1 /* 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)nfs_vnops.c 8.16 (Berkeley) 5/27/95 37 * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $ 38 * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.55 2006/04/07 06:38:33 dillon Exp $ 39 */ 40 41 42 /* 43 * vnode op calls for Sun NFS version 2 and 3 44 */ 45 46 #include "opt_inet.h" 47 48 #include <sys/param.h> 49 #include <sys/kernel.h> 50 #include <sys/systm.h> 51 #include <sys/resourcevar.h> 52 #include <sys/proc.h> 53 #include <sys/mount.h> 54 #include <sys/buf.h> 55 #include <sys/malloc.h> 56 #include <sys/mbuf.h> 57 #include <sys/namei.h> 58 #include <sys/nlookup.h> 59 #include <sys/socket.h> 60 #include <sys/vnode.h> 61 #include <sys/dirent.h> 62 #include <sys/fcntl.h> 63 #include <sys/lockf.h> 64 #include <sys/stat.h> 65 #include <sys/sysctl.h> 66 #include <sys/conf.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_extern.h> 70 #include <vm/vm_zone.h> 71 72 #include <sys/buf2.h> 73 74 #include <vfs/fifofs/fifo.h> 75 #include <vfs/ufs/dir.h> 76 77 #undef DIRBLKSIZ 78 79 #include "rpcv2.h" 80 #include "nfsproto.h" 81 #include "nfs.h" 82 #include "nfsmount.h" 83 #include "nfsnode.h" 84 #include "xdr_subs.h" 85 #include "nfsm_subs.h" 86 87 #include <net/if.h> 88 #include <netinet/in.h> 89 #include <netinet/in_var.h> 90 91 #include <sys/thread2.h> 92 93 /* Defs */ 94 #define TRUE 1 95 #define FALSE 0 96 97 /* 98 * Ifdef for FreeBSD-current merged buffer cache. It is unfortunate that these 99 * calls are not in getblk() and brelse() so that they would not be necessary 100 * here. 101 */ 102 #ifndef B_VMIO 103 #define vfs_busy_pages(bp, f) 104 #endif 105 106 static int nfsspec_read (struct vop_read_args *); 107 static int nfsspec_write (struct vop_write_args *); 108 static int nfsfifo_read (struct vop_read_args *); 109 static int nfsfifo_write (struct vop_write_args *); 110 static int nfsspec_close (struct vop_close_args *); 111 static int nfsfifo_close (struct vop_close_args *); 112 #define nfs_poll vop_nopoll 113 static int nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *); 114 static int nfs_lookup (struct vop_old_lookup_args *); 115 static int nfs_create (struct vop_old_create_args *); 116 static int nfs_mknod (struct vop_old_mknod_args *); 117 static int nfs_open (struct vop_open_args *); 118 static int nfs_close (struct vop_close_args *); 119 static int nfs_access (struct vop_access_args *); 120 static int nfs_getattr (struct vop_getattr_args *); 121 static int nfs_setattr (struct vop_setattr_args *); 122 static int nfs_read (struct vop_read_args *); 123 static int nfs_mmap (struct vop_mmap_args *); 124 static int nfs_fsync (struct vop_fsync_args *); 125 static int nfs_remove (struct vop_old_remove_args *); 126 static int nfs_link (struct vop_old_link_args *); 127 static int nfs_rename (struct vop_old_rename_args *); 128 static int nfs_mkdir (struct vop_old_mkdir_args *); 129 static int nfs_rmdir (struct vop_old_rmdir_args *); 130 static int nfs_symlink (struct vop_old_symlink_args *); 131 static int nfs_readdir (struct vop_readdir_args *); 132 static int nfs_bmap (struct vop_bmap_args *); 133 static int nfs_strategy (struct vop_strategy_args *); 134 static int nfs_lookitup (struct vnode *, const char *, int, 135 struct ucred *, struct thread *, struct nfsnode **); 136 static int nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *); 137 static int nfsspec_access (struct vop_access_args *); 138 static int nfs_readlink (struct vop_readlink_args *); 139 static int nfs_print (struct vop_print_args *); 140 static int nfs_advlock (struct vop_advlock_args *); 141 static int nfs_bwrite (struct vop_bwrite_args *); 142 143 static int nfs_nresolve (struct vop_nresolve_args *); 144 /* 145 * Global vfs data structures for nfs 146 */ 147 struct vnodeopv_entry_desc nfsv2_vnodeop_entries[] = { 148 { &vop_default_desc, vop_defaultop }, 149 { &vop_access_desc, (vnodeopv_entry_t) nfs_access }, 150 { &vop_advlock_desc, (vnodeopv_entry_t) nfs_advlock }, 151 { &vop_bmap_desc, (vnodeopv_entry_t) nfs_bmap }, 152 { &vop_bwrite_desc, (vnodeopv_entry_t) nfs_bwrite }, 153 { &vop_close_desc, (vnodeopv_entry_t) nfs_close }, 154 { &vop_old_create_desc, (vnodeopv_entry_t) nfs_create }, 155 { &vop_fsync_desc, (vnodeopv_entry_t) nfs_fsync }, 156 { &vop_getattr_desc, (vnodeopv_entry_t) nfs_getattr }, 157 { &vop_getpages_desc, (vnodeopv_entry_t) nfs_getpages }, 158 { &vop_putpages_desc, (vnodeopv_entry_t) nfs_putpages }, 159 { &vop_inactive_desc, (vnodeopv_entry_t) nfs_inactive }, 160 { &vop_islocked_desc, (vnodeopv_entry_t) vop_stdislocked }, 161 { &vop_old_link_desc, (vnodeopv_entry_t) nfs_link }, 162 { &vop_lock_desc, (vnodeopv_entry_t) vop_stdlock }, 163 { &vop_old_lookup_desc, (vnodeopv_entry_t) nfs_lookup }, 164 { &vop_old_mkdir_desc, (vnodeopv_entry_t) nfs_mkdir }, 165 { &vop_old_mknod_desc, (vnodeopv_entry_t) nfs_mknod }, 166 { &vop_mmap_desc, (vnodeopv_entry_t) nfs_mmap }, 167 { &vop_open_desc, (vnodeopv_entry_t) nfs_open }, 168 { &vop_poll_desc, (vnodeopv_entry_t) nfs_poll }, 169 { &vop_print_desc, (vnodeopv_entry_t) nfs_print }, 170 { &vop_read_desc, (vnodeopv_entry_t) nfs_read }, 171 { &vop_readdir_desc, (vnodeopv_entry_t) nfs_readdir }, 172 { &vop_readlink_desc, (vnodeopv_entry_t) nfs_readlink }, 173 { &vop_reclaim_desc, (vnodeopv_entry_t) nfs_reclaim }, 174 { &vop_old_remove_desc, (vnodeopv_entry_t) nfs_remove }, 175 { &vop_old_rename_desc, (vnodeopv_entry_t) nfs_rename }, 176 { &vop_old_rmdir_desc, (vnodeopv_entry_t) nfs_rmdir }, 177 { &vop_setattr_desc, (vnodeopv_entry_t) nfs_setattr }, 178 { &vop_strategy_desc, (vnodeopv_entry_t) nfs_strategy }, 179 { &vop_old_symlink_desc, (vnodeopv_entry_t) nfs_symlink }, 180 { &vop_unlock_desc, (vnodeopv_entry_t) vop_stdunlock }, 181 { &vop_write_desc, (vnodeopv_entry_t) nfs_write }, 182 183 { &vop_nresolve_desc, (vnodeopv_entry_t) nfs_nresolve }, 184 { NULL, NULL } 185 }; 186 187 /* 188 * Special device vnode ops 189 */ 190 struct vnodeopv_entry_desc nfsv2_specop_entries[] = { 191 { &vop_default_desc, (vnodeopv_entry_t) spec_vnoperate }, 192 { &vop_access_desc, (vnodeopv_entry_t) nfsspec_access }, 193 { &vop_close_desc, (vnodeopv_entry_t) nfsspec_close }, 194 { &vop_fsync_desc, (vnodeopv_entry_t) nfs_fsync }, 195 { &vop_getattr_desc, (vnodeopv_entry_t) nfs_getattr }, 196 { &vop_inactive_desc, (vnodeopv_entry_t) nfs_inactive }, 197 { &vop_islocked_desc, (vnodeopv_entry_t) vop_stdislocked }, 198 { &vop_lock_desc, (vnodeopv_entry_t) vop_stdlock }, 199 { &vop_print_desc, (vnodeopv_entry_t) nfs_print }, 200 { &vop_read_desc, (vnodeopv_entry_t) nfsspec_read }, 201 { &vop_reclaim_desc, (vnodeopv_entry_t) nfs_reclaim }, 202 { &vop_setattr_desc, (vnodeopv_entry_t) nfs_setattr }, 203 { &vop_unlock_desc, (vnodeopv_entry_t) vop_stdunlock }, 204 { &vop_write_desc, (vnodeopv_entry_t) nfsspec_write }, 205 { NULL, NULL } 206 }; 207 208 struct vnodeopv_entry_desc nfsv2_fifoop_entries[] = { 209 { &vop_default_desc, (vnodeopv_entry_t) fifo_vnoperate }, 210 { &vop_access_desc, (vnodeopv_entry_t) nfsspec_access }, 211 { &vop_close_desc, (vnodeopv_entry_t) nfsfifo_close }, 212 { &vop_fsync_desc, (vnodeopv_entry_t) nfs_fsync }, 213 { &vop_getattr_desc, (vnodeopv_entry_t) nfs_getattr }, 214 { &vop_inactive_desc, (vnodeopv_entry_t) nfs_inactive }, 215 { &vop_islocked_desc, (vnodeopv_entry_t) vop_stdislocked }, 216 { &vop_lock_desc, (vnodeopv_entry_t) vop_stdlock }, 217 { &vop_print_desc, (vnodeopv_entry_t) nfs_print }, 218 { &vop_read_desc, (vnodeopv_entry_t) nfsfifo_read }, 219 { &vop_reclaim_desc, (vnodeopv_entry_t) nfs_reclaim }, 220 { &vop_setattr_desc, (vnodeopv_entry_t) nfs_setattr }, 221 { &vop_unlock_desc, (vnodeopv_entry_t) vop_stdunlock }, 222 { &vop_write_desc, (vnodeopv_entry_t) nfsfifo_write }, 223 { NULL, NULL } 224 }; 225 226 static int nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp, 227 struct componentname *cnp, 228 struct vattr *vap); 229 static int nfs_removerpc (struct vnode *dvp, const char *name, 230 int namelen, 231 struct ucred *cred, struct thread *td); 232 static int nfs_renamerpc (struct vnode *fdvp, const char *fnameptr, 233 int fnamelen, struct vnode *tdvp, 234 const char *tnameptr, int tnamelen, 235 struct ucred *cred, struct thread *td); 236 static int nfs_renameit (struct vnode *sdvp, 237 struct componentname *scnp, 238 struct sillyrename *sp); 239 240 /* 241 * Global variables 242 */ 243 extern u_int32_t nfs_true, nfs_false; 244 extern u_int32_t nfs_xdrneg1; 245 extern struct nfsstats nfsstats; 246 extern nfstype nfsv3_type[9]; 247 struct thread *nfs_iodwant[NFS_MAXASYNCDAEMON]; 248 struct nfsmount *nfs_iodmount[NFS_MAXASYNCDAEMON]; 249 int nfs_numasync = 0; 250 251 SYSCTL_DECL(_vfs_nfs); 252 253 static int nfsaccess_cache_timeout = NFS_DEFATTRTIMO; 254 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW, 255 &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout"); 256 257 static int nfsneg_cache_timeout = NFS_MINATTRTIMO; 258 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW, 259 &nfsneg_cache_timeout, 0, "NFS NEGATIVE ACCESS cache timeout"); 260 261 static int nfsv3_commit_on_close = 0; 262 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW, 263 &nfsv3_commit_on_close, 0, "write+commit on close, else only write"); 264 #if 0 265 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD, 266 &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count"); 267 268 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD, 269 &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count"); 270 #endif 271 272 #define NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY \ 273 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE \ 274 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP) 275 static int 276 nfs3_access_otw(struct vnode *vp, int wmode, 277 struct thread *td, struct ucred *cred) 278 { 279 const int v3 = 1; 280 u_int32_t *tl; 281 int error = 0, attrflag; 282 283 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 284 caddr_t bpos, dpos, cp2; 285 int32_t t1, t2; 286 caddr_t cp; 287 u_int32_t rmode; 288 struct nfsnode *np = VTONFS(vp); 289 290 nfsstats.rpccnt[NFSPROC_ACCESS]++; 291 nfsm_reqhead(vp, NFSPROC_ACCESS, NFSX_FH(v3) + NFSX_UNSIGNED); 292 nfsm_fhtom(vp, v3); 293 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 294 *tl = txdr_unsigned(wmode); 295 nfsm_request(vp, NFSPROC_ACCESS, td, cred); 296 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK); 297 if (!error) { 298 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 299 rmode = fxdr_unsigned(u_int32_t, *tl); 300 np->n_mode = rmode; 301 np->n_modeuid = cred->cr_uid; 302 np->n_modestamp = mycpu->gd_time_seconds; 303 } 304 m_freem(mrep); 305 nfsmout: 306 return error; 307 } 308 309 /* 310 * nfs access vnode op. 311 * For nfs version 2, just return ok. File accesses may fail later. 312 * For nfs version 3, use the access rpc to check accessibility. If file modes 313 * are changed on the server, accesses might still fail later. 314 * 315 * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred, 316 * struct thread *a_td) 317 */ 318 static int 319 nfs_access(struct vop_access_args *ap) 320 { 321 struct vnode *vp = ap->a_vp; 322 int error = 0; 323 u_int32_t mode, wmode; 324 int v3 = NFS_ISV3(vp); 325 struct nfsnode *np = VTONFS(vp); 326 327 /* 328 * Disallow write attempts on filesystems mounted read-only; 329 * unless the file is a socket, fifo, or a block or character 330 * device resident on the filesystem. 331 */ 332 if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { 333 switch (vp->v_type) { 334 case VREG: 335 case VDIR: 336 case VLNK: 337 return (EROFS); 338 default: 339 break; 340 } 341 } 342 /* 343 * For nfs v3, check to see if we have done this recently, and if 344 * so return our cached result instead of making an ACCESS call. 345 * If not, do an access rpc, otherwise you are stuck emulating 346 * ufs_access() locally using the vattr. This may not be correct, 347 * since the server may apply other access criteria such as 348 * client uid-->server uid mapping that we do not know about. 349 */ 350 if (v3) { 351 if (ap->a_mode & VREAD) 352 mode = NFSV3ACCESS_READ; 353 else 354 mode = 0; 355 if (vp->v_type != VDIR) { 356 if (ap->a_mode & VWRITE) 357 mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND); 358 if (ap->a_mode & VEXEC) 359 mode |= NFSV3ACCESS_EXECUTE; 360 } else { 361 if (ap->a_mode & VWRITE) 362 mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND | 363 NFSV3ACCESS_DELETE); 364 if (ap->a_mode & VEXEC) 365 mode |= NFSV3ACCESS_LOOKUP; 366 } 367 /* XXX safety belt, only make blanket request if caching */ 368 if (nfsaccess_cache_timeout > 0) { 369 wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY | 370 NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE | 371 NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP; 372 } else { 373 wmode = mode; 374 } 375 376 /* 377 * Does our cached result allow us to give a definite yes to 378 * this request? 