1 /* 2 * Copyright (c) 1989, 1991, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 37 * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $ 38 * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.17 2004/06/02 14:43:04 eirikn Exp $ 39 */ 40 41 /* 42 * Socket operations for use by nfs 43 */ 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/proc.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/kernel.h> 51 #include <sys/mbuf.h> 52 #include <sys/vnode.h> 53 #include <sys/protosw.h> 54 #include <sys/resourcevar.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/socketops.h> 58 #include <sys/syslog.h> 59 #include <sys/thread.h> 60 #include <sys/tprintf.h> 61 #include <sys/sysctl.h> 62 #include <sys/signalvar.h> 63 64 #include <netinet/in.h> 65 #include <netinet/tcp.h> 66 #include <sys/thread2.h> 67 68 #include "rpcv2.h" 69 #include "nfsproto.h" 70 #include "nfs.h" 71 #include "xdr_subs.h" 72 #include "nfsm_subs.h" 73 #include "nfsmount.h" 74 #include "nfsnode.h" 75 #include "nfsrtt.h" 76 #include "nqnfs.h" 77 78 #define TRUE 1 79 #define FALSE 0 80 81 /* 82 * Estimate rto for an nfs rpc sent via. an unreliable datagram. 83 * Use the mean and mean deviation of rtt for the appropriate type of rpc 84 * for the frequent rpcs and a default for the others. 85 * The justification for doing "other" this way is that these rpcs 86 * happen so infrequently that timer est. would probably be stale. 87 * Also, since many of these rpcs are 88 * non-idempotent, a conservative timeout is desired. 89 * getattr, lookup - A+2D 90 * read, write - A+4D 91 * other - nm_timeo 92 */ 93 #define NFS_RTO(n, t) \ 94 ((t) == 0 ? (n)->nm_timeo : \ 95 ((t) < 3 ? \ 96 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ 97 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) 98 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1] 99 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1] 100 /* 101 * External data, mostly RPC constants in XDR form 102 */ 103 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, 104 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr, 105 rpc_auth_kerb; 106 extern u_int32_t nfs_prog, nqnfs_prog; 107 extern time_t nqnfsstarttime; 108 extern struct nfsstats nfsstats; 109 extern int nfsv3_procid[NFS_NPROCS]; 110 extern int nfs_ticks; 111 112 /* 113 * Defines which timer to use for the procnum. 114 * 0 - default 115 * 1 - getattr 116 * 2 - lookup 117 * 3 - read 118 * 4 - write 119 */ 120 static int proct[NFS_NPROCS] = { 121 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 122 0, 0, 0, 123 }; 124 125 static int nfs_realign_test; 126 static int nfs_realign_count; 127 static int nfs_bufpackets = 4; 128 129 SYSCTL_DECL(_vfs_nfs); 130 131 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, ""); 132 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, ""); 133 SYSCTL_INT(_vfs_nfs, OID_AUTO, bufpackets, CTLFLAG_RW, &nfs_bufpackets, 0, ""); 134 135 136 /* 137 * There is a congestion window for outstanding rpcs maintained per mount 138 * point. The cwnd size is adjusted in roughly the way that: 139 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of 140 * SIGCOMM '88". ACM, August 1988. 141 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout 142 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd 143 * of rpcs is in progress. 144 * (The sent count and cwnd are scaled for integer arith.) 145 * Variants of "slow start" were tried and were found to be too much of a 146 * performance hit (ave. rtt 3 times larger), 147 * I suspect due to the large rtt that nfs rpcs have. 148 */ 149 #define NFS_CWNDSCALE 256 150 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) 151 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; 152 int nfsrtton = 0; 153 struct nfsrtt nfsrtt; 154 struct callout_handle nfs_timer_handle; 155 156 static int nfs_msg (struct thread *,char *,char *); 157 static int nfs_rcvlock (struct nfsreq *); 158 static void nfs_rcvunlock (struct nfsreq *); 159 static void nfs_realign (struct mbuf **pm, int hsiz); 160 static int