 				 */
3192 				vfs_unbusy_pages(bp);
3193 				bp->b_cmd = BUF_CMD_DONE;
3194 				brelse(bp);
3195 			} else {
3196 				/*
3197 				 * Success, remove B_DELWRI ( bundirty() ).
3198 				 *
3199 				 * b_dirtyoff/b_dirtyend seem to be NFS
3200 				 * specific.  We should probably move that
3201 				 * into bundirty(). XXX
3202 				 *
3203 				 * We are faking an I/O write, we have to
3204 				 * start the transaction in order to
3205 				 * immediately biodone() it.
3206 				 */
3207 				crit_enter();
3208 				bp->b_flags |= B_ASYNC;
3209 				bundirty(bp);
3210 				bp->b_flags &= ~B_ERROR;
3211 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3212 				crit_exit();
3213 				biodone(&bp->b_bio1);
3214 			}
3215 		}
3216 		info->bvsize = 0;
3217 	}
3218 	return (error);
3219 }
3220 
3221 /*
3222  * NFS advisory byte-level locks.
3223  * Currently unsupported.
3224  *
3225  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3226  *		int a_flags)
3227  */
3228 static int
3229 nfs_advlock(struct vop_advlock_args *ap)
3230 {
3231 	struct nfsnode *np = VTONFS(ap->a_vp);
3232 
3233 	/*
3234 	 * The following kludge is to allow diskless support to work
3235 	 * until a real NFS lockd is implemented. Basically, just pretend
3236 	 * that this is a local lock.
3237 	 */
3238 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3239 }
3240 
3241 /*
3242  * Print out the contents of an nfsnode.
3243  *
3244  * nfs_print(struct vnode *a_vp)
3245  */
3246 static int
3247 nfs_print(struct vop_print_args *ap)
3248 {
3249 	struct vnode *vp = ap->a_vp;
3250 	struct nfsnode *np = VTONFS(vp);
3251 
3252 	kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3253 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3254 	if (vp->v_type == VFIFO)
3255 		fifo_printinfo(vp);
3256 	kprintf("\n");
3257 	return (0);
3258 }
3259 
3260 /*
3261  * nfs special file access vnode op.
3262  * Essentially just get vattr and then imitate iaccess() since the device is
3263  * local to the client.
3264  *
3265  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3266  */
3267 static int
3268 nfsspec_access(struct vop_access_args *ap)
3269 {
3270 	struct vattr *vap;
3271 	gid_t *gp;
3272 	struct ucred *cred = ap->a_cred;
3273 	struct vnode *vp = ap->a_vp;
3274 	mode_t mode = ap->a_mode;
3275 	struct vattr vattr;
3276 	int i;
3277 	int error;
3278 
3279 	/*
3280 	 * Disallow write attempts on filesystems mounted read-only;
3281 	 * unless the file is a socket, fifo, or a block or character
3282 	 * device resident on the filesystem.
3283 	 */
3284 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3285 		switch (vp->v_type) {
3286 		case VREG:
3287 		case VDIR:
3288 		case VLNK:
3289 			return (EROFS);
3290 		default:
3291 			break;
3292 		}
3293 	}
3294 	/*
3295 	 * If you're the super-user,
3296 	 * you always get access.
3297 	 */
3298 	if (cred->cr_uid == 0)
3299 		return (0);
3300 	vap = &vattr;
3301 	error = VOP_GETATTR(vp, vap);
3302 	if (error)
3303 		return (error);
3304 	/*
3305 	 * Access check is based on only one of owner, group, public.
3306 	 * If not owner, then check group. If not a member of the
3307 	 * group, then check public access.
3308 	 */
3309 	if (cred->cr_uid != vap->va_uid) {
3310 		mode >>= 3;
3311 		gp = cred->cr_groups;
3312 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3313 			if (vap->va_gid == *gp)
3314 				goto found;
3315 		mode >>= 3;
3316 found:
3317 		;
3318 	}
3319 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3320 	return (error);
3321 }
3322 
3323 /*
3324  * Read wrapper for special devices.
