xref: /dflybsd-src/sys/vfs/nfs/nfs_vnops.c (revision 3e82b46c18bc48fdb3c1d60729c7661b3a0bf6bf)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_vnops.c	8.16 (Berkeley) 5/27/95
37  * $FreeBSD: src/sys/nfs/nfs_vnops.c,v 1.150.2.5 2001/12/20 19:56:28 dillon Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_vnops.c,v 1.80 2008/10/18 01:13:54 dillon Exp $
39  */
40 
41 
42 /*
43  * vnode op calls for Sun NFS version 2 and 3
44  */
45 
46 #include "opt_inet.h"
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/systm.h>
51 #include <sys/resourcevar.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/buf.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/namei.h>
58 #include <sys/nlookup.h>
59 #include <sys/socket.h>
60 #include <sys/vnode.h>
61 #include <sys/dirent.h>
62 #include <sys/fcntl.h>
63 #include <sys/lockf.h>
64 #include <sys/stat.h>
65 #include <sys/sysctl.h>
66 #include <sys/conf.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_extern.h>
70 #include <vm/vm_zone.h>
71 
72 #include <sys/buf2.h>
73 
74 #include <vfs/fifofs/fifo.h>
75 #include <vfs/ufs/dir.h>
76 
77 #undef DIRBLKSIZ
78 
79 #include "rpcv2.h"
80 #include "nfsproto.h"
81 #include "nfs.h"
82 #include "nfsmount.h"
83 #include "nfsnode.h"
84 #include "xdr_subs.h"
85 #include "nfsm_subs.h"
86 
87 #include <net/if.h>
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 
91 #include <sys/thread2.h>
92 
93 /* Defs */
94 #define	TRUE	1
95 #define	FALSE	0
96 
97 static int	nfsspec_read (struct vop_read_args *);
98 static int	nfsspec_write (struct vop_write_args *);
99 static int	nfsfifo_read (struct vop_read_args *);
100 static int	nfsfifo_write (struct vop_write_args *);
101 static int	nfsspec_close (struct vop_close_args *);
102 static int	nfsfifo_close (struct vop_close_args *);
103 #define nfs_poll vop_nopoll
104 static int	nfs_setattrrpc (struct vnode *,struct vattr *,struct ucred *,struct thread *);
105 static	int	nfs_lookup (struct vop_old_lookup_args *);
106 static	int	nfs_create (struct vop_old_create_args *);
107 static	int	nfs_mknod (struct vop_old_mknod_args *);
108 static	int	nfs_open (struct vop_open_args *);
109 static	int	nfs_close (struct vop_close_args *);
110 static	int	nfs_access (struct vop_access_args *);
111 static	int	nfs_getattr (struct vop_getattr_args *);
112 static	int	nfs_setattr (struct vop_setattr_args *);
113 static	int	nfs_read (struct vop_read_args *);
114 static	int	nfs_mmap (struct vop_mmap_args *);
115 static	int	nfs_fsync (struct vop_fsync_args *);
116 static	int	nfs_remove (struct vop_old_remove_args *);
117 static	int	nfs_link (struct vop_old_link_args *);
118 static	int	nfs_rename (struct vop_old_rename_args *);
119 static	int	nfs_mkdir (struct vop_old_mkdir_args *);
120 static	int	nfs_rmdir (struct vop_old_rmdir_args *);
121 static	int	nfs_symlink (struct vop_old_symlink_args *);
122 static	int	nfs_readdir (struct vop_readdir_args *);
123 static	int	nfs_bmap (struct vop_bmap_args *);
124 static	int	nfs_strategy (struct vop_strategy_args *);
125 static	int	nfs_lookitup (struct vnode *, const char *, int,
126 			struct ucred *, struct thread *, struct nfsnode **);
127 static	int	nfs_sillyrename (struct vnode *,struct vnode *,struct componentname *);
128 static int	nfsspec_access (struct vop_access_args *);
129 static int	nfs_readlink (struct vop_readlink_args *);
130 static int	nfs_print (struct vop_print_args *);
131 static int	nfs_advlock (struct vop_advlock_args *);
132 
133 static	int	nfs_nresolve (struct vop_nresolve_args *);
134 /*
135  * Global vfs data structures for nfs
136  */
137 struct vop_ops nfsv2_vnode_vops = {
138 	.vop_default =		vop_defaultop,
139 	.vop_access =		nfs_access,
140 	.vop_advlock =		nfs_advlock,
141 	.vop_bmap =		nfs_bmap,
142 	.vop_close =		nfs_close,
143 	.vop_old_create =	nfs_create,
144 	.vop_fsync =		nfs_fsync,
145 	.vop_getattr =		nfs_getattr,
146 	.vop_getpages =		nfs_getpages,
147 	.vop_putpages =		nfs_putpages,
148 	.vop_inactive =		nfs_inactive,
149 	.vop_old_link =		nfs_link,
150 	.vop_old_lookup =	nfs_lookup,
151 	.vop_old_mkdir =	nfs_mkdir,
152 	.vop_old_mknod =	nfs_mknod,
153 	.vop_mmap =		nfs_mmap,
154 	.vop_open =		nfs_open,
155 	.vop_poll =		nfs_poll,
156 	.vop_print =		nfs_print,
157 	.vop_read =		nfs_read,
158 	.vop_readdir =		nfs_readdir,
159 	.vop_readlink =		nfs_readlink,
160 	.vop_reclaim =		nfs_reclaim,
161 	.vop_old_remove =	nfs_remove,
162 	.vop_old_rename =	nfs_rename,
163 	.vop_old_rmdir =	nfs_rmdir,
164 	.vop_setattr =		nfs_setattr,
165 	.vop_strategy =		nfs_strategy,
166 	.vop_old_symlink =	nfs_symlink,
167 	.vop_write =		nfs_write,
168 	.vop_nresolve =		nfs_nresolve
169 };
170 
171 /*
172  * Special device vnode ops
173  */
174 struct vop_ops nfsv2_spec_vops = {
175 	.vop_default =		spec_vnoperate,
176 	.vop_access =		nfsspec_access,
177 	.vop_close =		nfsspec_close,
178 	.vop_fsync =		nfs_fsync,
179 	.vop_getattr =		nfs_getattr,
180 	.vop_inactive =		nfs_inactive,
181 	.vop_print =		nfs_print,
182 	.vop_read =		nfsspec_read,
183 	.vop_reclaim =		nfs_reclaim,
184 	.vop_setattr =		nfs_setattr,
185 	.vop_write =		nfsspec_write
186 };
187 
188 struct vop_ops nfsv2_fifo_vops = {
189 	.vop_default =		fifo_vnoperate,
190 	.vop_access =		nfsspec_access,
191 	.vop_close =		nfsfifo_close,
192 	.vop_fsync =		nfs_fsync,
193 	.vop_getattr =		nfs_getattr,
194 	.vop_inactive =		nfs_inactive,
195 	.vop_print =		nfs_print,
196 	.vop_read =		nfsfifo_read,
197 	.vop_reclaim =		nfs_reclaim,
198 	.vop_setattr =		nfs_setattr,
199 	.vop_write =		nfsfifo_write
200 };
201 
202 static int	nfs_mknodrpc (struct vnode *dvp, struct vnode **vpp,
203 				  struct componentname *cnp,
204 				  struct vattr *vap);
205 static int	nfs_removerpc (struct vnode *dvp, const char *name,
206 				   int namelen,
207 				   struct ucred *cred, struct thread *td);
208 static int	nfs_renamerpc (struct vnode *fdvp, const char *fnameptr,
209 				   int fnamelen, struct vnode *tdvp,
210 				   const char *tnameptr, int tnamelen,
211 				   struct ucred *cred, struct thread *td);
212 static int	nfs_renameit (struct vnode *sdvp,
213 				  struct componentname *scnp,
214 				  struct sillyrename *sp);
215 
216 SYSCTL_DECL(_vfs_nfs);
217 
218 static int nfs_flush_on_rename = 1;
219 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_rename, CTLFLAG_RW,
220 	   &nfs_flush_on_rename, 0, "flush fvp prior to rename");
221 static int nfs_flush_on_hlink = 0;
222 SYSCTL_INT(_vfs_nfs, OID_AUTO, flush_on_hlink, CTLFLAG_RW,
223 	   &nfs_flush_on_hlink, 0, "flush fvp prior to hard link");
224 
225 static int	nfsaccess_cache_timeout = NFS_DEFATTRTIMO;
226 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_timeout, CTLFLAG_RW,
227 	   &nfsaccess_cache_timeout, 0, "NFS ACCESS cache timeout");
228 
229 static int	nfsneg_cache_timeout = NFS_MINATTRTIMO;
230 SYSCTL_INT(_vfs_nfs, OID_AUTO, neg_cache_timeout, CTLFLAG_RW,
231 	   &nfsneg_cache_timeout, 0, "NFS NEGATIVE NAMECACHE timeout");
232 
233 static int	nfspos_cache_timeout = NFS_MINATTRTIMO;
234 SYSCTL_INT(_vfs_nfs, OID_AUTO, pos_cache_timeout, CTLFLAG_RW,
235 	   &nfspos_cache_timeout, 0, "NFS POSITIVE NAMECACHE timeout");
236 
237 static int	nfsv3_commit_on_close = 0;
238 SYSCTL_INT(_vfs_nfs, OID_AUTO, nfsv3_commit_on_close, CTLFLAG_RW,
239 	   &nfsv3_commit_on_close, 0, "write+commit on close, else only write");
240 #if 0
241 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_hits, CTLFLAG_RD,
242 	   &nfsstats.accesscache_hits, 0, "NFS ACCESS cache hit count");
243 
244 SYSCTL_INT(_vfs_nfs, OID_AUTO, access_cache_misses, CTLFLAG_RD,
245 	   &nfsstats.accesscache_misses, 0, "NFS ACCESS cache miss count");
246 #endif
247 
248 #define	NFSV3ACCESS_ALL (NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY		\
249 			 | NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE	\
250 			 | NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP)
251 static int
252 nfs3_access_otw(struct vnode *vp, int wmode,
253 		struct thread *td, struct ucred *cred)
254 {
255 	struct nfsnode *np = VTONFS(vp);
256 	int attrflag;
257 	int error = 0;
258 	u_int32_t *tl;
259 	u_int32_t rmode;
260 	struct nfsm_info info;
261 
262 	info.mrep = NULL;
263 	info.v3 = 1;
264 
265 	nfsstats.rpccnt[NFSPROC_ACCESS]++;
266 	nfsm_reqhead(&info, vp, NFSPROC_ACCESS,
267 		     NFSX_FH(info.v3) + NFSX_UNSIGNED);
268 	ERROROUT(nfsm_fhtom(&info, vp));
269 	tl = nfsm_build(&info, NFSX_UNSIGNED);
270 	*tl = txdr_unsigned(wmode);
271 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_ACCESS, td, cred, &error));
272 	ERROROUT(nfsm_postop_attr(&info, vp, &attrflag, NFS_LATTR_NOSHRINK));
273 	if (error == 0) {
274 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
275 		rmode = fxdr_unsigned(u_int32_t, *tl);
276 		np->n_mode = rmode;
277 		np->n_modeuid = cred->cr_uid;
278 		np->n_modestamp = mycpu->gd_time_seconds;
279 	}
280 	m_freem(info.mrep);
281 	info.mrep = NULL;
282 nfsmout:
283 	return error;
284 }
285 
286 /*
287  * nfs access vnode op.
288  * For nfs version 2, just return ok. File accesses may fail later.
289  * For nfs version 3, use the access rpc to check accessibility. If file modes
290  * are changed on the server, accesses might still fail later.
291  *
292  * nfs_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
293  */
294 static int
295 nfs_access(struct vop_access_args *ap)
296 {
297 	struct vnode *vp = ap->a_vp;
298 	thread_t td = curthread;
299 	int error = 0;
300 	u_int32_t mode, wmode;
301 	struct nfsnode *np = VTONFS(vp);
302 	int v3 = NFS_ISV3(vp);
303 
304 	/*
305 	 * Disallow write attempts on filesystems mounted read-only;
306 	 * unless the file is a socket, fifo, or a block or character
307 	 * device resident on the filesystem.
308 	 */
309 	if ((ap->a_mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
310 		switch (vp->v_type) {
311 		case VREG:
312 		case VDIR:
313 		case VLNK:
314 			return (EROFS);
315 		default:
316 			break;
317 		}
318 	}
319 	/*
320 	 * For nfs v3, check to see if we have done this recently, and if
321 	 * so return our cached result instead of making an ACCESS call.
322 	 * If not, do an access rpc, otherwise you are stuck emulating
323 	 * ufs_access() locally using the vattr. This may not be correct,
324 	 * since the server may apply other access criteria such as
325 	 * client uid-->server uid mapping that we do not know about.
326 	 */
327 	if (v3) {
328 		if (ap->a_mode & VREAD)
329 			mode = NFSV3ACCESS_READ;
330 		else
331 			mode = 0;
332 		if (vp->v_type != VDIR) {
333 			if (ap->a_mode & VWRITE)
334 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND);
335 			if (ap->a_mode & VEXEC)
336 				mode |= NFSV3ACCESS_EXECUTE;
337 		} else {
338 			if (ap->a_mode & VWRITE)
339 				mode |= (NFSV3ACCESS_MODIFY | NFSV3ACCESS_EXTEND |
340 					 NFSV3ACCESS_DELETE);
341 			if (ap->a_mode & VEXEC)
342 				mode |= NFSV3ACCESS_LOOKUP;
343 		}
344 		/* XXX safety belt, only make blanket request if caching */
345 		if (nfsaccess_cache_timeout > 0) {
346 			wmode = NFSV3ACCESS_READ | NFSV3ACCESS_MODIFY |
347 				NFSV3ACCESS_EXTEND | NFSV3ACCESS_EXECUTE |
348 				NFSV3ACCESS_DELETE | NFSV3ACCESS_LOOKUP;
349 		} else {
350 			wmode = mode;
351 		}
352 
353 		/*
354 		 * Does our cached result allow us to give a definite yes to
355 		 * this request?
356 		 */
357 		if (np->n_modestamp &&
358 		   (mycpu->gd_time_seconds < (np->n_modestamp + nfsaccess_cache_timeout)) &&
359 		   (ap->a_cred->cr_uid == np->n_modeuid) &&
360 		   ((np->n_mode & mode) == mode)) {
361 			nfsstats.accesscache_hits++;
362 		} else {
363 			/*
364 			 * Either a no, or a don't know.  Go to the wire.
365 			 */
366 			nfsstats.accesscache_misses++;
367 		        error = nfs3_access_otw(vp, wmode, td, ap->a_cred);
368 			if (!error) {
369 				if ((np->n_mode & mode) != mode) {
370 					error = EACCES;
371 				}
372 			}
373 		}
374 	} else {
375 		if ((error = nfsspec_access(ap)) != 0)
376 			return (error);
377 
378 		/*
379 		 * Attempt to prevent a mapped root from accessing a file
380 		 * which it shouldn't.  We try to read a byte from the file
381 		 * if the user is root and the file is not zero length.
382 		 * After calling nfsspec_access, we should have the correct
383 		 * file size cached.
384 		 */
385 		if (ap->a_cred->cr_uid == 0 && (ap->a_mode & VREAD)
386 		    && VTONFS(vp)->n_size > 0) {
387 			struct iovec aiov;
388 			struct uio auio;
389 			char buf[1];
390 
391 			aiov.iov_base = buf;
392 			aiov.iov_len = 1;
393 			auio.uio_iov = &aiov;
394 			auio.uio_iovcnt = 1;
395 			auio.uio_offset = 0;
396 			auio.uio_resid = 1;
397 			auio.uio_segflg = UIO_SYSSPACE;
398 			auio.uio_rw = UIO_READ;
399 			auio.uio_td = td;
400 
401 			if (vp->v_type == VREG) {
402 				error = nfs_readrpc_uio(vp, &auio);
403 			} else if (vp->v_type == VDIR) {
404 				char* bp;
405 				bp = kmalloc(NFS_DIRBLKSIZ, M_TEMP, M_WAITOK);
406 				aiov.iov_base = bp;
407 				aiov.iov_len = auio.uio_resid = NFS_DIRBLKSIZ;
408 				error = nfs_readdirrpc_uio(vp, &auio);
409 				kfree(bp, M_TEMP);
410 			} else if (vp->v_type == VLNK) {
411 				error = nfs_readlinkrpc_uio(vp, &auio);
412 			} else {
413 				error = EACCES;
414 			}
415 		}
416 	}
417 	/*
418 	 * [re]record creds for reading and/or writing if access
419 	 * was granted.  Assume the NFS server will grant read access
420 	 * for execute requests.
421 	 */
422 	if (error == 0) {
423 		if ((ap->a_mode & (VREAD|VEXEC)) && ap->a_cred != np->n_rucred) {
424 			crhold(ap->a_cred);
425 			if (np->n_rucred)
426 				crfree(np->n_rucred);
427 			np->n_rucred = ap->a_cred;
428 		}
429 		if ((ap->a_mode & VWRITE) && ap->a_cred != np->n_wucred) {
430 			crhold(ap->a_cred);
431 			if (np->n_wucred)
432 				crfree(np->n_wucred);
433 			np->n_wucred = ap->a_cred;
434 		}
435 	}
436 	return(error);
437 }
438 
439 /*
440  * nfs open vnode op
441  * Check to see if the type is ok
442  * and that deletion is not in progress.
