1 /* 2 * Copyright (c) 1989, 1991, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 37 * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $ 38 * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.38 2006/09/09 18:29:09 dillon Exp $ 39 */ 40 41 /* 42 * Socket operations for use by nfs 43 */ 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/proc.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/kernel.h> 51 #include <sys/mbuf.h> 52 #include <sys/vnode.h> 53 #include <sys/fcntl.h> 54 #include <sys/protosw.h> 55 #include <sys/resourcevar.h> 56 #include <sys/socket.h> 57 #include <sys/socketvar.h> 58 #include <sys/socketops.h> 59 #include <sys/syslog.h> 60 #include <sys/thread.h> 61 #include <sys/tprintf.h> 62 #include <sys/sysctl.h> 63 #include <sys/signalvar.h> 64 65 #include <netinet/in.h> 66 #include <netinet/tcp.h> 67 #include <sys/thread2.h> 68 69 #include "rpcv2.h" 70 #include "nfsproto.h" 71 #include "nfs.h" 72 #include "xdr_subs.h" 73 #include "nfsm_subs.h" 74 #include "nfsmount.h" 75 #include "nfsnode.h" 76 #include "nfsrtt.h" 77 78 #define TRUE 1 79 #define FALSE 0 80 81 /* 82 * Estimate rto for an nfs rpc sent via. an unreliable datagram. 83 * Use the mean and mean deviation of rtt for the appropriate type of rpc 84 * for the frequent rpcs and a default for the others. 85 * The justification for doing "other" this way is that these rpcs 86 * happen so infrequently that timer est. would probably be stale. 87 * Also, since many of these rpcs are 88 * non-idempotent, a conservative timeout is desired. 89 * getattr, lookup - A+2D 90 * read, write - A+4D 91 * other - nm_timeo 92 */ 93 #define NFS_RTO(n, t) \ 94 ((t) == 0 ? (n)->nm_timeo : \ 95 ((t) < 3 ? \ 96 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ 97 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) 98 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1] 99 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1] 100 /* 101 * External data, mostly RPC constants in XDR form 102 */ 103 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, 104 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr, 105 rpc_auth_kerb; 106 extern u_int32_t nfs_prog; 107 extern struct nfsstats nfsstats; 108 extern int nfsv3_procid[NFS_NPROCS]; 109 extern int nfs_ticks; 110 111 /* 112 * Defines which timer to use for the procnum. 113 * 0 - default 114 * 1 - getattr 115 * 2 - lookup 116 * 3 - read 117 * 4 - write 118 */ 119 static int proct[NFS_NPROCS] = { 120 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 121 0, 0, 0, 122 }; 123 124 static int nfs_realign_test; 125 static int nfs_realign_count; 126 static int nfs_bufpackets = 4; 127 static int nfs_timer_raced; 128 129 SYSCTL_DECL(_vfs_nfs); 130 131 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, ""); 132 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, ""); 133 SYSCTL_INT(_vfs_nfs, OID_AUTO, bufpackets, CTLFLAG_RW, &nfs_bufpackets, 0, ""); 134 135 136 /* 137 * There is a congestion window for outstanding rpcs maintained per mount 138 * point. The cwnd size is adjusted in roughly the way that: 139 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of 140 * SIGCOMM '88". ACM, August 1988. 141 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout 142 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd 143 * of rpcs is in progress. 144 * (The sent count and cwnd are scaled for integer arith.) 145 * Variants of "slow start" were tried and were found to be too much of a 146 * performance hit (ave. rtt 3 times larger), 147 * I suspect due to the large rtt that nfs rpcs have. 148 */ 149 #define NFS_CWNDSCALE 256 150 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) 151 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; 152 int nfsrtton = 0; 153 struct nfsrtt nfsrtt; 154 struct callout nfs_timer_handle; 155 156 static int nfs_msg (struct thread *,char *,char *); 157 static int nfs_rcvlock (struct nfsreq *); 158 static void nfs_rcvunlock (struct nfsreq *); 159 static void nfs_realign (struct mbuf **pm, int hsiz); 160 static int nfs_receive (struct nfsreq *rep, struct sockaddr **aname, 161 struct mbuf **mp); 162 static void nfs_softterm (struct nfsreq *rep); 163 static int nfs_reconnect (struct nfsreq *rep); 164 #ifndef NFS_NOSERVER 165 static int nfsrv_getstream (struct nfssvc_sock *, int, int *); 166 167 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd, 168 struct nfssvc_sock *slp, 169 struct thread *td, 170 struct mbuf **mreqp) = { 171 nfsrv_null, 172 nfsrv_getattr, 173 nfsrv_setattr, 174 nfsrv_lookup, 175 nfsrv3_access, 176 nfsrv_readlink, 177 nfsrv_read, 178 nfsrv_write, 179 nfsrv_create, 180 nfsrv_mkdir, 181 nfsrv_symlink, 182 nfsrv_mknod, 183 nfsrv_remove, 184 nfsrv_rmdir, 185 nfsrv_rename, 186 nfsrv_link, 187 nfsrv_readdir, 188 nfsrv_readdirplus, 189 nfsrv_statfs, 190 nfsrv_fsinfo, 191 nfsrv_pathconf, 192 nfsrv_commit, 193 nfsrv_noop, 194 nfsrv_noop, 195 nfsrv_noop, 196 nfsrv_noop 197 }; 198 #endif /* NFS_NOSERVER */ 199 200 /* 201 * Initialize sockets and congestion for a new NFS connection. 202 * We do not free the sockaddr if error. 203 */ 204 int 205 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep) 206 { 207 struct socket *so; 208 int error, rcvreserve, sndreserve; 209 int pktscale; 210 struct sockaddr *saddr; 211 struct sockaddr_in *sin; 212 struct thread *td = &thread0; /* only used for socreate and sobind */ 213 214 nmp->nm_so = (struct socket *)0; 215 saddr = nmp->nm_nam; 216 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, 217 nmp->nm_soproto, td); 218 if (error) 219 goto bad; 220 so = nmp->nm_so; 221 nmp->nm_soflags = so->so_proto->pr_flags; 222 223 /* 224 * Some servers require that the client port be a reserved port number. 225 */ 226 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) { 227 struct sockopt sopt; 228 int ip; 229 struct sockaddr_in ssin; 230 231 bzero(&sopt, sizeof sopt); 232 ip = IP_PORTRANGE_LOW; 233 sopt.sopt_level = IPPROTO_IP; 234 sopt.sopt_name = IP_PORTRANGE; 235 sopt.sopt_val = (void *)&ip; 236 sopt.sopt_valsize = sizeof(ip); 237 sopt.sopt_td = NULL; 238 error = sosetopt(so, &sopt); 239 if (error) 240 goto bad; 241 bzero(&ssin, sizeof ssin); 242 sin = &ssin; 243 sin->sin_len = sizeof (struct sockaddr_in); 244 sin->sin_family = AF_INET; 245 sin->sin_addr.s_addr = INADDR_ANY; 246 sin->sin_port = htons(0); 247 error = sobind(so, (struct sockaddr *)sin, td); 248 if (error) 249 goto bad; 250 bzero(&sopt, sizeof sopt); 251 ip = IP_PORTRANGE_DEFAULT; 252 sopt.sopt_level = IPPROTO_IP; 253 sopt.sopt_name = IP_PORTRANGE; 254 sopt.sopt_val = (void *)&ip; 255 sopt.sopt_valsize = sizeof(ip); 256 sopt.sopt_td = NULL; 257 error = sosetopt(so, &sopt); 258 if (error) 259 goto bad; 260 } 261 262 /* 263 * Protocols that do not require connections may be optionally left 264 * unconnected for servers that reply from a port other than NFS_PORT. 265 */ 266 if (nmp->nm_flag & NFSMNT_NOCONN) { 267 if (nmp->nm_soflags & PR_CONNREQUIRED) { 268 error = ENOTCONN; 269 goto bad; 270 } 271 } else { 272 error = soconnect(so, nmp->nm_nam, td); 273 if (error) 274 goto bad; 275 276 /* 277 * Wait for the connection to complete. Cribbed from the 278 * connect system call but with the wait timing out so 279 * that interruptible mounts don't hang here for a long time. 280 */ 281 crit_enter(); 282 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 283 (void) tsleep((caddr_t)&so->so_timeo, 0, 284 "nfscon", 2 * hz); 285 if ((so->so_state & SS_ISCONNECTING) && 286 so->so_error == 0 && rep && 287 (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){ 288 so->so_state &= ~SS_ISCONNECTING; 289 crit_exit(); 290 goto bad; 291 } 292 } 293 if (so->so_error) { 294 error = so->so_error; 295 so->so_error = 0; 296 crit_exit(); 297 goto bad; 298 } 299 crit_exit(); 300 } 301 so->so_rcv.sb_timeo = (5 * hz); 302 so->so_snd.sb_timeo = (5 * hz); 303 304 /* 305 * Get buffer reservation size from sysctl, but impose reasonable 306 * limits. 