379 */ 380 if (np->n_modestamp && 381 (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) && 382 (ap->a_cred->cr_uid == np->n_modeuid) && 383 ((np->n_mode & mode) == mode)) { 384 nfsstats.accesscache_hits++; 385 } else { 386 /* 387 * Either a no, or a don't know. Go to the wire. 388 */ 389 nfsstats.accesscache_misses++; 390 error = nfs3_access_otw(vp, wmode, ap->a_td,ap->a_cred); 391 if (!error) { 392 if ((np->n_mode & mode) != mode) { 393 error = EACCES; 394 } 395 } 396 } 397 } else { 398 if ((error = nfsspec_access(ap)) != 0) 399 return (error); 400 401 /* 402 * Attempt to prevent a mapped root from accessing a file 403 * which it shouldn't. We try to read a byte from the file 404 * if the user is root and the file is not zero length. 405 * After calling nfsspec_access, we should have the correct 406 * file size cached. 407 */ 408 if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD) 409 && VTONFS(vp)->n_size > 0) { 410 struct iovec aiov; 411 struct uio auio; 412 char buf[1]; 413 414 aiov.iov_base = buf; 415 aiov.iov_len = 1; 416 auio.uio_iov = &aiov; 417 auio.uio_iovcnt = 1; 418 auio.uio_offset = 0; 419 auio.uio_resid = 1; 420 auio.uio_segflg = UIO_SYSSPACE; 421 auio.uio_rw = UIO_READ; 422 auio.uio_td = ap->a_td; 423 424 if (vp->v_type == VREG) { 425 error = nfs_readrpc(vp, &auio); 426 } else if (vp->v_type == VDIR) { 427 char* bp; 428 bp = malloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK); 429 aiov.iov_base = bp; 430 aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ; 431 error = nfs_readdirrpc(vp, &auio); 432 free(bp, M_TEMP); 433 } else if (vp->v_type == VLNK) { 434 error = nfs_readlinkrpc(vp, &auio); 435 } else { 436 error = EACCES; 437 } 438 } 439 } 440 /* 441 * [re]record creds for reading and/or writing if access 442 * was granted. Assume the NFS server will grant read access 443 * for execute requests. 444 */ 445 if (error == 0) { 446 if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) { 447 crhold(ap->a_cred); 448 if (np->n_rucred) 449 crfree(np->n_rucred); 450 np->n_rucred = ap->a_cred; 451 } 452 if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) { 453 crhold(ap->a_cred); 454 if (np->n_wucred) 455 crfree(np->n_wucred); 456 np->n_wucred = ap->a_cred; 457 } 458 } 459 return(error); 460 } 461 462 /* 463 * nfs open vnode op 464 * Check to see if the type is ok 465 * and that deletion is not in progress. 466 * For paged in text files, you will need to flush the page cache 467 * if consistency is lost. 468 * 469 * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred, 470 * struct thread *a_td) 471 */ 472 /* ARGSUSED */ 473 static int 474 nfs_open(struct vop_open_args *ap) 475 { 476 struct vnode *vp = ap->a_vp; 477 struct nfsnode *np = VTONFS(vp); 478 struct vattr vattr; 479 int error; 480 481 if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) { 482 #ifdef DIAGNOSTIC 483 printf("open eacces vtyp=%d\n",vp->v_type); 484 #endif 485 return (EOPNOTSUPP); 486 } 487 488 /* 489 * Clear the attribute cache only if opening with write access. It 490 * is unclear if we should do this at all here, but we certainly 491 * should not clear the cache unconditionally simply because a file 492 * is being opened. 493 */ 494 if (ap->a_mode & FWRITE) 495 np->n_attrstamp = 0; 496 497 /* 498 * For normal NFS, reconcile changes made locally verses 499 * changes made remotely. Note that VOP_GETATTR only goes 500 * to the wire if the cached attribute has timed out or been 501 * cleared. 502 * 503 * If local modifications have been made clear the attribute 504 * cache to force an attribute and modified time check. If 505 * GETATTR detects that the file has been changed by someone 506 * other then us it will set NRMODIFIED. 507 * 508 * If we are opening a directory and local changes have been 509 * made we have to invalidate the cache in order to ensure 510 * that we get the most up-to-date information from the 511 * server. XXX 512 */ 513 if (np->n_flag & NLMODIFIED) { 514 np->n_attrstamp = 0; 515 if (vp->v_type == VDIR) { 516 error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 517 if (error == EINTR) 518 return (error); 519 nfs_invaldir(vp); 520 } 521 } 522 error = VOP_GETATTR(vp, &vattr, ap->a_td); 523 if (error) 524 return (error); 525 if (np->n_flag & NRMODIFIED) { 526 if (vp->v_type == VDIR) 527 nfs_invaldir(vp); 528 error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 529 if (error == EINTR) 530 return (error); 531 np->n_flag &= ~NRMODIFIED; 532 } 533 534 return (vop_stdopen(ap)); 535 } 536 537 /* 538 * nfs close vnode op 539 * What an NFS client should do upon close after writing is a debatable issue. 540 * Most NFS clients push delayed writes to the server upon close, basically for 541 * two reasons: 542 * 1 - So that any write errors may be reported back to the client process 543 * doing the close system call. By far the two most likely errors are 544 * NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure. 545 * 2 - To put a worst case upper bound on cache inconsistency between 546 * multiple clients for the file. 547 * There is also a consistency problem for Version 2 of the protocol w.r.t. 548 * not being able to tell if other clients are writing a file concurrently, 549 * since there is no way of knowing if the changed modify time in the reply 550 * is only due to the write for this client. 551 * (NFS Version 3 provides weak cache consistency data in the reply that 552 * should be sufficient to detect and handle this case.) 553 * 554 * The current code does the following: 555 * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers 556 * for NFS Version 3 - flush dirty buffers to the server but don't invalidate 557 * or commit them (this satisfies 1 and 2 except for the 558 * case where the server crashes after this close but 559 * before the commit RPC, which is felt to be "good 560 * enough". Changing the last argument to nfs_flush() to 561 * a 1 would force a commit operation, if it is felt a 562 * commit is necessary now. 563 * for NQNFS - do nothing now, since 2 is dealt with via leases and 564 * 1 should be dealt with via an fsync() system call for 565 * cases where write errors are important. 566 * 567 * nfs_close(struct vnodeop_desc *a_desc, struct vnode *a_vp, int a_fflag, 568 * struct ucred *a_cred, struct thread *a_td) 569 */ 570 /* ARGSUSED */ 571 static int 572 nfs_close(struct vop_close_args *ap) 573 { 574 struct vnode *vp = ap->a_vp; 575 struct nfsnode *np = VTONFS(vp); 576 int error = 0; 577 578 if (vp->v_type == VREG) { 579 if (np->n_flag & NLMODIFIED) { 580 if (NFS_ISV3(vp)) { 581 /* 582 * Under NFSv3 we have dirty buffers to dispose of. We 583 * must flush them to the NFS server. We have the option 584 * of waiting all the way through the commit rpc or just 585 * waiting for the initial write. The default is to only 586 * wait through the initial write so the data is in the 587 * server's cache, which is roughly similar to the state 588 * a standard disk subsystem leaves the file in on close(). 589 * 590 * We cannot clear the NLMODIFIED bit in np->n_flag due to 591 * potential races with other processes, and certainly 592 * cannot clear it if we don't commit. 593 */ 594 int cm = nfsv3_commit_on_close ? 1 : 0; 595 error = nfs_flush(vp, MNT_WAIT, ap->a_td, cm); 596 /* np->n_flag &= ~NLMODIFIED; */ 597 } else { 598 error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 599 } 600 np->n_attrstamp = 0; 601 } 602 if (np->n_flag & NWRITEERR) { 603 np->n_flag &= ~NWRITEERR; 604 error = np->n_error; 605 } 606 } 607 vop_stdclose(ap); 608 return (error); 609 } 610 611 /* 612 * nfs getattr call from vfs. 613 * 614 * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred, 615 * struct thread *a_td) 616 */ 617 static int 618 nfs_getattr(struct vop_getattr_args *ap) 619 { 620 struct vnode *vp = ap->a_vp; 621 struct nfsnode *np = VTONFS(vp); 622 caddr_t cp; 623 u_int32_t *tl; 624 int32_t t1, t2; 625 caddr_t bpos, dpos; 626 int error = 0; 627 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 628 int v3 = NFS_ISV3(vp); 629 630 /* 631 * Update local times for special files. 632 */ 633 if (np->n_flag & (NACC | NUPD)) 634 np->n_flag |= NCHG; 635 /* 636 * First look in the cache. 637 */ 638 if (nfs_getattrcache(vp, ap->a_vap) == 0) 639 return (0); 640 641 if (v3 && nfsaccess_cache_timeout > 0) { 642 nfsstats.accesscache_misses++; 643 nfs3_access_otw(vp, NFSV3ACCESS_ALL, ap->a_td, nfs_vpcred(vp, ND_CHECK)); 644 if (nfs_getattrcache(vp, ap->a_vap) == 0) 645 return (0); 646 } 647 648 nfsstats.rpccnt[NFSPROC_GETATTR]++; 649 nfsm_reqhead(vp, NFSPROC_GETATTR, NFSX_FH(v3)); 650 nfsm_fhtom(vp, v3); 651 nfsm_request(vp, NFSPROC_GETATTR, ap->a_td, nfs_vpcred(vp, ND_CHECK)); 652 if (!error) { 653 nfsm_loadattr(vp, ap->a_vap); 654 } 655 m_freem(mrep); 656 nfsmout: 657 return (error); 658 } 659 660 /* 661 * nfs setattr call. 662 * 663 * nfs_setattr(struct vnodeop_desc *a_desc, struct vnode *a_vp, 664 * struct vattr *a_vap, struct ucred *a_cred, 665 * struct thread *a_td) 666 */ 667 static int 668 nfs_setattr(struct vop_setattr_args *ap) 669 { 670 struct vnode *vp = ap->a_vp; 671 struct nfsnode *np = VTONFS(vp); 672 struct vattr *vap = ap->a_vap; 673 int error = 0; 674 u_quad_t tsize; 675 676 #ifndef nolint 677 tsize = (u_quad_t)0; 678 #endif 679 680 /* 681 * Setting of flags is not supported. 682 */ 683 if (vap->va_flags != VNOVAL) 684 return (EOPNOTSUPP); 685 686 /* 687 * Disallow write attempts if the filesystem is mounted read-only. 688 */ 689 if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL || 690 vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL || 691 vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) && 692 (vp->v_mount->mnt_flag & MNT_RDONLY)) 693 return (EROFS); 694 if (vap->va_size != VNOVAL) { 695 switch (vp->v_type) { 696 case VDIR: 697 return (EISDIR); 698 case VCHR: 699 case VBLK: 700 case VSOCK: 701 case VFIFO: 702 if (vap->va_mtime.tv_sec == VNOVAL && 703 vap->va_atime.tv_sec == VNOVAL && 704 vap->va_mode == (mode_t)VNOVAL && 705 vap->va_uid == (uid_t)VNOVAL && 706 vap->va_gid == (gid_t)VNOVAL) 707 return (0); 708 vap->va_size = VNOVAL; 709 break; 710 default: 711 /* 712 * Disallow write attempts if the filesystem is 713 * mounted read-only. 714 */ 715 if (vp->v_mount->mnt_flag & MNT_RDONLY) 716 return (EROFS); 717 718 /* 719 * This is nasty. The RPCs we send to flush pending 720 * data often return attribute information which is 721 * cached via a callback to nfs_loadattrcache(), which 722 * has the effect of changing our notion of the file 723 * size. Due to flushed appends and other operations 724 * the file size can be set to virtually anything, 725 * including values that do not match either the old 726 * or intended file size. 727 * 728 * When this condition is detected we must loop to 729 * try the operation again. Hopefully no more 730 * flushing is required on the loop so it works the 731 * second time around. THIS CASE ALMOST ALWAYS 732 * HAPPENS! 733 */ 734 tsize = np->n_size; 735 again: 736 error = nfs_meta_setsize(vp, ap->a_td, vap->va_size); 737 738 if (np->n_flag & NLMODIFIED) { 739 if (vap->va_size == 0) 740 error = nfs_vinvalbuf(vp, 0, ap->a_td, 1); 741 else 742 error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1); 743 } 744 /* 745 * note: this loop case almost always happens at 746 * least once per truncation. 747 */ 748 if (error == 0 && np->n_size != vap->va_size) 749 goto again; 750 np->n_vattr.va_size = vap->va_size; 751 break; 752 } 753 } else if ((vap->va_mtime.tv_sec != VNOVAL || 754 vap->va_atime.tv_sec != VNOVAL) && (np->n_flag & NLMODIFIED) && 755 vp->v_type == VREG && 756 (error = nfs_vinvalbuf(vp, V_SAVE, ap->a_td, 1)) == EINTR 757 ) { 758 return (error); 759 } 760 error = nfs_setattrrpc(vp, vap, ap->a_cred, ap->a_td); 761 762 /* 763 * Sanity check if a truncation was issued. This should only occur 764 * if multiple processes are racing on the same file. 765 */ 766 if (error == 0 && vap->va_size != VNOVAL && 767 np->n_size != vap->va_size) { 768 printf("NFS ftruncate: server disagrees on the file size: %lld/%lld/%lld\n", tsize, vap->va_size, np->n_size); 769 goto again; 770 } 771 if (error && vap->va_size != VNOVAL) { 772 np->n_size = np->n_vattr.va_size = tsize; 773 vnode_pager_setsize(vp, np->n_size); 774 } 775 return (error); 776 } 777 778 /* 779 * Do an nfs setattr rpc. 780 */ 781 static int 782 nfs_setattrrpc(struct vnode *vp, struct vattr *vap, 783 struct ucred *cred, struct thread *td) 784 { 785 struct nfsv2_sattr *sp; 786 struct nfsnode *np = VTONFS(vp); 787 caddr_t cp; 788 int32_t t1, t2; 789 caddr_t bpos, dpos, cp2; 790 u_int32_t *tl; 791 int error = 0, wccflag = NFSV3_WCCRATTR; 792 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 793 int v3 = NFS_ISV3(vp); 794 795 nfsstats.rpccnt[NFSPROC_SETATTR]++; 796 nfsm_reqhead(vp, NFSPROC_SETATTR, NFSX_FH(v3) + NFSX_SATTR(v3)); 797 nfsm_fhtom(vp, v3); 798 if (v3) { 799 nfsm_v3attrbuild(vap, TRUE); 800 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 801 *tl = nfs_false; 802 } else { 803 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 804 if (vap->va_mode == (mode_t)VNOVAL) 805 sp->sa_mode = nfs_xdrneg1; 806 else 807 sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode); 808 if (vap->va_uid == (uid_t)VNOVAL) 809 sp->sa_uid = nfs_xdrneg1; 810 else 811 sp->sa_uid = txdr_unsigned(vap->va_uid); 812 if (vap->va_gid == (gid_t)VNOVAL) 813 sp->sa_gid = nfs_xdrneg1; 814 else 815 sp->sa_gid = txdr_unsigned(vap->va_gid); 816 sp->sa_size = txdr_unsigned(vap->va_size); 817 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 818 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 819 } 820 nfsm_request(vp, NFSPROC_SETATTR, td, cred); 821 if (v3) { 822 np->n_modestamp = 0; 823 nfsm_wcc_data(vp, wccflag); 824 } else 825 nfsm_loadattr(vp, (struct vattr *)0); 826 m_freem(mrep); 827 nfsmout: 828 return (error); 829 } 830 831 /* 832 * NEW API CALL - replaces nfs_lookup(). However, we cannot remove 833 * nfs_lookup() until all remaining new api calls are implemented. 