nfs_receive (struct nfsreq *rep, struct sockaddr **aname, 161 struct mbuf **mp); 162 static void nfs_softterm (struct nfsreq *rep); 163 static int nfs_reconnect (struct nfsreq *rep); 164 #ifndef NFS_NOSERVER 165 static int nfsrv_getstream (struct nfssvc_sock *,int); 166 167 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd, 168 struct nfssvc_sock *slp, 169 struct thread *td, 170 struct mbuf **mreqp) = { 171 nfsrv_null, 172 nfsrv_getattr, 173 nfsrv_setattr, 174 nfsrv_lookup, 175 nfsrv3_access, 176 nfsrv_readlink, 177 nfsrv_read, 178 nfsrv_write, 179 nfsrv_create, 180 nfsrv_mkdir, 181 nfsrv_symlink, 182 nfsrv_mknod, 183 nfsrv_remove, 184 nfsrv_rmdir, 185 nfsrv_rename, 186 nfsrv_link, 187 nfsrv_readdir, 188 nfsrv_readdirplus, 189 nfsrv_statfs, 190 nfsrv_fsinfo, 191 nfsrv_pathconf, 192 nfsrv_commit, 193 nqnfsrv_getlease, 194 nqnfsrv_vacated, 195 nfsrv_noop, 196 nfsrv_noop 197 }; 198 #endif /* NFS_NOSERVER */ 199 200 /* 201 * Initialize sockets and congestion for a new NFS connection. 202 * We do not free the sockaddr if error. 203 */ 204 int 205 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep) 206 { 207 struct socket *so; 208 int s, error, rcvreserve, sndreserve; 209 int pktscale; 210 struct sockaddr *saddr; 211 struct sockaddr_in *sin; 212 struct thread *td = &thread0; /* only used for socreate and sobind */ 213 214 nmp->nm_so = (struct socket *)0; 215 saddr = nmp->nm_nam; 216 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, 217 nmp->nm_soproto, td); 218 if (error) 219 goto bad; 220 so = nmp->nm_so; 221 nmp->nm_soflags = so->so_proto->pr_flags; 222 223 /* 224 * Some servers require that the client port be a reserved port number. 225 */ 226 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) { 227 struct sockopt sopt; 228 int ip; 229 struct sockaddr_in ssin; 230 231 bzero(&sopt, sizeof sopt); 232 ip = IP_PORTRANGE_LOW; 233 sopt.sopt_dir = SOPT_SET; 234 sopt.sopt_level = IPPROTO_IP; 235 sopt.sopt_name = IP_PORTRANGE; 236 sopt.sopt_val = (void *)&ip; 237 sopt.sopt_valsize = sizeof(ip); 238 sopt.sopt_td = NULL; 239 error = sosetopt(so, &sopt); 240 if (error) 241 goto bad; 242 bzero(&ssin, sizeof ssin); 243 sin = &ssin; 244 sin->sin_len = sizeof (struct sockaddr_in); 245 sin->sin_family = AF_INET; 246 sin->sin_addr.s_addr = INADDR_ANY; 247 sin->sin_port = htons(0); 248 error = sobind(so, (struct sockaddr *)sin, td); 249 if (error) 250 goto bad; 251 bzero(&sopt, sizeof sopt); 252 ip = IP_PORTRANGE_DEFAULT; 253 sopt.sopt_dir = SOPT_SET; 254 sopt.sopt_level = IPPROTO_IP; 255 sopt.sopt_name = IP_PORTRANGE; 256 sopt.sopt_val = (void *)&ip; 257 sopt.sopt_valsize = sizeof(ip); 258 sopt.sopt_td = NULL; 259 error = sosetopt(so, &sopt); 260 if (error) 261 goto bad; 262 } 263 264 /* 265 * Protocols that do not require connections may be optionally left 266 * unconnected for servers that reply from a port other than NFS_PORT. 267 */ 268 if (nmp->nm_flag & NFSMNT_NOCONN) { 269 if (nmp->nm_soflags & PR_CONNREQUIRED) { 270 error = ENOTCONN; 271 goto bad; 272 } 273 } else { 274 error = soconnect(so, nmp->nm_nam, td); 275 if (error) 276 goto bad; 277 278 /* 279 * Wait for the connection to complete. Cribbed from the 280 * connect system call but with the wait timing out so 281 * that interruptible mounts don't hang here for a long time. 282 */ 283 s = splnet(); 284 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 285 (void) tsleep((caddr_t)&so->so_timeo, 0, 286 "nfscon", 2 * hz); 287 if ((so->so_state & SS_ISCONNECTING) && 288 so->so_error == 0 && rep && 289 (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){ 290 so->so_state &= ~SS_ISCONNECTING; 291 splx(s); 292 goto bad; 293 } 294 } 295 if (so->so_error) { 296 error = so->so_error; 297 so->so_error = 0; 298 splx(s); 299 goto bad; 300 } 301 splx(s); 302 } 303 so->so_rcv.sb_timeo = (5 * hz); 304 so->so_snd.sb_timeo = (5 * hz); 305 306 /* 307 * Get buffer reservation size from sysctl, but impose reasonable 308 * limits. 