307 */ 308 pktscale = nfs_bufpackets; 309 if (pktscale < 2) 310 pktscale = 2; 311 if (pktscale > 64) 312 pktscale = 64; 313 314 if (nmp->nm_sotype == SOCK_DGRAM) { 315 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; 316 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 317 NFS_MAXPKTHDR) * pktscale; 318 } else if (nmp->nm_sotype == SOCK_SEQPACKET) { 319 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; 320 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 321 NFS_MAXPKTHDR) * pktscale; 322 } else { 323 if (nmp->nm_sotype != SOCK_STREAM) 324 panic("nfscon sotype"); 325 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 326 struct sockopt sopt; 327 int val; 328 329 bzero(&sopt, sizeof sopt); 330 sopt.sopt_level = SOL_SOCKET; 331 sopt.sopt_name = SO_KEEPALIVE; 332 sopt.sopt_val = &val; 333 sopt.sopt_valsize = sizeof val; 334 val = 1; 335 sosetopt(so, &sopt); 336 } 337 if (so->so_proto->pr_protocol == IPPROTO_TCP) { 338 struct sockopt sopt; 339 int val; 340 341 bzero(&sopt, sizeof sopt); 342 sopt.sopt_level = IPPROTO_TCP; 343 sopt.sopt_name = TCP_NODELAY; 344 sopt.sopt_val = &val; 345 sopt.sopt_valsize = sizeof val; 346 val = 1; 347 sosetopt(so, &sopt); 348 } 349 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + 350 sizeof (u_int32_t)) * pktscale; 351 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + 352 sizeof (u_int32_t)) * pktscale; 353 } 354 error = soreserve(so, sndreserve, rcvreserve, 355 &td->td_proc->p_rlimit[RLIMIT_SBSIZE]); 356 if (error) 357 goto bad; 358 so->so_rcv.sb_flags |= SB_NOINTR; 359 so->so_snd.sb_flags |= SB_NOINTR; 360 361 /* Initialize other non-zero congestion variables */ 362 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = 363 nmp->nm_srtt[3] = (NFS_TIMEO << 3); 364 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = 365 nmp->nm_sdrtt[3] = 0; 366 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ 367 nmp->nm_sent = 0; 368 nmp->nm_timeouts = 0; 369 return (0); 370 371 bad: 372 nfs_disconnect(nmp); 373 return (error); 374 } 375 376 /* 377 * Reconnect routine: 378 * Called when a connection is broken on a reliable protocol. 379 * - clean up the old socket 380 * - nfs_connect() again 381 * - set R_MUSTRESEND for all outstanding requests on mount point 382 * If this fails the mount point is DEAD! 383 * nb: Must be called with the nfs_sndlock() set on the mount point. 384 */ 385 static int 386 nfs_reconnect(struct nfsreq *rep) 387 { 388 struct nfsreq *rp; 389 struct nfsmount *nmp = rep->r_nmp; 390 int error; 391 392 nfs_disconnect(nmp); 393 while ((error = nfs_connect(nmp, rep)) != 0) { 394 if (error == EINTR || error == ERESTART) 395 return (EINTR); 396 (void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0); 397 } 398 399 /* 400 * Loop through outstanding request list and fix up all requests 401 * on old socket. 402 */ 403 crit_enter(); 404 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) { 405 if (rp->r_nmp == nmp) 406 rp->r_flags |= R_MUSTRESEND; 407 } 408 crit_exit(); 409 return (0); 410 } 411 412 /* 413 * NFS disconnect. Clean up and unlink. 414 */ 415 void 416 nfs_disconnect(struct nfsmount *nmp) 417 { 418 struct socket *so; 419 420 if (nmp->nm_so) { 421 so = nmp->nm_so; 422 nmp->nm_so = (struct socket *)0; 423 soshutdown(so, 2); 424 soclose(so, FNONBLOCK); 425 } 426 } 427 428 void 429 nfs_safedisconnect(struct nfsmount *nmp) 430 { 431 struct nfsreq dummyreq; 432 433 bzero(&dummyreq, sizeof(dummyreq)); 434 dummyreq.r_nmp = nmp; 435 dummyreq.r_td = NULL; 436 nfs_rcvlock(&dummyreq); 437 nfs_disconnect(nmp); 438 nfs_rcvunlock(&dummyreq); 439 } 440 441 /* 442 * This is the nfs send routine. For connection based socket types, it 443 * must be called with an nfs_sndlock() on the socket. 444 * "rep == NULL" indicates that it has been called from a server. 445 * For the client side: 446 * - return EINTR if the RPC is terminated, 0 otherwise 447 * - set R_MUSTRESEND if the send fails for any reason 448 * - do any cleanup required by recoverable socket errors (?) 449 * For the server side: 450 * - return EINTR or ERESTART if interrupted by a signal 451 * - return EPIPE if a connection is lost for connection based sockets (TCP...) 452 * - do any cleanup required by recoverable socket errors (?) 453 */ 454 int 455 nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top, 456 struct nfsreq *rep) 457 { 458 struct sockaddr *sendnam; 459 int error, soflags, flags; 460 461 if (rep) { 462 if (rep->r_flags & R_SOFTTERM) { 463 m_freem(top); 464 return (EINTR); 465 } 466 if ((so = rep->r_nmp->nm_so) == NULL) { 467 rep->r_flags |= R_MUSTRESEND; 468 m_freem(top); 469 return (0); 470 } 471 rep->r_flags &= ~R_MUSTRESEND; 472 soflags = rep->r_nmp->nm_soflags; 473 } else 474 soflags = so->so_proto->pr_flags; 475 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) 476 sendnam = (struct sockaddr *)0; 477 else 478 sendnam = nam; 479 if (so->so_type == SOCK_SEQPACKET) 480 flags = MSG_EOR; 481 else 482 flags = 0; 483 484 error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags, 485 curthread /*XXX*/); 486 /* 487 * ENOBUFS for dgram sockets is transient and non fatal. 488 * No need to log, and no need to break a soft mount. 489 */ 490 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) { 491 error = 0; 492 if (rep) /* do backoff retransmit on client */ 493 rep->r_flags |= R_MUSTRESEND; 494 } 495 496 if (error) { 497 if (rep) { 498 log(LOG_INFO, "nfs send error %d for server %s\n",error, 499 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 500 /* 501 * Deal with errors for the client side. 502 */ 503 if (rep->r_flags & R_SOFTTERM) 504 error = EINTR; 505 else 506 rep->r_flags |= R_MUSTRESEND; 507 } else 508 log(LOG_INFO, "nfsd send error %d\n", error); 509 510 /* 511 * Handle any recoverable (soft) socket errors here. (?) 512 */ 513 if (error != EINTR && error != ERESTART && 514 error != EWOULDBLOCK && error != EPIPE) 515 error = 0; 516 } 517 return (error); 518 } 519 520 /* 521 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all 522 * done by soreceive(), but for SOCK_STREAM we must deal with the Record 523 * Mark and consolidate the data into a new mbuf list. 524 * nb: Sometimes TCP passes the data up to soreceive() in long lists of 525 * small mbufs. 526 * For SOCK_STREAM we must be very careful to read an entire record once 527 * we have read any of it, even if the system call has been interrupted. 528 */ 529 static int 530 nfs_receive(struct nfsreq *rep, struct sockaddr **aname, struct mbuf **mp) 531 { 532 struct socket *so; 533 struct uio auio; 534 struct iovec aio; 535 struct mbuf *m; 536 struct mbuf *control; 537 u_int32_t len; 538 struct sockaddr **getnam; 539 int error, sotype, rcvflg; 540 struct thread *td = curthread; /* XXX */ 541 542 /* 543 * Set up arguments for soreceive() 544 */ 545 *mp = (struct mbuf *)0; 546 *aname = (struct sockaddr *)0; 547 sotype = rep->r_nmp->nm_sotype; 548 549 /* 550 * For reliable protocols, lock against other senders/receivers 551 * in case a reconnect is necessary. 552 * For SOCK_STREAM, first get the Record Mark to find out how much 553 * more there is to get. 554 * We must lock the socket against other receivers 555 * until we have an entire rpc request/reply. 556 */ 557 if (sotype != SOCK_DGRAM) { 558 error = nfs_sndlock(rep); 559 if (error) 560 return (error); 561 tryagain: 562 /* 563 * Check for fatal errors and resending request. 564 */ 565 /* 566 * Ugh: If a reconnect attempt just happened, nm_so 567 * would have changed. NULL indicates a failed 568 * attempt that has essentially shut down this 569 * mount point. 570 */ 571 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { 572 nfs_sndunlock(rep); 573 return (EINTR); 574 } 575 so = rep->r_nmp->nm_so; 576 if (!so) { 577 error = nfs_reconnect(rep); 578 if (error) { 579 nfs_sndunlock(rep); 580 return (error); 581 } 582 goto tryagain; 583 } 584 while (rep->r_flags & R_MUSTRESEND) { 585 m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT); 586 nfsstats.rpcretries++; 587 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep); 588 if (error) { 589 if (error == EINTR || error == ERESTART || 590 (error = nfs_reconnect(rep)) != 0) { 591 nfs_sndunlock(rep); 592 return (error); 593 } 594 goto tryagain; 595 } 596 } 597 nfs_sndunlock(rep); 598 if (sotype == SOCK_STREAM) { 599 aio.iov_base = (caddr_t) &len; 600 aio.iov_len = sizeof(u_int32_t); 601 auio.uio_iov = &aio; 602 auio.uio_iovcnt = 1; 603 auio.uio_segflg = UIO_SYSSPACE; 604 auio.uio_rw = UIO_READ; 605 auio.uio_offset = 0; 606 auio.uio_resid = sizeof(u_int32_t); 607 auio.uio_td = td; 608 do { 609 rcvflg = MSG_WAITALL; 610 error = so_pru_soreceive(so, NULL, &auio, NULL, 611 NULL, &rcvflg); 612 if (error == EWOULDBLOCK && rep) { 613 if (rep->r_flags & R_SOFTTERM) 614 return (EINTR); 615 } 616 } while (error == EWOULDBLOCK); 617 if (!error && auio.uio_resid > 0) { 618 /* 619 * Don't log a 0 byte receive; it means 620 * that the socket has been closed, and 621 * can happen during normal operation 622 * (forcible unmount or Solaris server). 