xref: /dflybsd-src/sys/vfs/nfs/nfs_vnops.c (revision 43db70b80a8d59e6868543cbc488c33629ecfdc8)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.80 2008/10/18 01:13:54 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsfifo_read (struct vop_read_args *);
98 static int	nfsfifo_write (struct vop_write_args *);
99 static int	nfsfifo_close (struct vop_close_args *);
100 #define nfs_poll vop_nopoll
101 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
102 static	int	nfs_lookup (struct vop_old_lookup_args *);
103 static	int	nfs_create (struct vop_old_create_args *);
104 static	int	nfs_mknod (struct vop_old_mknod_args *);
105 static	int	nfs_open (struct vop_open_args *);
106 static	int	nfs_close (struct vop_close_args *);
107 static	int	nfs_access (struct vop_access_args *);
108 static	int	nfs_getattr (struct vop_getattr_args *);
109 static	int	nfs_setattr (struct vop_setattr_args *);
110 static	int	nfs_read (struct vop_read_args *);
111 static	int	nfs_mmap (struct vop_mmap_args *);
112 static	int	nfs_fsync (struct vop_fsync_args *);
113 static	int	nfs_remove (struct vop_old_remove_args *);
114 static	int	nfs_link (struct vop_old_link_args *);
115 static	int	nfs_rename (struct vop_old_rename_args *);
116 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
117 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
118 static	int	nfs_symlink (struct vop_old_symlink_args *);
119 static	int	nfs_readdir (struct vop_readdir_args *);
120 static	int	nfs_bmap (struct vop_bmap_args *);
121 static	int	nfs_strategy (struct vop_strategy_args *);
122 static	int	nfs_lookitup (struct vnode *, const char *, int,
123 			struct ucred *, struct thread *, struct nfsnode **);
124 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
125 static int	nfs_laccess (struct vop_access_args *);
126 static int	nfs_readlink (struct vop_readlink_args *);
127 static int	nfs_print (struct vop_print_args *);
128 static int	nfs_advlock (struct vop_advlock_args *);
129 
130 static	int	nfs_nresolve (struct vop_nresolve_args *);
131 /*
132  * Global vfs data structures for nfs
133  */
134 struct vop_ops nfsv2_vnode_vops = {
135 	.vop_default =		vop_defaultop,
136 	.vop_access =		nfs_access,
137 	.vop_advlock =		nfs_advlock,
138 	.vop_bmap =		nfs_bmap,
139 	.vop_close =		nfs_close,
140 	.vop_old_create =	nfs_create,
141 	.vop_fsync =		nfs_fsync,
142 	.vop_getattr =		nfs_getattr,
143 	.vop_getpages =		nfs_getpages,
144 	.vop_putpages =		nfs_putpages,
145 	.vop_inactive =		nfs_inactive,
146 	.vop_old_link =		nfs_link,
147 	.vop_old_lookup =	nfs_lookup,
148 	.vop_old_mkdir =	nfs_mkdir,
149 	.vop_old_mknod =	nfs_mknod,
150 	.vop_mmap =		nfs_mmap,
151 	.vop_open =		nfs_open,
152 	.vop_poll =		nfs_poll,
153 	.vop_print =		nfs_print,
154 	.vop_read =		nfs_read,
155 	.vop_readdir =		nfs_readdir,
156 	.vop_readlink =		nfs_readlink,
157 	.vop_reclaim =		nfs_reclaim,
158 	.vop_old_remove =	nfs_remove,
159 	.vop_old_rename =	nfs_rename,
160 	.vop_old_rmdir =	nfs_rmdir,
161 	.vop_setattr =		nfs_setattr,
162 	.vop_strategy =		nfs_strategy,
163 	.vop_old_symlink =	nfs_symlink,
164 	.vop_write =		nfs_write,
165 	.vop_nresolve =		nfs_nresolve
166 };
167 
168 /*
169  * Special device vnode ops
170  */
171 struct vop_ops nfsv2_spec_vops = {
172 	.vop_default =		vop_defaultop,
173 	.vop_access =		nfs_laccess,
174 	.vop_close =		nfs_close,
175 	.vop_fsync =		nfs_fsync,
176 	.vop_getattr =		nfs_getattr,
177 	.vop_inactive =		nfs_inactive,
178 	.vop_print =		nfs_print,
179 	.vop_read =		vop_stdnoread,
180 	.vop_reclaim =		nfs_reclaim,
181 	.vop_setattr =		nfs_setattr,
182 	.vop_write =		vop_stdnowrite
183 };
184 
185 struct vop_ops nfsv2_fifo_vops = {
186 	.vop_default =		fifo_vnoperate,
187 	.vop_access =		nfs_laccess,
188 	.vop_close =		nfsfifo_close,
189 	.vop_fsync =		nfs_fsync,
190 	.vop_getattr =		nfs_getattr,
191 	.vop_inactive =		nfs_inactive,
192 	.vop_print =		nfs_print,
193 	.vop_read =		nfsfifo_read,
194 	.vop_reclaim =		nfs_reclaim,
195 	.vop_setattr =		nfs_setattr,
196 	.vop_write =		nfsfifo_write
197 };
198 
199 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
200 				  struct componentname *cnp,
201 				  struct vattr *vap);
202 static int	nfs_removerpc (struct vnode *dvp, const char *name,
203 				   int namelen,
204 				   struct ucred *cred, struct thread *td);
205 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
206 				   int fnamelen, struct vnode *tdvp,
207 				   const char *tnameptr, int tnamelen,
208 				   struct ucred *cred, struct thread *td);
209 static int	nfs_renameit (struct vnode *sdvp,
210 				  struct componentname *scnp,
211 				  struct sillyrename *sp);
212 
213 SYSCTL_DECL(_vfs_nfs);
214 
215 static int nfs_flush_on_rename = 1;
216 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
217 	   &nfs_flush_on_rename, 0, "flush fvp prior to rename");
218 static int nfs_flush_on_hlink = 0;
219 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW,
220 	   &nfs_flush_on_hlink, 0, "flush fvp prior to hard link");
221 
222 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
223 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
224 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
225 
226 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
227 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
228 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
229 
230 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
231 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
232 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
233 
234 static int	nfsv3_commit_on_close = 0;
235 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
236 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
237 #if 0
238 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
239 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
240 
241 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
242 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
243 #endif
244 
245 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
246 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
247 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
248 static int
249 nfs3_access_otw(struct vnode *vp, int wmode,
250 		struct thread *td, struct ucred *cred)
251 {
252 	struct nfsnode *np = VTONFS(vp);
253 	int attrflag;
254 	int error = 0;
255 	u_int32_t *tl;
256 	u_int32_t rmode;
257 	struct nfsm_info info;
258 
259 	info.mrep = NULL;
260 	info.v3 = 1;
261 
262 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
263 	nfsm_reqhead(&info, vp, NFSPROC_ACCESS,
264 		     NFSX_FH(info.v3) + NFSX_UNSIGNED);
265 	ERROROUT(nfsm_fhtom(&info, vp));
266 	tl = nfsm_build(&info, NFSX_UNSIGNED);
267 	*tl = txdr_unsigned(wmode);
268 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_ACCESS, td, cred, &error));
269 	ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK));
270 	if (error == 0) {
271 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
272 		rmode = fxdr_unsigned(u_int32_t, *tl);
273 		np->n_mode = rmode;
274 		np->n_modeuid = cred->cr_uid;
275 		np->n_modestamp = mycpu->gd_time_seconds;
276 	}
277 	m_freem(info.mrep);
278 	info.mrep = NULL;
279 nfsmout:
280 	return error;
281 }
282 
283 /*
284  * nfs access vnode op.
285  * For nfs version 2, just return ok. File accesses may fail later.
286  * For nfs version 3, use the access rpc to check accessibility. If file modes
287  * are changed on the server, accesses might still fail later.
288  *
289  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
290  */
291 static int
292 nfs_access(struct vop_access_args *ap)
293 {
294 	struct vnode *vp = ap->a_vp;
295 	thread_t td = curthread;
296 	int error = 0;
297 	u_int32_t mode, wmode;
298 	struct nfsnode *np = VTONFS(vp);
299 	int v3 = NFS_ISV3(vp);
300 
301 	/*
302 	 * Disallow write attempts on filesystems mounted read-only;
303 	 * unless the file is a socket, fifo, or a block or character
304 	 * device resident on the filesystem.
305 	 */
306 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
307 		switch (vp->v_type) {
308 		case VREG:
309 		case VDIR:
310 		case VLNK:
311 			return (EROFS);
312 		default:
313 			break;
314 		}
315 	}
316 	/*
317 	 * For nfs v3, check to see if we have done this recently, and if
318 	 * so return our cached result instead of making an ACCESS call.
319 	 * If not, do an access rpc, otherwise you are stuck emulating
320 	 * ufs_access() locally using the vattr. This may not be correct,
321 	 * since the server may apply other access criteria such as
322 	 * client uid-->server uid mapping that we do not know about.
323 	 */
324 	if (v3) {
325 		if (ap->a_mode & VREAD)
326 			mode = NFSV3ACCESS_READ;
327 		else
328 			mode = 0;
329 		if (vp->v_type != VDIR) {
330 			if (ap->a_mode & VWRITE)
331 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
332 			if (ap->a_mode & VEXEC)
333 				mode |= NFSV3ACCESS_EXECUTE;
334 		} else {
335 			if (ap->a_mode & VWRITE)
336 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
337 					 NFSV3ACCESS_DELETE);
338 			if (ap->a_mode & VEXEC)
339 				mode |= NFSV3ACCESS_LOOKUP;
340 		}
341 		/* XXX safety belt, only make blanket request if caching */
342 		if (nfsaccess_cache_timeout > 0) {
343 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
344 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
345 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
346 		} else {
347 			wmode = mode;
348 		}
349 
350 		/*
351 		 * Does our cached result allow us to give a definite yes to
352 		 * this request?
353 		 */
354 		if (np->n_modestamp &&
355 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
356 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
357 		   ((np->n_mode & mode) == mode)) {
358 			nfsstats.accesscache_hits++;
359 		} else {
360 			/*
361 			 * Either a no, or a don't know.  Go to the wire.
362 			 */
363 			nfsstats.accesscache_misses++;
364 		        error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
365 			if (!error) {
366 				if ((np->n_mode & mode) != mode) {
367 					error = EACCES;
368 				}
369 			}
370 		}
371 	} else {
372 		if ((error = nfs_laccess(ap)) != 0)
373 			return (error);
374 
375 		/*
376 		 * Attempt to prevent a mapped root from accessing a file
377 		 * which it shouldn't.  We try to read a byte from the file
378 		 * if the user is root and the file is not zero length.
379 		 * After calling nfs_laccess, we should have the correct
380 		 * file size cached.
381 		 */
382 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
383 		    && VTONFS(vp)->n_size > 0) {
384 			struct iovec aiov;
385 			struct uio auio;
386 			char buf[1];
387 
388 			aiov.iov_base = buf;
389 			aiov.iov_len = 1;
390 			auio.uio_iov = &aiov;
391 			auio.uio_iovcnt = 1;
392 			auio.uio_offset = 0;
393 			auio.uio_resid = 1;
394 			auio.uio_segflg = UIO_SYSSPACE;
395 			auio.uio_rw = UIO_READ;
396 			auio.uio_td = td;
397 
398 			if (vp->v_type == VREG) {
399 				error = nfs_readrpc_uio(vp, &auio);
400 			} else if (vp->v_type == VDIR) {
401 				char* bp;
402 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
403 				aiov.iov_base = bp;
404 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
405 				error = nfs_readdirrpc_uio(vp, &auio);
406 				kfree(bp, M_TEMP);
407 			} else if (vp->v_type == VLNK) {
408 				error = nfs_readlinkrpc_uio(vp, &auio);
409 			} else {
410 				error = EACCES;
411 			}
412 		}
413 	}
414 	/*
415 	 * [re]record creds for reading and/or writing if access
416 	 * was granted.  Assume the NFS server will grant read access
417 	 * for execute requests.
418 	 */
419 	if (error == 0) {
420 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
421 			crhold(ap->a_cred);
422 			if (np->n_rucred)
423 				crfree(np->n_rucred);
424 			np->n_rucred = ap->a_cred;
425 		}
426 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
427 			crhold(ap->a_cred);
428 			if (np->n_wucred)
429 				crfree(np->n_wucred);
430 			np->n_wucred = ap->a_cred;
431 		}
432 	}
433 	return(error);
434 }
435 
436 /*
437  * nfs open vnode op
438  * Check to see if the type is ok
439  * and that deletion is not in progress.
440  * For paged in text files, you will need to flush the page cache
441  * if consistency is lost.
442  *
443  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
444  *	    struct file *a_fp)
445  */
446 /* ARGSUSED */
447 static int
448 nfs_open(struct vop_open_args *ap)
449 {
450 	struct vnode *vp = ap->a_vp;
451 	struct nfsnode *np = VTONFS(vp);
452 	struct vattr vattr;
453 	int error;
454 
455 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
456 #ifdef DIAGNOSTIC
457 		kprintf("open eacces vtyp=%d\n",vp->v_type);
458 #endif
459 		return (EOPNOTSUPP);
460 	}
461 
462 	/*
463 	 * Save valid creds for reading and writing for later RPCs.
464 	 */
465 	if ((ap->a_mode & FREAD) && ap->a_cred != np->n_rucred) {
466 		crhold(ap->a_cred);
467 		if (np->n_rucred)
468 			crfree(np->n_rucred);
469 		np->n_rucred = ap->a_cred;
470 	}
471 	if ((ap->a_mode & FWRITE) && ap->a_cred != np->n_wucred) {
472 		crhold(ap->a_cred);
473 		if (np->n_wucred)
474 			crfree(np->n_wucred);
475 		np->n_wucred = ap->a_cred;
476 	}
477 
478 	/*
479 	 * Clear the attribute cache only if opening with write access.  It
480 	 * is unclear if we should do this at all here, but we certainly
481 	 * should not clear the cache unconditionally simply because a file
482 	 * is being opened.
