xref: /dflybsd-src/sys/vfs/nfs/nfs_vnops.c (revision 53e987cee557d989dbf172d8a3c2ade9ea6fc46f)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.40 2005/04/15 19:08:21 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 
76 #include "rpcv2.h"
77 #include "nfsproto.h"
78 #include "nfs.h"
79 #include "nfsmount.h"
80 #include "nfsnode.h"
81 #include "xdr_subs.h"
82 #include "nfsm_subs.h"
83 #include "nqnfs.h"
84 
85 #include <net/if.h>
86 #include <netinet/in.h>
87 #include <netinet/in_var.h>
88 
89 /* Defs */
90 #define	TRUE	1
91 #define	FALSE	0
92 
93 /*
94  * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these
95  * calls are not in getblk() and brelse() so that they would not be necessary
96  * here.
97  */
98 #ifndef B_VMIO
99 #define vfs_busy_pages(bp, f)
100 #endif
101 
102 static int	nfsspec_read (struct vop_read_args *);
103 static int	nfsspec_write (struct vop_write_args *);
104 static int	nfsfifo_read (struct vop_read_args *);
105 static int	nfsfifo_write (struct vop_write_args *);
106 static int	nfsspec_close (struct vop_close_args *);
107 static int	nfsfifo_close (struct vop_close_args *);
108 #define nfs_poll vop_nopoll
109 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
110 static	int	nfs_lookup (struct vop_lookup_args *);
111 static	int	nfs_create (struct vop_create_args *);
112 static	int	nfs_mknod (struct vop_mknod_args *);
113 static	int	nfs_open (struct vop_open_args *);
114 static	int	nfs_close (struct vop_close_args *);
115 static	int	nfs_access (struct vop_access_args *);
116 static	int	nfs_getattr (struct vop_getattr_args *);
117 static	int	nfs_setattr (struct vop_setattr_args *);
118 static	int	nfs_read (struct vop_read_args *);
119 static	int	nfs_mmap (struct vop_mmap_args *);
120 static	int	nfs_fsync (struct vop_fsync_args *);
121 static	int	nfs_remove (struct vop_remove_args *);
122 static	int	nfs_link (struct vop_link_args *);
123 static	int	nfs_rename (struct vop_rename_args *);
124 static	int	nfs_mkdir (struct vop_mkdir_args *);
125 static	int	nfs_rmdir (struct vop_rmdir_args *);
126 static	int	nfs_symlink (struct vop_symlink_args *);
127 static	int	nfs_readdir (struct vop_readdir_args *);
128 static	int	nfs_bmap (struct vop_bmap_args *);
129 static	int	nfs_strategy (struct vop_strategy_args *);
130 static	int	nfs_lookitup (struct vnode *, const char *, int,
131 			struct ucred *, struct thread *, struct nfsnode **);
132 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
133 static int	nfsspec_access (struct vop_access_args *);
134 static int	nfs_readlink (struct vop_readlink_args *);
135 static int	nfs_print (struct vop_print_args *);
136 static int	nfs_advlock (struct vop_advlock_args *);
137 static int	nfs_bwrite (struct vop_bwrite_args *);
138 
139 static	int	nfs_nresolve (struct vop_nresolve_args *);
140 /*
141  * Global vfs data structures for nfs
142  */
143 struct vnodeopv_entry_desc nfsv2_vnodeop_entries[] = {
144 	{ &vop_default_desc,		vop_defaultop },
145 	{ &vop_access_desc,		(vnodeopv_entry_t) nfs_access },
146 	{ &vop_advlock_desc,		(vnodeopv_entry_t) nfs_advlock },
147 	{ &vop_bmap_desc,		(vnodeopv_entry_t) nfs_bmap },
148 	{ &vop_bwrite_desc,		(vnodeopv_entry_t) nfs_bwrite },
149 	{ &vop_close_desc,		(vnodeopv_entry_t) nfs_close },
150 	{ &vop_create_desc,		(vnodeopv_entry_t) nfs_create },
151 	{ &vop_fsync_desc,		(vnodeopv_entry_t) nfs_fsync },
152 	{ &vop_getattr_desc,		(vnodeopv_entry_t) nfs_getattr },
153 	{ &vop_getpages_desc,		(vnodeopv_entry_t) nfs_getpages },
154 	{ &vop_putpages_desc,		(vnodeopv_entry_t) nfs_putpages },
155 	{ &vop_inactive_desc,		(vnodeopv_entry_t) nfs_inactive },
156 	{ &vop_islocked_desc,		(vnodeopv_entry_t) vop_stdislocked },
157 	{ &vop_lease_desc,		vop_null },
158 	{ &vop_link_desc,		(vnodeopv_entry_t) nfs_link },
159 	{ &vop_lock_desc,		(vnodeopv_entry_t) vop_stdlock },
160 	{ &vop_lookup_desc,		(vnodeopv_entry_t) nfs_lookup },
161 	{ &vop_mkdir_desc,		(vnodeopv_entry_t) nfs_mkdir },
162 	{ &vop_mknod_desc,		(vnodeopv_entry_t) nfs_mknod },
163 	{ &vop_mmap_desc,		(vnodeopv_entry_t) nfs_mmap },
164 	{ &vop_open_desc,		(vnodeopv_entry_t) nfs_open },
165 	{ &vop_poll_desc,		(vnodeopv_entry_t) nfs_poll },
166 	{ &vop_print_desc,		(vnodeopv_entry_t) nfs_print },
167 	{ &vop_read_desc,		(vnodeopv_entry_t) nfs_read },
168 	{ &vop_readdir_desc,		(vnodeopv_entry_t) nfs_readdir },
169 	{ &vop_readlink_desc,		(vnodeopv_entry_t) nfs_readlink },
170 	{ &vop_reclaim_desc,		(vnodeopv_entry_t) nfs_reclaim },
171 	{ &vop_remove_desc,		(vnodeopv_entry_t) nfs_remove },
172 	{ &vop_rename_desc,		(vnodeopv_entry_t) nfs_rename },
173 	{ &vop_rmdir_desc,		(vnodeopv_entry_t) nfs_rmdir },
174 	{ &vop_setattr_desc,		(vnodeopv_entry_t) nfs_setattr },
175 	{ &vop_strategy_desc,		(vnodeopv_entry_t) nfs_strategy },
176 	{ &vop_symlink_desc,		(vnodeopv_entry_t) nfs_symlink },
177 	{ &vop_unlock_desc,		(vnodeopv_entry_t) vop_stdunlock },
178 	{ &vop_write_desc,		(vnodeopv_entry_t) nfs_write },
179 
180 	{ &vop_nresolve_desc,		(vnodeopv_entry_t) nfs_nresolve },
181 	{ NULL, NULL }
182 };
183 
184 /*
185  * Special device vnode ops
186  */
187 struct vnodeopv_entry_desc nfsv2_specop_entries[] = {
188 	{ &vop_default_desc,		(vnodeopv_entry_t) spec_vnoperate },
189 	{ &vop_access_desc,		(vnodeopv_entry_t) nfsspec_access },
190 	{ &vop_close_desc,		(vnodeopv_entry_t) nfsspec_close },
191 	{ &vop_fsync_desc,		(vnodeopv_entry_t) nfs_fsync },
192 	{ &vop_getattr_desc,		(vnodeopv_entry_t) nfs_getattr },
193 	{ &vop_inactive_desc,		(vnodeopv_entry_t) nfs_inactive },
194 	{ &vop_islocked_desc,		(vnodeopv_entry_t) vop_stdislocked },
195 	{ &vop_lock_desc,		(vnodeopv_entry_t) vop_stdlock },
196 	{ &vop_print_desc,		(vnodeopv_entry_t) nfs_print },
197 	{ &vop_read_desc,		(vnodeopv_entry_t) nfsspec_read },
198 	{ &vop_reclaim_desc,		(vnodeopv_entry_t) nfs_reclaim },
199 	{ &vop_setattr_desc,		(vnodeopv_entry_t) nfs_setattr },
200 	{ &vop_unlock_desc,		(vnodeopv_entry_t) vop_stdunlock },
201 	{ &vop_write_desc,		(vnodeopv_entry_t) nfsspec_write },
202 	{ NULL, NULL }
203 };
204 
205 struct vnodeopv_entry_desc nfsv2_fifoop_entries[] = {
206 	{ &vop_default_desc,		(vnodeopv_entry_t) fifo_vnoperate },
207 	{ &vop_access_desc,		(vnodeopv_entry_t) nfsspec_access },
208 	{ &vop_close_desc,		(vnodeopv_entry_t) nfsfifo_close },
209 	{ &vop_fsync_desc,		(vnodeopv_entry_t) nfs_fsync },
210 	{ &vop_getattr_desc,		(vnodeopv_entry_t) nfs_getattr },
211 	{ &vop_inactive_desc,		(vnodeopv_entry_t) nfs_inactive },
212 	{ &vop_islocked_desc,		(vnodeopv_entry_t) vop_stdislocked },
213 	{ &vop_lock_desc,		(vnodeopv_entry_t) vop_stdlock },
214 	{ &vop_print_desc,		(vnodeopv_entry_t) nfs_print },
215 	{ &vop_read_desc,		(vnodeopv_entry_t) nfsfifo_read },
216 	{ &vop_reclaim_desc,		(vnodeopv_entry_t) nfs_reclaim },
217 	{ &vop_setattr_desc,		(vnodeopv_entry_t) nfs_setattr },
218 	{ &vop_unlock_desc,		(vnodeopv_entry_t) vop_stdunlock },
219 	{ &vop_write_desc,		(vnodeopv_entry_t) nfsfifo_write },
220 	{ NULL, NULL }
221 };
222 
223 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
224 				  struct componentname *cnp,
225 				  struct vattr *vap);
226 static int	nfs_removerpc (struct vnode *dvp, const char *name,
227 				   int namelen,
228 				   struct ucred *cred, struct thread *td);
229 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
230 				   int fnamelen, struct vnode *tdvp,
231 				   const char *tnameptr, int tnamelen,
232 				   struct ucred *cred, struct thread *td);
233 static int	nfs_renameit (struct vnode *sdvp,
234 				  struct componentname *scnp,
235 				  struct sillyrename *sp);
236 
237 /*
238  * Global variables
239  */
240 extern u_int32_t nfs_true, nfs_false;
241 extern u_int32_t nfs_xdrneg1;
242 extern struct nfsstats nfsstats;
243 extern nfstype nfsv3_type[9];
244 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON];
245 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON];
246 int nfs_numasync = 0;
247 #define	DIRHDSIZ	(sizeof (struct dirent) - (MAXNAMLEN + 1))
248 
249 SYSCTL_DECL(_vfs_nfs);
250 
251 static int	nfsaccess_cache_timeout = NFS_MAXATTRTIMO;
252 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
253 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
254 
255 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
256 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
257 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE ACCESS cache timeout");
258 
259 static int	nfsv3_commit_on_close = 0;
260 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
261 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
262 #if 0
263 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
264 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
265 
266 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
267 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
268 #endif
269 
270 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
271 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
272 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
273 static int
274 nfs3_access_otw(struct vnode *vp, int wmode,
275 		struct thread *td, struct ucred *cred)
276 {
277 	const int v3 = 1;
278 	u_int32_t *tl;
279 	int error = 0, attrflag;
280 
281 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
282 	caddr_t bpos, dpos, cp2;
283 	int32_t t1, t2;
284 	caddr_t cp;
285 	u_int32_t rmode;
286 	struct nfsnode *np = VTONFS(vp);
287 
288 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
289 	nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED);
290 	nfsm_fhtom(vp, v3);
291 	nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
292 	*tl = txdr_unsigned(wmode);
293 	nfsm_request(vp, NFSPROC_ACCESS, td, cred);
294 	nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
295 	if (!error) {
296 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
297 		rmode = fxdr_unsigned(u_int32_t, *tl);
298 		np->n_mode = rmode;
299 		np->n_modeuid = cred->cr_uid;
300 		np->n_modestamp = mycpu->gd_time_seconds;
301 	}
302 	m_freem(mrep);
303 nfsmout:
304 	return error;
305 }
306 
307 /*
308  * nfs access vnode op.
309  * For nfs version 2, just return ok. File accesses may fail later.
310  * For nfs version 3, use the access rpc to check accessibility. If file modes
311  * are changed on the server, accesses might still fail later.
312  *
313  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
314  *	      struct thread *a_td)
315  */
316 static int
317 nfs_access(struct vop_access_args *ap)
318 {
319 	struct vnode *vp = ap->a_vp;
320 	int error = 0;
321 	u_int32_t mode, wmode;
322 	int v3 = NFS_ISV3(vp);
323 	struct nfsnode *np = VTONFS(vp);
324 
325 	/*
326 	 * Disallow write attempts on filesystems mounted read-only;
327 	 * unless the file is a socket, fifo, or a block or character
328 	 * device resident on the filesystem.
329 	 */
330 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
331 		switch (vp->v_type) {
332 		case VREG:
333 		case VDIR:
334 		case VLNK:
335 			return (EROFS);
336 		default:
337 			break;
338 		}
339 	}
340 	/*
341 	 * For nfs v3, check to see if we have done this recently, and if
342 	 * so return our cached result instead of making an ACCESS call.
343 	 * If not, do an access rpc, otherwise you are stuck emulating
344 	 * ufs_access() locally using the vattr. This may not be correct,
345 	 * since the server may apply other access criteria such as
346 	 * client uid-->server uid mapping that we do not know about.
347 	 */
348 	if (v3) {
349 		if (ap->a_mode & VREAD)
350 			mode = NFSV3ACCESS_READ;
351 		else
352 			mode = 0;
353 		if (vp->v_type != VDIR) {
354 			if (ap->a_mode & VWRITE)
355 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
356 			if (ap->a_mode & VEXEC)
357 				mode |= NFSV3ACCESS_EXECUTE;
358 		} else {
359 			if (ap->a_mode & VWRITE)
360 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
361 					 NFSV3ACCESS_DELETE);
362 			if (ap->a_mode & VEXEC)
363 				mode |= NFSV3ACCESS_LOOKUP;
364 		}
365 		/* XXX safety belt, only make blanket request if caching */
366 		if (nfsaccess_cache_timeout > 0) {
367 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
368 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
369 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
370 		} else {
371 			wmode = mode;
372 		}
373 
374 		/*
375 		 * Does our cached result allow us to give a definite yes to
376 		 * this request?
377 		 */
378 		if (np->n_modestamp &&
379 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
380 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
381 		   ((np->n_mode & mode) == mode)) {
382 			nfsstats.accesscache_hits++;
383 		} else {
384 			/*
385 			 * Either a no, or a don't know.  Go to the wire.