443  * For paged in text files, you will need to flush the page cache
444  * if consistency is lost.
445  *
446  * nfs_open(struct vnode *a_vp, int a_mode, struct ucred *a_cred,
447  *	    struct file *a_fp)
448  */
449 /* ARGSUSED */
450 static int
451 nfs_open(struct vop_open_args *ap)
452 {
453 	struct vnode *vp = ap->a_vp;
454 	struct nfsnode *np = VTONFS(vp);
455 	struct vattr vattr;
456 	int error;
457 
458 	if (vp->v_type != VREG && vp->v_type != VDIR && vp->v_type != VLNK) {
459 #ifdef DIAGNOSTIC
460 		kprintf("open eacces vtyp=%d\n",vp->v_type);
461 #endif
462 		return (EOPNOTSUPP);
463 	}
464 
465 	/*
466 	 * Save valid creds for reading and writing for later RPCs.
467 	 */
468 	if ((ap->a_mode & FREAD) && ap->a_cred != np->n_rucred) {
469 		crhold(ap->a_cred);
470 		if (np->n_rucred)
471 			crfree(np->n_rucred);
472 		np->n_rucred = ap->a_cred;
473 	}
474 	if ((ap->a_mode & FWRITE) && ap->a_cred != np->n_wucred) {
475 		crhold(ap->a_cred);
476 		if (np->n_wucred)
477 			crfree(np->n_wucred);
478 		np->n_wucred = ap->a_cred;
479 	}
480 
481 	/*
482 	 * Clear the attribute cache only if opening with write access.  It
483 	 * is unclear if we should do this at all here, but we certainly
484 	 * should not clear the cache unconditionally simply because a file
485 	 * is being opened.
486 	 */
487 	if (ap->a_mode & FWRITE)
488 		np->n_attrstamp = 0;
489 
490 	/*
491 	 * For normal NFS, reconcile changes made locally verses
492 	 * changes made remotely.  Note that VOP_GETATTR only goes
493 	 * to the wire if the cached attribute has timed out or been
494 	 * cleared.
495 	 *
496 	 * If local modifications have been made clear the attribute
497 	 * cache to force an attribute and modified time check.  If
498 	 * GETATTR detects that the file has been changed by someone
499 	 * other then us it will set NRMODIFIED.
500 	 *
501 	 * If we are opening a directory and local changes have been
502 	 * made we have to invalidate the cache in order to ensure
503 	 * that we get the most up-to-date information from the
504 	 * server.  XXX
505 	 */
506 	if (np->n_flag & NLMODIFIED) {
507 		np->n_attrstamp = 0;
508 		if (vp->v_type == VDIR) {
509 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
510 			if (error == EINTR)
511 				return (error);
512 			nfs_invaldir(vp);
513 		}
514 	}
515 	error = VOP_GETATTR(vp, &vattr);
516 	if (error)
517 		return (error);
518 	if (np->n_flag & NRMODIFIED) {
519 		if (vp->v_type == VDIR)
520 			nfs_invaldir(vp);
521 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
522 		if (error == EINTR)
523 			return (error);
524 		np->n_flag &= ~NRMODIFIED;
525 	}
526 
527 	return (vop_stdopen(ap));
528 }
529 
530 /*
531  * nfs close vnode op
532  * What an NFS client should do upon close after writing is a debatable issue.
533  * Most NFS clients push delayed writes to the server upon close, basically for
534  * two reasons:
535  * 1 - So that any write errors may be reported back to the client process
536  *     doing the close system call. By far the two most likely errors are
537  *     NFSERR_NOSPC and NFSERR_DQUOT to indicate space allocation failure.
538  * 2 - To put a worst case upper bound on cache inconsistency between
539  *     multiple clients for the file.
540  * There is also a consistency problem for Version 2 of the protocol w.r.t.
541  * not being able to tell if other clients are writing a file concurrently,
542  * since there is no way of knowing if the changed modify time in the reply
543  * is only due to the write for this client.
544  * (NFS Version 3 provides weak cache consistency data in the reply that
545  *  should be sufficient to detect and handle this case.)
546  *
547  * The current code does the following:
548  * for NFS Version 2 - play it safe and flush/invalidate all dirty buffers
549  * for NFS Version 3 - flush dirty buffers to the server but don't invalidate
550  *                     or commit them (this satisfies 1 and 2 except for the
551  *                     case where the server crashes after this close but
552  *                     before the commit RPC, which is felt to be "good
553  *                     enough". Changing the last argument to nfs_flush() to
554  *                     a 1 would force a commit operation, if it is felt a
555  *                     commit is necessary now.
556  * for NQNFS         - do nothing now, since 2 is dealt with via leases and
557  *                     1 should be dealt with via an fsync() system call for
558  *                     cases where write errors are important.
559  *
560  * nfs_close(struct vnode *a_vp, int a_fflag)
561  */
562 /* ARGSUSED */
563 static int
564 nfs_close(struct vop_close_args *ap)
565 {
566 	struct vnode *vp = ap->a_vp;
567 	struct nfsnode *np = VTONFS(vp);
568 	int error = 0;
569 	thread_t td = curthread;
570 
571 	if (vp->v_type == VREG) {
572 	    if (np->n_flag & NLMODIFIED) {
573 		if (NFS_ISV3(vp)) {
574 		    /*
575 		     * Under NFSv3 we have dirty buffers to dispose of.  We
576 		     * must flush them to the NFS server.  We have the option
577 		     * of waiting all the way through the commit rpc or just
578 		     * waiting for the initial write.  The default is to only
579 		     * wait through the initial write so the data is in the
580 		     * server's cache, which is roughly similar to the state
581 		     * a standard disk subsystem leaves the file in on close().
582 		     *
583 		     * We cannot clear the NLMODIFIED bit in np->n_flag due to
584 		     * potential races with other processes, and certainly
585 		     * cannot clear it if we don't commit.
586 		     */
587 		    int cm = nfsv3_commit_on_close ? 1 : 0;
588 		    error = nfs_flush(vp, MNT_WAIT, td, cm);
589 		    /* np->n_flag &= ~NLMODIFIED; */
590 		} else {
591 		    error = nfs_vinvalbuf(vp, V_SAVE, 1);
592 		}
593 		np->n_attrstamp = 0;
594 	    }
595 	    if (np->n_flag & NWRITEERR) {
596 		np->n_flag &= ~NWRITEERR;
597 		error = np->n_error;
598 	    }
599 	}
600 	vop_stdclose(ap);
601 	return (error);
602 }
603 
604 /*
605  * nfs getattr call from vfs.
606  *
607  * nfs_getattr(struct vnode *a_vp, struct vattr *a_vap)
608  */
609 static int
610 nfs_getattr(struct vop_getattr_args *ap)
611 {
612 	struct vnode *vp = ap->a_vp;
613 	struct nfsnode *np = VTONFS(vp);
614 	int error = 0;
615 	thread_t td = curthread;
616 	struct nfsm_info info;
617 
618 	info.mrep = NULL;
619 	info.v3 = NFS_ISV3(vp);
620 
621 	/*
622 	 * Update local times for special files.
623 	 */
624 	if (np->n_flag & (NACC | NUPD))
625 		np->n_flag |= NCHG;
626 	/*
627 	 * First look in the cache.
628 	 */
629 	if (nfs_getattrcache(vp, ap->a_vap) == 0)
630 		return (0);
631 
632 	if (info.v3 && nfsaccess_cache_timeout > 0) {
633 		nfsstats.accesscache_misses++;
634 		nfs3_access_otw(vp, NFSV3ACCESS_ALL, td, nfs_vpcred(vp, ND_CHECK));
635 		if (nfs_getattrcache(vp, ap->a_vap) == 0)
636 			return (0);
637 	}
638 
639 	nfsstats.rpccnt[NFSPROC_GETATTR]++;
640 	nfsm_reqhead(&info, vp, NFSPROC_GETATTR, NFSX_FH(info.v3));
641 	ERROROUT(nfsm_fhtom(&info, vp));
642 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_GETATTR, td,
643 				nfs_vpcred(vp, ND_CHECK), &error));
644 	if (error == 0) {
645 		ERROROUT(nfsm_loadattr(&info, vp, ap->a_vap));
646 	}
647 	m_freem(info.mrep);
648 	info.mrep = NULL;
649 nfsmout:
650 	return (error);
651 }
652 
653 /*
654  * nfs setattr call.
655  *
656  * nfs_setattr(struct vnode *a_vp, struct vattr *a_vap, struct ucred *a_cred)
657  */
658 static int
659 nfs_setattr(struct vop_setattr_args *ap)
660 {
661 	struct vnode *vp = ap->a_vp;
662 	struct nfsnode *np = VTONFS(vp);
663 	struct vattr *vap = ap->a_vap;
664 	int error = 0;
665 	u_quad_t tsize;
666 	thread_t td = curthread;
667 
668 #ifndef nolint
669 	tsize = (u_quad_t)0;
670 #endif
671 
672 	/*
673 	 * Setting of flags is not supported.
674 	 */
675 	if (vap->va_flags != VNOVAL)
676 		return (EOPNOTSUPP);
677 
678 	/*
679 	 * Disallow write attempts if the filesystem is mounted read-only.
680 	 */
681   	if ((vap->va_flags != VNOVAL || vap->va_uid != (uid_t)VNOVAL ||
682 	    vap->va_gid != (gid_t)VNOVAL || vap->va_atime.tv_sec != VNOVAL ||
683 	    vap->va_mtime.tv_sec != VNOVAL || vap->va_mode != (mode_t)VNOVAL) &&
684 	    (vp->v_mount->mnt_flag & MNT_RDONLY))
685 		return (EROFS);
686 
687 	if (vap->va_size != VNOVAL) {
688 		/*
689 		 * truncation requested
690 		 */
691  		switch (vp->v_type) {
692  		case VDIR:
693  			return (EISDIR);
694  		case VCHR:
695  		case VBLK:
696  		case VSOCK:
697  		case VFIFO:
698 			if (vap->va_mtime.tv_sec == VNOVAL &&
699 			    vap->va_atime.tv_sec == VNOVAL &&
700 			    vap->va_mode == (mode_t)VNOVAL &&
701 			    vap->va_uid == (uid_t)VNOVAL &&
702 			    vap->va_gid == (gid_t)VNOVAL)
703 				return (0);
704  			vap->va_size = VNOVAL;
705  			break;
706  		default:
707 			/*
708 			 * Disallow write attempts if the filesystem is
709 			 * mounted read-only.
710 			 */
711 			if (vp->v_mount->mnt_flag & MNT_RDONLY)
712 				return (EROFS);
713 
714 			/*
715 			 * This is nasty.  The RPCs we send to flush pending
716 			 * data often return attribute information which is
717 			 * cached via a callback to nfs_loadattrcache(), which
718 			 * has the effect of changing our notion of the file
719 			 * size.  Due to flushed appends and other operations
720 			 * the file size can be set to virtually anything,
721 			 * including values that do not match either the old
722 			 * or intended file size.
723 			 *
724 			 * When this condition is detected we must loop to
725 			 * try the operation again.  Hopefully no more
726 			 * flushing is required on the loop so it works the
727 			 * second time around.  THIS CASE ALMOST ALWAYS
728 			 * HAPPENS!
729 			 */
730 			tsize = np->n_size;
731 again:
732 			error = nfs_meta_setsize(vp, td, vap->va_size);
733 
734  			if (np->n_flag & NLMODIFIED) {
735  			    if (vap->va_size == 0)
736  				error = nfs_vinvalbuf(vp, 0, 1);
737  			    else
738  				error = nfs_vinvalbuf(vp, V_SAVE, 1);
739  			}
740 			/*
741 			 * note: this loop case almost always happens at
742 			 * least once per truncation.
743 			 */
744 			if (error == 0 && np->n_size != vap->va_size)
745 				goto again;
746 			np->n_vattr.va_size = vap->va_size;
747 			break;
748 		}
749 	} else if ((np->n_flag & NLMODIFIED) && vp->v_type == VREG) {
750 		/*
751 		 * What to do.  If we are modifying the mtime we lose
752 		 * mtime detection of changes made by the server or other
753 		 * clients.  But programs like rsync/rdist/cpdup are going
754 		 * to call utimes a lot.  We don't want to piecemeal sync.
755 		 *
756 		 * For now sync if any prior remote changes were detected,
757 		 * but allow us to lose track of remote changes made during
758 		 * the utimes operation.
759 		 */
760 		if (np->n_flag & NRMODIFIED)
761 			error = nfs_vinvalbuf(vp, V_SAVE, 1);
762 		if (error == EINTR)
763 			return (error);
764 		if (error == 0) {
765 			if (vap->va_mtime.tv_sec != VNOVAL) {
766 				np->n_mtime = vap->va_mtime.tv_sec;
767 			}
768 		}
769 	}
770 	error = nfs_setattrrpc(vp, vap, ap->a_cred, td);
771 
772 	/*
773 	 * Sanity check if a truncation was issued.  This should only occur
774 	 * if multiple processes are racing on the same file.
775 	 */
776 	if (error == 0 && vap->va_size != VNOVAL &&
777 	    np->n_size != vap->va_size) {
778 		kprintf("NFS ftruncate: server disagrees on the file size: "
779 			"%lld/%lld/%lld\n",
780 			(long long)tsize,
781 			(long long)vap->va_size,
782 			(long long)np->n_size);
783 		goto again;
784 	}
785 	if (error && vap->va_size != VNOVAL) {
786 		np->n_size = np->n_vattr.va_size = tsize;
787 		vnode_pager_setsize(vp, np->n_size);
788 	}
789 	return (error);
790 }
791 
792 /*
793  * Do an nfs setattr rpc.
794  */
795 static int
796 nfs_setattrrpc(struct vnode *vp, struct vattr *vap,
797 	       struct ucred *cred, struct thread *td)
798 {
799 	struct nfsv2_sattr *sp;
800 	struct nfsnode *np = VTONFS(vp);
801 	u_int32_t *tl;
802 	int error = 0, wccflag = NFSV3_WCCRATTR;
803 	struct nfsm_info info;
804 
805 	info.mrep = NULL;
806 	info.v3 = NFS_ISV3(vp);
807 
808 	nfsstats.rpccnt[NFSPROC_SETATTR]++;
809 	nfsm_reqhead(&info, vp, NFSPROC_SETATTR,
810 		     NFSX_FH(info.v3) + NFSX_SATTR(info.v3));
811 	ERROROUT(nfsm_fhtom(&info, vp));
812 	if (info.v3) {
813 		nfsm_v3attrbuild(&info, vap, TRUE);
814 		tl = nfsm_build(&info, NFSX_UNSIGNED);
815 		*tl = nfs_false;
816 	} else {
817 		sp = nfsm_build(&info, NFSX_V2SATTR);
818 		if (vap->va_mode == (mode_t)VNOVAL)
819 			sp->sa_mode = nfs_xdrneg1;
820 		else
821 			sp->sa_mode = vtonfsv2_mode(vp->v_type, vap->va_mode);
822 		if (vap->va_uid == (uid_t)VNOVAL)
823 			sp->sa_uid = nfs_xdrneg1;
824 		else
825 			sp->sa_uid = txdr_unsigned(vap->va_uid);
826 		if (vap->va_gid == (gid_t)VNOVAL)
827 			sp->sa_gid = nfs_xdrneg1;
828 		else
829 			sp->sa_gid = txdr_unsigned(vap->va_gid);
830 		sp->sa_size = txdr_unsigned(vap->va_size);
831 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
832 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
833 	}
834 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_SETATTR, td, cred, &error));
835 	if (info.v3) {
836 		np->n_modestamp = 0;
837 		ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
838 	} else {
839 		ERROROUT(nfsm_loadattr(&info, vp, NULL));
840 	}
841 	m_freem(info.mrep);
842 	info.mrep = NULL;
843 nfsmout:
844 	return (error);
845 }
846 
847 static
848 void
849 nfs_cache_setvp(struct nchandle *nch, struct vnode *vp, int nctimeout)
850 {
851 	if (nctimeout == 0)
852 		nctimeout = 1;
853 	else
854 		nctimeout *= hz;
855 	cache_setvp(nch, vp);
856 	cache_settimeout(nch, nctimeout);
857 }
858 
859 /*
860  * NEW API CALL - replaces nfs_lookup().  However, we cannot remove
861  * nfs_lookup() until all remaining new api calls are implemented.
862  *
863  * Resolve a namecache entry.  This function is passed a locked ncp and
864  * must call nfs_cache_setvp() on it as appropriate to resolve the entry.
