xref: /dflybsd-src/sys/vfs/nfs/nfs_socket.c (revision c5541aee854b0d32586182b733a9ea4d4c92168b)
1 /*
2  * Copyright (c) 1989, 1991, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_socket.c	8.5 (Berkeley) 3/30/95
37  * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.15 2004/04/07 05:15:48 dillon Exp $
39  */
40 
41 /*
42  * Socket operations for use by nfs
43  */
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/mbuf.h>
52 #include <sys/vnode.h>
53 #include <sys/protosw.h>
54 #include <sys/resourcevar.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/socketops.h>
58 #include <sys/syslog.h>
59 #include <sys/thread.h>
60 #include <sys/tprintf.h>
61 #include <sys/sysctl.h>
62 #include <sys/signalvar.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/tcp.h>
66 #include <sys/thread2.h>
67 
68 #include "rpcv2.h"
69 #include "nfsproto.h"
70 #include "nfs.h"
71 #include "xdr_subs.h"
72 #include "nfsm_subs.h"
73 #include "nfsmount.h"
74 #include "nfsnode.h"
75 #include "nfsrtt.h"
76 #include "nqnfs.h"
77 
78 #define	TRUE	1
79 #define	FALSE	0
80 
81 /*
82  * Estimate rto for an nfs rpc sent via. an unreliable datagram.
83  * Use the mean and mean deviation of rtt for the appropriate type of rpc
84  * for the frequent rpcs and a default for the others.
85  * The justification for doing "other" this way is that these rpcs
86  * happen so infrequently that timer est. would probably be stale.
87  * Also, since many of these rpcs are
88  * non-idempotent, a conservative timeout is desired.
89  * getattr, lookup - A+2D
90  * read, write     - A+4D
91  * other           - nm_timeo
92  */
93 #define	NFS_RTO(n, t) \
94 	((t) == 0 ? (n)->nm_timeo : \
95 	 ((t) < 3 ? \
96 	  (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
97 	  ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
98 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
99 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
100 /*
101  * External data, mostly RPC constants in XDR form
102  */
103 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
104 	rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
105 	rpc_auth_kerb;
106 extern u_int32_t nfs_prog, nqnfs_prog;
107 extern time_t nqnfsstarttime;
108 extern struct nfsstats nfsstats;
109 extern int nfsv3_procid[NFS_NPROCS];
110 extern int nfs_ticks;
111 
112 /*
113  * Defines which timer to use for the procnum.
114  * 0 - default
115  * 1 - getattr
116  * 2 - lookup
117  * 3 - read
118  * 4 - write
119  */
120 static int proct[NFS_NPROCS] = {
121 	0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
122 	0, 0, 0,
123 };
124 
125 static int nfs_realign_test;
126 static int nfs_realign_count;
127 static int nfs_bufpackets = 4;
128 
129 SYSCTL_DECL(_vfs_nfs);
130 
131 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, "");
132 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, "");
133 SYSCTL_INT(_vfs_nfs, OID_AUTO, bufpackets, CTLFLAG_RW, &nfs_bufpackets, 0, "");
134 
135 
136 /*
137  * There is a congestion window for outstanding rpcs maintained per mount
138  * point. The cwnd size is adjusted in roughly the way that:
139  * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
140  * SIGCOMM '88". ACM, August 1988.
141  * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
142  * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
143  * of rpcs is in progress.
144  * (The sent count and cwnd are scaled for integer arith.)
145  * Variants of "slow start" were tried and were found to be too much of a
146  * performance hit (ave. rtt 3 times larger),
147  * I suspect due to the large rtt that nfs rpcs have.
148  */
149 #define	NFS_CWNDSCALE	256
150 #define	NFS_MAXCWND	(NFS_CWNDSCALE * 32)
151 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
152 int nfsrtton = 0;
153 struct nfsrtt nfsrtt;
154 struct callout_handle	nfs_timer_handle;
155 
156 static int	nfs_msg (struct thread *,char *,char *);
157 static int	nfs_rcvlock (struct nfsreq *);
158 static void	nfs_rcvunlock (struct nfsreq *);
159 static void	nfs_realign (struct mbuf **pm, int hsiz);
160 static int	nfs_receive (struct nfsreq *rep, struct sockaddr **aname,
161 				 struct mbuf **mp);
162 static void	nfs_softterm (struct nfsreq *rep);
163 static int	nfs_reconnect (struct nfsreq *rep);
164 #ifndef NFS_NOSERVER
165 static int	nfsrv_getstream (struct nfssvc_sock *,int);
166 
167 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd,
168 				    struct nfssvc_sock *slp,
169 				    struct thread *td,
170 				    struct mbuf **mreqp) = {
171 	nfsrv_null,
172 	nfsrv_getattr,
173 	nfsrv_setattr,
174 	nfsrv_lookup,
175 	nfsrv3_access,
176 	nfsrv_readlink,
177 	nfsrv_read,
178 	nfsrv_write,
179 	nfsrv_create,
180 	nfsrv_mkdir,
181 	nfsrv_symlink,
182 	nfsrv_mknod,
183 	nfsrv_remove,
184 	nfsrv_rmdir,
185 	nfsrv_rename,
186 	nfsrv_link,
187 	nfsrv_readdir,
188 	nfsrv_readdirplus,
189 	nfsrv_statfs,
190 	nfsrv_fsinfo,
191 	nfsrv_pathconf,
192 	nfsrv_commit,
193 	nqnfsrv_getlease,
194 	nqnfsrv_vacated,
195 	nfsrv_noop,
196 	nfsrv_noop
197 };
198 #endif /* NFS_NOSERVER */
199 
200 /*
201  * Initialize sockets and congestion for a new NFS connection.
202  * We do not free the sockaddr if error.
203  */
204 int
205 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
206 {
207 	struct socket *so;
208 	int s, error, rcvreserve, sndreserve;
209 	int pktscale;
210 	struct sockaddr *saddr;
211 	struct sockaddr_in *sin;
212 	struct thread *td = &thread0; /* only used for socreate and sobind */
213 
214 	nmp->nm_so = (struct socket *)0;
215 	saddr = nmp->nm_nam;
216 	error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
217 		nmp->nm_soproto, td);
218 	if (error)
219 		goto bad;
220 	so = nmp->nm_so;
221 	nmp->nm_soflags = so->so_proto->pr_flags;
222 
223 	/*
224 	 * Some servers require that the client port be a reserved port number.
225 	 */
226 	if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
227 		struct sockopt sopt;
228 		int ip;
229 		struct sockaddr_in ssin;
230 
231 		bzero(&sopt, sizeof sopt);
232 		ip = IP_PORTRANGE_LOW;
233 		sopt.sopt_dir = SOPT_SET;
234 		sopt.sopt_level = IPPROTO_IP;
235 		sopt.sopt_name = IP_PORTRANGE;
236 		sopt.sopt_val = (void *)&ip;
237 		sopt.sopt_valsize = sizeof(ip);
238 		sopt.sopt_td = NULL;
239 		error = sosetopt(so, &sopt);
240 		if (error)
241 			goto bad;
242 		bzero(&ssin, sizeof ssin);
243 		sin = &ssin;
244 		sin->sin_len = sizeof (struct sockaddr_in);
245 		sin->sin_family = AF_INET;
246 		sin->sin_addr.s_addr = INADDR_ANY;
247 		sin->sin_port = htons(0);
248 		error = sobind(so, (struct sockaddr *)sin, td);
249 		if (error)
250 			goto bad;
251 		bzero(&sopt, sizeof sopt);
252 		ip = IP_PORTRANGE_DEFAULT;
253 		sopt.sopt_dir = SOPT_SET;
254 		sopt.sopt_level = IPPROTO_IP;
255 		sopt.sopt_name = IP_PORTRANGE;
256 		sopt.sopt_val = (void *)&ip;
257 		sopt.sopt_valsize = sizeof(ip);
258 		sopt.sopt_td = NULL;
259 		error = sosetopt(so, &sopt);
260 		if (error)
261 			goto bad;
262 	}
263 
264 	/*
265 	 * Protocols that do not require connections may be optionally left
266 	 * unconnected for servers that reply from a port other than NFS_PORT.
267 	 */
268 	if (nmp->nm_flag & NFSMNT_NOCONN) {
269 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
270 			error = ENOTCONN;
271 			goto bad;
272 		}
273 	} else {
274 		error = soconnect(so, nmp->nm_nam, td);
275 		if (error)
276 			goto bad;
277 
278 		/*
279 		 * Wait for the connection to complete. Cribbed from the
280 		 * connect system call but with the wait timing out so
281 		 * that interruptible mounts don't hang here for a long time.
282 		 */
283 		s = splnet();
284 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
285 			(void) tsleep((caddr_t)&so->so_timeo, 0,
286 				"nfscon", 2 * hz);
287 			if ((so->so_state & SS_ISCONNECTING) &&
288 			    so->so_error == 0 && rep &&
289 			    (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){
290 				so->so_state &= ~SS_ISCONNECTING;
291 				splx(s);
292 				goto bad;
293 			}
294 		}
295 		if (so->so_error) {
296 			error = so->so_error;
297 			so->so_error = 0;
298 			splx(s);
299 			goto bad;
300 		}
301 		splx(s);
302 	}
303 	so->so_rcv.sb_timeo = (5 * hz);
304 	so->so_snd.sb_timeo = (5 * hz);
305 
306 	/*
307 	 * Get buffer reservation size from sysctl, but impose reasonable
308 	 * limits.