386 			 */
387 			nfsstats.accesscache_misses++;
388 		        error = nfs3_access_otw(vp, wmode, ap->a_td,ap->a_cred);
389 			if (!error) {
390 				if ((np->n_mode & mode) != mode) {
391 					error = EACCES;
392 				}
393 			}
394 		}
395 	} else {
396 		if ((error = nfsspec_access(ap)) != 0)
397 			return (error);
398 
399 		/*
400 		 * Attempt to prevent a mapped root from accessing a file
401 		 * which it shouldn't.  We try to read a byte from the file
402 		 * if the user is root and the file is not zero length.
403 		 * After calling nfsspec_access, we should have the correct
404 		 * file size cached.
405 		 */
406 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
407 		    && VTONFS(vp)->n_size > 0) {
408 			struct iovec aiov;
409 			struct uio auio;
410 			char buf[1];
411 
412 			aiov.iov_base = buf;
413 			aiov.iov_len = 1;
414 			auio.uio_iov = &aiov;
415 			auio.uio_iovcnt = 1;
416 			auio.uio_offset = 0;
417 			auio.uio_resid = 1;
418 			auio.uio_segflg = UIO_SYSSPACE;
419 			auio.uio_rw = UIO_READ;
420 			auio.uio_td = ap->a_td;
421 
422 			if (vp->v_type == VREG) {
423 				error = nfs_readrpc(vp, &auio);
424 			} else if (vp->v_type == VDIR) {
425 				char* bp;
426 				bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
427 				aiov.iov_base = bp;
428 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
429 				error = nfs_readdirrpc(vp, &auio);
430 				free(bp, M_TEMP);
431 			} else if (vp->v_type == VLNK) {
432 				error = nfs_readlinkrpc(vp, &auio);
433 			} else {
434 				error = EACCES;
435 			}
436 		}
437 	}
438 	/*
439 	 * [re]record creds for reading and/or writing if access
440 	 * was granted.  Assume the NFS server will grant read access
441 	 * for execute requests.
442 	 */
443 	if (error == 0) {
444 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
445 			crhold(ap->a_cred);
446 			if (np->n_rucred)
447 				crfree(np->n_rucred);
448 			np->n_rucred = ap->a_cred;
449 		}
450 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
451 			crhold(ap->a_cred);
452 			if (np->n_wucred)
453 				crfree(np->n_wucred);
454 			np->n_wucred = ap->a_cred;
455 		}
456 	}
457 	return(error);
458 }
459 
460 /*
461  * nfs open vnode op
462  * Check to see if the type is ok
463  * and that deletion is not in progress.
464  * For paged in text files, you will need to flush the page cache
465  * if consistency is lost.
466  *
467  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
468  *	    struct thread *a_td)
469  */
470 /* ARGSUSED */
471 static int
472 nfs_open(struct vop_open_args *ap)
473 {
474 	struct vnode *vp = ap->a_vp;
475 	struct nfsnode *np = VTONFS(vp);
476 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
477 	struct vattr vattr;
478 	int error;
479 
480 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
481 #ifdef DIAGNOSTIC
482 		printf("open eacces vtyp=%d\n",vp->v_type);
483 #endif
484 		return (EOPNOTSUPP);
485 	}
486 
487 	/*
488 	 * Clear the attribute cache only if opening with write access.  It
489 	 * is unclear if we should do this at all here, but we certainly
490 	 * should not clear the cache unconditionally simply because a file
491 	 * is being opened.
492 	 */
493 	if (ap->a_mode & FWRITE)
494 		np->n_attrstamp = 0;
495 
496 	if (nmp->nm_flag & NFSMNT_NQNFS) {
497 		/*
498 		 * If NQNFS is active, get a valid lease
499 		 */
500 		if (NQNFS_CKINVALID(vp, np, ND_READ)) {
501 		    do {
502 			error = nqnfs_getlease(vp, ND_READ, ap->a_td);
503 		    } while (error == NQNFS_EXPIRED);
504 		    if (error)
505 			return (error);
506 		    if (np->n_lrev != np->n_brev ||
507 			(np->n_flag & NQNFSNONCACHE)) {
508 			if ((error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1))
509 			    == EINTR) {
510 				return (error);
511 			}
512 			np->n_brev = np->n_lrev;
513 		    }
514 		}
515 	} else {
516 		/*
517 		 * For normal NFS, reconcile changes made locally verses
518 		 * changes made remotely.  Note that VOP_GETATTR only goes
519 		 * to the wire if the cached attribute has timed out or been
520 		 * cleared.
521 		 *
522 		 * If local modifications have been made clear the attribute
523 		 * cache to force an attribute and modified time check.  If
524 		 * GETATTR detects that the file has been changed by someone
525 		 * other then us it will set NRMODIFIED.
526 		 *
527 		 * If we are opening a directory and local changes have been
528 		 * made we have to invalidate the cache in order to ensure
529 		 * that we get the most up-to-date information from the
530 		 * server.  XXX
531 		 */
532 		if (np->n_flag & NLMODIFIED) {
533 			np->n_attrstamp = 0;
534 			if (vp->v_type == VDIR) {
535 				error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
536 				if (error == EINTR)
537 					return (error);
538 				nfs_invaldir(vp);
539 			}
540 		}
541 		error = VOP_GETATTR(vp, &vattr, ap->a_td);
542 		if (error)
543 			return (error);
544 		if (np->n_flag & NRMODIFIED) {
545 			if (vp->v_type == VDIR)
546 				nfs_invaldir(vp);
547 			error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
548 			if (error == EINTR)
549 				return (error);
550 			np->n_flag &= ~NRMODIFIED;
551 		}
552 	}
553 
554 	return (0);
555 }
556 
557 /*
558  * nfs close vnode op
559  * What an NFS client should do upon close after writing is a debatable issue.
560  * Most NFS clients push delayed writes to the server upon close, basically for
561  * two reasons:
562  * 1 - So that any write errors may be reported back to the client process
563  *     doing the close system call. By far the two most likely errors are
564  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
565  * 2 - To put a worst case upper bound on cache inconsistency between
566  *     multiple clients for the file.
567  * There is also a consistency problem for Version 2 of the protocol w.r.t.
568  * not being able to tell if other clients are writing a file concurrently,
569  * since there is no way of knowing if the changed modify time in the reply
570  * is only due to the write for this client.
571  * (NFS Version 3 provides weak cache consistency data in the reply that
572  *  should be sufficient to detect and handle this case.)
573  *
574  * The current code does the following:
575  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
576  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
577  *                     or commit them (this satisfies 1 and 2 except for the
578  *                     case where the server crashes after this close but
579  *                     before the commit RPC, which is felt to be "good
580  *                     enough". Changing the last argument to nfs_flush() to
581  *                     a 1 would force a commit operation, if it is felt a
582  *                     commit is necessary now.
583  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
584  *                     1 should be dealt with via an fsync() system call for
585  *                     cases where write errors are important.
586  *
587  * nfs_close(struct vnodeop_desc *a_desc, struct vnode *a_vp, int a_fflag,
588  *	     struct ucred *a_cred, struct thread *a_td)
589  */
590 /* ARGSUSED */
591 static int
592 nfs_close(struct vop_close_args *ap)
593 {
594 	struct vnode *vp = ap->a_vp;
595 	struct nfsnode *np = VTONFS(vp);
596 	int error = 0;
597 
598 	if (vp->v_type == VREG) {
599 	    if ((VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NQNFS) == 0 &&
600 		(np->n_flag & NLMODIFIED)) {
601 		if (NFS_ISV3(vp)) {
602 		    /*
603 		     * Under NFSv3 we have dirty buffers to dispose of.  We
604 		     * must flush them to the NFS server.  We have the option
605 		     * of waiting all the way through the commit rpc or just
606 		     * waiting for the initial write.  The default is to only
607 		     * wait through the initial write so the data is in the
608 		     * server's cache, which is roughly similar to the state
609 		     * a standard disk subsystem leaves the file in on close().
610 		     *
611 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
612 		     * potential races with other processes, and certainly
613 		     * cannot clear it if we don't commit.
614 		     */
615 		    int cm = nfsv3_commit_on_close ? 1 : 0;
616 		    error = nfs_flush(vp, MNT_WAIT, ap->a_td, cm);
617 		    /* np->n_flag &= ~NLMODIFIED; */
618 		} else {
619 		    error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
620 		}
621 		np->n_attrstamp = 0;
622 	    }
623 	    if (np->n_flag & NWRITEERR) {
624 		np->n_flag &= ~NWRITEERR;
625 		error = np->n_error;
626 	    }
627 	}
628 	return (error);
629 }
630 
631 /*
632  * nfs getattr call from vfs.
633  *
634  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred,
635  *		struct thread *a_td)
636  */
637 static int
638 nfs_getattr(struct vop_getattr_args *ap)
639 {
640 	struct vnode *vp = ap->a_vp;
641 	struct nfsnode *np = VTONFS(vp);
642 	caddr_t cp;
643 	u_int32_t *tl;
644 	int32_t t1, t2;
645 	caddr_t bpos, dpos;
646 	int error = 0;
647 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
648 	int v3 = NFS_ISV3(vp);
649 
650 	/*
651 	 * Update local times for special files.
652 	 */
653 	if (np->n_flag & (NACC | NUPD))
654 		np->n_flag |= NCHG;
655 	/*
656 	 * First look in the cache.
657 	 */
658 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
659 		return (0);
660 
661 	if (v3 && nfsaccess_cache_timeout > 0) {
662 		nfsstats.accesscache_misses++;
663 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, ap->a_td, nfs_vpcred(vp, ND_CHECK));
664 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
665 			return (0);
666 	}
667 
668 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
669 	nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3));
670 	nfsm_fhtom(vp, v3);
671 	nfsm_request(vp, NFSPROC_GETATTR, ap->a_td, nfs_vpcred(vp, ND_CHECK));
672 	if (!error) {
673 		nfsm_loadattr(vp, ap->a_vap);
674 	}
675 	m_freem(mrep);
676 nfsmout:
677 	return (error);
678 }
679 
680 /*
681  * nfs setattr call.
682  *
683  * nfs_setattr(struct vnodeop_desc *a_desc, struct vnode *a_vp,
684  *		struct vattr *a_vap, struct ucred *a_cred,
685  *		struct thread *a_td)
686  */
687 static int
688 nfs_setattr(struct vop_setattr_args *ap)
689 {
690 	struct vnode *vp = ap->a_vp;
691 	struct nfsnode *np = VTONFS(vp);
692 	struct vattr *vap = ap->a_vap;
693 	int error = 0;
694 	u_quad_t tsize;
695 
696 #ifndef nolint
697 	tsize = (u_quad_t)0;
698 #endif
699 
700 	/*
701 	 * Setting of flags is not supported.
702 	 */
703 	if (vap->va_flags != VNOVAL)
704 		return (EOPNOTSUPP);
705 
706 	/*
707 	 * Disallow write attempts if the filesystem is mounted read-only.
708 	 */
709   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
710 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
711 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
712 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
713 		return (EROFS);
714 	if (vap->va_size != VNOVAL) {
715  		switch (vp->v_type) {
716  		case VDIR:
717  			return (EISDIR);
718  		case VCHR:
719  		case VBLK:
720  		case VSOCK:
721  		case VFIFO:
722 			if (vap->va_mtime.tv_sec == VNOVAL &&
723 			    vap->va_atime.tv_sec == VNOVAL &&
724 			    vap->va_mode == (mode_t)VNOVAL &&
725 			    vap->va_uid == (uid_t)VNOVAL &&
726 			    vap->va_gid == (gid_t)VNOVAL)
727 				return (0);
728  			vap->va_size = VNOVAL;
729  			break;
730  		default:
731 			/*
732 			 * Disallow write attempts if the filesystem is
733 			 * mounted read-only.
734 			 */
735 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
736 				return (EROFS);
737 
738 			/*
739 			 * This is nasty.  The RPCs we send to flush pending
740 			 * data often return attribute information which is
741 			 * cached via a callback to nfs_loadattrcache(), which
742 			 * has the effect of changing our notion of the file
743 			 * size.  Due to flushed appends and other operations
744 			 * the file size can be set to virtually anything,
745 			 * including values that do not match either the old
746 			 * or intended file size.
747 			 *
748 			 * When this condition is detected we must loop to
749 			 * try the operation again.  Hopefully no more
750 			 * flushing is required on the loop so it works the
751 			 * second time around.  THIS CASE ALMOST ALWAYS
752 			 * HAPPENS!
753 			 */
754 			tsize = np->n_size;
755 again:
756 			error = nfs_meta_setsize(vp, ap->a_td, vap->va_size);
757 
758  			if (np->n_flag & NLMODIFIED) {
759  			    if (vap->va_size == 0)
760  				error = nfs_vinvalbuf(vp, 0, ap->a_td, 1);
761  			    else
762  				error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1);
763  			}
764 			/*
765 			 * note: this loop case almost always happens at
766 			 * least once per truncation.
767 			 */
768 			if (error == 0 && np->n_size != vap->va_size)
769 				goto again;
770 			np->n_vattr.va_size = vap->va_size;
771 			break;
772 		}
773   	} else if ((vap->va_mtime.tv_sec != VNOVAL ||
774 		vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NLMODIFIED) &&
775 		vp->v_type == VREG &&
776   		(error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1)) == EINTR
777 	) {
778 		return (error);
779 	}
780 	error = nfs_setattrrpc(vp, vap, ap->a_cred, ap->a_td);
781 
782 	/*
783 	 * Sanity check if a truncation was issued.  This should only occur
784 	 * if multiple processes are racing on the same file.
785 	 */
786 	if (error == 0 && vap->va_size != VNOVAL &&
787 	    np->n_size != vap->va_size) {
788 		printf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size);
789 		goto again;
790 	}
791 	if (error && vap->va_size != VNOVAL) {
792 		np->n_size = np->n_vattr.va_size = tsize;
793 		vnode_pager_setsize(vp, np->n_size);
794 	}
795 	return (error);
796 }
797 
798 /*
799  * Do an nfs setattr rpc.