865  */
866 static int
867 nfs_nresolve(struct vop_nresolve_args *ap)
868 {
869 	struct thread *td = curthread;
870 	struct namecache *ncp;
871 	struct ucred *cred;
872 	struct nfsnode *np;
873 	struct vnode *dvp;
874 	struct vnode *nvp;
875 	nfsfh_t *fhp;
876 	int attrflag;
877 	int fhsize;
878 	int error;
879 	int tmp_error;
880 	int len;
881 	struct nfsm_info info;
882 
883 	cred = ap->a_cred;
884 	dvp = ap->a_dvp;
885 
886 	if ((error = vget(dvp, LK_SHARED)) != 0)
887 		return (error);
888 
889 	info.mrep = NULL;
890 	info.v3 = NFS_ISV3(dvp);
891 
892 	nvp = NULL;
893 	nfsstats.lookupcache_misses++;
894 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
895 	ncp = ap->a_nch->ncp;
896 	len = ncp->nc_nlen;
897 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
898 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
899 	ERROROUT(nfsm_fhtom(&info, dvp));
900 	ERROROUT(nfsm_strtom(&info, ncp->nc_name, len, NFS_MAXNAMLEN));
901 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td,
902 				ap->a_cred, &error));
903 	if (error) {
904 		/*
905 		 * Cache negatve lookups to reduce NFS traffic, but use
906 		 * a fast timeout.  Otherwise use a timeout of 1 tick.
907 		 * XXX we should add a namecache flag for no-caching
908 		 * to uncache the negative hit as soon as possible, but
909 		 * we cannot simply destroy the entry because it is used
910 		 * as a placeholder by the caller.
911 		 *
912 		 * The refactored nfs code will overwrite a non-zero error
913 		 * with 0 when we use ERROROUT(), so don't here.
914 		 */
915 		if (error == ENOENT)
916 			nfs_cache_setvp(ap->a_nch, NULL, nfsneg_cache_timeout);
917 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
918 					     NFS_LATTR_NOSHRINK);
919 		if (tmp_error) {
920 			error = tmp_error;
921 			goto nfsmout;
922 		}
923 		m_freem(info.mrep);
924 		info.mrep = NULL;
925 		goto nfsmout;
926 	}
927 
928 	/*
929 	 * Success, get the file handle, do various checks, and load
930 	 * post-operation data from the reply packet.  Theoretically
931 	 * we should never be looking up "." so, theoretically, we
932 	 * should never get the same file handle as our directory.  But
933 	 * we check anyway. XXX
934 	 *
935 	 * Note that no timeout is set for the positive cache hit.  We
936 	 * assume, theoretically, that ESTALE returns will be dealt with
937 	 * properly to handle NFS races and in anycase we cannot depend
938 	 * on a timeout to deal with NFS open/create/excl issues so instead
939 	 * of a bad hack here the rest of the NFS client code needs to do
940 	 * the right thing.
941 	 */
942 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
943 
944 	np = VTONFS(dvp);
945 	if (NFS_CMPFH(np, fhp, fhsize)) {
946 		vref(dvp);
947 		nvp = dvp;
948 	} else {
949 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
950 		if (error) {
951 			m_freem(info.mrep);
952 			info.mrep = NULL;
953 			vput(dvp);
954 			return (error);
955 		}
956 		nvp = NFSTOV(np);
957 	}
958 	if (info.v3) {
959 		ERROROUT(nfsm_postop_attr(&info, nvp, &attrflag,
960 					  NFS_LATTR_NOSHRINK));
961 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
962 					  NFS_LATTR_NOSHRINK));
963 	} else {
964 		ERROROUT(nfsm_loadattr(&info, nvp, NULL));
965 	}
966 	nfs_cache_setvp(ap->a_nch, nvp, nfspos_cache_timeout);
967 	m_freem(info.mrep);
968 	info.mrep = NULL;
969 nfsmout:
970 	vput(dvp);
971 	if (nvp) {
972 		if (nvp == dvp)
973 			vrele(nvp);
974 		else
975 			vput(nvp);
976 	}
977 	return (error);
978 }
979 
980 /*
981  * 'cached' nfs directory lookup
982  *
983  * NOTE: cannot be removed until NFS implements all the new n*() API calls.
984  *
985  * nfs_lookup(struct vnode *a_dvp, struct vnode **a_vpp,
986  *	      struct componentname *a_cnp)
987  */
988 static int
989 nfs_lookup(struct vop_old_lookup_args *ap)
990 {
991 	struct componentname *cnp = ap->a_cnp;
992 	struct vnode *dvp = ap->a_dvp;
993 	struct vnode **vpp = ap->a_vpp;
994 	int flags = cnp->cn_flags;
995 	struct vnode *newvp;
996 	struct nfsmount *nmp;
997 	long len;
998 	nfsfh_t *fhp;
999 	struct nfsnode *np;
1000 	int lockparent, wantparent, attrflag, fhsize;
1001 	int error;
1002 	int tmp_error;
1003 	struct nfsm_info info;
1004 
1005 	info.mrep = NULL;
1006 	info.v3 = NFS_ISV3(dvp);
1007 	error = 0;
1008 
1009 	/*
1010 	 * Read-only mount check and directory check.
1011 	 */
1012 	*vpp = NULLVP;
1013 	if ((dvp->v_mount->mnt_flag & MNT_RDONLY) &&
1014 	    (cnp->cn_nameiop == NAMEI_DELETE || cnp->cn_nameiop == NAMEI_RENAME))
1015 		return (EROFS);
1016 
1017 	if (dvp->v_type != VDIR)
1018 		return (ENOTDIR);
1019 
1020 	/*
1021 	 * Look it up in the cache.  Note that ENOENT is only returned if we
1022 	 * previously entered a negative hit (see later on).  The additional
1023 	 * nfsneg_cache_timeout check causes previously cached results to
1024 	 * be instantly ignored if the negative caching is turned off.
1025 	 */
1026 	lockparent = flags & CNP_LOCKPARENT;
1027 	wantparent = flags & (CNP_LOCKPARENT|CNP_WANTPARENT);
1028 	nmp = VFSTONFS(dvp->v_mount);
1029 	np = VTONFS(dvp);
1030 
1031 	/*
1032 	 * Go to the wire.
1033 	 */
1034 	error = 0;
1035 	newvp = NULLVP;
1036 	nfsstats.lookupcache_misses++;
1037 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
1038 	len = cnp->cn_namelen;
1039 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
1040 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
1041 	ERROROUT(nfsm_fhtom(&info, dvp));
1042 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
1043 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, cnp->cn_td,
1044 				cnp->cn_cred, &error));
1045 	if (error) {
1046 		tmp_error = nfsm_postop_attr(&info, dvp, &attrflag,
1047 					     NFS_LATTR_NOSHRINK);
1048 		if (tmp_error) {
1049 			error = tmp_error;
1050 			goto nfsmout;
1051 		}
1052 
1053 		m_freem(info.mrep);
1054 		info.mrep = NULL;
1055 		goto nfsmout;
1056 	}
1057 	NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
1058 
1059 	/*
1060 	 * Handle RENAME case...
1061 	 */
1062 	if (cnp->cn_nameiop == NAMEI_RENAME && wantparent) {
1063 		if (NFS_CMPFH(np, fhp, fhsize)) {
1064 			m_freem(info.mrep);
1065 			info.mrep = NULL;
1066 			return (EISDIR);
1067 		}
1068 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1069 		if (error) {
1070 			m_freem(info.mrep);
1071 			info.mrep = NULL;
1072 			return (error);
1073 		}
1074 		newvp = NFSTOV(np);
1075 		if (info.v3) {
1076 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1077 						  NFS_LATTR_NOSHRINK));
1078 			ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1079 						  NFS_LATTR_NOSHRINK));
1080 		} else {
1081 			ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1082 		}
1083 		*vpp = newvp;
1084 		m_freem(info.mrep);
1085 		info.mrep = NULL;
1086 		if (!lockparent) {
1087 			vn_unlock(dvp);
1088 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1089 		}
1090 		return (0);
1091 	}
1092 
1093 	if (flags & CNP_ISDOTDOT) {
1094 		vn_unlock(dvp);
1095 		cnp->cn_flags |= CNP_PDIRUNLOCK;
1096 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1097 		if (error) {
1098 			vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY);
1099 			cnp->cn_flags &= ~CNP_PDIRUNLOCK;
1100 			return (error); /* NOTE: return error from nget */
1101 		}
1102 		newvp = NFSTOV(np);
1103 		if (lockparent) {
1104 			error = vn_lock(dvp, LK_EXCLUSIVE);
1105 			if (error) {
1106 				vput(newvp);
1107 				return (error);
1108 			}
1109 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1110 		}
1111 	} else if (NFS_CMPFH(np, fhp, fhsize)) {
1112 		vref(dvp);
1113 		newvp = dvp;
1114 	} else {
1115 		error = nfs_nget(dvp->v_mount, fhp, fhsize, &np);
1116 		if (error) {
1117 			m_freem(info.mrep);
1118 			info.mrep = NULL;
1119 			return (error);
1120 		}
1121 		if (!lockparent) {
1122 			vn_unlock(dvp);
1123 			cnp->cn_flags |= CNP_PDIRUNLOCK;
1124 		}
1125 		newvp = NFSTOV(np);
1126 	}
1127 	if (info.v3) {
1128 		ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
1129 					  NFS_LATTR_NOSHRINK));
1130 		ERROROUT(nfsm_postop_attr(&info, dvp, &attrflag,
1131 					  NFS_LATTR_NOSHRINK));
1132 	} else {
1133 		ERROROUT(nfsm_loadattr(&info, newvp, NULL));
1134 	}
1135 #if 0
1136 	/* XXX MOVE TO nfs_nremove() */
1137 	if ((cnp->cn_flags & CNP_MAKEENTRY) &&
1138 	    cnp->cn_nameiop != NAMEI_DELETE) {
1139 		np->n_ctime = np->n_vattr.va_ctime.tv_sec; /* XXX */
1140 	}
1141 #endif
1142 	*vpp = newvp;
1143 	m_freem(info.mrep);
1144 	info.mrep = NULL;
1145 nfsmout:
1146 	if (error) {
1147 		if (newvp != NULLVP) {
1148 			vrele(newvp);
1149 			*vpp = NULLVP;
1150 		}
1151 		if ((cnp->cn_nameiop == NAMEI_CREATE ||
1152 		     cnp->cn_nameiop == NAMEI_RENAME) &&
1153 		    error == ENOENT) {
1154 			if (!lockparent) {
1155 				vn_unlock(dvp);
1156 				cnp->cn_flags |= CNP_PDIRUNLOCK;
1157 			}
1158 			if (dvp->v_mount->mnt_flag & MNT_RDONLY)
1159 				error = EROFS;
1160 			else
1161 				error = EJUSTRETURN;
1162 		}
1163 	}
1164 	return (error);
1165 }
1166 
1167 /*
1168  * nfs read call.
1169  * Just call nfs_bioread() to do the work.
1170  *
1171  * nfs_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
1172  *	    struct ucred *a_cred)
1173  */
1174 static int
1175 nfs_read(struct vop_read_args *ap)
1176 {
1177 	struct vnode *vp = ap->a_vp;
1178 
1179 	return (nfs_bioread(vp, ap->a_uio, ap->a_ioflag));
1180 }
1181 
1182 /*
1183  * nfs readlink call
1184  *
1185  * nfs_readlink(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
1186  */
1187 static int
1188 nfs_readlink(struct vop_readlink_args *ap)
1189 {
1190 	struct vnode *vp = ap->a_vp;
1191 
1192 	if (vp->v_type != VLNK)
1193 		return (EINVAL);
1194 	return (nfs_bioread(vp, ap->a_uio, 0));
1195 }
1196 
1197 /*
1198  * Do a readlink rpc.
1199  * Called by nfs_doio() from below the buffer cache.
1200  */
1201 int
1202 nfs_readlinkrpc_uio(struct vnode *vp, struct uio *uiop)
1203 {
1204 	int error = 0, len, attrflag;
1205 	struct nfsm_info info;
1206 
1207 	info.mrep = NULL;
1208 	info.v3 = NFS_ISV3(vp);
1209 
1210 	nfsstats.rpccnt[NFSPROC_READLINK]++;
1211 	nfsm_reqhead(&info, vp, NFSPROC_READLINK, NFSX_FH(info.v3));
1212 	ERROROUT(nfsm_fhtom(&info, vp));
1213 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READLINK, uiop->uio_td,
1214 				nfs_vpcred(vp, ND_CHECK), &error));
1215 	if (info.v3) {
1216 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1217 					  NFS_LATTR_NOSHRINK));
1218 	}
1219 	if (!error) {
1220 		NEGATIVEOUT(len = nfsm_strsiz(&info, NFS_MAXPATHLEN));
1221 		if (len == NFS_MAXPATHLEN) {
1222 			struct nfsnode *np = VTONFS(vp);
1223 			if (np->n_size && np->n_size < NFS_MAXPATHLEN)
1224 				len = np->n_size;
1225 		}
1226 		ERROROUT(nfsm_mtouio(&info, uiop, len));
1227 	}
1228 	m_freem(info.mrep);
1229 	info.mrep = NULL;
1230 nfsmout:
1231 	return (error);
1232 }
1233 
1234 /*
1235  * nfs read rpc.
1236  *
1237  * If bio is non-NULL and asynchronous
1238  */
1239 int
1240 nfs_readrpc_uio(struct vnode *vp, struct uio *uiop)
1241 {
1242 	u_int32_t *tl;
1243 	struct nfsmount *nmp;
1244 	int error = 0, len, retlen, tsiz, eof, attrflag;
1245 	struct nfsm_info info;
1246 
1247 	info.mrep = NULL;
1248 	info.v3 = NFS_ISV3(vp);
1249 
1250 #ifndef nolint
1251 	eof = 0;
1252 #endif
1253 	nmp = VFSTONFS(vp->v_mount);
1254 	tsiz = uiop->uio_resid;
1255 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1256 		return (EFBIG);
1257 	while (tsiz > 0) {
1258 		nfsstats.rpccnt[NFSPROC_READ]++;
1259 		len = (tsiz > nmp->nm_rsize) ? nmp->nm_rsize : tsiz;
1260 		nfsm_reqhead(&info, vp, NFSPROC_READ,
1261 			     NFSX_FH(info.v3) + NFSX_UNSIGNED * 3);
1262 		ERROROUT(nfsm_fhtom(&info, vp));
1263 		tl = nfsm_build(&info, NFSX_UNSIGNED * 3);
1264 		if (info.v3) {
1265 			txdr_hyper(uiop->uio_offset, tl);
1266 			*(tl + 2) = txdr_unsigned(len);
1267 		} else {
1268 			*tl++ = txdr_unsigned(uiop->uio_offset);
1269 			*tl++ = txdr_unsigned(len);
1270 			*tl = 0;
1271 		}
1272 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READ, uiop->uio_td,
1273 					nfs_vpcred(vp, ND_READ), &error));
1274 		if (info.v3) {
1275 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1276 						 NFS_LATTR_NOSHRINK));
1277 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
1278 			eof = fxdr_unsigned(int, *(tl + 1));
1279 		} else {
1280 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1281 		}
1282 		NEGATIVEOUT(retlen = nfsm_strsiz(&info, nmp->nm_rsize));
1283 		ERROROUT(nfsm_mtouio(&info, uiop, retlen));
1284 		m_freem(info.mrep);
1285 		info.mrep = NULL;
1286 		tsiz -= retlen;
1287 		if (info.v3) {
1288 			if (eof || retlen == 0) {
1289 				tsiz = 0;
1290 			}
1291 		} else if (retlen < len) {
1292 			tsiz = 0;
1293 		}
1294 	}
1295 nfsmout:
1296 	return (error);
1297 }
1298 
1299 /*
1300  * nfs write call
1301  */
1302 int
1303 nfs_writerpc_uio(struct vnode *vp, struct uio *uiop,
1304 		 int *iomode, int *must_commit)
1305 {
1306 	u_int32_t *tl;
1307 	int32_t backup;
1308 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1309 	int error = 0, len, tsiz, wccflag = NFSV3_WCCRATTR, rlen, commit;
1310 	int  committed = NFSV3WRITE_FILESYNC;
1311 	struct nfsm_info info;
1312 
1313 	info.mrep = NULL;
1314 	info.v3 = NFS_ISV3(vp);
1315 
1316 #ifndef DIAGNOSTIC
1317 	if (uiop->uio_iovcnt != 1)
1318 		panic("nfs: writerpc iovcnt > 1");
1319 #endif
1320 	*must_commit = 0;
1321 	tsiz = uiop->uio_resid;
1322 	if (uiop->uio_offset + tsiz > nmp->nm_maxfilesize)
1323 		return (EFBIG);
1324 	while (tsiz > 0) {
1325 		nfsstats.rpccnt[NFSPROC_WRITE]++;
1326 		len = (tsiz > nmp->nm_wsize) ? nmp->nm_wsize : tsiz;
1327 		nfsm_reqhead(&info, vp, NFSPROC_WRITE,
1328 			     NFSX_FH(info.v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len));
1329 		ERROROUT(nfsm_fhtom(&info, vp));
1330 		if (info.v3) {
1331 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
1332 			txdr_hyper(uiop->uio_offset, tl);
1333 			tl += 2;
1334 			*tl++ = txdr_unsigned(len);
1335 			*tl++ = txdr_unsigned(*iomode);
1336 			*tl = txdr_unsigned(len);
1337 		} else {
1338 			u_int32_t x;
1339 
1340 			tl = nfsm_build(&info, 4 * NFSX_UNSIGNED);
1341 			/* Set both "begin" and "current" to non-garbage. */
1342 			x = txdr_unsigned((u_int32_t)uiop->uio_offset);
1343 			*tl++ = x;	/* "begin offset" */
1344 			*tl++ = x;	/* "current offset" */
1345 			x = txdr_unsigned(len);
1346 			*tl++ = x;	/* total to this offset */
1347 			*tl = x;	/* size of this write */
1348 		}
1349 		ERROROUT(nfsm_uiotom(&info, uiop, len));
1350 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_WRITE, uiop->uio_td,
1351 					nfs_vpcred(vp, ND_WRITE), &error));
1352 		if (info.v3) {
1353 			/*
1354 			 * The write RPC returns a before and after mtime.  The
1355 			 * nfsm_wcc_data() macro checks the before n_mtime
1356 			 * against the before time and stores the after time
1357 			 * in the nfsnode's cached vattr and n_mtime field.