309 	 */
310 	pktscale = nfs_bufpackets;
311 	if (pktscale < 2)
312 		pktscale = 2;
313 	if (pktscale > 64)
314 		pktscale = 64;
315 
316 	if (nmp->nm_sotype == SOCK_DGRAM) {
317 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale;
318 		rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
319 		    NFS_MAXPKTHDR) * pktscale;
320 	} else if (nmp->nm_sotype == SOCK_SEQPACKET) {
321 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale;
322 		rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
323 		    NFS_MAXPKTHDR) * pktscale;
324 	} else {
325 		if (nmp->nm_sotype != SOCK_STREAM)
326 			panic("nfscon sotype");
327 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
328 			struct sockopt sopt;
329 			int val;
330 
331 			bzero(&sopt, sizeof sopt);
332 			sopt.sopt_level = SOL_SOCKET;
333 			sopt.sopt_name = SO_KEEPALIVE;
334 			sopt.sopt_val = &val;
335 			sopt.sopt_valsize = sizeof val;
336 			val = 1;
337 			sosetopt(so, &sopt);
338 		}
339 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
340 			struct sockopt sopt;
341 			int val;
342 
343 			bzero(&sopt, sizeof sopt);
344 			sopt.sopt_level = IPPROTO_TCP;
345 			sopt.sopt_name = TCP_NODELAY;
346 			sopt.sopt_val = &val;
347 			sopt.sopt_valsize = sizeof val;
348 			val = 1;
349 			sosetopt(so, &sopt);
350 		}
351 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
352 		    sizeof (u_int32_t)) * pktscale;
353 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
354 		    sizeof (u_int32_t)) * pktscale;
355 	}
356 	error = soreserve(so, sndreserve, rcvreserve,
357 			  &td->td_proc->p_rlimit[RLIMIT_SBSIZE]);
358 	if (error)
359 		goto bad;
360 	so->so_rcv.sb_flags |= SB_NOINTR;
361 	so->so_snd.sb_flags |= SB_NOINTR;
362 
363 	/* Initialize other non-zero congestion variables */
364 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] =
365 		nmp->nm_srtt[3] = (NFS_TIMEO << 3);
366 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
367 		nmp->nm_sdrtt[3] = 0;
368 	nmp->nm_cwnd = NFS_MAXCWND / 2;	    /* Initial send window */
369 	nmp->nm_sent = 0;
370 	nmp->nm_timeouts = 0;
371 	return (0);
372 
373 bad:
374 	nfs_disconnect(nmp);
375 	return (error);
376 }
377 
378 /*
379  * Reconnect routine:
380  * Called when a connection is broken on a reliable protocol.
381  * - clean up the old socket
382  * - nfs_connect() again
383  * - set R_MUSTRESEND for all outstanding requests on mount point
384  * If this fails the mount point is DEAD!
385  * nb: Must be called with the nfs_sndlock() set on the mount point.
386  */
387 static int
388 nfs_reconnect(rep)
389 	struct nfsreq *rep;
390 {
391 	struct nfsreq *rp;
392 	struct nfsmount *nmp = rep->r_nmp;
393 	int error;
394 
395 	nfs_disconnect(nmp);
396 	while ((error = nfs_connect(nmp, rep)) != 0) {
397 		if (error == EINTR || error == ERESTART)
398 			return (EINTR);
399 		(void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0);
400 	}
401 
402 	/*
403 	 * Loop through outstanding request list and fix up all requests
404 	 * on old socket.
405 	 */
406 	for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
407 		if (rp->r_nmp == nmp)
408 			rp->r_flags |= R_MUSTRESEND;
409 	}
410 	return (0);
411 }
412 
413 /*
414  * NFS disconnect. Clean up and unlink.
415  */
416 void
417 nfs_disconnect(nmp)
418 	struct nfsmount *nmp;
419 {
420 	struct socket *so;
421 
422 	if (nmp->nm_so) {
423 		so = nmp->nm_so;
424 		nmp->nm_so = (struct socket *)0;
425 		soshutdown(so, 2);
426 		soclose(so);
427 	}
428 }
429 
430 void
431 nfs_safedisconnect(nmp)
432 	struct nfsmount *nmp;
433 {
434 	struct nfsreq dummyreq;
435 
436 	bzero(&dummyreq, sizeof(dummyreq));
437 	dummyreq.r_nmp = nmp;
438 	dummyreq.r_td = NULL;
439 	nfs_rcvlock(&dummyreq);
440 	nfs_disconnect(nmp);
441 	nfs_rcvunlock(&dummyreq);
442 }
443 
444 /*
445  * This is the nfs send routine. For connection based socket types, it
446  * must be called with an nfs_sndlock() on the socket.
447  * "rep == NULL" indicates that it has been called from a server.
448  * For the client side:
449  * - return EINTR if the RPC is terminated, 0 otherwise
450  * - set R_MUSTRESEND if the send fails for any reason
451  * - do any cleanup required by recoverable socket errors (?)
452  * For the server side:
453  * - return EINTR or ERESTART if interrupted by a signal
454  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
455  * - do any cleanup required by recoverable socket errors (?)
456  */
457 int
458 nfs_send(so, nam, top, rep)
459 	struct socket *so;
460 	struct sockaddr *nam;
461 	struct mbuf *top;
462 	struct nfsreq *rep;
463 {
464 	struct sockaddr *sendnam;
465 	int error, soflags, flags;
466 
467 	if (rep) {
468 		if (rep->r_flags & R_SOFTTERM) {
469 			m_freem(top);
470 			return (EINTR);
471 		}
472 		if ((so = rep->r_nmp->nm_so) == NULL) {
473 			rep->r_flags |= R_MUSTRESEND;
474 			m_freem(top);
475 			return (0);
476 		}
477 		rep->r_flags &= ~R_MUSTRESEND;
478 		soflags = rep->r_nmp->nm_soflags;
479 	} else
480 		soflags = so->so_proto->pr_flags;
481 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
482 		sendnam = (struct sockaddr *)0;
483 	else
484 		sendnam = nam;
485 	if (so->so_type == SOCK_SEQPACKET)
486 		flags = MSG_EOR;
487 	else
488 		flags = 0;
489 
490 	error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags,
491 	    curthread /*XXX*/);
492 	/*
493 	 * ENOBUFS for dgram sockets is transient and non fatal.
494 	 * No need to log, and no need to break a soft mount.
495 	 */
496 	if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
497 		error = 0;
498 		if (rep)		/* do backoff retransmit on client */
499 			rep->r_flags |= R_MUSTRESEND;
500 	}
501 
502 	if (error) {
503 		if (rep) {
504 			log(LOG_INFO, "nfs send error %d for server %s\n",error,
505 			    rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
506 			/*
507 			 * Deal with errors for the client side.
508 			 */
509 			if (rep->r_flags & R_SOFTTERM)
510 				error = EINTR;
511 			else
512 				rep->r_flags |= R_MUSTRESEND;
513 		} else
514 			log(LOG_INFO, "nfsd send error %d\n", error);
515 
516 		/*
517 		 * Handle any recoverable (soft) socket errors here. (?)
518 		 */
519 		if (error != EINTR && error != ERESTART &&
520 			error != EWOULDBLOCK && error != EPIPE)
521 			error = 0;
522 	}
523 	return (error);
524 }
525 
526 /*
527  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
528  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
529  * Mark and consolidate the data into a new mbuf list.
530  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
531  *     small mbufs.
532  * For SOCK_STREAM we must be very careful to read an entire record once
533  * we have read any of it, even if the system call has been interrupted.
534  */
535 static int
536 nfs_receive(struct nfsreq *rep, struct sockaddr **aname, struct mbuf **mp)
537 {
538 	struct socket *so;
539 	struct uio auio;
540 	struct iovec aio;
541 	struct mbuf *m;
542 	struct mbuf *control;
543 	u_int32_t len;
544 	struct sockaddr **getnam;
545 	int error, sotype, rcvflg;
546 	struct thread *td = curthread;	/* XXX */
547 
548 	/*
549 	 * Set up arguments for soreceive()
550 	 */
551 	*mp = (struct mbuf *)0;
552 	*aname = (struct sockaddr *)0;
553 	sotype = rep->r_nmp->nm_sotype;
554 
555 	/*
556 	 * For reliable protocols, lock against other senders/receivers
557 	 * in case a reconnect is necessary.
558 	 * For SOCK_STREAM, first get the Record Mark to find out how much
559 	 * more there is to get.
560 	 * We must lock the socket against other receivers
561 	 * until we have an entire rpc request/reply.
562 	 */
563 	if (sotype != SOCK_DGRAM) {
564 		error = nfs_sndlock(rep);
565 		if (error)
566 			return (error);
567 tryagain:
568 		/*
569 		 * Check for fatal errors and resending request.
570 		 */
571 		/*
572 		 * Ugh: If a reconnect attempt just happened, nm_so
573 		 * would have changed. NULL indicates a failed
574 		 * attempt that has essentially shut down this
575 		 * mount point.
576 		 */
577 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
578 			nfs_sndunlock(rep);
579 			return (EINTR);
580 		}
581 		so = rep->r_nmp->nm_so;
582 		if (!so) {
583 			error = nfs_reconnect(rep);
584 			if (error) {
585 				nfs_sndunlock(rep);
586 				return (error);
587 			}
588 			goto tryagain;
589 		}
590 		while (rep->r_flags & R_MUSTRESEND) {
591 			m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
592 			nfsstats.rpcretries++;
593 			error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
594 			if (error) {
595 				if (error == EINTR || error == ERESTART ||
596 				    (error = nfs_reconnect(rep)) != 0) {
597 					nfs_sndunlock(rep);
598 					return (error);
599 				}
600 				goto tryagain;
601 			}
602 		}
603 		nfs_sndunlock(rep);
604 		if (sotype == SOCK_STREAM) {
605 			aio.iov_base = (caddr_t) &len;
606 			aio.iov_len = sizeof(u_int32_t);
607 			auio.uio_iov = &aio;
608 			auio.uio_iovcnt = 1;
609 			auio.uio_segflg = UIO_SYSSPACE;
610 			auio.uio_rw = UIO_READ;
611 			auio.uio_offset = 0;
612 			auio.uio_resid = sizeof(u_int32_t);
613 			auio.uio_td = td;
614 			do {
615 			   rcvflg = MSG_WAITALL;
616 			   error = so_pru_soreceive(so, NULL, &auio, NULL,
617 			       NULL, &rcvflg);
618 			   if (error == EWOULDBLOCK && rep) {
619 				if (rep->r_flags & R_SOFTTERM)
620 					return (EINTR);
621 			   }
622 			} while (error == EWOULDBLOCK);
623 			if (!error && auio.uio_resid > 0) {
624 			    /*
625 			     * Don't log a 0 byte receive; it means
626 			     * that the socket has been closed, and
627 			     * can happen during normal operation
628 			     * (forcible unmount or Solaris server).
629 			     */
630 			    if (auio.uio_resid != sizeof (u_int32_t))
631 			    log(LOG_INFO,
632 				 "short receive (%d/%d) from nfs server %s\n",
633 				 (int)(sizeof(u_int32_t) - auio.uio_resid),
634 				 (int)sizeof(u_int32_t),
635 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
636 			    error = EPIPE;
637 			}
638 			if (error)
639 				goto errout;
640 			len = ntohl(len) & ~0x80000000;
641 			/*
642 			 * This is SERIOUS! We are out of sync with the sender
643 			 * and forcing a disconnect/reconnect is all I can do.