483 	 */
484 	if (ap->a_mode & FWRITE)
485 		np->n_attrstamp = 0;
486 
487 	/*
488 	 * For normal NFS, reconcile changes made locally verses
489 	 * changes made remotely.  Note that VOP_GETATTR only goes
490 	 * to the wire if the cached attribute has timed out or been
491 	 * cleared.
492 	 *
493 	 * If local modifications have been made clear the attribute
494 	 * cache to force an attribute and modified time check.  If
495 	 * GETATTR detects that the file has been changed by someone
496 	 * other then us it will set NRMODIFIED.
497 	 *
498 	 * If we are opening a directory and local changes have been
499 	 * made we have to invalidate the cache in order to ensure
500 	 * that we get the most up-to-date information from the
501 	 * server.  XXX
502 	 */
503 	if (np->n_flag & NLMODIFIED) {
504 		np->n_attrstamp = 0;
505 		if (vp->v_type == VDIR) {
506 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
507 			if (error == EINTR)
508 				return (error);
509 			nfs_invaldir(vp);
510 		}
511 	}
512 	error = VOP_GETATTR(vp, &vattr);
513 	if (error)
514 		return (error);
515 	if (np->n_flag & NRMODIFIED) {
516 		if (vp->v_type == VDIR)
517 			nfs_invaldir(vp);
518 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
519 		if (error == EINTR)
520 			return (error);
521 		np->n_flag &= ~NRMODIFIED;
522 	}
523 
524 	return (vop_stdopen(ap));
525 }
526 
527 /*
528  * nfs close vnode op
529  * What an NFS client should do upon close after writing is a debatable issue.
530  * Most NFS clients push delayed writes to the server upon close, basically for
531  * two reasons:
532  * 1 - So that any write errors may be reported back to the client process
533  *     doing the close system call. By far the two most likely errors are
534  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
535  * 2 - To put a worst case upper bound on cache inconsistency between
536  *     multiple clients for the file.
537  * There is also a consistency problem for Version 2 of the protocol w.r.t.
538  * not being able to tell if other clients are writing a file concurrently,
539  * since there is no way of knowing if the changed modify time in the reply
540  * is only due to the write for this client.
541  * (NFS Version 3 provides weak cache consistency data in the reply that
542  *  should be sufficient to detect and handle this case.)
543  *
544  * The current code does the following:
545  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
546  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
547  *                     or commit them (this satisfies 1 and 2 except for the
548  *                     case where the server crashes after this close but
549  *                     before the commit RPC, which is felt to be "good
550  *                     enough". Changing the last argument to nfs_flush() to
551  *                     a 1 would force a commit operation, if it is felt a
552  *                     commit is necessary now.
553  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
554  *                     1 should be dealt with via an fsync() system call for
555  *                     cases where write errors are important.
556  *
557  * nfs_close(struct vnode *a_vp, int a_fflag)
558  */
559 /* ARGSUSED */
560 static int
561 nfs_close(struct vop_close_args *ap)
562 {
563 	struct vnode *vp = ap->a_vp;
564 	struct nfsnode *np = VTONFS(vp);
565 	int error = 0;
566 	thread_t td = curthread;
567 
568 	if (vp->v_type == VREG) {
569 	    if (np->n_flag & NLMODIFIED) {
570 		if (NFS_ISV3(vp)) {
571 		    /*
572 		     * Under NFSv3 we have dirty buffers to dispose of.  We
573 		     * must flush them to the NFS server.  We have the option
574 		     * of waiting all the way through the commit rpc or just
575 		     * waiting for the initial write.  The default is to only
576 		     * wait through the initial write so the data is in the
577 		     * server's cache, which is roughly similar to the state
578 		     * a standard disk subsystem leaves the file in on close().
579 		     *
580 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
581 		     * potential races with other processes, and certainly
582 		     * cannot clear it if we don't commit.
583 		     */
584 		    int cm = nfsv3_commit_on_close ? 1 : 0;
585 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
586 		    /* np->n_flag &= ~NLMODIFIED; */
587 		} else {
588 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
589 		}
590 		np->n_attrstamp = 0;
591 	    }
592 	    if (np->n_flag & NWRITEERR) {
593 		np->n_flag &= ~NWRITEERR;
594 		error = np->n_error;
595 	    }
596 	}
597 	vop_stdclose(ap);
598 	return (error);
599 }
600 
601 /*
602  * nfs getattr call from vfs.
603  *
604  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
605  */
606 static int
607 nfs_getattr(struct vop_getattr_args *ap)
608 {
609 	struct vnode *vp = ap->a_vp;
610 	struct nfsnode *np = VTONFS(vp);
611 	int error = 0;
612 	thread_t td = curthread;
613 	struct nfsm_info info;
614 
615 	info.mrep = NULL;
616 	info.v3 = NFS_ISV3(vp);
617 
618 	/*
619 	 * Update local times for special files.
620 	 */
621 	if (np->n_flag & (NACC | NUPD))
622 		np->n_flag |= NCHG;
623 	/*
624 	 * First look in the cache.
625 	 */
626 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
627 		return (0);
628 
629 	if (info.v3 && nfsaccess_cache_timeout > 0) {
630 		nfsstats.accesscache_misses++;
631 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
632 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
633 			return (0);
634 	}
635 
636 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
637 	nfsm_reqhead(&info, vp, NFSPROC_GETATTR, NFSX_FH(info.v3));
638 	ERROROUT(nfsm_fhtom(&info, vp));
639 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_GETATTR, td,
640 				nfs_vpcred(vp, ND_CHECK), &error));
641 	if (error == 0) {
642 		ERROROUT(nfsm_loadattr(&info, vp, ap->a_vap));
643 	}
644 	m_freem(info.mrep);
645 	info.mrep = NULL;
646 nfsmout:
647 	return (error);
648 }
649 
650 /*
651  * nfs setattr call.
652  *
653  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
654  */
655 static int
656 nfs_setattr(struct vop_setattr_args *ap)
657 {
658 	struct vnode *vp = ap->a_vp;
659 	struct nfsnode *np = VTONFS(vp);
660 	struct vattr *vap = ap->a_vap;
661 	struct buf *bp;
662 	int biosize = vp->v_mount->mnt_stat.f_iosize;
663 	int error = 0;
664 	int boff;
665 	off_t tsize;
666 	thread_t td = curthread;
667 
668 #ifndef nolint
669 	tsize = (off_t)0;
670 #endif
671 
672 	/*
673 	 * Setting of flags is not supported.
674 	 */
675 	if (vap->va_flags != VNOVAL)
676 		return (EOPNOTSUPP);
677 
678 	/*
679 	 * Disallow write attempts if the filesystem is mounted read-only.
680 	 */
681   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
682 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
683 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
684 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
685 		return (EROFS);
686 
687 	if (vap->va_size != VNOVAL) {
688 		/*
689 		 * truncation requested
690 		 */
691  		switch (vp->v_type) {
692  		case VDIR:
693  			return (EISDIR);
694  		case VCHR:
695  		case VBLK:
696  		case VSOCK:
697  		case VFIFO:
698 			if (vap->va_mtime.tv_sec == VNOVAL &&
699 			    vap->va_atime.tv_sec == VNOVAL &&
700 			    vap->va_mode == (mode_t)VNOVAL &&
701 			    vap->va_uid == (uid_t)VNOVAL &&
702 			    vap->va_gid == (gid_t)VNOVAL)
703 				return (0);
704  			vap->va_size = VNOVAL;
705  			break;
706  		default:
707 			/*
708 			 * Disallow write attempts if the filesystem is
709 			 * mounted read-only.
710 			 */
711 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
712 				return (EROFS);
713 
714 			/*
715 			 * This is nasty.  The RPCs we send to flush pending
716 			 * data often return attribute information which is
717 			 * cached via a callback to nfs_loadattrcache(), which
718 			 * has the effect of changing our notion of the file
719 			 * size.  Due to flushed appends and other operations
720 			 * the file size can be set to virtually anything,
721 			 * including values that do not match either the old
722 			 * or intended file size.
723 			 *
724 			 * When this condition is detected we must loop to
725 			 * try the operation again.  Hopefully no more
726 			 * flushing is required on the loop so it works the
727 			 * second time around.  THIS CASE ALMOST ALWAYS
728 			 * HAPPENS!
729 			 */
730 			tsize = np->n_size;
731 again:
732 			boff = (int)vap->va_size & (biosize - 1);
733 			bp = nfs_meta_setsize(vp, td, vap->va_size - boff,
734 					      boff, 0);
735 			if (bp) {
736 				error = 0;
737 				brelse(bp);
738 			} else {
739 				error = EINTR;
740 			}
741 
742  			if (np->n_flag & NLMODIFIED) {
743  			    if (vap->va_size == 0)
744  				error = nfs_vinvalbuf(vp, 0, 1);
745  			    else
746  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
747  			}
748 			/*
749 			 * note: this loop case almost always happens at
750 			 * least once per truncation.
751 			 */
752 			if (error == 0 && np->n_size != vap->va_size)
753 				goto again;
754 			np->n_vattr.va_size = vap->va_size;
755 			break;
756 		}
757 	} else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
758 		/*
759 		 * What to do.  If we are modifying the mtime we lose
760 		 * mtime detection of changes made by the server or other
761 		 * clients.  But programs like rsync/rdist/cpdup are going
762 		 * to call utimes a lot.  We don't want to piecemeal sync.
763 		 *
764 		 * For now sync if any prior remote changes were detected,
765 		 * but allow us to lose track of remote changes made during
766 		 * the utimes operation.
767 		 */
768 		if (np->n_flag & NRMODIFIED)
769 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
770 		if (error == EINTR)
771 			return (error);
772 		if (error == 0) {
773 			if (vap->va_mtime.tv_sec != VNOVAL) {
774 				np->n_mtime = vap->va_mtime.tv_sec;
775 			}
776 		}
777 	}
778 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
779 
780 	/*
781 	 * Sanity check if a truncation was issued.  This should only occur
782 	 * if multiple processes are racing on the same file.
783 	 */
784 	if (error == 0 && vap->va_size != VNOVAL &&
785 	    np->n_size != vap->va_size) {
786 		kprintf("NFS ftruncate: server disagrees on the file size: "
787 			"%jd/%jd/%jd\n",
788 			(intmax_t)tsize,
789 			(intmax_t)vap->va_size,
790 			(intmax_t)np->n_size);
791 		goto again;
792 	}
793 	if (error && vap->va_size != VNOVAL) {
794 		np->n_size = np->n_vattr.va_size = tsize;
795 		boff = (int)np->n_size & (biosize - 1);
796 		vnode_pager_setsize(vp, np->n_size);
797 	}
798 	return (error);
799 }
800 
801 /*
802  * Do an nfs setattr rpc.
803  */
804 static int
805 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
806 	       struct ucred *cred, struct thread *td)
807 {
808 	struct nfsv2_sattr *sp;
809 	struct nfsnode *np = VTONFS(vp);
810 	u_int32_t *tl;
811 	int error = 0, wccflag = NFSV3_WCCRATTR;
812 	struct nfsm_info info;
813 
814 	info.mrep = NULL;
815 	info.v3 = NFS_ISV3(vp);
816 
817 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
818 	nfsm_reqhead(&info, vp, NFSPROC_SETATTR,
819 		     NFSX_FH(info.v3) + NFSX_SATTR(info.v3));
820 	ERROROUT(nfsm_fhtom(&info, vp));
821 	if (info.v3) {
822 		nfsm_v3attrbuild(&info, vap, TRUE);
823 		tl = nfsm_build(&info, NFSX_UNSIGNED);
824 		*tl = nfs_false;
825 	} else {
826 		sp = nfsm_build(&info, NFSX_V2SATTR);
827 		if (vap->va_mode == (mode_t)VNOVAL)
828 			sp->sa_mode = nfs_xdrneg1;
829 		else
830 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
831 		if (vap->va_uid == (uid_t)VNOVAL)
832 			sp->sa_uid = nfs_xdrneg1;
833 		else
834 			sp->sa_uid = txdr_unsigned(vap->va_uid);
835 		if (vap->va_gid == (gid_t)VNOVAL)
836 			sp->sa_gid = nfs_xdrneg1;
837 		else
838 			sp->sa_gid = txdr_unsigned(vap->va_gid);
839 		sp->sa_size = txdr_unsigned(vap->va_size);
840 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
841 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
842 	}
843 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_SETATTR, td, cred, &error));
844 	if (info.v3) {
845 		np->n_modestamp = 0;
846 		ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
847 	} else {
848 		ERROROUT(nfsm_loadattr(&info, vp, NULL));
849 	}
850 	m_freem(info.mrep);
851 	info.mrep = NULL;
852 nfsmout:
853 	return (error);
854 }
855 
856 static
857 void
858 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
859 {
860 	if (nctimeout == 0)
861 		nctimeout = 1;
862 	else
863 		nctimeout *= hz;
864 	cache_setvp(nch, vp);
865 	cache_settimeout(nch, nctimeout);
866 }
867 
868 /*
869  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
870  * nfs_lookup() until all remaining new api calls are implemented.
871  *
872  * Resolve a namecache entry.  This function is passed a locked ncp and
873  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
874  */
875 static int
876 nfs_nresolve(struct vop_nresolve_args *ap)
877 {
878 	struct thread *td = curthread;
879 	struct namecache *ncp;
880 	struct ucred *cred;
881 	struct nfsnode *np;
882 	struct vnode *dvp;
883 	struct vnode *nvp;
884 	nfsfh_t *fhp;
885 	int attrflag;
886 	int fhsize;
887 	int error;
888 	int tmp_error;
889 	int len;
890 	struct nfsm_info info;
891 
892 	cred = ap->a_cred;
893 	dvp = ap->a_dvp;
894 
895 	if ((error = vget(dvp, LK_SHARED)) != 0)
896 		return (error);
897 
898 	info.mrep = NULL;
899 	info.v3 = NFS_ISV3(dvp);
900 
901 	nvp = NULL;
902 	nfsstats.lookupcache_misses++;
903 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
904 	ncp = ap->a_nch->ncp;
905 	len = ncp->nc_nlen;
906 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
907 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
908 	ERROROUT(nfsm_fhtom(&info, dvp));
909 	ERROROUT(nfsm_strtom(&info, ncp->nc_name, len, NFS_MAXNAMLEN));
910 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td,
911 				ap->a_cred, &error));
912 	if (error) {
913 		/*
914 		 * Cache negatve lookups to reduce NFS traffic, but use
915 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
916 		 * XXX we should add a namecache flag for no-caching
917 		 * to uncache the negative hit as soon as possible, but
918 		 * we cannot simply destroy the entry because it is used
919 		 * as a placeholder by the caller.