309 */ 310 pktscale = nfs_bufpackets; 311 if (pktscale < 2) 312 pktscale = 2; 313 if (pktscale > 64) 314 pktscale = 64; 315 316 if (nmp->nm_sotype == SOCK_DGRAM) { 317 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; 318 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 319 NFS_MAXPKTHDR) * pktscale; 320 } else if (nmp->nm_sotype == SOCK_SEQPACKET) { 321 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; 322 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 323 NFS_MAXPKTHDR) * pktscale; 324 } else { 325 if (nmp->nm_sotype != SOCK_STREAM) 326 panic("nfscon sotype"); 327 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 328 struct sockopt sopt; 329 int val; 330 331 bzero(&sopt, sizeof sopt); 332 sopt.sopt_level = SOL_SOCKET; 333 sopt.sopt_name = SO_KEEPALIVE; 334 sopt.sopt_val = &val; 335 sopt.sopt_valsize = sizeof val; 336 val = 1; 337 sosetopt(so, &sopt); 338 } 339 if (so->so_proto->pr_protocol == IPPROTO_TCP) { 340 struct sockopt sopt; 341 int val; 342 343 bzero(&sopt, sizeof sopt); 344 sopt.sopt_level = IPPROTO_TCP; 345 sopt.sopt_name = TCP_NODELAY; 346 sopt.sopt_val = &val; 347 sopt.sopt_valsize = sizeof val; 348 val = 1; 349 sosetopt(so, &sopt); 350 } 351 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + 352 sizeof (u_int32_t)) * pktscale; 353 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + 354 sizeof (u_int32_t)) * pktscale; 355 } 356 error = soreserve(so, sndreserve, rcvreserve, 357 &td->td_proc->p_rlimit[RLIMIT_SBSIZE]); 358 if (error) 359 goto bad; 360 so->so_rcv.sb_flags |= SB_NOINTR; 361 so->so_snd.sb_flags |= SB_NOINTR; 362 363 /* Initialize other non-zero congestion variables */ 364 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = 365 nmp->nm_srtt[3] = (NFS_TIMEO << 3); 366 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = 367 nmp->nm_sdrtt[3] = 0; 368 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ 369 nmp->nm_sent = 0; 370 nmp->nm_timeouts = 0; 371 return (0); 372 373 bad: 374 nfs_disconnect(nmp); 375 return (error); 376 } 377 378 /* 379 * Reconnect routine: 380 * Called when a connection is broken on a reliable protocol. 381 * - clean up the old socket 382 * - nfs_connect() again 383 * - set R_MUSTRESEND for all outstanding requests on mount point 384 * If this fails the mount point is DEAD! 385 * nb: Must be called with the nfs_sndlock() set on the mount point. 386 */ 387 static int 388 nfs_reconnect(struct nfsreq *rep) 389 { 390 struct nfsreq *rp; 391 struct nfsmount *nmp = rep->r_nmp; 392 int error; 393 394 nfs_disconnect(nmp); 395 while ((error = nfs_connect(nmp, rep)) != 0) { 396 if (error == EINTR || error == ERESTART) 397 return (EINTR); 398 (void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0); 399 } 400 401 /* 402 * Loop through outstanding request list and fix up all requests 403 * on old socket. 404 */ 405 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) { 406 if (rp->r_nmp == nmp) 407 rp->r_flags |= R_MUSTRESEND; 408 } 409 return (0); 410 } 411 412 /* 413 * NFS disconnect. Clean up and unlink. 414 */ 415 void 416 nfs_disconnect(struct nfsmount *nmp) 417 { 418 struct socket *so; 419 420 if (nmp->nm_so) { 421 so = nmp->nm_so; 422 nmp->nm_so = (struct socket *)0; 423 soshutdown(so, 2); 424 soclose(so); 425 } 426 } 427 428 void 429 nfs_safedisconnect(struct nfsmount *nmp) 430 { 431 struct nfsreq dummyreq; 432 433 bzero(&dummyreq, sizeof(dummyreq)); 434 dummyreq.r_nmp = nmp; 435 dummyreq.r_td = NULL; 436 nfs_rcvlock(&dummyreq); 437 nfs_disconnect(nmp); 438 nfs_rcvunlock(&dummyreq); 439 } 440 441 /* 442 * This is the nfs send routine. For connection based socket types, it 443 * must be called with an nfs_sndlock() on the socket. 444 * "rep == NULL" indicates that it has been called from a server. 445 * For the client side: 446 * - return EINTR if the RPC is terminated, 0 otherwise 447 * - set R_MUSTRESEND if the send fails for any reason 448 * - do any cleanup required by recoverable socket errors (?) 449 * For the server side: 450 * - return EINTR or ERESTART if interrupted by a signal 451 * - return EPIPE if a connection is lost for connection based sockets (TCP...) 452 * - do any cleanup required by recoverable socket errors (?) 