644 			 */
645 			if (len > NFS_MAXPACKET) {
646 			    log(LOG_ERR, "%s (%d) from nfs server %s\n",
647 				"impossible packet length",
648 				len,
649 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
650 			    error = EFBIG;
651 			    goto errout;
652 			}
653 			auio.uio_resid = len;
654 			do {
655 			    rcvflg = MSG_WAITALL;
656 			    error =  so_pru_soreceive(so, NULL, &auio, mp,
657 			        NULL, &rcvflg);
658 			} while (error == EWOULDBLOCK || error == EINTR ||
659 				 error == ERESTART);
660 			if (!error && auio.uio_resid > 0) {
661 			    if (len != auio.uio_resid)
662 			    log(LOG_INFO,
663 				"short receive (%d/%d) from nfs server %s\n",
664 				len - auio.uio_resid, len,
665 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
666 			    error = EPIPE;
667 			}
668 		} else {
669 			/*
670 			 * NB: Since uio_resid is big, MSG_WAITALL is ignored
671 			 * and soreceive() will return when it has either a
672 			 * control msg or a data msg.
673 			 * We have no use for control msg., but must grab them
674 			 * and then throw them away so we know what is going
675 			 * on.
676 			 */
677 			auio.uio_resid = len = 100000000; /* Anything Big */
678 			auio.uio_td = td;
679 			do {
680 			    rcvflg = 0;
681 			    error =  so_pru_soreceive(so, NULL, &auio, mp,
682 			        &control, &rcvflg);
683 			    if (control)
684 				m_freem(control);
685 			    if (error == EWOULDBLOCK && rep) {
686 				if (rep->r_flags & R_SOFTTERM)
687 					return (EINTR);
688 			    }
689 			} while (error == EWOULDBLOCK ||
690 				 (!error && *mp == NULL && control));
691 			if ((rcvflg & MSG_EOR) == 0)
692 				printf("Egad!!\n");
693 			if (!error && *mp == NULL)
694 				error = EPIPE;
695 			len -= auio.uio_resid;
696 		}
697 errout:
698 		if (error && error != EINTR && error != ERESTART) {
699 			m_freem(*mp);
700 			*mp = (struct mbuf *)0;
701 			if (error != EPIPE)
702 				log(LOG_INFO,
703 				    "receive error %d from nfs server %s\n",
704 				    error,
705 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
706 			error = nfs_sndlock(rep);
707 			if (!error) {
708 				error = nfs_reconnect(rep);
709 				if (!error)
710 					goto tryagain;
711 				else
712 					nfs_sndunlock(rep);
713 			}
714 		}
715 	} else {
716 		if ((so = rep->r_nmp->nm_so) == NULL)
717 			return (EACCES);
718 		if (so->so_state & SS_ISCONNECTED)
719 			getnam = (struct sockaddr **)0;
720 		else
721 			getnam = aname;
722 		auio.uio_resid = len = 1000000;
723 		auio.uio_td = td;
724 		do {
725 			rcvflg = 0;
726 			error =  so_pru_soreceive(so, getnam, &auio, mp, NULL,
727 			    &rcvflg);
728 			if (error == EWOULDBLOCK &&
729 			    (rep->r_flags & R_SOFTTERM))
730 				return (EINTR);
731 		} while (error == EWOULDBLOCK);
732 		len -= auio.uio_resid;
733 	}
734 	if (error) {
735 		m_freem(*mp);
736 		*mp = (struct mbuf *)0;
737 	}
738 	/*
739 	 * Search for any mbufs that are not a multiple of 4 bytes long
740 	 * or with m_data not longword aligned.
741 	 * These could cause pointer alignment problems, so copy them to
742 	 * well aligned mbufs.
743 	 */
744 	nfs_realign(mp, 5 * NFSX_UNSIGNED);
745 	return (error);
746 }
747 
748 /*
749  * Implement receipt of reply on a socket.
750  * We must search through the list of received datagrams matching them
751  * with outstanding requests using the xid, until ours is found.
752  */
753 /* ARGSUSED */
754 int
755 nfs_reply(myrep)
756 	struct nfsreq *myrep;
757 {
758 	struct nfsreq *rep;
759 	struct nfsmount *nmp = myrep->r_nmp;
760 	int32_t t1;
761 	struct mbuf *mrep, *md;
762 	struct sockaddr *nam;
763 	u_int32_t rxid, *tl;
764 	caddr_t dpos, cp2;
765 	int error;
766 
767 	/*
768 	 * Loop around until we get our own reply
769 	 */
770 	for (;;) {
771 		/*
772 		 * Lock against other receivers so that I don't get stuck in
773 		 * sbwait() after someone else has received my reply for me.
774 		 * Also necessary for connection based protocols to avoid
775 		 * race conditions during a reconnect.
776 		 * If nfs_rcvlock() returns EALREADY, that means that
777 		 * the reply has already been recieved by another
778 		 * process and we can return immediately.  In this
779 		 * case, the lock is not taken to avoid races with
780 		 * other processes.
781 		 */
782 		error = nfs_rcvlock(myrep);
783 		if (error == EALREADY)
784 			return (0);
785 		if (error)
786 			return (error);
787 		/*
788 		 * Get the next Rpc reply off the socket
789 		 */
790 		error = nfs_receive(myrep, &nam, &mrep);
791 		nfs_rcvunlock(myrep);
792 		if (error) {
793 
794 			/*
795 			 * Ignore routing errors on connectionless protocols??
796 			 */
797 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
798 				nmp->nm_so->so_error = 0;
799 				if (myrep->r_flags & R_GETONEREP)
800 					return (0);
801 				continue;
802 			}
803 			return (error);
804 		}
805 		if (nam)
806 			FREE(nam, M_SONAME);
807 
808 		/*
809 		 * Get the xid and check that it is an rpc reply
810 		 */
811 		md = mrep;
812 		dpos = mtod(md, caddr_t);
813 		nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
814 		rxid = *tl++;
815 		if (*tl != rpc_reply) {
816 #ifndef NFS_NOSERVER
817 			if (nmp->nm_flag & NFSMNT_NQNFS) {
818 				if (nqnfs_callback(nmp, mrep, md, dpos))
819 					nfsstats.rpcinvalid++;
820 			} else {
821 				nfsstats.rpcinvalid++;
822 				m_freem(mrep);
823 			}
824 #else
825 			nfsstats.rpcinvalid++;
826 			m_freem(mrep);
827 #endif
828 nfsmout:
829 			if (myrep->r_flags & R_GETONEREP)
830 				return (0);
831 			continue;
832 		}
833 
834 		/*
835 		 * Loop through the request list to match up the reply
836 		 * Iff no match, just drop the datagram
837 		 */
838 		for (rep = nfs_reqq.tqh_first; rep != 0;
839 		    rep = rep->r_chain.tqe_next) {
840 			if (rep->r_mrep == NULL && rxid == rep->r_xid) {
841 				/* Found it.. */
842 				rep->r_mrep = mrep;
843 				rep->r_md = md;
844 				rep->r_dpos = dpos;
845 				if (nfsrtton) {
846 					struct rttl *rt;
847 
848 					rt = &nfsrtt.rttl[nfsrtt.pos];
849 					rt->proc = rep->r_procnum;
850 					rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
851 					rt->sent = nmp->nm_sent;
852 					rt->cwnd = nmp->nm_cwnd;
853 					rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
854 					rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
855 					rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
856 					getmicrotime(&rt->tstamp);
857 					if (rep->r_flags & R_TIMING)
858 						rt->rtt = rep->r_rtt;
859 					else
860 						rt->rtt = 1000000;
861 					nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
862 				}
863 				/*
864 				 * Update congestion window.
865 				 * Do the additive increase of
866 				 * one rpc/rtt.
867 				 */
868 				if (nmp->nm_cwnd <= nmp->nm_sent) {
869 					nmp->nm_cwnd +=
870 					   (NFS_CWNDSCALE * NFS_CWNDSCALE +
871 					   (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
872 					if (nmp->nm_cwnd > NFS_MAXCWND)
873 						nmp->nm_cwnd = NFS_MAXCWND;
874 				}
875 				crit_enter();	/* nfs_timer interlock*/
876 				if (rep->r_flags & R_SENT) {
877 					rep->r_flags &= ~R_SENT;
878 					nmp->nm_sent -= NFS_CWNDSCALE;
879 				}
880 				crit_exit();
881 				/*
882 				 * Update rtt using a gain of 0.125 on the mean
883 				 * and a gain of 0.25 on the deviation.
884 				 */
885 				if (rep->r_flags & R_TIMING) {
886 					/*
887 					 * Since the timer resolution of
888 					 * NFS_HZ is so course, it can often
889 					 * result in r_rtt == 0. Since
890 					 * r_rtt == N means that the actual
891 					 * rtt is between N+dt and N+2-dt ticks,
892 					 * add 1.
893 					 */
894 					t1 = rep->r_rtt + 1;
895 					t1 -= (NFS_SRTT(rep) >> 3);
896 					NFS_SRTT(rep) += t1;
897 					if (t1 < 0)
898 						t1 = -t1;
899 					t1 -= (NFS_SDRTT(rep) >> 2);
900 					NFS_SDRTT(rep) += t1;
901 				}
902 				nmp->nm_timeouts = 0;
903 				break;
904 			}
905 		}
906 		/*
907 		 * If not matched to a request, drop it.
908 		 * If it's mine, get out.