920 		 *
921 		 * The refactored nfs code will overwrite a non-zero error
922 		 * with 0 when we use ERROROUT(), so don't here.
923 		 */
924 		if (error == ENOENT)
925 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
926 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
927 					     NFS_LATTR_NOSHRINK);
928 		if (tmp_error) {
929 			error = tmp_error;
930 			goto nfsmout;
931 		}
932 		m_freem(info.mrep);
933 		info.mrep = NULL;
934 		goto nfsmout;
935 	}
936 
937 	/*
938 	 * Success, get the file handle, do various checks, and load
939 	 * post-operation data from the reply packet.  Theoretically
940 	 * we should never be looking up "." so, theoretically, we
941 	 * should never get the same file handle as our directory.  But
942 	 * we check anyway. XXX
943 	 *
944 	 * Note that no timeout is set for the positive cache hit.  We
945 	 * assume, theoretically, that ESTALE returns will be dealt with
946 	 * properly to handle NFS races and in anycase we cannot depend
947 	 * on a timeout to deal with NFS open/create/excl issues so instead
948 	 * of a bad hack here the rest of the NFS client code needs to do
949 	 * the right thing.
950 	 */
951 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
952 
953 	np = VTONFS(dvp);
954 	if (NFS_CMPFH(np, fhp, fhsize)) {
955 		vref(dvp);
956 		nvp = dvp;
957 	} else {
958 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
959 		if (error) {
960 			m_freem(info.mrep);
961 			info.mrep = NULL;
962 			vput(dvp);
963 			return (error);
964 		}
965 		nvp = NFSTOV(np);
966 	}
967 	if (info.v3) {
968 		ERROROUT(nfsm_postop_attr(&info, nvp, &attrflag,
969 					  NFS_LATTR_NOSHRINK));
970 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
971 					  NFS_LATTR_NOSHRINK));
972 	} else {
973 		ERROROUT(nfsm_loadattr(&info, nvp, NULL));
974 	}
975 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
976 	m_freem(info.mrep);
977 	info.mrep = NULL;
978 nfsmout:
979 	vput(dvp);
980 	if (nvp) {
981 		if (nvp == dvp)
982 			vrele(nvp);
983 		else
984 			vput(nvp);
985 	}
986 	return (error);
987 }
988 
989 /*
990  * 'cached' nfs directory lookup
991  *
992  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
993  *
994  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
995  *	      struct componentname *a_cnp)
996  */
997 static int
998 nfs_lookup(struct vop_old_lookup_args *ap)
999 {
1000 	struct componentname *cnp = ap->a_cnp;
1001 	struct vnode *dvp = ap->a_dvp;
1002 	struct vnode **vpp = ap->a_vpp;
1003 	int flags = cnp->cn_flags;
1004 	struct vnode *newvp;
1005 	struct nfsmount *nmp;
1006 	long len;
1007 	nfsfh_t *fhp;
1008 	struct nfsnode *np;
1009 	int lockparent, wantparent, attrflag, fhsize;
1010 	int error;
1011 	int tmp_error;
1012 	struct nfsm_info info;
1013 
1014 	info.mrep = NULL;
1015 	info.v3 = NFS_ISV3(dvp);
1016 	error = 0;
1017 
1018 	/*
1019 	 * Read-only mount check and directory check.
1020 	 */
1021 	*vpp = NULLVP;
1022 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
1023 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
1024 		return (EROFS);
1025 
1026 	if (dvp->v_type != VDIR)
1027 		return (ENOTDIR);
1028 
1029 	/*
1030 	 * Look it up in the cache.  Note that ENOENT is only returned if we
1031 	 * previously entered a negative hit (see later on).  The additional
1032 	 * nfsneg_cache_timeout check causes previously cached results to
1033 	 * be instantly ignored if the negative caching is turned off.
1034 	 */
1035 	lockparent = flags & CNP_LOCKPARENT;
1036 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1037 	nmp = VFSTONFS(dvp->v_mount);
1038 	np = VTONFS(dvp);
1039 
1040 	/*
1041 	 * Go to the wire.
1042 	 */
1043 	error = 0;
1044 	newvp = NULLVP;
1045 	nfsstats.lookupcache_misses++;
1046 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1047 	len = cnp->cn_namelen;
1048 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
1049 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1050 	ERROROUT(nfsm_fhtom(&info, dvp));
1051 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
1052 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, cnp->cn_td,
1053 				cnp->cn_cred, &error));
1054 	if (error) {
1055 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
1056 					     NFS_LATTR_NOSHRINK);
1057 		if (tmp_error) {
1058 			error = tmp_error;
1059 			goto nfsmout;
1060 		}
1061 
1062 		m_freem(info.mrep);
1063 		info.mrep = NULL;
1064 		goto nfsmout;
1065 	}
1066 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
1067 
1068 	/*
1069 	 * Handle RENAME case...
1070 	 */
1071 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1072 		if (NFS_CMPFH(np, fhp, fhsize)) {
1073 			m_freem(info.mrep);
1074 			info.mrep = NULL;
1075 			return (EISDIR);
1076 		}
1077 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1078 		if (error) {
1079 			m_freem(info.mrep);
1080 			info.mrep = NULL;
1081 			return (error);
1082 		}
1083 		newvp = NFSTOV(np);
1084 		if (info.v3) {
1085 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1086 						  NFS_LATTR_NOSHRINK));
1087 			ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1088 						  NFS_LATTR_NOSHRINK));
1089 		} else {
1090 			ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1091 		}
1092 		*vpp = newvp;
1093 		m_freem(info.mrep);
1094 		info.mrep = NULL;
1095 		if (!lockparent) {
1096 			vn_unlock(dvp);
1097 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1098 		}
1099 		return (0);
1100 	}
1101 
1102 	if (flags & CNP_ISDOTDOT) {
1103 		vn_unlock(dvp);
1104 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1105 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1106 		if (error) {
1107 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1108 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1109 			return (error); /* NOTE: return error from nget */
1110 		}
1111 		newvp = NFSTOV(np);
1112 		if (lockparent) {
1113 			error = vn_lock(dvp, LK_EXCLUSIVE);
1114 			if (error) {
1115 				vput(newvp);
1116 				return (error);
1117 			}
1118 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1119 		}
1120 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1121 		vref(dvp);
1122 		newvp = dvp;
1123 	} else {
1124 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1125 		if (error) {
1126 			m_freem(info.mrep);
1127 			info.mrep = NULL;
1128 			return (error);
1129 		}
1130 		if (!lockparent) {
1131 			vn_unlock(dvp);
1132 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1133 		}
1134 		newvp = NFSTOV(np);
1135 	}
1136 	if (info.v3) {
1137 		ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1138 					  NFS_LATTR_NOSHRINK));
1139 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1140 					  NFS_LATTR_NOSHRINK));
1141 	} else {
1142 		ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1143 	}
1144 #if 0
1145 	/* XXX MOVE TO nfs_nremove() */
1146 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1147 	    cnp->cn_nameiop != NAMEI_DELETE) {
1148 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1149 	}
1150 #endif
1151 	*vpp = newvp;
1152 	m_freem(info.mrep);
1153 	info.mrep = NULL;
1154 nfsmout:
1155 	if (error) {
1156 		if (newvp != NULLVP) {
1157 			vrele(newvp);
1158 			*vpp = NULLVP;
1159 		}
1160 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1161 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1162 		    error == ENOENT) {
1163 			if (!lockparent) {
1164 				vn_unlock(dvp);
1165 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1166 			}
1167 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1168 				error = EROFS;
1169 			else
1170 				error = EJUSTRETURN;
1171 		}
1172 	}
1173 	return (error);
1174 }
1175 
1176 /*
1177  * nfs read call.
1178  * Just call nfs_bioread() to do the work.
1179  *
1180  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1181  *	    struct ucred *a_cred)
1182  */
1183 static int
1184 nfs_read(struct vop_read_args *ap)
1185 {
1186 	struct vnode *vp = ap->a_vp;
1187 
1188 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1189 }
1190 
1191 /*
1192  * nfs readlink call
1193  *
1194  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1195  */
1196 static int
1197 nfs_readlink(struct vop_readlink_args *ap)
1198 {
1199 	struct vnode *vp = ap->a_vp;
1200 
1201 	if (vp->v_type != VLNK)
1202 		return (EINVAL);
1203 	return (nfs_bioread(vp, ap->a_uio, 0));
1204 }
1205 
1206 /*
1207  * Do a readlink rpc.
1208  * Called by nfs_doio() from below the buffer cache.
1209  */
1210 int
1211 nfs_readlinkrpc_uio(struct vnode *vp, struct uio *uiop)
1212 {
1213 	int error = 0, len, attrflag;
1214 	struct nfsm_info info;
1215 
1216 	info.mrep = NULL;
1217 	info.v3 = NFS_ISV3(vp);
1218 
1219 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1220 	nfsm_reqhead(&info, vp, NFSPROC_READLINK, NFSX_FH(info.v3));
1221 	ERROROUT(nfsm_fhtom(&info, vp));
1222 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READLINK, uiop->uio_td,
1223 				nfs_vpcred(vp, ND_CHECK), &error));
1224 	if (info.v3) {
1225 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1226 					  NFS_LATTR_NOSHRINK));
1227 	}
1228 	if (!error) {
1229 		NEGATIVEOUT(len = nfsm_strsiz(&info, NFS_MAXPATHLEN));
1230 		if (len == NFS_MAXPATHLEN) {
1231 			struct nfsnode *np = VTONFS(vp);
1232 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1233 				len = np->n_size;
1234 		}
1235 		ERROROUT(nfsm_mtouio(&info, uiop, len));
1236 	}
1237 	m_freem(info.mrep);
1238 	info.mrep = NULL;
1239 nfsmout:
1240 	return (error);
1241 }
1242 
1243 /*
1244  * nfs synchronous read rpc using UIO
1245  */
1246 int
1247 nfs_readrpc_uio(struct vnode *vp, struct uio *uiop)
1248 {
1249 	u_int32_t *tl;
1250 	struct nfsmount *nmp;
1251 	int error = 0, len, retlen, tsiz, eof, attrflag;
1252 	struct nfsm_info info;
1253 	off_t tmp_off;
1254 
1255 	info.mrep = NULL;
1256 	info.v3 = NFS_ISV3(vp);
1257 
1258 #ifndef nolint
1259 	eof = 0;
1260 #endif
1261 	nmp = VFSTONFS(vp->v_mount);
1262 	tsiz = uiop->uio_resid;
1263 	tmp_off = uiop->uio_offset + tsiz;
1264 	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uiop->uio_offset)
1265 		return (EFBIG);
1266 	tmp_off = uiop->uio_offset;
1267 	while (tsiz > 0) {
1268 		nfsstats.rpccnt[NFSPROC_READ]++;
1269 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1270 		nfsm_reqhead(&info, vp, NFSPROC_READ,
1271 			     NFSX_FH(info.v3) + NFSX_UNSIGNED * 3);
1272 		ERROROUT(nfsm_fhtom(&info, vp));
1273 		tl = nfsm_build(&info, NFSX_UNSIGNED * 3);
1274 		if (info.v3) {
1275 			txdr_hyper(uiop->uio_offset, tl);
1276 			*(tl + 2) = txdr_unsigned(len);
1277 		} else {
1278 			*tl++ = txdr_unsigned(uiop->uio_offset);
1279 			*tl++ = txdr_unsigned(len);
1280 			*tl = 0;
1281 		}
1282 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READ, uiop->uio_td,
1283 					nfs_vpcred(vp, ND_READ), &error));
1284 		if (info.v3) {
1285 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1286 						 NFS_LATTR_NOSHRINK));
1287 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
1288 			eof = fxdr_unsigned(int, *(tl + 1));
1289 		} else {
1290 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1291 		}
1292 		NEGATIVEOUT(retlen = nfsm_strsiz(&info, len));
1293 		ERROROUT(nfsm_mtouio(&info, uiop, retlen));
1294 		m_freem(info.mrep);
1295 		info.mrep = NULL;
1296 
1297 		/*
1298 		 * Handle short-read from server (NFSv3).  If EOF is not
1299 		 * flagged (and no error occurred), but retlen is less
1300 		 * then the request size, we must zero-fill the remainder.
1301 		 */
1302 		if (retlen < len && info.v3 && eof == 0) {
1303 			ERROROUT(uiomovez(len - retlen, uiop));
1304 			retlen = len;
1305 		}
1306 		tsiz -= retlen;
1307 
1308 		/*
1309 		 * Terminate loop on EOF or zero-length read.
1310 		 *
1311 		 * For NFSv2 a short-read indicates EOF, not zero-fill,
1312 		 * and also terminates the loop.