800  */
801 static int
802 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
803 	       struct ucred *cred, struct thread *td)
804 {
805 	struct nfsv2_sattr *sp;
806 	struct nfsnode *np = VTONFS(vp);
807 	caddr_t cp;
808 	int32_t t1, t2;
809 	caddr_t bpos, dpos, cp2;
810 	u_int32_t *tl;
811 	int error = 0, wccflag = NFSV3_WCCRATTR;
812 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
813 	int v3 = NFS_ISV3(vp);
814 
815 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
816 	nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3));
817 	nfsm_fhtom(vp, v3);
818 	if (v3) {
819 		nfsm_v3attrbuild(vap, TRUE);
820 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
821 		*tl = nfs_false;
822 	} else {
823 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
824 		if (vap->va_mode == (mode_t)VNOVAL)
825 			sp->sa_mode = nfs_xdrneg1;
826 		else
827 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
828 		if (vap->va_uid == (uid_t)VNOVAL)
829 			sp->sa_uid = nfs_xdrneg1;
830 		else
831 			sp->sa_uid = txdr_unsigned(vap->va_uid);
832 		if (vap->va_gid == (gid_t)VNOVAL)
833 			sp->sa_gid = nfs_xdrneg1;
834 		else
835 			sp->sa_gid = txdr_unsigned(vap->va_gid);
836 		sp->sa_size = txdr_unsigned(vap->va_size);
837 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
838 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
839 	}
840 	nfsm_request(vp, NFSPROC_SETATTR, td, cred);
841 	if (v3) {
842 		np->n_modestamp = 0;
843 		nfsm_wcc_data(vp, wccflag);
844 	} else
845 		nfsm_loadattr(vp, (struct vattr *)0);
846 	m_freem(mrep);
847 nfsmout:
848 	return (error);
849 }
850 
851 /*
852  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
853  * nfs_lookup() until all remaining new api calls are implemented.
854  *
855  * Resolve a namecache entry.  This function is passed a locked ncp and
856  * must call cache_setvp() on it as appropriate to resolve the entry.
857  */
858 static int
859 nfs_nresolve(struct vop_nresolve_args *ap)
860 {
861 	struct thread *td = curthread;
862 	struct namecache *ncp;
863 	struct ucred *cred;
864 	struct nfsnode *np;
865 	struct vnode *dvp;
866 	struct vnode *nvp;
867 	nfsfh_t *fhp;
868 	int attrflag;
869 	int fhsize;
870 	int error;
871 	int len;
872 	int v3;
873 	/******NFSM MACROS********/
874 	struct mbuf *mb, *mrep, *mreq, *mb2, *md;
875 	caddr_t bpos, dpos, cp, cp2;
876 	u_int32_t *tl;
877 	int32_t t1, t2;
878 
879 	cred = ap->a_cred;
880 	ncp = ap->a_ncp;
881 
882 	KKASSERT(ncp->nc_parent && ncp->nc_parent->nc_vp);
883 	dvp = ncp->nc_parent->nc_vp;
884 	if ((error = vget(dvp, LK_SHARED, td)) != 0)
885 		return (error);
886 
887 	nvp = NULL;
888 	v3 = NFS_ISV3(dvp);
889 	nfsstats.lookupcache_misses++;
890 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
891 	len = ncp->nc_nlen;
892 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
893 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
894 	nfsm_fhtom(dvp, v3);
895 	nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN);
896 	nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred);
897 	if (error) {
898 		/*
899 		 * Cache negatve lookups to reduce NFS traffic, but use
900 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
901 		 * XXX we should add a namecache flag for no-caching
902 		 * to uncache the negative hit as soon as possible, but
903 		 * we cannot simply destroy the entry because it is used
904 		 * as a placeholder by the caller.
905 		 */
906 		if (error == ENOENT) {
907 			int nticks;
908 
909 			if (nfsneg_cache_timeout)
910 				nticks = nfsneg_cache_timeout * hz;
911 			else
912 				nticks = 1;
913 			cache_setvp(ncp, NULL);
914 			cache_settimeout(ncp, nticks);
915 		}
916 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
917 		m_freem(mrep);
918 		goto nfsmout;
919 	}
920 
921 	/*
922 	 * Success, get the file handle, do various checks, and load
923 	 * post-operation data from the reply packet.  Theoretically
924 	 * we should never be looking up "." so, theoretically, we
925 	 * should never get the same file handle as our directory.  But
926 	 * we check anyway. XXX
927 	 *
928 	 * Note that no timeout is set for the positive cache hit.  We
929 	 * assume, theoretically, that ESTALE returns will be dealt with
930 	 * properly to handle NFS races and in anycase we cannot depend
931 	 * on a timeout to deal with NFS open/create/excl issues so instead
932 	 * of a bad hack here the rest of the NFS client code needs to do
933 	 * the right thing.
934 	 */
935 	nfsm_getfh(fhp, fhsize, v3);
936 
937 	np = VTONFS(dvp);
938 	if (NFS_CMPFH(np, fhp, fhsize)) {
939 		vref(dvp);
940 		nvp = dvp;
941 	} else {
942 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
943 		if (error) {
944 			m_freem(mrep);
945 			vput(dvp);
946 			return (error);
947 		}
948 		nvp = NFSTOV(np);
949 	}
950 	if (v3) {
951 		nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK);
952 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
953 	} else {
954 		nfsm_loadattr(nvp, NULL);
955 	}
956 	cache_setvp(ncp, nvp);
957 	m_freem(mrep);
958 nfsmout:
959 	vput(dvp);
960 	if (nvp) {
961 		if (nvp == dvp)
962 			vrele(nvp);
963 		else
964 			vput(nvp);
965 	}
966 	return (error);
967 }
968 
969 /*
970  * 'cached' nfs directory lookup
971  *
972  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
973  *
974  * nfs_lookup(struct vnodeop_desc *a_desc, struct vnode *a_dvp,
975  *	      struct vnode **a_vpp, struct componentname *a_cnp)
976  */
977 static int
978 nfs_lookup(struct vop_lookup_args *ap)
979 {
980 	struct componentname *cnp = ap->a_cnp;
981 	struct vnode *dvp = ap->a_dvp;
982 	struct vnode **vpp = ap->a_vpp;
983 	int flags = cnp->cn_flags;
984 	struct vnode *newvp;
985 	u_int32_t *tl;
986 	caddr_t cp;
987 	int32_t t1, t2;
988 	struct nfsmount *nmp;
989 	caddr_t bpos, dpos, cp2;
990 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
991 	long len;
992 	nfsfh_t *fhp;
993 	struct nfsnode *np;
994 	int lockparent, wantparent, error = 0, attrflag, fhsize;
995 	int v3 = NFS_ISV3(dvp);
996 	struct thread *td = cnp->cn_td;
997 
998 	/*
999 	 * Read-only mount check and directory check.
1000 	 */
1001 	*vpp = NULLVP;
1002 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
1003 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
1004 		return (EROFS);
1005 
1006 	if (dvp->v_type != VDIR)
1007 		return (ENOTDIR);
1008 
1009 	/*
1010 	 * Look it up in the cache.  Note that ENOENT is only returned if we
1011 	 * previously entered a negative hit (see later on).  The additional
1012 	 * nfsneg_cache_timeout check causes previously cached results to
1013 	 * be instantly ignored if the negative caching is turned off.
1014 	 */
1015 	lockparent = flags & CNP_LOCKPARENT;
1016 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1017 	nmp = VFSTONFS(dvp->v_mount);
1018 	np = VTONFS(dvp);
1019 
1020 	/*
1021 	 * Go to the wire.
1022 	 */
1023 	error = 0;
1024 	newvp = NULLVP;
1025 	nfsstats.lookupcache_misses++;
1026 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1027 	len = cnp->cn_namelen;
1028 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
1029 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1030 	nfsm_fhtom(dvp, v3);
1031 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
1032 	nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred);
1033 	if (error) {
1034 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1035 		m_freem(mrep);
1036 		goto nfsmout;
1037 	}
1038 	nfsm_getfh(fhp, fhsize, v3);
1039 
1040 	/*
1041 	 * Handle RENAME case...
1042 	 */
1043 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1044 		if (NFS_CMPFH(np, fhp, fhsize)) {
1045 			m_freem(mrep);
1046 			return (EISDIR);
1047 		}
1048 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1049 		if (error) {
1050 			m_freem(mrep);
1051 			return (error);
1052 		}
1053 		newvp = NFSTOV(np);
1054 		if (v3) {
1055 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1056 			nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1057 		} else
1058 			nfsm_loadattr(newvp, (struct vattr *)0);
1059 		*vpp = newvp;
1060 		m_freem(mrep);
1061 		if (!lockparent) {
1062 			VOP_UNLOCK(dvp, 0, td);
1063 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1064 		}
1065 		return (0);
1066 	}
1067 
1068 	if (flags & CNP_ISDOTDOT) {
1069 		VOP_UNLOCK(dvp, 0, td);
1070 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1071 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1072 		if (error) {
1073 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY, td);
1074 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1075 			return (error); /* NOTE: return error from nget */
1076 		}
1077 		newvp = NFSTOV(np);
1078 		if (lockparent) {
1079 			error = vn_lock(dvp, LK_EXCLUSIVE, td);
1080 			if (error) {
1081 				vput(newvp);
1082 				return (error);
1083 			}
1084 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1085 		}
1086 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1087 		vref(dvp);
1088 		newvp = dvp;
1089 	} else {
1090 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1091 		if (error) {
1092 			m_freem(mrep);
1093 			return (error);
1094 		}
1095 		if (!lockparent) {
1096 			VOP_UNLOCK(dvp, 0, td);
1097 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1098 		}
1099 		newvp = NFSTOV(np);
1100 	}
1101 	if (v3) {
1102 		nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
1103 		nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK);
1104 	} else
1105 		nfsm_loadattr(newvp, (struct vattr *)0);
1106 #if 0
1107 	/* XXX MOVE TO nfs_nremove() */
1108 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1109 	    cnp->cn_nameiop != NAMEI_DELETE) {
1110 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1111 	}
1112 #endif
1113 	*vpp = newvp;
1114 	m_freem(mrep);
1115 nfsmout:
1116 	if (error) {
1117 		if (newvp != NULLVP) {
1118 			vrele(newvp);
1119 			*vpp = NULLVP;
1120 		}
1121 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1122 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1123 		    error == ENOENT) {
1124 			if (!lockparent) {
1125 				VOP_UNLOCK(dvp, 0, td);
1126 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1127 			}
1128 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1129 				error = EROFS;
1130 			else
1131 				error = EJUSTRETURN;
1132 		}
1133 	}
1134 	return (error);
1135 }
1136 
1137 /*
1138  * nfs read call.
1139  * Just call nfs_bioread() to do the work.
1140  *
1141  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1142  *	    struct ucred *a_cred)
1143  */
1144 static int
1145 nfs_read(struct vop_read_args *ap)
1146 {
1147 	struct vnode *vp = ap->a_vp;
1148 
1149 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1150 	switch (vp->v_type) {
1151 	case VREG:
1152 		return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1153 	case VDIR:
1154 		return (EISDIR);
1155 	default:
1156 		return EOPNOTSUPP;
1157 	}
1158 }
1159 
1160 /*
1161  * nfs readlink call
1162  *
1163  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1164  */
1165 static int
1166 nfs_readlink(struct vop_readlink_args *ap)
1167 {
1168 	struct vnode *vp = ap->a_vp;
1169 
1170 	if (vp->v_type != VLNK)
1171 		return (EINVAL);
1172 	return (nfs_bioread(vp, ap->a_uio, 0));
1173 }
1174 
1175 /*
1176  * Do a readlink rpc.
1177  * Called by nfs_doio() from below the buffer cache.
1178  */
1179 int
1180 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop)
1181 {
1182 	u_int32_t *tl;
1183 	caddr_t cp;
1184 	int32_t t1, t2;
1185 	caddr_t bpos, dpos, cp2;
1186 	int error = 0, len, attrflag;
1187 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1188 	int v3 = NFS_ISV3(vp);
1189 
1190 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1191 	nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3));
1192 	nfsm_fhtom(vp, v3);
1193 	nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK));
1194 	if (v3)
1195 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1196 	if (!error) {
1197 		nfsm_strsiz(len, NFS_MAXPATHLEN);
1198 		if (len == NFS_MAXPATHLEN) {
1199 			struct nfsnode *np = VTONFS(vp);
1200 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1201 				len = np->n_size;
1202 		}
1203 		nfsm_mtouio(uiop, len);
1204 	}
1205 	m_freem(mrep);
1206 nfsmout:
1207 	return (error);
1208 }
1209 
1210 /*
1211  * nfs read rpc call
1212  * Ditto above
1213  */
1214 int
1215 nfs_readrpc(struct vnode *vp, struct uio *uiop)
1216 {
1217 	u_int32_t *tl;
1218 	caddr_t cp;
1219 	int32_t t1, t2;
1220 	caddr_t bpos, dpos, cp2;
1221 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1222 	struct nfsmount *nmp;
1223 	int error = 0, len, retlen, tsiz, eof, attrflag;
1224 	int v3 = NFS_ISV3(vp);
1225 
1226 #ifndef nolint
1227 	eof = 0;
1228 #endif
1229 	nmp = VFSTONFS(vp->v_mount);
1230 	tsiz = uiop->uio_resid;
1231 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1232 		return (EFBIG);
1233 	while (tsiz > 0) {
1234 		nfsstats.rpccnt[NFSPROC_READ]++;
1235 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1236 		nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3);
1237 		nfsm_fhtom(vp, v3);
1238 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3);
1239 		if (v3) {
1240 			txdr_hyper(uiop->uio_offset, tl);
1241 			*(tl + 2) = txdr_unsigned(len);
1242 		} else {
1243 			*tl++ = txdr_unsigned(uiop->uio_offset);
1244 			*tl++ = txdr_unsigned(len);
1245 			*tl = 0;
1246 		}
1247 		nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ));
1248 		if (v3) {
1249 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1250 			if (error) {
1251 				m_freem(mrep);
1252 				goto nfsmout;
1253 			}
1254 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1255 			eof = fxdr_unsigned(int, *(tl + 1));
1256 		} else
1257 			nfsm_loadattr(vp, (struct vattr *)0);
1258 		nfsm_strsiz(retlen, nmp->nm_rsize);
1259 		nfsm_mtouio(uiop, retlen);
1260 		m_freem(mrep);
1261 		tsiz -= retlen;
1262 		if (v3) {
1263 			if (eof || retlen == 0) {
1264 				tsiz = 0;
1265 			}
1266 		} else if (retlen < len) {
1267 			tsiz = 0;
1268 		}
1269 	}
1270 nfsmout:
1271 	return (error);
1272 }
1273 
1274 /*
1275  * nfs write call
1276  */
1277 int
1278 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit)
1279 {
1280 	u_int32_t *tl;
1281 	caddr_t cp;
1282 	int32_t t1, t2, backup;
1283 	caddr_t bpos, dpos, cp2;
1284 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1285 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1286 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1287 	int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC;
1288 
1289 #ifndef DIAGNOSTIC
1290 	if (uiop->uio_iovcnt != 1)
1291 		panic("nfs: writerpc iovcnt > 1");
1292 #endif
1293 	*must_commit = 0;
1294 	tsiz = uiop->uio_resid;
1295 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1296 		return (EFBIG);
1297 	while (tsiz > 0) {
1298 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1299 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1300 		nfsm_reqhead(vp, NFSPROC_WRITE,
1301 			NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1302 		nfsm_fhtom(vp, v3);
1303 		if (v3) {
1304 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1305 			txdr_hyper(uiop->uio_offset, tl);
1306 			tl += 2;
1307 			*tl++ = txdr_unsigned(len);
1308 			*tl++ = txdr_unsigned(*iomode);
1309 			*tl = txdr_unsigned(len);
1310 		} else {
1311 			u_int32_t x;
1312 
1313 			nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED);
1314 			/* Set both "begin" and "current" to non-garbage. */
1315 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1316 			*tl++ = x;	/* "begin offset" */
1317 			*tl++ = x;	/* "current offset" */
1318 			x = txdr_unsigned(len);
1319 			*tl++ = x;	/* total to this offset */
1320 			*tl = x;	/* size of this write */
1321 		}
1322 		nfsm_uiotom(uiop, len);
1323 		nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE));
1324 		if (v3) {
1325 			/*
1326 			 * The write RPC returns a before and after mtime.  The
1327 			 * nfsm_wcc_data() macro checks the before n_mtime
1328 			 * against the before time and stores the after time
1329 			 * in the nfsnode's cached vattr and n_mtime field.