909 		 */
910 		if (rep == 0) {
911 			nfsstats.rpcunexpected++;
912 			m_freem(mrep);
913 		} else if (rep == myrep) {
914 			if (rep->r_mrep == NULL)
915 				panic("nfsreply nil");
916 			return (0);
917 		}
918 		if (myrep->r_flags & R_GETONEREP)
919 			return (0);
920 	}
921 }
922 
923 /*
924  * nfs_request - goes something like this
925  *	- fill in request struct
926  *	- links it into list
927  *	- calls nfs_send() for first transmit
928  *	- calls nfs_receive() to get reply
929  *	- break down rpc header and return with nfs reply pointed to
930  *	  by mrep or error
931  * nb: always frees up mreq mbuf list
932  */
933 int
934 nfs_request(vp, mrest, procnum, td, cred, mrp, mdp, dposp)
935 	struct vnode *vp;
936 	struct mbuf *mrest;
937 	int procnum;
938 	struct thread *td;
939 	struct ucred *cred;
940 	struct mbuf **mrp;
941 	struct mbuf **mdp;
942 	caddr_t *dposp;
943 {
944 	struct mbuf *mrep, *m2;
945 	struct nfsreq *rep;
946 	u_int32_t *tl;
947 	int i;
948 	struct nfsmount *nmp;
949 	struct mbuf *m, *md, *mheadend;
950 	struct nfsnode *np;
951 	char nickv[RPCX_NICKVERF];
952 	time_t reqtime, waituntil;
953 	caddr_t dpos, cp2;
954 	int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
955 	int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
956 	int verf_len, verf_type;
957 	u_int32_t xid;
958 	u_quad_t frev;
959 	char *auth_str, *verf_str;
960 	NFSKERBKEY_T key;		/* save session key */
961 
962 	/* Reject requests while attempting a forced unmount. */
963 	if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
964 		m_freem(mrest);
965 		return (ESTALE);
966 	}
967 	nmp = VFSTONFS(vp->v_mount);
968 	MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
969 	rep->r_nmp = nmp;
970 	rep->r_vp = vp;
971 	rep->r_td = td;
972 	rep->r_procnum = procnum;
973 	i = 0;
974 	m = mrest;
975 	while (m) {
976 		i += m->m_len;
977 		m = m->m_next;
978 	}
979 	mrest_len = i;
980 
981 	/*
982 	 * Get the RPC header with authorization.
983 	 */
984 kerbauth:
985 	verf_str = auth_str = (char *)0;
986 	if (nmp->nm_flag & NFSMNT_KERB) {
987 		verf_str = nickv;
988 		verf_len = sizeof (nickv);
989 		auth_type = RPCAUTH_KERB4;
990 		bzero((caddr_t)key, sizeof (key));
991 		if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
992 			&auth_len, verf_str, verf_len)) {
993 			error = nfs_getauth(nmp, rep, cred, &auth_str,
994 				&auth_len, verf_str, &verf_len, key);
995 			if (error) {
996 				free((caddr_t)rep, M_NFSREQ);
997 				m_freem(mrest);
998 				return (error);
999 			}
1000 		}
1001 	} else {
1002 		auth_type = RPCAUTH_UNIX;
1003 		if (cred->cr_ngroups < 1)
1004 			panic("nfsreq nogrps");
1005 		auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
1006 			nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
1007 			5 * NFSX_UNSIGNED;
1008 	}
1009 	m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
1010 	     auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
1011 	if (auth_str)
1012 		free(auth_str, M_TEMP);
1013 
1014 	/*
1015 	 * For stream protocols, insert a Sun RPC Record Mark.
1016 	 */
1017 	if (nmp->nm_sotype == SOCK_STREAM) {
1018 		M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
1019 		if (m == NULL)
1020 			return (ENOBUFS);
1021 		*mtod(m, u_int32_t *) = htonl(0x80000000 |
1022 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
1023 	}
1024 	rep->r_mreq = m;
1025 	rep->r_xid = xid;
1026 tryagain:
1027 	if (nmp->nm_flag & NFSMNT_SOFT)
1028 		rep->r_retry = nmp->nm_retry;
1029 	else
1030 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
1031 	rep->r_rtt = rep->r_rexmit = 0;
1032 	if (proct[procnum] > 0)
1033 		rep->r_flags = R_TIMING | R_MASKTIMER;
1034 	else
1035 		rep->r_flags = R_MASKTIMER;
1036 	rep->r_mrep = NULL;
1037 
1038 	/*
1039 	 * Do the client side RPC.
1040 	 */
1041 	nfsstats.rpcrequests++;
1042 
1043 	/*
1044 	 * Chain request into list of outstanding requests. Be sure
1045 	 * to put it LAST so timer finds oldest requests first.  Note
1046 	 * that R_MASKTIMER is set at the moment to prevent any timer
1047 	 * action on this request while we are still doing processing on
1048 	 * it below.  splsoftclock() primarily protects nm_sent.  Note
1049 	 * that we may block in this code so there is no atomicy guarentee.
1050 	 */
1051 	s = splsoftclock();
1052 	TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1053 
1054 	/* Get send time for nqnfs */
1055 	reqtime = time_second;
1056 
1057 	/*
1058 	 * If backing off another request or avoiding congestion, don't
1059 	 * send this one now but let timer do it. If not timing a request,
1060 	 * do it now.
1061 	 */
1062 	if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1063 		(nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1064 		nmp->nm_sent < nmp->nm_cwnd)) {
1065 		if (nmp->nm_soflags & PR_CONNREQUIRED)
1066 			error = nfs_sndlock(rep);
1067 		if (!error) {
1068 			m2 = m_copym(m, 0, M_COPYALL, M_WAIT);
1069 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep);
1070 			if (nmp->nm_soflags & PR_CONNREQUIRED)
1071 				nfs_sndunlock(rep);
1072 		}
1073 		if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1074 			nmp->nm_sent += NFS_CWNDSCALE;
1075 			rep->r_flags |= R_SENT;
1076 		}
1077 	} else {
1078 		rep->r_rtt = -1;
1079 	}
1080 
1081 	/*
1082 	 * Let the timer do what it will with the request, then
1083 	 * wait for the reply from our send or the timer's.
1084 	 */
1085 	rep->r_flags &= ~R_MASKTIMER;
1086 	splx(s);
1087 	if (!error || error == EPIPE)
1088 		error = nfs_reply(rep);
1089 
1090 	/*
1091 	 * RPC done, unlink the request.
1092 	 */
1093 	s = splsoftclock();
1094 	TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1095 
1096 	/*
1097 	 * Decrement the outstanding request count.
1098 	 */
1099 	if (rep->r_flags & R_SENT) {
1100 		rep->r_flags &= ~R_SENT;
1101 		nmp->nm_sent -= NFS_CWNDSCALE;
1102 	}
1103 	splx(s);
1104 
1105 	/*
1106 	 * If there was a successful reply and a tprintf msg.
1107 	 * tprintf a response.
1108 	 */
1109 	if (!error && (rep->r_flags & R_TPRINTFMSG))
1110 		nfs_msg(rep->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1111 		    "is alive again");
1112 	mrep = rep->r_mrep;
1113 	md = rep->r_md;
1114 	dpos = rep->r_dpos;
1115 	if (error) {
1116 		m_freem(rep->r_mreq);
1117 		free((caddr_t)rep, M_NFSREQ);
1118 		return (error);
1119 	}
1120 
1121 	/*
1122 	 * break down the rpc header and check if ok
1123 	 */
1124 	nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1125 	if (*tl++ == rpc_msgdenied) {
1126 		if (*tl == rpc_mismatch)
1127 			error = EOPNOTSUPP;
1128 		else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1129 			if (!failed_auth) {
1130 				failed_auth++;
1131 				mheadend->m_next = (struct mbuf *)0;
1132 				m_freem(mrep);
1133 				m_freem(rep->r_mreq);
1134 				goto kerbauth;
1135 			} else
1136 				error = EAUTH;
1137 		} else
1138 			error = EACCES;
1139 		m_freem(mrep);
1140 		m_freem(rep->r_mreq);
1141 		free((caddr_t)rep, M_NFSREQ);
1142 		return (error);
1143 	}
1144 
1145 	/*
1146 	 * Grab any Kerberos verifier, otherwise just throw it away.
1147 	 */
1148 	verf_type = fxdr_unsigned(int, *tl++);
1149 	i = fxdr_unsigned(int32_t, *tl);
1150 	if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1151 		error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1152 		if (error)
1153 			goto nfsmout;
1154 	} else if (i > 0)
1155 		nfsm_adv(nfsm_rndup(i));
1156 	nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1157 	/* 0 == ok */
1158 	if (*tl == 0) {
1159 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1160 		if (*tl != 0) {
1161 			error = fxdr_unsigned(int, *tl);
1162 			if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1163 				error == NFSERR_TRYLATER) {
1164 				m_freem(mrep);
1165 				error = 0;
1166 				waituntil = time_second + trylater_delay;
1167 				while (time_second < waituntil)
1168 					(void) tsleep((caddr_t)&lbolt,
1169 						0, "nqnfstry", 0);
1170 				trylater_delay *= nfs_backoff[trylater_cnt];
1171 				if (trylater_cnt < 7)
1172 					trylater_cnt++;
1173 				goto tryagain;
1174 			}
1175 
1176 			/*
1177 			 * If the File Handle was stale, invalidate the
1178 			 * lookup cache, just in case.
1179 			 */
1180 			if (error == ESTALE)
1181 				cache_purge(vp);
1182 			if (nmp->nm_flag & NFSMNT_NFSV3) {
1183 				*mrp = mrep;
1184 				*mdp = md;
1185 				*dposp = dpos;
1186 				error |= NFSERR_RETERR;
1187 			} else
1188 				m_freem(mrep);
1189 			m_freem(rep->r_mreq);
1190 			free((caddr_t)rep, M_NFSREQ);
1191 			return (error);
1192 		}
1193 
1194 		/*
1195 		 * For nqnfs, get any lease in reply
1196 		 */
1197 		if (nmp->nm_flag & NFSMNT_NQNFS) {
1198 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1199 			if (*tl) {
1200 				np = VTONFS(vp);
1201 				nqlflag = fxdr_unsigned(int, *tl);
1202 				nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1203 				cachable = fxdr_unsigned(int, *tl++);
1204 				reqtime += fxdr_unsigned(int, *tl++);
1205 				if (reqtime > time_second) {
1206 				    frev = fxdr_hyper(tl);
1207 				    nqnfs_clientlease(nmp, np, nqlflag,
1208 					cachable, reqtime, frev);
1209 				}
1210 			}
1211 		}
1212 		*mrp = mrep;
1213 		*mdp = md;
1214 		*dposp = dpos;
1215 		m_freem(rep->r_mreq);
1216 		FREE((caddr_t)rep, M_NFSREQ);
1217 		return (0);
1218 	}
1219 	m_freem(mrep);
1220 	error = EPROTONOSUPPORT;
1221 nfsmout:
1222 	m_freem(rep->r_mreq);
1223 	free((caddr_t)rep, M_NFSREQ);
1224 	return (error);
1225 }
1226 
1227 #ifndef NFS_NOSERVER
1228 /*
1229  * Generate the rpc reply header
1230  * siz arg. is used to decide if adding a cluster is worthwhile
1231  */
1232 int
1233 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1234 	int siz;
1235 	struct nfsrv_descript *nd;
1236 	struct nfssvc_sock *slp;
1237 	int err;
1238 	int cache;
1239 	u_quad_t *frev;
1240 	struct mbuf **mrq;
1241 	struct mbuf **mbp;
1242 	caddr_t *bposp;
1243 {
1244 	u_int32_t *tl;
1245 	struct mbuf *mreq;
1246 	caddr_t bpos;
1247 	struct mbuf *mb, *mb2;
1248 
1249 	MGETHDR(mreq, M_WAIT, MT_DATA);
1250 	mb = mreq;
1251 	/*
1252 	 * If this is a big reply, use a cluster else
1253 	 * try and leave leading space for the lower level headers.