1358 			 * The NRMODIFIED bit will be set if the before
1359 			 * time did not match the original mtime.
1360 			 */
1361 			wccflag = NFSV3_WCCCHK;
1362 			ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
1363 			if (error == 0) {
1364 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF));
1365 				rlen = fxdr_unsigned(int, *tl++);
1366 				if (rlen == 0) {
1367 					error = NFSERR_IO;
1368 					m_freem(info.mrep);
1369 					info.mrep = NULL;
1370 					break;
1371 				} else if (rlen < len) {
1372 					backup = len - rlen;
1373 					uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup;
1374 					uiop->uio_iov->iov_len += backup;
1375 					uiop->uio_offset -= backup;
1376 					uiop->uio_resid += backup;
1377 					len = rlen;
1378 				}
1379 				commit = fxdr_unsigned(int, *tl++);
1380 
1381 				/*
1382 				 * Return the lowest committment level
1383 				 * obtained by any of the RPCs.
1384 				 */
1385 				if (committed == NFSV3WRITE_FILESYNC)
1386 					committed = commit;
1387 				else if (committed == NFSV3WRITE_DATASYNC &&
1388 					commit == NFSV3WRITE_UNSTABLE)
1389 					committed = commit;
1390 				if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){
1391 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1392 					NFSX_V3WRITEVERF);
1393 				    nmp->nm_state |= NFSSTA_HASWRITEVERF;
1394 				} else if (bcmp((caddr_t)tl,
1395 				    (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF)) {
1396 				    *must_commit = 1;
1397 				    bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
1398 					NFSX_V3WRITEVERF);
1399 				}
1400 			}
1401 		} else {
1402 			ERROROUT(nfsm_loadattr(&info, vp, NULL));
1403 		}
1404 		m_freem(info.mrep);
1405 		info.mrep = NULL;
1406 		if (error)
1407 			break;
1408 		tsiz -= len;
1409 	}
1410 nfsmout:
1411 	if (vp->v_mount->mnt_flag & MNT_ASYNC)
1412 		committed = NFSV3WRITE_FILESYNC;
1413 	*iomode = committed;
1414 	if (error)
1415 		uiop->uio_resid = tsiz;
1416 	return (error);
1417 }
1418 
1419 /*
1420  * nfs mknod rpc
1421  * For NFS v2 this is a kludge. Use a create rpc but with the IFMT bits of the
1422  * mode set to specify the file type and the size field for rdev.
1423  */
1424 static int
1425 nfs_mknodrpc(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1426 	     struct vattr *vap)
1427 {
1428 	struct nfsv2_sattr *sp;
1429 	u_int32_t *tl;
1430 	struct vnode *newvp = NULL;
1431 	struct nfsnode *np = NULL;
1432 	struct vattr vattr;
1433 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0;
1434 	int rmajor, rminor;
1435 	struct nfsm_info info;
1436 
1437 	info.mrep = NULL;
1438 	info.v3 = NFS_ISV3(dvp);
1439 
1440 	if (vap->va_type == VCHR || vap->va_type == VBLK) {
1441 		rmajor = txdr_unsigned(vap->va_rmajor);
1442 		rminor = txdr_unsigned(vap->va_rminor);
1443 	} else if (vap->va_type == VFIFO || vap->va_type == VSOCK) {
1444 		rmajor = nfs_xdrneg1;
1445 		rminor = nfs_xdrneg1;
1446 	} else {
1447 		return (EOPNOTSUPP);
1448 	}
1449 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1450 		return (error);
1451 	}
1452 	nfsstats.rpccnt[NFSPROC_MKNOD]++;
1453 	nfsm_reqhead(&info, dvp, NFSPROC_MKNOD,
1454 		     NFSX_FH(info.v3) + 4 * NFSX_UNSIGNED +
1455 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1456 	ERROROUT(nfsm_fhtom(&info, dvp));
1457 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1458 			     NFS_MAXNAMLEN));
1459 	if (info.v3) {
1460 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1461 		*tl++ = vtonfsv3_type(vap->va_type);
1462 		nfsm_v3attrbuild(&info, vap, FALSE);
1463 		if (vap->va_type == VCHR || vap->va_type == VBLK) {
1464 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1465 			*tl++ = txdr_unsigned(vap->va_rmajor);
1466 			*tl = txdr_unsigned(vap->va_rminor);
1467 		}
1468 	} else {
1469 		sp = nfsm_build(&info, NFSX_V2SATTR);
1470 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1471 		sp->sa_uid = nfs_xdrneg1;
1472 		sp->sa_gid = nfs_xdrneg1;
1473 		sp->sa_size = makeudev(rmajor, rminor);
1474 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1475 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1476 	}
1477 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKNOD, cnp->cn_td,
1478 				cnp->cn_cred, &error));
1479 	if (!error) {
1480 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1481 		if (!gotvp) {
1482 			if (newvp) {
1483 				vput(newvp);
1484 				newvp = NULL;
1485 			}
1486 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1487 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1488 			if (!error)
1489 				newvp = NFSTOV(np);
1490 		}
1491 	}
1492 	if (info.v3) {
1493 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1494 	}
1495 	m_freem(info.mrep);
1496 	info.mrep = NULL;
1497 nfsmout:
1498 	if (error) {
1499 		if (newvp)
1500 			vput(newvp);
1501 	} else {
1502 		*vpp = newvp;
1503 	}
1504 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1505 	if (!wccflag)
1506 		VTONFS(dvp)->n_attrstamp = 0;
1507 	return (error);
1508 }
1509 
1510 /*
1511  * nfs mknod vop
1512  * just call nfs_mknodrpc() to do the work.
1513  *
1514  * nfs_mknod(struct vnode *a_dvp, struct vnode **a_vpp,
1515  *	     struct componentname *a_cnp, struct vattr *a_vap)
1516  */
1517 /* ARGSUSED */
1518 static int
1519 nfs_mknod(struct vop_old_mknod_args *ap)
1520 {
1521 	return nfs_mknodrpc(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap);
1522 }
1523 
1524 static u_long create_verf;
1525 /*
1526  * nfs file create call
1527  *
1528  * nfs_create(struct vnode *a_dvp, struct vnode **a_vpp,
1529  *	      struct componentname *a_cnp, struct vattr *a_vap)
1530  */
1531 static int
1532 nfs_create(struct vop_old_create_args *ap)
1533 {
1534 	struct vnode *dvp = ap->a_dvp;
1535 	struct vattr *vap = ap->a_vap;
1536 	struct componentname *cnp = ap->a_cnp;
1537 	struct nfsv2_sattr *sp;
1538 	u_int32_t *tl;
1539 	struct nfsnode *np = NULL;
1540 	struct vnode *newvp = NULL;
1541 	int error = 0, wccflag = NFSV3_WCCRATTR, gotvp = 0, fmode = 0;
1542 	struct vattr vattr;
1543 	struct nfsm_info info;
1544 
1545 	info.mrep = NULL;
1546 	info.v3 = NFS_ISV3(dvp);
1547 
1548 	/*
1549 	 * Oops, not for me..
1550 	 */
1551 	if (vap->va_type == VSOCK)
1552 		return (nfs_mknodrpc(dvp, ap->a_vpp, cnp, vap));
1553 
1554 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
1555 		return (error);
1556 	}
1557 	if (vap->va_vaflags & VA_EXCLUSIVE)
1558 		fmode |= O_EXCL;
1559 again:
1560 	nfsstats.rpccnt[NFSPROC_CREATE]++;
1561 	nfsm_reqhead(&info, dvp, NFSPROC_CREATE,
1562 		     NFSX_FH(info.v3) + 2 * NFSX_UNSIGNED +
1563 		     nfsm_rndup(cnp->cn_namelen) + NFSX_SATTR(info.v3));
1564 	ERROROUT(nfsm_fhtom(&info, dvp));
1565 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1566 			     NFS_MAXNAMLEN));
1567 	if (info.v3) {
1568 		tl = nfsm_build(&info, NFSX_UNSIGNED);
1569 		if (fmode & O_EXCL) {
1570 			*tl = txdr_unsigned(NFSV3CREATE_EXCLUSIVE);
1571 			tl = nfsm_build(&info, NFSX_V3CREATEVERF);
1572 #ifdef INET
1573 			if (!TAILQ_EMPTY(&in_ifaddrheads[mycpuid]))
1574 				*tl++ = IA_SIN(TAILQ_FIRST(&in_ifaddrheads[mycpuid])->ia)->sin_addr.s_addr;
1575 			else
1576 #endif
1577 				*tl++ = create_verf;
1578 			*tl = ++create_verf;
1579 		} else {
1580 			*tl = txdr_unsigned(NFSV3CREATE_UNCHECKED);
1581 			nfsm_v3attrbuild(&info, vap, FALSE);
1582 		}
1583 	} else {
1584 		sp = nfsm_build(&info, NFSX_V2SATTR);
1585 		sp->sa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
1586 		sp->sa_uid = nfs_xdrneg1;
1587 		sp->sa_gid = nfs_xdrneg1;
1588 		sp->sa_size = 0;
1589 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1590 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1591 	}
1592 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_CREATE, cnp->cn_td,
1593 				cnp->cn_cred, &error));
1594 	if (error == 0) {
1595 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
1596 		if (!gotvp) {
1597 			if (newvp) {
1598 				vput(newvp);
1599 				newvp = NULL;
1600 			}
1601 			error = nfs_lookitup(dvp, cnp->cn_nameptr,
1602 			    cnp->cn_namelen, cnp->cn_cred, cnp->cn_td, &np);
1603 			if (!error)
1604 				newvp = NFSTOV(np);
1605 		}
1606 	}
1607 	if (info.v3) {
1608 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1609 	}
1610 	m_freem(info.mrep);
1611 	info.mrep = NULL;
1612 nfsmout:
1613 	if (error) {
1614 		if (info.v3 && (fmode & O_EXCL) && error == NFSERR_NOTSUPP) {
1615 			KKASSERT(newvp == NULL);
1616 			fmode &= ~O_EXCL;
1617 			goto again;
1618 		}
1619 	} else if (info.v3 && (fmode & O_EXCL)) {
1620 		/*
1621 		 * We are normally called with only a partially initialized
1622 		 * VAP.  Since the NFSv3 spec says that server may use the
1623 		 * file attributes to store the verifier, the spec requires
1624 		 * us to do a SETATTR RPC. FreeBSD servers store the verifier
1625 		 * in atime, but we can't really assume that all servers will
1626 		 * so we ensure that our SETATTR sets both atime and mtime.
1627 		 */
1628 		if (vap->va_mtime.tv_sec == VNOVAL)
1629 			vfs_timestamp(&vap->va_mtime);
1630 		if (vap->va_atime.tv_sec == VNOVAL)
1631 			vap->va_atime = vap->va_mtime;
1632 		error = nfs_setattrrpc(newvp, vap, cnp->cn_cred, cnp->cn_td);
1633 	}
1634 	if (error == 0) {
1635 		/*
1636 		 * The new np may have enough info for access
1637 		 * checks, make sure rucred and wucred are
1638 		 * initialized for read and write rpc's.
1639 		 */
1640 		np = VTONFS(newvp);
1641 		if (np->n_rucred == NULL)
1642 			np->n_rucred = crhold(cnp->cn_cred);
1643 		if (np->n_wucred == NULL)
1644 			np->n_wucred = crhold(cnp->cn_cred);
1645 		*ap->a_vpp = newvp;
1646 	} else if (newvp) {
1647 		vput(newvp);
1648 	}
1649 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1650 	if (!wccflag)
1651 		VTONFS(dvp)->n_attrstamp = 0;
1652 	return (error);
1653 }
1654 
1655 /*
1656  * nfs file remove call
1657  * To try and make nfs semantics closer to ufs semantics, a file that has
1658  * other processes using the vnode is renamed instead of removed and then
1659  * removed later on the last close.
1660  * - If v_sysref.refcnt > 1
1661  *	  If a rename is not already in the works
1662  *	     call nfs_sillyrename() to set it up
1663  *     else
1664  *	  do the remove rpc
1665  *
1666  * nfs_remove(struct vnode *a_dvp, struct vnode *a_vp,
1667  *	      struct componentname *a_cnp)
1668  */
1669 static int
1670 nfs_remove(struct vop_old_remove_args *ap)
1671 {
1672 	struct vnode *vp = ap->a_vp;
1673 	struct vnode *dvp = ap->a_dvp;
1674 	struct componentname *cnp = ap->a_cnp;
1675 	struct nfsnode *np = VTONFS(vp);
1676 	int error = 0;
1677 	struct vattr vattr;
1678 
1679 #ifndef DIAGNOSTIC
1680 	if (vp->v_sysref.refcnt < 1)
1681 		panic("nfs_remove: bad v_sysref.refcnt");
1682 #endif
1683 	if (vp->v_type == VDIR)
1684 		error = EPERM;
1685 	else if (vp->v_sysref.refcnt == 1 || (np->n_sillyrename &&
1686 	    VOP_GETATTR(vp, &vattr) == 0 &&
1687 	    vattr.va_nlink > 1)) {
1688 		/*
1689 		 * throw away biocache buffers, mainly to avoid
1690 		 * unnecessary delayed writes later.
1691 		 */
1692 		error = nfs_vinvalbuf(vp, 0, 1);
1693 		/* Do the rpc */
1694 		if (error != EINTR)
1695 			error = nfs_removerpc(dvp, cnp->cn_nameptr,
1696 				cnp->cn_namelen, cnp->cn_cred, cnp->cn_td);
1697 		/*
1698 		 * Kludge City: If the first reply to the remove rpc is lost..
1699 		 *   the reply to the retransmitted request will be ENOENT
1700 		 *   since the file was in fact removed
1701 		 *   Therefore, we cheat and return success.
1702 		 */
1703 		if (error == ENOENT)
1704 			error = 0;
1705 	} else if (!np->n_sillyrename) {
1706 		error = nfs_sillyrename(dvp, vp, cnp);
1707 	}
1708 	np->n_attrstamp = 0;
1709 	return (error);
1710 }
1711 
1712 /*
1713  * nfs file remove rpc called from nfs_inactive
1714  */
1715 int
1716 nfs_removeit(struct sillyrename *sp)
1717 {
1718 	return (nfs_removerpc(sp->s_dvp, sp->s_name, sp->s_namlen,
1719 		sp->s_cred, NULL));
1720 }
1721 
1722 /*
1723  * Nfs remove rpc, called from nfs_remove() and nfs_removeit().
1724  */
1725 static int
1726 nfs_removerpc(struct vnode *dvp, const char *name, int namelen,
1727 	      struct ucred *cred, struct thread *td)
1728 {
1729 	int error = 0, wccflag = NFSV3_WCCRATTR;
1730 	struct nfsm_info info;
1731 
1732 	info.mrep = NULL;
1733 	info.v3 = NFS_ISV3(dvp);
1734 
1735 	nfsstats.rpccnt[NFSPROC_REMOVE]++;
1736 	nfsm_reqhead(&info, dvp, NFSPROC_REMOVE,
1737 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(namelen));
1738 	ERROROUT(nfsm_fhtom(&info, dvp));
1739 	ERROROUT(nfsm_strtom(&info, name, namelen, NFS_MAXNAMLEN));
1740 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_REMOVE, td, cred, &error));
1741 	if (info.v3) {
1742 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
1743 	}
1744 	m_freem(info.mrep);
1745 	info.mrep = NULL;
1746 nfsmout:
1747 	VTONFS(dvp)->n_flag |= NLMODIFIED;
1748 	if (!wccflag)
1749 		VTONFS(dvp)->n_attrstamp = 0;
1750 	return (error);
1751 }
1752 
1753 /*
1754  * nfs file rename call
1755  *
1756  * nfs_rename(struct vnode *a_fdvp, struct vnode *a_fvp,
1757  *	      struct componentname *a_fcnp, struct vnode *a_tdvp,
1758  *	      struct vnode *a_tvp, struct componentname *a_tcnp)
1759  */
1760 static int
1761 nfs_rename(struct vop_old_rename_args *ap)
1762 {
1763 	struct vnode *fvp = ap->a_fvp;
1764 	struct vnode *tvp = ap->a_tvp;
1765 	struct vnode *fdvp = ap->a_fdvp;
1766 	struct vnode *tdvp = ap->a_tdvp;
1767 	struct componentname *tcnp = ap->a_tcnp;
1768 	struct componentname *fcnp = ap->a_fcnp;
1769 	int error;
1770 
1771 	/* Check for cross-device rename */
1772 	if ((fvp->v_mount != tdvp->v_mount) ||
1773 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
1774 		error = EXDEV;
1775 		goto out;
1776 	}
1777 
1778 	/*
1779 	 * We shouldn't have to flush fvp on rename for most server-side
1780 	 * filesystems as the file handle should not change.  Unfortunately
1781 	 * the inode for some filesystems (msdosfs) might be tied to the
1782 	 * file name or directory position so to be completely safe
1783 	 * vfs.nfs.flush_on_rename is set by default.  Clear to improve
1784 	 * performance.