623 */ 624 if (auio.uio_resid != sizeof (u_int32_t)) 625 log(LOG_INFO, 626 "short receive (%d/%d) from nfs server %s\n", 627 (int)(sizeof(u_int32_t) - auio.uio_resid), 628 (int)sizeof(u_int32_t), 629 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 630 error = EPIPE; 631 } 632 if (error) 633 goto errout; 634 len = ntohl(len) & ~0x80000000; 635 /* 636 * This is SERIOUS! We are out of sync with the sender 637 * and forcing a disconnect/reconnect is all I can do. 638 */ 639 if (len > NFS_MAXPACKET) { 640 log(LOG_ERR, "%s (%d) from nfs server %s\n", 641 "impossible packet length", 642 len, 643 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 644 error = EFBIG; 645 goto errout; 646 } 647 auio.uio_resid = len; 648 do { 649 rcvflg = MSG_WAITALL; 650 error = so_pru_soreceive(so, NULL, &auio, mp, 651 NULL, &rcvflg); 652 } while (error == EWOULDBLOCK || error == EINTR || 653 error == ERESTART); 654 if (!error && auio.uio_resid > 0) { 655 if (len != auio.uio_resid) 656 log(LOG_INFO, 657 "short receive (%d/%d) from nfs server %s\n", 658 len - auio.uio_resid, len, 659 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 660 error = EPIPE; 661 } 662 } else { 663 /* 664 * NB: Since uio_resid is big, MSG_WAITALL is ignored 665 * and soreceive() will return when it has either a 666 * control msg or a data msg. 667 * We have no use for control msg., but must grab them 668 * and then throw them away so we know what is going 669 * on. 670 */ 671 auio.uio_resid = len = 100000000; /* Anything Big */ 672 auio.uio_td = td; 673 do { 674 rcvflg = 0; 675 error = so_pru_soreceive(so, NULL, &auio, mp, 676 &control, &rcvflg); 677 if (control) 678 m_freem(control); 679 if (error == EWOULDBLOCK && rep) { 680 if (rep->r_flags & R_SOFTTERM) 681 return (EINTR); 682 } 683 } while (error == EWOULDBLOCK || 684 (!error && *mp == NULL && control)); 685 if ((rcvflg & MSG_EOR) == 0) 686 printf("Egad!!\n"); 687 if (!error && *mp == NULL) 688 error = EPIPE; 689 len -= auio.uio_resid; 690 } 691 errout: 692 if (error && error != EINTR && error != ERESTART) { 693 m_freem(*mp); 694 *mp = (struct mbuf *)0; 695 if (error != EPIPE) 696 log(LOG_INFO, 697 "receive error %d from nfs server %s\n", 698 error, 699 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 700 error = nfs_sndlock(rep); 701 if (!error) { 702 error = nfs_reconnect(rep); 703 if (!error) 704 goto tryagain; 705 else 706 nfs_sndunlock(rep); 707 } 708 } 709 } else { 710 if ((so = rep->r_nmp->nm_so) == NULL) 711 return (EACCES); 712 if (so->so_state & SS_ISCONNECTED) 713 getnam = (struct sockaddr **)0; 714 else 715 getnam = aname; 716 auio.uio_resid = len = 1000000; 717 auio.uio_td = td; 718 do { 719 rcvflg = 0; 720 error = so_pru_soreceive(so, getnam, &auio, mp, NULL, 721 &rcvflg); 722 if (error == EWOULDBLOCK && 723 (rep->r_flags & R_SOFTTERM)) 724 return (EINTR); 725 } while (error == EWOULDBLOCK); 726 len -= auio.uio_resid; 727 } 728 if (error) { 729 m_freem(*mp); 730 *mp = (struct mbuf *)0; 731 } 732 /* 733 * Search for any mbufs that are not a multiple of 4 bytes long 734 * or with m_data not longword aligned. 735 * These could cause pointer alignment problems, so copy them to 736 * well aligned mbufs. 737 */ 738 nfs_realign(mp, 5 * NFSX_UNSIGNED); 739 return (error); 740 } 741 742 /* 743 * Implement receipt of reply on a socket. 744 * We must search through the list of received datagrams matching them 745 * with outstanding requests using the xid, until ours is found. 746 */ 747 /* ARGSUSED */ 748 int 749 nfs_reply(struct nfsreq *myrep) 750 { 751 struct nfsreq *rep; 752 struct nfsmount *nmp = myrep->r_nmp; 753 int32_t t1; 754 struct mbuf *mrep, *md; 755 struct sockaddr *nam; 756 u_int32_t rxid, *tl; 757 caddr_t dpos, cp2; 758 int error; 759 760 /* 761 * Loop around until we get our own reply 762 */ 763 for (;;) { 764 /* 765 * Lock against other receivers so that I don't get stuck in 766 * sbwait() after someone else has received my reply for me. 767 * Also necessary for connection based protocols to avoid 768 * race conditions during a reconnect. 769 * If nfs_rcvlock() returns EALREADY, that means that 770 * the reply has already been recieved by another 771 * process and we can return immediately. In this 772 * case, the lock is not taken to avoid races with 773 * other processes. 774 */ 775 error = nfs_rcvlock(myrep); 776 if (error == EALREADY) 777 return (0); 778 if (error) 779 return (error); 780 /* 781 * Get the next Rpc reply off the socket 782 */ 783 error = nfs_receive(myrep, &nam, &mrep); 784 nfs_rcvunlock(myrep); 785 if (error) { 786 /* 787 * Ignore routing errors on connectionless protocols?? 788 */ 789 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 790 nmp->nm_so->so_error = 0; 791 if (myrep->r_flags & R_GETONEREP) 792 return (0); 793 continue; 794 } 795 return (error); 796 } 797 if (nam) 798 FREE(nam, M_SONAME); 799 800 /* 801 * Get the xid and check that it is an rpc reply 802 */ 803 md = mrep; 804 dpos = mtod(md, caddr_t); 805 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED); 806 rxid = *tl++; 807 if (*tl != rpc_reply) { 808 nfsstats.rpcinvalid++; 809 m_freem(mrep); 810 nfsmout: 811 if (myrep->r_flags & R_GETONEREP) 812 return (0); 813 continue; 814 } 815 816 /* 817 * Loop through the request list to match up the reply 818 * Iff no match, just drop the datagram. On match, set 819 * r_mrep atomically to prevent the timer from messing 820 * around with the request after we have exited the critical 821 * section. 822 */ 823 crit_enter(); 824 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { 825 if (rep->r_mrep == NULL && rxid == rep->r_xid) { 826 rep->r_mrep = mrep; 827 break; 828 } 829 } 830 crit_exit(); 831 832 /* 833 * Fill in the rest of the reply if we found a match. 834 */ 835 if (rep) { 836 rep->r_md = md; 837 rep->r_dpos = dpos; 838 if (nfsrtton) { 839 struct rttl *rt; 840 841 rt = &nfsrtt.rttl[nfsrtt.pos]; 842 rt->proc = rep->r_procnum; 843 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]); 844 rt->sent = nmp->nm_sent; 845 rt->cwnd = nmp->nm_cwnd; 846 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1]; 847 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1]; 848 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid; 849 getmicrotime(&rt->tstamp); 850 if (rep->r_flags & R_TIMING) 851 rt->rtt = rep->r_rtt; 852 else 853 rt->rtt = 1000000; 854 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ; 855 } 856 /* 857 * Update congestion window. 858 * Do the additive increase of 859 * one rpc/rtt. 860 */ 861 if (nmp->nm_cwnd <= nmp->nm_sent) { 862 nmp->nm_cwnd += 863 (NFS_CWNDSCALE * NFS_CWNDSCALE + 864 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; 865 if (nmp->nm_cwnd > NFS_MAXCWND) 866 nmp->nm_cwnd = NFS_MAXCWND; 867 } 868 crit_enter(); /* nfs_timer interlock for nm_sent */ 869 if (rep->r_flags & R_SENT) { 870 rep->r_flags &= ~R_SENT; 871 nmp->nm_sent -= NFS_CWNDSCALE; 872 } 873 crit_exit(); 874 /* 875 * Update rtt using a gain of 0.125 on the mean 876 * and a gain of 0.25 on the deviation. 877 */ 878 if (rep->r_flags & R_TIMING) { 879 /* 880 * Since the timer resolution of 881 * NFS_HZ is so course, it can often 882 * result in r_rtt == 0. Since 883 * r_rtt == N means that the actual 884 * rtt is between N+dt and N+2-dt ticks, 885 * add 1. 