1254 	 */
1255 	siz += RPC_REPLYSIZ;
1256 	if ((max_hdr + siz) >= MINCLSIZE) {
1257 		MCLGET(mreq, M_WAIT);
1258 	} else
1259 		mreq->m_data += max_hdr;
1260 	tl = mtod(mreq, u_int32_t *);
1261 	mreq->m_len = 6 * NFSX_UNSIGNED;
1262 	bpos = ((caddr_t)tl) + mreq->m_len;
1263 	*tl++ = txdr_unsigned(nd->nd_retxid);
1264 	*tl++ = rpc_reply;
1265 	if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1266 		*tl++ = rpc_msgdenied;
1267 		if (err & NFSERR_AUTHERR) {
1268 			*tl++ = rpc_autherr;
1269 			*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1270 			mreq->m_len -= NFSX_UNSIGNED;
1271 			bpos -= NFSX_UNSIGNED;
1272 		} else {
1273 			*tl++ = rpc_mismatch;
1274 			*tl++ = txdr_unsigned(RPC_VER2);
1275 			*tl = txdr_unsigned(RPC_VER2);
1276 		}
1277 	} else {
1278 		*tl++ = rpc_msgaccepted;
1279 
1280 		/*
1281 		 * For Kerberos authentication, we must send the nickname
1282 		 * verifier back, otherwise just RPCAUTH_NULL.
1283 		 */
1284 		if (nd->nd_flag & ND_KERBFULL) {
1285 		    struct nfsuid *nuidp;
1286 		    struct timeval ktvin, ktvout;
1287 
1288 		    for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1289 			nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1290 			if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1291 			    (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1292 			     &nuidp->nu_haddr, nd->nd_nam2)))
1293 			    break;
1294 		    }
1295 		    if (nuidp) {
1296 			ktvin.tv_sec =
1297 			    txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1298 			ktvin.tv_usec =
1299 			    txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1300 
1301 			/*
1302 			 * Encrypt the timestamp in ecb mode using the
1303 			 * session key.
1304 			 */
1305 #ifdef NFSKERB
1306 			XXX
1307 #endif
1308 
1309 			*tl++ = rpc_auth_kerb;
1310 			*tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1311 			*tl = ktvout.tv_sec;
1312 			nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1313 			*tl++ = ktvout.tv_usec;
1314 			*tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1315 		    } else {
1316 			*tl++ = 0;
1317 			*tl++ = 0;
1318 		    }
1319 		} else {
1320 			*tl++ = 0;
1321 			*tl++ = 0;
1322 		}
1323 		switch (err) {
1324 		case EPROGUNAVAIL:
1325 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
1326 			break;
1327 		case EPROGMISMATCH:
1328 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
1329 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1330 			if (nd->nd_flag & ND_NQNFS) {
1331 				*tl++ = txdr_unsigned(3);
1332 				*tl = txdr_unsigned(3);
1333 			} else {
1334 				*tl++ = txdr_unsigned(2);
1335 				*tl = txdr_unsigned(3);
1336 			}
1337 			break;
1338 		case EPROCUNAVAIL:
1339 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
1340 			break;
1341 		case EBADRPC:
1342 			*tl = txdr_unsigned(RPC_GARBAGE);
1343 			break;
1344 		default:
1345 			*tl = 0;
1346 			if (err != NFSERR_RETVOID) {
1347 				nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1348 				if (err)
1349 				    *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1350 				else
1351 				    *tl = 0;
1352 			}
1353 			break;
1354 		};
1355 	}
1356 
1357 	/*
1358 	 * For nqnfs, piggyback lease as requested.
1359 	 */
1360 	if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1361 		if (nd->nd_flag & ND_LEASE) {
1362 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1363 			*tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1364 			*tl++ = txdr_unsigned(cache);
1365 			*tl++ = txdr_unsigned(nd->nd_duration);
1366 			txdr_hyper(*frev, tl);
1367 		} else {
1368 			nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1369 			*tl = 0;
1370 		}
1371 	}
1372 	if (mrq != NULL)
1373 	    *mrq = mreq;
1374 	*mbp = mb;
1375 	*bposp = bpos;
1376 	if (err != 0 && err != NFSERR_RETVOID)
1377 		nfsstats.srvrpc_errs++;
1378 	return (0);
1379 }
1380 
1381 
1382 #endif /* NFS_NOSERVER */
1383 /*
1384  * Nfs timer routine
1385  * Scan the nfsreq list and retranmit any requests that have timed out
1386  * To avoid retransmission attempts on STREAM sockets (in the future) make
1387  * sure to set the r_retry field to 0 (implies nm_retry == 0).
1388  */
1389 void
1390 nfs_timer(arg)
1391 	void *arg;	/* never used */
1392 {
1393 	struct nfsreq *rep;
1394 	struct mbuf *m;
1395 	struct socket *so;
1396 	struct nfsmount *nmp;
1397 	int timeo;
1398 	int s, error;
1399 #ifndef NFS_NOSERVER
1400 	static long lasttime = 0;
1401 	struct nfssvc_sock *slp;
1402 	u_quad_t cur_usec;
1403 #endif /* NFS_NOSERVER */
1404 	struct thread *td = &thread0; /* XXX for credentials, will break if sleep */
1405 
1406 	s = splnet();
1407 	for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
1408 		nmp = rep->r_nmp;
1409 		if (rep->r_mrep || (rep->r_flags & (R_SOFTTERM|R_MASKTIMER)))
1410 			continue;
1411 		if (nfs_sigintr(nmp, rep, rep->r_td)) {
1412 			nfs_softterm(rep);
1413 			continue;
1414 		}
1415 		if (rep->r_rtt >= 0) {
1416 			rep->r_rtt++;
1417 			if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1418 				timeo = nmp->nm_timeo;
1419 			else
1420 				timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1421 			if (nmp->nm_timeouts > 0)
1422 				timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1423 			if (rep->r_rtt <= timeo)
1424 				continue;
1425 			if (nmp->nm_timeouts < 8)
1426 				nmp->nm_timeouts++;
1427 		}
1428 		/*
1429 		 * Check for server not responding
1430 		 */
1431 		if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1432 		     rep->r_rexmit > nmp->nm_deadthresh) {
1433 			nfs_msg(rep->r_td,
1434 			    nmp->nm_mountp->mnt_stat.f_mntfromname,
1435 			    "not responding");
1436 			rep->r_flags |= R_TPRINTFMSG;
1437 		}
1438 		if (rep->r_rexmit >= rep->r_retry) {	/* too many */
1439 			nfsstats.rpctimeouts++;
1440 			nfs_softterm(rep);
1441 			continue;
1442 		}
1443 		if (nmp->nm_sotype != SOCK_DGRAM) {
1444 			if (++rep->r_rexmit > NFS_MAXREXMIT)
1445 				rep->r_rexmit = NFS_MAXREXMIT;
1446 			continue;
1447 		}
1448 		if ((so = nmp->nm_so) == NULL)
1449 			continue;
1450 
1451 		/*
1452 		 * If there is enough space and the window allows..
1453 		 *	Resend it
1454 		 * Set r_rtt to -1 in case we fail to send it now.
1455 		 */
1456 		rep->r_rtt = -1;
1457 		if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1458 		   ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1459 		    (rep->r_flags & R_SENT) ||
1460 		    nmp->nm_sent < nmp->nm_cwnd) &&
1461 		   (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1462 			if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1463 			    error = so_pru_send(so, 0, m, (struct sockaddr *)0,
1464 				     (struct mbuf *)0, td);
1465 			else
1466 			    error = so_pru_send(so, 0, m, nmp->nm_nam,
1467 			        (struct mbuf *)0, td);
1468 			if (error) {
1469 				if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1470 					so->so_error = 0;
1471 			} else {
1472 				/*
1473 				 * Iff first send, start timing
1474 				 * else turn timing off, backoff timer
1475 				 * and divide congestion window by 2.
1476 				 */
1477 				if (rep->r_flags & R_SENT) {
1478 					rep->r_flags &= ~R_TIMING;
1479 					if (++rep->r_rexmit > NFS_MAXREXMIT)
1480 						rep->r_rexmit = NFS_MAXREXMIT;
1481 					nmp->nm_cwnd >>= 1;
1482 					if (nmp->nm_cwnd < NFS_CWNDSCALE)
1483 						nmp->nm_cwnd = NFS_CWNDSCALE;
1484 					nfsstats.rpcretries++;
1485 				} else {
1486 					rep->r_flags |= R_SENT;
1487 					nmp->nm_sent += NFS_CWNDSCALE;
1488 				}
1489 				rep->r_rtt = 0;
1490 			}
1491 		}
1492 	}
1493 #ifndef NFS_NOSERVER
1494 	/*
1495 	 * Call the nqnfs server timer once a second to handle leases.
1496 	 */
1497 	if (lasttime != time_second) {
1498 		lasttime = time_second;
1499 		nqnfs_serverd();
1500 	}
1501 
1502 	/*
1503 	 * Scan the write gathering queues for writes that need to be
1504 	 * completed now.
1505 	 */
1506 	cur_usec = nfs_curusec();
1507 	for (slp = nfssvc_sockhead.tqh_first; slp != 0;
1508 	    slp = slp->ns_chain.tqe_next) {
1509 	    if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1510 		nfsrv_wakenfsd(slp);
1511 	}
1512 #endif /* NFS_NOSERVER */
1513 	splx(s);
1514 	nfs_timer_handle = timeout(nfs_timer, (void *)0, nfs_ticks);
1515 }
1516 
1517 /*
1518  * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
1519  * wait for all requests to complete. This is used by forced unmounts
1520  * to terminate any outstanding RPCs.