1330 			 * The NRMODIFIED bit will be set if the before
1331 			 * time did not match the original mtime.
1332 			 */
1333 			wccflag = NFSV3_WCCCHK;
1334 			nfsm_wcc_data(vp, wccflag);
1335 			if (!error) {
1336 				nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED
1337 					+ NFSX_V3WRITEVERF);
1338 				rlen = fxdr_unsigned(int, *tl++);
1339 				if (rlen == 0) {
1340 					error = NFSERR_IO;
1341 					m_freem(mrep);
1342 					break;
1343 				} else if (rlen < len) {
1344 					backup = len - rlen;
1345 					uiop->uio_iov->iov_base -= backup;
1346 					uiop->uio_iov->iov_len += backup;
1347 					uiop->uio_offset -= backup;
1348 					uiop->uio_resid += backup;
1349 					len = rlen;
1350 				}
1351 				commit = fxdr_unsigned(int, *tl++);
1352 
1353 				/*
1354 				 * Return the lowest committment level
1355 				 * obtained by any of the RPCs.
1356 				 */
1357 				if (committed == NFSV3WRITE_FILESYNC)
1358 					committed = commit;
1359 				else if (committed == NFSV3WRITE_DATASYNC &&
1360 					commit == NFSV3WRITE_UNSTABLE)
1361 					committed = commit;
1362 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1363 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1364 					NFSX_V3WRITEVERF);
1365 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1366 				} else if (bcmp((caddr_t)tl,
1367 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1368 				    *must_commit = 1;
1369 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1370 					NFSX_V3WRITEVERF);
1371 				}
1372 			}
1373 		} else {
1374 			nfsm_loadattr(vp, (struct vattr *)0);
1375 		}
1376 		m_freem(mrep);
1377 		if (error)
1378 			break;
1379 		tsiz -= len;
1380 	}
1381 nfsmout:
1382 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1383 		committed = NFSV3WRITE_FILESYNC;
1384 	*iomode = committed;
1385 	if (error)
1386 		uiop->uio_resid = tsiz;
1387 	return (error);
1388 }
1389 
1390 /*
1391  * nfs mknod rpc
1392  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1393  * mode set to specify the file type and the size field for rdev.
1394  */
1395 static int
1396 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1397 	     struct vattr *vap)
1398 {
1399 	struct nfsv2_sattr *sp;
1400 	u_int32_t *tl;
1401 	caddr_t cp;
1402 	int32_t t1, t2;
1403 	struct vnode *newvp = (struct vnode *)0;
1404 	struct nfsnode *np = (struct nfsnode *)0;
1405 	struct vattr vattr;
1406 	char *cp2;
1407 	caddr_t bpos, dpos;
1408 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1409 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1410 	u_int32_t rdev;
1411 	int v3 = NFS_ISV3(dvp);
1412 
1413 	if (vap->va_type == VCHR || vap->va_type == VBLK)
1414 		rdev = txdr_unsigned(vap->va_rdev);
1415 	else if (vap->va_type == VFIFO || vap->va_type == VSOCK)
1416 		rdev = nfs_xdrneg1;
1417 	else {
1418 		return (EOPNOTSUPP);
1419 	}
1420 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
1421 		return (error);
1422 	}
1423 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1424 	nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED +
1425 		+ nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1426 	nfsm_fhtom(dvp, v3);
1427 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1428 	if (v3) {
1429 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1430 		*tl++ = vtonfsv3_type(vap->va_type);
1431 		nfsm_v3attrbuild(vap, FALSE);
1432 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1433 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1434 			*tl++ = txdr_unsigned(umajor(vap->va_rdev));
1435 			*tl = txdr_unsigned(uminor(vap->va_rdev));
1436 		}
1437 	} else {
1438 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1439 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1440 		sp->sa_uid = nfs_xdrneg1;
1441 		sp->sa_gid = nfs_xdrneg1;
1442 		sp->sa_size = rdev;
1443 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1444 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1445 	}
1446 	nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred);
1447 	if (!error) {
1448 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1449 		if (!gotvp) {
1450 			if (newvp) {
1451 				vput(newvp);
1452 				newvp = (struct vnode *)0;
1453 			}
1454 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1455 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1456 			if (!error)
1457 				newvp = NFSTOV(np);
1458 		}
1459 	}
1460 	if (v3)
1461 		nfsm_wcc_data(dvp, wccflag);
1462 	m_freem(mrep);
1463 nfsmout:
1464 	if (error) {
1465 		if (newvp)
1466 			vput(newvp);
1467 	} else {
1468 		*vpp = newvp;
1469 	}
1470 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1471 	if (!wccflag)
1472 		VTONFS(dvp)->n_attrstamp = 0;
1473 	return (error);
1474 }
1475 
1476 /*
1477  * nfs mknod vop
1478  * just call nfs_mknodrpc() to do the work.
1479  *
1480  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1481  *	     struct componentname *a_cnp, struct vattr *a_vap)
1482  */
1483 /* ARGSUSED */
1484 static int
1485 nfs_mknod(struct vop_mknod_args *ap)
1486 {
1487 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1488 }
1489 
1490 static u_long create_verf;
1491 /*
1492  * nfs file create call
1493  *
1494  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1495  *	      struct componentname *a_cnp, struct vattr *a_vap)
1496  */
1497 static int
1498 nfs_create(struct vop_create_args *ap)
1499 {
1500 	struct vnode *dvp = ap->a_dvp;
1501 	struct vattr *vap = ap->a_vap;
1502 	struct componentname *cnp = ap->a_cnp;
1503 	struct nfsv2_sattr *sp;
1504 	u_int32_t *tl;
1505 	caddr_t cp;
1506 	int32_t t1, t2;
1507 	struct nfsnode *np = (struct nfsnode *)0;
1508 	struct vnode *newvp = (struct vnode *)0;
1509 	caddr_t bpos, dpos, cp2;
1510 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1511 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1512 	struct vattr vattr;
1513 	int v3 = NFS_ISV3(dvp);
1514 
1515 	/*
1516 	 * Oops, not for me..
1517 	 */
1518 	if (vap->va_type == VSOCK)
1519 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1520 
1521 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
1522 		return (error);
1523 	}
1524 	if (vap->va_vaflags & VA_EXCLUSIVE)
1525 		fmode |= O_EXCL;
1526 again:
1527 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1528 	nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED +
1529 		nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3));
1530 	nfsm_fhtom(dvp, v3);
1531 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1532 	if (v3) {
1533 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1534 		if (fmode & O_EXCL) {
1535 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1536 			nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF);
1537 #ifdef INET
1538 			if (!TAILQ_EMPTY(&in_ifaddrhead))
1539 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr.s_addr;
1540 			else
1541 #endif
1542 				*tl++ = create_verf;
1543 			*tl = ++create_verf;
1544 		} else {
1545 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1546 			nfsm_v3attrbuild(vap, FALSE);
1547 		}
1548 	} else {
1549 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1550 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1551 		sp->sa_uid = nfs_xdrneg1;
1552 		sp->sa_gid = nfs_xdrneg1;
1553 		sp->sa_size = 0;
1554 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1555 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1556 	}
1557 	nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred);
1558 	if (!error) {
1559 		nfsm_mtofh(dvp, newvp, v3, gotvp);
1560 		if (!gotvp) {
1561 			if (newvp) {
1562 				vput(newvp);
1563 				newvp = (struct vnode *)0;
1564 			}
1565 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1566 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1567 			if (!error)
1568 				newvp = NFSTOV(np);
1569 		}
1570 	}
1571 	if (v3)
1572 		nfsm_wcc_data(dvp, wccflag);
1573 	m_freem(mrep);
1574 nfsmout:
1575 	if (error) {
1576 		if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1577 			fmode &= ~O_EXCL;
1578 			goto again;
1579 		}
1580 		if (newvp)
1581 			vput(newvp);
1582 	} else if (v3 && (fmode & O_EXCL)) {
1583 		/*
1584 		 * We are normally called with only a partially initialized
1585 		 * VAP.  Since the NFSv3 spec says that server may use the
1586 		 * file attributes to store the verifier, the spec requires
1587 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1588 		 * in atime, but we can't really assume that all servers will
1589 		 * so we ensure that our SETATTR sets both atime and mtime.
1590 		 */
1591 		if (vap->va_mtime.tv_sec == VNOVAL)
1592 			vfs_timestamp(&vap->va_mtime);
1593 		if (vap->va_atime.tv_sec == VNOVAL)
1594 			vap->va_atime = vap->va_mtime;
1595 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1596 	}
1597 	if (!error) {
1598 		/*
1599 		 * The new np may have enough info for access
1600 		 * checks, make sure rucred and wucred are
1601 		 * initialized for read and write rpc's.
1602 		 */
1603 		np = VTONFS(newvp);
1604 		if (np->n_rucred == NULL)
1605 			np->n_rucred = crhold(cnp->cn_cred);
1606 		if (np->n_wucred == NULL)
1607 			np->n_wucred = crhold(cnp->cn_cred);
1608 		*ap->a_vpp = newvp;
1609 	}
1610 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1611 	if (!wccflag)
1612 		VTONFS(dvp)->n_attrstamp = 0;
1613 	return (error);
1614 }
1615 
1616 /*
1617  * nfs file remove call
1618  * To try and make nfs semantics closer to ufs semantics, a file that has
1619  * other processes using the vnode is renamed instead of removed and then
1620  * removed later on the last close.
1621  * - If v_usecount > 1
1622  *	  If a rename is not already in the works
1623  *	     call nfs_sillyrename() to set it up
1624  *     else
1625  *	  do the remove rpc
1626  *
1627  * nfs_remove(struct vnodeop_desc *a_desc, struct vnode *a_dvp,
1628  *	      struct vnode *a_vp, struct componentname *a_cnp)
1629  */
1630 static int
1631 nfs_remove(struct vop_remove_args *ap)
1632 {
1633 	struct vnode *vp = ap->a_vp;
1634 	struct vnode *dvp = ap->a_dvp;
1635 	struct componentname *cnp = ap->a_cnp;
1636 	struct nfsnode *np = VTONFS(vp);
1637 	int error = 0;
1638 	struct vattr vattr;
1639 
1640 #ifndef DIAGNOSTIC
1641 	if (vp->v_usecount < 1)
1642 		panic("nfs_remove: bad v_usecount");
1643 #endif
1644 	if (vp->v_type == VDIR)
1645 		error = EPERM;
1646 	else if (vp->v_usecount == 1 || (np->n_sillyrename &&
1647 	    VOP_GETATTR(vp, &vattr, cnp->cn_td) == 0 &&
1648 	    vattr.va_nlink > 1)) {
1649 		/*
1650 		 * throw away biocache buffers, mainly to avoid
1651 		 * unnecessary delayed writes later.
1652 		 */
1653 		error = nfs_vinvalbuf(vp, 0, cnp->cn_td, 1);
1654 		/* Do the rpc */
1655 		if (error != EINTR)
1656 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1657 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1658 		/*
1659 		 * Kludge City: If the first reply to the remove rpc is lost..
1660 		 *   the reply to the retransmitted request will be ENOENT
1661 		 *   since the file was in fact removed
1662 		 *   Therefore, we cheat and return success.
1663 		 */
1664 		if (error == ENOENT)
1665 			error = 0;
1666 	} else if (!np->n_sillyrename) {
1667 		error = nfs_sillyrename(dvp, vp, cnp);
1668 	}
1669 	np->n_attrstamp = 0;
1670 	return (error);
1671 }
1672 
1673 /*
1674  * nfs file remove rpc called from nfs_inactive
1675  */
1676 int
1677 nfs_removeit(struct sillyrename *sp)
1678 {
1679 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1680 		sp->s_cred, NULL));
1681 }
1682 
1683 /*
1684  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1685  */
1686 static int
1687 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1688 	      struct ucred *cred, struct thread *td)
1689 {
1690 	u_int32_t *tl;
1691 	caddr_t cp;
1692 	int32_t t1, t2;
1693 	caddr_t bpos, dpos, cp2;
1694 	int error = 0, wccflag = NFSV3_WCCRATTR;
1695 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1696 	int v3 = NFS_ISV3(dvp);
1697 
1698 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1699 	nfsm_reqhead(dvp, NFSPROC_REMOVE,
1700 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1701 	nfsm_fhtom(dvp, v3);
1702 	nfsm_strtom(name, namelen, NFS_MAXNAMLEN);
1703 	nfsm_request(dvp, NFSPROC_REMOVE, td, cred);
1704 	if (v3)
1705 		nfsm_wcc_data(dvp, wccflag);
1706 	m_freem(mrep);
1707 nfsmout:
1708 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1709 	if (!wccflag)
1710 		VTONFS(dvp)->n_attrstamp = 0;
1711 	return (error);
1712 }
1713 
1714 /*
1715  * nfs file rename call
1716  *
1717  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1718  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1719  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1720  */
1721 static int
1722 nfs_rename(struct vop_rename_args *ap)
1723 {
1724 	struct vnode *fvp = ap->a_fvp;
1725 	struct vnode *tvp = ap->a_tvp;
1726 	struct vnode *fdvp = ap->a_fdvp;
1727 	struct vnode *tdvp = ap->a_tdvp;
1728 	struct componentname *tcnp = ap->a_tcnp;
1729 	struct componentname *fcnp = ap->a_fcnp;
1730 	int error;
1731 
1732 	/* Check for cross-device rename */
1733 	if ((fvp->v_mount != tdvp->v_mount) ||
1734 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1735 		error = EXDEV;
1736 		goto out;
1737 	}
1738 
1739 	/*
1740 	 * We have to flush B_DELWRI data prior to renaming
1741 	 * the file.  If we don't, the delayed-write buffers
1742 	 * can be flushed out later after the file has gone stale
1743 	 * under NFSV3.  NFSV2 does not have this problem because
1744 	 * ( as far as I can tell ) it flushes dirty buffers more
1745 	 * often.