1785 	 *
1786 	 * We must flush tvp on rename because it might become stale on the
1787 	 * server after the rename.
1788 	 */
1789 	if (nfs_flush_on_rename)
1790 	    VOP_FSYNC(fvp, MNT_WAIT);
1791 	if (tvp)
1792 	    VOP_FSYNC(tvp, MNT_WAIT);
1793 
1794 	/*
1795 	 * If the tvp exists and is in use, sillyrename it before doing the
1796 	 * rename of the new file over it.
1797 	 *
1798 	 * XXX Can't sillyrename a directory.
1799 	 *
1800 	 * We do not attempt to do any namecache purges in this old API
1801 	 * routine.  The new API compat functions have access to the actual
1802 	 * namecache structures and will do it for us.
1803 	 */
1804 	if (tvp && tvp->v_sysref.refcnt > 1 && !VTONFS(tvp)->n_sillyrename &&
1805 		tvp->v_type != VDIR && !nfs_sillyrename(tdvp, tvp, tcnp)) {
1806 		vput(tvp);
1807 		tvp = NULL;
1808 	} else if (tvp) {
1809 		;
1810 	}
1811 
1812 	error = nfs_renamerpc(fdvp, fcnp->cn_nameptr, fcnp->cn_namelen,
1813 		tdvp, tcnp->cn_nameptr, tcnp->cn_namelen, tcnp->cn_cred,
1814 		tcnp->cn_td);
1815 
1816 out:
1817 	if (tdvp == tvp)
1818 		vrele(tdvp);
1819 	else
1820 		vput(tdvp);
1821 	if (tvp)
1822 		vput(tvp);
1823 	vrele(fdvp);
1824 	vrele(fvp);
1825 	/*
1826 	 * Kludge: Map ENOENT => 0 assuming that it is a reply to a retry.
1827 	 */
1828 	if (error == ENOENT)
1829 		error = 0;
1830 	return (error);
1831 }
1832 
1833 /*
1834  * nfs file rename rpc called from nfs_remove() above
1835  */
1836 static int
1837 nfs_renameit(struct vnode *sdvp, struct componentname *scnp,
1838 	     struct sillyrename *sp)
1839 {
1840 	return (nfs_renamerpc(sdvp, scnp->cn_nameptr, scnp->cn_namelen,
1841 		sdvp, sp->s_name, sp->s_namlen, scnp->cn_cred, scnp->cn_td));
1842 }
1843 
1844 /*
1845  * Do an nfs rename rpc. Called from nfs_rename() and nfs_renameit().
1846  */
1847 static int
1848 nfs_renamerpc(struct vnode *fdvp, const char *fnameptr, int fnamelen,
1849 	      struct vnode *tdvp, const char *tnameptr, int tnamelen,
1850 	      struct ucred *cred, struct thread *td)
1851 {
1852 	int error = 0, fwccflag = NFSV3_WCCRATTR, twccflag = NFSV3_WCCRATTR;
1853 	struct nfsm_info info;
1854 
1855 	info.mrep = NULL;
1856 	info.v3 = NFS_ISV3(fdvp);
1857 
1858 	nfsstats.rpccnt[NFSPROC_RENAME]++;
1859 	nfsm_reqhead(&info, fdvp, NFSPROC_RENAME,
1860 		    (NFSX_FH(info.v3) + NFSX_UNSIGNED)*2 +
1861 		    nfsm_rndup(fnamelen) + nfsm_rndup(tnamelen));
1862 	ERROROUT(nfsm_fhtom(&info, fdvp));
1863 	ERROROUT(nfsm_strtom(&info, fnameptr, fnamelen, NFS_MAXNAMLEN));
1864 	ERROROUT(nfsm_fhtom(&info, tdvp));
1865 	ERROROUT(nfsm_strtom(&info, tnameptr, tnamelen, NFS_MAXNAMLEN));
1866 	NEGKEEPOUT(nfsm_request(&info, fdvp, NFSPROC_RENAME, td, cred, &error));
1867 	if (info.v3) {
1868 		ERROROUT(nfsm_wcc_data(&info, fdvp, &fwccflag));
1869 		ERROROUT(nfsm_wcc_data(&info, tdvp, &twccflag));
1870 	}
1871 	m_freem(info.mrep);
1872 	info.mrep = NULL;
1873 nfsmout:
1874 	VTONFS(fdvp)->n_flag |= NLMODIFIED;
1875 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1876 	if (!fwccflag)
1877 		VTONFS(fdvp)->n_attrstamp = 0;
1878 	if (!twccflag)
1879 		VTONFS(tdvp)->n_attrstamp = 0;
1880 	return (error);
1881 }
1882 
1883 /*
1884  * nfs hard link create call
1885  *
1886  * nfs_link(struct vnode *a_tdvp, struct vnode *a_vp,
1887  *	    struct componentname *a_cnp)
1888  */
1889 static int
1890 nfs_link(struct vop_old_link_args *ap)
1891 {
1892 	struct vnode *vp = ap->a_vp;
1893 	struct vnode *tdvp = ap->a_tdvp;
1894 	struct componentname *cnp = ap->a_cnp;
1895 	int error = 0, wccflag = NFSV3_WCCRATTR, attrflag = 0;
1896 	struct nfsm_info info;
1897 
1898 	if (vp->v_mount != tdvp->v_mount) {
1899 		return (EXDEV);
1900 	}
1901 
1902 	/*
1903 	 * The attribute cache may get out of sync with the server on link.
1904 	 * Pushing writes to the server before handle was inherited from
1905 	 * long long ago and it is unclear if we still need to do this.
1906 	 * Defaults to off.
1907 	 */
1908 	if (nfs_flush_on_hlink)
1909 		VOP_FSYNC(vp, MNT_WAIT);
1910 
1911 	info.mrep = NULL;
1912 	info.v3 = NFS_ISV3(vp);
1913 
1914 	nfsstats.rpccnt[NFSPROC_LINK]++;
1915 	nfsm_reqhead(&info, vp, NFSPROC_LINK,
1916 		     NFSX_FH(info.v3) * 2 + NFSX_UNSIGNED +
1917 		     nfsm_rndup(cnp->cn_namelen));
1918 	ERROROUT(nfsm_fhtom(&info, vp));
1919 	ERROROUT(nfsm_fhtom(&info, tdvp));
1920 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1921 			     NFS_MAXNAMLEN));
1922 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_LINK, cnp->cn_td,
1923 				cnp->cn_cred, &error));
1924 	if (info.v3) {
1925 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
1926 					 NFS_LATTR_NOSHRINK));
1927 		ERROROUT(nfsm_wcc_data(&info, tdvp, &wccflag));
1928 	}
1929 	m_freem(info.mrep);
1930 	info.mrep = NULL;
1931 nfsmout:
1932 	VTONFS(tdvp)->n_flag |= NLMODIFIED;
1933 	if (!attrflag)
1934 		VTONFS(vp)->n_attrstamp = 0;
1935 	if (!wccflag)
1936 		VTONFS(tdvp)->n_attrstamp = 0;
1937 	/*
1938 	 * Kludge: Map EEXIST => 0 assuming that it is a reply to a retry.
1939 	 */
1940 	if (error == EEXIST)
1941 		error = 0;
1942 	return (error);
1943 }
1944 
1945 /*
1946  * nfs symbolic link create call
1947  *
1948  * nfs_symlink(struct vnode *a_dvp, struct vnode **a_vpp,
1949  *		struct componentname *a_cnp, struct vattr *a_vap,
1950  *		char *a_target)
1951  */
1952 static int
1953 nfs_symlink(struct vop_old_symlink_args *ap)
1954 {
1955 	struct vnode *dvp = ap->a_dvp;
1956 	struct vattr *vap = ap->a_vap;
1957 	struct componentname *cnp = ap->a_cnp;
1958 	struct nfsv2_sattr *sp;
1959 	int slen, error = 0, wccflag = NFSV3_WCCRATTR, gotvp;
1960 	struct vnode *newvp = NULL;
1961 	struct nfsm_info info;
1962 
1963 	info.mrep = NULL;
1964 	info.v3 = NFS_ISV3(dvp);
1965 
1966 	nfsstats.rpccnt[NFSPROC_SYMLINK]++;
1967 	slen = strlen(ap->a_target);
1968 	nfsm_reqhead(&info, dvp, NFSPROC_SYMLINK,
1969 		     NFSX_FH(info.v3) + 2*NFSX_UNSIGNED +
1970 		     nfsm_rndup(cnp->cn_namelen) +
1971 		     nfsm_rndup(slen) + NFSX_SATTR(info.v3));
1972 	ERROROUT(nfsm_fhtom(&info, dvp));
1973 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
1974 			     NFS_MAXNAMLEN));
1975 	if (info.v3) {
1976 		nfsm_v3attrbuild(&info, vap, FALSE);
1977 	}
1978 	ERROROUT(nfsm_strtom(&info, ap->a_target, slen, NFS_MAXPATHLEN));
1979 	if (info.v3 == 0) {
1980 		sp = nfsm_build(&info, NFSX_V2SATTR);
1981 		sp->sa_mode = vtonfsv2_mode(VLNK, vap->va_mode);
1982 		sp->sa_uid = nfs_xdrneg1;
1983 		sp->sa_gid = nfs_xdrneg1;
1984 		sp->sa_size = nfs_xdrneg1;
1985 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
1986 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
1987 	}
1988 
1989 	/*
1990 	 * Issue the NFS request and get the rpc response.
1991 	 *
1992 	 * Only NFSv3 responses returning an error of 0 actually return
1993 	 * a file handle that can be converted into newvp without having
1994 	 * to do an extra lookup rpc.
1995 	 */
1996 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_SYMLINK, cnp->cn_td,
1997 				cnp->cn_cred, &error));
1998 	if (info.v3) {
1999 		if (error == 0) {
2000 		       ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2001 		}
2002 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2003 	}
2004 
2005 	/*
2006 	 * out code jumps -> here, mrep is also freed.
2007 	 */
2008 
2009 	m_freem(info.mrep);
2010 	info.mrep = NULL;
2011 nfsmout:
2012 
2013 	/*
2014 	 * If we get an EEXIST error, silently convert it to no-error
2015 	 * in case of an NFS retry.
2016 	 */
2017 	if (error == EEXIST)
2018 		error = 0;
2019 
2020 	/*
2021 	 * If we do not have (or no longer have) an error, and we could
2022 	 * not extract the newvp from the response due to the request being
2023 	 * NFSv2 or the error being EEXIST.  We have to do a lookup in order
2024 	 * to obtain a newvp to return.
2025 	 */
2026 	if (error == 0 && newvp == NULL) {
2027 		struct nfsnode *np = NULL;
2028 
2029 		error = nfs_lookitup(dvp, cnp->cn_nameptr, cnp->cn_namelen,
2030 		    cnp->cn_cred, cnp->cn_td, &np);
2031 		if (!error)
2032 			newvp = NFSTOV(np);
2033 	}
2034 	if (error) {
2035 		if (newvp)
2036 			vput(newvp);
2037 	} else {
2038 		*ap->a_vpp = newvp;
2039 	}
2040 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2041 	if (!wccflag)
2042 		VTONFS(dvp)->n_attrstamp = 0;
2043 	return (error);
2044 }
2045 
2046 /*
2047  * nfs make dir call
2048  *
2049  * nfs_mkdir(struct vnode *a_dvp, struct vnode **a_vpp,
2050  *	     struct componentname *a_cnp, struct vattr *a_vap)
2051  */
2052 static int
2053 nfs_mkdir(struct vop_old_mkdir_args *ap)
2054 {
2055 	struct vnode *dvp = ap->a_dvp;
2056 	struct vattr *vap = ap->a_vap;
2057 	struct componentname *cnp = ap->a_cnp;
2058 	struct nfsv2_sattr *sp;
2059 	struct nfsnode *np = NULL;
2060 	struct vnode *newvp = NULL;
2061 	struct vattr vattr;
2062 	int error = 0, wccflag = NFSV3_WCCRATTR;
2063 	int gotvp = 0;
2064 	int len;
2065 	struct nfsm_info info;
2066 
2067 	info.mrep = NULL;
2068 	info.v3 = NFS_ISV3(dvp);
2069 
2070 	if ((error = VOP_GETATTR(dvp, &vattr)) != 0) {
2071 		return (error);
2072 	}
2073 	len = cnp->cn_namelen;
2074 	nfsstats.rpccnt[NFSPROC_MKDIR]++;
2075 	nfsm_reqhead(&info, dvp, NFSPROC_MKDIR,
2076 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2077 		     nfsm_rndup(len) + NFSX_SATTR(info.v3));
2078 	ERROROUT(nfsm_fhtom(&info, dvp));
2079 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, len, NFS_MAXNAMLEN));
2080 	if (info.v3) {
2081 		nfsm_v3attrbuild(&info, vap, FALSE);
2082 	} else {
2083 		sp = nfsm_build(&info, NFSX_V2SATTR);
2084 		sp->sa_mode = vtonfsv2_mode(VDIR, vap->va_mode);
2085 		sp->sa_uid = nfs_xdrneg1;
2086 		sp->sa_gid = nfs_xdrneg1;
2087 		sp->sa_size = nfs_xdrneg1;
2088 		txdr_nfsv2time(&vap->va_atime, &sp->sa_atime);
2089 		txdr_nfsv2time(&vap->va_mtime, &sp->sa_mtime);
2090 	}
2091 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_MKDIR, cnp->cn_td,
2092 		    cnp->cn_cred, &error));
2093 	if (error == 0) {
2094 		ERROROUT(nfsm_mtofh(&info, dvp, &newvp, &gotvp));
2095 	}
2096 	if (info.v3) {
2097 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2098 	}
2099 	m_freem(info.mrep);
2100 	info.mrep = NULL;
2101 nfsmout:
2102 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2103 	if (!wccflag)
2104 		VTONFS(dvp)->n_attrstamp = 0;
2105 	/*
2106 	 * Kludge: Map EEXIST => 0 assuming that you have a reply to a retry
2107 	 * if we can succeed in looking up the directory.
2108 	 */
2109 	if (error == EEXIST || (!error && !gotvp)) {
2110 		if (newvp) {
2111 			vrele(newvp);
2112 			newvp = NULL;
2113 		}
2114 		error = nfs_lookitup(dvp, cnp->cn_nameptr, len, cnp->cn_cred,
2115 			cnp->cn_td, &np);
2116 		if (!error) {
2117 			newvp = NFSTOV(np);
2118 			if (newvp->v_type != VDIR)
2119 				error = EEXIST;
2120 		}
2121 	}
2122 	if (error) {
2123 		if (newvp)
2124 			vrele(newvp);
2125 	} else
2126 		*ap->a_vpp = newvp;
2127 	return (error);
2128 }
2129 
2130 /*
2131  * nfs remove directory call
2132  *
2133  * nfs_rmdir(struct vnode *a_dvp, struct vnode *a_vp,
2134  *	     struct componentname *a_cnp)
2135  */
2136 static int
2137 nfs_rmdir(struct vop_old_rmdir_args *ap)
2138 {
2139 	struct vnode *vp = ap->a_vp;
2140 	struct vnode *dvp = ap->a_dvp;
2141 	struct componentname *cnp = ap->a_cnp;
2142 	int error = 0, wccflag = NFSV3_WCCRATTR;
2143 	struct nfsm_info info;
2144 
2145 	info.mrep = NULL;
2146 	info.v3 = NFS_ISV3(dvp);
2147 
2148 	if (dvp == vp)
2149 		return (EINVAL);
2150 	nfsstats.rpccnt[NFSPROC_RMDIR]++;
2151 	nfsm_reqhead(&info, dvp, NFSPROC_RMDIR,
2152 		     NFSX_FH(info.v3) + NFSX_UNSIGNED +
2153 		     nfsm_rndup(cnp->cn_namelen));
2154 	ERROROUT(nfsm_fhtom(&info, dvp));
2155 	ERROROUT(nfsm_strtom(&info, cnp->cn_nameptr, cnp->cn_namelen,
2156 		 NFS_MAXNAMLEN));
2157 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_RMDIR, cnp->cn_td,
2158 				cnp->cn_cred, &error));
2159 	if (info.v3) {
2160 		ERROROUT(nfsm_wcc_data(&info, dvp, &wccflag));
2161 	}
2162 	m_freem(info.mrep);
2163 	info.mrep = NULL;
2164 nfsmout:
2165 	VTONFS(dvp)->n_flag |= NLMODIFIED;
2166 	if (!wccflag)
2167 		VTONFS(dvp)->n_attrstamp = 0;
2168 	/*
2169 	 * Kludge: Map ENOENT => 0 assuming that you have a reply to a retry.