834 * 835 * Resolve a namecache entry. This function is passed a locked ncp and 836 * must call cache_setvp() on it as appropriate to resolve the entry. 837 */ 838 static int 839 nfs_nresolve(struct vop_nresolve_args *ap) 840 { 841 struct thread *td = curthread; 842 struct namecache *ncp; 843 struct ucred *cred; 844 struct nfsnode *np; 845 struct vnode *dvp; 846 struct vnode *nvp; 847 nfsfh_t *fhp; 848 int attrflag; 849 int fhsize; 850 int error; 851 int len; 852 int v3; 853 /******NFSM MACROS********/ 854 struct mbuf *mb, *mrep, *mreq, *mb2, *md; 855 caddr_t bpos, dpos, cp, cp2; 856 u_int32_t *tl; 857 int32_t t1, t2; 858 859 cred = ap->a_cred; 860 ncp = ap->a_ncp; 861 862 KKASSERT(ncp->nc_parent && ncp->nc_parent->nc_vp); 863 dvp = ncp->nc_parent->nc_vp; 864 if ((error = vget(dvp, LK_SHARED, td)) != 0) 865 return (error); 866 867 nvp = NULL; 868 v3 = NFS_ISV3(dvp); 869 nfsstats.lookupcache_misses++; 870 nfsstats.rpccnt[NFSPROC_LOOKUP]++; 871 len = ncp->nc_nlen; 872 nfsm_reqhead(dvp, NFSPROC_LOOKUP, 873 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len)); 874 nfsm_fhtom(dvp, v3); 875 nfsm_strtom(ncp->nc_name, len, NFS_MAXNAMLEN); 876 nfsm_request(dvp, NFSPROC_LOOKUP, td, ap->a_cred); 877 if (error) { 878 /* 879 * Cache negatve lookups to reduce NFS traffic, but use 880 * a fast timeout. Otherwise use a timeout of 1 tick. 881 * XXX we should add a namecache flag for no-caching 882 * to uncache the negative hit as soon as possible, but 883 * we cannot simply destroy the entry because it is used 884 * as a placeholder by the caller. 885 */ 886 if (error == ENOENT) { 887 int nticks; 888 889 if (nfsneg_cache_timeout) 890 nticks = nfsneg_cache_timeout * hz; 891 else 892 nticks = 1; 893 cache_setvp(ncp, NULL); 894 cache_settimeout(ncp, nticks); 895 } 896 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK); 897 m_freem(mrep); 898 goto nfsmout; 899 } 900 901 /* 902 * Success, get the file handle, do various checks, and load 903 * post-operation data from the reply packet. Theoretically 904 * we should never be looking up "." so, theoretically, we 905 * should never get the same file handle as our directory. But 906 * we check anyway. XXX 907 * 908 * Note that no timeout is set for the positive cache hit. We 909 * assume, theoretically, that ESTALE returns will be dealt with 910 * properly to handle NFS races and in anycase we cannot depend 911 * on a timeout to deal with NFS open/create/excl issues so instead 912 * of a bad hack here the rest of the NFS client code needs to do 913 * the right thing. 914 */ 915 nfsm_getfh(fhp, fhsize, v3); 916 917 np = VTONFS(dvp); 918 if (NFS_CMPFH(np, fhp, fhsize)) { 919 vref(dvp); 920 nvp = dvp; 921 } else { 922 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np); 923 if (error) { 924 m_freem(mrep); 925 vput(dvp); 926 return (error); 927 } 928 nvp = NFSTOV(np); 929 } 930 if (v3) { 931 nfsm_postop_attr(nvp, attrflag, NFS_LATTR_NOSHRINK); 932 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK); 933 } else { 934 nfsm_loadattr(nvp, NULL); 935 } 936 cache_setvp(ncp, nvp); 937 m_freem(mrep); 938 nfsmout: 939 vput(dvp); 940 if (nvp) { 941 if (nvp == dvp) 942 vrele(nvp); 943 else 944 vput(nvp); 945 } 946 return (error); 947 } 948 949 /* 950 * 'cached' nfs directory lookup 951 * 952 * NOTE: cannot be removed until NFS implements all the new n*() API calls. 953 * 954 * nfs_lookup(struct vnodeop_desc *a_desc, struct vnode *a_dvp, 955 * struct vnode **a_vpp, struct componentname *a_cnp) 956 */ 957 static int 958 nfs_lookup(struct vop_old_lookup_args *ap) 959 { 960 struct componentname *cnp = ap->a_cnp; 961 struct vnode *dvp = ap->a_dvp; 962 struct vnode **vpp = ap->a_vpp; 963 int flags = cnp->cn_flags; 964 struct vnode *newvp; 965 u_int32_t *tl; 966 caddr_t cp; 967 int32_t t1, t2; 968 struct nfsmount *nmp; 969 caddr_t bpos, dpos, cp2; 970 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 971 long len; 972 nfsfh_t *fhp; 973 struct nfsnode *np; 974 int lockparent, wantparent, error = 0, attrflag, fhsize; 975 int v3 = NFS_ISV3(dvp); 976 struct thread *td = cnp->cn_td; 977 978 /* 979 * Read-only mount check and directory check. 980 */ 981 *vpp = NULLVP; 982 if ((dvp->v_mount->mnt_flag & MNT_RDONLY) && 983 (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME)) 984 return (EROFS); 985 986 if (dvp->v_type != VDIR) 987 return (ENOTDIR); 988 989 /* 990 * Look it up in the cache. Note that ENOENT is only returned if we 991 * previously entered a negative hit (see later on). The additional 992 * nfsneg_cache_timeout check causes previously cached results to 993 * be instantly ignored if the negative caching is turned off. 994 */ 995 lockparent = flags & CNP_LOCKPARENT; 996 wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT); 997 nmp = VFSTONFS(dvp->v_mount); 998 np = VTONFS(dvp); 999 1000 /* 1001 * Go to the wire. 1002 */ 1003 error = 0; 1004 newvp = NULLVP; 1005 nfsstats.lookupcache_misses++; 1006 nfsstats.rpccnt[NFSPROC_LOOKUP]++; 1007 len = cnp->cn_namelen; 1008 nfsm_reqhead(dvp, NFSPROC_LOOKUP, 1009 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len)); 1010 nfsm_fhtom(dvp, v3); 1011 nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN); 1012 nfsm_request(dvp, NFSPROC_LOOKUP, cnp->cn_td, cnp->cn_cred); 1013 if (error) { 1014 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK); 1015 m_freem(mrep); 1016 goto nfsmout; 1017 } 1018 nfsm_getfh(fhp, fhsize, v3); 1019 1020 /* 1021 * Handle RENAME case... 1022 */ 1023 if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) { 1024 if (NFS_CMPFH(np, fhp, fhsize)) { 1025 m_freem(mrep); 1026 return (EISDIR); 1027 } 1028 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np); 1029 if (error) { 1030 m_freem(mrep); 1031 return (error); 1032 } 1033 newvp = NFSTOV(np); 1034 if (v3) { 1035 nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK); 1036 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK); 1037 } else 1038 nfsm_loadattr(newvp, (struct vattr *)0); 1039 *vpp = newvp; 1040 m_freem(mrep); 1041 if (!lockparent) { 1042 VOP_UNLOCK(dvp, 0, td); 1043 cnp->cn_flags |= CNP_PDIRUNLOCK; 1044 } 1045 return (0); 1046 } 1047 1048 if (flags & CNP_ISDOTDOT) { 1049 VOP_UNLOCK(dvp, 0, td); 1050 cnp->cn_flags |= CNP_PDIRUNLOCK; 1051 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np); 1052 if (error) { 1053 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY, td); 1054 cnp->cn_flags &= ~CNP_PDIRUNLOCK; 1055 return (error); /* NOTE: return error from nget */ 1056 } 1057 newvp = NFSTOV(np); 1058 if (lockparent) { 1059 error = vn_lock(dvp, LK_EXCLUSIVE, td); 1060 if (error) { 1061 vput(newvp); 1062 return (error); 1063 } 1064 cnp->cn_flags |= CNP_PDIRUNLOCK; 1065 } 1066 } else if (NFS_CMPFH(np, fhp, fhsize)) { 1067 vref(dvp); 1068 newvp = dvp; 1069 } else { 1070 error = nfs_nget(dvp->v_mount, fhp, fhsize, &np); 1071 if (error) { 1072 m_freem(mrep); 1073 return (error); 1074 } 1075 if (!lockparent) { 1076 VOP_UNLOCK(dvp, 0, td); 1077 cnp->cn_flags |= CNP_PDIRUNLOCK; 1078 } 1079 newvp = NFSTOV(np); 1080 } 1081 if (v3) { 1082 nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK); 1083 nfsm_postop_attr(dvp, attrflag, NFS_LATTR_NOSHRINK); 1084 } else 1085 nfsm_loadattr(newvp, (struct vattr *)0); 1086 #if 0 1087 /* XXX MOVE TO nfs_nremove() */ 1088 if ((cnp->cn_flags & CNP_MAKEENTRY) && 1089 cnp->cn_nameiop != NAMEI_DELETE) { 1090 np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */ 1091 } 1092 #endif 1093 *vpp = newvp; 1094 m_freem(mrep); 1095 nfsmout: 1096 if (error) { 1097 if (newvp != NULLVP) { 1098 vrele(newvp); 1099 *vpp = NULLVP; 1100 } 1101 if ((cnp->cn_nameiop == NAMEI_CREATE || 1102 cnp->cn_nameiop == NAMEI_RENAME) && 1103 error == ENOENT) { 1104 if (!lockparent) { 1105 VOP_UNLOCK(dvp, 0, td); 1106 cnp->cn_flags |= CNP_PDIRUNLOCK; 1107 } 1108 if (dvp->v_mount->mnt_flag & MNT_RDONLY) 1109 error = EROFS; 1110 else 1111 error = EJUSTRETURN; 1112 } 1113 } 1114 return (error); 1115 } 1116 1117 /* 1118 * nfs read call. 1119 * Just call nfs_bioread() to do the work. 1120 * 1121 * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 1122 * struct ucred *a_cred) 1123 */ 1124 static int 1125 nfs_read(struct vop_read_args *ap) 1126 { 1127 struct vnode *vp = ap->a_vp; 1128 1129 return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag)); 1130 switch (vp->v_type) { 1131 case VREG: 1132 return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag)); 1133 case VDIR: 1134 return (EISDIR); 1135 default: 1136 return EOPNOTSUPP; 1137 } 1138 } 1139 1140 /* 1141 * nfs readlink call 1142 * 1143 * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred) 1144 */ 1145 static int 1146 nfs_readlink(struct vop_readlink_args *ap) 1147 { 1148 struct vnode *vp = ap->a_vp; 1149 1150 if (vp->v_type != VLNK) 1151 return (EINVAL); 1152 return (nfs_bioread(vp, ap->a_uio, 0)); 1153 } 1154 1155 /* 1156 * Do a readlink rpc. 1157 * Called by nfs_doio() from below the buffer cache. 1158 */ 1159 int 1160 nfs_readlinkrpc(struct vnode *vp, struct uio *uiop) 1161 { 1162 u_int32_t *tl; 1163 caddr_t cp; 1164 int32_t t1, t2; 1165 caddr_t bpos, dpos, cp2; 1166 int error = 0, len, attrflag; 1167 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 1168 int v3 = NFS_ISV3(vp); 1169 1170 nfsstats.rpccnt[NFSPROC_READLINK]++; 1171 nfsm_reqhead(vp, NFSPROC_READLINK, NFSX_FH(v3)); 1172 nfsm_fhtom(vp, v3); 1173 nfsm_request(vp, NFSPROC_READLINK, uiop->uio_td, nfs_vpcred(vp, ND_CHECK)); 1174 if (v3) 1175 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK); 1176 if (!error) { 1177 nfsm_strsiz(len, NFS_MAXPATHLEN); 1178 if (len == NFS_MAXPATHLEN) { 1179 struct nfsnode *np = VTONFS(vp); 1180 if (np->n_size && np->n_size < NFS_MAXPATHLEN) 1181 len = np->n_size; 1182 } 1183 nfsm_mtouio(uiop, len); 1184 } 1185 m_freem(mrep); 1186 nfsmout: 1187 return (error); 1188 } 1189 1190 /* 1191 * nfs read rpc call 1192 * Ditto above 1193 */ 1194 int 1195 nfs_readrpc(struct vnode *vp, struct uio *uiop) 1196 { 1197 u_int32_t *tl; 1198 caddr_t cp; 1199 int32_t t1, t2; 1200 caddr_t bpos, dpos, cp2; 1201 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 1202 struct nfsmount *nmp; 1203 int error = 0, len, retlen, tsiz, eof, attrflag; 1204 int v3 = NFS_ISV3(vp); 1205 1206 #ifndef nolint 1207 eof = 0; 1208 #endif 1209 nmp = VFSTONFS(vp->v_mount); 1210 tsiz = uiop->uio_resid; 1211 if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize) 1212 return (EFBIG); 1213 while (tsiz > 0) { 1214 nfsstats.rpccnt[NFSPROC_READ]++; 1215 len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz; 1216 nfsm_reqhead(vp, NFSPROC_READ, NFSX_FH(v3) + NFSX_UNSIGNED * 3); 1217 nfsm_fhtom(vp, v3); 1218 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED * 3); 1219 if (v3) { 1220 txdr_hyper(uiop->uio_offset, tl); 1221 *(tl + 2) = txdr_unsigned(len); 1222 } else { 1223 *tl++ = txdr_unsigned(uiop->uio_offset); 1224 *tl++ = txdr_unsigned(len); 1225 *tl = 0; 1226 } 1227 nfsm_request(vp, NFSPROC_READ, uiop->uio_td, nfs_vpcred(vp, ND_READ)); 1228 if (v3) { 1229 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK); 1230 if (error) { 1231 m_freem(mrep); 1232 goto nfsmout; 1233 } 1234 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1235 eof = fxdr_unsigned(int, *(tl + 1)); 1236 } else 1237 nfsm_loadattr(vp, (struct vattr *)0); 1238 nfsm_strsiz(retlen, nmp->nm_rsize); 1239 nfsm_mtouio(uiop, retlen); 1240 m_freem(mrep); 1241 tsiz -= retlen; 1242 if (v3) { 1243 if (eof || retlen == 0) { 1244 tsiz = 0; 1245 } 1246 } else if (retlen < len) { 1247 tsiz = 0; 1248 } 1249 } 1250 nfsmout: 1251 return (error); 1252 } 1253 1254 /* 1255 * nfs write call 1256 */ 1257 int 1258 nfs_writerpc(struct vnode *vp, struct uio *uiop, int *iomode, int *must_commit) 1259 { 1260 u_int32_t *tl; 1261 caddr_t cp; 1262 int32_t t1, t2, backup; 1263 caddr_t bpos, dpos, cp2; 1264 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 1265 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1266 int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit; 1267 int v3 = NFS_ISV3(vp), committed = NFSV3WRITE_FILESYNC; 1268 1269 #ifndef DIAGNOSTIC 1270 if (uiop->uio_iovcnt != 1) 1271 panic("nfs: writerpc iovcnt > 1"); 1272 #endif 1273 *must_commit = 0; 1274 tsiz = uiop->uio_resid; 1275 if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize) 1276 return (EFBIG); 1277 while (tsiz > 0) { 1278 nfsstats.rpccnt[NFSPROC_WRITE]++; 1279 len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz; 1280 nfsm_reqhead(vp, NFSPROC_WRITE, 1281 NFSX_FH(v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len)); 1282 nfsm_fhtom(vp, v3); 1283 if (v3) { 1284 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED); 1285 txdr_hyper(uiop->uio_offset, tl); 1286 tl += 2; 1287 *tl++ = txdr_unsigned(len); 1288 *tl++ = txdr_unsigned(*iomode); 1289 *tl = txdr_unsigned(len); 1290 } else { 1291 u_int32_t x; 1292 1293 nfsm_build(tl, u_int32_t *, 4 * NFSX_UNSIGNED); 1294 /* Set both "begin" and "current" to non-garbage. */ 1295 x = txdr_unsigned((u_int32_t)uiop->uio_offset); 1296 *tl++ = x; /* "begin offset" */ 1297 *tl++ = x; /* "current offset" */ 1298 x = txdr_unsigned(len); 1299 *tl++ = x; /* total to this offset */ 1300 *tl = x; /* size of this write */ 1301 } 1302 nfsm_uiotom(uiop, len); 1303 nfsm_request(vp, NFSPROC_WRITE, uiop->uio_td, nfs_vpcred(vp, ND_WRITE)); 1304 if (v3) { 1305 /* 1306 * The write RPC returns a before and after mtime. The 1307 * nfsm_wcc_data() macro checks the before n_mtime 1308 * against the before time and stores the after time 1309 * in the nfsnode's cached vattr and n_mtime field. 