453 */ 454 int 455 nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top, 456 struct nfsreq *rep) 457 { 458 struct sockaddr *sendnam; 459 int error, soflags, flags; 460 461 if (rep) { 462 if (rep->r_flags & R_SOFTTERM) { 463 m_freem(top); 464 return (EINTR); 465 } 466 if ((so = rep->r_nmp->nm_so) == NULL) { 467 rep->r_flags |= R_MUSTRESEND; 468 m_freem(top); 469 return (0); 470 } 471 rep->r_flags &= ~R_MUSTRESEND; 472 soflags = rep->r_nmp->nm_soflags; 473 } else 474 soflags = so->so_proto->pr_flags; 475 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) 476 sendnam = (struct sockaddr *)0; 477 else 478 sendnam = nam; 479 if (so->so_type == SOCK_SEQPACKET) 480 flags = MSG_EOR; 481 else 482 flags = 0; 483 484 error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags, 485 curthread /*XXX*/); 486 /* 487 * ENOBUFS for dgram sockets is transient and non fatal. 488 * No need to log, and no need to break a soft mount. 489 */ 490 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) { 491 error = 0; 492 if (rep) /* do backoff retransmit on client */ 493 rep->r_flags |= R_MUSTRESEND; 494 } 495 496 if (error) { 497 if (rep) { 498 log(LOG_INFO, "nfs send error %d for server %s\n",error, 499 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 500 /* 501 * Deal with errors for the client side. 502 */ 503 if (rep->r_flags & R_SOFTTERM) 504 error = EINTR; 505 else 506 rep->r_flags |= R_MUSTRESEND; 507 } else 508 log(LOG_INFO, "nfsd send error %d\n", error); 509 510 /* 511 * Handle any recoverable (soft) socket errors here. (?) 512 */ 513 if (error != EINTR && error != ERESTART && 514 error != EWOULDBLOCK && error != EPIPE) 515 error = 0; 516 } 517 return (error); 518 } 519 520 /* 521 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all 522 * done by soreceive(), but for SOCK_STREAM we must deal with the Record 523 * Mark and consolidate the data into a new mbuf list. 524 * nb: Sometimes TCP passes the data up to soreceive() in long lists of 525 * small mbufs. 526 * For SOCK_STREAM we must be very careful to read an entire record once 527 * we have read any of it, even if the system call has been interrupted. 528 */ 529 static int 530 nfs_receive(struct nfsreq *rep, struct sockaddr **aname, struct mbuf **mp) 531 { 532 struct socket *so; 533 struct uio auio; 534 struct iovec aio; 535 struct mbuf *m; 536 struct mbuf *control; 537 u_int32_t len; 538 struct sockaddr **getnam; 539 int error, sotype, rcvflg; 540 struct thread *td = curthread; /* XXX */ 541 542 /* 543 * Set up arguments for soreceive() 544 */ 545 *mp = (struct mbuf *)0; 546 *aname = (struct sockaddr *)0; 547 sotype = rep->r_nmp->nm_sotype; 548 549 /* 550 * For reliable protocols, lock against other senders/receivers 551 * in case a reconnect is necessary. 552 * For SOCK_STREAM, first get the Record Mark to find out how much 553 * more there is to get. 554 * We must lock the socket against other receivers 555 * until we have an entire rpc request/reply. 556 */ 557 if (sotype != SOCK_DGRAM) { 558 error = nfs_sndlock(rep); 559 if (error) 560 return (error); 561 tryagain: 562 /* 563 * Check for fatal errors and resending request. 564 */ 565 /* 566 * Ugh: If a reconnect attempt just happened, nm_so 567 * would have changed. NULL indicates a failed 568 * attempt that has essentially shut down this 569 * mount point. 570 */ 571 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { 572 nfs_sndunlock(rep); 573 return (EINTR); 574 } 575 so = rep->r_nmp->nm_so; 576 if (!so) { 577 error = nfs_reconnect(rep); 578 if (error) { 579 nfs_sndunlock(rep); 580 return (error); 581 } 582 goto tryagain; 583 } 584 while (rep->r_flags & R_MUSTRESEND) { 585 m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT); 586 nfsstats.rpcretries++; 587 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep); 588 if (error) { 589 if (error == EINTR || error == ERESTART || 590 (error = nfs_reconnect(rep)) != 0) { 591 nfs_sndunlock(rep); 592 return (error); 593 } 594 goto