2170 	 */
2171 	if (error == ENOENT)
2172 		error = 0;
2173 	return (error);
2174 }
2175 
2176 /*
2177  * nfs readdir call
2178  *
2179  * nfs_readdir(struct vnode *a_vp, struct uio *a_uio, struct ucred *a_cred)
2180  */
2181 static int
2182 nfs_readdir(struct vop_readdir_args *ap)
2183 {
2184 	struct vnode *vp = ap->a_vp;
2185 	struct nfsnode *np = VTONFS(vp);
2186 	struct uio *uio = ap->a_uio;
2187 	int tresid, error;
2188 	struct vattr vattr;
2189 
2190 	if (vp->v_type != VDIR)
2191 		return (EPERM);
2192 
2193 	if ((error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY)) != 0)
2194 		return (error);
2195 
2196 	/*
2197 	 * If we have a valid EOF offset cache we must call VOP_GETATTR()
2198 	 * and then check that is still valid, or if this is an NQNFS mount
2199 	 * we call NQNFS_CKCACHEABLE() instead of VOP_GETATTR().  Note that
2200 	 * VOP_GETATTR() does not necessarily go to the wire.
2201 	 */
2202 	if (np->n_direofoffset > 0 && uio->uio_offset >= np->n_direofoffset &&
2203 	    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0) {
2204 		if (VOP_GETATTR(vp, &vattr) == 0 &&
2205 		    (np->n_flag & (NLMODIFIED|NRMODIFIED)) == 0
2206 		) {
2207 			nfsstats.direofcache_hits++;
2208 			goto done;
2209 		}
2210 	}
2211 
2212 	/*
2213 	 * Call nfs_bioread() to do the real work.  nfs_bioread() does its
2214 	 * own cache coherency checks so we do not have to.
2215 	 */
2216 	tresid = uio->uio_resid;
2217 	error = nfs_bioread(vp, uio, 0);
2218 
2219 	if (!error && uio->uio_resid == tresid)
2220 		nfsstats.direofcache_misses++;
2221 done:
2222 	vn_unlock(vp);
2223 	return (error);
2224 }
2225 
2226 /*
2227  * Readdir rpc call.  nfs_bioread->nfs_doio->nfs_readdirrpc.
2228  *
2229  * Note that for directories, nfs_bioread maintains the underlying nfs-centric
2230  * offset/block and converts the nfs formatted directory entries for userland
2231  * consumption as well as deals with offsets into the middle of blocks.
2232  * nfs_doio only deals with logical blocks.  In particular, uio_offset will
2233  * be block-bounded.  It must convert to cookies for the actual RPC.
2234  */
2235 int
2236 nfs_readdirrpc_uio(struct vnode *vp, struct uio *uiop)
2237 {
2238 	int len, left;
2239 	struct nfs_dirent *dp = NULL;
2240 	u_int32_t *tl;
2241 	nfsuint64 *cookiep;
2242 	caddr_t cp;
2243 	nfsuint64 cookie;
2244 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2245 	struct nfsnode *dnp = VTONFS(vp);
2246 	u_quad_t fileno;
2247 	int error = 0, tlen, more_dirs = 1, blksiz = 0, bigenough = 1;
2248 	int attrflag;
2249 	struct nfsm_info info;
2250 
2251 	info.mrep = NULL;
2252 	info.v3 = NFS_ISV3(vp);
2253 
2254 #ifndef DIAGNOSTIC
2255 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2256 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2257 		panic("nfs readdirrpc bad uio");
2258 #endif
2259 
2260 	/*
2261 	 * If there is no cookie, assume directory was stale.
2262 	 */
2263 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2264 	if (cookiep)
2265 		cookie = *cookiep;
2266 	else
2267 		return (NFSERR_BAD_COOKIE);
2268 	/*
2269 	 * Loop around doing readdir rpc's of size nm_readdirsize
2270 	 * truncated to a multiple of DIRBLKSIZ.
2271 	 * The stopping criteria is EOF or buffer full.
2272 	 */
2273 	while (more_dirs && bigenough) {
2274 		nfsstats.rpccnt[NFSPROC_READDIR]++;
2275 		nfsm_reqhead(&info, vp, NFSPROC_READDIR,
2276 			     NFSX_FH(info.v3) + NFSX_READDIR(info.v3));
2277 		ERROROUT(nfsm_fhtom(&info, vp));
2278 		if (info.v3) {
2279 			tl = nfsm_build(&info, 5 * NFSX_UNSIGNED);
2280 			*tl++ = cookie.nfsuquad[0];
2281 			*tl++ = cookie.nfsuquad[1];
2282 			*tl++ = dnp->n_cookieverf.nfsuquad[0];
2283 			*tl++ = dnp->n_cookieverf.nfsuquad[1];
2284 		} else {
2285 			tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
2286 			*tl++ = cookie.nfsuquad[0];
2287 		}
2288 		*tl = txdr_unsigned(nmp->nm_readdirsize);
2289 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIR,
2290 					uiop->uio_td,
2291 					nfs_vpcred(vp, ND_READ), &error));
2292 		if (info.v3) {
2293 			ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2294 						  NFS_LATTR_NOSHRINK));
2295 			NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2296 			dnp->n_cookieverf.nfsuquad[0] = *tl++;
2297 			dnp->n_cookieverf.nfsuquad[1] = *tl;
2298 		}
2299 		NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2300 		more_dirs = fxdr_unsigned(int, *tl);
2301 
2302 		/* loop thru the dir entries, converting them to std form */
2303 		while (more_dirs && bigenough) {
2304 			if (info.v3) {
2305 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2306 				fileno = fxdr_hyper(tl);
2307 				len = fxdr_unsigned(int, *(tl + 2));
2308 			} else {
2309 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2310 				fileno = fxdr_unsigned(u_quad_t, *tl++);
2311 				len = fxdr_unsigned(int, *tl);
2312 			}
2313 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2314 				error = EBADRPC;
2315 				m_freem(info.mrep);
2316 				info.mrep = NULL;
2317 				goto nfsmout;
2318 			}
2319 
2320 			/*
2321 			 * len is the number of bytes in the path element
2322 			 * name, not including the \0 termination.
2323 			 *
2324 			 * tlen is the number of bytes w have to reserve for
2325 			 * the path element name.
2326 			 */
2327 			tlen = nfsm_rndup(len);
2328 			if (tlen == len)
2329 				tlen += 4;	/* To ensure null termination */
2330 
2331 			/*
2332 			 * If the entry would cross a DIRBLKSIZ boundary,
2333 			 * extend the previous nfs_dirent to cover the
2334 			 * remaining space.
2335 			 */
2336 			left = DIRBLKSIZ - blksiz;
2337 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2338 				dp->nfs_reclen += left;
2339 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2340 				uiop->uio_iov->iov_len -= left;
2341 				uiop->uio_offset += left;
2342 				uiop->uio_resid -= left;
2343 				blksiz = 0;
2344 			}
2345 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2346 				bigenough = 0;
2347 			if (bigenough) {
2348 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2349 				dp->nfs_ino = fileno;
2350 				dp->nfs_namlen = len;
2351 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2352 				dp->nfs_type = DT_UNKNOWN;
2353 				blksiz += dp->nfs_reclen;
2354 				if (blksiz == DIRBLKSIZ)
2355 					blksiz = 0;
2356 				uiop->uio_offset += sizeof(struct nfs_dirent);
2357 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2358 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2359 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2360 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2361 
2362 				/*
2363 				 * The uiop has advanced by nfs_dirent + len
2364 				 * but really needs to advance by
2365 				 * nfs_dirent + tlen
2366 				 */
2367 				cp = uiop->uio_iov->iov_base;
2368 				tlen -= len;
2369 				*cp = '\0';	/* null terminate */
2370 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2371 				uiop->uio_iov->iov_len -= tlen;
2372 				uiop->uio_offset += tlen;
2373 				uiop->uio_resid -= tlen;
2374 			} else {
2375 				/*
2376 				 * NFS strings must be rounded up (nfsm_myouio
2377 				 * handled that in the bigenough case).
2378 				 */
2379 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2380 			}
2381 			if (info.v3) {
2382 				NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2383 			} else {
2384 				NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2385 			}
2386 
2387 			/*
2388 			 * If we were able to accomodate the last entry,
2389 			 * get the cookie for the next one.  Otherwise
2390 			 * hold-over the cookie for the one we were not
2391 			 * able to accomodate.
2392 			 */
2393 			if (bigenough) {
2394 				cookie.nfsuquad[0] = *tl++;
2395 				if (info.v3)
2396 					cookie.nfsuquad[1] = *tl++;
2397 			} else if (info.v3) {
2398 				tl += 2;
2399 			} else {
2400 				tl++;
2401 			}
2402 			more_dirs = fxdr_unsigned(int, *tl);
2403 		}
2404 		/*
2405 		 * If at end of rpc data, get the eof boolean
2406 		 */
2407 		if (!more_dirs) {
2408 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2409 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2410 		}
2411 		m_freem(info.mrep);
2412 		info.mrep = NULL;
2413 	}
2414 	/*
2415 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2416 	 * by increasing d_reclen for the last record.
2417 	 */
2418 	if (blksiz > 0) {
2419 		left = DIRBLKSIZ - blksiz;
2420 		dp->nfs_reclen += left;
2421 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2422 		uiop->uio_iov->iov_len -= left;
2423 		uiop->uio_offset += left;
2424 		uiop->uio_resid -= left;
2425 	}
2426 
2427 	if (bigenough) {
2428 		/*
2429 		 * We hit the end of the directory, update direofoffset.
2430 		 */
2431 		dnp->n_direofoffset = uiop->uio_offset;
2432 	} else {
2433 		/*
2434 		 * There is more to go, insert the link cookie so the
2435 		 * next block can be read.
2436 		 */
2437 		if (uiop->uio_resid > 0)
2438 			kprintf("EEK! readdirrpc resid > 0\n");
2439 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2440 		*cookiep = cookie;
2441 	}
2442 nfsmout:
2443 	return (error);
2444 }
2445 
2446 /*
2447  * NFS V3 readdir plus RPC. Used in place of nfs_readdirrpc().
2448  */
2449 int
2450 nfs_readdirplusrpc_uio(struct vnode *vp, struct uio *uiop)
2451 {
2452 	int len, left;
2453 	struct nfs_dirent *dp;
2454 	u_int32_t *tl;
2455 	struct vnode *newvp;
2456 	nfsuint64 *cookiep;
2457 	caddr_t dpossav1, dpossav2;
2458 	caddr_t cp;
2459 	struct mbuf *mdsav1, *mdsav2;
2460 	nfsuint64 cookie;
2461 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2462 	struct nfsnode *dnp = VTONFS(vp), *np;
2463 	nfsfh_t *fhp;
2464 	u_quad_t fileno;
2465 	int error = 0, tlen, more_dirs = 1, blksiz = 0, doit, bigenough = 1, i;
2466 	int attrflag, fhsize;
2467 	struct nchandle nch;
2468 	struct nchandle dnch;
2469 	struct nlcomponent nlc;
2470 	struct nfsm_info info;
2471 
2472 	info.mrep = NULL;
2473 	info.v3 = 1;
2474 
2475 #ifndef nolint
2476 	dp = NULL;
2477 #endif
2478 #ifndef DIAGNOSTIC
2479 	if (uiop->uio_iovcnt != 1 || (uiop->uio_offset & (DIRBLKSIZ - 1)) ||
2480 		(uiop->uio_resid & (DIRBLKSIZ - 1)))
2481 		panic("nfs readdirplusrpc bad uio");
2482 #endif
2483 	/*
2484 	 * Obtain the namecache record for the directory so we have something
2485 	 * to use as a basis for creating the entries.  This function will
2486 	 * return a held (but not locked) ncp.  The ncp may be disconnected
2487 	 * from the tree and cannot be used for upward traversals, and the
2488 	 * ncp may be unnamed.  Note that other unrelated operations may
2489 	 * cause the ncp to be named at any time.
2490 	 */
2491 	cache_fromdvp(vp, NULL, 0, &dnch);
2492 	bzero(&nlc, sizeof(nlc));
2493 	newvp = NULLVP;
2494 
2495 	/*
2496 	 * If there is no cookie, assume directory was stale.
2497 	 */
2498 	cookiep = nfs_getcookie(dnp, uiop->uio_offset, 0);
2499 	if (cookiep)
2500 		cookie = *cookiep;
2501 	else
2502 		return (NFSERR_BAD_COOKIE);
2503 	/*
2504 	 * Loop around doing readdir rpc's of size nm_readdirsize
2505 	 * truncated to a multiple of DIRBLKSIZ.
2506 	 * The stopping criteria is EOF or buffer full.
2507 	 */
2508 	while (more_dirs && bigenough) {
2509 		nfsstats.rpccnt[NFSPROC_READDIRPLUS]++;
2510 		nfsm_reqhead(&info, vp, NFSPROC_READDIRPLUS,
2511 			     NFSX_FH(1) + 6 * NFSX_UNSIGNED);
2512 		ERROROUT(nfsm_fhtom(&info, vp));
2513 		tl = nfsm_build(&info, 6 * NFSX_UNSIGNED);
2514 		*tl++ = cookie.nfsuquad[0];
2515 		*tl++ = cookie.nfsuquad[1];
2516 		*tl++ = dnp->n_cookieverf.nfsuquad[0];
2517 		*tl++ = dnp->n_cookieverf.nfsuquad[1];
2518 		*tl++ = txdr_unsigned(nmp->nm_readdirsize);
2519 		*tl = txdr_unsigned(nmp->nm_rsize);
2520 		NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_READDIRPLUS,
2521 					uiop->uio_td,
2522 					nfs_vpcred(vp, ND_READ), &error));
2523 		ERROROUT(nfsm_postop_attr(&info, vp, &attrflag,
2524 					  NFS_LATTR_NOSHRINK));
2525 		NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2526 		dnp->n_cookieverf.nfsuquad[0] = *tl++;
2527 		dnp->n_cookieverf.nfsuquad[1] = *tl++;
2528 		more_dirs = fxdr_unsigned(int, *tl);
2529 
2530 		/* loop thru the dir entries, doctoring them to 4bsd form */
2531 		while (more_dirs && bigenough) {
2532 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2533 			fileno = fxdr_hyper(tl);
2534 			len = fxdr_unsigned(int, *(tl + 2));
2535 			if (len <= 0 || len > NFS_MAXNAMLEN) {
2536 				error = EBADRPC;
2537 				m_freem(info.mrep);
2538 				info.mrep = NULL;
2539 				goto nfsmout;
2540 			}
2541 			tlen = nfsm_rndup(len);
2542 			if (tlen == len)
2543 				tlen += 4;	/* To ensure null termination*/
2544 			left = DIRBLKSIZ - blksiz;
2545 			if ((tlen + sizeof(struct nfs_dirent)) > left) {
2546 				dp->nfs_reclen += left;
2547 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2548 				uiop->uio_iov->iov_len -= left;
2549 				uiop->uio_offset += left;
2550 				uiop->uio_resid -= left;
2551 				blksiz = 0;
2552 			}
2553 			if ((tlen + sizeof(struct nfs_dirent)) > uiop->uio_resid)
2554 				bigenough = 0;
2555 			if (bigenough) {
2556 				dp = (struct nfs_dirent *)uiop->uio_iov->iov_base;
2557 				dp->nfs_ino = fileno;
2558 				dp->nfs_namlen = len;
2559 				dp->nfs_reclen = tlen + sizeof(struct nfs_dirent);
2560 				dp->nfs_type = DT_UNKNOWN;
2561 				blksiz += dp->nfs_reclen;
2562 				if (blksiz == DIRBLKSIZ)
2563 					blksiz = 0;
2564 				uiop->uio_offset += sizeof(struct nfs_dirent);
2565 				uiop->uio_resid -= sizeof(struct nfs_dirent);
2566 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + sizeof(struct nfs_dirent);
2567 				uiop->uio_iov->iov_len -= sizeof(struct nfs_dirent);
2568 				nlc.nlc_nameptr = uiop->uio_iov->iov_base;
2569 				nlc.nlc_namelen = len;
2570 				ERROROUT(nfsm_mtouio(&info, uiop, len));
2571 				cp = uiop->uio_iov->iov_base;
2572 				tlen -= len;
2573 				*cp = '\0';
2574 				uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + tlen;
2575 				uiop->uio_iov->iov_len -= tlen;
2576 				uiop->uio_offset += tlen;
2577 				uiop->uio_resid -= tlen;
2578 			} else {
2579 				ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2580 			}
2581 			NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2582 			if (bigenough) {
2583 				cookie.nfsuquad[0] = *tl++;
2584 				cookie.nfsuquad[1] = *tl++;
2585 			} else
2586 				tl += 2;
2587 
2588 			/*
2589 			 * Since the attributes are before the file handle
2590 			 * (sigh), we must skip over the attributes and then
2591 			 * come back and get them.