1521  */
1522 int
1523 nfs_nmcancelreqs(nmp)
1524 	struct nfsmount *nmp;
1525 {
1526 	struct nfsreq *req;
1527 	int i, s1, s2;
1528 
1529 	s1 = splnet();
1530 	s2 = splsoftclock();
1531 	TAILQ_FOREACH(req, &nfs_reqq, r_chain) {
1532 		if (nmp != req->r_nmp || req->r_mrep != NULL ||
1533 		    (req->r_flags & R_SOFTTERM))
1534 			continue;
1535 		nfs_softterm(req);
1536 	}
1537 	splx(s2);
1538 	splx(s1);
1539 
1540 	for (i = 0; i < 30; i++) {
1541 		int s = splnet();
1542 		TAILQ_FOREACH(req, &nfs_reqq, r_chain) {
1543 			if (nmp == req->r_nmp)
1544 				break;
1545 		}
1546 		splx(s);
1547 		if (req == NULL)
1548 			return (0);
1549 		tsleep(&lbolt, 0, "nfscancel", 0);
1550 	}
1551 	return (EBUSY);
1552 }
1553 
1554 /*
1555  * Flag a request as being about to terminate (due to NFSMNT_INT/NFSMNT_SOFT).
1556  * The nm_send count is decremented now to avoid deadlocks when the process in
1557  * soreceive() hasn't yet managed to send its own request.
1558  *
1559  * This routine must be called at splsoftclock() to protect r_flags and
1560  * nm_sent.
1561  */
1562 
1563 static void
1564 nfs_softterm(rep)
1565 	struct nfsreq *rep;
1566 {
1567 	rep->r_flags |= R_SOFTTERM;
1568 
1569 	if (rep->r_flags & R_SENT) {
1570 		rep->r_nmp->nm_sent -= NFS_CWNDSCALE;
1571 		rep->r_flags &= ~R_SENT;
1572 	}
1573 }
1574 
1575 /*
1576  * Test for a termination condition pending on the process.
1577  * This is used for NFSMNT_INT mounts.
1578  */
1579 int
1580 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td)
1581 {
1582 	sigset_t tmpset;
1583 	struct proc *p;
1584 
1585 	if (rep && (rep->r_flags & R_SOFTTERM))
1586 		return (EINTR);
1587 	/* Terminate all requests while attempting a forced unmount. */
1588 	if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)
1589 		return (EINTR);
1590 	if (!(nmp->nm_flag & NFSMNT_INT))
1591 		return (0);
1592 	/* td might be NULL YYY */
1593 	if (td == NULL || (p = td->td_proc) == NULL)
1594 		return (0);
1595 
1596 	tmpset = p->p_siglist;
1597 	SIGSETNAND(tmpset, p->p_sigmask);
1598 	SIGSETNAND(tmpset, p->p_sigignore);
1599 	if (SIGNOTEMPTY(p->p_siglist) && NFSINT_SIGMASK(tmpset))
1600 		return (EINTR);
1601 
1602 	return (0);
1603 }
1604 
1605 /*
1606  * Lock a socket against others.
1607  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1608  * and also to avoid race conditions between the processes with nfs requests
1609  * in progress when a reconnect is necessary.
1610  */
1611 int
1612 nfs_sndlock(struct nfsreq *rep)
1613 {
1614 	int *statep = &rep->r_nmp->nm_state;
1615 	struct thread *td;
1616 	int slptimeo;
1617 	int slpflag;
1618 	int error;
1619 
1620 	slpflag = 0;
1621 	slptimeo = 0;
1622 	td = rep->r_td;
1623 	if (rep->r_nmp->nm_flag & NFSMNT_INT)
1624 		slpflag = PCATCH;
1625 
1626 	error = 0;
1627 	crit_enter();
1628 	while (*statep & NFSSTA_SNDLOCK) {
1629 		*statep |= NFSSTA_WANTSND;
1630 		if (nfs_sigintr(rep->r_nmp, rep, td)) {
1631 			error = EINTR;
1632 			break;
1633 		}
1634 		tsleep((caddr_t)statep, slpflag, "nfsndlck", slptimeo);
1635 		if (slpflag == PCATCH) {
1636 			slpflag = 0;
1637 			slptimeo = 2 * hz;
1638 		}
1639 	}
1640 	/* Always fail if our request has been cancelled. */
1641 	if ((rep->r_flags & R_SOFTTERM))
1642 		error = EINTR;
1643 	if (error == 0)
1644 		*statep |= NFSSTA_SNDLOCK;
1645 	crit_exit();
1646 	return (error);
1647 }
1648 
1649 /*
1650  * Unlock the stream socket for others.
1651  */
1652 void
1653 nfs_sndunlock(rep)
1654 	struct nfsreq *rep;
1655 {
1656 	int *statep = &rep->r_nmp->nm_state;
1657 
1658 	if ((*statep & NFSSTA_SNDLOCK) == 0)
1659 		panic("nfs sndunlock");
1660 	crit_enter();
1661 	*statep &= ~NFSSTA_SNDLOCK;
1662 	if (*statep & NFSSTA_WANTSND) {
1663 		*statep &= ~NFSSTA_WANTSND;
1664 		wakeup((caddr_t)statep);
1665 	}
1666 	crit_exit();
1667 }
1668 
1669 static int
1670 nfs_rcvlock(rep)
1671 	struct nfsreq *rep;
1672 {
1673 	int *statep = &rep->r_nmp->nm_state;
1674 	int slpflag;
1675 	int slptimeo;
1676 	int error;
1677 
1678 	/*
1679 	 * Unconditionally check for completion in case another nfsiod
1680 	 * get the packet while the caller was blocked, before the caller
1681 	 * called us.  Packet reception is handled by mainline code which
1682 	 * is protected by the BGL at the moment.
1683 	 *
1684 	 * We do not strictly need the second check just before the
1685 	 * tsleep(), but it's good defensive programming.
1686 	 */
1687 	if (rep->r_mrep != NULL)
1688 		return (EALREADY);
1689 
1690 	if (rep->r_nmp->nm_flag & NFSMNT_INT)
1691 		slpflag = PCATCH;
1692 	else
1693 		slpflag = 0;
1694 	slptimeo = 0;
1695 	error = 0;
1696 	crit_enter();
1697 	while (*statep & NFSSTA_RCVLOCK) {
1698 		if (nfs_sigintr(rep->r_nmp, rep, rep->r_td)) {
1699 			error = EINTR;
1700 			break;
1701 		}
1702 		if (rep->r_mrep != NULL) {
1703 			error = EALREADY;
1704 			break;
1705 		}
1706 		*statep |= NFSSTA_WANTRCV;
1707 		tsleep((caddr_t)statep, slpflag, "nfsrcvlk", slptimeo);
1708 		/*
1709 		 * If our reply was recieved while we were sleeping,
1710 		 * then just return without taking the lock to avoid a
1711 		 * situation where a single iod could 'capture' the
1712 		 * recieve lock.
1713 		 */
1714 		if (rep->r_mrep != NULL) {
1715 			error = EALREADY;
1716 			break;
1717 		}
1718 		if (slpflag == PCATCH) {
1719 			slpflag = 0;
1720 			slptimeo = 2 * hz;
1721 		}
1722 	}
1723 	if (error == 0) {
1724 		*statep |= NFSSTA_RCVLOCK;
1725 		rep->r_nmp->nm_rcvlock_td = curthread;	/* DEBUGGING */
1726 	}
1727 	crit_exit();
1728 	return (error);
1729 }
1730 
1731 /*
1732  * Unlock the stream socket for others.
1733  */
1734 static void
1735 nfs_rcvunlock(rep)
1736 	struct nfsreq *rep;
1737 {
1738 	int *statep = &rep->r_nmp->nm_state;
1739 
1740 	if ((*statep & NFSSTA_RCVLOCK) == 0)
1741 		panic("nfs rcvunlock");
1742 	crit_enter();
1743 	rep->r_nmp->nm_rcvlock_td = (void *)-1;	/* DEBUGGING */
1744 	*statep &= ~NFSSTA_RCVLOCK;
1745 	if (*statep & NFSSTA_WANTRCV) {
1746 		*statep &= ~NFSSTA_WANTRCV;
1747 		wakeup((caddr_t)statep);
1748 	}
1749 	crit_exit();
1750 }
1751 
1752 /*
1753  *	nfs_realign:
1754  *
1755  *	Check for badly aligned mbuf data and realign by copying the unaligned
1756  *	portion of the data into a new mbuf chain and freeing the portions
1757  *	of the old chain that were replaced.
1758  *
1759  *	We cannot simply realign the data within the existing mbuf chain
1760  *	because the underlying buffers may contain other rpc commands and
1761  *	we cannot afford to overwrite them.
1762  *
1763  *	We would prefer to avoid this situation entirely.  The situation does
1764  *	not occur with NFS/UDP and is supposed to only occassionally occur
1765  *	with TCP.  Use vfs.nfs.realign_count and realign_test to check this.
1766  */
1767 static void
1768 nfs_realign(pm, hsiz)
1769 	struct mbuf **pm;
1770 	int hsiz;
1771 {
1772 	struct mbuf *m;
1773 	struct mbuf *n = NULL;
1774 	int off = 0;
1775 
1776 	++nfs_realign_test;
1777 
1778 	while ((m = *pm) != NULL) {
1779 		if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3)) {
1780 			MGET(n, M_WAIT, MT_DATA);
1781 			if (m->m_len >= MINCLSIZE) {
1782 				MCLGET(n, M_WAIT);
1783 			}
1784 			n->m_len = 0;
1785 			break;
1786 		}
1787 		pm = &m->m_next;
1788 	}
1789 
1790 	/*
1791 	 * If n is non-NULL, loop on m copying data, then replace the
1792 	 * portion of the chain that had to be realigned.
1793 	 */
1794 	if (n != NULL) {
1795 		++nfs_realign_count;
1796 		while (m) {
1797 			m_copyback(n, off, m->m_len, mtod(m, caddr_t));
1798 			off += m->m_len;
1799 			m = m->m_next;
1800 		}
1801 		m_freem(*pm);
1802 		*pm = n;
1803 	}
1804 }
1805 
1806 #ifndef NFS_NOSERVER
1807 
1808 /*
1809  * Parse an RPC request
1810  * - verify it
1811  * - fill in the cred struct.