tryagain; 595 } 596 } 597 nfs_sndunlock(rep); 598 if (sotype == SOCK_STREAM) { 599 aio.iov_base = (caddr_t) &len; 600 aio.iov_len = sizeof(u_int32_t); 601 auio.uio_iov = &aio; 602 auio.uio_iovcnt = 1; 603 auio.uio_segflg = UIO_SYSSPACE; 604 auio.uio_rw = UIO_READ; 605 auio.uio_offset = 0; 606 auio.uio_resid = sizeof(u_int32_t); 607 auio.uio_td = td; 608 do { 609 rcvflg = MSG_WAITALL; 610 error = so_pru_soreceive(so, NULL, &auio, NULL, 611 NULL, &rcvflg); 612 if (error == EWOULDBLOCK && rep) { 613 if (rep->r_flags & R_SOFTTERM) 614 return (EINTR); 615 } 616 } while (error == EWOULDBLOCK); 617 if (!error && auio.uio_resid > 0) { 618 /* 619 * Don't log a 0 byte receive; it means 620 * that the socket has been closed, and 621 * can happen during normal operation 622 * (forcible unmount or Solaris server). 623 */ 624 if (auio.uio_resid != sizeof (u_int32_t)) 625 log(LOG_INFO, 626 "short receive (%d/%d) from nfs server %s\n", 627 (int)(sizeof(u_int32_t) - auio.uio_resid), 628 (int)sizeof(u_int32_t), 629 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 630 error = EPIPE; 631 } 632 if (error) 633 goto errout; 634 len = ntohl(len) & ~0x80000000; 635 /* 636 * This is SERIOUS! We are out of sync with the sender 637 * and forcing a disconnect/reconnect is all I can do. 638 */ 639 if (len > NFS_MAXPACKET) { 640 log(LOG_ERR, "%s (%d) from nfs server %s\n", 641 "impossible packet length", 642 len, 643 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 644 error = EFBIG; 645 goto errout; 646 } 647 auio.uio_resid = len; 648 do { 649 rcvflg = MSG_WAITALL; 650 error = so_pru_soreceive(so, NULL, &auio, mp, 651 NULL, &rcvflg); 652 } while (error == EWOULDBLOCK || error == EINTR || 653 error == ERESTART); 654 if (!error && auio.uio_resid > 0) { 655 if (len != auio.uio_resid) 656 log(LOG_INFO, 657 "short receive (%d/%d) from nfs server %s\n", 658 len - auio.uio_resid, len, 659 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 660 error = EPIPE; 661 } 662 } else { 663 /* 664 * NB: Since uio_resid is big, MSG_WAITALL is ignored 665 * and soreceive() will return when it has either a 666 * control msg or a data msg. 667 * We have no use for control msg., but must grab them 668 * and then throw them away so we know what is going 669 * on. 670 */ 671 auio.uio_resid = len = 100000000; /* Anything Big */ 672 auio.uio_td = td; 673 do { 674 rcvflg = 0; 675 error = so_pru_soreceive(so, NULL, &auio, mp, 676 &control, &rcvflg); 677 if (control) 678 m_freem(control); 679 if (error == EWOULDBLOCK && rep) { 680 if (rep->r_flags & R_SOFTTERM) 681 return (EINTR); 682 } 683 } while (error == EWOULDBLOCK || 684 (!error && *mp == NULL && control)); 685 if ((rcvflg & MSG_EOR) == 0) 686 printf("Egad!!\n"); 687 if (!error && *mp == NULL) 688 error = EPIPE; 689 len -= auio.uio_resid; 690 } 691 errout: 692 if (error && error != EINTR && error != ERESTART) { 693 m_freem(*mp); 694 *mp = (struct mbuf *)0; 695 if (error != EPIPE) 696 log(LOG_INFO, 697 "receive error %d from nfs server %s\n", 698 error, 699 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 700 error = nfs_sndlock(rep); 701 if (!error) { 702 error = nfs_reconnect(rep); 703 if (!error) 704 goto tryagain; 705 else 706 nfs_sndunlock(rep); 707 } 708 } 709 } else { 710 if ((so = rep->r_nmp->nm_so) == NULL) 711 return (EACCES); 712 if (so->so_state & SS_ISCONNECTED) 713 getnam = (struct sockaddr **)0; 714 else 715 getnam = aname; 716 auio.uio_resid = len = 1000000; 717 auio.uio_td = td; 718 do { 719 rcvflg = 0; 720 error = so_pru_soreceive(so, getnam, &auio, mp, NULL, 721 &rcvflg); 722 if (error == EWOULDBLOCK && 723 (rep->r_flags & R_SOFTTERM)) 724 return (EINTR); 725 } while (error == EWOULDBLOCK); 726 len -= auio.uio_resid; 727 } 728 if (error) { 729 m_freem(*mp); 730 *mp = (struct mbuf *)0; 731 } 732 /* 733 * Search for any mbufs that are not a multiple of 4 bytes long 734 * or with m_data not longword aligned. 735 * These could cause pointer alignment problems, so copy them to 736 * well aligned mbufs. 