1746 	 */
1747 
1748 	VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_td);
1749 	if (tvp)
1750 	    VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_td);
1751 
1752 	/*
1753 	 * If the tvp exists and is in use, sillyrename it before doing the
1754 	 * rename of the new file over it.
1755 	 *
1756 	 * XXX Can't sillyrename a directory.
1757 	 *
1758 	 * We do not attempt to do any namecache purges in this old API
1759 	 * routine.  The new API compat functions have access to the actual
1760 	 * namecache structures and will do it for us.
1761 	 */
1762 	if (tvp && tvp->v_usecount > 1 && !VTONFS(tvp)->n_sillyrename &&
1763 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1764 		vput(tvp);
1765 		tvp = NULL;
1766 	} else if (tvp) {
1767 		;
1768 	}
1769 
1770 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1771 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1772 		tcnp->cn_td);
1773 
1774 out:
1775 	if (tdvp == tvp)
1776 		vrele(tdvp);
1777 	else
1778 		vput(tdvp);
1779 	if (tvp)
1780 		vput(tvp);
1781 	vrele(fdvp);
1782 	vrele(fvp);
1783 	/*
1784 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1785 	 */
1786 	if (error == ENOENT)
1787 		error = 0;
1788 	return (error);
1789 }
1790 
1791 /*
1792  * nfs file rename rpc called from nfs_remove() above
1793  */
1794 static int
1795 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1796 	     struct sillyrename *sp)
1797 {
1798 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1799 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1800 }
1801 
1802 /*
1803  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1804  */
1805 static int
1806 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1807 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1808 	      struct ucred *cred, struct thread *td)
1809 {
1810 	u_int32_t *tl;
1811 	caddr_t cp;
1812 	int32_t t1, t2;
1813 	caddr_t bpos, dpos, cp2;
1814 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1815 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1816 	int v3 = NFS_ISV3(fdvp);
1817 
1818 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1819 	nfsm_reqhead(fdvp, NFSPROC_RENAME,
1820 		(NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) +
1821 		nfsm_rndup(tnamelen));
1822 	nfsm_fhtom(fdvp, v3);
1823 	nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN);
1824 	nfsm_fhtom(tdvp, v3);
1825 	nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN);
1826 	nfsm_request(fdvp, NFSPROC_RENAME, td, cred);
1827 	if (v3) {
1828 		nfsm_wcc_data(fdvp, fwccflag);
1829 		nfsm_wcc_data(tdvp, twccflag);
1830 	}
1831 	m_freem(mrep);
1832 nfsmout:
1833 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1834 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1835 	if (!fwccflag)
1836 		VTONFS(fdvp)->n_attrstamp = 0;
1837 	if (!twccflag)
1838 		VTONFS(tdvp)->n_attrstamp = 0;
1839 	return (error);
1840 }
1841 
1842 /*
1843  * nfs hard link create call
1844  *
1845  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1846  *	    struct componentname *a_cnp)
1847  */
1848 static int
1849 nfs_link(struct vop_link_args *ap)
1850 {
1851 	struct vnode *vp = ap->a_vp;
1852 	struct vnode *tdvp = ap->a_tdvp;
1853 	struct componentname *cnp = ap->a_cnp;
1854 	u_int32_t *tl;
1855 	caddr_t cp;
1856 	int32_t t1, t2;
1857 	caddr_t bpos, dpos, cp2;
1858 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1859 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1860 	int v3;
1861 
1862 	if (vp->v_mount != tdvp->v_mount) {
1863 		return (EXDEV);
1864 	}
1865 
1866 	/*
1867 	 * Push all writes to the server, so that the attribute cache
1868 	 * doesn't get "out of sync" with the server.
1869 	 * XXX There should be a better way!
1870 	 */
1871 	VOP_FSYNC(vp, MNT_WAIT, cnp->cn_td);
1872 
1873 	v3 = NFS_ISV3(vp);
1874 	nfsstats.rpccnt[NFSPROC_LINK]++;
1875 	nfsm_reqhead(vp, NFSPROC_LINK,
1876 		NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
1877 	nfsm_fhtom(vp, v3);
1878 	nfsm_fhtom(tdvp, v3);
1879 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1880 	nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred);
1881 	if (v3) {
1882 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
1883 		nfsm_wcc_data(tdvp, wccflag);
1884 	}
1885 	m_freem(mrep);
1886 nfsmout:
1887 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1888 	if (!attrflag)
1889 		VTONFS(vp)->n_attrstamp = 0;
1890 	if (!wccflag)
1891 		VTONFS(tdvp)->n_attrstamp = 0;
1892 	/*
1893 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1894 	 */
1895 	if (error == EEXIST)
1896 		error = 0;
1897 	return (error);
1898 }
1899 
1900 /*
1901  * nfs symbolic link create call
1902  *
1903  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1904  *		struct componentname *a_cnp, struct vattr *a_vap,
1905  *		char *a_target)
1906  */
1907 static int
1908 nfs_symlink(struct vop_symlink_args *ap)
1909 {
1910 	struct vnode *dvp = ap->a_dvp;
1911 	struct vattr *vap = ap->a_vap;
1912 	struct componentname *cnp = ap->a_cnp;
1913 	struct nfsv2_sattr *sp;
1914 	u_int32_t *tl;
1915 	caddr_t cp;
1916 	int32_t t1, t2;
1917 	caddr_t bpos, dpos, cp2;
1918 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1919 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
1920 	struct vnode *newvp = (struct vnode *)0;
1921 	int v3 = NFS_ISV3(dvp);
1922 
1923 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1924 	slen = strlen(ap->a_target);
1925 	nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED +
1926 	    nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3));
1927 	nfsm_fhtom(dvp, v3);
1928 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
1929 	if (v3) {
1930 		nfsm_v3attrbuild(vap, FALSE);
1931 	}
1932 	nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN);
1933 	if (!v3) {
1934 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
1935 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1936 		sp->sa_uid = nfs_xdrneg1;
1937 		sp->sa_gid = nfs_xdrneg1;
1938 		sp->sa_size = nfs_xdrneg1;
1939 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1940 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1941 	}
1942 
1943 	/*
1944 	 * Issue the NFS request and get the rpc response.
1945 	 *
1946 	 * Only NFSv3 responses returning an error of 0 actually return
1947 	 * a file handle that can be converted into newvp without having
1948 	 * to do an extra lookup rpc.
1949 	 */
1950 	nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred);
1951 	if (v3) {
1952 		if (error == 0)
1953 			nfsm_mtofh(dvp, newvp, v3, gotvp);
1954 		nfsm_wcc_data(dvp, wccflag);
1955 	}
1956 
1957 	/*
1958 	 * out code jumps -> here, mrep is also freed.
1959 	 */
1960 
1961 	m_freem(mrep);
1962 nfsmout:
1963 
1964 	/*
1965 	 * If we get an EEXIST error, silently convert it to no-error
1966 	 * in case of an NFS retry.
1967 	 */
1968 	if (error == EEXIST)
1969 		error = 0;
1970 
1971 	/*
1972 	 * If we do not have (or no longer have) an error, and we could
1973 	 * not extract the newvp from the response due to the request being
1974 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
1975 	 * to obtain a newvp to return.
1976 	 */
1977 	if (error == 0 && newvp == NULL) {
1978 		struct nfsnode *np = NULL;
1979 
1980 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
1981 		    cnp->cn_cred, cnp->cn_td, &np);
1982 		if (!error)
1983 			newvp = NFSTOV(np);
1984 	}
1985 	if (error) {
1986 		if (newvp)
1987 			vput(newvp);
1988 	} else {
1989 		*ap->a_vpp = newvp;
1990 	}
1991 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1992 	if (!wccflag)
1993 		VTONFS(dvp)->n_attrstamp = 0;
1994 	return (error);
1995 }
1996 
1997 /*
1998  * nfs make dir call
1999  *
2000  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
2001  *	     struct componentname *a_cnp, struct vattr *a_vap)
2002  */
2003 static int
2004 nfs_mkdir(struct vop_mkdir_args *ap)
2005 {
2006 	struct vnode *dvp = ap->a_dvp;
2007 	struct vattr *vap = ap->a_vap;
2008 	struct componentname *cnp = ap->a_cnp;
2009 	struct nfsv2_sattr *sp;
2010 	u_int32_t *tl;
2011 	caddr_t cp;
2012 	int32_t t1, t2;
2013 	int len;
2014 	struct nfsnode *np = (struct nfsnode *)0;
2015 	struct vnode *newvp = (struct vnode *)0;
2016 	caddr_t bpos, dpos, cp2;
2017 	int error = 0, wccflag = NFSV3_WCCRATTR;
2018 	int gotvp = 0;
2019 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2020 	struct vattr vattr;
2021 	int v3 = NFS_ISV3(dvp);
2022 
2023 	if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) {
2024 		return (error);
2025 	}
2026 	len = cnp->cn_namelen;
2027 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2028 	nfsm_reqhead(dvp, NFSPROC_MKDIR,
2029 	  NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3));
2030 	nfsm_fhtom(dvp, v3);
2031 	nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN);
2032 	if (v3) {
2033 		nfsm_v3attrbuild(vap, FALSE);
2034 	} else {
2035 		nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR);
2036 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2037 		sp->sa_uid = nfs_xdrneg1;
2038 		sp->sa_gid = nfs_xdrneg1;
2039 		sp->sa_size = nfs_xdrneg1;
2040 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2041 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2042 	}
2043 	nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred);
2044 	if (!error)
2045 		nfsm_mtofh(dvp, newvp, v3, gotvp);
2046 	if (v3)
2047 		nfsm_wcc_data(dvp, wccflag);
2048 	m_freem(mrep);
2049 nfsmout:
2050 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2051 	if (!wccflag)
2052 		VTONFS(dvp)->n_attrstamp = 0;
2053 	/*
2054 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2055 	 * if we can succeed in looking up the directory.
2056 	 */
2057 	if (error == EEXIST || (!error && !gotvp)) {
2058 		if (newvp) {
2059 			vrele(newvp);
2060 			newvp = (struct vnode *)0;
2061 		}
2062 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2063 			cnp->cn_td, &np);
2064 		if (!error) {
2065 			newvp = NFSTOV(np);
2066 			if (newvp->v_type != VDIR)
2067 				error = EEXIST;
2068 		}
2069 	}
2070 	if (error) {
2071 		if (newvp)
2072 			vrele(newvp);
2073 	} else
2074 		*ap->a_vpp = newvp;
2075 	return (error);
2076 }
2077 
2078 /*
2079  * nfs remove directory call
2080  *
2081  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2082  *	     struct componentname *a_cnp)
2083  */
2084 static int
2085 nfs_rmdir(struct vop_rmdir_args *ap)
2086 {
2087 	struct vnode *vp = ap->a_vp;
2088 	struct vnode *dvp = ap->a_dvp;
2089 	struct componentname *cnp = ap->a_cnp;
2090 	u_int32_t *tl;
2091 	caddr_t cp;
2092 	int32_t t1, t2;
2093 	caddr_t bpos, dpos, cp2;
2094 	int error = 0, wccflag = NFSV3_WCCRATTR;
2095 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2096 	int v3 = NFS_ISV3(dvp);
2097 
2098 	if (dvp == vp)
2099 		return (EINVAL);
2100 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2101 	nfsm_reqhead(dvp, NFSPROC_RMDIR,
2102 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen));
2103 	nfsm_fhtom(dvp, v3);
2104 	nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN);
2105 	nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred);
2106 	if (v3)
2107 		nfsm_wcc_data(dvp, wccflag);
2108 	m_freem(mrep);
2109 nfsmout:
2110 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2111 	if (!wccflag)
2112 		VTONFS(dvp)->n_attrstamp = 0;
2113 	/*
2114 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2115 	 */
2116 	if (error == ENOENT)
2117 		error = 0;
2118 	return (error);
2119 }
2120 
2121 /*
2122  * nfs readdir call
2123  *
2124  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2125  */
2126 static int
2127 nfs_readdir(struct vop_readdir_args *ap)
2128 {
2129 	struct vnode *vp = ap->a_vp;
2130 	struct nfsnode *np = VTONFS(vp);
2131 	struct uio *uio = ap->a_uio;
2132 	int tresid, error;
2133 	struct vattr vattr;
2134 
2135 	if (vp->v_type != VDIR)
2136 		return (EPERM);
2137 
2138 	/*
2139 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2140 	 * and then check that is still valid, or if this is an NQNFS mount
2141 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2142 	 * VOP_GETATTR() does not necessarily go to the wire.
2143 	 */
2144 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2145 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2146 		if (VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_NQNFS) {
2147 			if (NQNFS_CKCACHABLE(vp, ND_READ)) {
2148 				nfsstats.direofcache_hits++;
2149 				return (0);
2150 			}
2151 		} else if (VOP_GETATTR(vp, &vattr, uio->uio_td) == 0 &&
2152 			(np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2153 		) {
2154 			nfsstats.direofcache_hits++;
2155 			return (0);
2156 		}
2157 	}
2158 
2159 	/*
2160 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2161 	 * own cache coherency checks so we do not have to.
2162 	 */
2163 	tresid = uio->uio_resid;
2164 	error = nfs_bioread(vp, uio, 0);
2165 
2166 	if (!error && uio->uio_resid == tresid)
2167 		nfsstats.direofcache_misses++;
2168 	return (error);
2169 }
2170 
2171 /*
2172  * Readdir rpc call.
2173  * Called from below the buffer cache by nfs_doio().
2174  */
2175 int
2176 nfs_readdirrpc(struct vnode *vp, struct uio *uiop)
2177 {
2178 	int len, left;
2179 	struct dirent *dp = NULL;
2180 	u_int32_t *tl;
2181 	caddr_t cp;
2182 	int32_t t1, t2;
2183 	nfsuint64 *cookiep;
2184 	caddr_t bpos, dpos, cp2;
2185 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2186 	nfsuint64 cookie;
2187 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2188 	struct nfsnode *dnp = VTONFS(vp);
2189 	u_quad_t fileno;
2190 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2191 	int attrflag;
2192 	int v3 = NFS_ISV3(vp);
2193 
2194 #ifndef DIAGNOSTIC
2195 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2196 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2197 		panic("nfs readdirrpc bad uio");
2198 #endif
2199 
2200 	/*
2201 	 * If there is no cookie, assume directory was stale.