1313 		 */
1314 		if (info.v3) {
1315 			if (eof || retlen == 0)
1316 				tsiz = 0;
1317 		} else if (retlen < len) {
1318 			tsiz = 0;
1319 		}
1320 	}
1321 nfsmout:
1322 	return (error);
1323 }
1324 
1325 /*
1326  * nfs write call
1327  */
1328 int
1329 nfs_writerpc_uio(struct vnode *vp, struct uio *uiop,
1330 		 int *iomode, int *must_commit)
1331 {
1332 	u_int32_t *tl;
1333 	int32_t backup;
1334 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1335 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1336 	int  committed = NFSV3WRITE_FILESYNC;
1337 	struct nfsm_info info;
1338 
1339 	info.mrep = NULL;
1340 	info.v3 = NFS_ISV3(vp);
1341 
1342 #ifndef DIAGNOSTIC
1343 	if (uiop->uio_iovcnt != 1)
1344 		panic("nfs: writerpc iovcnt > 1");
1345 #endif
1346 	*must_commit = 0;
1347 	tsiz = uiop->uio_resid;
1348 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1349 		return (EFBIG);
1350 	while (tsiz > 0) {
1351 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1352 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1353 		nfsm_reqhead(&info, vp, NFSPROC_WRITE,
1354 			     NFSX_FH(info.v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1355 		ERROROUT(nfsm_fhtom(&info, vp));
1356 		if (info.v3) {
1357 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
1358 			txdr_hyper(uiop->uio_offset, tl);
1359 			tl += 2;
1360 			*tl++ = txdr_unsigned(len);
1361 			*tl++ = txdr_unsigned(*iomode);
1362 			*tl = txdr_unsigned(len);
1363 		} else {
1364 			u_int32_t x;
1365 
1366 			tl = nfsm_build(&info, 4 * NFSX_UNSIGNED);
1367 			/* Set both "begin" and "current" to non-garbage. */
1368 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1369 			*tl++ = x;	/* "begin offset" */
1370 			*tl++ = x;	/* "current offset" */
1371 			x = txdr_unsigned(len);
1372 			*tl++ = x;	/* total to this offset */
1373 			*tl = x;	/* size of this write */
1374 		}
1375 		ERROROUT(nfsm_uiotom(&info, uiop, len));
1376 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_WRITE, uiop->uio_td,
1377 					nfs_vpcred(vp, ND_WRITE), &error));
1378 		if (info.v3) {
1379 			/*
1380 			 * The write RPC returns a before and after mtime.  The
1381 			 * nfsm_wcc_data() macro checks the before n_mtime
1382 			 * against the before time and stores the after time
1383 			 * in the nfsnode's cached vattr and n_mtime field.
1384 			 * The NRMODIFIED bit will be set if the before
1385 			 * time did not match the original mtime.
1386 			 */
1387 			wccflag = NFSV3_WCCCHK;
1388 			ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
1389 			if (error == 0) {
1390 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1391 				rlen = fxdr_unsigned(int, *tl++);
1392 				if (rlen == 0) {
1393 					error = NFSERR_IO;
1394 					m_freem(info.mrep);
1395 					info.mrep = NULL;
1396 					break;
1397 				} else if (rlen < len) {
1398 					backup = len - rlen;
1399 					uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1400 					uiop->uio_iov->iov_len += backup;
1401 					uiop->uio_offset -= backup;
1402 					uiop->uio_resid += backup;
1403 					len = rlen;
1404 				}
1405 				commit = fxdr_unsigned(int, *tl++);
1406 
1407 				/*
1408 				 * Return the lowest committment level
1409 				 * obtained by any of the RPCs.
1410 				 */
1411 				if (committed == NFSV3WRITE_FILESYNC)
1412 					committed = commit;
1413 				else if (committed == NFSV3WRITE_DATASYNC &&
1414 					commit == NFSV3WRITE_UNSTABLE)
1415 					committed = commit;
1416 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1417 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1418 					NFSX_V3WRITEVERF);
1419 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1420 				} else if (bcmp((caddr_t)tl,
1421 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1422 				    *must_commit = 1;
1423 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1424 					NFSX_V3WRITEVERF);
1425 				}
1426 			}
1427 		} else {
1428 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1429 		}
1430 		m_freem(info.mrep);
1431 		info.mrep = NULL;
1432 		if (error)
1433 			break;
1434 		tsiz -= len;
1435 	}
1436 nfsmout:
1437 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1438 		committed = NFSV3WRITE_FILESYNC;
1439 	*iomode = committed;
1440 	if (error)
1441 		uiop->uio_resid = tsiz;
1442 	return (error);
1443 }
1444 
1445 /*
1446  * nfs mknod rpc
1447  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1448  * mode set to specify the file type and the size field for rdev.
1449  */
1450 static int
1451 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1452 	     struct vattr *vap)
1453 {
1454 	struct nfsv2_sattr *sp;
1455 	u_int32_t *tl;
1456 	struct vnode *newvp = NULL;
1457 	struct nfsnode *np = NULL;
1458 	struct vattr vattr;
1459 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1460 	int rmajor, rminor;
1461 	struct nfsm_info info;
1462 
1463 	info.mrep = NULL;
1464 	info.v3 = NFS_ISV3(dvp);
1465 
1466 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1467 		rmajor = txdr_unsigned(vap->va_rmajor);
1468 		rminor = txdr_unsigned(vap->va_rminor);
1469 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1470 		rmajor = nfs_xdrneg1;
1471 		rminor = nfs_xdrneg1;
1472 	} else {
1473 		return (EOPNOTSUPP);
1474 	}
1475 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1476 		return (error);
1477 	}
1478 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1479 	nfsm_reqhead(&info, dvp, NFSPROC_MKNOD,
1480 		     NFSX_FH(info.v3) + 4 * NFSX_UNSIGNED +
1481 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1482 	ERROROUT(nfsm_fhtom(&info, dvp));
1483 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1484 			     NFS_MAXNAMLEN));
1485 	if (info.v3) {
1486 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1487 		*tl++ = vtonfsv3_type(vap->va_type);
1488 		nfsm_v3attrbuild(&info, vap, FALSE);
1489 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1490 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1491 			*tl++ = txdr_unsigned(vap->va_rmajor);
1492 			*tl = txdr_unsigned(vap->va_rminor);
1493 		}
1494 	} else {
1495 		sp = nfsm_build(&info, NFSX_V2SATTR);
1496 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1497 		sp->sa_uid = nfs_xdrneg1;
1498 		sp->sa_gid = nfs_xdrneg1;
1499 		sp->sa_size = makeudev(rmajor, rminor);
1500 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1501 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1502 	}
1503 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKNOD, cnp->cn_td,
1504 				cnp->cn_cred, &error));
1505 	if (!error) {
1506 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1507 		if (!gotvp) {
1508 			if (newvp) {
1509 				vput(newvp);
1510 				newvp = NULL;
1511 			}
1512 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1513 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1514 			if (!error)
1515 				newvp = NFSTOV(np);
1516 		}
1517 	}
1518 	if (info.v3) {
1519 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1520 	}
1521 	m_freem(info.mrep);
1522 	info.mrep = NULL;
1523 nfsmout:
1524 	if (error) {
1525 		if (newvp)
1526 			vput(newvp);
1527 	} else {
1528 		*vpp = newvp;
1529 	}
1530 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1531 	if (!wccflag)
1532 		VTONFS(dvp)->n_attrstamp = 0;
1533 	return (error);
1534 }
1535 
1536 /*
1537  * nfs mknod vop
1538  * just call nfs_mknodrpc() to do the work.
1539  *
1540  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1541  *	     struct componentname *a_cnp, struct vattr *a_vap)
1542  */
1543 /* ARGSUSED */
1544 static int
1545 nfs_mknod(struct vop_old_mknod_args *ap)
1546 {
1547 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1548 }
1549 
1550 static u_long create_verf;
1551 /*
1552  * nfs file create call
1553  *
1554  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1555  *	      struct componentname *a_cnp, struct vattr *a_vap)
1556  */
1557 static int
1558 nfs_create(struct vop_old_create_args *ap)
1559 {
1560 	struct vnode *dvp = ap->a_dvp;
1561 	struct vattr *vap = ap->a_vap;
1562 	struct componentname *cnp = ap->a_cnp;
1563 	struct nfsv2_sattr *sp;
1564 	u_int32_t *tl;
1565 	struct nfsnode *np = NULL;
1566 	struct vnode *newvp = NULL;
1567 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1568 	struct vattr vattr;
1569 	struct nfsm_info info;
1570 
1571 	info.mrep = NULL;
1572 	info.v3 = NFS_ISV3(dvp);
1573 
1574 	/*
1575 	 * Oops, not for me..
1576 	 */
1577 	if (vap->va_type == VSOCK)
1578 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1579 
1580 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1581 		return (error);
1582 	}
1583 	if (vap->va_vaflags & VA_EXCLUSIVE)
1584 		fmode |= O_EXCL;
1585 again:
1586 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1587 	nfsm_reqhead(&info, dvp, NFSPROC_CREATE,
1588 		     NFSX_FH(info.v3) + 2 * NFSX_UNSIGNED +
1589 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1590 	ERROROUT(nfsm_fhtom(&info, dvp));
1591 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1592 			     NFS_MAXNAMLEN));
1593 	if (info.v3) {
1594 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1595 		if (fmode & O_EXCL) {
1596 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1597 			tl = nfsm_build(&info, NFSX_V3CREATEVERF);
1598 #ifdef INET
1599 			if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1600 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1601 			else
1602 #endif
1603 				*tl++ = create_verf;
1604 			*tl = ++create_verf;
1605 		} else {
1606 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1607 			nfsm_v3attrbuild(&info, vap, FALSE);
1608 		}
1609 	} else {
1610 		sp = nfsm_build(&info, NFSX_V2SATTR);
1611 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1612 		sp->sa_uid = nfs_xdrneg1;
1613 		sp->sa_gid = nfs_xdrneg1;
1614 		sp->sa_size = 0;
1615 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1616 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1617 	}
1618 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_CREATE, cnp->cn_td,
1619 				cnp->cn_cred, &error));
1620 	if (error == 0) {
1621 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1622 		if (!gotvp) {
1623 			if (newvp) {
1624 				vput(newvp);
1625 				newvp = NULL;
1626 			}
1627 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1628 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1629 			if (!error)
1630 				newvp = NFSTOV(np);
1631 		}
1632 	}
1633 	if (info.v3) {
1634 		if (error == 0)
1635 			error = nfsm_wcc_data(&info, dvp, &wccflag);
1636 		else
1637 			(void)nfsm_wcc_data(&info, dvp, &wccflag);
1638 	}
1639 	m_freem(info.mrep);
1640 	info.mrep = NULL;
1641 nfsmout:
1642 	if (error) {
1643 		if (info.v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1644 			KKASSERT(newvp == NULL);
1645 			fmode &= ~O_EXCL;
1646 			goto again;
1647 		}
1648 	} else if (info.v3 && (fmode & O_EXCL)) {
1649 		/*
1650 		 * We are normally called with only a partially initialized
1651 		 * VAP.  Since the NFSv3 spec says that server may use the
1652 		 * file attributes to store the verifier, the spec requires
1653 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1654 		 * in atime, but we can't really assume that all servers will
1655 		 * so we ensure that our SETATTR sets both atime and mtime.
1656 		 */
1657 		if (vap->va_mtime.tv_sec == VNOVAL)
1658 			vfs_timestamp(&vap->va_mtime);
1659 		if (vap->va_atime.tv_sec == VNOVAL)
1660 			vap->va_atime = vap->va_mtime;
1661 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1662 	}
1663 	if (error == 0) {
1664 		/*
1665 		 * The new np may have enough info for access
1666 		 * checks, make sure rucred and wucred are
1667 		 * initialized for read and write rpc's.
1668 		 */
1669 		np = VTONFS(newvp);
1670 		if (np->n_rucred == NULL)
1671 			np->n_rucred = crhold(cnp->cn_cred);
1672 		if (np->n_wucred == NULL)
1673 			np->n_wucred = crhold(cnp->cn_cred);
1674 		*ap->a_vpp = newvp;
1675 	} else if (newvp) {
1676 		vput(newvp);
1677 	}
1678 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1679 	if (!wccflag)
1680 		VTONFS(dvp)->n_attrstamp = 0;
1681 	return (error);
1682 }
1683 
1684 /*
1685  * nfs file remove call
1686  * To try and make nfs semantics closer to ufs semantics, a file that has
1687  * other processes using the vnode is renamed instead of removed and then
1688  * removed later on the last close.
1689  * - If v_sysref.refcnt > 1
1690  *	  If a rename is not already in the works
1691  *	     call nfs_sillyrename() to set it up
1692  *     else
1693  *	  do the remove rpc
1694  *
1695  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1696  *	      struct componentname *a_cnp)
1697  */
1698 static int
1699 nfs_remove(struct vop_old_remove_args *ap)
1700 {
1701 	struct vnode *vp = ap->a_vp;
1702 	struct vnode *dvp = ap->a_dvp;
1703 	struct componentname *cnp = ap->a_cnp;
1704 	struct nfsnode *np = VTONFS(vp);
1705 	int error = 0;
1706 	struct vattr vattr;
1707 
1708 #ifndef DIAGNOSTIC
1709 	if (vp->v_sysref.refcnt < 1)
1710 		panic("nfs_remove: bad v_sysref.refcnt");
1711 #endif
1712 	if (vp->v_type == VDIR)
1713 		error = EPERM;
1714 	else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1715 	    VOP_GETATTR(vp, &vattr) == 0 &&
1716 	    vattr.va_nlink > 1)) {
1717 		/*
1718 		 * throw away biocache buffers, mainly to avoid
1719 		 * unnecessary delayed writes later.
1720 		 */
1721 		error = nfs_vinvalbuf(vp, 0, 1);
1722 		/* Do the rpc */
1723 		if (error != EINTR)
1724 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1725 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1726 		/*
1727 		 * Kludge City: If the first reply to the remove rpc is lost..
1728 		 *   the reply to the retransmitted request will be ENOENT
1729 		 *   since the file was in fact removed
1730 		 *   Therefore, we cheat and return success.