3325  *
3326  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3327  *		struct ucred *a_cred)
3328  */
3329 static int
3330 nfsspec_read(struct vop_read_args *ap)
3331 {
3332 	struct nfsnode *np = VTONFS(ap->a_vp);
3333 
3334 	/*
3335 	 * Set access flag.
3336 	 */
3337 	np->n_flag |= NACC;
3338 	getnanotime(&np->n_atim);
3339 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3340 }
3341 
3342 /*
3343  * Write wrapper for special devices.
3344  *
3345  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3346  *		 struct ucred *a_cred)
3347  */
3348 static int
3349 nfsspec_write(struct vop_write_args *ap)
3350 {
3351 	struct nfsnode *np = VTONFS(ap->a_vp);
3352 
3353 	/*
3354 	 * Set update flag.
3355 	 */
3356 	np->n_flag |= NUPD;
3357 	getnanotime(&np->n_mtim);
3358 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3359 }
3360 
3361 /*
3362  * Close wrapper for special devices.
3363  *
3364  * Update the times on the nfsnode then do device close.
3365  *
3366  * nfsspec_close(struct vnode *a_vp, int a_fflag)
3367  */
3368 static int
3369 nfsspec_close(struct vop_close_args *ap)
3370 {
3371 	struct vnode *vp = ap->a_vp;
3372 	struct nfsnode *np = VTONFS(vp);
3373 	struct vattr vattr;
3374 
3375 	if (np->n_flag & (NACC | NUPD)) {
3376 		np->n_flag |= NCHG;
3377 		if (vp->v_sysref.refcnt == 1 &&
3378 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3379 			VATTR_NULL(&vattr);
3380 			if (np->n_flag & NACC)
3381 				vattr.va_atime = np->n_atim;
3382 			if (np->n_flag & NUPD)
3383 				vattr.va_mtime = np->n_mtim;
3384 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3385 		}
3386 	}
3387 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3388 }
3389 
3390 /*
3391  * Read wrapper for fifos.
3392  *
3393  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3394  *		struct ucred *a_cred)
3395  */
3396 static int
3397 nfsfifo_read(struct vop_read_args *ap)
3398 {
3399 	struct nfsnode *np = VTONFS(ap->a_vp);
3400 
3401 	/*
3402 	 * Set access flag.
3403 	 */
3404 	np->n_flag |= NACC;
3405 	getnanotime(&np->n_atim);
3406 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3407 }
3408 
3409 /*
3410  * Write wrapper for fifos.
3411  *
3412  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3413  *		 struct ucred *a_cred)
3414  */
3415 static int
3416 nfsfifo_write(struct vop_write_args *ap)
3417 {
3418 	struct nfsnode *np = VTONFS(ap->a_vp);
3419 
3420 	/*
3421 	 * Set update flag.
3422 	 */
3423 	np->n_flag |= NUPD;
3424 	getnanotime(&np->n_mtim);
3425 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3426 }
3427 
3428 /*
3429  * Close wrapper for fifos.
3430  *
3431  * Update the times on the nfsnode then do fifo close.
3432  *
3433  * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3434  */
3435 static int
3436 nfsfifo_close(struct vop_close_args *ap)
3437 {
3438 	struct vnode *vp = ap->a_vp;
3439 	struct nfsnode *np = VTONFS(vp);
3440 	struct vattr vattr;
3441 	struct timespec ts;
3442 
3443 	if (np->n_flag & (NACC | NUPD)) {
3444 		getnanotime(&ts);
3445 		if (np->n_flag & NACC)
3446 			np->n_atim = ts;
3447 		if (np->n_flag & NUPD)
3448 			np->n_mtim = ts;
3449 		np->n_flag |= NCHG;
3450 		if (vp->v_sysref.refcnt == 1 &&
3451 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3452 			VATTR_NULL(&vattr);
3453 			if (np->n_flag & NACC)
3454 				vattr.va_atime = np->n_atim;
3455 			if (np->n_flag & NUPD)
3456 				vattr.va_mtime = np->n_mtim;
3457 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3458 		}
3459 	}
3460 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3461 }
3462 
3463