737 */ 738 nfs_realign(mp, 5 * NFSX_UNSIGNED); 739 return (error); 740 } 741 742 /* 743 * Implement receipt of reply on a socket. 744 * We must search through the list of received datagrams matching them 745 * with outstanding requests using the xid, until ours is found. 746 */ 747 /* ARGSUSED */ 748 int 749 nfs_reply(struct nfsreq *myrep) 750 { 751 struct nfsreq *rep; 752 struct nfsmount *nmp = myrep->r_nmp; 753 int32_t t1; 754 struct mbuf *mrep, *md; 755 struct sockaddr *nam; 756 u_int32_t rxid, *tl; 757 caddr_t dpos, cp2; 758 int error; 759 760 /* 761 * Loop around until we get our own reply 762 */ 763 for (;;) { 764 /* 765 * Lock against other receivers so that I don't get stuck in 766 * sbwait() after someone else has received my reply for me. 767 * Also necessary for connection based protocols to avoid 768 * race conditions during a reconnect. 769 * If nfs_rcvlock() returns EALREADY, that means that 770 * the reply has already been recieved by another 771 * process and we can return immediately. In this 772 * case, the lock is not taken to avoid races with 773 * other processes. 774 */ 775 error = nfs_rcvlock(myrep); 776 if (error == EALREADY) 777 return (0); 778 if (error) 779 return (error); 780 /* 781 * Get the next Rpc reply off the socket 782 */ 783 error = nfs_receive(myrep, &nam, &mrep); 784 nfs_rcvunlock(myrep); 785 if (error) { 786 787 /* 788 * Ignore routing errors on connectionless protocols?? 789 */ 790 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 791 nmp->nm_so->so_error = 0; 792 if (myrep->r_flags & R_GETONEREP) 793 return (0); 794 continue; 795 } 796 return (error); 797 } 798 if (nam) 799 FREE(nam, M_SONAME); 800 801 /* 802 * Get the xid and check that it is an rpc reply 803 */ 804 md = mrep; 805 dpos = mtod(md, caddr_t); 806 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED); 807 rxid = *tl++; 808 if (*tl != rpc_reply) { 809 #ifndef NFS_NOSERVER 810 if (nmp->nm_flag & NFSMNT_NQNFS) { 811 if (nqnfs_callback(nmp, mrep, md, dpos)) 812 nfsstats.rpcinvalid++; 813 } else { 814 nfsstats.rpcinvalid++; 815 m_freem(mrep); 816 } 817 #else 818 nfsstats.rpcinvalid++; 819 m_freem(mrep); 820 #endif 821 nfsmout: 822 if (myrep->r_flags & R_GETONEREP) 823 return (0); 824 continue; 825 } 826 827 /* 828 * Loop through the request list to match up the reply 829 * Iff no match, just drop the datagram 830 */ 831 for (rep = nfs_reqq.tqh_first; rep != 0; 832 rep = rep->r_chain.tqe_next) { 833 if (rep->r_mrep == NULL && rxid == rep->r_xid) { 834 /* Found it.. */ 835 rep->r_mrep = mrep; 836 rep->r_md = md; 837 rep->r_dpos = dpos; 838 if (nfsrtton) { 839 struct rttl *rt; 840 841 rt = &nfsrtt.rttl[nfsrtt.pos]; 842 rt->proc = rep->r_procnum; 843 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]); 844 rt->sent = nmp->nm_sent; 845 rt->cwnd = nmp->nm_cwnd; 846 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1]; 847 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1]; 848 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid; 849 getmicrotime(&rt->tstamp); 850 if (rep->r_flags & R_TIMING) 851 rt->rtt = rep->r_rtt; 852 else 853 rt->rtt = 1000000; 854 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ; 855 } 856 /* 857 * Update congestion window. 858 * Do the additive increase of 859 * one rpc/rtt. 860 */ 861 if (nmp->nm_cwnd <= nmp->nm_sent) { 862 nmp->nm_cwnd += 863 (NFS_CWNDSCALE * NFS_CWNDSCALE + 864 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; 865 if (nmp->nm_cwnd > NFS_MAXCWND) 866 nmp->nm_cwnd = NFS_MAXCWND; 867 } 868 crit_enter(); /* nfs_timer interlock*/ 869 if (rep->r_flags & R_SENT) { 870 rep->r_flags &= ~R_SENT; 871 nmp->nm_sent -= NFS_CWNDSCALE; 872 } 873 crit_exit(); 874 /* 875 * Update rtt using a gain of 0.125 on the mean 876 * and a gain of 0.25 on the deviation. 877 */ 878 if (rep->r_flags & R_TIMING) { 879 /* 880 * Since the timer resolution of 881 * NFS_HZ is so course, it can often 882 * result in r_rtt == 0. Since 883 * r_rtt == N means that the actual 884 * rtt is between N+dt and N+2-dt ticks, 885 * add 1. 