886 */ 887 t1 = rep->r_rtt + 1; 888 t1 -= (NFS_SRTT(rep) >> 3); 889 NFS_SRTT(rep) += t1; 890 if (t1 < 0) 891 t1 = -t1; 892 t1 -= (NFS_SDRTT(rep) >> 2); 893 NFS_SDRTT(rep) += t1; 894 } 895 nmp->nm_timeouts = 0; 896 } 897 /* 898 * If not matched to a request, drop it. 899 * If it's mine, get out. 900 */ 901 if (rep == NULL) { 902 nfsstats.rpcunexpected++; 903 m_freem(mrep); 904 } else if (rep == myrep) { 905 if (rep->r_mrep == NULL) 906 panic("nfsreply nil"); 907 return (0); 908 } 909 if (myrep->r_flags & R_GETONEREP) 910 return (0); 911 } 912 } 913 914 /* 915 * nfs_request - goes something like this 916 * - fill in request struct 917 * - links it into list 918 * - calls nfs_send() for first transmit 919 * - calls nfs_receive() to get reply 920 * - break down rpc header and return with nfs reply pointed to 921 * by mrep or error 922 * nb: always frees up mreq mbuf list 923 */ 924 int 925 nfs_request(struct vnode *vp, struct mbuf *mrest, int procnum, 926 struct thread *td, struct ucred *cred, struct mbuf **mrp, 927 struct mbuf **mdp, caddr_t *dposp) 928 { 929 struct mbuf *mrep, *m2; 930 struct nfsreq *rep; 931 u_int32_t *tl; 932 int i; 933 struct nfsmount *nmp; 934 struct mbuf *m, *md, *mheadend; 935 char nickv[RPCX_NICKVERF]; 936 time_t waituntil; 937 caddr_t dpos, cp2; 938 int t1, error = 0, mrest_len, auth_len, auth_type; 939 int trylater_delay = 15, trylater_cnt = 0, failed_auth = 0; 940 int verf_len, verf_type; 941 u_int32_t xid; 942 char *auth_str, *verf_str; 943 NFSKERBKEY_T key; /* save session key */ 944 945 /* Reject requests while attempting a forced unmount. */ 946 if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) { 947 m_freem(mrest); 948 return (ESTALE); 949 } 950 nmp = VFSTONFS(vp->v_mount); 951 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK); 952 rep->r_nmp = nmp; 953 rep->r_vp = vp; 954 rep->r_td = td; 955 rep->r_procnum = procnum; 956 rep->r_mreq = NULL; 957 i = 0; 958 m = mrest; 959 while (m) { 960 i += m->m_len; 961 m = m->m_next; 962 } 963 mrest_len = i; 964 965 /* 966 * Get the RPC header with authorization. 967 */ 968 kerbauth: 969 verf_str = auth_str = (char *)0; 970 if (nmp->nm_flag & NFSMNT_KERB) { 971 verf_str = nickv; 972 verf_len = sizeof (nickv); 973 auth_type = RPCAUTH_KERB4; 974 bzero((caddr_t)key, sizeof (key)); 975 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str, 976 &auth_len, verf_str, verf_len)) { 977 error = nfs_getauth(nmp, rep, cred, &auth_str, 978 &auth_len, verf_str, &verf_len, key); 979 if (error) { 980 kfree((caddr_t)rep, M_NFSREQ); 981 m_freem(mrest); 982 return (error); 983 } 984 } 985 } else { 986 auth_type = RPCAUTH_UNIX; 987 if (cred->cr_ngroups < 1) 988 panic("nfsreq nogrps"); 989 auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ? 990 nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) + 991 5 * NFSX_UNSIGNED; 992 } 993 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, 994 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid); 995 if (auth_str) 996 kfree(auth_str, M_TEMP); 997 998 /* 999 * For stream protocols, insert a Sun RPC Record Mark. 1000 */ 1001 if (nmp->nm_sotype == SOCK_STREAM) { 1002 M_PREPEND(m, NFSX_UNSIGNED, MB_WAIT); 1003 if (m == NULL) { 1004 kfree(rep, M_NFSREQ); 1005 return (ENOBUFS); 1006 } 1007 *mtod(m, u_int32_t *) = htonl(0x80000000 | 1008 (m->m_pkthdr.len - NFSX_UNSIGNED)); 1009 } 1010 rep->r_mreq = m; 1011 rep->r_xid = xid; 1012 tryagain: 1013 if (nmp->nm_flag & NFSMNT_SOFT) 1014 rep->r_retry = nmp->nm_retry; 1015 else 1016 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ 1017 rep->r_rtt = rep->r_rexmit = 0; 1018 if (proct[procnum] > 0) 1019 rep->r_flags = R_TIMING | R_MASKTIMER; 1020 else 1021 rep->r_flags = R_MASKTIMER; 1022 rep->r_mrep = NULL; 1023 1024 /* 1025 * Do the client side RPC. 1026 */ 1027 nfsstats.rpcrequests++; 1028 1029 /* 1030 * Chain request into list of outstanding requests. Be sure 1031 * to put it LAST so timer finds oldest requests first. Note 1032 * that R_MASKTIMER is set at the moment to prevent any timer 1033 * action on this request while we are still doing processing on 1034 * it below. splsoftclock() primarily protects nm_sent. Note 1035 * that we may block in this code so there is no atomicy guarentee. 1036 */ 1037 crit_enter(); 1038 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); 1039 1040 /* 1041 * If backing off another request or avoiding congestion, don't 1042 * send this one now but let timer do it. If not timing a request, 1043 * do it now. 1044 * 1045 * Even though the timer will not mess with our request there is 1046 * still the possibility that we will race a reply (which clears 1047 * R_SENT), especially on localhost connections, so be very careful 1048 * when setting R_SENT. We could set R_SENT prior to calling 1049 * nfs_send() but why bother if the response occurs that quickly? 1050 */ 1051 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || 1052 (nmp->nm_flag & NFSMNT_DUMBTIMR) || 1053 nmp->nm_sent < nmp->nm_cwnd)) { 1054 if (nmp->nm_soflags & PR_CONNREQUIRED) 1055 error = nfs_sndlock(rep); 1056 if (!error) { 1057 m2 = m_copym(m, 0, M_COPYALL, MB_WAIT); 1058 error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep); 1059 if (nmp->nm_soflags & PR_CONNREQUIRED) 1060 nfs_sndunlock(rep); 1061 } 1062 if (!error && (rep->r_flags & R_MUSTRESEND) == 0 && 1063 rep->r_mrep == NULL) { 1064 KASSERT((rep->r_flags & R_SENT) == 0, 1065 ("R_SENT ASSERT %p", rep)); 1066 nmp->nm_sent += NFS_CWNDSCALE; 1067 rep->r_flags |= R_SENT; 1068 } 1069 } else { 1070 rep->r_rtt = -1; 1071 } 1072 1073 /* 1074 * Let the timer do what it will with the request, then 1075 * wait for the reply from our send or the timer's. 1076 */ 1077 if (!error || error == EPIPE) { 1078 rep->r_flags &= ~R_MASKTIMER; 1079 crit_exit(); 1080 error = nfs_reply(rep); 1081 crit_enter(); 1082 } 1083 1084 /* 1085 * RPC done, unlink the request, but don't rip it out from under 1086 * the callout timer. 1087 */ 1088 while (rep->r_flags & R_LOCKED) { 1089 nfs_timer_raced = 1; 1090 tsleep(&nfs_timer_raced, 0, "nfstrac", 0); 1091 } 1092 TAILQ_REMOVE(&nfs_reqq, rep, r_chain); 1093 1094 /* 1095 * Decrement the outstanding request count. 1096 */ 1097 if (rep->r_flags & R_SENT) { 1098 rep->r_flags &= ~R_SENT; 1099 nmp->nm_sent -= NFS_CWNDSCALE; 1100 } 1101 crit_exit(); 1102 1103 /* 1104 * If there was a successful reply and a tprintf msg. 1105 * tprintf a response. 1106 */ 1107 if (!error && (rep->r_flags & R_TPRINTFMSG)) 1108 nfs_msg(rep->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname, 1109 "is alive again"); 1110 mrep = rep->r_mrep; 1111 md = rep->r_md; 1112 dpos = rep->r_dpos; 1113 if (error) { 1114 m_freem(rep->r_mreq); 1115 kfree((caddr_t)rep, M_NFSREQ); 1116 return (error); 1117 } 1118 1119 /* 1120 * break down the rpc header and check if ok 1121 */ 1122 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1123 if (*tl++ == rpc_msgdenied) { 1124 if (*tl == rpc_mismatch) 1125 error = EOPNOTSUPP; 1126 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) { 1127 if (!failed_auth) { 1128 failed_auth++; 1129 mheadend->m_next = (struct mbuf *)0; 1130 m_freem(mrep); 1131 m_freem(rep->r_mreq); 1132 goto kerbauth; 1133 } else 1134 error = EAUTH; 1135 } else 1136 error = EACCES; 1137 m_freem(mrep); 1138 m_freem(rep->r_mreq); 1139 kfree((caddr_t)rep, M_NFSREQ); 1140 return (error); 1141 } 1142 1143 /* 1144 * Grab any Kerberos verifier, otherwise just throw it away. 1145 */ 1146 verf_type = fxdr_unsigned(int, *tl++); 1147 i = fxdr_unsigned(int32_t, *tl); 1148 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) { 1149 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep); 1150 if (error) 1151 goto nfsmout; 1152 } else if (i > 0) 1153 nfsm_adv(nfsm_rndup(i)); 1154 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1155 /* 0 == ok */ 1156 if (*tl == 0) { 1157 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1158 if (*tl != 0) { 1159 error = fxdr_unsigned(int, *tl); 1160 if ((nmp->nm_flag & NFSMNT_NFSV3) && 1161 error == NFSERR_TRYLATER) { 1162 m_freem(mrep); 1163 error = 0; 1164 waituntil = time_second + trylater_delay; 1165 while (time_second < waituntil) 1166 (void) tsleep((caddr_t)&lbolt, 1167 0, "nqnfstry", 0); 1168 trylater_delay *= nfs_backoff[trylater_cnt]; 1169 if (trylater_cnt < 7) 1170 trylater_cnt++; 1171 goto tryagain; 1172 } 1173 1174 /* 1175 * If the File Handle was stale, invalidate the 1176 * lookup cache, just in case. 1177 * 1178 * To avoid namecache<->vnode deadlocks we must 1179 * release the vnode lock if we hold it. 1180 */ 1181 if (error == ESTALE) { 1182 int ltype; 1183 1184 ltype = lockstatus(&vp->v_lock, curthread); 1185 if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED) 1186 lockmgr(&vp->v_lock, LK_RELEASE); 1187 cache_inval_vp(vp, CINV_CHILDREN); 1188 if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED) 1189 lockmgr(&vp->v_lock, ltype); 1190 } 1191 if (nmp->nm_flag & NFSMNT_NFSV3) { 1192 *mrp = mrep; 1193 *mdp = md; 1194 *dposp = dpos; 1195 error |= NFSERR_RETERR; 1196 } else 1197 m_freem(mrep); 1198 m_freem(rep->r_mreq); 1199 kfree((caddr_t)rep, M_NFSREQ); 1200 return (error); 1201 } 1202 1203 *mrp = mrep; 1204 *mdp = md; 1205 *dposp = dpos; 1206 m_freem(rep->r_mreq); 1207 FREE((caddr_t)rep, M_NFSREQ); 1208 return (0); 1209 } 1210 m_freem(mrep); 1211 error = EPROTONOSUPPORT; 1212 nfsmout: 1213 m_freem(rep->r_mreq); 1214 kfree((caddr_t)rep, M_NFSREQ); 1215 return (error); 1216 } 1217 1218 #ifndef NFS_NOSERVER 1219 /* 1220 * Generate the rpc reply header 1221 * siz arg. is used to decide if adding a cluster is worthwhile 1222 */ 1223 int 1224 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp, 1225 int err, struct mbuf **mrq, struct mbuf **mbp, caddr_t *bposp) 1226 { 1227 u_int32_t *tl; 1228 struct mbuf *mreq; 1229 caddr_t bpos; 1230 struct mbuf *mb, *mb2; 1231 1232 siz += RPC_REPLYSIZ; 1233 mb = mreq = m_getl(max_hdr + siz, MB_WAIT, MT_DATA, M_PKTHDR, NULL); 1234 mreq->m_pkthdr.len = 0; 1235 /* 1236 * If this is not a cluster, try and leave leading space 1237 * for the lower level headers. 