2202 	 */
2203 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2204 	if (cookiep)
2205 		cookie = *cookiep;
2206 	else
2207 		return (NFSERR_BAD_COOKIE);
2208 	/*
2209 	 * Loop around doing readdir rpc's of size nm_readdirsize
2210 	 * truncated to a multiple of DIRBLKSIZ.
2211 	 * The stopping criteria is EOF or buffer full.
2212 	 */
2213 	while (more_dirs && bigenough) {
2214 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2215 		nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) +
2216 			NFSX_READDIR(v3));
2217 		nfsm_fhtom(vp, v3);
2218 		if (v3) {
2219 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
2220 			*tl++ = cookie.nfsuquad[0];
2221 			*tl++ = cookie.nfsuquad[1];
2222 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2223 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2224 		} else {
2225 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2226 			*tl++ = cookie.nfsuquad[0];
2227 		}
2228 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2229 		nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2230 		if (v3) {
2231 			nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2232 			if (!error) {
2233 				nfsm_dissect(tl, u_int32_t *,
2234 				    2 * NFSX_UNSIGNED);
2235 				dnp->n_cookieverf.nfsuquad[0] = *tl++;
2236 				dnp->n_cookieverf.nfsuquad[1] = *tl;
2237 			} else {
2238 				m_freem(mrep);
2239 				goto nfsmout;
2240 			}
2241 		}
2242 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2243 		more_dirs = fxdr_unsigned(int, *tl);
2244 
2245 		/* loop thru the dir entries, doctoring them to 4bsd form */
2246 		while (more_dirs && bigenough) {
2247 			if (v3) {
2248 				nfsm_dissect(tl, u_int32_t *,
2249 				    3 * NFSX_UNSIGNED);
2250 				fileno = fxdr_hyper(tl);
2251 				len = fxdr_unsigned(int, *(tl + 2));
2252 			} else {
2253 				nfsm_dissect(tl, u_int32_t *,
2254 				    2 * NFSX_UNSIGNED);
2255 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2256 				len = fxdr_unsigned(int, *tl);
2257 			}
2258 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2259 				error = EBADRPC;
2260 				m_freem(mrep);
2261 				goto nfsmout;
2262 			}
2263 			tlen = nfsm_rndup(len);
2264 			if (tlen == len)
2265 				tlen += 4;	/* To ensure null termination */
2266 			left = DIRBLKSIZ - blksiz;
2267 			if ((tlen + DIRHDSIZ) > left) {
2268 				dp->d_reclen += left;
2269 				uiop->uio_iov->iov_base += left;
2270 				uiop->uio_iov->iov_len -= left;
2271 				uiop->uio_offset += left;
2272 				uiop->uio_resid -= left;
2273 				blksiz = 0;
2274 			}
2275 			if ((tlen + DIRHDSIZ) > uiop->uio_resid)
2276 				bigenough = 0;
2277 			if (bigenough) {
2278 				dp = (struct dirent *)uiop->uio_iov->iov_base;
2279 				dp->d_fileno = (int)fileno;
2280 				dp->d_namlen = len;
2281 				dp->d_reclen = tlen + DIRHDSIZ;
2282 				dp->d_type = DT_UNKNOWN;
2283 				blksiz += dp->d_reclen;
2284 				if (blksiz == DIRBLKSIZ)
2285 					blksiz = 0;
2286 				uiop->uio_offset += DIRHDSIZ;
2287 				uiop->uio_resid -= DIRHDSIZ;
2288 				uiop->uio_iov->iov_base += DIRHDSIZ;
2289 				uiop->uio_iov->iov_len -= DIRHDSIZ;
2290 				nfsm_mtouio(uiop, len);
2291 				cp = uiop->uio_iov->iov_base;
2292 				tlen -= len;
2293 				*cp = '\0';	/* null terminate */
2294 				uiop->uio_iov->iov_base += tlen;
2295 				uiop->uio_iov->iov_len -= tlen;
2296 				uiop->uio_offset += tlen;
2297 				uiop->uio_resid -= tlen;
2298 			} else
2299 				nfsm_adv(nfsm_rndup(len));
2300 			if (v3) {
2301 				nfsm_dissect(tl, u_int32_t *,
2302 				    3 * NFSX_UNSIGNED);
2303 			} else {
2304 				nfsm_dissect(tl, u_int32_t *,
2305 				    2 * NFSX_UNSIGNED);
2306 			}
2307 			if (bigenough) {
2308 				cookie.nfsuquad[0] = *tl++;
2309 				if (v3)
2310 					cookie.nfsuquad[1] = *tl++;
2311 			} else if (v3)
2312 				tl += 2;
2313 			else
2314 				tl++;
2315 			more_dirs = fxdr_unsigned(int, *tl);
2316 		}
2317 		/*
2318 		 * If at end of rpc data, get the eof boolean
2319 		 */
2320 		if (!more_dirs) {
2321 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2322 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2323 		}
2324 		m_freem(mrep);
2325 	}
2326 	/*
2327 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2328 	 * by increasing d_reclen for the last record.
2329 	 */
2330 	if (blksiz > 0) {
2331 		left = DIRBLKSIZ - blksiz;
2332 		dp->d_reclen += left;
2333 		uiop->uio_iov->iov_base += left;
2334 		uiop->uio_iov->iov_len -= left;
2335 		uiop->uio_offset += left;
2336 		uiop->uio_resid -= left;
2337 	}
2338 
2339 	/*
2340 	 * We are now either at the end of the directory or have filled the
2341 	 * block.
2342 	 */
2343 	if (bigenough)
2344 		dnp->n_direofoffset = uiop->uio_offset;
2345 	else {
2346 		if (uiop->uio_resid > 0)
2347 			printf("EEK! readdirrpc resid > 0\n");
2348 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2349 		*cookiep = cookie;
2350 	}
2351 nfsmout:
2352 	return (error);
2353 }
2354 
2355 /*
2356  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2357  */
2358 int
2359 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop)
2360 {
2361 	int len, left;
2362 	struct dirent *dp;
2363 	u_int32_t *tl;
2364 	caddr_t cp;
2365 	int32_t t1, t2;
2366 	struct vnode *newvp;
2367 	nfsuint64 *cookiep;
2368 	caddr_t bpos, dpos, cp2, dpossav1, dpossav2;
2369 	struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2;
2370 	nfsuint64 cookie;
2371 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2372 	struct nfsnode *dnp = VTONFS(vp), *np;
2373 	nfsfh_t *fhp;
2374 	u_quad_t fileno;
2375 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2376 	int attrflag, fhsize;
2377 	struct namecache *ncp;
2378 	struct namecache *dncp;
2379 	struct nlcomponent nlc;
2380 
2381 #ifndef nolint
2382 	dp = (struct dirent *)0;
2383 #endif
2384 #ifndef DIAGNOSTIC
2385 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2386 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2387 		panic("nfs readdirplusrpc bad uio");
2388 #endif
2389 	/*
2390 	 * Obtain the namecache record for the directory so we have something
2391 	 * to use as a basis for creating the entries.  This function will
2392 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2393 	 * from the tree and cannot be used for upward traversals, and the
2394 	 * ncp may be unnamed.  Note that other unrelated operations may
2395 	 * cause the ncp to be named at any time.
2396 	 */
2397 	dncp = cache_fromdvp(vp, NULL, 0);
2398 	bzero(&nlc, sizeof(nlc));
2399 	newvp = NULLVP;
2400 
2401 	/*
2402 	 * If there is no cookie, assume directory was stale.
2403 	 */
2404 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2405 	if (cookiep)
2406 		cookie = *cookiep;
2407 	else
2408 		return (NFSERR_BAD_COOKIE);
2409 	/*
2410 	 * Loop around doing readdir rpc's of size nm_readdirsize
2411 	 * truncated to a multiple of DIRBLKSIZ.
2412 	 * The stopping criteria is EOF or buffer full.
2413 	 */
2414 	while (more_dirs && bigenough) {
2415 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2416 		nfsm_reqhead(vp, NFSPROC_READDIRPLUS,
2417 			NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2418 		nfsm_fhtom(vp, 1);
2419  		nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED);
2420 		*tl++ = cookie.nfsuquad[0];
2421 		*tl++ = cookie.nfsuquad[1];
2422 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2423 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2424 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2425 		*tl = txdr_unsigned(nmp->nm_rsize);
2426 		nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ));
2427 		nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK);
2428 		if (error) {
2429 			m_freem(mrep);
2430 			goto nfsmout;
2431 		}
2432 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2433 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2434 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2435 		more_dirs = fxdr_unsigned(int, *tl);
2436 
2437 		/* loop thru the dir entries, doctoring them to 4bsd form */
2438 		while (more_dirs && bigenough) {
2439 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2440 			fileno = fxdr_hyper(tl);
2441 			len = fxdr_unsigned(int, *(tl + 2));
2442 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2443 				error = EBADRPC;
2444 				m_freem(mrep);
2445 				goto nfsmout;
2446 			}
2447 			tlen = nfsm_rndup(len);
2448 			if (tlen == len)
2449 				tlen += 4;	/* To ensure null termination*/
2450 			left = DIRBLKSIZ - blksiz;
2451 			if ((tlen + DIRHDSIZ) > left) {
2452 				dp->d_reclen += left;
2453 				uiop->uio_iov->iov_base += left;
2454 				uiop->uio_iov->iov_len -= left;
2455 				uiop->uio_offset += left;
2456 				uiop->uio_resid -= left;
2457 				blksiz = 0;
2458 			}
2459 			if ((tlen + DIRHDSIZ) > uiop->uio_resid)
2460 				bigenough = 0;
2461 			if (bigenough) {
2462 				dp = (struct dirent *)uiop->uio_iov->iov_base;
2463 				dp->d_fileno = (int)fileno;
2464 				dp->d_namlen = len;
2465 				dp->d_reclen = tlen + DIRHDSIZ;
2466 				dp->d_type = DT_UNKNOWN;
2467 				blksiz += dp->d_reclen;
2468 				if (blksiz == DIRBLKSIZ)
2469 					blksiz = 0;
2470 				uiop->uio_offset += DIRHDSIZ;
2471 				uiop->uio_resid -= DIRHDSIZ;
2472 				uiop->uio_iov->iov_base += DIRHDSIZ;
2473 				uiop->uio_iov->iov_len -= DIRHDSIZ;
2474 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2475 				nlc.nlc_namelen = len;
2476 				nfsm_mtouio(uiop, len);
2477 				cp = uiop->uio_iov->iov_base;
2478 				tlen -= len;
2479 				*cp = '\0';
2480 				uiop->uio_iov->iov_base += tlen;
2481 				uiop->uio_iov->iov_len -= tlen;
2482 				uiop->uio_offset += tlen;
2483 				uiop->uio_resid -= tlen;
2484 			} else
2485 				nfsm_adv(nfsm_rndup(len));
2486 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2487 			if (bigenough) {
2488 				cookie.nfsuquad[0] = *tl++;
2489 				cookie.nfsuquad[1] = *tl++;
2490 			} else
2491 				tl += 2;
2492 
2493 			/*
2494 			 * Since the attributes are before the file handle
2495 			 * (sigh), we must skip over the attributes and then
2496 			 * come back and get them.
2497 			 */
2498 			attrflag = fxdr_unsigned(int, *tl);
2499 			if (attrflag) {
2500 			    dpossav1 = dpos;
2501 			    mdsav1 = md;
2502 			    nfsm_adv(NFSX_V3FATTR);
2503 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2504 			    doit = fxdr_unsigned(int, *tl);
2505 			    if (doit) {
2506 				nfsm_getfh(fhp, fhsize, 1);
2507 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2508 				    vref(vp);
2509 				    newvp = vp;
2510 				    np = dnp;
2511 				} else {
2512 				    error = nfs_nget(vp->v_mount, fhp,
2513 					fhsize, &np);
2514 				    if (error)
2515 					doit = 0;
2516 				    else
2517 					newvp = NFSTOV(np);
2518 				}
2519 			    }
2520 			    if (doit && bigenough) {
2521 				dpossav2 = dpos;
2522 				dpos = dpossav1;
2523 				mdsav2 = md;
2524 				md = mdsav1;
2525 				nfsm_loadattr(newvp, (struct vattr *)0);
2526 				dpos = dpossav2;
2527 				md = mdsav2;
2528 				dp->d_type =
2529 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2530 				if (dncp) {
2531 				    printf("NFS/READDIRPLUS, ENTER %*.*s\n",
2532 					nlc.nlc_namelen, nlc.nlc_namelen,
2533 					nlc.nlc_nameptr);
2534 				    ncp = cache_nlookup(dncp, &nlc);
2535 				    cache_setunresolved(ncp);
2536 				    cache_setvp(ncp, newvp);
2537 				    cache_put(ncp);
2538 				} else {
2539 				    printf("NFS/READDIRPLUS, UNABLE TO ENTER"
2540 					" %*.*s\n",
2541 					nlc.nlc_namelen, nlc.nlc_namelen,
2542 					nlc.nlc_nameptr);
2543 				}
2544 			    }
2545 			} else {
2546 			    /* Just skip over the file handle */
2547 			    nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2548 			    i = fxdr_unsigned(int, *tl);
2549 			    nfsm_adv(nfsm_rndup(i));
2550 			}
2551 			if (newvp != NULLVP) {
2552 			    if (newvp == vp)
2553 				vrele(newvp);
2554 			    else
2555 				vput(newvp);
2556 			    newvp = NULLVP;
2557 			}
2558 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2559 			more_dirs = fxdr_unsigned(int, *tl);
2560 		}
2561 		/*
2562 		 * If at end of rpc data, get the eof boolean
2563 		 */
2564 		if (!more_dirs) {
2565 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2566 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2567 		}
2568 		m_freem(mrep);
2569 	}
2570 	/*
2571 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2572 	 * by increasing d_reclen for the last record.
2573 	 */
2574 	if (blksiz > 0) {
2575 		left = DIRBLKSIZ - blksiz;
2576 		dp->d_reclen += left;
2577 		uiop->uio_iov->iov_base += left;
2578 		uiop->uio_iov->iov_len -= left;
2579 		uiop->uio_offset += left;
2580 		uiop->uio_resid -= left;
2581 	}
2582 
2583 	/*
2584 	 * We are now either at the end of the directory or have filled the
2585 	 * block.