1812  */
1813 int
1814 nfs_getreq(nd, nfsd, has_header)
1815 	struct nfsrv_descript *nd;
1816 	struct nfsd *nfsd;
1817 	int has_header;
1818 {
1819 	int len, i;
1820 	u_int32_t *tl;
1821 	int32_t t1;
1822 	struct uio uio;
1823 	struct iovec iov;
1824 	caddr_t dpos, cp2, cp;
1825 	u_int32_t nfsvers, auth_type;
1826 	uid_t nickuid;
1827 	int error = 0, nqnfs = 0, ticklen;
1828 	struct mbuf *mrep, *md;
1829 	struct nfsuid *nuidp;
1830 	struct timeval tvin, tvout;
1831 #if 0				/* until encrypted keys are implemented */
1832 	NFSKERBKEYSCHED_T keys;	/* stores key schedule */
1833 #endif
1834 
1835 	mrep = nd->nd_mrep;
1836 	md = nd->nd_md;
1837 	dpos = nd->nd_dpos;
1838 	if (has_header) {
1839 		nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1840 		nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1841 		if (*tl++ != rpc_call) {
1842 			m_freem(mrep);
1843 			return (EBADRPC);
1844 		}
1845 	} else
1846 		nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1847 	nd->nd_repstat = 0;
1848 	nd->nd_flag = 0;
1849 	if (*tl++ != rpc_vers) {
1850 		nd->nd_repstat = ERPCMISMATCH;
1851 		nd->nd_procnum = NFSPROC_NOOP;
1852 		return (0);
1853 	}
1854 	if (*tl != nfs_prog) {
1855 		if (*tl == nqnfs_prog)
1856 			nqnfs++;
1857 		else {
1858 			nd->nd_repstat = EPROGUNAVAIL;
1859 			nd->nd_procnum = NFSPROC_NOOP;
1860 			return (0);
1861 		}
1862 	}
1863 	tl++;
1864 	nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1865 	if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1866 		(nfsvers != NQNFS_VER3 && nqnfs)) {
1867 		nd->nd_repstat = EPROGMISMATCH;
1868 		nd->nd_procnum = NFSPROC_NOOP;
1869 		return (0);
1870 	}
1871 	if (nqnfs)
1872 		nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1873 	else if (nfsvers == NFS_VER3)
1874 		nd->nd_flag = ND_NFSV3;
1875 	nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1876 	if (nd->nd_procnum == NFSPROC_NULL)
1877 		return (0);
1878 	if (nd->nd_procnum >= NFS_NPROCS ||
1879 		(!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1880 		(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1881 		nd->nd_repstat = EPROCUNAVAIL;
1882 		nd->nd_procnum = NFSPROC_NOOP;
1883 		return (0);
1884 	}
1885 	if ((nd->nd_flag & ND_NFSV3) == 0)
1886 		nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1887 	auth_type = *tl++;
1888 	len = fxdr_unsigned(int, *tl++);
1889 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
1890 		m_freem(mrep);
1891 		return (EBADRPC);
1892 	}
1893 
1894 	nd->nd_flag &= ~ND_KERBAUTH;
1895 	/*
1896 	 * Handle auth_unix or auth_kerb.
1897 	 */
1898 	if (auth_type == rpc_auth_unix) {
1899 		len = fxdr_unsigned(int, *++tl);
1900 		if (len < 0 || len > NFS_MAXNAMLEN) {
1901 			m_freem(mrep);
1902 			return (EBADRPC);
1903 		}
1904 		nfsm_adv(nfsm_rndup(len));
1905 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1906 		bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
1907 		nd->nd_cr.cr_ref = 1;
1908 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1909 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1910 		len = fxdr_unsigned(int, *tl);
1911 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1912 			m_freem(mrep);
1913 			return (EBADRPC);
1914 		}
1915 		nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1916 		for (i = 1; i <= len; i++)
1917 		    if (i < NGROUPS)
1918 			nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1919 		    else
1920 			tl++;
1921 		nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
1922 		if (nd->nd_cr.cr_ngroups > 1)
1923 		    nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1924 		len = fxdr_unsigned(int, *++tl);
1925 		if (len < 0 || len > RPCAUTH_MAXSIZ) {
1926 			m_freem(mrep);
1927 			return (EBADRPC);
1928 		}
1929 		if (len > 0)
1930 			nfsm_adv(nfsm_rndup(len));
1931 	} else if (auth_type == rpc_auth_kerb) {
1932 		switch (fxdr_unsigned(int, *tl++)) {
1933 		case RPCAKN_FULLNAME:
1934 			ticklen = fxdr_unsigned(int, *tl);
1935 			*((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1936 			uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1937 			nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1938 			if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1939 				m_freem(mrep);
1940 				return (EBADRPC);
1941 			}
1942 			uio.uio_offset = 0;
1943 			uio.uio_iov = &iov;
1944 			uio.uio_iovcnt = 1;
1945 			uio.uio_segflg = UIO_SYSSPACE;
1946 			iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1947 			iov.iov_len = RPCAUTH_MAXSIZ - 4;
1948 			nfsm_mtouio(&uio, uio.uio_resid);
1949 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1950 			if (*tl++ != rpc_auth_kerb ||
1951 				fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1952 				printf("Bad kerb verifier\n");
1953 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1954 				nd->nd_procnum = NFSPROC_NOOP;
1955 				return (0);
1956 			}
1957 			nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1958 			tl = (u_int32_t *)cp;
1959 			if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1960 				printf("Not fullname kerb verifier\n");
1961 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1962 				nd->nd_procnum = NFSPROC_NOOP;
1963 				return (0);
1964 			}
1965 			cp += NFSX_UNSIGNED;
1966 			bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
1967 			nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1968 			nd->nd_flag |= ND_KERBFULL;
1969 			nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1970 			break;
1971 		case RPCAKN_NICKNAME:
1972 			if (len != 2 * NFSX_UNSIGNED) {
1973 				printf("Kerb nickname short\n");
1974 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1975 				nd->nd_procnum = NFSPROC_NOOP;
1976 				return (0);
1977 			}
1978 			nickuid = fxdr_unsigned(uid_t, *tl);
1979 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1980 			if (*tl++ != rpc_auth_kerb ||
1981 				fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1982 				printf("Kerb nick verifier bad\n");
1983 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1984 				nd->nd_procnum = NFSPROC_NOOP;
1985 				return (0);
1986 			}
1987 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1988 			tvin.tv_sec = *tl++;
1989 			tvin.tv_usec = *tl;
1990 
1991 			for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
1992 			    nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1993 				if (nuidp->nu_cr.cr_uid == nickuid &&
1994 				    (!nd->nd_nam2 ||
1995 				     netaddr_match(NU_NETFAM(nuidp),
1996 				      &nuidp->nu_haddr, nd->nd_nam2)))
1997 					break;
1998 			}
1999 			if (!nuidp) {
2000 				nd->nd_repstat =
2001 					(NFSERR_AUTHERR|AUTH_REJECTCRED);
2002 				nd->nd_procnum = NFSPROC_NOOP;
2003 				return (0);
2004 			}
2005 
2006 			/*
2007 			 * Now, decrypt the timestamp using the session key
2008 			 * and validate it.
2009 			 */
2010 #ifdef NFSKERB
2011 			XXX
2012 #endif
2013 
2014 			tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2015 			tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2016 			if (nuidp->nu_expire < time_second ||
2017 			    nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2018 			    (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2019 			     nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2020 				nuidp->nu_expire = 0;
2021 				nd->nd_repstat =
2022 				    (NFSERR_AUTHERR|AUTH_REJECTVERF);
2023 				nd->nd_procnum = NFSPROC_NOOP;
2024 				return (0);
2025 			}
2026 			nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
2027 			nd->nd_flag |= ND_KERBNICK;
2028 		};
2029 	} else {
2030 		nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2031 		nd->nd_procnum = NFSPROC_NOOP;
2032 		return (0);
2033 	}
2034 
2035 	/*
2036 	 * For nqnfs, get piggybacked lease request.
2037 	 */
2038 	if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
2039 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2040 		nd->nd_flag |= fxdr_unsigned(int, *tl);
2041 		if (nd->nd_flag & ND_LEASE) {
2042 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
2043 			nd->nd_duration = fxdr_unsigned(int32_t, *tl);
2044 		} else
2045 			nd->nd_duration = NQ_MINLEASE;
2046 	} else
2047 		nd->nd_duration = NQ_MINLEASE;
2048 	nd->nd_md = md;
2049 	nd->nd_dpos = dpos;
2050 	return (0);
2051 nfsmout:
2052 	return (error);
2053 }
2054 
2055 #endif
2056 
2057 /*
2058  * Send a message to the originating process's terminal.  The thread and/or
2059  * process may be NULL.  YYY the thread should not be NULL but there may
2060  * still be some uio_td's that are still being passed as NULL through to
2061  * nfsm_request().
2062  */
2063 static int
2064 nfs_msg(struct thread *td, char *server, char *msg)
2065 {
2066 	tpr_t tpr;
2067 
2068 	if (td && td->td_proc)
2069 		tpr = tprintf_open(td->td_proc);
2070 	else
2071 		tpr = NULL;
2072 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
2073 	tprintf_close(tpr);
2074 	return (0);
2075 }
2076 
2077 #ifndef NFS_NOSERVER
2078 /*
2079  * Socket upcall routine for the nfsd sockets.
2080  * The caddr_t arg is a pointer to the "struct nfssvc_sock".
2081  * Essentially do as much as possible non-blocking, else punt and it will
2082  * be called with M_WAIT from an nfsd.
2083  */
2084 void
2085 nfsrv_rcv(so, arg, waitflag)
2086 	struct socket *so;
2087 	void *arg;
2088 	int waitflag;
2089 {
2090 	struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2091 	struct mbuf *m;
2092 	struct mbuf *mp;
2093 	struct sockaddr *nam;
2094 	struct uio auio;
2095 	int flags, error;
2096 
2097 	if ((slp->ns_flag & SLP_VALID) == 0)
2098 		return;
2099 #ifdef notdef
2100 	/*
2101 	 * Define this to test for nfsds handling this under heavy load.
2102 	 */
2103 	if (waitflag == M_DONTWAIT) {
2104 		slp->ns_flag |= SLP_NEEDQ; goto dorecs;
2105 	}
2106 #endif
2107 	auio.uio_td = NULL;
2108 	if (so->so_type == SOCK_STREAM) {
2109 		/*
2110 		 * If there are already records on the queue, defer soreceive()
2111 		 * to an nfsd so that there is feedback to the TCP layer that
2112 		 * the nfs servers are heavily loaded.
2113 		 */
2114 		if (STAILQ_FIRST(&slp->ns_rec) && waitflag == M_DONTWAIT) {
2115 			slp->ns_flag |= SLP_NEEDQ;
2116 			goto dorecs;
2117 		}
2118 
2119 		/*
2120 		 * Do soreceive().