1238 */ 1239 if ((max_hdr + siz) < MINCLSIZE) 1240 mreq->m_data += max_hdr; 1241 tl = mtod(mreq, u_int32_t *); 1242 mreq->m_len = 6 * NFSX_UNSIGNED; 1243 bpos = ((caddr_t)tl) + mreq->m_len; 1244 *tl++ = txdr_unsigned(nd->nd_retxid); 1245 *tl++ = rpc_reply; 1246 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { 1247 *tl++ = rpc_msgdenied; 1248 if (err & NFSERR_AUTHERR) { 1249 *tl++ = rpc_autherr; 1250 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); 1251 mreq->m_len -= NFSX_UNSIGNED; 1252 bpos -= NFSX_UNSIGNED; 1253 } else { 1254 *tl++ = rpc_mismatch; 1255 *tl++ = txdr_unsigned(RPC_VER2); 1256 *tl = txdr_unsigned(RPC_VER2); 1257 } 1258 } else { 1259 *tl++ = rpc_msgaccepted; 1260 1261 /* 1262 * For Kerberos authentication, we must send the nickname 1263 * verifier back, otherwise just RPCAUTH_NULL. 1264 */ 1265 if (nd->nd_flag & ND_KERBFULL) { 1266 struct nfsuid *nuidp; 1267 struct timeval ktvin, ktvout; 1268 1269 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first; 1270 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1271 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid && 1272 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp), 1273 &nuidp->nu_haddr, nd->nd_nam2))) 1274 break; 1275 } 1276 if (nuidp) { 1277 ktvin.tv_sec = 1278 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1); 1279 ktvin.tv_usec = 1280 txdr_unsigned(nuidp->nu_timestamp.tv_usec); 1281 1282 /* 1283 * Encrypt the timestamp in ecb mode using the 1284 * session key. 1285 */ 1286 #ifdef NFSKERB 1287 XXX 1288 #endif 1289 1290 *tl++ = rpc_auth_kerb; 1291 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); 1292 *tl = ktvout.tv_sec; 1293 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1294 *tl++ = ktvout.tv_usec; 1295 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid); 1296 } else { 1297 *tl++ = 0; 1298 *tl++ = 0; 1299 } 1300 } else { 1301 *tl++ = 0; 1302 *tl++ = 0; 1303 } 1304 switch (err) { 1305 case EPROGUNAVAIL: 1306 *tl = txdr_unsigned(RPC_PROGUNAVAIL); 1307 break; 1308 case EPROGMISMATCH: 1309 *tl = txdr_unsigned(RPC_PROGMISMATCH); 1310 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1311 *tl++ = txdr_unsigned(2); 1312 *tl = txdr_unsigned(3); 1313 break; 1314 case EPROCUNAVAIL: 1315 *tl = txdr_unsigned(RPC_PROCUNAVAIL); 1316 break; 1317 case EBADRPC: 1318 *tl = txdr_unsigned(RPC_GARBAGE); 1319 break; 1320 default: 1321 *tl = 0; 1322 if (err != NFSERR_RETVOID) { 1323 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1324 if (err) 1325 *tl = txdr_unsigned(nfsrv_errmap(nd, err)); 1326 else 1327 *tl = 0; 1328 } 1329 break; 1330 }; 1331 } 1332 1333 if (mrq != NULL) 1334 *mrq = mreq; 1335 *mbp = mb; 1336 *bposp = bpos; 1337 if (err != 0 && err != NFSERR_RETVOID) 1338 nfsstats.srvrpc_errs++; 1339 return (0); 1340 } 1341 1342 1343 #endif /* NFS_NOSERVER */ 1344 /* 1345 * Nfs timer routine 1346 * Scan the nfsreq list and retranmit any requests that have timed out 1347 * To avoid retransmission attempts on STREAM sockets (in the future) make 1348 * sure to set the r_retry field to 0 (implies nm_retry == 0). 1349 */ 1350 void 1351 nfs_timer(void *arg /* never used */) 1352 { 1353 struct nfsreq *rep; 1354 struct mbuf *m; 1355 struct socket *so; 1356 struct nfsmount *nmp; 1357 int timeo; 1358 int error; 1359 #ifndef NFS_NOSERVER 1360 struct nfssvc_sock *slp; 1361 u_quad_t cur_usec; 1362 #endif /* NFS_NOSERVER */ 1363 struct thread *td = &thread0; /* XXX for credentials, will break if sleep */ 1364 1365 crit_enter(); 1366 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { 1367 nmp = rep->r_nmp; 1368 if (rep->r_mrep || (rep->r_flags & (R_SOFTTERM|R_MASKTIMER))) 1369 continue; 1370 rep->r_flags |= R_LOCKED; 1371 if (nfs_sigintr(nmp, rep, rep->r_td)) { 1372 nfs_softterm(rep); 1373 goto skip; 1374 } 1375 if (rep->r_rtt >= 0) { 1376 rep->r_rtt++; 1377 if (nmp->nm_flag & NFSMNT_DUMBTIMR) 1378 timeo = nmp->nm_timeo; 1379 else 1380 timeo = NFS_RTO(nmp, proct[rep->r_procnum]); 1381 if (nmp->nm_timeouts > 0) 1382 timeo *= nfs_backoff[nmp->nm_timeouts - 1]; 1383 if (rep->r_rtt <= timeo) 1384 goto skip; 1385 if (nmp->nm_timeouts < 8) 1386 nmp->nm_timeouts++; 1387 } 1388 /* 1389 * Check for server not responding 1390 */ 1391 if ((rep->r_flags & R_TPRINTFMSG) == 0 && 1392 rep->r_rexmit > nmp->nm_deadthresh) { 1393 nfs_msg(rep->r_td, 1394 nmp->nm_mountp->mnt_stat.f_mntfromname, 1395 "not responding"); 1396 rep->r_flags |= R_TPRINTFMSG; 1397 } 1398 if (rep->r_rexmit >= rep->r_retry) { /* too many */ 1399 nfsstats.rpctimeouts++; 1400 nfs_softterm(rep); 1401 goto skip; 1402 } 1403 if (nmp->nm_sotype != SOCK_DGRAM) { 1404 if (++rep->r_rexmit > NFS_MAXREXMIT) 1405 rep->r_rexmit = NFS_MAXREXMIT; 1406 goto skip; 1407 } 1408 if ((so = nmp->nm_so) == NULL) 1409 goto skip; 1410 1411 /* 1412 * If there is enough space and the window allows.. 1413 * Resend it 1414 * Set r_rtt to -1 in case we fail to send it now. 1415 */ 1416 rep->r_rtt = -1; 1417 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && 1418 ((nmp->nm_flag & NFSMNT_DUMBTIMR) || 1419 (rep->r_flags & R_SENT) || 1420 nmp->nm_sent < nmp->nm_cwnd) && 1421 (m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_DONTWAIT))){ 1422 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0) 1423 error = so_pru_send(so, 0, m, (struct sockaddr *)0, 1424 (struct mbuf *)0, td); 1425 else 1426 error = so_pru_send(so, 0, m, nmp->nm_nam, 1427 (struct mbuf *)0, td); 1428 if (error) { 1429 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) 1430 so->so_error = 0; 1431 } else if (rep->r_mrep == NULL) { 1432 /* 1433 * Iff first send, start timing 1434 * else turn timing off, backoff timer 1435 * and divide congestion window by 2. 1436 * 1437 * It is possible for the so_pru_send() to 1438 * block and for us to race a reply so we 1439 * only do this if the reply field has not 1440 * been filled in. R_LOCKED will prevent 1441 * the request from being ripped out from under 1442 * us entirely. 1443 */ 1444 if (rep->r_flags & R_SENT) { 1445 rep->r_flags &= ~R_TIMING; 1446 if (++rep->r_rexmit > NFS_MAXREXMIT) 1447 rep->r_rexmit = NFS_MAXREXMIT; 1448 nmp->nm_cwnd >>= 1; 1449 if (nmp->nm_cwnd < NFS_CWNDSCALE) 1450 nmp->nm_cwnd = NFS_CWNDSCALE; 1451 nfsstats.rpcretries++; 1452 } else { 1453 rep->r_flags |= R_SENT; 1454 nmp->nm_sent += NFS_CWNDSCALE; 1455 } 1456 rep->r_rtt = 0; 1457 } 1458 } 1459 skip: 1460 rep->r_flags &= ~R_LOCKED; 1461 } 1462 #ifndef NFS_NOSERVER 1463 1464 /* 1465 * Scan the write gathering queues for writes that need to be 1466 * completed now. 1467 */ 1468 cur_usec = nfs_curusec(); 1469 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) { 1470 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec) 1471 nfsrv_wakenfsd(slp, 1); 1472 } 1473 #endif /* NFS_NOSERVER */ 1474 1475 /* 1476 * Due to possible blocking, a client operation may be waiting for 1477 * us to finish processing this request so it can remove it. 1478 */ 1479 if (nfs_timer_raced) { 1480 nfs_timer_raced = 0; 1481 wakeup(&nfs_timer_raced); 1482 } 1483 crit_exit(); 1484 callout_reset(&nfs_timer_handle, nfs_ticks, nfs_timer, NULL); 1485 } 1486 1487 /* 1488 * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and 1489 * wait for all requests to complete. This is used by forced unmounts 1490 * to terminate any outstanding RPCs. 1491 */ 1492 int 1493 nfs_nmcancelreqs(struct nfsmount *nmp) 1494 { 1495 struct nfsreq *req; 1496 int i; 1497 1498 crit_enter(); 1499 TAILQ_FOREACH(req, &nfs_reqq, r_chain) { 1500 if (nmp != req->r_nmp || req->r_mrep != NULL || 1501 (req->r_flags & R_SOFTTERM)) { 1502 continue; 1503 } 1504 nfs_softterm(req); 1505 } 1506 crit_exit(); 1507 1508 for (i = 0; i < 30; i++) { 1509 crit_enter(); 1510 TAILQ_FOREACH(req, &nfs_reqq, r_chain) { 1511 if (nmp == req->r_nmp) 1512 break; 1513 } 1514 crit_exit(); 1515 if (req == NULL) 1516 return (0); 1517 tsleep(&lbolt, 0, "nfscancel", 0); 1518 } 1519 return (EBUSY); 1520 } 1521 1522 /* 1523 * Flag a request as being about to terminate (due to NFSMNT_INT/NFSMNT_SOFT). 