1731 		 */
1732 		if (error == ENOENT)
1733 			error = 0;
1734 	} else if (!np->n_sillyrename) {
1735 		error = nfs_sillyrename(dvp, vp, cnp);
1736 	}
1737 	np->n_attrstamp = 0;
1738 	return (error);
1739 }
1740 
1741 /*
1742  * nfs file remove rpc called from nfs_inactive
1743  */
1744 int
1745 nfs_removeit(struct sillyrename *sp)
1746 {
1747 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1748 		sp->s_cred, NULL));
1749 }
1750 
1751 /*
1752  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1753  */
1754 static int
1755 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1756 	      struct ucred *cred, struct thread *td)
1757 {
1758 	int error = 0, wccflag = NFSV3_WCCRATTR;
1759 	struct nfsm_info info;
1760 
1761 	info.mrep = NULL;
1762 	info.v3 = NFS_ISV3(dvp);
1763 
1764 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1765 	nfsm_reqhead(&info, dvp, NFSPROC_REMOVE,
1766 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1767 	ERROROUT(nfsm_fhtom(&info, dvp));
1768 	ERROROUT(nfsm_strtom(&info, name, namelen, NFS_MAXNAMLEN));
1769 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_REMOVE, td, cred, &error));
1770 	if (info.v3) {
1771 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1772 	}
1773 	m_freem(info.mrep);
1774 	info.mrep = NULL;
1775 nfsmout:
1776 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1777 	if (!wccflag)
1778 		VTONFS(dvp)->n_attrstamp = 0;
1779 	return (error);
1780 }
1781 
1782 /*
1783  * nfs file rename call
1784  *
1785  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1786  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1787  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1788  */
1789 static int
1790 nfs_rename(struct vop_old_rename_args *ap)
1791 {
1792 	struct vnode *fvp = ap->a_fvp;
1793 	struct vnode *tvp = ap->a_tvp;
1794 	struct vnode *fdvp = ap->a_fdvp;
1795 	struct vnode *tdvp = ap->a_tdvp;
1796 	struct componentname *tcnp = ap->a_tcnp;
1797 	struct componentname *fcnp = ap->a_fcnp;
1798 	int error;
1799 
1800 	/* Check for cross-device rename */
1801 	if ((fvp->v_mount != tdvp->v_mount) ||
1802 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1803 		error = EXDEV;
1804 		goto out;
1805 	}
1806 
1807 	/*
1808 	 * We shouldn't have to flush fvp on rename for most server-side
1809 	 * filesystems as the file handle should not change.  Unfortunately
1810 	 * the inode for some filesystems (msdosfs) might be tied to the
1811 	 * file name or directory position so to be completely safe
1812 	 * vfs.nfs.flush_on_rename is set by default.  Clear to improve
1813 	 * performance.
1814 	 *
1815 	 * We must flush tvp on rename because it might become stale on the
1816 	 * server after the rename.
1817 	 */
1818 	if (nfs_flush_on_rename)
1819 	    VOP_FSYNC(fvp, MNT_WAIT, 0);
1820 	if (tvp)
1821 	    VOP_FSYNC(tvp, MNT_WAIT, 0);
1822 
1823 	/*
1824 	 * If the tvp exists and is in use, sillyrename it before doing the
1825 	 * rename of the new file over it.
1826 	 *
1827 	 * XXX Can't sillyrename a directory.
1828 	 *
1829 	 * We do not attempt to do any namecache purges in this old API
1830 	 * routine.  The new API compat functions have access to the actual
1831 	 * namecache structures and will do it for us.
1832 	 */
1833 	if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1834 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1835 		vput(tvp);
1836 		tvp = NULL;
1837 	} else if (tvp) {
1838 		;
1839 	}
1840 
1841 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1842 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1843 		tcnp->cn_td);
1844 
1845 out:
1846 	if (tdvp == tvp)
1847 		vrele(tdvp);
1848 	else
1849 		vput(tdvp);
1850 	if (tvp)
1851 		vput(tvp);
1852 	vrele(fdvp);
1853 	vrele(fvp);
1854 	/*
1855 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1856 	 */
1857 	if (error == ENOENT)
1858 		error = 0;
1859 	return (error);
1860 }
1861 
1862 /*
1863  * nfs file rename rpc called from nfs_remove() above
1864  */
1865 static int
1866 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1867 	     struct sillyrename *sp)
1868 {
1869 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1870 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1871 }
1872 
1873 /*
1874  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1875  */
1876 static int
1877 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1878 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1879 	      struct ucred *cred, struct thread *td)
1880 {
1881 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1882 	struct nfsm_info info;
1883 
1884 	info.mrep = NULL;
1885 	info.v3 = NFS_ISV3(fdvp);
1886 
1887 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1888 	nfsm_reqhead(&info, fdvp, NFSPROC_RENAME,
1889 		    (NFSX_FH(info.v3) + NFSX_UNSIGNED)*2 +
1890 		    nfsm_rndup(fnamelen) + nfsm_rndup(tnamelen));
1891 	ERROROUT(nfsm_fhtom(&info, fdvp));
1892 	ERROROUT(nfsm_strtom(&info, fnameptr, fnamelen, NFS_MAXNAMLEN));
1893 	ERROROUT(nfsm_fhtom(&info, tdvp));
1894 	ERROROUT(nfsm_strtom(&info, tnameptr, tnamelen, NFS_MAXNAMLEN));
1895 	NEGKEEPOUT(nfsm_request(&info, fdvp, NFSPROC_RENAME, td, cred, &error));
1896 	if (info.v3) {
1897 		ERROROUT(nfsm_wcc_data(&info, fdvp, &fwccflag));
1898 		ERROROUT(nfsm_wcc_data(&info, tdvp, &twccflag));
1899 	}
1900 	m_freem(info.mrep);
1901 	info.mrep = NULL;
1902 nfsmout:
1903 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1904 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1905 	if (!fwccflag)
1906 		VTONFS(fdvp)->n_attrstamp = 0;
1907 	if (!twccflag)
1908 		VTONFS(tdvp)->n_attrstamp = 0;
1909 	return (error);
1910 }
1911 
1912 /*
1913  * nfs hard link create call
1914  *
1915  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1916  *	    struct componentname *a_cnp)
1917  */
1918 static int
1919 nfs_link(struct vop_old_link_args *ap)
1920 {
1921 	struct vnode *vp = ap->a_vp;
1922 	struct vnode *tdvp = ap->a_tdvp;
1923 	struct componentname *cnp = ap->a_cnp;
1924 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1925 	struct nfsm_info info;
1926 
1927 	if (vp->v_mount != tdvp->v_mount) {
1928 		return (EXDEV);
1929 	}
1930 
1931 	/*
1932 	 * The attribute cache may get out of sync with the server on link.
1933 	 * Pushing writes to the server before handle was inherited from
1934 	 * long long ago and it is unclear if we still need to do this.
1935 	 * Defaults to off.
1936 	 */
1937 	if (nfs_flush_on_hlink)
1938 		VOP_FSYNC(vp, MNT_WAIT, 0);
1939 
1940 	info.mrep = NULL;
1941 	info.v3 = NFS_ISV3(vp);
1942 
1943 	nfsstats.rpccnt[NFSPROC_LINK]++;
1944 	nfsm_reqhead(&info, vp, NFSPROC_LINK,
1945 		     NFSX_FH(info.v3) * 2 + NFSX_UNSIGNED +
1946 		     nfsm_rndup(cnp->cn_namelen));
1947 	ERROROUT(nfsm_fhtom(&info, vp));
1948 	ERROROUT(nfsm_fhtom(&info, tdvp));
1949 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1950 			     NFS_MAXNAMLEN));
1951 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_LINK, cnp->cn_td,
1952 				cnp->cn_cred, &error));
1953 	if (info.v3) {
1954 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1955 					 NFS_LATTR_NOSHRINK));
1956 		ERROROUT(nfsm_wcc_data(&info, tdvp, &wccflag));
1957 	}
1958 	m_freem(info.mrep);
1959 	info.mrep = NULL;
1960 nfsmout:
1961 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1962 	if (!attrflag)
1963 		VTONFS(vp)->n_attrstamp = 0;
1964 	if (!wccflag)
1965 		VTONFS(tdvp)->n_attrstamp = 0;
1966 	/*
1967 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1968 	 */
1969 	if (error == EEXIST)
1970 		error = 0;
1971 	return (error);
1972 }
1973 
1974 /*
1975  * nfs symbolic link create call
1976  *
1977  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1978  *		struct componentname *a_cnp, struct vattr *a_vap,
1979  *		char *a_target)
1980  */
1981 static int
1982 nfs_symlink(struct vop_old_symlink_args *ap)
1983 {
1984 	struct vnode *dvp = ap->a_dvp;
1985 	struct vattr *vap = ap->a_vap;
1986 	struct componentname *cnp = ap->a_cnp;
1987 	struct nfsv2_sattr *sp;
1988 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1989 	struct vnode *newvp = NULL;
1990 	struct nfsm_info info;
1991 
1992 	info.mrep = NULL;
1993 	info.v3 = NFS_ISV3(dvp);
1994 
1995 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1996 	slen = strlen(ap->a_target);
1997 	nfsm_reqhead(&info, dvp, NFSPROC_SYMLINK,
1998 		     NFSX_FH(info.v3) + 2*NFSX_UNSIGNED +
1999 		     nfsm_rndup(cnp->cn_namelen) +
2000 		     nfsm_rndup(slen) + NFSX_SATTR(info.v3));
2001 	ERROROUT(nfsm_fhtom(&info, dvp));
2002 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2003 			     NFS_MAXNAMLEN));
2004 	if (info.v3) {
2005 		nfsm_v3attrbuild(&info, vap, FALSE);
2006 	}
2007 	ERROROUT(nfsm_strtom(&info, ap->a_target, slen, NFS_MAXPATHLEN));
2008 	if (info.v3 == 0) {
2009 		sp = nfsm_build(&info, NFSX_V2SATTR);
2010 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
2011 		sp->sa_uid = nfs_xdrneg1;
2012 		sp->sa_gid = nfs_xdrneg1;
2013 		sp->sa_size = nfs_xdrneg1;
2014 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2015 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2016 	}
2017 
2018 	/*
2019 	 * Issue the NFS request and get the rpc response.
2020 	 *
2021 	 * Only NFSv3 responses returning an error of 0 actually return
2022 	 * a file handle that can be converted into newvp without having
2023 	 * to do an extra lookup rpc.
2024 	 */
2025 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_SYMLINK, cnp->cn_td,
2026 				cnp->cn_cred, &error));
2027 	if (info.v3) {
2028 		if (error == 0) {
2029 		       ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2030 		}
2031 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2032 	}
2033 
2034 	/*
2035 	 * out code jumps -> here, mrep is also freed.
2036 	 */
2037 
2038 	m_freem(info.mrep);
2039 	info.mrep = NULL;
2040 nfsmout:
2041 
2042 	/*
2043 	 * If we get an EEXIST error, silently convert it to no-error
2044 	 * in case of an NFS retry.
2045 	 */
2046 	if (error == EEXIST)
2047 		error = 0;
2048 
2049 	/*
2050 	 * If we do not have (or no longer have) an error, and we could
2051 	 * not extract the newvp from the response due to the request being
2052 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
2053 	 * to obtain a newvp to return.
2054 	 */
2055 	if (error == 0 && newvp == NULL) {
2056 		struct nfsnode *np = NULL;
2057 
2058 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2059 		    cnp->cn_cred, cnp->cn_td, &np);
2060 		if (!error)
2061 			newvp = NFSTOV(np);
2062 	}
2063 	if (error) {
2064 		if (newvp)
2065 			vput(newvp);
2066 	} else {
2067 		*ap->a_vpp = newvp;
2068 	}
2069 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2070 	if (!wccflag)
2071 		VTONFS(dvp)->n_attrstamp = 0;
2072 	return (error);
2073 }
2074 
2075 /*
2076  * nfs make dir call
2077  *
2078  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
2079  *	     struct componentname *a_cnp, struct vattr *a_vap)
2080  */
2081 static int
2082 nfs_mkdir(struct vop_old_mkdir_args *ap)
2083 {
2084 	struct vnode *dvp = ap->a_dvp;
2085 	struct vattr *vap = ap->a_vap;
2086 	struct componentname *cnp = ap->a_cnp;
2087 	struct nfsv2_sattr *sp;
2088 	struct nfsnode *np = NULL;
2089 	struct vnode *newvp = NULL;
2090 	struct vattr vattr;
2091 	int error = 0, wccflag = NFSV3_WCCRATTR;
2092 	int gotvp = 0;
2093 	int len;
2094 	struct nfsm_info info;
2095 
2096 	info.mrep = NULL;
2097 	info.v3 = NFS_ISV3(dvp);
2098 
2099 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2100 		return (error);
2101 	}
2102 	len = cnp->cn_namelen;
2103 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2104 	nfsm_reqhead(&info, dvp, NFSPROC_MKDIR,
2105 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2106 		     nfsm_rndup(len) + NFSX_SATTR(info.v3));
2107 	ERROROUT(nfsm_fhtom(&info, dvp));
2108 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
2109 	if (info.v3) {
2110 		nfsm_v3attrbuild(&info, vap, FALSE);
2111 	} else {
2112 		sp = nfsm_build(&info, NFSX_V2SATTR);
2113 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2114 		sp->sa_uid = nfs_xdrneg1;
2115 		sp->sa_gid = nfs_xdrneg1;
2116 		sp->sa_size = nfs_xdrneg1;
2117 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2118 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2119 	}
2120 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKDIR, cnp->cn_td,
2121 		    cnp->cn_cred, &error));
2122 	if (error == 0) {
2123 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2124 	}
2125 	if (info.v3) {
2126 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2127 	}
2128 	m_freem(info.mrep);
2129 	info.mrep = NULL;
2130 nfsmout:
2131 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2132 	if (!wccflag)
2133 		VTONFS(dvp)->n_attrstamp = 0;
2134 	/*
2135 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2136 	 * if we can succeed in looking up the directory.