2592 			 */
2593 			attrflag = fxdr_unsigned(int, *tl);
2594 			if (attrflag) {
2595 			    dpossav1 = info.dpos;
2596 			    mdsav1 = info.md;
2597 			    ERROROUT(nfsm_adv(&info, NFSX_V3FATTR));
2598 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2599 			    doit = fxdr_unsigned(int, *tl);
2600 			    if (doit) {
2601 				NEGATIVEOUT(fhsize = nfsm_getfh(&info, &fhp));
2602 				if (NFS_CMPFH(dnp, fhp, fhsize)) {
2603 				    vref(vp);
2604 				    newvp = vp;
2605 				    np = dnp;
2606 				} else {
2607 				    error = nfs_nget(vp->v_mount, fhp,
2608 					fhsize, &np);
2609 				    if (error)
2610 					doit = 0;
2611 				    else
2612 					newvp = NFSTOV(np);
2613 				}
2614 			    }
2615 			    if (doit && bigenough) {
2616 				dpossav2 = info.dpos;
2617 				info.dpos = dpossav1;
2618 				mdsav2 = info.md;
2619 				info.md = mdsav1;
2620 				ERROROUT(nfsm_loadattr(&info, newvp, NULL));
2621 				info.dpos = dpossav2;
2622 				info.md = mdsav2;
2623 				dp->nfs_type =
2624 				    IFTODT(VTTOIF(np->n_vattr.va_type));
2625 				if (dnch.ncp) {
2626 				    kprintf("NFS/READDIRPLUS, ENTER %*.*s\n",
2627 					nlc.nlc_namelen, nlc.nlc_namelen,
2628 					nlc.nlc_nameptr);
2629 				    nch = cache_nlookup(&dnch, &nlc);
2630 				    cache_setunresolved(&nch);
2631 				    nfs_cache_setvp(&nch, newvp,
2632 						    nfspos_cache_timeout);
2633 				    cache_put(&nch);
2634 				} else {
2635 				    kprintf("NFS/READDIRPLUS, UNABLE TO ENTER"
2636 					" %*.*s\n",
2637 					nlc.nlc_namelen, nlc.nlc_namelen,
2638 					nlc.nlc_nameptr);
2639 				}
2640 			    }
2641 			} else {
2642 			    /* Just skip over the file handle */
2643 			    NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2644 			    i = fxdr_unsigned(int, *tl);
2645 			    ERROROUT(nfsm_adv(&info, nfsm_rndup(i)));
2646 			}
2647 			if (newvp != NULLVP) {
2648 			    if (newvp == vp)
2649 				vrele(newvp);
2650 			    else
2651 				vput(newvp);
2652 			    newvp = NULLVP;
2653 			}
2654 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2655 			more_dirs = fxdr_unsigned(int, *tl);
2656 		}
2657 		/*
2658 		 * If at end of rpc data, get the eof boolean
2659 		 */
2660 		if (!more_dirs) {
2661 			NULLOUT(tl = nfsm_dissect(&info, NFSX_UNSIGNED));
2662 			more_dirs = (fxdr_unsigned(int, *tl) == 0);
2663 		}
2664 		m_freem(info.mrep);
2665 		info.mrep = NULL;
2666 	}
2667 	/*
2668 	 * Fill last record, iff any, out to a multiple of DIRBLKSIZ
2669 	 * by increasing d_reclen for the last record.
2670 	 */
2671 	if (blksiz > 0) {
2672 		left = DIRBLKSIZ - blksiz;
2673 		dp->nfs_reclen += left;
2674 		uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base + left;
2675 		uiop->uio_iov->iov_len -= left;
2676 		uiop->uio_offset += left;
2677 		uiop->uio_resid -= left;
2678 	}
2679 
2680 	/*
2681 	 * We are now either at the end of the directory or have filled the
2682 	 * block.
2683 	 */
2684 	if (bigenough)
2685 		dnp->n_direofoffset = uiop->uio_offset;
2686 	else {
2687 		if (uiop->uio_resid > 0)
2688 			kprintf("EEK! readdirplusrpc resid > 0\n");
2689 		cookiep = nfs_getcookie(dnp, uiop->uio_offset, 1);
2690 		*cookiep = cookie;
2691 	}
2692 nfsmout:
2693 	if (newvp != NULLVP) {
2694 	        if (newvp == vp)
2695 			vrele(newvp);
2696 		else
2697 			vput(newvp);
2698 		newvp = NULLVP;
2699 	}
2700 	if (dnch.ncp)
2701 		cache_drop(&dnch);
2702 	return (error);
2703 }
2704 
2705 /*
2706  * Silly rename. To make the NFS filesystem that is stateless look a little
2707  * more like the "ufs" a remove of an active vnode is translated to a rename
2708  * to a funny looking filename that is removed by nfs_inactive on the
2709  * nfsnode. There is the potential for another process on a different client
2710  * to create the same funny name between the nfs_lookitup() fails and the
2711  * nfs_rename() completes, but...
2712  */
2713 static int
2714 nfs_sillyrename(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
2715 {
2716 	struct sillyrename *sp;
2717 	struct nfsnode *np;
2718 	int error;
2719 
2720 	/*
2721 	 * We previously purged dvp instead of vp.  I don't know why, it
2722 	 * completely destroys performance.  We can't do it anyway with the
2723 	 * new VFS API since we would be breaking the namecache topology.
2724 	 */
2725 	cache_purge(vp);	/* XXX */
2726 	np = VTONFS(vp);
2727 #ifndef DIAGNOSTIC
2728 	if (vp->v_type == VDIR)
2729 		panic("nfs: sillyrename dir");
2730 #endif
2731 	MALLOC(sp, struct sillyrename *, sizeof (struct sillyrename),
2732 		M_NFSREQ, M_WAITOK);
2733 	sp->s_cred = crdup(cnp->cn_cred);
2734 	sp->s_dvp = dvp;
2735 	vref(dvp);
2736 
2737 	/* Fudge together a funny name */
2738 	sp->s_namlen = ksprintf(sp->s_name, ".nfsA%08x4.4",
2739 				(int)(intptr_t)cnp->cn_td);
2740 
2741 	/* Try lookitups until we get one that isn't there */
2742 	while (nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2743 		cnp->cn_td, NULL) == 0) {
2744 		sp->s_name[4]++;
2745 		if (sp->s_name[4] > 'z') {
2746 			error = EINVAL;
2747 			goto bad;
2748 		}
2749 	}
2750 	error = nfs_renameit(dvp, cnp, sp);
2751 	if (error)
2752 		goto bad;
2753 	error = nfs_lookitup(dvp, sp->s_name, sp->s_namlen, sp->s_cred,
2754 		cnp->cn_td, &np);
2755 	np->n_sillyrename = sp;
2756 	return (0);
2757 bad:
2758 	vrele(sp->s_dvp);
2759 	crfree(sp->s_cred);
2760 	kfree((caddr_t)sp, M_NFSREQ);
2761 	return (error);
2762 }
2763 
2764 /*
2765  * Look up a file name and optionally either update the file handle or
2766  * allocate an nfsnode, depending on the value of npp.
2767  * npp == NULL	--> just do the lookup
2768  * *npp == NULL --> allocate a new nfsnode and make sure attributes are
2769  *			handled too
2770  * *npp != NULL --> update the file handle in the vnode
2771  */
2772 static int
2773 nfs_lookitup(struct vnode *dvp, const char *name, int len, struct ucred *cred,
2774 	     struct thread *td, struct nfsnode **npp)
2775 {
2776 	struct vnode *newvp = NULL;
2777 	struct nfsnode *np, *dnp = VTONFS(dvp);
2778 	int error = 0, fhlen, attrflag;
2779 	nfsfh_t *nfhp;
2780 	struct nfsm_info info;
2781 
2782 	info.mrep = NULL;
2783 	info.v3 = NFS_ISV3(dvp);
2784 
2785 	nfsstats.rpccnt[NFSPROC_LOOKUP]++;
2786 	nfsm_reqhead(&info, dvp, NFSPROC_LOOKUP,
2787 		     NFSX_FH(info.v3) + NFSX_UNSIGNED + nfsm_rndup(len));
2788 	ERROROUT(nfsm_fhtom(&info, dvp));
2789 	ERROROUT(nfsm_strtom(&info, name, len, NFS_MAXNAMLEN));
2790 	NEGKEEPOUT(nfsm_request(&info, dvp, NFSPROC_LOOKUP, td, cred, &error));
2791 	if (npp && !error) {
2792 		NEGATIVEOUT(fhlen = nfsm_getfh(&info, &nfhp));
2793 		if (*npp) {
2794 		    np = *npp;
2795 		    if (np->n_fhsize > NFS_SMALLFH && fhlen <= NFS_SMALLFH) {
2796 			kfree((caddr_t)np->n_fhp, M_NFSBIGFH);
2797 			np->n_fhp = &np->n_fh;
2798 		    } else if (np->n_fhsize <= NFS_SMALLFH && fhlen>NFS_SMALLFH)
2799 			np->n_fhp =(nfsfh_t *)kmalloc(fhlen,M_NFSBIGFH,M_WAITOK);
2800 		    bcopy((caddr_t)nfhp, (caddr_t)np->n_fhp, fhlen);
2801 		    np->n_fhsize = fhlen;
2802 		    newvp = NFSTOV(np);
2803 		} else if (NFS_CMPFH(dnp, nfhp, fhlen)) {
2804 		    vref(dvp);
2805 		    newvp = dvp;
2806 		} else {
2807 		    error = nfs_nget(dvp->v_mount, nfhp, fhlen, &np);
2808 		    if (error) {
2809 			m_freem(info.mrep);
2810 			info.mrep = NULL;
2811 			return (error);
2812 		    }
2813 		    newvp = NFSTOV(np);
2814 		}
2815 		if (info.v3) {
2816 			ERROROUT(nfsm_postop_attr(&info, newvp, &attrflag,
2817 						  NFS_LATTR_NOSHRINK));
2818 			if (!attrflag && *npp == NULL) {
2819 				m_freem(info.mrep);
2820 				info.mrep = NULL;
2821 				if (newvp == dvp)
2822 					vrele(newvp);
2823 				else
2824 					vput(newvp);
2825 				return (ENOENT);
2826 			}
2827 		} else {
2828 			ERROROUT(error = nfsm_loadattr(&info, newvp, NULL));
2829 		}
2830 	}
2831 	m_freem(info.mrep);
2832 	info.mrep = NULL;
2833 nfsmout:
2834 	if (npp && *npp == NULL) {
2835 		if (error) {
2836 			if (newvp) {
2837 				if (newvp == dvp)
2838 					vrele(newvp);
2839 				else
2840 					vput(newvp);
2841 			}
2842 		} else
2843 			*npp = np;
2844 	}
2845 	return (error);
2846 }
2847 
2848 /*
2849  * Nfs Version 3 commit rpc
2850  *
2851  * We call it 'uio' to distinguish it from 'bio' but there is no real uio
2852  * involved.
2853  */
2854 int
2855 nfs_commitrpc_uio(struct vnode *vp, u_quad_t offset, int cnt, struct thread *td)
2856 {
2857 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
2858 	int error = 0, wccflag = NFSV3_WCCRATTR;
2859 	struct nfsm_info info;
2860 	u_int32_t *tl;
2861 
2862 	info.mrep = NULL;
2863 	info.v3 = 1;
2864 
2865 	if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0)
2866 		return (0);
2867 	nfsstats.rpccnt[NFSPROC_COMMIT]++;
2868 	nfsm_reqhead(&info, vp, NFSPROC_COMMIT, NFSX_FH(1));
2869 	ERROROUT(nfsm_fhtom(&info, vp));
2870 	tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
2871 	txdr_hyper(offset, tl);
2872 	tl += 2;
2873 	*tl = txdr_unsigned(cnt);
2874 	NEGKEEPOUT(nfsm_request(&info, vp, NFSPROC_COMMIT, td,
2875 				nfs_vpcred(vp, ND_WRITE), &error));
2876 	ERROROUT(nfsm_wcc_data(&info, vp, &wccflag));
2877 	if (!error) {
2878 		NULLOUT(tl = nfsm_dissect(&info, NFSX_V3WRITEVERF));
2879 		if (bcmp((caddr_t)nmp->nm_verf, (caddr_t)tl,
2880 			NFSX_V3WRITEVERF)) {
2881 			bcopy((caddr_t)tl, (caddr_t)nmp->nm_verf,
2882 				NFSX_V3WRITEVERF);
2883 			error = NFSERR_STALEWRITEVERF;
2884 		}
2885 	}
2886 	m_freem(info.mrep);
2887 	info.mrep = NULL;
2888 nfsmout:
2889 	return (error);
2890 }
2891 
2892 /*
2893  * Kludge City..
2894  * - make nfs_bmap() essentially a no-op that does no translation
2895  * - do nfs_strategy() by doing I/O with nfs_readrpc/nfs_writerpc
2896  *   (Maybe I could use the process's page mapping, but I was concerned that
2897  *    Kernel Write might not be enabled and also figured copyout() would do
2898  *    a lot more work than bcopy() and also it currently happens in the
2899  *    context of the swapper process (2).
2900  *
2901  * nfs_bmap(struct vnode *a_vp, off_t a_loffset,
2902  *	    off_t *a_doffsetp, int *a_runp, int *a_runb)
2903  */
2904 static int
2905 nfs_bmap(struct vop_bmap_args *ap)
2906 {
2907 	if (ap->a_doffsetp != NULL)
2908 		*ap->a_doffsetp = ap->a_loffset;
2909 	if (ap->a_runp != NULL)
2910 		*ap->a_runp = 0;
2911 	if (ap->a_runb != NULL)
2912 		*ap->a_runb = 0;
2913 	return (0);
2914 }
2915 
2916 /*
2917  * Strategy routine.
2918  */
2919 static int
2920 nfs_strategy(struct vop_strategy_args *ap)
2921 {
2922 	struct bio *bio = ap->a_bio;
2923 	struct bio *nbio;
2924 	struct buf *bp = bio->bio_buf;
2925 	struct thread *td;
2926 	int error;
2927 
2928 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
2929 		("nfs_strategy: buffer %p unexpectedly marked done", bp));
2930 	KASSERT(BUF_REFCNT(bp) > 0,
2931 		("nfs_strategy: buffer %p not locked", bp));
2932 
2933 	if (bio->bio_flags & BIO_SYNC)
2934 		td = curthread;	/* XXX */
2935 	else
2936 		td = NULL;
2937 
2938         /*
2939 	 * We probably don't need to push an nbio any more since no
2940 	 * block conversion is required due to the use of 64 bit byte
2941 	 * offsets, but do it anyway.
2942 	 *
2943 	 * NOTE: When NFS callers itself via this strategy routines and
2944 	 *	 sets up a synchronous I/O, it expects the I/O to run
2945 	 *	 synchronously (its bio_done routine just assumes it),
2946 	 *	 so for now we have to honor the bit.
2947          */
2948 	nbio = push_bio(bio);
2949 	nbio->bio_offset = bio->bio_offset;
2950 	nbio->bio_flags = bio->bio_flags & BIO_SYNC;
2951 
2952 	/*
2953 	 * If the op is asynchronous and an i/o daemon is waiting
2954 	 * queue the request, wake it up and wait for completion
2955 	 * otherwise just do it ourselves.
2956 	 */
2957 	if (bio->bio_flags & BIO_SYNC) {
2958 		error = nfs_doio(ap->a_vp, nbio, td);
2959 	} else {
2960 		nfs_asyncio(ap->a_vp, nbio);
2961 		error = 0;
2962 	}
2963 	return (error);
2964 }
2965 
2966 /*
2967  * Mmap a file
2968  *
2969  * NB Currently unsupported.
2970  *
2971  * nfs_mmap(struct vnode *a_vp, int a_fflags, struct ucred *a_cred)
2972  */
2973 /* ARGSUSED */
2974 static int
2975 nfs_mmap(struct vop_mmap_args *ap)
2976 {
2977 	return (EINVAL);
2978 }
2979 
2980 /*
2981  * fsync vnode op. Just call nfs_flush() with commit == 1.
2982  *
2983  * nfs_fsync(struct vnode *a_vp, int a_waitfor)
2984  */
2985 /* ARGSUSED */
2986 static int
2987 nfs_fsync(struct vop_fsync_args *ap)
2988 {
2989 	return (nfs_flush(ap->a_vp, ap->a_waitfor, curthread, 1));
2990 }
2991 
2992 /*
2993  * Flush all the blocks associated with a vnode.   Dirty NFS buffers may be
2994  * in one of two states:  If B_NEEDCOMMIT is clear then the buffer contains
2995  * new NFS data which needs to be written to the server.  If B_NEEDCOMMIT is
2996  * set the buffer contains data that has already been written to the server
2997  * and which now needs a commit RPC.
2998  *
2999  * If commit is 0 we only take one pass and only flush buffers containing new
3000  * dirty data.
3001  *
3002  * If commit is 1 we take two passes, issuing a commit RPC in the second
3003  * pass.
3004  *
3005  * If waitfor is MNT_WAIT and commit is 1, we loop as many times as required
3006  * to completely flush all pending data.
3007  *
3008  * Note that the RB_SCAN code properly handles the case where the
3009  * callback might block and directly or indirectly (another thread) cause
3010  * the RB tree to change.