1524 * The nm_send count is decremented now to avoid deadlocks when the process in 1525 * soreceive() hasn't yet managed to send its own request. 1526 * 1527 * This routine must be called at splsoftclock() to protect r_flags and 1528 * nm_sent. 1529 */ 1530 1531 static void 1532 nfs_softterm(struct nfsreq *rep) 1533 { 1534 rep->r_flags |= R_SOFTTERM; 1535 1536 if (rep->r_flags & R_SENT) { 1537 rep->r_nmp->nm_sent -= NFS_CWNDSCALE; 1538 rep->r_flags &= ~R_SENT; 1539 } 1540 } 1541 1542 /* 1543 * Test for a termination condition pending on the process. 1544 * This is used for NFSMNT_INT mounts. 1545 */ 1546 int 1547 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td) 1548 { 1549 sigset_t tmpset; 1550 struct proc *p; 1551 1552 if (rep && (rep->r_flags & R_SOFTTERM)) 1553 return (EINTR); 1554 /* Terminate all requests while attempting a forced unmount. */ 1555 if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF) 1556 return (EINTR); 1557 if (!(nmp->nm_flag & NFSMNT_INT)) 1558 return (0); 1559 /* td might be NULL YYY */ 1560 if (td == NULL || (p = td->td_proc) == NULL) 1561 return (0); 1562 1563 tmpset = p->p_siglist; 1564 SIGSETNAND(tmpset, p->p_sigmask); 1565 SIGSETNAND(tmpset, p->p_sigignore); 1566 if (SIGNOTEMPTY(p->p_siglist) && NFSINT_SIGMASK(tmpset)) 1567 return (EINTR); 1568 1569 return (0); 1570 } 1571 1572 /* 1573 * Lock a socket against others. 1574 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply 1575 * and also to avoid race conditions between the processes with nfs requests 1576 * in progress when a reconnect is necessary. 1577 */ 1578 int 1579 nfs_sndlock(struct nfsreq *rep) 1580 { 1581 int *statep = &rep->r_nmp->nm_state; 1582 struct thread *td; 1583 int slptimeo; 1584 int slpflag; 1585 int error; 1586 1587 slpflag = 0; 1588 slptimeo = 0; 1589 td = rep->r_td; 1590 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1591 slpflag = PCATCH; 1592 1593 error = 0; 1594 crit_enter(); 1595 while (*statep & NFSSTA_SNDLOCK) { 1596 *statep |= NFSSTA_WANTSND; 1597 if (nfs_sigintr(rep->r_nmp, rep, td)) { 1598 error = EINTR; 1599 break; 1600 } 1601 tsleep((caddr_t)statep, slpflag, "nfsndlck", slptimeo); 1602 if (slpflag == PCATCH) { 1603 slpflag = 0; 1604 slptimeo = 2 * hz; 1605 } 1606 } 1607 /* Always fail if our request has been cancelled. */ 1608 if ((rep->r_flags & R_SOFTTERM)) 1609 error = EINTR; 1610 if (error == 0) 1611 *statep |= NFSSTA_SNDLOCK; 1612 crit_exit(); 1613 return (error); 1614 } 1615 1616 /* 1617 * Unlock the stream socket for others. 1618 */ 1619 void 1620 nfs_sndunlock(struct nfsreq *rep) 1621 { 1622 int *statep = &rep->r_nmp->nm_state; 1623 1624 if ((*statep & NFSSTA_SNDLOCK) == 0) 1625 panic("nfs sndunlock"); 1626 crit_enter(); 1627 *statep &= ~NFSSTA_SNDLOCK; 1628 if (*statep & NFSSTA_WANTSND) { 1629 *statep &= ~NFSSTA_WANTSND; 1630 wakeup((caddr_t)statep); 1631 } 1632 crit_exit(); 1633 } 1634 1635 static int 1636 nfs_rcvlock(struct nfsreq *rep) 1637 { 1638 int *statep = &rep->r_nmp->nm_state; 1639 int slpflag; 1640 int slptimeo; 1641 int error; 1642 1643 /* 1644 * Unconditionally check for completion in case another nfsiod 1645 * get the packet while the caller was blocked, before the caller 1646 * called us. Packet reception is handled by mainline code which 1647 * is protected by the BGL at the moment. 1648 * 1649 * We do not strictly need the second check just before the 1650 * tsleep(), but it's good defensive programming. 1651 */ 1652 if (rep->r_mrep != NULL) 1653 return (EALREADY); 1654 1655 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1656 slpflag = PCATCH; 1657 else 1658 slpflag = 0; 1659 slptimeo = 0; 1660 error = 0; 1661 crit_enter(); 1662 while (*statep & NFSSTA_RCVLOCK) { 1663 if (nfs_sigintr(rep->r_nmp, rep, rep->r_td)) { 1664 error = EINTR; 1665 break; 1666 } 1667 if (rep->r_mrep != NULL) { 1668 error = EALREADY; 1669 break; 1670 } 1671 *statep |= NFSSTA_WANTRCV; 1672 tsleep((caddr_t)statep, slpflag, "nfsrcvlk", slptimeo); 1673 /* 1674 * If our reply was recieved while we were sleeping, 1675 * then just return without taking the lock to avoid a 1676 * situation where a single iod could 'capture' the 1677 * recieve lock. 1678 */ 1679 if (rep->r_mrep != NULL) { 1680 error = EALREADY; 1681 break; 1682 } 1683 if (slpflag == PCATCH) { 1684 slpflag = 0; 1685 slptimeo = 2 * hz; 1686 } 1687 } 1688 if (error == 0) { 1689 *statep |= NFSSTA_RCVLOCK; 1690 rep->r_nmp->nm_rcvlock_td = curthread; /* DEBUGGING */ 1691 } 1692 crit_exit(); 1693 return (error); 1694 } 1695 1696 /* 1697 * Unlock the stream socket for others. 1698 */ 1699 static void 1700 nfs_rcvunlock(struct nfsreq *rep) 1701 { 1702 int *statep = &rep->r_nmp->nm_state; 1703 1704 if ((*statep & NFSSTA_RCVLOCK) == 0) 1705 panic("nfs rcvunlock"); 1706 crit_enter(); 1707 rep->r_nmp->nm_rcvlock_td = (void *)-1; /* DEBUGGING */ 1708 *statep &= ~NFSSTA_RCVLOCK; 1709 if (*statep & NFSSTA_WANTRCV) { 1710 *statep &= ~NFSSTA_WANTRCV; 1711 wakeup((caddr_t)statep); 1712 } 1713 crit_exit(); 1714 } 1715 1716 /* 1717 * nfs_realign: 1718 * 1719 * Check for badly aligned mbuf data and realign by copying the unaligned 1720 * portion of the data into a new mbuf chain and freeing the portions 1721 * of the old chain that were replaced. 1722 * 1723 * We cannot simply realign the data within the existing mbuf chain 1724 * because the underlying buffers may contain other rpc commands and 1725 * we cannot afford to overwrite them. 1726 * 1727 * We would prefer to avoid this situation entirely. The situation does 1728 * not occur with NFS/UDP and is supposed to only occassionally occur 1729 * with TCP. Use vfs.nfs.realign_count and realign_test to check this. 1730 */ 1731 static void 1732 nfs_realign(struct mbuf **pm, int hsiz) 1733 { 1734 struct mbuf *m; 1735 struct mbuf *n = NULL; 1736 int off = 0; 1737 1738 ++nfs_realign_test; 1739 1740 while ((m = *pm) != NULL) { 1741 if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3)) { 1742 n = m_getl(m->m_len, MB_WAIT, MT_DATA, 0, NULL); 1743 n->m_len = 0; 1744 break; 1745 } 1746 pm = &m->m_next; 1747 } 1748 1749 /* 1750 * If n is non-NULL, loop on m copying data, then replace the 1751 * portion of the chain that had to be realigned. 1752 */ 1753 if (n != NULL) { 1754 ++nfs_realign_count; 1755 while (m) { 1756 m_copyback(n, off, m->m_len, mtod(m, caddr_t)); 1757 off += m->m_len; 1758 m = m->m_next; 1759 } 1760 m_freem(*pm); 1761 *pm = n; 1762 } 1763 } 1764 1765 #ifndef NFS_NOSERVER 1766 1767 /* 1768 * Parse an RPC request 1769 * - verify it 1770 * - fill in the cred struct. 