2137 	 */
2138 	if (error == EEXIST || (!error && !gotvp)) {
2139 		if (newvp) {
2140 			vrele(newvp);
2141 			newvp = NULL;
2142 		}
2143 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2144 			cnp->cn_td, &np);
2145 		if (!error) {
2146 			newvp = NFSTOV(np);
2147 			if (newvp->v_type != VDIR)
2148 				error = EEXIST;
2149 		}
2150 	}
2151 	if (error) {
2152 		if (newvp)
2153 			vrele(newvp);
2154 	} else
2155 		*ap->a_vpp = newvp;
2156 	return (error);
2157 }
2158 
2159 /*
2160  * nfs remove directory call
2161  *
2162  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2163  *	     struct componentname *a_cnp)
2164  */
2165 static int
2166 nfs_rmdir(struct vop_old_rmdir_args *ap)
2167 {
2168 	struct vnode *vp = ap->a_vp;
2169 	struct vnode *dvp = ap->a_dvp;
2170 	struct componentname *cnp = ap->a_cnp;
2171 	int error = 0, wccflag = NFSV3_WCCRATTR;
2172 	struct nfsm_info info;
2173 
2174 	info.mrep = NULL;
2175 	info.v3 = NFS_ISV3(dvp);
2176 
2177 	if (dvp == vp)
2178 		return (EINVAL);
2179 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2180 	nfsm_reqhead(&info, dvp, NFSPROC_RMDIR,
2181 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2182 		     nfsm_rndup(cnp->cn_namelen));
2183 	ERROROUT(nfsm_fhtom(&info, dvp));
2184 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2185 		 NFS_MAXNAMLEN));
2186 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_RMDIR, cnp->cn_td,
2187 				cnp->cn_cred, &error));
2188 	if (info.v3) {
2189 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2190 	}
2191 	m_freem(info.mrep);
2192 	info.mrep = NULL;
2193 nfsmout:
2194 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2195 	if (!wccflag)
2196 		VTONFS(dvp)->n_attrstamp = 0;
2197 	/*
2198 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2199 	 */
2200 	if (error == ENOENT)
2201 		error = 0;
2202 	return (error);
2203 }
2204 
2205 /*
2206  * nfs readdir call
2207  *
2208  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2209  */
2210 static int
2211 nfs_readdir(struct vop_readdir_args *ap)
2212 {
2213 	struct vnode *vp = ap->a_vp;
2214 	struct nfsnode *np = VTONFS(vp);
2215 	struct uio *uio = ap->a_uio;
2216 	int tresid, error;
2217 	struct vattr vattr;
2218 
2219 	if (vp->v_type != VDIR)
2220 		return (EPERM);
2221 
2222 	if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2223 		return (error);
2224 
2225 	/*
2226 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2227 	 * and then check that is still valid, or if this is an NQNFS mount
2228 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2229 	 * VOP_GETATTR() does not necessarily go to the wire.
2230 	 */
2231 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2232 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2233 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2234 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2235 		) {
2236 			nfsstats.direofcache_hits++;
2237 			goto done;
2238 		}
2239 	}
2240 
2241 	/*
2242 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2243 	 * own cache coherency checks so we do not have to.
2244 	 */
2245 	tresid = uio->uio_resid;
2246 	error = nfs_bioread(vp, uio, 0);
2247 
2248 	if (!error && uio->uio_resid == tresid)
2249 		nfsstats.direofcache_misses++;
2250 done:
2251 	vn_unlock(vp);
2252 	return (error);
2253 }
2254 
2255 /*
2256  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2257  *
2258  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2259  * offset/block and converts the nfs formatted directory entries for userland
2260  * consumption as well as deals with offsets into the middle of blocks.
2261  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2262  * be block-bounded.  It must convert to cookies for the actual RPC.
2263  */
2264 int
2265 nfs_readdirrpc_uio(struct vnode *vp, struct uio *uiop)
2266 {
2267 	int len, left;
2268 	struct nfs_dirent *dp = NULL;
2269 	u_int32_t *tl;
2270 	nfsuint64 *cookiep;
2271 	caddr_t cp;
2272 	nfsuint64 cookie;
2273 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2274 	struct nfsnode *dnp = VTONFS(vp);
2275 	u_quad_t fileno;
2276 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2277 	int attrflag;
2278 	struct nfsm_info info;
2279 
2280 	info.mrep = NULL;
2281 	info.v3 = NFS_ISV3(vp);
2282 
2283 #ifndef DIAGNOSTIC
2284 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2285 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2286 		panic("nfs readdirrpc bad uio");
2287 #endif
2288 
2289 	/*
2290 	 * If there is no cookie, assume directory was stale.
2291 	 */
2292 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2293 	if (cookiep)
2294 		cookie = *cookiep;
2295 	else
2296 		return (NFSERR_BAD_COOKIE);
2297 	/*
2298 	 * Loop around doing readdir rpc's of size nm_readdirsize
2299 	 * truncated to a multiple of DIRBLKSIZ.
2300 	 * The stopping criteria is EOF or buffer full.
2301 	 */
2302 	while (more_dirs && bigenough) {
2303 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2304 		nfsm_reqhead(&info, vp, NFSPROC_READDIR,
2305 			     NFSX_FH(info.v3) + NFSX_READDIR(info.v3));
2306 		ERROROUT(nfsm_fhtom(&info, vp));
2307 		if (info.v3) {
2308 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
2309 			*tl++ = cookie.nfsuquad[0];
2310 			*tl++ = cookie.nfsuquad[1];
2311 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2312 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2313 		} else {
2314 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
2315 			*tl++ = cookie.nfsuquad[0];
2316 		}
2317 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2318 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIR,
2319 					uiop->uio_td,
2320 					nfs_vpcred(vp, ND_READ), &error));
2321 		if (info.v3) {
2322 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2323 						  NFS_LATTR_NOSHRINK));
2324 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2325 			dnp->n_cookieverf.nfsuquad[0] = *tl++;
2326 			dnp->n_cookieverf.nfsuquad[1] = *tl;
2327 		}
2328 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2329 		more_dirs = fxdr_unsigned(int, *tl);
2330 
2331 		/* loop thru the dir entries, converting them to std form */
2332 		while (more_dirs && bigenough) {
2333 			if (info.v3) {
2334 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2335 				fileno = fxdr_hyper(tl);
2336 				len = fxdr_unsigned(int, *(tl + 2));
2337 			} else {
2338 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2339 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2340 				len = fxdr_unsigned(int, *tl);
2341 			}
2342 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2343 				error = EBADRPC;
2344 				m_freem(info.mrep);
2345 				info.mrep = NULL;
2346 				goto nfsmout;
2347 			}
2348 
2349 			/*
2350 			 * len is the number of bytes in the path element
2351 			 * name, not including the \0 termination.
2352 			 *
2353 			 * tlen is the number of bytes w have to reserve for
2354 			 * the path element name.
2355 			 */
2356 			tlen = nfsm_rndup(len);
2357 			if (tlen == len)
2358 				tlen += 4;	/* To ensure null termination */
2359 
2360 			/*
2361 			 * If the entry would cross a DIRBLKSIZ boundary,
2362 			 * extend the previous nfs_dirent to cover the
2363 			 * remaining space.
2364 			 */
2365 			left = DIRBLKSIZ - blksiz;
2366 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2367 				dp->nfs_reclen += left;
2368 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2369 				uiop->uio_iov->iov_len -= left;
2370 				uiop->uio_offset += left;
2371 				uiop->uio_resid -= left;
2372 				blksiz = 0;
2373 			}
2374 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2375 				bigenough = 0;
2376 			if (bigenough) {
2377 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2378 				dp->nfs_ino = fileno;
2379 				dp->nfs_namlen = len;
2380 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2381 				dp->nfs_type = DT_UNKNOWN;
2382 				blksiz += dp->nfs_reclen;
2383 				if (blksiz == DIRBLKSIZ)
2384 					blksiz = 0;
2385 				uiop->uio_offset += sizeof(struct nfs_dirent);
2386 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2387 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2388 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2389 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2390 
2391 				/*
2392 				 * The uiop has advanced by nfs_dirent + len
2393 				 * but really needs to advance by
2394 				 * nfs_dirent + tlen
2395 				 */
2396 				cp = uiop->uio_iov->iov_base;
2397 				tlen -= len;
2398 				*cp = '\0';	/* null terminate */
2399 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2400 				uiop->uio_iov->iov_len -= tlen;
2401 				uiop->uio_offset += tlen;
2402 				uiop->uio_resid -= tlen;
2403 			} else {
2404 				/*
2405 				 * NFS strings must be rounded up (nfsm_myouio
2406 				 * handled that in the bigenough case).
2407 				 */
2408 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2409 			}
2410 			if (info.v3) {
2411 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2412 			} else {
2413 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2414 			}
2415 
2416 			/*
2417 			 * If we were able to accomodate the last entry,
2418 			 * get the cookie for the next one.  Otherwise
2419 			 * hold-over the cookie for the one we were not
2420 			 * able to accomodate.
2421 			 */
2422 			if (bigenough) {
2423 				cookie.nfsuquad[0] = *tl++;
2424 				if (info.v3)
2425 					cookie.nfsuquad[1] = *tl++;
2426 			} else if (info.v3) {
2427 				tl += 2;
2428 			} else {
2429 				tl++;
2430 			}
2431 			more_dirs = fxdr_unsigned(int, *tl);
2432 		}
2433 		/*
2434 		 * If at end of rpc data, get the eof boolean
2435 		 */
2436 		if (!more_dirs) {
2437 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2438 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2439 		}
2440 		m_freem(info.mrep);
2441 		info.mrep = NULL;
2442 	}
2443 	/*
2444 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2445 	 * by increasing d_reclen for the last record.
2446 	 */
2447 	if (blksiz > 0) {
2448 		left = DIRBLKSIZ - blksiz;
2449 		dp->nfs_reclen += left;
2450 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2451 		uiop->uio_iov->iov_len -= left;
2452 		uiop->uio_offset += left;
2453 		uiop->uio_resid -= left;
2454 	}
2455 
2456 	if (bigenough) {
2457 		/*
2458 		 * We hit the end of the directory, update direofoffset.
2459 		 */
2460 		dnp->n_direofoffset = uiop->uio_offset;
2461 	} else {
2462 		/*
2463 		 * There is more to go, insert the link cookie so the
2464 		 * next block can be read.
2465 		 */
2466 		if (uiop->uio_resid > 0)
2467 			kprintf("EEK! readdirrpc resid > 0\n");
2468 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2469 		*cookiep = cookie;
2470 	}
2471 nfsmout:
2472 	return (error);
2473 }
2474 
2475 /*
2476  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2477  */
2478 int
2479 nfs_readdirplusrpc_uio(struct vnode *vp, struct uio *uiop)
2480 {
2481 	int len, left;
2482 	struct nfs_dirent *dp;
2483 	u_int32_t *tl;
2484 	struct vnode *newvp;
2485 	nfsuint64 *cookiep;
2486 	caddr_t dpossav1, dpossav2;
2487 	caddr_t cp;
2488 	struct mbuf *mdsav1, *mdsav2;
2489 	nfsuint64 cookie;
2490 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2491 	struct nfsnode *dnp = VTONFS(vp), *np;
2492 	nfsfh_t *fhp;
2493 	u_quad_t fileno;
2494 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2495 	int attrflag, fhsize;
2496 	struct nchandle nch;
2497 	struct nchandle dnch;
2498 	struct nlcomponent nlc;
2499 	struct nfsm_info info;
2500 
2501 	info.mrep = NULL;
2502 	info.v3 = 1;
2503 
2504 #ifndef nolint
2505 	dp = NULL;
2506 #endif
2507 #ifndef DIAGNOSTIC
2508 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2509 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2510 		panic("nfs readdirplusrpc bad uio");
2511 #endif
2512 	/*
2513 	 * Obtain the namecache record for the directory so we have something
2514 	 * to use as a basis for creating the entries.  This function will
2515 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2516 	 * from the tree and cannot be used for upward traversals, and the
2517 	 * ncp may be unnamed.  Note that other unrelated operations may
2518 	 * cause the ncp to be named at any time.
2519 	 */
2520 	cache_fromdvp(vp, NULL, 0, &dnch);
2521 	bzero(&nlc, sizeof(nlc));
2522 	newvp = NULLVP;
2523 
2524 	/*
2525 	 * If there is no cookie, assume directory was stale.
2526 	 */
2527 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2528 	if (cookiep)
2529 		cookie = *cookiep;
2530 	else
2531 		return (NFSERR_BAD_COOKIE);
2532 	/*
2533 	 * Loop around doing readdir rpc's of size nm_readdirsize
2534 	 * truncated to a multiple of DIRBLKSIZ.
2535 	 * The stopping criteria is EOF or buffer full.
2536 	 */
2537 	while (more_dirs && bigenough) {
2538 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2539 		nfsm_reqhead(&info, vp, NFSPROC_READDIRPLUS,
2540 			     NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2541 		ERROROUT(nfsm_fhtom(&info, vp));
2542 		tl = nfsm_build(&info, 6 * NFSX_UNSIGNED);
2543 		*tl++ = cookie.nfsuquad[0];
2544 		*tl++ = cookie.nfsuquad[1];
2545 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2546 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2547 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2548 		*tl = txdr_unsigned(nmp->nm_rsize);
2549 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIRPLUS,
2550 					uiop->uio_td,
2551 					nfs_vpcred(vp, ND_READ), &error));
2552 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2553 					  NFS_LATTR_NOSHRINK));
2554 		NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2555 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2556 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2557 		more_dirs = fxdr_unsigned(int, *tl);
2558 
2559 		/* loop thru the dir entries, doctoring them to 4bsd form */
2560 		while (more_dirs && bigenough) {
2561 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2562 			fileno = fxdr_hyper(tl);
2563 			len = fxdr_unsigned(int, *(tl + 2));
2564 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2565 				error = EBADRPC;
2566 				m_freem(info.mrep);
2567 				info.mrep = NULL;
2568 				goto nfsmout;
2569 			}
2570 			tlen = nfsm_rndup(len);
2571 			if (tlen == len)
2572 				tlen += 4;	/* To ensure null termination*/
2573 			left = DIRBLKSIZ - blksiz;
2574 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2575 				dp->nfs_reclen += left;
2576 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2577 				uiop->uio_iov->iov_len -= left;
2578 				uiop->uio_offset += left;
2579 				uiop->uio_resid -= left;
2580 				blksiz = 0;
2581 			}
2582 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2583 				bigenough = 0;
2584 			if (bigenough) {
2585 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2586 				dp->nfs_ino = fileno;
2587 				dp->nfs_namlen = len;
2588 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2589 				dp->nfs_type = DT_UNKNOWN;
2590 				blksiz += dp->nfs_reclen;
2591 				if (blksiz == DIRBLKSIZ)
2592 					blksiz = 0;
2593 				uiop->uio_offset += sizeof(struct nfs_dirent);
2594 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2595 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2596 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2597 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2598 				nlc.nlc_namelen = len;
2599 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2600 				cp = uiop->uio_iov->iov_base;
2601 				tlen -= len;
2602 				*cp = '\0';
2603 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2604 				uiop->uio_iov->iov_len -= tlen;
2605 				uiop->uio_offset += tlen;
2606 				uiop->uio_resid -= tlen;
2607 			} else {
2608 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2609 			}
2610 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2611 			if (bigenough) {
2612 				cookie.nfsuquad[0] = *tl++;
2613 				cookie.nfsuquad[1] = *tl++;
2614 			} else
2615 				tl += 2;
2616 
2617 			/*
2618 			 * Since the attributes are before the file handle
2619 			 * (sigh), we must skip over the attributes and then
2620 			 * come back and get them.