1310 * The NRMODIFIED bit will be set if the before 1311 * time did not match the original mtime. 1312 */ 1313 wccflag = NFSV3_WCCCHK; 1314 nfsm_wcc_data(vp, wccflag); 1315 if (!error) { 1316 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED 1317 + NFSX_V3WRITEVERF); 1318 rlen = fxdr_unsigned(int, *tl++); 1319 if (rlen == 0) { 1320 error = NFSERR_IO; 1321 m_freem(mrep); 1322 break; 1323 } else if (rlen < len) { 1324 backup = len - rlen; 1325 uiop->uio_iov->iov_base -= backup; 1326 uiop->uio_iov->iov_len += backup; 1327 uiop->uio_offset -= backup; 1328 uiop->uio_resid += backup; 1329 len = rlen; 1330 } 1331 commit = fxdr_unsigned(int, *tl++); 1332 1333 /* 1334 * Return the lowest committment level 1335 * obtained by any of the RPCs. 1336 */ 1337 if (committed == NFSV3WRITE_FILESYNC) 1338 committed = commit; 1339 else if (committed == NFSV3WRITE_DATASYNC && 1340 commit == NFSV3WRITE_UNSTABLE) 1341 committed = commit; 1342 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){ 1343 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, 1344 NFSX_V3WRITEVERF); 1345 nmp->nm_state |= NFSSTA_HASWRITEVERF; 1346 } else if (bcmp((caddr_t)tl, 1347 (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) { 1348 *must_commit = 1; 1349 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, 1350 NFSX_V3WRITEVERF); 1351 } 1352 } 1353 } else { 1354 nfsm_loadattr(vp, (struct vattr *)0); 1355 } 1356 m_freem(mrep); 1357 if (error) 1358 break; 1359 tsiz -= len; 1360 } 1361 nfsmout: 1362 if (vp->v_mount->mnt_flag & MNT_ASYNC) 1363 committed = NFSV3WRITE_FILESYNC; 1364 *iomode = committed; 1365 if (error) 1366 uiop->uio_resid = tsiz; 1367 return (error); 1368 } 1369 1370 /* 1371 * nfs mknod rpc 1372 * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the 1373 * mode set to specify the file type and the size field for rdev. 1374 */ 1375 static int 1376 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp, 1377 struct vattr *vap) 1378 { 1379 struct nfsv2_sattr *sp; 1380 u_int32_t *tl; 1381 caddr_t cp; 1382 int32_t t1, t2; 1383 struct vnode *newvp = (struct vnode *)0; 1384 struct nfsnode *np = (struct nfsnode *)0; 1385 struct vattr vattr; 1386 char *cp2; 1387 caddr_t bpos, dpos; 1388 int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0; 1389 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 1390 u_int32_t rdev; 1391 int v3 = NFS_ISV3(dvp); 1392 1393 if (vap->va_type == VCHR || vap->va_type == VBLK) 1394 rdev = txdr_unsigned(vap->va_rdev); 1395 else if (vap->va_type == VFIFO || vap->va_type == VSOCK) 1396 rdev = nfs_xdrneg1; 1397 else { 1398 return (EOPNOTSUPP); 1399 } 1400 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) { 1401 return (error); 1402 } 1403 nfsstats.rpccnt[NFSPROC_MKNOD]++; 1404 nfsm_reqhead(dvp, NFSPROC_MKNOD, NFSX_FH(v3) + 4 * NFSX_UNSIGNED + 1405 + nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3)); 1406 nfsm_fhtom(dvp, v3); 1407 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); 1408 if (v3) { 1409 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1410 *tl++ = vtonfsv3_type(vap->va_type); 1411 nfsm_v3attrbuild(vap, FALSE); 1412 if (vap->va_type == VCHR || vap->va_type == VBLK) { 1413 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1414 *tl++ = txdr_unsigned(umajor(vap->va_rdev)); 1415 *tl = txdr_unsigned(uminor(vap->va_rdev)); 1416 } 1417 } else { 1418 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 1419 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 1420 sp->sa_uid = nfs_xdrneg1; 1421 sp->sa_gid = nfs_xdrneg1; 1422 sp->sa_size = rdev; 1423 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 1424 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 1425 } 1426 nfsm_request(dvp, NFSPROC_MKNOD, cnp->cn_td, cnp->cn_cred); 1427 if (!error) { 1428 nfsm_mtofh(dvp, newvp, v3, gotvp); 1429 if (!gotvp) { 1430 if (newvp) { 1431 vput(newvp); 1432 newvp = (struct vnode *)0; 1433 } 1434 error = nfs_lookitup(dvp, cnp->cn_nameptr, 1435 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np); 1436 if (!error) 1437 newvp = NFSTOV(np); 1438 } 1439 } 1440 if (v3) 1441 nfsm_wcc_data(dvp, wccflag); 1442 m_freem(mrep); 1443 nfsmout: 1444 if (error) { 1445 if (newvp) 1446 vput(newvp); 1447 } else { 1448 *vpp = newvp; 1449 } 1450 VTONFS(dvp)->n_flag |= NLMODIFIED; 1451 if (!wccflag) 1452 VTONFS(dvp)->n_attrstamp = 0; 1453 return (error); 1454 } 1455 1456 /* 1457 * nfs mknod vop 1458 * just call nfs_mknodrpc() to do the work. 1459 * 1460 * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp, 1461 * struct componentname *a_cnp, struct vattr *a_vap) 1462 */ 1463 /* ARGSUSED */ 1464 static int 1465 nfs_mknod(struct vop_old_mknod_args *ap) 1466 { 1467 return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap); 1468 } 1469 1470 static u_long create_verf; 1471 /* 1472 * nfs file create call 1473 * 1474 * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp, 1475 * struct componentname *a_cnp, struct vattr *a_vap) 1476 */ 1477 static int 1478 nfs_create(struct vop_old_create_args *ap) 1479 { 1480 struct vnode *dvp = ap->a_dvp; 1481 struct vattr *vap = ap->a_vap; 1482 struct componentname *cnp = ap->a_cnp; 1483 struct nfsv2_sattr *sp; 1484 u_int32_t *tl; 1485 caddr_t cp; 1486 int32_t t1, t2; 1487 struct nfsnode *np = (struct nfsnode *)0; 1488 struct vnode *newvp = (struct vnode *)0; 1489 caddr_t bpos, dpos, cp2; 1490 int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0; 1491 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 1492 struct vattr vattr; 1493 int v3 = NFS_ISV3(dvp); 1494 1495 /* 1496 * Oops, not for me.. 1497 */ 1498 if (vap->va_type == VSOCK) 1499 return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap)); 1500 1501 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) { 1502 return (error); 1503 } 1504 if (vap->va_vaflags & VA_EXCLUSIVE) 1505 fmode |= O_EXCL; 1506 again: 1507 nfsstats.rpccnt[NFSPROC_CREATE]++; 1508 nfsm_reqhead(dvp, NFSPROC_CREATE, NFSX_FH(v3) + 2 * NFSX_UNSIGNED + 1509 nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(v3)); 1510 nfsm_fhtom(dvp, v3); 1511 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); 1512 if (v3) { 1513 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1514 if (fmode & O_EXCL) { 1515 *tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE); 1516 nfsm_build(tl, u_int32_t *, NFSX_V3CREATEVERF); 1517 #ifdef INET 1518 if (!TAILQ_EMPTY(&in_ifaddrhead)) 1519 *tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr.s_addr; 1520 else 1521 #endif 1522 *tl++ = create_verf; 1523 *tl = ++create_verf; 1524 } else { 1525 *tl = txdr_unsigned(NFSV3CREATE_UNCHECKED); 1526 nfsm_v3attrbuild(vap, FALSE); 1527 } 1528 } else { 1529 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 1530 sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode); 1531 sp->sa_uid = nfs_xdrneg1; 1532 sp->sa_gid = nfs_xdrneg1; 1533 sp->sa_size = 0; 1534 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 1535 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 1536 } 1537 nfsm_request(dvp, NFSPROC_CREATE, cnp->cn_td, cnp->cn_cred); 1538 if (!error) { 1539 nfsm_mtofh(dvp, newvp, v3, gotvp); 1540 if (!gotvp) { 1541 if (newvp) { 1542 vput(newvp); 1543 newvp = (struct vnode *)0; 1544 } 1545 error = nfs_lookitup(dvp, cnp->cn_nameptr, 1546 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np); 1547 if (!error) 1548 newvp = NFSTOV(np); 1549 } 1550 } 1551 if (v3) 1552 nfsm_wcc_data(dvp, wccflag); 1553 m_freem(mrep); 1554 nfsmout: 1555 if (error) { 1556 if (v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) { 1557 fmode &= ~O_EXCL; 1558 goto again; 1559 } 1560 if (newvp) 1561 vput(newvp); 1562 } else if (v3 && (fmode & O_EXCL)) { 1563 /* 1564 * We are normally called with only a partially initialized 1565 * VAP. Since the NFSv3 spec says that server may use the 1566 * file attributes to store the verifier, the spec requires 1567 * us to do a SETATTR RPC. FreeBSD servers store the verifier 1568 * in atime, but we can't really assume that all servers will 1569 * so we ensure that our SETATTR sets both atime and mtime. 1570 */ 1571 if (vap->va_mtime.tv_sec == VNOVAL) 1572 vfs_timestamp(&vap->va_mtime); 1573 if (vap->va_atime.tv_sec == VNOVAL) 1574 vap->va_atime = vap->va_mtime; 1575 error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td); 1576 } 1577 if (!error) { 1578 /* 1579 * The new np may have enough info for access 1580 * checks, make sure rucred and wucred are 1581 * initialized for read and write rpc's. 1582 */ 1583 np = VTONFS(newvp); 1584 if (np->n_rucred == NULL) 1585 np->n_rucred = crhold(cnp->cn_cred); 1586 if (np->n_wucred == NULL) 1587 np->n_wucred = crhold(cnp->cn_cred); 1588 *ap->a_vpp = newvp; 1589 } 1590 VTONFS(dvp)->n_flag |= NLMODIFIED; 1591 if (!wccflag) 1592 VTONFS(dvp)->n_attrstamp = 0; 1593 return (error); 1594 } 1595 1596 /* 1597 * nfs file remove call 1598 * To try and make nfs semantics closer to ufs semantics, a file that has 1599 * other processes using the vnode is renamed instead of removed and then 1600 * removed later on the last close. 1601 * - If v_usecount > 1 1602 * If a rename is not already in the works 1603 * call nfs_sillyrename() to set it up 1604 * else 1605 * do the remove rpc 1606 * 1607 * nfs_remove(struct vnodeop_desc *a_desc, struct vnode *a_dvp, 1608 * struct vnode *a_vp, struct componentname *a_cnp) 1609 */ 1610 static int 1611 nfs_remove(struct vop_old_remove_args *ap) 1612 { 1613 struct vnode *vp = ap->a_vp; 1614 struct vnode *dvp = ap->a_dvp; 1615 struct componentname *cnp = ap->a_cnp; 1616 struct nfsnode *np = VTONFS(vp); 1617 int error = 0; 1618 struct vattr vattr; 1619 1620 #ifndef DIAGNOSTIC 1621 if (vp->v_usecount < 1) 1622 panic("nfs_remove: bad v_usecount"); 1623 #endif 1624 if (vp->v_type == VDIR) 1625 error = EPERM; 1626 else if (vp->v_usecount == 1 || (np->n_sillyrename && 1627 VOP_GETATTR(vp, &vattr, cnp->cn_td) == 0 && 1628 vattr.va_nlink > 1)) { 1629 /* 1630 * throw away biocache buffers, mainly to avoid 1631 * unnecessary delayed writes later. 1632 */ 1633 error = nfs_vinvalbuf(vp, 0, cnp->cn_td, 1); 1634 /* Do the rpc */ 1635 if (error != EINTR) 1636 error = nfs_removerpc(dvp, cnp->cn_nameptr, 1637 cnp->cn_namelen, cnp->cn_cred, cnp->cn_td); 1638 /* 1639 * Kludge City: If the first reply to the remove rpc is lost.. 1640 * the reply to the retransmitted request will be ENOENT 1641 * since the file was in fact removed 1642 * Therefore, we cheat and return success. 1643 */ 1644 if (error == ENOENT) 1645 error = 0; 1646 } else if (!np->n_sillyrename) { 1647 error = nfs_sillyrename(dvp, vp, cnp); 1648 } 1649 np->n_attrstamp = 0; 1650 return (error); 1651 } 1652 1653 /* 1654 * nfs file remove rpc called from nfs_inactive 1655 */ 1656 int 1657 nfs_removeit(struct sillyrename *sp) 1658 { 1659 return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen, 1660 sp->s_cred, NULL)); 1661 } 1662 1663 /* 1664 * Nfs remove rpc, called from nfs_remove() and nfs_removeit(). 