2121 		 */
2122 		auio.uio_resid = 1000000000;
2123 		flags = MSG_DONTWAIT;
2124 		error = so_pru_soreceive(so, &nam, &auio, &mp, NULL, &flags);
2125 		if (error || mp == (struct mbuf *)0) {
2126 			if (error == EWOULDBLOCK)
2127 				slp->ns_flag |= SLP_NEEDQ;
2128 			else
2129 				slp->ns_flag |= SLP_DISCONN;
2130 			goto dorecs;
2131 		}
2132 		m = mp;
2133 		if (slp->ns_rawend) {
2134 			slp->ns_rawend->m_next = m;
2135 			slp->ns_cc += 1000000000 - auio.uio_resid;
2136 		} else {
2137 			slp->ns_raw = m;
2138 			slp->ns_cc = 1000000000 - auio.uio_resid;
2139 		}
2140 		while (m->m_next)
2141 			m = m->m_next;
2142 		slp->ns_rawend = m;
2143 
2144 		/*
2145 		 * Now try and parse record(s) out of the raw stream data.
2146 		 */
2147 		error = nfsrv_getstream(slp, waitflag);
2148 		if (error) {
2149 			if (error == EPERM)
2150 				slp->ns_flag |= SLP_DISCONN;
2151 			else
2152 				slp->ns_flag |= SLP_NEEDQ;
2153 		}
2154 	} else {
2155 		do {
2156 			auio.uio_resid = 1000000000;
2157 			flags = MSG_DONTWAIT;
2158 			error = so_pru_soreceive(so, &nam, &auio, &mp, NULL,
2159 			    &flags);
2160 			if (mp) {
2161 				struct nfsrv_rec *rec;
2162 				int mf = (waitflag & M_DONTWAIT) ?
2163 					    M_NOWAIT : M_WAITOK;
2164 				rec = malloc(sizeof(struct nfsrv_rec),
2165 					     M_NFSRVDESC, mf);
2166 				if (!rec) {
2167 					if (nam)
2168 						FREE(nam, M_SONAME);
2169 					m_freem(mp);
2170 					continue;
2171 				}
2172 				nfs_realign(&mp, 10 * NFSX_UNSIGNED);
2173 				rec->nr_address = nam;
2174 				rec->nr_packet = mp;
2175 				STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2176 			}
2177 			if (error) {
2178 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2179 					&& error != EWOULDBLOCK) {
2180 					slp->ns_flag |= SLP_DISCONN;
2181 					goto dorecs;
2182 				}
2183 			}
2184 		} while (mp);
2185 	}
2186 
2187 	/*
2188 	 * Now try and process the request records, non-blocking.
2189 	 */
2190 dorecs:
2191 	if (waitflag == M_DONTWAIT &&
2192 		(STAILQ_FIRST(&slp->ns_rec)
2193 		 || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
2194 		nfsrv_wakenfsd(slp);
2195 }
2196 
2197 /*
2198  * Try and extract an RPC request from the mbuf data list received on a
2199  * stream socket. The "waitflag" argument indicates whether or not it
2200  * can sleep.
2201  */
2202 static int
2203 nfsrv_getstream(slp, waitflag)
2204 	struct nfssvc_sock *slp;
2205 	int waitflag;
2206 {
2207 	struct mbuf *m, **mpp;
2208 	char *cp1, *cp2;
2209 	int len;
2210 	struct mbuf *om, *m2, *recm;
2211 	u_int32_t recmark;
2212 
2213 	if (slp->ns_flag & SLP_GETSTREAM)
2214 		panic("nfs getstream");
2215 	slp->ns_flag |= SLP_GETSTREAM;
2216 	for (;;) {
2217 	    if (slp->ns_reclen == 0) {
2218 		if (slp->ns_cc < NFSX_UNSIGNED) {
2219 			slp->ns_flag &= ~SLP_GETSTREAM;
2220 			return (0);
2221 		}
2222 		m = slp->ns_raw;
2223 		if (m->m_len >= NFSX_UNSIGNED) {
2224 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
2225 			m->m_data += NFSX_UNSIGNED;
2226 			m->m_len -= NFSX_UNSIGNED;
2227 		} else {
2228 			cp1 = (caddr_t)&recmark;
2229 			cp2 = mtod(m, caddr_t);
2230 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2231 				while (m->m_len == 0) {
2232 					m = m->m_next;
2233 					cp2 = mtod(m, caddr_t);
2234 				}
2235 				*cp1++ = *cp2++;
2236 				m->m_data++;
2237 				m->m_len--;
2238 			}
2239 		}
2240 		slp->ns_cc -= NFSX_UNSIGNED;
2241 		recmark = ntohl(recmark);
2242 		slp->ns_reclen = recmark & ~0x80000000;
2243 		if (recmark & 0x80000000)
2244 			slp->ns_flag |= SLP_LASTFRAG;
2245 		else
2246 			slp->ns_flag &= ~SLP_LASTFRAG;
2247 		if (slp->ns_reclen > NFS_MAXPACKET) {
2248 			slp->ns_flag &= ~SLP_GETSTREAM;
2249 			return (EPERM);
2250 		}
2251 	    }
2252 
2253 	    /*
2254 	     * Now get the record part.
2255 	     *
2256 	     * Note that slp->ns_reclen may be 0.  Linux sometimes
2257 	     * generates 0-length RPCs
2258 	     */
2259 	    recm = NULL;
2260 	    if (slp->ns_cc == slp->ns_reclen) {
2261 		recm = slp->ns_raw;
2262 		slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2263 		slp->ns_cc = slp->ns_reclen = 0;
2264 	    } else if (slp->ns_cc > slp->ns_reclen) {
2265 		len = 0;
2266 		m = slp->ns_raw;
2267 		om = (struct mbuf *)0;
2268 
2269 		while (len < slp->ns_reclen) {
2270 			if ((len + m->m_len) > slp->ns_reclen) {
2271 				m2 = m_copym(m, 0, slp->ns_reclen - len,
2272 					waitflag);
2273 				if (m2) {
2274 					if (om) {
2275 						om->m_next = m2;
2276 						recm = slp->ns_raw;
2277 					} else
2278 						recm = m2;
2279 					m->m_data += slp->ns_reclen - len;
2280 					m->m_len -= slp->ns_reclen - len;
2281 					len = slp->ns_reclen;
2282 				} else {
2283 					slp->ns_flag &= ~SLP_GETSTREAM;
2284 					return (EWOULDBLOCK);
2285 				}
2286 			} else if ((len + m->m_len) == slp->ns_reclen) {
2287 				om = m;
2288 				len += m->m_len;
2289 				m = m->m_next;
2290 				recm = slp->ns_raw;
2291 				om->m_next = (struct mbuf *)0;
2292 			} else {
2293 				om = m;
2294 				len += m->m_len;
2295 				m = m->m_next;
2296 			}
2297 		}
2298 		slp->ns_raw = m;
2299 		slp->ns_cc -= len;
2300 		slp->ns_reclen = 0;
2301 	    } else {
2302 		slp->ns_flag &= ~SLP_GETSTREAM;
2303 		return (0);
2304 	    }
2305 
2306 	    /*
2307 	     * Accumulate the fragments into a record.
2308 	     */
2309 	    mpp = &slp->ns_frag;
2310 	    while (*mpp)
2311 		mpp = &((*mpp)->m_next);
2312 	    *mpp = recm;
2313 	    if (slp->ns_flag & SLP_LASTFRAG) {
2314 		struct nfsrv_rec *rec;
2315 		int mf = (waitflag & M_DONTWAIT) ? M_NOWAIT : M_WAITOK;
2316 		rec = malloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf);
2317 		if (!rec) {
2318 		    m_freem(slp->ns_frag);
2319 		} else {
2320 		    nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED);
2321 		    rec->nr_address = (struct sockaddr *)0;
2322 		    rec->nr_packet = slp->ns_frag;
2323 		    STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2324 		}
2325 		slp->ns_frag = (struct mbuf *)0;
2326 	    }
2327 	}
2328 }
2329 
2330 /*
2331  * Parse an RPC header.
2332  */
2333 int
2334 nfsrv_dorec(slp, nfsd, ndp)
2335 	struct nfssvc_sock *slp;
2336 	struct nfsd *nfsd;
2337 	struct nfsrv_descript **ndp;
2338 {
2339 	struct nfsrv_rec *rec;
2340 	struct mbuf *m;
2341 	struct sockaddr *nam;
2342 	struct nfsrv_descript *nd;
2343 	int error;
2344 
2345 	*ndp = NULL;
2346 	if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec))
2347 		return (ENOBUFS);
2348 	rec = STAILQ_FIRST(&slp->ns_rec);
2349 	STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link);
2350 	nam = rec->nr_address;
2351 	m = rec->nr_packet;
2352 	free(rec, M_NFSRVDESC);
2353 	MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2354 		M_NFSRVDESC, M_WAITOK);
2355 	nd->nd_md = nd->nd_mrep = m;
2356 	nd->nd_nam2 = nam;
2357 	nd->nd_dpos = mtod(m, caddr_t);
2358 	error = nfs_getreq(nd, nfsd, TRUE);
2359 	if (error) {
2360 		if (nam) {
2361 			FREE(nam, M_SONAME);
2362 		}
2363 		free((caddr_t)nd, M_NFSRVDESC);
2364 		return (error);
2365 	}
2366 	*ndp = nd;
2367 	nfsd->nfsd_nd = nd;
2368 	return (0);
2369 }
2370 
2371 /*
2372  * Search for a sleeping nfsd and wake it up.
2373  * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2374  * running nfsds will go look for the work in the nfssvc_sock list.
2375  */
2376 void
2377 nfsrv_wakenfsd(slp)
2378 	struct nfssvc_sock *slp;
2379 {
2380 	struct nfsd *nd;
2381 
2382 	if ((slp->ns_flag & SLP_VALID) == 0)
2383 		return;
2384 	for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
2385 		if (nd->nfsd_flag & NFSD_WAITING) {
2386 			nd->nfsd_flag &= ~NFSD_WAITING;
2387 			if (nd->nfsd_slp)
2388 				panic("nfsd wakeup");
2389 			slp->ns_sref++;
2390 			nd->nfsd_slp = slp;
2391 			wakeup((caddr_t)nd);
2392 			return;
2393 		}
2394 	}
2395 	slp->ns_flag |= SLP_DOREC;
2396 	nfsd_head_flag |= NFSD_CHECKSLP;
2397 }
2398 #endif /* NFS_NOSERVER */
2399