3011  */
3012 
3013 #ifndef NFS_COMMITBVECSIZ
3014 #define NFS_COMMITBVECSIZ	16
3015 #endif
3016 
3017 struct nfs_flush_info {
3018 	enum { NFI_FLUSHNEW, NFI_COMMIT } mode;
3019 	struct thread *td;
3020 	struct vnode *vp;
3021 	int waitfor;
3022 	int slpflag;
3023 	int slptimeo;
3024 	int loops;
3025 	struct buf *bvary[NFS_COMMITBVECSIZ];
3026 	int bvsize;
3027 	off_t beg_off;
3028 	off_t end_off;
3029 };
3030 
3031 static int nfs_flush_bp(struct buf *bp, void *data);
3032 static int nfs_flush_docommit(struct nfs_flush_info *info, int error);
3033 
3034 int
3035 nfs_flush(struct vnode *vp, int waitfor, struct thread *td, int commit)
3036 {
3037 	struct nfsnode *np = VTONFS(vp);
3038 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
3039 	struct nfs_flush_info info;
3040 	lwkt_tokref vlock;
3041 	int error;
3042 
3043 	bzero(&info, sizeof(info));
3044 	info.td = td;
3045 	info.vp = vp;
3046 	info.waitfor = waitfor;
3047 	info.slpflag = (nmp->nm_flag & NFSMNT_INT) ? PCATCH : 0;
3048 	info.loops = 0;
3049 	lwkt_gettoken(&vlock, &vp->v_token);
3050 
3051 	do {
3052 		/*
3053 		 * Flush mode
3054 		 */
3055 		info.mode = NFI_FLUSHNEW;
3056 		error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3057 				nfs_flush_bp, &info);
3058 
3059 		/*
3060 		 * Take a second pass if committing and no error occured.
3061 		 * Clean up any left over collection (whether an error
3062 		 * occurs or not).
3063 		 */
3064 		if (commit && error == 0) {
3065 			info.mode = NFI_COMMIT;
3066 			error = RB_SCAN(buf_rb_tree, &vp->v_rbdirty_tree, NULL,
3067 					nfs_flush_bp, &info);
3068 			if (info.bvsize)
3069 				error = nfs_flush_docommit(&info, error);
3070 		}
3071 
3072 		/*
3073 		 * Wait for pending I/O to complete before checking whether
3074 		 * any further dirty buffers exist.
3075 		 */
3076 		while (waitfor == MNT_WAIT &&
3077 		       bio_track_active(&vp->v_track_write)) {
3078 			error = bio_track_wait(&vp->v_track_write,
3079 					       info.slpflag, info.slptimeo);
3080 			if (error) {
3081 				/*
3082 				 * We have to be able to break out if this
3083 				 * is an 'intr' mount.
3084 				 */
3085 				if (nfs_sigintr(nmp, NULL, td)) {
3086 					error = -EINTR;
3087 					break;
3088 				}
3089 
3090 				/*
3091 				 * Since we do not process pending signals,
3092 				 * once we get a PCATCH our tsleep() will no
3093 				 * longer sleep, switch to a fixed timeout
3094 				 * instead.
3095 				 */
3096 				if (info.slpflag == PCATCH) {
3097 					info.slpflag = 0;
3098 					info.slptimeo = 2 * hz;
3099 				}
3100 				error = 0;
3101 			}
3102 		}
3103 		++info.loops;
3104 		/*
3105 		 * Loop if we are flushing synchronous as well as committing,
3106 		 * and dirty buffers are still present.  Otherwise we might livelock.
3107 		 */
3108 	} while (waitfor == MNT_WAIT && commit &&
3109 		 error == 0 && !RB_EMPTY(&vp->v_rbdirty_tree));
3110 
3111 	/*
3112 	 * The callbacks have to return a negative error to terminate the
3113 	 * RB scan.
3114 	 */
3115 	if (error < 0)
3116 		error = -error;
3117 
3118 	/*
3119 	 * Deal with any error collection
3120 	 */
3121 	if (np->n_flag & NWRITEERR) {
3122 		error = np->n_error;
3123 		np->n_flag &= ~NWRITEERR;
3124 	}
3125 	lwkt_reltoken(&vlock);
3126 	return (error);
3127 }
3128 
3129 static
3130 int
3131 nfs_flush_bp(struct buf *bp, void *data)
3132 {
3133 	struct nfs_flush_info *info = data;
3134 	int lkflags;
3135 	int error;
3136 	off_t toff;
3137 
3138 	error = 0;
3139 	switch(info->mode) {
3140 	case NFI_FLUSHNEW:
3141 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3142 		if (error && info->loops && info->waitfor == MNT_WAIT) {
3143 			error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT);
3144 			if (error) {
3145 				lkflags = LK_EXCLUSIVE | LK_SLEEPFAIL;
3146 				if (info->slpflag & PCATCH)
3147 					lkflags |= LK_PCATCH;
3148 				error = BUF_TIMELOCK(bp, lkflags, "nfsfsync",
3149 						     info->slptimeo);
3150 			}
3151 		}
3152 
3153 		/*
3154 		 * Ignore locking errors
3155 		 */
3156 		if (error) {
3157 			error = 0;
3158 			break;
3159 		}
3160 
3161 		/*
3162 		 * The buffer may have changed out from under us, even if
3163 		 * we did not block (MPSAFE).  Check again now that it is
3164 		 * locked.
3165 		 */
3166 		if (bp->b_vp == info->vp &&
3167 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) == B_DELWRI) {
3168 			bremfree(bp);
3169 			bawrite(bp);
3170 		} else {
3171 			BUF_UNLOCK(bp);
3172 		}
3173 		break;
3174 	case NFI_COMMIT:
3175 		/*
3176 		 * Only process buffers in need of a commit which we can
3177 		 * immediately lock.  This may prevent a buffer from being
3178 		 * committed, but the normal flush loop will block on the
3179 		 * same buffer so we shouldn't get into an endless loop.
3180 		 */
3181 		if ((bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3182 		    (B_DELWRI | B_NEEDCOMMIT)) {
3183 			break;
3184 		}
3185 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
3186 			break;
3187 
3188 		/*
3189 		 * We must recheck after successfully locking the buffer.
3190 		 */
3191 		if (bp->b_vp != info->vp ||
3192 		    (bp->b_flags & (B_DELWRI | B_NEEDCOMMIT)) !=
3193 		    (B_DELWRI | B_NEEDCOMMIT)) {
3194 			BUF_UNLOCK(bp);
3195 			break;
3196 		}
3197 
3198 		/*
3199 		 * NOTE: storing the bp in the bvary[] basically sets
3200 		 * it up for a commit operation.
3201 		 *
3202 		 * We must call vfs_busy_pages() now so the commit operation
3203 		 * is interlocked with user modifications to memory mapped
3204 		 * pages.
3205 		 *
3206 		 * Note: to avoid loopback deadlocks, we do not
3207 		 * assign b_runningbufspace.
3208 		 */
3209 		bremfree(bp);
3210 		bp->b_cmd = BUF_CMD_WRITE;
3211 		vfs_busy_pages(bp->b_vp, bp);
3212 		info->bvary[info->bvsize] = bp;
3213 		toff = bp->b_bio2.bio_offset + bp->b_dirtyoff;
3214 		if (info->bvsize == 0 || toff < info->beg_off)
3215 			info->beg_off = toff;
3216 		toff += (off_t)(bp->b_dirtyend - bp->b_dirtyoff);
3217 		if (info->bvsize == 0 || toff > info->end_off)
3218 			info->end_off = toff;
3219 		++info->bvsize;
3220 		if (info->bvsize == NFS_COMMITBVECSIZ) {
3221 			error = nfs_flush_docommit(info, 0);
3222 			KKASSERT(info->bvsize == 0);
3223 		}
3224 	}
3225 	return (error);
3226 }
3227 
3228 static
3229 int
3230 nfs_flush_docommit(struct nfs_flush_info *info, int error)
3231 {
3232 	struct vnode *vp;
3233 	struct buf *bp;
3234 	off_t bytes;
3235 	int retv;
3236 	int i;
3237 
3238 	vp = info->vp;
3239 
3240 	if (info->bvsize > 0) {
3241 		/*
3242 		 * Commit data on the server, as required.  Note that
3243 		 * nfs_commit will use the vnode's cred for the commit.
3244 		 * The NFSv3 commit RPC is limited to a 32 bit byte count.
3245 		 */
3246 		bytes = info->end_off - info->beg_off;
3247 		if (bytes > 0x40000000)
3248 			bytes = 0x40000000;
3249 		if (error) {
3250 			retv = -error;
3251 		} else {
3252 			retv = nfs_commitrpc_uio(vp, info->beg_off,
3253 						 (int)bytes, info->td);
3254 			if (retv == NFSERR_STALEWRITEVERF)
3255 				nfs_clearcommit(vp->v_mount);
3256 		}
3257 
3258 		/*
3259 		 * Now, either mark the blocks I/O done or mark the
3260 		 * blocks dirty, depending on whether the commit
3261 		 * succeeded.
3262 		 */
3263 		for (i = 0; i < info->bvsize; ++i) {
3264 			bp = info->bvary[i];
3265 			bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
3266 			if (retv) {
3267 				/*
3268 				 * Error, leave B_DELWRI intact
3269 				 */
3270 				vfs_unbusy_pages(bp);
3271 				bp->b_cmd = BUF_CMD_DONE;
3272 				brelse(bp);
3273 			} else {
3274 				/*
3275 				 * Success, remove B_DELWRI ( bundirty() ).
3276 				 *
3277 				 * b_dirtyoff/b_dirtyend seem to be NFS
3278 				 * specific.  We should probably move that
3279 				 * into bundirty(). XXX
3280 				 *
3281 				 * We are faking an I/O write, we have to
3282 				 * start the transaction in order to
3283 				 * immediately biodone() it.
3284 				 */
3285 				bundirty(bp);
3286 				bp->b_flags &= ~B_ERROR;
3287 				bp->b_dirtyoff = bp->b_dirtyend = 0;
3288 				biodone(&bp->b_bio1);
3289 			}
3290 		}
3291 		info->bvsize = 0;
3292 	}
3293 	return (error);
3294 }
3295 
3296 /*
3297  * NFS advisory byte-level locks.
3298  * Currently unsupported.
3299  *
3300  * nfs_advlock(struct vnode *a_vp, caddr_t a_id, int a_op, struct flock *a_fl,
3301  *		int a_flags)
3302  */
3303 static int
3304 nfs_advlock(struct vop_advlock_args *ap)
3305 {
3306 	struct nfsnode *np = VTONFS(ap->a_vp);
3307 
3308 	/*
3309 	 * The following kludge is to allow diskless support to work
3310 	 * until a real NFS lockd is implemented. Basically, just pretend
3311 	 * that this is a local lock.
3312 	 */
3313 	return (lf_advlock(ap, &(np->n_lockf), np->n_size));
3314 }
3315 
3316 /*
3317  * Print out the contents of an nfsnode.
3318  *
3319  * nfs_print(struct vnode *a_vp)
3320  */
3321 static int
3322 nfs_print(struct vop_print_args *ap)
3323 {
3324 	struct vnode *vp = ap->a_vp;
3325 	struct nfsnode *np = VTONFS(vp);
3326 
3327 	kprintf("tag VT_NFS, fileid %lld fsid 0x%x",
3328 		(long long)np->n_vattr.va_fileid, np->n_vattr.va_fsid);
3329 	if (vp->v_type == VFIFO)
3330 		fifo_printinfo(vp);
3331 	kprintf("\n");
3332 	return (0);
3333 }
3334 
3335 /*
3336  * nfs special file access vnode op.
3337  * Essentially just get vattr and then imitate iaccess() since the device is
3338  * local to the client.
3339  *
3340  * nfsspec_access(struct vnode *a_vp, int a_mode, struct ucred *a_cred)
3341  */
3342 static int
3343 nfsspec_access(struct vop_access_args *ap)
3344 {
3345 	struct vattr *vap;
3346 	gid_t *gp;
3347 	struct ucred *cred = ap->a_cred;
3348 	struct vnode *vp = ap->a_vp;
3349 	mode_t mode = ap->a_mode;
3350 	struct vattr vattr;
3351 	int i;
3352 	int error;
3353 
3354 	/*
3355 	 * Disallow write attempts on filesystems mounted read-only;
3356 	 * unless the file is a socket, fifo, or a block or character
3357 	 * device resident on the filesystem.
3358 	 */
3359 	if ((mode & VWRITE) && (vp->v_mount->mnt_flag & MNT_RDONLY)) {
3360 		switch (vp->v_type) {
3361 		case VREG:
3362 		case VDIR:
3363 		case VLNK:
3364 			return (EROFS);
3365 		default:
3366 			break;
3367 		}
3368 	}
3369 	/*
3370 	 * If you're the super-user,
3371 	 * you always get access.
3372 	 */
3373 	if (cred->cr_uid == 0)
3374 		return (0);
3375 	vap = &vattr;
3376 	error = VOP_GETATTR(vp, vap);
3377 	if (error)
3378 		return (error);
3379 	/*
3380 	 * Access check is based on only one of owner, group, public.
3381 	 * If not owner, then check group. If not a member of the
3382 	 * group, then check public access.
3383 	 */
3384 	if (cred->cr_uid != vap->va_uid) {
3385 		mode >>= 3;
3386 		gp = cred->cr_groups;
3387 		for (i = 0; i < cred->cr_ngroups; i++, gp++)
3388 			if (vap->va_gid == *gp)
3389 				goto found;
3390 		mode >>= 3;
3391 found:
3392 		;
3393 	}
3394 	error = (vap->va_mode & mode) == mode ? 0 : EACCES;
3395 	return (error);
3396 }
3397 
3398 /*
3399  * Read wrapper for special devices.
3400  *
3401  * nfsspec_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3402  *		struct ucred *a_cred)
3403  */
3404 static int
3405 nfsspec_read(struct vop_read_args *ap)
3406 {
3407 	struct nfsnode *np = VTONFS(ap->a_vp);
3408 
3409 	/*
3410 	 * Set access flag.
3411 	 */
3412 	np->n_flag |= NACC;
3413 	getnanotime(&np->n_atim);
3414 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3415 }
3416 
3417 /*
3418  * Write wrapper for special devices.
3419  *
3420  * nfsspec_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3421  *		 struct ucred *a_cred)
3422  */
3423 static int
3424 nfsspec_write(struct vop_write_args *ap)
3425 {
3426 	struct nfsnode *np = VTONFS(ap->a_vp);
3427 
3428 	/*
3429 	 * Set update flag.
3430 	 */
3431 	np->n_flag |= NUPD;
3432 	getnanotime(&np->n_mtim);
3433 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3434 }
3435 
3436 /*
3437  * Close wrapper for special devices.
3438  *
3439  * Update the times on the nfsnode then do device close.
3440  *
3441  * nfsspec_close(struct vnode *a_vp, int a_fflag)
3442  */
3443 static int
3444 nfsspec_close(struct vop_close_args *ap)
3445 {
3446 	struct vnode *vp = ap->a_vp;
3447 	struct nfsnode *np = VTONFS(vp);
3448 	struct vattr vattr;
3449 
3450 	if (np->n_flag & (NACC | NUPD)) {
3451 		np->n_flag |= NCHG;
3452 		if (vp->v_sysref.refcnt == 1 &&
3453 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3454 			VATTR_NULL(&vattr);
3455 			if (np->n_flag & NACC)
3456 				vattr.va_atime = np->n_atim;
3457 			if (np->n_flag & NUPD)
3458 				vattr.va_mtime = np->n_mtim;
3459 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3460 		}
3461 	}
3462 	return (VOCALL(&spec_vnode_vops, &ap->a_head));
3463 }
3464 
3465 /*
3466  * Read wrapper for fifos.
3467  *
3468  * nfsfifo_read(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3469  *		struct ucred *a_cred)
3470  */
3471 static int
3472 nfsfifo_read(struct vop_read_args *ap)
3473 {
3474 	struct nfsnode *np = VTONFS(ap->a_vp);
3475 
3476 	/*
3477 	 * Set access flag.
3478 	 */
3479 	np->n_flag |= NACC;
3480 	getnanotime(&np->n_atim);
3481 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3482 }
3483 
3484 /*
3485  * Write wrapper for fifos.
3486  *
3487  * nfsfifo_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
3488  *		 struct ucred *a_cred)
3489  */
3490 static int
3491 nfsfifo_write(struct vop_write_args *ap)
3492 {
3493 	struct nfsnode *np = VTONFS(ap->a_vp);
3494 
3495 	/*
3496 	 * Set update flag.
3497 	 */
3498 	np->n_flag |= NUPD;
3499 	getnanotime(&np->n_mtim);
3500 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3501 }
3502 
3503 /*
3504  * Close wrapper for fifos.
3505  *
3506  * Update the times on the nfsnode then do fifo close.
3507  *
3508  * nfsfifo_close(struct vnode *a_vp, int a_fflag)
3509  */
3510 static int
3511 nfsfifo_close(struct vop_close_args *ap)
3512 {
3513 	struct vnode *vp = ap->a_vp;
3514 	struct nfsnode *np = VTONFS(vp);
3515 	struct vattr vattr;
3516 	struct timespec ts;
3517 
3518 	if (np->n_flag & (NACC | NUPD)) {
3519 		getnanotime(&ts);
3520 		if (np->n_flag & NACC)
3521 			np->n_atim = ts;
3522 		if (np->n_flag & NUPD)
3523 			np->n_mtim = ts;
3524 		np->n_flag |= NCHG;
3525 		if (vp->v_sysref.refcnt == 1 &&
3526 		    (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) {
3527 			VATTR_NULL(&vattr);
3528 			if (np->n_flag & NACC)
3529 				vattr.va_atime = np->n_atim;
3530 			if (np->n_flag & NUPD)
3531 				vattr.va_mtime = np->n_mtim;
3532 			(void)VOP_SETATTR(vp, &vattr, nfs_vpcred(vp, ND_WRITE));
3533 		}
3534 	}
3535 	return (VOCALL(&fifo_vnode_vops, &ap->a_head));
3536 }
3537 
3538