1771 */ 1772 int 1773 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header) 1774 { 1775 int len, i; 1776 u_int32_t *tl; 1777 int32_t t1; 1778 struct uio uio; 1779 struct iovec iov; 1780 caddr_t dpos, cp2, cp; 1781 u_int32_t nfsvers, auth_type; 1782 uid_t nickuid; 1783 int error = 0, ticklen; 1784 struct mbuf *mrep, *md; 1785 struct nfsuid *nuidp; 1786 struct timeval tvin, tvout; 1787 #if 0 /* until encrypted keys are implemented */ 1788 NFSKERBKEYSCHED_T keys; /* stores key schedule */ 1789 #endif 1790 1791 mrep = nd->nd_mrep; 1792 md = nd->nd_md; 1793 dpos = nd->nd_dpos; 1794 if (has_header) { 1795 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); 1796 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); 1797 if (*tl++ != rpc_call) { 1798 m_freem(mrep); 1799 return (EBADRPC); 1800 } 1801 } else 1802 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 1803 nd->nd_repstat = 0; 1804 nd->nd_flag = 0; 1805 if (*tl++ != rpc_vers) { 1806 nd->nd_repstat = ERPCMISMATCH; 1807 nd->nd_procnum = NFSPROC_NOOP; 1808 return (0); 1809 } 1810 if (*tl != nfs_prog) { 1811 nd->nd_repstat = EPROGUNAVAIL; 1812 nd->nd_procnum = NFSPROC_NOOP; 1813 return (0); 1814 } 1815 tl++; 1816 nfsvers = fxdr_unsigned(u_int32_t, *tl++); 1817 if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) { 1818 nd->nd_repstat = EPROGMISMATCH; 1819 nd->nd_procnum = NFSPROC_NOOP; 1820 return (0); 1821 } 1822 if (nfsvers == NFS_VER3) 1823 nd->nd_flag = ND_NFSV3; 1824 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); 1825 if (nd->nd_procnum == NFSPROC_NULL) 1826 return (0); 1827 if (nd->nd_procnum >= NFS_NPROCS || 1828 (nd->nd_procnum >= NQNFSPROC_GETLEASE) || 1829 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { 1830 nd->nd_repstat = EPROCUNAVAIL; 1831 nd->nd_procnum = NFSPROC_NOOP; 1832 return (0); 1833 } 1834 if ((nd->nd_flag & ND_NFSV3) == 0) 1835 nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; 1836 auth_type = *tl++; 1837 len = fxdr_unsigned(int, *tl++); 1838 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1839 m_freem(mrep); 1840 return (EBADRPC); 1841 } 1842 1843 nd->nd_flag &= ~ND_KERBAUTH; 1844 /* 1845 * Handle auth_unix or auth_kerb. 1846 */ 1847 if (auth_type == rpc_auth_unix) { 1848 len = fxdr_unsigned(int, *++tl); 1849 if (len < 0 || len > NFS_MAXNAMLEN) { 1850 m_freem(mrep); 1851 return (EBADRPC); 1852 } 1853 nfsm_adv(nfsm_rndup(len)); 1854 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1855 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred)); 1856 nd->nd_cr.cr_ref = 1; 1857 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++); 1858 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++); 1859 len = fxdr_unsigned(int, *tl); 1860 if (len < 0 || len > RPCAUTH_UNIXGIDS) { 1861 m_freem(mrep); 1862 return (EBADRPC); 1863 } 1864 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); 1865 for (i = 1; i <= len; i++) 1866 if (i < NGROUPS) 1867 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++); 1868 else 1869 tl++; 1870 nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1); 1871 if (nd->nd_cr.cr_ngroups > 1) 1872 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups); 1873 len = fxdr_unsigned(int, *++tl); 1874 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1875 m_freem(mrep); 1876 return (EBADRPC); 1877 } 1878 if (len > 0) 1879 nfsm_adv(nfsm_rndup(len)); 1880 } else if (auth_type == rpc_auth_kerb) { 1881 switch (fxdr_unsigned(int, *tl++)) { 1882 case RPCAKN_FULLNAME: 1883 ticklen = fxdr_unsigned(int, *tl); 1884 *((u_int32_t *)nfsd->nfsd_authstr) = *tl; 1885 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; 1886 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; 1887 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { 1888 m_freem(mrep); 1889 return (EBADRPC); 1890 } 1891 uio.uio_offset = 0; 1892 uio.uio_iov = &iov; 1893 uio.uio_iovcnt = 1; 1894 uio.uio_segflg = UIO_SYSSPACE; 1895 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4]; 1896 iov.iov_len = RPCAUTH_MAXSIZ - 4; 1897 nfsm_mtouio(&uio, uio.uio_resid); 1898 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1899 if (*tl++ != rpc_auth_kerb || 1900 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { 1901 printf("Bad kerb verifier\n"); 1902 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1903 nd->nd_procnum = NFSPROC_NOOP; 1904 return (0); 1905 } 1906 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED); 1907 tl = (u_int32_t *)cp; 1908 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { 1909 printf("Not fullname kerb verifier\n"); 1910 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1911 nd->nd_procnum = NFSPROC_NOOP; 1912 return (0); 1913 } 1914 cp += NFSX_UNSIGNED; 1915 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED); 1916 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; 1917 nd->nd_flag |= ND_KERBFULL; 1918 nfsd->nfsd_flag |= NFSD_NEEDAUTH; 1919 break; 1920 case RPCAKN_NICKNAME: 1921 if (len != 2 * NFSX_UNSIGNED) { 1922 printf("Kerb nickname short\n"); 1923 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); 1924 nd->nd_procnum = NFSPROC_NOOP; 1925 return (0); 1926 } 1927 nickuid = fxdr_unsigned(uid_t, *tl); 1928 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1929 if (*tl++ != rpc_auth_kerb || 1930 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { 1931 printf("Kerb nick verifier bad\n"); 1932 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1933 nd->nd_procnum = NFSPROC_NOOP; 1934 return (0); 1935 } 1936 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1937 tvin.tv_sec = *tl++; 1938 tvin.tv_usec = *tl; 1939 1940 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first; 1941 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1942 if (nuidp->nu_cr.cr_uid == nickuid && 1943 (!nd->nd_nam2 || 1944 netaddr_match(NU_NETFAM(nuidp), 1945 &nuidp->nu_haddr, nd->nd_nam2))) 1946 break; 1947 } 1948 if (!nuidp) { 1949 nd->nd_repstat = 1950 (NFSERR_AUTHERR|AUTH_REJECTCRED); 1951 nd->nd_procnum = NFSPROC_NOOP; 1952 return (0); 1953 } 1954 1955 /* 1956 * Now, decrypt the timestamp using the session key 1957 * and validate it. 1958 */ 1959 #ifdef NFSKERB 1960 XXX 1961 #endif 1962 1963 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); 1964 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); 1965 if (nuidp->nu_expire < time_second || 1966 nuidp->nu_timestamp.tv_sec > tvout.tv_sec || 1967 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && 1968 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { 1969 nuidp->nu_expire = 0; 1970 nd->nd_repstat = 1971 (NFSERR_AUTHERR|AUTH_REJECTVERF); 1972 nd->nd_procnum = NFSPROC_NOOP; 1973 return (0); 1974 } 1975 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr); 1976 nd->nd_flag |= ND_KERBNICK; 1977 }; 1978 } else { 1979 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); 1980 nd->nd_procnum = NFSPROC_NOOP; 1981 return (0); 1982 } 1983 1984 nd->nd_md = md; 1985 nd->nd_dpos = dpos; 1986 return (0); 1987 nfsmout: 1988 return (error); 1989 } 1990 1991 #endif 1992 1993 /* 1994 * Send a message to the originating process's terminal. The thread and/or 1995 * process may be NULL. YYY the thread should not be NULL but there may 1996 * still be some uio_td's that are still being passed as NULL through to 1997 * nfsm_request(). 1998 */ 1999 static int 2000 nfs_msg(struct thread *td, char *server, char *msg) 2001 { 2002 tpr_t tpr; 2003 2004 if (td && td->td_proc) 2005 tpr = tprintf_open(td->td_proc); 2006 else 2007 tpr = NULL; 2008 tprintf(tpr, "nfs server %s: %s\n", server, msg); 2009 tprintf_close(tpr); 2010 return (0); 2011 } 2012 2013 #ifndef NFS_NOSERVER 2014 /* 2015 * Socket upcall routine for the nfsd sockets. 2016 * The caddr_t arg is a pointer to the "struct nfssvc_sock". 2017 * Essentially do as much as possible non-blocking, else punt and it will 2018 * be called with MB_WAIT from an nfsd. 2019 */ 2020 void 2021 nfsrv_rcv(struct socket *so, void *arg, int waitflag) 2022 { 2023 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; 2024 struct mbuf *m; 2025 struct mbuf *mp; 2026 struct sockaddr *nam; 2027 struct uio auio; 2028 int flags, error; 2029 int nparallel_wakeup = 0; 2030 2031 if ((slp->ns_flag & SLP_VALID) == 0) 2032 return; 2033 2034 /* 2035 * Do not allow an infinite number of completed RPC records to build 2036 * up before we stop reading data from the socket. Otherwise we could 2037 * end up holding onto an unreasonable number of mbufs for requests 2038 * waiting for service. 2039 * 2040 * This should give pretty good feedback to the TCP 2041 * layer and prevents a memory crunch for other protocols. 2042 * 2043 * Note that the same service socket can be dispatched to several 2044 * nfs servers simultaniously. 2045 * 2046 * the tcp protocol callback calls us with MB_DONTWAIT. 2047 * nfsd calls us with MB_WAIT (typically). 2048 */ 2049 if (waitflag == MB_DONTWAIT && slp->ns_numrec >= nfsd_waiting / 2 + 1) { 2050 slp->ns_flag |= SLP_NEEDQ; 2051 goto dorecs; 2052 } 2053 2054 /* 2055 * Handle protocol specifics to parse an RPC request. We always 2056 * pull from the socket using non-blocking I/O. 2057 */ 2058 auio.uio_td = NULL; 2059 if (so->so_type == SOCK_STREAM) { 2060 /* 2061 * The data has to be read in an orderly fashion from a TCP 2062 * stream, unlike a UDP socket. It is possible for soreceive 2063 * and/or nfsrv_getstream() to block, so make sure only one 2064 * entity is messing around with the TCP stream at any given 2065 * moment. The receive sockbuf's lock in soreceive is not 2066 * sufficient. 