886 */ 887 t1 = rep->r_rtt + 1; 888 t1 -= (NFS_SRTT(rep) >> 3); 889 NFS_SRTT(rep) += t1; 890 if (t1 < 0) 891 t1 = -t1; 892 t1 -= (NFS_SDRTT(rep) >> 2); 893 NFS_SDRTT(rep) += t1; 894 } 895 nmp->nm_timeouts = 0; 896 break; 897 } 898 } 899 /* 900 * If not matched to a request, drop it. 901 * If it's mine, get out. 902 */ 903 if (rep == 0) { 904 nfsstats.rpcunexpected++; 905 m_freem(mrep); 906 } else if (rep == myrep) { 907 if (rep->r_mrep == NULL) 908 panic("nfsreply nil"); 909 return (0); 910 } 911 if (myrep->r_flags & R_GETONEREP) 912 return (0); 913 } 914 } 915 916 /* 917 * nfs_request - goes something like this 918 * - fill in request struct 919 * - links it into list 920 * - calls nfs_send() for first transmit 921 * - calls nfs_receive() to get reply 922 * - break down rpc header and return with nfs reply pointed to 923 * by mrep or error 924 * nb: always frees up mreq mbuf list 925 */ 926 int 927 nfs_request(struct vnode *vp, struct mbuf *mrest, int procnum, 928 struct thread *td, struct ucred *cred, struct mbuf **mrp, 929 struct mbuf **mdp, caddr_t *dposp) 930 { 931 struct mbuf *mrep, *m2; 932 struct nfsreq *rep; 933 u_int32_t *tl; 934 int i; 935 struct nfsmount *nmp; 936 struct mbuf *m, *md, *mheadend; 937 struct nfsnode *np; 938 char nickv[RPCX_NICKVERF]; 939 time_t reqtime, waituntil; 940 caddr_t dpos, cp2; 941 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type; 942 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0; 943 int verf_len, verf_type; 944 u_int32_t xid; 945 u_quad_t frev; 946 char *auth_str, *verf_str; 947 NFSKERBKEY_T key; /* save session key */ 948 949 /* Reject requests while attempting a forced unmount. */ 950 if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) { 951 m_freem(mrest); 952 return (ESTALE); 953 } 954 nmp = VFSTONFS(vp->v_mount); 955 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK); 956 rep->r_nmp = nmp; 957 rep->r_vp = vp; 958 rep->r_td = td; 959 rep->r_procnum = procnum; 960 i = 0; 961 m = mrest; 962 while (m) { 963 i += m->m_len; 964 m = m->m_next; 965 } 966 mrest_len = i; 967 968 /* 969 * Get the RPC header with authorization. 970 */ 971 kerbauth: 972 verf_str = auth_str = (char *)0; 973 if (nmp->nm_flag & NFSMNT_KERB) { 974 verf_str = nickv; 975 verf_len = sizeof (nickv); 976 auth_type = RPCAUTH_KERB4; 977 bzero((caddr_t)key, sizeof (key)); 978 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str, 979 &auth_len, verf_str, verf_len)) { 980 error = nfs_getauth(nmp, rep, cred, &auth_str, 981 &auth_len, verf_str, &verf_len, key); 982 if (error) { 983 free((caddr_t)rep, M_NFSREQ); 984 m_freem(mrest); 985 return (error); 986 } 987 } 988 } else { 989 auth_type = RPCAUTH_UNIX; 990 if (cred->cr_ngroups < 1) 991 panic("nfsreq nogrps"); 992 auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ? 993 nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) + 994 5 * NFSX_UNSIGNED; 995 } 996 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, 997 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid); 998 if (auth_str) 999 free(auth_str, M_TEMP); 1000 1001 /* 1002 * For stream protocols, insert a Sun RPC Record Mark. 1003 */ 1004 if (nmp->nm_sotype == SOCK_STREAM) { 1005 M_PREPEND(m, NFSX_UNSIGNED, MB_WAIT); 1006 if (m == NULL) 1007 return (ENOBUFS); 1008 *mtod(m, u_int32_t *) = htonl(0x80000000 | 1009 (m->m_pkthdr.len - NFSX_UNSIGNED)); 1010 } 1011 rep->r_mreq = m; 1012 rep->r_xid = xid; 1013 tryagain: 1014 if (nmp->nm_flag & NFSMNT_SOFT) 1015 rep->r_retry = nmp->nm_retry; 1016 else 1017 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ 1018 rep->r_rtt = rep->r_rexmit = 0; 1019 if (proct[procnum] > 0) 1020 rep->r_flags = R_TIMING | R_MASKTIMER; 1021 else 1022 rep->r_flags = R_MASKTIMER; 1023 rep->r_mrep = NULL; 1024 1025 /* 1026 * Do the client side RPC. 1027 */ 1028 nfsstats.rpcrequests++; 1029 1030 /* 1031 * Chain request into list of outstanding requests. Be sure 1032 * to put it LAST so timer finds oldest requests first. Note 1033 * that R_MASKTIMER is set at the moment to prevent any timer 1034 * action on this request while we are still doing processing on 1035 * it below. splsoftclock() primarily protects nm_sent. Note 1036 * that we may block in this code so there is no atomicy guarentee. 