2621 			 */
2622 			attrflag = fxdr_unsigned(int, *tl);
2623 			if (attrflag) {
2624 			    dpossav1 = info.dpos;
2625 			    mdsav1 = info.md;
2626 			    ERROROUT(nfsm_adv(&info, NFSX_V3FATTR));
2627 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2628 			    doit = fxdr_unsigned(int, *tl);
2629 			    if (doit) {
2630 				NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
2631 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2632 				    vref(vp);
2633 				    newvp = vp;
2634 				    np = dnp;
2635 				} else {
2636 				    error = nfs_nget(vp->v_mount, fhp,
2637 					fhsize, &np);
2638 				    if (error)
2639 					doit = 0;
2640 				    else
2641 					newvp = NFSTOV(np);
2642 				}
2643 			    }
2644 			    if (doit && bigenough) {
2645 				dpossav2 = info.dpos;
2646 				info.dpos = dpossav1;
2647 				mdsav2 = info.md;
2648 				info.md = mdsav1;
2649 				ERROROUT(nfsm_loadattr(&info, newvp, NULL));
2650 				info.dpos = dpossav2;
2651 				info.md = mdsav2;
2652 				dp->nfs_type =
2653 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2654 				if (dnch.ncp) {
2655 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2656 					nlc.nlc_namelen, nlc.nlc_namelen,
2657 					nlc.nlc_nameptr);
2658 				    nch = cache_nlookup(&dnch, &nlc);
2659 				    cache_setunresolved(&nch);
2660 				    nfs_cache_setvp(&nch, newvp,
2661 						    nfspos_cache_timeout);
2662 				    cache_put(&nch);
2663 				} else {
2664 				    kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2665 					" %*.*s\n",
2666 					nlc.nlc_namelen, nlc.nlc_namelen,
2667 					nlc.nlc_nameptr);
2668 				}
2669 			    }
2670 			} else {
2671 			    /* Just skip over the file handle */
2672 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2673 			    i = fxdr_unsigned(int, *tl);
2674 			    ERROROUT(nfsm_adv(&info, nfsm_rndup(i)));
2675 			}
2676 			if (newvp != NULLVP) {
2677 			    if (newvp == vp)
2678 				vrele(newvp);
2679 			    else
2680 				vput(newvp);
2681 			    newvp = NULLVP;
2682 			}
2683 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2684 			more_dirs = fxdr_unsigned(int, *tl);
2685 		}
2686 		/*
2687 		 * If at end of rpc data, get the eof boolean
2688 		 */
2689 		if (!more_dirs) {
2690 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2691 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2692 		}
2693 		m_freem(info.mrep);
2694 		info.mrep = NULL;
2695 	}
2696 	/*
2697 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2698 	 * by increasing d_reclen for the last record.
2699 	 */
2700 	if (blksiz > 0) {
2701 		left = DIRBLKSIZ - blksiz;
2702 		dp->nfs_reclen += left;
2703 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2704 		uiop->uio_iov->iov_len -= left;
2705 		uiop->uio_offset += left;
2706 		uiop->uio_resid -= left;
2707 	}
2708 
2709 	/*
2710 	 * We are now either at the end of the directory or have filled the
2711 	 * block.
2712 	 */
2713 	if (bigenough)
2714 		dnp->n_direofoffset = uiop->uio_offset;
2715 	else {
2716 		if (uiop->uio_resid > 0)
2717 			kprintf("EEK! readdirplusrpc resid > 0\n");
2718 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2719 		*cookiep = cookie;
2720 	}
2721 nfsmout:
2722 	if (newvp != NULLVP) {
2723 	        if (newvp == vp)
2724 			vrele(newvp);
2725 		else
2726 			vput(newvp);
2727 		newvp = NULLVP;
2728 	}
2729 	if (dnch.ncp)
2730 		cache_drop(&dnch);
2731 	return (error);
2732 }
2733 
2734 /*
2735  * Silly rename. To make the NFS filesystem that is stateless look a little
2736  * more like the "ufs" a remove of an active vnode is translated to a rename
2737  * to a funny looking filename that is removed by nfs_inactive on the
2738  * nfsnode. There is the potential for another process on a different client
2739  * to create the same funny name between the nfs_lookitup() fails and the
2740  * nfs_rename() completes, but...
2741  */
2742 static int
2743 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2744 {
2745 	struct sillyrename *sp;
2746 	struct nfsnode *np;
2747 	int error;
2748 
2749 	/*
2750 	 * We previously purged dvp instead of vp.  I don't know why, it
2751 	 * completely destroys performance.  We can't do it anyway with the
2752 	 * new VFS API since we would be breaking the namecache topology.
2753 	 */
2754 	cache_purge(vp);	/* XXX */
2755 	np = VTONFS(vp);
2756 #ifndef DIAGNOSTIC
2757 	if (vp->v_type == VDIR)
2758 		panic("nfs: sillyrename dir");
2759 #endif
2760 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2761 		M_NFSREQ, M_WAITOK);
2762 	sp->s_cred = crdup(cnp->cn_cred);
2763 	sp->s_dvp = dvp;
2764 	vref(dvp);
2765 
2766 	/* Fudge together a funny name */
2767 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4",
2768 				(int)(intptr_t)cnp->cn_td);
2769 
2770 	/* Try lookitups until we get one that isn't there */
2771 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2772 		cnp->cn_td, NULL) == 0) {
2773 		sp->s_name[4]++;
2774 		if (sp->s_name[4] > 'z') {
2775 			error = EINVAL;
2776 			goto bad;
2777 		}
2778 	}
2779 	error = nfs_renameit(dvp, cnp, sp);
2780 	if (error)
2781 		goto bad;
2782 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2783 		cnp->cn_td, &np);
2784 	np->n_sillyrename = sp;
2785 	return (0);
2786 bad:
2787 	vrele(sp->s_dvp);
2788 	crfree(sp->s_cred);
2789 	kfree((caddr_t)sp, M_NFSREQ);
2790 	return (error);
2791 }
2792 
2793 /*
2794  * Look up a file name and optionally either update the file handle or
2795  * allocate an nfsnode, depending on the value of npp.
2796  * npp == NULL	--> just do the lookup
2797  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2798  *			handled too
2799  * *npp != NULL --> update the file handle in the vnode
2800  */
2801 static int
2802 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2803 	     struct thread *td, struct nfsnode **npp)
2804 {
2805 	struct vnode *newvp = NULL;
2806 	struct nfsnode *np, *dnp = VTONFS(dvp);
2807 	int error = 0, fhlen, attrflag;
2808 	nfsfh_t *nfhp;
2809 	struct nfsm_info info;
2810 
2811 	info.mrep = NULL;
2812 	info.v3 = NFS_ISV3(dvp);
2813 
2814 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2815 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
2816 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2817 	ERROROUT(nfsm_fhtom(&info, dvp));
2818 	ERROROUT(nfsm_strtom(&info, name, len, NFS_MAXNAMLEN));
2819 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td, cred, &error));
2820 	if (npp && !error) {
2821 		NEGATIVEOUT(fhlen = nfsm_getfh(&info, &nfhp));
2822 		if (*npp) {
2823 		    np = *npp;
2824 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2825 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2826 			np->n_fhp = &np->n_fh;
2827 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2828 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2829 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2830 		    np->n_fhsize = fhlen;
2831 		    newvp = NFSTOV(np);
2832 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2833 		    vref(dvp);
2834 		    newvp = dvp;
2835 		} else {
2836 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2837 		    if (error) {
2838 			m_freem(info.mrep);
2839 			info.mrep = NULL;
2840 			return (error);
2841 		    }
2842 		    newvp = NFSTOV(np);
2843 		}
2844 		if (info.v3) {
2845 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
2846 						  NFS_LATTR_NOSHRINK));
2847 			if (!attrflag && *npp == NULL) {
2848 				m_freem(info.mrep);
2849 				info.mrep = NULL;
2850 				if (newvp == dvp)
2851 					vrele(newvp);
2852 				else
2853 					vput(newvp);
2854 				return (ENOENT);
2855 			}
2856 		} else {
2857 			ERROROUT(error = nfsm_loadattr(&info, newvp, NULL));
2858 		}
2859 	}
2860 	m_freem(info.mrep);
2861 	info.mrep = NULL;
2862 nfsmout:
2863 	if (npp && *npp == NULL) {
2864 		if (error) {
2865 			if (newvp) {
2866 				if (newvp == dvp)
2867 					vrele(newvp);
2868 				else
2869 					vput(newvp);
2870 			}
2871 		} else
2872 			*npp = np;
2873 	}
2874 	return (error);
2875 }
2876 
2877 /*
2878  * Nfs Version 3 commit rpc
2879  *
2880  * We call it 'uio' to distinguish it from 'bio' but there is no real uio
2881  * involved.
2882  */
2883 int
2884 nfs_commitrpc_uio(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2885 {
2886 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2887 	int error = 0, wccflag = NFSV3_WCCRATTR;
2888 	struct nfsm_info info;
2889 	u_int32_t *tl;
2890 
2891 	info.mrep = NULL;
2892 	info.v3 = 1;
2893 
2894 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2895 		return (0);
2896 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2897 	nfsm_reqhead(&info, vp, NFSPROC_COMMIT, NFSX_FH(1));
2898 	ERROROUT(nfsm_fhtom(&info, vp));
2899 	tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
2900 	txdr_hyper(offset, tl);
2901 	tl += 2;
2902 	*tl = txdr_unsigned(cnt);
2903 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_COMMIT, td,
2904 				nfs_vpcred(vp, ND_WRITE), &error));
2905 	ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
2906 	if (!error) {
2907 		NULLOUT(tl = nfsm_dissect(&info, NFSX_V3WRITEVERF));
2908 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2909 			NFSX_V3WRITEVERF)) {
2910 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2911 				NFSX_V3WRITEVERF);
2912 			error = NFSERR_STALEWRITEVERF;
2913 		}
2914 	}
2915 	m_freem(info.mrep);
2916 	info.mrep = NULL;
2917 nfsmout:
2918 	return (error);
2919 }
2920 
2921 /*
2922  * Kludge City..
2923  * - make nfs_bmap() essentially a no-op that does no translation
2924  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2925  *   (Maybe I could use the process's page mapping, but I was concerned that
2926  *    Kernel Write might not be enabled and also figured copyout() would do
2927  *    a lot more work than bcopy() and also it currently happens in the
2928  *    context of the swapper process (2).
2929  *
2930  * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2931  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2932  */
2933 static int
2934 nfs_bmap(struct vop_bmap_args *ap)
2935 {
2936 	if (ap->a_doffsetp != NULL)
2937 		*ap->a_doffsetp = ap->a_loffset;
2938 	if (ap->a_runp != NULL)
2939 		*ap->a_runp = 0;
2940 	if (ap->a_runb != NULL)
2941 		*ap->a_runb = 0;
2942 	return (0);
2943 }
2944 
2945 /*
2946  * Strategy routine.
2947  */
2948 static int
2949 nfs_strategy(struct vop_strategy_args *ap)
2950 {
2951 	struct bio *bio = ap->a_bio;
2952 	struct bio *nbio;
2953 	struct buf *bp = bio->bio_buf;
2954 	struct thread *td;
2955 	int error;
2956 
2957 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2958 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2959 	KASSERT(BUF_REFCNT(bp) > 0,
2960 		("nfs_strategy: buffer %p not locked", bp));
2961 
2962 	if (bio->bio_flags & BIO_SYNC)
2963 		td = curthread;	/* XXX */
2964 	else
2965 		td = NULL;
2966 
2967         /*
2968 	 * We probably don't need to push an nbio any more since no
2969 	 * block conversion is required due to the use of 64 bit byte
2970 	 * offsets, but do it anyway.
2971 	 *
2972 	 * NOTE: When NFS callers itself via this strategy routines and
2973 	 *	 sets up a synchronous I/O, it expects the I/O to run
2974 	 *	 synchronously (its bio_done routine just assumes it),
2975 	 *	 so for now we have to honor the bit.
2976          */
2977 	nbio = push_bio(bio);
2978 	nbio->bio_offset = bio->bio_offset;
2979 	nbio->bio_flags = bio->bio_flags & BIO_SYNC;
2980 
2981 	/*
2982 	 * If the op is asynchronous and an i/o daemon is waiting
2983 	 * queue the request, wake it up and wait for completion
2984 	 * otherwise just do it ourselves.
2985 	 */
2986 	if (bio->bio_flags & BIO_SYNC) {
2987 		error = nfs_doio(ap->a_vp, nbio, td);
2988 	} else {
2989 		nfs_asyncio(ap->a_vp, nbio);
2990 		error = 0;
2991 	}
2992 	return (error);
2993 }
2994 
2995 /*
2996  * Mmap a file
2997  *
2998  * NB Currently unsupported.