1665 */ 1666 static int 1667 nfs_removerpc(struct vnode *dvp, const char *name, int namelen, 1668 struct ucred *cred, struct thread *td) 1669 { 1670 u_int32_t *tl; 1671 caddr_t cp; 1672 int32_t t1, t2; 1673 caddr_t bpos, dpos, cp2; 1674 int error = 0, wccflag = NFSV3_WCCRATTR; 1675 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 1676 int v3 = NFS_ISV3(dvp); 1677 1678 nfsstats.rpccnt[NFSPROC_REMOVE]++; 1679 nfsm_reqhead(dvp, NFSPROC_REMOVE, 1680 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(namelen)); 1681 nfsm_fhtom(dvp, v3); 1682 nfsm_strtom(name, namelen, NFS_MAXNAMLEN); 1683 nfsm_request(dvp, NFSPROC_REMOVE, td, cred); 1684 if (v3) 1685 nfsm_wcc_data(dvp, wccflag); 1686 m_freem(mrep); 1687 nfsmout: 1688 VTONFS(dvp)->n_flag |= NLMODIFIED; 1689 if (!wccflag) 1690 VTONFS(dvp)->n_attrstamp = 0; 1691 return (error); 1692 } 1693 1694 /* 1695 * nfs file rename call 1696 * 1697 * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp, 1698 * struct componentname *a_fcnp, struct vnode *a_tdvp, 1699 * struct vnode *a_tvp, struct componentname *a_tcnp) 1700 */ 1701 static int 1702 nfs_rename(struct vop_old_rename_args *ap) 1703 { 1704 struct vnode *fvp = ap->a_fvp; 1705 struct vnode *tvp = ap->a_tvp; 1706 struct vnode *fdvp = ap->a_fdvp; 1707 struct vnode *tdvp = ap->a_tdvp; 1708 struct componentname *tcnp = ap->a_tcnp; 1709 struct componentname *fcnp = ap->a_fcnp; 1710 int error; 1711 1712 /* Check for cross-device rename */ 1713 if ((fvp->v_mount != tdvp->v_mount) || 1714 (tvp && (fvp->v_mount != tvp->v_mount))) { 1715 error = EXDEV; 1716 goto out; 1717 } 1718 1719 /* 1720 * We have to flush B_DELWRI data prior to renaming 1721 * the file. If we don't, the delayed-write buffers 1722 * can be flushed out later after the file has gone stale 1723 * under NFSV3. NFSV2 does not have this problem because 1724 * ( as far as I can tell ) it flushes dirty buffers more 1725 * often. 1726 */ 1727 1728 VOP_FSYNC(fvp, MNT_WAIT, fcnp->cn_td); 1729 if (tvp) 1730 VOP_FSYNC(tvp, MNT_WAIT, tcnp->cn_td); 1731 1732 /* 1733 * If the tvp exists and is in use, sillyrename it before doing the 1734 * rename of the new file over it. 1735 * 1736 * XXX Can't sillyrename a directory. 1737 * 1738 * We do not attempt to do any namecache purges in this old API 1739 * routine. The new API compat functions have access to the actual 1740 * namecache structures and will do it for us. 1741 */ 1742 if (tvp && tvp->v_usecount > 1 && !VTONFS(tvp)->n_sillyrename && 1743 tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) { 1744 vput(tvp); 1745 tvp = NULL; 1746 } else if (tvp) { 1747 ; 1748 } 1749 1750 error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen, 1751 tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred, 1752 tcnp->cn_td); 1753 1754 out: 1755 if (tdvp == tvp) 1756 vrele(tdvp); 1757 else 1758 vput(tdvp); 1759 if (tvp) 1760 vput(tvp); 1761 vrele(fdvp); 1762 vrele(fvp); 1763 /* 1764 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry. 1765 */ 1766 if (error == ENOENT) 1767 error = 0; 1768 return (error); 1769 } 1770 1771 /* 1772 * nfs file rename rpc called from nfs_remove() above 1773 */ 1774 static int 1775 nfs_renameit(struct vnode *sdvp, struct componentname *scnp, 1776 struct sillyrename *sp) 1777 { 1778 return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen, 1779 sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td)); 1780 } 1781 1782 /* 1783 * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit(). 1784 */ 1785 static int 1786 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen, 1787 struct vnode *tdvp, const char *tnameptr, int tnamelen, 1788 struct ucred *cred, struct thread *td) 1789 { 1790 u_int32_t *tl; 1791 caddr_t cp; 1792 int32_t t1, t2; 1793 caddr_t bpos, dpos, cp2; 1794 int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR; 1795 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 1796 int v3 = NFS_ISV3(fdvp); 1797 1798 nfsstats.rpccnt[NFSPROC_RENAME]++; 1799 nfsm_reqhead(fdvp, NFSPROC_RENAME, 1800 (NFSX_FH(v3) + NFSX_UNSIGNED)*2 + nfsm_rndup(fnamelen) + 1801 nfsm_rndup(tnamelen)); 1802 nfsm_fhtom(fdvp, v3); 1803 nfsm_strtom(fnameptr, fnamelen, NFS_MAXNAMLEN); 1804 nfsm_fhtom(tdvp, v3); 1805 nfsm_strtom(tnameptr, tnamelen, NFS_MAXNAMLEN); 1806 nfsm_request(fdvp, NFSPROC_RENAME, td, cred); 1807 if (v3) { 1808 nfsm_wcc_data(fdvp, fwccflag); 1809 nfsm_wcc_data(tdvp, twccflag); 1810 } 1811 m_freem(mrep); 1812 nfsmout: 1813 VTONFS(fdvp)->n_flag |= NLMODIFIED; 1814 VTONFS(tdvp)->n_flag |= NLMODIFIED; 1815 if (!fwccflag) 1816 VTONFS(fdvp)->n_attrstamp = 0; 1817 if (!twccflag) 1818 VTONFS(tdvp)->n_attrstamp = 0; 1819 return (error); 1820 } 1821 1822 /* 1823 * nfs hard link create call 1824 * 1825 * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp, 1826 * struct componentname *a_cnp) 1827 */ 1828 static int 1829 nfs_link(struct vop_old_link_args *ap) 1830 { 1831 struct vnode *vp = ap->a_vp; 1832 struct vnode *tdvp = ap->a_tdvp; 1833 struct componentname *cnp = ap->a_cnp; 1834 u_int32_t *tl; 1835 caddr_t cp; 1836 int32_t t1, t2; 1837 caddr_t bpos, dpos, cp2; 1838 int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0; 1839 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 1840 int v3; 1841 1842 if (vp->v_mount != tdvp->v_mount) { 1843 return (EXDEV); 1844 } 1845 1846 /* 1847 * Push all writes to the server, so that the attribute cache 1848 * doesn't get "out of sync" with the server. 1849 * XXX There should be a better way! 1850 */ 1851 VOP_FSYNC(vp, MNT_WAIT, cnp->cn_td); 1852 1853 v3 = NFS_ISV3(vp); 1854 nfsstats.rpccnt[NFSPROC_LINK]++; 1855 nfsm_reqhead(vp, NFSPROC_LINK, 1856 NFSX_FH(v3)*2 + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen)); 1857 nfsm_fhtom(vp, v3); 1858 nfsm_fhtom(tdvp, v3); 1859 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); 1860 nfsm_request(vp, NFSPROC_LINK, cnp->cn_td, cnp->cn_cred); 1861 if (v3) { 1862 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK); 1863 nfsm_wcc_data(tdvp, wccflag); 1864 } 1865 m_freem(mrep); 1866 nfsmout: 1867 VTONFS(tdvp)->n_flag |= NLMODIFIED; 1868 if (!attrflag) 1869 VTONFS(vp)->n_attrstamp = 0; 1870 if (!wccflag) 1871 VTONFS(tdvp)->n_attrstamp = 0; 1872 /* 1873 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry. 1874 */ 1875 if (error == EEXIST) 1876 error = 0; 1877 return (error); 1878 } 1879 1880 /* 1881 * nfs symbolic link create call 1882 * 1883 * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp, 1884 * struct componentname *a_cnp, struct vattr *a_vap, 1885 * char *a_target) 1886 */ 1887 static int 1888 nfs_symlink(struct vop_old_symlink_args *ap) 1889 { 1890 struct vnode *dvp = ap->a_dvp; 1891 struct vattr *vap = ap->a_vap; 1892 struct componentname *cnp = ap->a_cnp; 1893 struct nfsv2_sattr *sp; 1894 u_int32_t *tl; 1895 caddr_t cp; 1896 int32_t t1, t2; 1897 caddr_t bpos, dpos, cp2; 1898 int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp; 1899 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 1900 struct vnode *newvp = (struct vnode *)0; 1901 int v3 = NFS_ISV3(dvp); 1902 1903 nfsstats.rpccnt[NFSPROC_SYMLINK]++; 1904 slen = strlen(ap->a_target); 1905 nfsm_reqhead(dvp, NFSPROC_SYMLINK, NFSX_FH(v3) + 2*NFSX_UNSIGNED + 1906 nfsm_rndup(cnp->cn_namelen) + nfsm_rndup(slen) + NFSX_SATTR(v3)); 1907 nfsm_fhtom(dvp, v3); 1908 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); 1909 if (v3) { 1910 nfsm_v3attrbuild(vap, FALSE); 1911 } 1912 nfsm_strtom(ap->a_target, slen, NFS_MAXPATHLEN); 1913 if (!v3) { 1914 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 1915 sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode); 1916 sp->sa_uid = nfs_xdrneg1; 1917 sp->sa_gid = nfs_xdrneg1; 1918 sp->sa_size = nfs_xdrneg1; 1919 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 1920 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 1921 } 1922 1923 /* 1924 * Issue the NFS request and get the rpc response. 1925 * 1926 * Only NFSv3 responses returning an error of 0 actually return 1927 * a file handle that can be converted into newvp without having 1928 * to do an extra lookup rpc. 1929 */ 1930 nfsm_request(dvp, NFSPROC_SYMLINK, cnp->cn_td, cnp->cn_cred); 1931 if (v3) { 1932 if (error == 0) 1933 nfsm_mtofh(dvp, newvp, v3, gotvp); 1934 nfsm_wcc_data(dvp, wccflag); 1935 } 1936 1937 /* 1938 * out code jumps -> here, mrep is also freed. 1939 */ 1940 1941 m_freem(mrep); 1942 nfsmout: 1943 1944 /* 1945 * If we get an EEXIST error, silently convert it to no-error 1946 * in case of an NFS retry. 1947 */ 1948 if (error == EEXIST) 1949 error = 0; 1950 1951 /* 1952 * If we do not have (or no longer have) an error, and we could 1953 * not extract the newvp from the response due to the request being 1954 * NFSv2 or the error being EEXIST. We have to do a lookup in order 1955 * to obtain a newvp to return. 1956 */ 1957 if (error == 0 && newvp == NULL) { 1958 struct nfsnode *np = NULL; 1959 1960 error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen, 1961 cnp->cn_cred, cnp->cn_td, &np); 1962 if (!error) 1963 newvp = NFSTOV(np); 1964 } 1965 if (error) { 1966 if (newvp) 1967 vput(newvp); 1968 } else { 1969 *ap->a_vpp = newvp; 1970 } 1971 VTONFS(dvp)->n_flag |= NLMODIFIED; 1972 if (!wccflag) 1973 VTONFS(dvp)->n_attrstamp = 0; 1974 return (error); 1975 } 1976 1977 /* 1978 * nfs make dir call 1979 * 1980 * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp, 1981 * struct componentname *a_cnp, struct vattr *a_vap) 1982 */ 1983 static int 1984 nfs_mkdir(struct vop_old_mkdir_args *ap) 1985 { 1986 struct vnode *dvp = ap->a_dvp; 1987 struct vattr *vap = ap->a_vap; 1988 struct componentname *cnp = ap->a_cnp; 1989 struct nfsv2_sattr *sp; 1990 u_int32_t *tl; 1991 caddr_t cp; 1992 int32_t t1, t2; 1993 int len; 1994 struct nfsnode *np = (struct nfsnode *)0; 1995 struct vnode *newvp = (struct vnode *)0; 1996 caddr_t bpos, dpos, cp2; 1997 int error = 0, wccflag = NFSV3_WCCRATTR; 1998 int gotvp = 0; 1999 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 2000 struct vattr vattr; 2001 int v3 = NFS_ISV3(dvp); 2002 2003 if ((error = VOP_GETATTR(dvp, &vattr, cnp->cn_td)) != 0) { 2004 return (error); 2005 } 2006 len = cnp->cn_namelen; 2007 nfsstats.rpccnt[NFSPROC_MKDIR]++; 2008 nfsm_reqhead(dvp, NFSPROC_MKDIR, 2009 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len) + NFSX_SATTR(v3)); 2010 nfsm_fhtom(dvp, v3); 2011 nfsm_strtom(cnp->cn_nameptr, len, NFS_MAXNAMLEN); 2012 if (v3) { 2013 nfsm_v3attrbuild(vap, FALSE); 2014 } else { 2015 nfsm_build(sp, struct nfsv2_sattr *, NFSX_V2SATTR); 2016 sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode); 2017 sp->sa_uid = nfs_xdrneg1; 2018 sp->sa_gid = nfs_xdrneg1; 2019 sp->sa_size = nfs_xdrneg1; 2020 txdr_nfsv2time(&vap->va_atime, &sp->sa_atime); 2021 txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime); 2022 } 2023 nfsm_request(dvp, NFSPROC_MKDIR, cnp->cn_td, cnp->cn_cred); 2024 if (!error) 2025 nfsm_mtofh(dvp, newvp, v3, gotvp); 2026 if (v3) 2027 nfsm_wcc_data(dvp, wccflag); 2028 m_freem(mrep); 2029 nfsmout: 2030 VTONFS(dvp)->n_flag |= NLMODIFIED; 2031 if (!wccflag) 2032 VTONFS(dvp)->n_attrstamp = 0; 2033 /* 2034 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry 2035 * if we can succeed in looking up the directory. 2036 */ 2037 if (error == EEXIST || (!error && !gotvp)) { 2038 if (newvp) { 2039 vrele(newvp); 2040 newvp = (struct vnode *)0; 2041 } 2042 error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred, 2043 cnp->cn_td, &np); 2044 if (!error) { 2045 newvp = NFSTOV(np); 2046 if (newvp->v_type != VDIR) 2047 error = EEXIST; 2048 } 2049 } 2050 if (error) { 2051 if (newvp) 2052 vrele(newvp); 2053 } else 2054 *ap->a_vpp = newvp; 2055 return (error); 2056 } 2057 2058 /* 2059 * nfs remove directory call 2060 * 2061 * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp, 2062 * struct componentname *a_cnp) 2063 */ 2064 static int 2065 nfs_rmdir(struct vop_old_rmdir_args *ap) 2066 { 2067 struct vnode *vp = ap->a_vp; 2068 struct vnode *dvp = ap->a_dvp; 2069 struct componentname *cnp = ap->a_cnp; 2070 u_int32_t *tl; 2071 caddr_t cp; 2072 int32_t t1, t2; 2073 caddr_t bpos, dpos, cp2; 2074 int error = 0, wccflag = NFSV3_WCCRATTR; 2075 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 2076 int v3 = NFS_ISV3(dvp); 2077 2078 if (dvp == vp) 2079 return (EINVAL); 2080 nfsstats.rpccnt[NFSPROC_RMDIR]++; 2081 nfsm_reqhead(dvp, NFSPROC_RMDIR, 2082 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(cnp->cn_namelen)); 2083 nfsm_fhtom(dvp, v3); 2084 nfsm_strtom(cnp->cn_nameptr, cnp->cn_namelen, NFS_MAXNAMLEN); 2085 nfsm_request(dvp, NFSPROC_RMDIR, cnp->cn_td, cnp->cn_cred); 2086 if (v3) 2087 nfsm_wcc_data(dvp, wccflag); 2088 m_freem(mrep); 2089 nfsmout: 2090 VTONFS(dvp)->n_flag |= NLMODIFIED; 2091 if (!wccflag) 2092 VTONFS(dvp)->n_attrstamp = 0; 2093 /* 2094 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry. 2095 */ 2096 if (error == ENOENT) 2097 error = 0; 2098 return (error); 2099 } 2100 2101 /* 2102 * nfs readdir call 2103 * 2104 * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred) 2105 */ 2106 static int 2107 nfs_readdir(struct vop_readdir_args *ap) 2108 { 2109 struct vnode *vp = ap->a_vp; 2110 struct nfsnode *np = VTONFS(vp); 2111 struct uio *uio = ap->a_uio; 2112 int tresid, error; 2113 struct vattr vattr; 2114 2115 if (vp->v_type != VDIR) 2116 return (EPERM); 2117 2118 /* 2119 * If we have a valid EOF offset cache we must call VOP_GETATTR() 2120 * and then check that is still valid, or if this is an NQNFS mount 2121 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR(). Note that 2122 * VOP_GETATTR() does not necessarily go to the wire. 2123 */ 2124 if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset && 2125 (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) { 2126 if (VOP_GETATTR(vp, &vattr, uio->uio_td) == 0 && 2127 (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0 2128 ) { 2129 nfsstats.direofcache_hits++; 2130 return (0); 2131 } 2132 } 2133 2134 /* 2135 * Call nfs_bioread() to do the real work. nfs_bioread() does its 2136 * own cache coherency checks so we do not have to. 2137 */ 2138 tresid = uio->uio_resid; 2139 error = nfs_bioread(vp, uio, 0); 2140 2141 if (!error && uio->uio_resid == tresid) 2142 nfsstats.direofcache_misses++; 2143 return (error); 2144 } 2145 2146 /* 2147 * Readdir rpc call. nfs_bioread->nfs_doio->nfs_readdirrpc. 