2586 	 */
2587 	if (bigenough)
2588 		dnp->n_direofoffset = uiop->uio_offset;
2589 	else {
2590 		if (uiop->uio_resid > 0)
2591 			printf("EEK! readdirplusrpc resid > 0\n");
2592 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2593 		*cookiep = cookie;
2594 	}
2595 nfsmout:
2596 	if (newvp != NULLVP) {
2597 	        if (newvp == vp)
2598 			vrele(newvp);
2599 		else
2600 			vput(newvp);
2601 		newvp = NULLVP;
2602 	}
2603 	if (dncp)
2604 		cache_drop(dncp);
2605 	return (error);
2606 }
2607 
2608 /*
2609  * Silly rename. To make the NFS filesystem that is stateless look a little
2610  * more like the "ufs" a remove of an active vnode is translated to a rename
2611  * to a funny looking filename that is removed by nfs_inactive on the
2612  * nfsnode. There is the potential for another process on a different client
2613  * to create the same funny name between the nfs_lookitup() fails and the
2614  * nfs_rename() completes, but...
2615  */
2616 static int
2617 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2618 {
2619 	struct sillyrename *sp;
2620 	struct nfsnode *np;
2621 	int error;
2622 
2623 	/*
2624 	 * We previously purged dvp instead of vp.  I don't know why, it
2625 	 * completely destroys performance.  We can't do it anyway with the
2626 	 * new VFS API since we would be breaking the namecache topology.
2627 	 */
2628 	cache_purge(vp);	/* XXX */
2629 	np = VTONFS(vp);
2630 #ifndef DIAGNOSTIC
2631 	if (vp->v_type == VDIR)
2632 		panic("nfs: sillyrename dir");
2633 #endif
2634 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2635 		M_NFSREQ, M_WAITOK);
2636 	sp->s_cred = crdup(cnp->cn_cred);
2637 	sp->s_dvp = dvp;
2638 	vref(dvp);
2639 
2640 	/* Fudge together a funny name */
2641 	sp->s_namlen = sprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td);
2642 
2643 	/* Try lookitups until we get one that isn't there */
2644 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2645 		cnp->cn_td, (struct nfsnode **)0) == 0) {
2646 		sp->s_name[4]++;
2647 		if (sp->s_name[4] > 'z') {
2648 			error = EINVAL;
2649 			goto bad;
2650 		}
2651 	}
2652 	error = nfs_renameit(dvp, cnp, sp);
2653 	if (error)
2654 		goto bad;
2655 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2656 		cnp->cn_td, &np);
2657 	np->n_sillyrename = sp;
2658 	return (0);
2659 bad:
2660 	vrele(sp->s_dvp);
2661 	crfree(sp->s_cred);
2662 	free((caddr_t)sp, M_NFSREQ);
2663 	return (error);
2664 }
2665 
2666 /*
2667  * Look up a file name and optionally either update the file handle or
2668  * allocate an nfsnode, depending on the value of npp.
2669  * npp == NULL	--> just do the lookup
2670  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2671  *			handled too
2672  * *npp != NULL --> update the file handle in the vnode
2673  */
2674 static int
2675 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2676 	     struct thread *td, struct nfsnode **npp)
2677 {
2678 	u_int32_t *tl;
2679 	caddr_t cp;
2680 	int32_t t1, t2;
2681 	struct vnode *newvp = (struct vnode *)0;
2682 	struct nfsnode *np, *dnp = VTONFS(dvp);
2683 	caddr_t bpos, dpos, cp2;
2684 	int error = 0, fhlen, attrflag;
2685 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2686 	nfsfh_t *nfhp;
2687 	int v3 = NFS_ISV3(dvp);
2688 
2689 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2690 	nfsm_reqhead(dvp, NFSPROC_LOOKUP,
2691 		NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2692 	nfsm_fhtom(dvp, v3);
2693 	nfsm_strtom(name, len, NFS_MAXNAMLEN);
2694 	nfsm_request(dvp, NFSPROC_LOOKUP, td, cred);
2695 	if (npp && !error) {
2696 		nfsm_getfh(nfhp, fhlen, v3);
2697 		if (*npp) {
2698 		    np = *npp;
2699 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2700 			free((caddr_t)np->n_fhp, M_NFSBIGFH);
2701 			np->n_fhp = &np->n_fh;
2702 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2703 			np->n_fhp =(nfsfh_t *)malloc(fhlen,M_NFSBIGFH,M_WAITOK);
2704 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2705 		    np->n_fhsize = fhlen;
2706 		    newvp = NFSTOV(np);
2707 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2708 		    vref(dvp);
2709 		    newvp = dvp;
2710 		} else {
2711 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2712 		    if (error) {
2713 			m_freem(mrep);
2714 			return (error);
2715 		    }
2716 		    newvp = NFSTOV(np);
2717 		}
2718 		if (v3) {
2719 			nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK);
2720 			if (!attrflag && *npp == NULL) {
2721 				m_freem(mrep);
2722 				if (newvp == dvp)
2723 					vrele(newvp);
2724 				else
2725 					vput(newvp);
2726 				return (ENOENT);
2727 			}
2728 		} else
2729 			nfsm_loadattr(newvp, (struct vattr *)0);
2730 	}
2731 	m_freem(mrep);
2732 nfsmout:
2733 	if (npp && *npp == NULL) {
2734 		if (error) {
2735 			if (newvp) {
2736 				if (newvp == dvp)
2737 					vrele(newvp);
2738 				else
2739 					vput(newvp);
2740 			}
2741 		} else
2742 			*npp = np;
2743 	}
2744 	return (error);
2745 }
2746 
2747 /*
2748  * Nfs Version 3 commit rpc
2749  */
2750 int
2751 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2752 {
2753 	caddr_t cp;
2754 	u_int32_t *tl;
2755 	int32_t t1, t2;
2756 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2757 	caddr_t bpos, dpos, cp2;
2758 	int error = 0, wccflag = NFSV3_WCCRATTR;
2759 	struct mbuf *mreq, *mrep, *md, *mb, *mb2;
2760 
2761 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2762 		return (0);
2763 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2764 	nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1));
2765 	nfsm_fhtom(vp, 1);
2766 	nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2767 	txdr_hyper(offset, tl);
2768 	tl += 2;
2769 	*tl = txdr_unsigned(cnt);
2770 	nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE));
2771 	nfsm_wcc_data(vp, wccflag);
2772 	if (!error) {
2773 		nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF);
2774 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2775 			NFSX_V3WRITEVERF)) {
2776 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2777 				NFSX_V3WRITEVERF);
2778 			error = NFSERR_STALEWRITEVERF;
2779 		}
2780 	}
2781 	m_freem(mrep);
2782 nfsmout:
2783 	return (error);
2784 }
2785 
2786 /*
2787  * Kludge City..
2788  * - make nfs_bmap() essentially a no-op that does no translation
2789  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2790  *   (Maybe I could use the process's page mapping, but I was concerned that
2791  *    Kernel Write might not be enabled and also figured copyout() would do
2792  *    a lot more work than bcopy() and also it currently happens in the
2793  *    context of the swapper process (2).
2794  *
2795  * nfs_bmap(struct vnode *a_vp, daddr_t a_bn, struct vnode **a_vpp,
2796  *	    daddr_t *a_bnp, int *a_runp, int *a_runb)
2797  */
2798 static int
2799 nfs_bmap(struct vop_bmap_args *ap)
2800 {
2801 	struct vnode *vp = ap->a_vp;
2802 
2803 	if (ap->a_vpp != NULL)
2804 		*ap->a_vpp = vp;
2805 	if (ap->a_bnp != NULL)
2806 		*ap->a_bnp = ap->a_bn * btodb(vp->v_mount->mnt_stat.f_iosize);
2807 	if (ap->a_runp != NULL)
2808 		*ap->a_runp = 0;
2809 	if (ap->a_runb != NULL)
2810 		*ap->a_runb = 0;
2811 	return (0);
2812 }
2813 
2814 /*
2815  * Strategy routine.
2816  * For async requests when nfsiod(s) are running, queue the request by
2817  * calling nfs_asyncio(), otherwise just all nfs_doio() to do the
2818  * request.
2819  */
2820 static int
2821 nfs_strategy(struct vop_strategy_args *ap)
2822 {
2823 	struct buf *bp = ap->a_bp;
2824 	struct thread *td;
2825 	int error = 0;
2826 
2827 	KASSERT(!(bp->b_flags & B_DONE), ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp));
2828 	KASSERT(BUF_REFCNT(bp) > 0, ("nfs_strategy: buffer %p not locked", bp));
2829 
2830 	if (bp->b_flags & B_PHYS)
2831 		panic("nfs physio");
2832 
2833 	if (bp->b_flags & B_ASYNC)
2834 		td = NULL;
2835 	else
2836 		td = curthread;	/* XXX */
2837 
2838 	/*
2839 	 * If the op is asynchronous and an i/o daemon is waiting
2840 	 * queue the request, wake it up and wait for completion
2841 	 * otherwise just do it ourselves.
2842 	 */
2843 	if ((bp->b_flags & B_ASYNC) == 0 ||
2844 		nfs_asyncio(bp, td))
2845 		error = nfs_doio(bp, td);
2846 	return (error);
2847 }
2848 
2849 /*
2850  * Mmap a file
2851  *
2852  * NB Currently unsupported.
2853  *
2854  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred,
2855  *	    struct thread *a_td)
2856  */
2857 /* ARGSUSED */
2858 static int
2859 nfs_mmap(struct vop_mmap_args *ap)
2860 {
2861 	return (EINVAL);
2862 }
2863 
2864 /*
2865  * fsync vnode op. Just call nfs_flush() with commit == 1.
2866  *
2867  * nfs_fsync(struct vnodeop_desc *a_desc, struct vnode *a_vp,
2868  *	     struct ucred * a_cred, int a_waitfor, struct thread *a_td)
2869  */
2870 /* ARGSUSED */
2871 static int
2872 nfs_fsync(struct vop_fsync_args *ap)
2873 {
2874 	return (nfs_flush(ap->a_vp, ap->a_waitfor, ap->a_td, 1));
2875 }
2876 
2877 /*
2878  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
2879  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
2880  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
2881  * set the buffer contains data that has already been written to the server
2882  * and which now needs a commit RPC.
2883  *
2884  * If commit is 0 we only take one pass and only flush buffers containing new
2885  * dirty data.
2886  *
2887  * If commit is 1 we take two passes, issuing a commit RPC in the second
2888  * pass.
2889  *
2890  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
2891  * to completely flush all pending data.
2892  *
2893  * Note that the RB_SCAN code properly handles the case where the
2894  * callback might block and directly or indirectly (another thread) cause
2895  * the RB tree to change.
2896  */
2897 
2898 #ifndef NFS_COMMITBVECSIZ
2899 #define NFS_COMMITBVECSIZ	16
2900 #endif
2901 
2902 struct nfs_flush_info {
2903 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
2904 	struct thread *td;
2905 	struct vnode *vp;
2906 	int waitfor;
2907 	int slpflag;
2908 	int slptimeo;
2909 	int loops;
2910 	struct buf *bvary[NFS_COMMITBVECSIZ];
2911 	int bvsize;
2912 	off_t beg_off;
2913 	off_t end_off;
2914 };
2915 
2916 static int nfs_flush_bp(struct buf *bp, void *data);
2917 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
2918 
2919 int
2920 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
2921 {
2922 	struct nfsnode *np = VTONFS(vp);
2923 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2924 	struct nfs_flush_info info;
2925 	int error;
2926 
2927 	bzero(&info, sizeof(info));
2928 	info.td = td;
2929 	info.vp = vp;
2930 	info.waitfor = waitfor;
2931 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
2932 	info.loops = 0;
2933 
2934 	do {
2935 		/*
2936 		 * Flush mode
2937 		 */
2938 		info.mode = NFI_FLUSHNEW;
2939 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2940 				nfs_flush_bp, &info);
2941 
2942 		/*
2943 		 * Take a second pass if committing and no error occured.
2944 		 * Clean up any left over collection (whether an error
2945 		 * occurs or not).
2946 		 */
2947 		if (commit && error == 0) {
2948 			info.mode = NFI_COMMIT;
2949 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
2950 					nfs_flush_bp, &info);
2951 			if (info.bvsize)
2952 				error = nfs_flush_docommit(&info, error);
2953 		}
2954 
2955 		/*
2956 		 * Wait for pending I/O to complete before checking whether
2957 		 * any further dirty buffers exist.
2958 		 */
2959 		while (waitfor == MNT_WAIT && vp->v_numoutput) {
2960 			vp->v_flag |= VBWAIT;
2961 			error = tsleep((caddr_t)&vp->v_numoutput,
2962 				info.slpflag, "nfsfsync", info.slptimeo);
2963 			if (error) {
2964 				/*
2965 				 * We have to be able to break out if this
2966 				 * is an 'intr' mount.
2967 				 */
2968 				if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
2969 					error = -EINTR;
2970 					break;
2971 				}
2972 
2973 				/*
2974 				 * Since we do not process pending signals,
2975 				 * once we get a PCATCH our tsleep() will no
2976 				 * longer sleep, switch to a fixed timeout
2977 				 * instead.
2978 				 */
2979 				if (info.slpflag == PCATCH) {
2980 					info.slpflag = 0;
2981 					info.slptimeo = 2 * hz;
2982 				}
2983 				error = 0;
2984 			}
2985 		}
2986 		++info.loops;
2987 		/*
2988 		 * Loop if we are flushing synchronous as well as committing,
2989 		 * and dirty buffers are still present.  Otherwise we might livelock.
2990 		 */
2991 	} while (waitfor == MNT_WAIT && commit &&
2992 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
2993 
2994 	/*
2995 	 * The callbacks have to return a negative error to terminate the
2996 	 * RB scan.