2999  *
3000  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
3001  */
3002 /* ARGSUSED */
3003 static int
3004 nfs_mmap(struct vop_mmap_args *ap)
3005 {
3006 	return (EINVAL);
3007 }
3008 
3009 /*
3010  * fsync vnode op. Just call nfs_flush() with commit == 1.
3011  *
3012  * nfs_fsync(struct vnode *a_vp, int a_waitfor)
3013  */
3014 /* ARGSUSED */
3015 static int
3016 nfs_fsync(struct vop_fsync_args *ap)
3017 {
3018 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
3019 }
3020 
3021 /*
3022  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
3023  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
3024  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
3025  * set the buffer contains data that has already been written to the server
3026  * and which now needs a commit RPC.
3027  *
3028  * If commit is 0 we only take one pass and only flush buffers containing new
3029  * dirty data.
3030  *
3031  * If commit is 1 we take two passes, issuing a commit RPC in the second
3032  * pass.
3033  *
3034  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
3035  * to completely flush all pending data.
3036  *
3037  * Note that the RB_SCAN code properly handles the case where the
3038  * callback might block and directly or indirectly (another thread) cause
3039  * the RB tree to change.
3040  */
3041 
3042 #ifndef NFS_COMMITBVECSIZ
3043 #define NFS_COMMITBVECSIZ	16
3044 #endif
3045 
3046 struct nfs_flush_info {
3047 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
3048 	struct thread *td;
3049 	struct vnode *vp;
3050 	int waitfor;
3051 	int slpflag;
3052 	int slptimeo;
3053 	int loops;
3054 	struct buf *bvary[NFS_COMMITBVECSIZ];
3055 	int bvsize;
3056 	off_t beg_off;
3057 	off_t end_off;
3058 };
3059 
3060 static int nfs_flush_bp(struct buf *bp, void *data);
3061 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
3062 
3063 int
3064 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
3065 {
3066 	struct nfsnode *np = VTONFS(vp);
3067 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
3068 	struct nfs_flush_info info;
3069 	lwkt_tokref vlock;
3070 	int error;
3071 
3072 	bzero(&info, sizeof(info));
3073 	info.td = td;
3074 	info.vp = vp;
3075 	info.waitfor = waitfor;
3076 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
3077 	info.loops = 0;
3078 	lwkt_gettoken(&vlock, &vp->v_token);
3079 
3080 	do {
3081 		/*
3082 		 * Flush mode
3083 		 */
3084 		info.mode = NFI_FLUSHNEW;
3085 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3086 				nfs_flush_bp, &info);
3087 
3088 		/*
3089 		 * Take a second pass if committing and no error occured.
3090 		 * Clean up any left over collection (whether an error
3091 		 * occurs or not).
3092 		 */
3093 		if (commit && error == 0) {
3094 			info.mode = NFI_COMMIT;
3095 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3096 					nfs_flush_bp, &info);
3097 			if (info.bvsize)
3098 				error = nfs_flush_docommit(&info, error);
3099 		}
3100 
3101 		/*
3102 		 * Wait for pending I/O to complete before checking whether
3103 		 * any further dirty buffers exist.
3104 		 */
3105 		while (waitfor == MNT_WAIT &&
3106 		       bio_track_active(&vp->v_track_write)) {
3107 			error = bio_track_wait(&vp->v_track_write,
3108 					       info.slpflag, info.slptimeo);
3109 			if (error) {
3110 				/*
3111 				 * We have to be able to break out if this
3112 				 * is an 'intr' mount.
3113 				 */
3114 				if (nfs_sigintr(nmp, NULL, td)) {
3115 					error = -EINTR;
3116 					break;
3117 				}
3118 
3119 				/*
3120 				 * Since we do not process pending signals,
3121 				 * once we get a PCATCH our tsleep() will no
3122 				 * longer sleep, switch to a fixed timeout
3123 				 * instead.
3124 				 */
3125 				if (info.slpflag == PCATCH) {
3126 					info.slpflag = 0;
3127 					info.slptimeo = 2 * hz;
3128 				}
3129 				error = 0;
3130 			}
3131 		}
3132 		++info.loops;
3133 		/*
3134 		 * Loop if we are flushing synchronous as well as committing,
3135 		 * and dirty buffers are still present.  Otherwise we might livelock.
3136 		 */
3137 	} while (waitfor == MNT_WAIT && commit &&
3138 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3139 
3140 	/*
3141 	 * The callbacks have to return a negative error to terminate the
3142 	 * RB scan.
3143 	 */
3144 	if (error < 0)
3145 		error = -error;
3146 
3147 	/*
3148 	 * Deal with any error collection
3149 	 */
3150 	if (np->n_flag & NWRITEERR) {
3151 		error = np->n_error;
3152 		np->n_flag &= ~NWRITEERR;
3153 	}
3154 	lwkt_reltoken(&vlock);
3155 	return (error);
3156 }
3157 
3158 static
3159 int
3160 nfs_flush_bp(struct buf *bp, void *data)
3161 {
3162 	struct nfs_flush_info *info = data;
3163 	int lkflags;
3164 	int error;
3165 	off_t toff;
3166 
3167 	error = 0;
3168 	switch(info->mode) {
3169 	case NFI_FLUSHNEW:
3170 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3171 		if (error && info->loops && info->waitfor == MNT_WAIT) {
3172 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3173 			if (error) {
3174 				lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3175 				if (info->slpflag & PCATCH)
3176 					lkflags |= LK_PCATCH;
3177 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3178 						     info->slptimeo);
3179 			}
3180 		}
3181 
3182 		/*
3183 		 * Ignore locking errors
3184 		 */
3185 		if (error) {
3186 			error = 0;
3187 			break;
3188 		}
3189 
3190 		/*
3191 		 * The buffer may have changed out from under us, even if
3192 		 * we did not block (MPSAFE).  Check again now that it is
3193 		 * locked.
3194 		 */
3195 		if (bp->b_vp == info->vp &&
3196 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == B_DELWRI) {
3197 			bremfree(bp);
3198 			bawrite(bp);
3199 		} else {
3200 			BUF_UNLOCK(bp);
3201 		}
3202 		break;
3203 	case NFI_COMMIT:
3204 		/*
3205 		 * Only process buffers in need of a commit which we can
3206 		 * immediately lock.  This may prevent a buffer from being
3207 		 * committed, but the normal flush loop will block on the
3208 		 * same buffer so we shouldn't get into an endless loop.
3209 		 */
3210 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3211 		    (B_DELWRI | B_NEEDCOMMIT)) {
3212 			break;
3213 		}
3214 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
3215 			break;
3216 
3217 		/*
3218 		 * We must recheck after successfully locking the buffer.
3219 		 */
3220 		if (bp->b_vp != info->vp ||
3221 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3222 		    (B_DELWRI | B_NEEDCOMMIT)) {
3223 			BUF_UNLOCK(bp);
3224 			break;
3225 		}
3226 
3227 		/*
3228 		 * NOTE: storing the bp in the bvary[] basically sets
3229 		 * it up for a commit operation.
3230 		 *
3231 		 * We must call vfs_busy_pages() now so the commit operation
3232 		 * is interlocked with user modifications to memory mapped
3233 		 * pages.  The b_dirtyoff/b_dirtyend range is not correct
3234 		 * until after the pages have been busied.
3235 		 *
3236 		 * Note: to avoid loopback deadlocks, we do not
3237 		 * assign b_runningbufspace.
3238 		 */
3239 		bremfree(bp);
3240 		bp->b_cmd = BUF_CMD_WRITE;
3241 		vfs_busy_pages(bp->b_vp, bp);
3242 		info->bvary[info->bvsize] = bp;
3243 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3244 		if (info->bvsize == 0 || toff < info->beg_off)
3245 			info->beg_off = toff;
3246 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3247 		if (info->bvsize == 0 || toff > info->end_off)
3248 			info->end_off = toff;
3249 		++info->bvsize;
3250 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3251 			error = nfs_flush_docommit(info, 0);
3252 			KKASSERT(info->bvsize == 0);
3253 		}
3254 	}
3255 	return (error);
3256 }
3257 
3258 static
3259 int
3260 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3261 {
3262 	struct vnode *vp;
3263 	struct buf *bp;
3264 	off_t bytes;
3265 	int retv;
3266 	int i;
3267 
3268 	vp = info->vp;
3269 
3270 	if (info->bvsize > 0) {
3271 		/*
3272 		 * Commit data on the server, as required.  Note that
3273 		 * nfs_commit will use the vnode's cred for the commit.
3274 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3275 		 */
3276 		bytes = info->end_off - info->beg_off;
3277 		if (bytes > 0x40000000)
3278 			bytes = 0x40000000;
3279 		if (error) {
3280 			retv = -error;
3281 		} else {
3282 			retv = nfs_commitrpc_uio(vp, info->beg_off,
3283 						 (int)bytes, info->td);
3284 			if (retv == NFSERR_STALEWRITEVERF)
3285 				nfs_clearcommit(vp->v_mount);
3286 		}
3287 
3288 		/*
3289 		 * Now, either mark the blocks I/O done or mark the
3290 		 * blocks dirty, depending on whether the commit
3291 		 * succeeded.
3292 		 */
3293 		for (i = 0; i < info->bvsize; ++i) {
3294 			bp = info->bvary[i];
3295 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3296 			if (retv) {
3297 				/*
3298 				 * Error, leave B_DELWRI intact
3299 				 */
3300 				vfs_unbusy_pages(bp);
3301 				bp->b_cmd = BUF_CMD_DONE;
3302 				brelse(bp);
3303 			} else {
3304 				/*
3305 				 * Success, remove B_DELWRI ( bundirty() ).
3306 				 *
3307 				 * b_dirtyoff/b_dirtyend seem to be NFS
3308 				 * specific.  We should probably move that
3309 				 * into bundirty(). XXX
3310 				 *
3311 				 * We are faking an I/O write, we have to
3312 				 * start the transaction in order to
3313 				 * immediately biodone() it.
3314 				 */
3315 				bundirty(bp);
3316 				bp->b_flags &= ~B_ERROR;
3317 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3318 				biodone(&bp->b_bio1);
3319 			}
3320 		}
3321 		info->bvsize = 0;
3322 	}
3323 	return (error);
3324 }
3325 
3326 /*
3327  * NFS advisory byte-level locks.
3328  * Currently unsupported.
3329  *
3330  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3331  *		int a_flags)
3332  */
3333 static int
3334 nfs_advlock(struct vop_advlock_args *ap)
3335 {
3336 	struct nfsnode *np = VTONFS(ap->a_vp);
3337 
3338 	/*
3339 	 * The following kludge is to allow diskless support to work
3340 	 * until a real NFS lockd is implemented. Basically, just pretend
3341 	 * that this is a local lock.
3342 	 */
3343 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3344 }
3345 
3346 /*
3347  * Print out the contents of an nfsnode.
3348  *
3349  * nfs_print(struct vnode *a_vp)
3350  */
3351 static int
3352 nfs_print(struct vop_print_args *ap)
3353 {
3354 	struct vnode *vp = ap->a_vp;
3355 	struct nfsnode *np = VTONFS(vp);
3356 
3357 	kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3358 		(long long)np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3359 	if (vp->v_type == VFIFO)
3360 		fifo_printinfo(vp);
3361 	kprintf("\n");
3362 	return (0);
3363 }
3364 
3365 /*
3366  * nfs special file access vnode op.
3367  *
3368  * nfs_laccess(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3369  */
3370 static int
3371 nfs_laccess(struct vop_access_args *ap)
3372 {
3373 	struct vattr vattr;
3374 	int error;
3375 
3376 	error = VOP_GETATTR(ap->a_vp, &vattr);
3377 	if (!error)
3378 		error = vop_helper_access(ap, vattr.va_uid, vattr.va_gid,
3379 				vattr.va_mode, 0);
3380 	return (error);
3381 }
3382 
3383 /*
3384  * Read wrapper for fifos.
3385  *
3386  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3387  *		struct ucred *a_cred)
3388  */
3389 static int
3390 nfsfifo_read(struct vop_read_args *ap)
3391 {
3392 	struct nfsnode *np = VTONFS(ap->a_vp);
3393 
3394 	/*
3395 	 * Set access flag.
3396 	 */
3397 	np->n_flag |= NACC;
3398 	getnanotime(&np->n_atim);
3399 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3400 }
3401 
3402 /*
3403  * Write wrapper for fifos.
3404  *
3405  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3406  *		 struct ucred *a_cred)
3407  */
3408 static int
3409 nfsfifo_write(struct vop_write_args *ap)
3410 {
3411 	struct nfsnode *np = VTONFS(ap->a_vp);
3412 
3413 	/*
3414 	 * Set update flag.
3415 	 */
3416 	np->n_flag |= NUPD;
3417 	getnanotime(&np->n_mtim);
3418 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3419 }
3420 
3421 /*
3422  * Close wrapper for fifos.
3423  *
3424  * Update the times on the nfsnode then do fifo close.
3425  *
3426  * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3427  */
3428 static int
3429 nfsfifo_close(struct vop_close_args *ap)
3430 {
3431 	struct vnode *vp = ap->a_vp;
3432 	struct nfsnode *np = VTONFS(vp);
3433 	struct vattr vattr;
3434 	struct timespec ts;
3435 
3436 	if (np->n_flag & (NACC | NUPD)) {
3437 		getnanotime(&ts);
3438 		if (np->n_flag & NACC)
3439 			np->n_atim = ts;
3440 		if (np->n_flag & NUPD)
3441 			np->n_mtim = ts;
3442 		np->n_flag |= NCHG;
3443 		if (vp->v_sysref.refcnt == 1 &&
3444 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3445 			VATTR_NULL(&vattr);
3446 			if (np->n_flag & NACC)
3447 				vattr.va_atime = np->n_atim;
3448 			if (np->n_flag & NUPD)
3449 				vattr.va_mtime = np->n_mtim;
3450 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3451 		}
3452 	}
3453 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3454 }
3455 
3456