2148 * 2149 * Note that for directories, nfs_bioread maintains the underlying nfs-centric 2150 * offset/block and converts the nfs formatted directory entries for userland 2151 * consumption as well as deals with offsets into the middle of blocks. 2152 * nfs_doio only deals with logical blocks. In particular, uio_offset will 2153 * be block-bounded. It must convert to cookies for the actual RPC. 2154 */ 2155 int 2156 nfs_readdirrpc(struct vnode *vp, struct uio *uiop) 2157 { 2158 int len, left; 2159 struct nfs_dirent *dp = NULL; 2160 u_int32_t *tl; 2161 caddr_t cp; 2162 int32_t t1, t2; 2163 nfsuint64 *cookiep; 2164 caddr_t bpos, dpos, cp2; 2165 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 2166 nfsuint64 cookie; 2167 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2168 struct nfsnode *dnp = VTONFS(vp); 2169 u_quad_t fileno; 2170 int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1; 2171 int attrflag; 2172 int v3 = NFS_ISV3(vp); 2173 2174 #ifndef DIAGNOSTIC 2175 if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) || 2176 (uiop->uio_resid & (DIRBLKSIZ - 1))) 2177 panic("nfs readdirrpc bad uio"); 2178 #endif 2179 2180 /* 2181 * If there is no cookie, assume directory was stale. 2182 */ 2183 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0); 2184 if (cookiep) 2185 cookie = *cookiep; 2186 else 2187 return (NFSERR_BAD_COOKIE); 2188 /* 2189 * Loop around doing readdir rpc's of size nm_readdirsize 2190 * truncated to a multiple of DIRBLKSIZ. 2191 * The stopping criteria is EOF or buffer full. 2192 */ 2193 while (more_dirs && bigenough) { 2194 nfsstats.rpccnt[NFSPROC_READDIR]++; 2195 nfsm_reqhead(vp, NFSPROC_READDIR, NFSX_FH(v3) + 2196 NFSX_READDIR(v3)); 2197 nfsm_fhtom(vp, v3); 2198 if (v3) { 2199 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED); 2200 *tl++ = cookie.nfsuquad[0]; 2201 *tl++ = cookie.nfsuquad[1]; 2202 *tl++ = dnp->n_cookieverf.nfsuquad[0]; 2203 *tl++ = dnp->n_cookieverf.nfsuquad[1]; 2204 } else { 2205 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 2206 *tl++ = cookie.nfsuquad[0]; 2207 } 2208 *tl = txdr_unsigned(nmp->nm_readdirsize); 2209 nfsm_request(vp, NFSPROC_READDIR, uiop->uio_td, nfs_vpcred(vp, ND_READ)); 2210 if (v3) { 2211 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK); 2212 if (!error) { 2213 nfsm_dissect(tl, u_int32_t *, 2214 2 * NFSX_UNSIGNED); 2215 dnp->n_cookieverf.nfsuquad[0] = *tl++; 2216 dnp->n_cookieverf.nfsuquad[1] = *tl; 2217 } else { 2218 m_freem(mrep); 2219 goto nfsmout; 2220 } 2221 } 2222 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 2223 more_dirs = fxdr_unsigned(int, *tl); 2224 2225 /* loop thru the dir entries, converting them to std form */ 2226 while (more_dirs && bigenough) { 2227 if (v3) { 2228 nfsm_dissect(tl, u_int32_t *, 2229 3 * NFSX_UNSIGNED); 2230 fileno = fxdr_hyper(tl); 2231 len = fxdr_unsigned(int, *(tl + 2)); 2232 } else { 2233 nfsm_dissect(tl, u_int32_t *, 2234 2 * NFSX_UNSIGNED); 2235 fileno = fxdr_unsigned(u_quad_t, *tl++); 2236 len = fxdr_unsigned(int, *tl); 2237 } 2238 if (len <= 0 || len > NFS_MAXNAMLEN) { 2239 error = EBADRPC; 2240 m_freem(mrep); 2241 goto nfsmout; 2242 } 2243 2244 /* 2245 * len is the number of bytes in the path element 2246 * name, not including the \0 termination. 2247 * 2248 * tlen is the number of bytes w have to reserve for 2249 * the path element name. 2250 */ 2251 tlen = nfsm_rndup(len); 2252 if (tlen == len) 2253 tlen += 4; /* To ensure null termination */ 2254 2255 /* 2256 * If the entry would cross a DIRBLKSIZ boundary, 2257 * extend the previous nfs_dirent to cover the 2258 * remaining space. 2259 */ 2260 left = DIRBLKSIZ - blksiz; 2261 if ((tlen + sizeof(struct nfs_dirent)) > left) { 2262 dp->nfs_reclen += left; 2263 uiop->uio_iov->iov_base += left; 2264 uiop->uio_iov->iov_len -= left; 2265 uiop->uio_offset += left; 2266 uiop->uio_resid -= left; 2267 blksiz = 0; 2268 } 2269 if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid) 2270 bigenough = 0; 2271 if (bigenough) { 2272 dp = (struct nfs_dirent *)uiop->uio_iov->iov_base; 2273 dp->nfs_ino = fileno; 2274 dp->nfs_namlen = len; 2275 dp->nfs_reclen = tlen + sizeof(struct nfs_dirent); 2276 dp->nfs_type = DT_UNKNOWN; 2277 blksiz += dp->nfs_reclen; 2278 if (blksiz == DIRBLKSIZ) 2279 blksiz = 0; 2280 uiop->uio_offset += sizeof(struct nfs_dirent); 2281 uiop->uio_resid -= sizeof(struct nfs_dirent); 2282 uiop->uio_iov->iov_base += sizeof(struct nfs_dirent); 2283 uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent); 2284 nfsm_mtouio(uiop, len); 2285 2286 /* 2287 * The uiop has advanced by nfs_dirent + len 2288 * but really needs to advance by 2289 * nfs_dirent + tlen 2290 */ 2291 cp = uiop->uio_iov->iov_base; 2292 tlen -= len; 2293 *cp = '\0'; /* null terminate */ 2294 uiop->uio_iov->iov_base += tlen; 2295 uiop->uio_iov->iov_len -= tlen; 2296 uiop->uio_offset += tlen; 2297 uiop->uio_resid -= tlen; 2298 } else { 2299 /* 2300 * NFS strings must be rounded up (nfsm_myouio 2301 * handled that in the bigenough case). 2302 */ 2303 nfsm_adv(nfsm_rndup(len)); 2304 } 2305 if (v3) { 2306 nfsm_dissect(tl, u_int32_t *, 2307 3 * NFSX_UNSIGNED); 2308 } else { 2309 nfsm_dissect(tl, u_int32_t *, 2310 2 * NFSX_UNSIGNED); 2311 } 2312 2313 /* 2314 * If we were able to accomodate the last entry, 2315 * get the cookie for the next one. Otherwise 2316 * hold-over the cookie for the one we were not 2317 * able to accomodate. 2318 */ 2319 if (bigenough) { 2320 cookie.nfsuquad[0] = *tl++; 2321 if (v3) 2322 cookie.nfsuquad[1] = *tl++; 2323 } else if (v3) { 2324 tl += 2; 2325 } else { 2326 tl++; 2327 } 2328 more_dirs = fxdr_unsigned(int, *tl); 2329 } 2330 /* 2331 * If at end of rpc data, get the eof boolean 2332 */ 2333 if (!more_dirs) { 2334 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 2335 more_dirs = (fxdr_unsigned(int, *tl) == 0); 2336 } 2337 m_freem(mrep); 2338 } 2339 /* 2340 * Fill last record, iff any, out to a multiple of DIRBLKSIZ 2341 * by increasing d_reclen for the last record. 2342 */ 2343 if (blksiz > 0) { 2344 left = DIRBLKSIZ - blksiz; 2345 dp->nfs_reclen += left; 2346 uiop->uio_iov->iov_base += left; 2347 uiop->uio_iov->iov_len -= left; 2348 uiop->uio_offset += left; 2349 uiop->uio_resid -= left; 2350 } 2351 2352 if (bigenough) { 2353 /* 2354 * We hit the end of the directory, update direofoffset. 2355 */ 2356 dnp->n_direofoffset = uiop->uio_offset; 2357 } else { 2358 /* 2359 * There is more to go, insert the link cookie so the 2360 * next block can be read. 2361 */ 2362 if (uiop->uio_resid > 0) 2363 printf("EEK! readdirrpc resid > 0\n"); 2364 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1); 2365 *cookiep = cookie; 2366 } 2367 nfsmout: 2368 return (error); 2369 } 2370 2371 /* 2372 * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc(). 2373 */ 2374 int 2375 nfs_readdirplusrpc(struct vnode *vp, struct uio *uiop) 2376 { 2377 int len, left; 2378 struct nfs_dirent *dp; 2379 u_int32_t *tl; 2380 caddr_t cp; 2381 int32_t t1, t2; 2382 struct vnode *newvp; 2383 nfsuint64 *cookiep; 2384 caddr_t bpos, dpos, cp2, dpossav1, dpossav2; 2385 struct mbuf *mreq, *mrep, *md, *mb, *mb2, *mdsav1, *mdsav2; 2386 nfsuint64 cookie; 2387 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2388 struct nfsnode *dnp = VTONFS(vp), *np; 2389 nfsfh_t *fhp; 2390 u_quad_t fileno; 2391 int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i; 2392 int attrflag, fhsize; 2393 struct namecache *ncp; 2394 struct namecache *dncp; 2395 struct nlcomponent nlc; 2396 2397 #ifndef nolint 2398 dp = NULL; 2399 #endif 2400 #ifndef DIAGNOSTIC 2401 if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) || 2402 (uiop->uio_resid & (DIRBLKSIZ - 1))) 2403 panic("nfs readdirplusrpc bad uio"); 2404 #endif 2405 /* 2406 * Obtain the namecache record for the directory so we have something 2407 * to use as a basis for creating the entries. This function will 2408 * return a held (but not locked) ncp. The ncp may be disconnected 2409 * from the tree and cannot be used for upward traversals, and the 2410 * ncp may be unnamed. Note that other unrelated operations may 2411 * cause the ncp to be named at any time. 2412 */ 2413 dncp = cache_fromdvp(vp, NULL, 0); 2414 bzero(&nlc, sizeof(nlc)); 2415 newvp = NULLVP; 2416 2417 /* 2418 * If there is no cookie, assume directory was stale. 2419 */ 2420 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0); 2421 if (cookiep) 2422 cookie = *cookiep; 2423 else 2424 return (NFSERR_BAD_COOKIE); 2425 /* 2426 * Loop around doing readdir rpc's of size nm_readdirsize 2427 * truncated to a multiple of DIRBLKSIZ. 2428 * The stopping criteria is EOF or buffer full. 2429 */ 2430 while (more_dirs && bigenough) { 2431 nfsstats.rpccnt[NFSPROC_READDIRPLUS]++; 2432 nfsm_reqhead(vp, NFSPROC_READDIRPLUS, 2433 NFSX_FH(1) + 6 * NFSX_UNSIGNED); 2434 nfsm_fhtom(vp, 1); 2435 nfsm_build(tl, u_int32_t *, 6 * NFSX_UNSIGNED); 2436 *tl++ = cookie.nfsuquad[0]; 2437 *tl++ = cookie.nfsuquad[1]; 2438 *tl++ = dnp->n_cookieverf.nfsuquad[0]; 2439 *tl++ = dnp->n_cookieverf.nfsuquad[1]; 2440 *tl++ = txdr_unsigned(nmp->nm_readdirsize); 2441 *tl = txdr_unsigned(nmp->nm_rsize); 2442 nfsm_request(vp, NFSPROC_READDIRPLUS, uiop->uio_td, nfs_vpcred(vp, ND_READ)); 2443 nfsm_postop_attr(vp, attrflag, NFS_LATTR_NOSHRINK); 2444 if (error) { 2445 m_freem(mrep); 2446 goto nfsmout; 2447 } 2448 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 2449 dnp->n_cookieverf.nfsuquad[0] = *tl++; 2450 dnp->n_cookieverf.nfsuquad[1] = *tl++; 2451 more_dirs = fxdr_unsigned(int, *tl); 2452 2453 /* loop thru the dir entries, doctoring them to 4bsd form */ 2454 while (more_dirs && bigenough) { 2455 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 2456 fileno = fxdr_hyper(tl); 2457 len = fxdr_unsigned(int, *(tl + 2)); 2458 if (len <= 0 || len > NFS_MAXNAMLEN) { 2459 error = EBADRPC; 2460 m_freem(mrep); 2461 goto nfsmout; 2462 } 2463 tlen = nfsm_rndup(len); 2464 if (tlen == len) 2465 tlen += 4; /* To ensure null termination*/ 2466 left = DIRBLKSIZ - blksiz; 2467 if ((tlen + sizeof(struct nfs_dirent)) > left) { 2468 dp->nfs_reclen += left; 2469 uiop->uio_iov->iov_base += left; 2470 uiop->uio_iov->iov_len -= left; 2471 uiop->uio_offset += left; 2472 uiop->uio_resid -= left; 2473 blksiz = 0; 2474 } 2475 if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid) 2476 bigenough = 0; 2477 if (bigenough) { 2478 dp = (struct nfs_dirent *)uiop->uio_iov->iov_base; 2479 dp->nfs_ino = fileno; 2480 dp->nfs_namlen = len; 2481 dp->nfs_reclen = tlen + sizeof(struct nfs_dirent); 2482 dp->nfs_type = DT_UNKNOWN; 2483 blksiz += dp->nfs_reclen; 2484 if (blksiz == DIRBLKSIZ) 2485 blksiz = 0; 2486 uiop->uio_offset += sizeof(struct nfs_dirent); 2487 uiop->uio_resid -= sizeof(struct nfs_dirent); 2488 uiop->uio_iov->iov_base += sizeof(struct nfs_dirent); 2489 uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent); 2490 nlc.nlc_nameptr = uiop->uio_iov->iov_base; 2491 nlc.nlc_namelen = len; 2492 nfsm_mtouio(uiop, len); 2493 cp = uiop->uio_iov->iov_base; 2494 tlen -= len; 2495 *cp = '\0'; 2496 uiop->uio_iov->iov_base += tlen; 2497 uiop->uio_iov->iov_len -= tlen; 2498 uiop->uio_offset += tlen; 2499 uiop->uio_resid -= tlen; 2500 } else 2501 nfsm_adv(nfsm_rndup(len)); 2502 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 2503 if (bigenough) { 2504 cookie.nfsuquad[0] = *tl++; 2505 cookie.nfsuquad[1] = *tl++; 2506 } else 2507 tl += 2; 2508 2509 /* 2510 * Since the attributes are before the file handle 2511 * (sigh), we must skip over the attributes and then 2512 * come back and get them. 2513 */ 2514 attrflag = fxdr_unsigned(int, *tl); 2515 if (attrflag) { 2516 dpossav1 = dpos; 2517 mdsav1 = md; 2518 nfsm_adv(NFSX_V3FATTR); 2519 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 2520 doit = fxdr_unsigned(int, *tl); 2521 if (doit) { 2522 nfsm_getfh(fhp, fhsize, 1); 2523 if (NFS_CMPFH(dnp, fhp, fhsize)) { 2524 vref(vp); 2525 newvp = vp; 2526 np = dnp; 2527 } else { 2528 error = nfs_nget(vp->v_mount, fhp, 2529 fhsize, &np); 2530 if (error) 2531 doit = 0; 2532 else 2533 newvp = NFSTOV(np); 2534 } 2535 } 2536 if (doit && bigenough) { 2537 dpossav2 = dpos; 2538 dpos = dpossav1; 2539 mdsav2 = md; 2540 md = mdsav1; 2541 nfsm_loadattr(newvp, (struct vattr *)0); 2542 dpos = dpossav2; 2543 md = mdsav2; 2544 dp->nfs_type = 2545 IFTODT(VTTOIF(np->n_vattr.va_type)); 2546 if (dncp) { 2547 printf("NFS/READDIRPLUS, ENTER %*.