2997 	 */
2998 	if (error < 0)
2999 		error = -error;
3000 
3001 	/*
3002 	 * Deal with any error collection
3003 	 */
3004 	if (np->n_flag & NWRITEERR) {
3005 		error = np->n_error;
3006 		np->n_flag &= ~NWRITEERR;
3007 	}
3008 	return (error);
3009 }
3010 
3011 
3012 static
3013 int
3014 nfs_flush_bp(struct buf *bp, void *data)
3015 {
3016 	struct nfs_flush_info *info = data;
3017 	off_t toff;
3018 	int error;
3019 	int s;
3020 
3021 	error = 0;
3022 	switch(info->mode) {
3023 	case NFI_FLUSHNEW:
3024 		s = splbio();
3025 		if (info->loops && info->waitfor == MNT_WAIT) {
3026 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3027 			if (error) {
3028 				error = BUF_TIMELOCK(bp,
3029 						LK_EXCLUSIVE | LK_SLEEPFAIL,
3030 						"nfsfsync",
3031 						info->slpflag, info->slptimeo);
3032 			}
3033 		} else {
3034 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3035 		}
3036 		if (error == 0) {
3037 			if ((bp->b_flags & B_DELWRI) == 0)
3038 				panic("nfs_fsync: not dirty");
3039 			if (bp->b_flags & B_NEEDCOMMIT) {
3040 				BUF_UNLOCK(bp);
3041 				splx(s);
3042 				break;
3043 			}
3044 			bremfree(bp);
3045 
3046 			bp->b_flags |= B_ASYNC;
3047 			splx(s);
3048 			VOP_BWRITE(bp->b_vp, bp);
3049 		} else {
3050 			splx(s);
3051 			error = 0;
3052 		}
3053 		break;
3054 	case NFI_COMMIT:
3055 		/*
3056 		 * Only process buffers in need of a commit which we can
3057 		 * immediately lock.  This may prevent a buffer from being
3058 		 * committed, but the normal flush loop will block on the
3059 		 * same buffer so we shouldn't get into an endless loop.
3060 		 */
3061 		s = splbio();
3062 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3063 		    (B_DELWRI | B_NEEDCOMMIT) ||
3064 		    BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
3065 			splx(s);
3066 			break;
3067 		}
3068 
3069 		bremfree(bp);
3070 
3071 		/*
3072 		 * NOTE: we are not clearing B_DONE here, so we have
3073 		 * to do it later on in this routine if we intend to
3074 		 * initiate I/O on the bp.
3075 		 *
3076 		 * Note: to avoid loopback deadlocks, we do not
3077 		 * assign b_runningbufspace.
3078 		 */
3079 		vfs_busy_pages(bp, 1);
3080 
3081 		info->bvary[info->bvsize] = bp;
3082 		toff = ((u_quad_t)bp->b_blkno) * DEV_BSIZE +
3083 			bp->b_dirtyoff;
3084 		if (info->bvsize == 0 || toff < info->beg_off)
3085 			info->beg_off = toff;
3086 		toff += (u_quad_t)(bp->b_dirtyend - bp->b_dirtyoff);
3087 		if (info->bvsize == 0 || toff > info->end_off)
3088 			info->end_off = toff;
3089 		++info->bvsize;
3090 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3091 			error = nfs_flush_docommit(info, 0);
3092 			KKASSERT(info->bvsize == 0);
3093 		}
3094 		splx(s);
3095 	}
3096 	return (error);
3097 }
3098 
3099 static
3100 int
3101 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3102 {
3103 	struct vnode *vp;
3104 	struct buf *bp;
3105 	off_t bytes;
3106 	int retv;
3107 	int i;
3108 	int s;
3109 
3110 	vp = info->vp;
3111 
3112 	if (info->bvsize > 0) {
3113 		/*
3114 		 * Commit data on the server, as required.  Note that
3115 		 * nfs_commit will use the vnode's cred for the commit.
3116 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3117 		 */
3118 		bytes = info->end_off - info->beg_off;
3119 		if (bytes > 0x40000000)
3120 			bytes = 0x40000000;
3121 		if (error) {
3122 			retv = -error;
3123 		} else {
3124 			retv = nfs_commit(vp, info->beg_off,
3125 					    (int)bytes, info->td);
3126 			if (retv == NFSERR_STALEWRITEVERF)
3127 				nfs_clearcommit(vp->v_mount);
3128 		}
3129 
3130 		/*
3131 		 * Now, either mark the blocks I/O done or mark the
3132 		 * blocks dirty, depending on whether the commit
3133 		 * succeeded.
3134 		 */
3135 		for (i = 0; i < info->bvsize; ++i) {
3136 			bp = info->bvary[i];
3137 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3138 			if (retv) {
3139 				/*
3140 				 * Error, leave B_DELWRI intact
3141 				 */
3142 				vfs_unbusy_pages(bp);
3143 				brelse(bp);
3144 			} else {
3145 				/*
3146 				 * Success, remove B_DELWRI ( bundirty() ).
3147 				 *
3148 				 * b_dirtyoff/b_dirtyend seem to be NFS
3149 				 * specific.  We should probably move that
3150 				 * into bundirty(). XXX
3151 				 */
3152 				s = splbio();
3153 				vp->v_numoutput++;
3154 				bp->b_flags |= B_ASYNC;
3155 				bundirty(bp);
3156 				bp->b_flags &= ~(B_READ|B_DONE|B_ERROR);
3157 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3158 				splx(s);
3159 				biodone(bp);
3160 			}
3161 		}
3162 		info->bvsize = 0;
3163 	}
3164 	return (error);
3165 }
3166 
3167 /*
3168  * NFS advisory byte-level locks.
3169  * Currently unsupported.
3170  *
3171  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3172  *		int a_flags)
3173  */
3174 static int
3175 nfs_advlock(struct vop_advlock_args *ap)
3176 {
3177 	struct nfsnode *np = VTONFS(ap->a_vp);
3178 
3179 	/*
3180 	 * The following kludge is to allow diskless support to work
3181 	 * until a real NFS lockd is implemented. Basically, just pretend
3182 	 * that this is a local lock.
3183 	 */
3184 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3185 }
3186 
3187 /*
3188  * Print out the contents of an nfsnode.
3189  *
3190  * nfs_print(struct vnode *a_vp)
3191  */
3192 static int
3193 nfs_print(struct vop_print_args *ap)
3194 {
3195 	struct vnode *vp = ap->a_vp;
3196 	struct nfsnode *np = VTONFS(vp);
3197 
3198 	printf("tag VT_NFS, fileid %ld fsid 0x%x",
3199 		np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3200 	if (vp->v_type == VFIFO)
3201 		fifo_printinfo(vp);
3202 	printf("\n");
3203 	return (0);
3204 }
3205 
3206 /*
3207  * Just call nfs_writebp() with the force argument set to 1.
3208  *
3209  * NOTE: B_DONE may or may not be set in a_bp on call.
3210  *
3211  * nfs_bwrite(struct vnode *a_bp)
3212  */
3213 static int
3214 nfs_bwrite(struct vop_bwrite_args *ap)
3215 {
3216 	return (nfs_writebp(ap->a_bp, 1, curthread));
3217 }
3218 
3219 /*
3220  * This is a clone of vn_bwrite(), except that it also handles the
3221  * B_NEEDCOMMIT flag.  We set B_CACHE if this is a VMIO buffer.
3222  */
3223 int
3224 nfs_writebp(struct buf *bp, int force, struct thread *td)
3225 {
3226 	int s;
3227 	int oldflags = bp->b_flags;
3228 #if 0
3229 	int retv = 1;
3230 	off_t off;
3231 #endif
3232 
3233 	if (BUF_REFCNT(bp) == 0)
3234 		panic("bwrite: buffer is not locked???");
3235 
3236 	if (bp->b_flags & B_INVAL) {
3237 		brelse(bp);
3238 		return(0);
3239 	}
3240 
3241 	bp->b_flags |= B_CACHE;
3242 
3243 	/*
3244 	 * Undirty the bp.  We will redirty it later if the I/O fails.
3245 	 */
3246 
3247 	s = splbio();
3248 	bundirty(bp);
3249 	bp->b_flags &= ~(B_READ|B_DONE|B_ERROR);
3250 
3251 	bp->b_vp->v_numoutput++;
3252 	splx(s);
3253 
3254 	/*
3255 	 * Note: to avoid loopback deadlocks, we do not
3256 	 * assign b_runningbufspace.
3257 	 */
3258 	vfs_busy_pages(bp, 1);
3259 
3260 	BUF_KERNPROC(bp);
3261 	VOP_STRATEGY(bp->b_vp, bp);
3262 
3263 	if( (oldflags & B_ASYNC) == 0) {
3264 		int rtval = biowait(bp);
3265 
3266 		if (oldflags & B_DELWRI) {
3267 			s = splbio();
3268 			reassignbuf(bp, bp->b_vp);
3269 			splx(s);
3270 		}
3271 
3272 		brelse(bp);
3273 		return (rtval);
3274 	}
3275 
3276 	return (0);
3277 }
3278 
3279 /*
3280  * nfs special file access vnode op.
3281  * Essentially just get vattr and then imitate iaccess() since the device is
3282  * local to the client.
3283  *
3284  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
3285  *		  struct thread *a_td)
3286  */
3287 static int
3288 nfsspec_access(struct vop_access_args *ap)
3289 {
3290 	struct vattr *vap;
3291 	gid_t *gp;
3292 	struct ucred *cred = ap->a_cred;
3293 	struct vnode *vp = ap->a_vp;
3294 	mode_t mode = ap->a_mode;
3295 	struct vattr vattr;
3296 	int i;
3297 	int error;
3298 
3299 	/*
3300 	 * Disallow write attempts on filesystems mounted read-only;
3301 	 * unless the file is a socket, fifo, or a block or character
3302 	 * device resident on the filesystem.
3303 	 */
3304 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3305 		switch (vp->v_type) {
3306 		case VREG:
3307 		case VDIR:
3308 		case VLNK:
3309 			return (EROFS);
3310 		default:
3311 			break;
3312 		}
3313 	}
3314 	/*
3315 	 * If you're the super-user,
3316 	 * you always get access.
3317 	 */
3318 	if (cred->cr_uid == 0)
3319 		return (0);
3320 	vap = &vattr;
3321 	error = VOP_GETATTR(vp, vap, ap->a_td);
3322 	if (error)
3323 		return (error);
3324 	/*
3325 	 * Access check is based on only one of owner, group, public.
3326 	 * If not owner, then check group. If not a member of the
3327 	 * group, then check public access.
3328 	 */
3329 	if (cred->cr_uid != vap->va_uid) {
3330 		mode >>= 3;
3331 		gp = cred->cr_groups;
3332 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3333 			if (vap->va_gid == *gp)
3334 				goto found;
3335 		mode >>= 3;
3336 found:
3337 		;
3338 	}
3339 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3340 	return (error);
3341 }
3342 
3343 /*
3344  * Read wrapper for special devices.
3345  *
3346  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3347  *		struct ucred *a_cred)
3348  */
3349 static int
3350 nfsspec_read(struct vop_read_args *ap)
3351 {
3352 	struct nfsnode *np = VTONFS(ap->a_vp);
3353 
3354 	/*
3355 	 * Set access flag.
3356 	 */
3357 	np->n_flag |= NACC;
3358 	getnanotime(&np->n_atim);
3359 	return (VOCALL(spec_vnode_vops, &ap->a_head));
3360 }
3361 
3362 /*
3363  * Write wrapper for special devices.
3364  *
3365  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3366  *		 struct ucred *a_cred)
3367  */
3368 static int
3369 nfsspec_write(struct vop_write_args *ap)
3370 {
3371 	struct nfsnode *np = VTONFS(ap->a_vp);
3372 
3373 	/*
3374 	 * Set update flag.
3375 	 */
3376 	np->n_flag |= NUPD;
3377 	getnanotime(&np->n_mtim);
3378 	return (VOCALL(spec_vnode_vops, &ap->a_head));
3379 }
3380 
3381 /*
3382  * Close wrapper for special devices.
3383  *
3384  * Update the times on the nfsnode then do device close.
3385  *
3386  * nfsspec_close(struct vnode *a_vp, int a_fflag, struct ucred *a_cred,
3387  *		 struct thread *a_td)
3388  */
3389 static int
3390 nfsspec_close(struct vop_close_args *ap)
3391 {
3392 	struct vnode *vp = ap->a_vp;
3393 	struct nfsnode *np = VTONFS(vp);
3394 	struct vattr vattr;
3395 
3396 	if (np->n_flag & (NACC | NUPD)) {
3397 		np->n_flag |= NCHG;
3398 		if (vp->v_usecount == 1 &&
3399 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3400 			VATTR_NULL(&vattr);
3401 			if (np->n_flag & NACC)
3402 				vattr.va_atime = np->n_atim;
3403 			if (np->n_flag & NUPD)
3404 				vattr.va_mtime = np->n_mtim;
3405 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE), ap->a_td);
3406 		}
3407 	}
3408 	return (VOCALL(spec_vnode_vops, &ap->a_head));
3409 }
3410 
3411 /*
3412  * Read wrapper for fifos.
3413  *
3414  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3415  *		struct ucred *a_cred)
3416  */
3417 static int
3418 nfsfifo_read(struct vop_read_args *ap)
3419 {
3420 	struct nfsnode *np = VTONFS(ap->a_vp);
3421 
3422 	/*
3423 	 * Set access flag.
3424 	 */
3425 	np->n_flag |= NACC;
3426 	getnanotime(&np->n_atim);
3427 	return (VOCALL(fifo_vnode_vops, &ap->a_head));
3428 }
3429 
3430 /*
3431  * Write wrapper for fifos.
3432  *
3433  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3434  *		 struct ucred *a_cred)
3435  */
3436 static int
3437 nfsfifo_write(struct vop_write_args *ap)
3438 {
3439 	struct nfsnode *np = VTONFS(ap->a_vp);
3440 
3441 	/*
3442 	 * Set update flag.
3443 	 */
3444 	np->n_flag |= NUPD;
3445 	getnanotime(&np->n_mtim);
3446 	return (VOCALL(fifo_vnode_vops, &ap->a_head));
3447 }
3448 
3449 /*
3450  * Close wrapper for fifos.
3451  *
3452  * Update the times on the nfsnode then do fifo close.
3453  *
3454  * nfsfifo_close(struct vnode *a_vp, int a_fflag, struct thread *a_td)
3455  */
3456 static int
3457 nfsfifo_close(struct vop_close_args *ap)
3458 {
3459 	struct vnode *vp = ap->a_vp;
3460 	struct nfsnode *np = VTONFS(vp);
3461 	struct vattr vattr;
3462 	struct timespec ts;
3463 
3464 	if (np->n_flag & (NACC | NUPD)) {
3465 		getnanotime(&ts);
3466 		if (np->n_flag & NACC)
3467 			np->n_atim = ts;
3468 		if (np->n_flag & NUPD)
3469 			np->n_mtim = ts;
3470 		np->n_flag |= NCHG;
3471 		if (vp->v_usecount == 1 &&
3472 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3473 			VATTR_NULL(&vattr);
3474 			if (np->n_flag & NACC)
3475 				vattr.va_atime = np->n_atim;
3476 			if (np->n_flag & NUPD)
3477 				vattr.va_mtime = np->n_mtim;
3478 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE), ap->a_td);
3479 		}
3480 	}
3481 	return (VOCALL(fifo_vnode_vops, &ap->a_head));
3482 }
3483 
3484