2067 * 2068 * Note that this procedure can be called from any number of 2069 * NFS severs *OR* can be upcalled directly from a TCP 2070 * protocol thread. 2071 */ 2072 if (slp->ns_flag & SLP_GETSTREAM) { 2073 slp->ns_flag |= SLP_NEEDQ; 2074 goto dorecs; 2075 } 2076 slp->ns_flag |= SLP_GETSTREAM; 2077 2078 /* 2079 * Do soreceive(). 2080 */ 2081 auio.uio_resid = 1000000000; 2082 flags = MSG_DONTWAIT; 2083 error = so_pru_soreceive(so, &nam, &auio, &mp, NULL, &flags); 2084 if (error || mp == (struct mbuf *)0) { 2085 if (error == EWOULDBLOCK) 2086 slp->ns_flag |= SLP_NEEDQ; 2087 else 2088 slp->ns_flag |= SLP_DISCONN; 2089 slp->ns_flag &= ~SLP_GETSTREAM; 2090 goto dorecs; 2091 } 2092 m = mp; 2093 if (slp->ns_rawend) { 2094 slp->ns_rawend->m_next = m; 2095 slp->ns_cc += 1000000000 - auio.uio_resid; 2096 } else { 2097 slp->ns_raw = m; 2098 slp->ns_cc = 1000000000 - auio.uio_resid; 2099 } 2100 while (m->m_next) 2101 m = m->m_next; 2102 slp->ns_rawend = m; 2103 2104 /* 2105 * Now try and parse as many record(s) as we can out of the 2106 * raw stream data. 2107 */ 2108 error = nfsrv_getstream(slp, waitflag, &nparallel_wakeup); 2109 if (error) { 2110 if (error == EPERM) 2111 slp->ns_flag |= SLP_DISCONN; 2112 else 2113 slp->ns_flag |= SLP_NEEDQ; 2114 } 2115 slp->ns_flag &= ~SLP_GETSTREAM; 2116 } else { 2117 /* 2118 * For UDP soreceive typically pulls just one packet, loop 2119 * to get the whole batch. 2120 */ 2121 do { 2122 auio.uio_resid = 1000000000; 2123 flags = MSG_DONTWAIT; 2124 error = so_pru_soreceive(so, &nam, &auio, &mp, NULL, 2125 &flags); 2126 if (mp) { 2127 struct nfsrv_rec *rec; 2128 int mf = (waitflag & MB_DONTWAIT) ? 2129 M_NOWAIT : M_WAITOK; 2130 rec = kmalloc(sizeof(struct nfsrv_rec), 2131 M_NFSRVDESC, mf); 2132 if (!rec) { 2133 if (nam) 2134 FREE(nam, M_SONAME); 2135 m_freem(mp); 2136 continue; 2137 } 2138 nfs_realign(&mp, 10 * NFSX_UNSIGNED); 2139 rec->nr_address = nam; 2140 rec->nr_packet = mp; 2141 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link); 2142 ++slp->ns_numrec; 2143 ++nparallel_wakeup; 2144 } 2145 if (error) { 2146 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) 2147 && error != EWOULDBLOCK) { 2148 slp->ns_flag |= SLP_DISCONN; 2149 goto dorecs; 2150 } 2151 } 2152 } while (mp); 2153 } 2154 2155 /* 2156 * If we were upcalled from the tcp protocol layer and we have 2157 * fully parsed records ready to go, or there is new data pending, 2158 * or something went wrong, try to wake up an nfsd thread to deal 2159 * with it. 2160 */ 2161 dorecs: 2162 if (waitflag == MB_DONTWAIT && (slp->ns_numrec > 0 2163 || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) { 2164 nfsrv_wakenfsd(slp, nparallel_wakeup); 2165 } 2166 } 2167 2168 /* 2169 * Try and extract an RPC request from the mbuf data list received on a 2170 * stream socket. The "waitflag" argument indicates whether or not it 2171 * can sleep. 2172 */ 2173 static int 2174 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag, int *countp) 2175 { 2176 struct mbuf *m, **mpp; 2177 char *cp1, *cp2; 2178 int len; 2179 struct mbuf *om, *m2, *recm; 2180 u_int32_t recmark; 2181 2182 for (;;) { 2183 if (slp->ns_reclen == 0) { 2184 if (slp->ns_cc < NFSX_UNSIGNED) 2185 return (0); 2186 m = slp->ns_raw; 2187 if (m->m_len >= NFSX_UNSIGNED) { 2188 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED); 2189 m->m_data += NFSX_UNSIGNED; 2190 m->m_len -= NFSX_UNSIGNED; 2191 } else { 2192 cp1 = (caddr_t)&recmark; 2193 cp2 = mtod(m, caddr_t); 2194 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) { 2195 while (m->m_len == 0) { 2196 m = m->m_next; 2197 cp2 = mtod(m, caddr_t); 2198 } 2199 *cp1++ = *cp2++; 2200 m->m_data++; 2201 m->m_len--; 2202 } 2203 } 2204 slp->ns_cc -= NFSX_UNSIGNED; 2205 recmark = ntohl(recmark); 2206 slp->ns_reclen = recmark & ~0x80000000; 2207 if (recmark & 0x80000000) 2208 slp->ns_flag |= SLP_LASTFRAG; 2209 else 2210 slp->ns_flag &= ~SLP_LASTFRAG; 2211 if (slp->ns_reclen > NFS_MAXPACKET || slp->ns_reclen <= 0) { 2212 log(LOG_ERR, "%s (%d) from nfs client\n", 2213 "impossible packet length", 2214 slp->ns_reclen); 2215 return (EPERM); 2216 } 2217 } 2218 2219 /* 2220 * Now get the record part. 2221 * 2222 * Note that slp->ns_reclen may be 0. Linux sometimes 2223 * generates 0-length RPCs 2224 */ 2225 recm = NULL; 2226 if (slp->ns_cc == slp->ns_reclen) { 2227 recm = slp->ns_raw; 2228 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0; 2229 slp->ns_cc = slp->ns_reclen = 0; 2230 } else if (slp->ns_cc > slp->ns_reclen) { 2231 len = 0; 2232 m = slp->ns_raw; 2233 om = (struct mbuf *)0; 2234 2235 while (len < slp->ns_reclen) { 2236 if ((len + m->m_len) > slp->ns_reclen) { 2237 m2 = m_copym(m, 0, slp->ns_reclen - len, 2238 waitflag); 2239 if (m2) { 2240 if (om) { 2241 om->m_next = m2; 2242 recm = slp->ns_raw; 2243 } else 2244 recm = m2; 2245 m->m_data += slp->ns_reclen - len; 2246 m->m_len -= slp->ns_reclen - len; 2247 len = slp->ns_reclen; 2248 } else { 2249 return (EWOULDBLOCK); 2250 } 2251 } else if ((len + m->m_len) == slp->ns_reclen) { 2252 om = m; 2253 len += m->m_len; 2254 m = m->m_next; 2255 recm = slp->ns_raw; 2256 om->m_next = (struct mbuf *)0; 2257 } else { 2258 om = m; 2259 len += m->m_len; 2260 m = m->m_next; 2261 } 2262 } 2263 slp->ns_raw = m; 2264 slp->ns_cc -= len; 2265 slp->ns_reclen = 0; 2266 } else { 2267 return (0); 2268 } 2269 2270 /* 2271 * Accumulate the fragments into a record. 2272 */ 2273 mpp = &slp->ns_frag; 2274 while (*mpp) 2275 mpp = &((*mpp)->m_next); 2276 *mpp = recm; 2277 if (slp->ns_flag & SLP_LASTFRAG) { 2278 struct nfsrv_rec *rec; 2279 int mf = (waitflag & MB_DONTWAIT) ? M_NOWAIT : M_WAITOK; 2280 rec = kmalloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf); 2281 if (!rec) { 2282 m_freem(slp->ns_frag); 2283 } else { 2284 nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED); 2285 rec->nr_address = (struct sockaddr *)0; 2286 rec->nr_packet = slp->ns_frag; 2287 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link); 2288 ++slp->ns_numrec; 2289 ++*countp; 2290 } 2291 slp->ns_frag = (struct mbuf *)0; 2292 } 2293 } 2294 } 2295 2296 /* 2297 * Parse an RPC header. 2298 */ 2299 int 2300 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd, 2301 struct nfsrv_descript **ndp) 2302 { 2303 struct nfsrv_rec *rec; 2304 struct mbuf *m; 2305 struct sockaddr *nam; 2306 struct nfsrv_descript *nd; 2307 int error; 2308 2309 *ndp = NULL; 2310 if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec)) 2311 return (ENOBUFS); 2312 rec = STAILQ_FIRST(&slp->ns_rec); 2313 STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link); 2314 KKASSERT(slp->ns_numrec > 0); 2315 --slp->ns_numrec; 2316 nam = rec->nr_address; 2317 m = rec->nr_packet; 2318 kfree(rec, M_NFSRVDESC); 2319 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript), 2320 M_NFSRVDESC, M_WAITOK); 2321 nd->nd_md = nd->nd_mrep = m; 2322 nd->nd_nam2 = nam; 2323 nd->nd_dpos = mtod(m, caddr_t); 2324 error = nfs_getreq(nd, nfsd, TRUE); 2325 if (error) { 2326 if (nam) { 2327 FREE(nam, M_SONAME); 2328 } 2329 kfree((caddr_t)nd, M_NFSRVDESC); 2330 return (error); 2331 } 2332 *ndp = nd; 2333 nfsd->nfsd_nd = nd; 2334 return (0); 2335 } 2336 2337 /* 2338 * Try to assign service sockets to nfsd threads based on the number 2339 * of new rpc requests that have been queued on the service socket. 2340 * 2341 * If no nfsd's are available or additonal requests are pending, set the 2342 * NFSD_CHECKSLP flag so that one of the running nfsds will go look for 2343 * the work in the nfssvc_sock list when it is finished processing its 2344 * current work. This flag is only cleared when an nfsd can not find 2345 * any new work to perform. 2346 */ 2347 void 2348 nfsrv_wakenfsd(struct nfssvc_sock *slp, int nparallel) 2349 { 2350 struct nfsd *nd; 2351 2352 if ((slp->ns_flag & SLP_VALID) == 0) 2353 return; 2354 if (nparallel <= 1) 2355 nparallel = 1; 2356 TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) { 2357 if (nd->nfsd_flag & NFSD_WAITING) { 2358 nd->nfsd_flag &= ~NFSD_WAITING; 2359 if (nd->nfsd_slp) 2360 panic("nfsd wakeup"); 2361 slp->ns_sref++; 2362 nd->nfsd_slp = slp; 2363 wakeup((caddr_t)nd); 2364 if (--nparallel == 0) 2365 break; 2366 } 2367 } 2368 if (nparallel) { 2369 slp->ns_flag |= SLP_DOREC; 2370 nfsd_head_flag |= NFSD_CHECKSLP; 2371 } 2372 } 2373 #endif /* NFS_NOSERVER */ 2374