*s\n", 2548 nlc.nlc_namelen, nlc.nlc_namelen, 2549 nlc.nlc_nameptr); 2550 ncp = cache_nlookup(dncp, &nlc); 2551 cache_setunresolved(ncp); 2552 cache_setvp(ncp, newvp); 2553 cache_put(ncp); 2554 } else { 2555 printf("NFS/READDIRPLUS, UNABLE TO ENTER" 2556 " %*.*s\n", 2557 nlc.nlc_namelen, nlc.nlc_namelen, 2558 nlc.nlc_nameptr); 2559 } 2560 } 2561 } else { 2562 /* Just skip over the file handle */ 2563 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 2564 i = fxdr_unsigned(int, *tl); 2565 nfsm_adv(nfsm_rndup(i)); 2566 } 2567 if (newvp != NULLVP) { 2568 if (newvp == vp) 2569 vrele(newvp); 2570 else 2571 vput(newvp); 2572 newvp = NULLVP; 2573 } 2574 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 2575 more_dirs = fxdr_unsigned(int, *tl); 2576 } 2577 /* 2578 * If at end of rpc data, get the eof boolean 2579 */ 2580 if (!more_dirs) { 2581 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 2582 more_dirs = (fxdr_unsigned(int, *tl) == 0); 2583 } 2584 m_freem(mrep); 2585 } 2586 /* 2587 * Fill last record, iff any, out to a multiple of DIRBLKSIZ 2588 * by increasing d_reclen for the last record. 2589 */ 2590 if (blksiz > 0) { 2591 left = DIRBLKSIZ - blksiz; 2592 dp->nfs_reclen += left; 2593 uiop->uio_iov->iov_base += left; 2594 uiop->uio_iov->iov_len -= left; 2595 uiop->uio_offset += left; 2596 uiop->uio_resid -= left; 2597 } 2598 2599 /* 2600 * We are now either at the end of the directory or have filled the 2601 * block. 2602 */ 2603 if (bigenough) 2604 dnp->n_direofoffset = uiop->uio_offset; 2605 else { 2606 if (uiop->uio_resid > 0) 2607 printf("EEK! readdirplusrpc resid > 0\n"); 2608 cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1); 2609 *cookiep = cookie; 2610 } 2611 nfsmout: 2612 if (newvp != NULLVP) { 2613 if (newvp == vp) 2614 vrele(newvp); 2615 else 2616 vput(newvp); 2617 newvp = NULLVP; 2618 } 2619 if (dncp) 2620 cache_drop(dncp); 2621 return (error); 2622 } 2623 2624 /* 2625 * Silly rename. To make the NFS filesystem that is stateless look a little 2626 * more like the "ufs" a remove of an active vnode is translated to a rename 2627 * to a funny looking filename that is removed by nfs_inactive on the 2628 * nfsnode. There is the potential for another process on a different client 2629 * to create the same funny name between the nfs_lookitup() fails and the 2630 * nfs_rename() completes, but... 2631 */ 2632 static int 2633 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp) 2634 { 2635 struct sillyrename *sp; 2636 struct nfsnode *np; 2637 int error; 2638 2639 /* 2640 * We previously purged dvp instead of vp. I don't know why, it 2641 * completely destroys performance. We can't do it anyway with the 2642 * new VFS API since we would be breaking the namecache topology. 2643 */ 2644 cache_purge(vp); /* XXX */ 2645 np = VTONFS(vp); 2646 #ifndef DIAGNOSTIC 2647 if (vp->v_type == VDIR) 2648 panic("nfs: sillyrename dir"); 2649 #endif 2650 MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename), 2651 M_NFSREQ, M_WAITOK); 2652 sp->s_cred = crdup(cnp->cn_cred); 2653 sp->s_dvp = dvp; 2654 vref(dvp); 2655 2656 /* Fudge together a funny name */ 2657 sp->s_namlen = sprintf(sp->s_name, ".nfsA%08x4.4", (int)cnp->cn_td); 2658 2659 /* Try lookitups until we get one that isn't there */ 2660 while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2661 cnp->cn_td, (struct nfsnode **)0) == 0) { 2662 sp->s_name[4]++; 2663 if (sp->s_name[4] > 'z') { 2664 error = EINVAL; 2665 goto bad; 2666 } 2667 } 2668 error = nfs_renameit(dvp, cnp, sp); 2669 if (error) 2670 goto bad; 2671 error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred, 2672 cnp->cn_td, &np); 2673 np->n_sillyrename = sp; 2674 return (0); 2675 bad: 2676 vrele(sp->s_dvp); 2677 crfree(sp->s_cred); 2678 free((caddr_t)sp, M_NFSREQ); 2679 return (error); 2680 } 2681 2682 /* 2683 * Look up a file name and optionally either update the file handle or 2684 * allocate an nfsnode, depending on the value of npp. 2685 * npp == NULL --> just do the lookup 2686 * *npp == NULL --> allocate a new nfsnode and make sure attributes are 2687 * handled too 2688 * *npp != NULL --> update the file handle in the vnode 2689 */ 2690 static int 2691 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred, 2692 struct thread *td, struct nfsnode **npp) 2693 { 2694 u_int32_t *tl; 2695 caddr_t cp; 2696 int32_t t1, t2; 2697 struct vnode *newvp = (struct vnode *)0; 2698 struct nfsnode *np, *dnp = VTONFS(dvp); 2699 caddr_t bpos, dpos, cp2; 2700 int error = 0, fhlen, attrflag; 2701 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 2702 nfsfh_t *nfhp; 2703 int v3 = NFS_ISV3(dvp); 2704 2705 nfsstats.rpccnt[NFSPROC_LOOKUP]++; 2706 nfsm_reqhead(dvp, NFSPROC_LOOKUP, 2707 NFSX_FH(v3) + NFSX_UNSIGNED + nfsm_rndup(len)); 2708 nfsm_fhtom(dvp, v3); 2709 nfsm_strtom(name, len, NFS_MAXNAMLEN); 2710 nfsm_request(dvp, NFSPROC_LOOKUP, td, cred); 2711 if (npp && !error) { 2712 nfsm_getfh(nfhp, fhlen, v3); 2713 if (*npp) { 2714 np = *npp; 2715 if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) { 2716 free((caddr_t)np->n_fhp, M_NFSBIGFH); 2717 np->n_fhp = &np->n_fh; 2718 } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH) 2719 np->n_fhp =(nfsfh_t *)malloc(fhlen,M_NFSBIGFH,M_WAITOK); 2720 bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen); 2721 np->n_fhsize = fhlen; 2722 newvp = NFSTOV(np); 2723 } else if (NFS_CMPFH(dnp, nfhp, fhlen)) { 2724 vref(dvp); 2725 newvp = dvp; 2726 } else { 2727 error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np); 2728 if (error) { 2729 m_freem(mrep); 2730 return (error); 2731 } 2732 newvp = NFSTOV(np); 2733 } 2734 if (v3) { 2735 nfsm_postop_attr(newvp, attrflag, NFS_LATTR_NOSHRINK); 2736 if (!attrflag && *npp == NULL) { 2737 m_freem(mrep); 2738 if (newvp == dvp) 2739 vrele(newvp); 2740 else 2741 vput(newvp); 2742 return (ENOENT); 2743 } 2744 } else 2745 nfsm_loadattr(newvp, (struct vattr *)0); 2746 } 2747 m_freem(mrep); 2748 nfsmout: 2749 if (npp && *npp == NULL) { 2750 if (error) { 2751 if (newvp) { 2752 if (newvp == dvp) 2753 vrele(newvp); 2754 else 2755 vput(newvp); 2756 } 2757 } else 2758 *npp = np; 2759 } 2760 return (error); 2761 } 2762 2763 /* 2764 * Nfs Version 3 commit rpc 2765 */ 2766 int 2767 nfs_commit(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td) 2768 { 2769 caddr_t cp; 2770 u_int32_t *tl; 2771 int32_t t1, t2; 2772 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2773 caddr_t bpos, dpos, cp2; 2774 int error = 0, wccflag = NFSV3_WCCRATTR; 2775 struct mbuf *mreq, *mrep, *md, *mb, *mb2; 2776 2777 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) 2778 return (0); 2779 nfsstats.rpccnt[NFSPROC_COMMIT]++; 2780 nfsm_reqhead(vp, NFSPROC_COMMIT, NFSX_FH(1)); 2781 nfsm_fhtom(vp, 1); 2782 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 2783 txdr_hyper(offset, tl); 2784 tl += 2; 2785 *tl = txdr_unsigned(cnt); 2786 nfsm_request(vp, NFSPROC_COMMIT, td, nfs_vpcred(vp, ND_WRITE)); 2787 nfsm_wcc_data(vp, wccflag); 2788 if (!error) { 2789 nfsm_dissect(tl, u_int32_t *, NFSX_V3WRITEVERF); 2790 if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl, 2791 NFSX_V3WRITEVERF)) { 2792 bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf, 2793 NFSX_V3WRITEVERF); 2794 error = NFSERR_STALEWRITEVERF; 2795 } 2796 } 2797 m_freem(mrep); 2798 nfsmout: 2799 return (error); 2800 } 2801 2802 /* 2803 * Kludge City.. 2804 * - make nfs_bmap() essentially a no-op that does no translation 2805 * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc 2806 * (Maybe I could use the process's page mapping, but I was concerned that 2807 * Kernel Write might not be enabled and also figured copyout() would do 2808 * a lot more work than bcopy() and also it currently happens in the 2809 * context of the swapper process (2). 2810 * 2811 * nfs_bmap(struct vnode *a_vp, off_t a_loffset, struct vnode **a_vpp, 2812 * off_t *a_doffsetp, int *a_runp, int *a_runb) 2813 */ 2814 static int 2815 nfs_bmap(struct vop_bmap_args *ap) 2816 { 2817 struct vnode *vp = ap->a_vp; 2818 2819 if (ap->a_vpp != NULL) 2820 *ap->a_vpp = vp; 2821 if (ap->a_doffsetp != NULL) 2822 *ap->a_doffsetp = ap->a_loffset; 2823 if (ap->a_runp != NULL) 2824 *ap->a_runp = 0; 2825 if (ap->a_runb != NULL) 2826 *ap->a_runb = 0; 2827 return (0); 2828 } 2829 2830 /* 2831 * Strategy routine. 2832 * 2833 * For async requests when nfsiod(s) are running, queue the request by 2834 * calling nfs_asyncio(), otherwise just all nfs_doio() to do the 2835 * request. 2836 */ 2837 static int 2838 nfs_strategy(struct vop_strategy_args *ap) 2839 { 2840 struct bio *bio = ap->a_bio; 2841 struct bio *nbio; 2842 struct buf *bp = bio->bio_buf; 2843 struct thread *td; 2844 int error = 0; 2845 2846 KASSERT(!(bp->b_flags & B_DONE), 2847 ("nfs_strategy: buffer %p unexpectedly marked B_DONE", bp)); 2848 KASSERT(BUF_REFCNT(bp) > 0, 2849 ("nfs_strategy: buffer %p not locked", bp)); 2850 2851 if (bp->b_flags & B_PHYS) 2852 panic("nfs physio"); 2853 2854 if (bp->b_flags & B_ASYNC) 2855 td = NULL; 2856 else 2857 td = curthread; /* XXX */ 2858 2859 /* 2860 * We probably don't need to push an nbio any more since no 2861 * block conversion is required due to the use of 64 bit byte 2862 * offsets, but do it anyway. 2863 */ 2864 nbio = push_bio(bio); 2865 nbio->bio_offset = bio->bio_offset; 2866 2867 /* 2868 * If the op is asynchronous and an i/o daemon is waiting 2869 * queue the request, wake it up and wait for completion 2870 * otherwise just do it ourselves. 2871 */ 2872 if ((bp->b_flags & B_ASYNC) == 0 || nfs_asyncio(ap->a_vp, nbio, td)) 2873 error = nfs_doio(ap->a_vp, nbio, td); 2874 return (error); 2875 } 2876 2877 /* 2878 * Mmap a file 2879 * 2880 * NB Currently unsupported. 2881 * 2882 * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred, 2883 * struct thread *a_td) 2884 */ 2885 /* ARGSUSED */ 2886 static int 2887 nfs_mmap(struct vop_mmap_args *ap) 2888 { 2889 return (EINVAL); 2890 } 2891 2892 /* 2893 * fsync vnode op. Just call nfs_flush() with commit == 1. 2894 * 2895 * nfs_fsync(struct vnodeop_desc *a_desc, struct vnode *a_vp, 2896 * struct ucred * a_cred, int a_waitfor, struct thread *a_td) 2897 */ 2898 /* ARGSUSED */ 2899 static int 2900 nfs_fsync(struct vop_fsync_args *ap) 2901 { 2902 return (nfs_flush(ap->a_vp, ap->a_waitfor, ap->a_td, 1)); 2903 } 2904 2905 /* 2906 * Flush all the blocks associated with a vnode. Dirty NFS buffers may be 2907 * in one of two states: If B_NEEDCOMMIT is clear then the buffer contains 2908 * new NFS data which needs to be written to the server. If B_NEEDCOMMIT is 2909 * set the buffer contains data that has already been written to the server 2910 * and which now needs a commit RPC. 2911 * 2912 * If commit is 0 we only take one pass and only flush buffers containing new 2913 * dirty data. 2914 * 2915 * If commit is 1 we take two passes, issuing a commit RPC in the second 2916 * pass. 2917 * 2918 * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required 2919 * to completely flush all pending data. 2920 * 2921 * Note that the RB_SCAN code properly handles the case where the 2922 * callback might block and directly or indirectly (another thread) cause 2923 * the RB tree to change. 2924 */ 2925 2926 #ifndef NFS_COMMITBVECSIZ 2927 #define NFS_COMMITBVECSIZ 16 2928 #endif 2929 2930 struct nfs_flush_info { 2931 enum { NFI_FLUSHNEW, NFI_COMMIT } mode; 2932 struct thread *td; 2933 struct vnode *vp; 2934 int waitfor; 2935 int slpflag; 2936 int slptimeo; 2937 int loops; 2938 struct buf *bvary[NFS_COMMITBVECSIZ]; 2939 int bvsize; 2940 off_t beg_off; 2941 off_t end_off; 2942 }; 2943 2944 static int nfs_flush_bp(struct buf *bp, void *data); 2945 static int nfs_flush_docommit(struct nfs_flush_info *info, int error); 2946 2947 int 2948 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit) 2949 { 2950 struct nfsnode *np = VTONFS(vp); 2951 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 2952 struct nfs_flush_info info; 2953 int error; 2954 2955 bzero(&info, sizeof(info)); 2956 info.td = td; 2957 info.vp = vp; 2958 info.waitfor = waitfor; 2959 info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0; 2960 info.loops = 0; 2961 2962 do { 2963 /* 2964 * Flush mode 2965 */ 2966 info.mode = NFI_FLUSHNEW; 2967 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, 2968 nfs_flush_bp, &info); 2969 2970 /* 2971 * Take a second pass if committing and no error occured. 2972 * Clean up any left over collection (whether an error 2973 * occurs or not). 2974 */ 2975 if (commit && error == 0) { 2976 info.mode = NFI_COMMIT; 2977 error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL, 2978 nfs_flush_bp, &info); 2979 if (info.bvsize) 2980 error = nfs_flush_docommit(&info, error); 2981 } 2982 2983 /* 2984 * Wait for pending I/O to complete before checking whether 2985 * any further dirty buffers exist. 2986 */ 2987 while (waitfor == MNT_WAIT && vp->v_track_write.bk_active) { 2988 vp->v_track_write.bk_waitflag = 1; 2989 error = tsleep(&vp->v_track_write, 2990 info.slpflag, "nfsfsync", info.slptimeo); 2991 if (error) { 2992 /* 2993 * We have to be able to break out if this 2994 * is an 'intr' mount. 2995 */ 2996 if (nfs_sigintr(nmp, (struct nfsreq *)0, td)) { 2997 error = -EINTR; 2998 break; 2999 } 3000 3001 /* 3002 * Since we do not process pending signals, 3003 * once we get a PCATCH our tsleep() will no 3004 * longer sleep, switch to a fixed timeout 3005 * instead. 3006 */ 3007 if (info.slpflag == PCATCH) { 3008 info.slpflag = 0; 3009 info.slptimeo = 2 * hz; 3010 } 3011 error = 0; 3012 } 3013 } 3014 ++info.loops; 3015 /* 3016 * Loop if we are flushing synchronous as well as committing, 3017 * and dirty buffers are still present. Otherwise we might livelock. 3018 */ 3019 } while (waitfor == MNT_WAIT && commit && 3020 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree)); 3021 3022 /* 3023 * The callbacks have to return a negative error to terminate the 3024 * RB scan. 3025 */ 3026 if (error < 0) 3027 error = -error; 3028 3029 /* 3030 * Deal with any error collection 3031 */ 3032 if (np->n_flag & NWRITEERR) { 3033 error = np->n_error; 3034 np->n_flag &= ~NWRITEERR; 3035 } 3036 return (error); 3037 } 3038 3039 3040 static 3041 int 3042 nfs_flush_bp(struct buf *bp, void *data) 3043 { 3044 struct nfs_flush_info *info = data; 3045 off_t toff; 3046 int error; 3047 3048 error = 0; 3049 switch(info->mode) { 3050 case NFI_FLUSHNEW: 3051 crit_enter(); 3052 if (info->loops && info->waitfor == MNT_WAIT) { 3053 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT); 3054 if (error) { 3055 int lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL; 3056 if (info->slpflag & PCATCH) 3057 lkflags |= LK_PCATCH; 3058 error = BUF_TIMELOCK(bp, lkflags, "nfsfsync", 3059 info->slptimeo); 3060 } 3061 } else { 3062 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT); 3063 } 3064 if (error == 0) { 3065 KKASSERT(bp->b_vp == info->vp); 3066 3067 if ((bp->b_flags & B_DELWRI) == 0) 3068 panic("nfs_fsync: not dirty"); 3069 if (bp->b_flags & B_NEEDCOMMIT) { 3070 BUF_UNLOCK(bp); 3071 crit_exit(); 3072 break; 3073 } 3074 bremfree(bp); 3075 3076 bp->b_flags |= B_ASYNC; 3077 crit_exit(); 3078 VOP_BWRITE(bp->b_vp, bp); 3079 } else { 3080 crit_exit(); 3081 error = 0; 3082 } 3083 break; 3084 case NFI_COMMIT: 3085 /* 3086 * Only process buffers in need of a commit which we can 3087 * immediately lock. This may prevent a buffer from being 3088 * committed, but the normal flush loop will block on the 3089 * same buffer so we shouldn't get into an endless loop. 3090 */ 3091 crit_enter(); 3092 if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) != 3093 (B_DELWRI | B_NEEDCOMMIT) || 3094 BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { 3095 crit_exit(); 3096 break; 3097 } 3098 3099 KKASSERT(bp->b_vp == info->vp); 3100 bremfree(bp); 3101 3102 /* 3103 * NOTE: we are not clearing B_DONE here, so we have 3104 * to do it later on in this routine if we intend to 3105 * initiate I/O on the bp. 3106 * 3107 * Note: to avoid loopback deadlocks, we do not 3108 * assign b_runningbufspace. 3109 */ 3110 vfs_busy_pages(bp, 1); 3111 3112 info->bvary[info->bvsize] = bp; 3113 toff = bp->b_bio2.bio_offset + bp->b_dirtyoff; 3114 if (info->bvsize == 0 || toff < info->beg_off) 3115 info->beg_off = toff; 3116 toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff); 3117 if (info->bvsize == 0 || toff > info->end_off) 3118 info->end_off = toff; 3119 ++info->bvsize; 3120 if (info->bvsize == NFS_COMMITBVECSIZ) { 3121 error = nfs_flush_docommit(info, 0); 3122 KKASSERT(info->bvsize == 0); 3123 } 3124 crit_exit(); 3125 } 3126 return (error); 3127 } 3128 3129 static 3130 int 3131 nfs_flush_docommit(struct nfs_flush_info *info, int error) 3132 { 3133 struct vnode *vp; 3134 struct buf *bp; 3135 off_t bytes; 3136 int retv; 3137 int i; 3138 3139 vp = info->vp; 3140 3141 if (info->bvsize > 0) { 3142 /* 3143 * Commit data on the server, as required. Note that 3144 * nfs_commit will use the vnode's cred for the commit. 3145 * The NFSv3 commit RPC is limited to a 32 bit byte count. 3146 */ 3147 bytes = info->end_off - info->beg_off; 3148 if (bytes > 0x40000000) 3149 bytes = 0x40000000; 3150 if (error) { 3151 retv = -error; 3152 } else { 3153 retv = nfs_commit(vp, info->beg_off, 3154 (int)bytes, info->td); 3155 if (retv == NFSERR_STALEWRITEVERF) 3156 nfs_clearcommit(vp->v_mount); 3157 } 3158 3159 /* 3160 * Now, either mark the blocks I/O done or mark the 3161 * blocks dirty, depending on whether the commit 3162 * succeeded. 3163 */ 3164 for (i = 0; i < info->bvsize; ++i) { 3165 bp = info->bvary[i]; 3166 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 3167 if (retv) { 3168 /* 3169 * Error, leave B_DELWRI intact 3170 */ 3171 vfs_unbusy_pages(bp); 3172 brelse(bp); 3173 } else { 3174 /* 3175 * Success, remove B_DELWRI ( bundirty() ). 3176 * 3177 * b_dirtyoff/b_dirtyend seem to be NFS 3178 * specific. We should probably move that 3179 * into bundirty(). XXX 3180 * 3181 * We are faking an I/O write, we have to 3182 * start the transaction in order to 3183 * immediately biodone() it. 3184 */ 3185 crit_enter(); 3186 bp->b_flags |= B_ASYNC; 3187 bundirty(bp); 3188 bp->b_flags &= ~(B_READ|B_DONE|B_ERROR); 3189 bp->b_dirtyoff = bp->b_dirtyend = 0; 3190 crit_exit(); 3191 biodone(&bp->b_bio1); 3192 } 3193 } 3194 info->bvsize = 0; 3195 } 3196 return (error); 3197 } 3198 3199 /* 3200 * NFS advisory byte-level locks. 3201 * Currently unsupported. 3202 * 3203 * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl, 3204 * int a_flags) 3205 */ 3206 static int 3207 nfs_advlock(struct vop_advlock_args *ap) 3208 { 3209 struct nfsnode *np = VTONFS(ap->a_vp); 3210 3211 /* 3212 * The following kludge is to allow diskless support to work 3213 * until a real NFS lockd is implemented. Basically, just pretend 3214 * that this is a local lock. 3215 */ 3216 return (lf_advlock(ap, &(np->n_lockf), np->n_size)); 3217 } 3218 3219 /* 3220 * Print out the contents of an nfsnode. 3221 * 3222 * nfs_print(struct vnode *a_vp) 3223 */ 3224 static int 3225 nfs_print(struct vop_print_args *ap) 3226 { 3227 struct vnode *vp = ap->a_vp; 3228 struct nfsnode *np = VTONFS(vp); 3229 3230 printf("tag VT_NFS, fileid %ld fsid 0x%x", 3231 np->n_vattr.va_fileid, np->n_vattr.va_fsid); 3232 if (vp->v_type == VFIFO) 3233 fifo_printinfo(vp); 3234 printf("\n"); 3235 return (0); 3236 } 3237 3238 /* 3239 * Just call nfs_writebp() with the force argument set to 1. 3240 * 3241 * NOTE: B_DONE may or may not be set in a_bp on call. 3242 * 3243 * nfs_bwrite(struct vnode *a_bp) 3244 */ 3245 static int 3246 nfs_bwrite(struct vop_bwrite_args *ap) 3247 { 3248 return (nfs_writebp(ap->a_bp, 1, curthread)); 3249 } 3250 3251 /* 3252 * This is a clone of vn_bwrite(), except that it also handles the 3253 * B_NEEDCOMMIT flag. We set B_CACHE if this is a VMIO buffer. 3254 */ 3255 int 3256 nfs_writebp(struct buf *bp, int force, struct thread *td) 3257 { 3258 int error; 3259 3260 if (BUF_REFCNT(bp) == 0) 3261 panic("bwrite: buffer is not locked???"); 3262 3263 if (bp->b_flags & B_INVAL) { 3264 brelse(bp); 3265 return(0); 3266 } 3267 3268 bp->b_flags |= B_CACHE; 3269 3270 /* 3271 * Undirty the bp. We will redirty it later if the I/O fails. 3272 */ 3273 crit_enter(); 3274 bundirty(bp); 3275 bp->b_flags &= ~(B_READ|B_DONE|B_ERROR); 3276 crit_exit(); 3277 3278 /* 3279 * Note: to avoid loopback deadlocks, we do not 3280 * assign b_runningbufspace. 3281 */ 3282 vfs_busy_pages(bp, 1); 3283 BUF_KERNPROC(bp); 3284 3285 if (bp->b_flags & B_ASYNC) { 3286 vn_strategy(bp->b_vp, &bp->b_bio1); 3287 error = 0; 3288 } else { 3289 vn_strategy(bp->b_vp, &bp->b_bio1); 3290 error = biowait(bp); 3291 brelse(bp); 3292 } 3293 return (error); 3294 } 3295 3296 /* 3297 * nfs special file access vnode op. 3298 * Essentially just get vattr and then imitate iaccess() since the device is 3299 * local to the client. 3300 * 3301 * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred, 3302 * struct thread *a_td) 3303 */ 3304 static int 3305 nfsspec_access(struct vop_access_args *ap) 3306 { 3307 struct vattr *vap; 3308 gid_t *gp; 3309 struct ucred *cred = ap->a_cred; 3310 struct vnode *vp = ap->a_vp; 3311 mode_t mode = ap->a_mode; 3312 struct vattr vattr; 3313 int i; 3314 int error; 3315 3316 /* 3317 * Disallow write attempts on filesystems mounted read-only; 3318 * unless the file is a socket, fifo, or a block or character 3319 * device resident on the filesystem. 3320 */ 3321 if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) { 3322 switch (vp->v_type) { 3323 case VREG: 3324 case VDIR: 3325 case VLNK: 3326 return (EROFS); 3327 default: 3328 break; 3329 } 3330 } 3331 /* 3332 * If you're the super-user, 3333 * you always get access. 3334 */ 3335 if (cred->cr_uid == 0) 3336 return (0); 3337 vap = &vattr; 3338 error = VOP_GETATTR(vp, vap, ap->a_td); 3339 if (error) 3340 return (error); 3341 /* 3342 * Access check is based on only one of owner, group, public. 3343 * If not owner, then check group. If not a member of the 3344 * group, then check public access. 3345 */ 3346 if (cred->cr_uid != vap->va_uid) { 3347 mode >>= 3; 3348 gp = cred->cr_groups; 3349 for (i = 0; i < cred->cr_ngroups; i++, gp++) 3350 if (vap->va_gid == *gp) 3351 goto found; 3352 mode >>= 3; 3353 found: 3354 ; 3355 } 3356 error = (vap->va_mode & mode) == mode ? 0 : EACCES; 3357 return (error); 3358 } 3359 3360 /* 3361 * Read wrapper for special devices. 3362 * 3363 * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 3364 * struct ucred *a_cred) 3365 */ 3366 static int 3367 nfsspec_read(struct vop_read_args *ap) 3368 { 3369 struct nfsnode *np = VTONFS(ap->a_vp); 3370 3371 /* 3372 * Set access flag. 3373 */ 3374 np->n_flag |= NACC; 3375 getnanotime(&np->n_atim); 3376 return (VOCALL(spec_vnode_vops, &ap->a_head)); 3377 } 3378 3379 /* 3380 * Write wrapper for special devices. 3381 * 3382 * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 3383 * struct ucred *a_cred) 3384 */ 3385 static int 3386 nfsspec_write(struct vop_write_args *ap) 3387 { 3388 struct nfsnode *np = VTONFS(ap->a_vp); 3389 3390 /* 3391 * Set update flag. 3392 */ 3393 np->n_flag |= NUPD; 3394 getnanotime(&np->n_mtim); 3395 return (VOCALL(spec_vnode_vops, &ap->a_head)); 3396 } 3397 3398 /* 3399 * Close wrapper for special devices. 3400 * 3401 * Update the times on the nfsnode then do device close. 3402 * 3403 * nfsspec_close(struct vnode *a_vp, int a_fflag, struct ucred *a_cred, 3404 * struct thread *a_td) 3405 */ 3406 static int 3407 nfsspec_close(struct vop_close_args *ap) 3408 { 3409 struct vnode *vp = ap->a_vp; 3410 struct nfsnode *np = VTONFS(vp); 3411 struct vattr vattr; 3412 3413 if (np->n_flag & (NACC | NUPD)) { 3414 np->n_flag |= NCHG; 3415 if (vp->v_usecount == 1 && 3416 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 3417 VATTR_NULL(&vattr); 3418 if (np->n_flag & NACC) 3419 vattr.va_atime = np->n_atim; 3420 if (np->n_flag & NUPD) 3421 vattr.va_mtime = np->n_mtim; 3422 (void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE), ap->a_td); 3423 } 3424 } 3425 return (VOCALL(spec_vnode_vops, &ap->a_head)); 3426 } 3427 3428 /* 3429 * Read wrapper for fifos. 3430 * 3431 * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 3432 * struct ucred *a_cred) 3433 */ 3434 static int 3435 nfsfifo_read(struct vop_read_args *ap) 3436 { 3437 struct nfsnode *np = VTONFS(ap->a_vp); 3438 3439 /* 3440 * Set access flag. 3441 */ 3442 np->n_flag |= NACC; 3443 getnanotime(&np->n_atim); 3444 return (VOCALL(fifo_vnode_vops, &ap->a_head)); 3445 } 3446 3447 /* 3448 * Write wrapper for fifos. 3449 * 3450 * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 3451 * struct ucred *a_cred) 3452 */ 3453 static int 3454 nfsfifo_write(struct vop_write_args *ap) 3455 { 3456 struct nfsnode *np = VTONFS(ap->a_vp); 3457 3458 /* 3459 * Set update flag. 3460 */ 3461 np->n_flag |= NUPD; 3462 getnanotime(&np->n_mtim); 3463 return (VOCALL(fifo_vnode_vops, &ap->a_head)); 3464 } 3465 3466 /* 3467 * Close wrapper for fifos. 3468 * 3469 * Update the times on the nfsnode then do fifo close. 3470 * 3471 * nfsfifo_close(struct vnode *a_vp, int a_fflag, struct thread *a_td) 3472 */ 3473 static int 3474 nfsfifo_close(struct vop_close_args *ap) 3475 { 3476 struct vnode *vp = ap->a_vp; 3477 struct nfsnode *np = VTONFS(vp); 3478 struct vattr vattr; 3479 struct timespec ts; 3480 3481 if (np->n_flag & (NACC | NUPD)) { 3482 getnanotime(&ts); 3483 if (np->n_flag & NACC) 3484 np->n_atim = ts; 3485 if (np->n_flag & NUPD) 3486 np->n_mtim = ts; 3487 np->n_flag |= NCHG; 3488 if (vp->v_usecount == 1 && 3489 (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { 3490 VATTR_NULL(&vattr); 3491 if (np->n_flag & NACC) 3492 vattr.va_atime = np->n_atim; 3493 if (np->n_flag & NUPD) 3494 vattr.va_mtime = np->n_mtim; 3495 (void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE), ap->a_td); 3496 } 3497 } 3498 return (VOCALL(fifo_vnode_vops, &ap->a_head)); 3499 } 3500 3501