1037 */ 1038 s = splsoftclock(); 1039 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); 1040 1041 /* Get send time for nqnfs */ 1042 reqtime = time_second; 1043 1044 /* 1045 * If backing off another request or avoiding congestion, don't 1046 * send this one now but let timer do it. If not timing a request, 1047 * do it now. 1048 */ 1049 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || 1050 (nmp->nm_flag & NFSMNT_DUMBTIMR) || 1051 nmp->nm_sent < nmp->nm_cwnd)) { 1052 if (nmp->nm_soflags & PR_CONNREQUIRED) 1053 error = nfs_sndlock(rep); 1054 if (!error) { 1055 m2 = m_copym(m, 0, M_COPYALL, MB_WAIT); 1056 error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep); 1057 if (nmp->nm_soflags & PR_CONNREQUIRED) 1058 nfs_sndunlock(rep); 1059 } 1060 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { 1061 nmp->nm_sent += NFS_CWNDSCALE; 1062 rep->r_flags |= R_SENT; 1063 } 1064 } else { 1065 rep->r_rtt = -1; 1066 } 1067 1068 /* 1069 * Let the timer do what it will with the request, then 1070 * wait for the reply from our send or the timer's. 1071 */ 1072 rep->r_flags &= ~R_MASKTIMER; 1073 splx(s); 1074 if (!error || error == EPIPE) 1075 error = nfs_reply(rep); 1076 1077 /* 1078 * RPC done, unlink the request. 1079 */ 1080 s = splsoftclock(); 1081 TAILQ_REMOVE(&nfs_reqq, rep, r_chain); 1082 1083 /* 1084 * Decrement the outstanding request count. 1085 */ 1086 if (rep->r_flags & R_SENT) { 1087 rep->r_flags &= ~R_SENT; 1088 nmp->nm_sent -= NFS_CWNDSCALE; 1089 } 1090 splx(s); 1091 1092 /* 1093 * If there was a successful reply and a tprintf msg. 1094 * tprintf a response. 1095 */ 1096 if (!error && (rep->r_flags & R_TPRINTFMSG)) 1097 nfs_msg(rep->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname, 1098 "is alive again"); 1099 mrep = rep->r_mrep; 1100 md = rep->r_md; 1101 dpos = rep->r_dpos; 1102 if (error) { 1103 m_freem(rep->r_mreq); 1104 free((caddr_t)rep, M_NFSREQ); 1105 return (error); 1106 } 1107 1108 /* 1109 * break down the rpc header and check if ok 1110 */ 1111 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1112 if (*tl++ == rpc_msgdenied) { 1113 if (*tl == rpc_mismatch) 1114 error = EOPNOTSUPP; 1115 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) { 1116 if (!failed_auth) { 1117 failed_auth++; 1118 mheadend->m_next = (struct mbuf *)0; 1119 m_freem(mrep); 1120 m_freem(rep->r_mreq); 1121 goto kerbauth; 1122 } else 1123 error = EAUTH; 1124 } else 1125 error = EACCES; 1126 m_freem(mrep); 1127 m_freem(rep->r_mreq); 1128 free((caddr_t)rep, M_NFSREQ); 1129 return (error); 1130 } 1131 1132 /* 1133 * Grab any Kerberos verifier, otherwise just throw it away. 1134 */ 1135 verf_type = fxdr_unsigned(int, *tl++); 1136 i = fxdr_unsigned(int32_t, *tl); 1137 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) { 1138 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep); 1139 if (error) 1140 goto nfsmout; 1141 } else if (i > 0) 1142 nfsm_adv(nfsm_rndup(i)); 1143 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1144 /* 0 == ok */ 1145 if (*tl == 0) { 1146 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1147 if (*tl != 0) { 1148 error = fxdr_unsigned(int, *tl); 1149 if ((nmp->nm_flag & NFSMNT_NFSV3) && 1150 error == NFSERR_TRYLATER) { 1151 m_freem(mrep); 1152 error = 0; 1153 waituntil = time_second + trylater_delay; 1154 while (time_second < waituntil) 1155 (void) tsleep((caddr_t)&lbolt, 1156 0, "nqnfstry", 0); 1157 trylater_delay *= nfs_backoff[trylater_cnt]; 1158 if (trylater_cnt < 7) 1159 trylater_cnt++; 1160 goto tryagain; 1161 } 1162 1163 /* 1164 * If the File Handle was stale, invalidate the 1165 * lookup cache, just in case. 1166 */ 1167 if (error == ESTALE) 1168 cache_purge(vp); 1169 if (nmp->nm_flag & NFSMNT_NFSV3) { 1170 *mrp = mrep; 1171 *mdp = md; 1172 *dposp = dpos; 1173 error |= NFSERR_RETERR; 1174 } else 1175 m_freem(mrep); 1176 m_freem(rep->r_mreq); 1177 free((caddr_t)rep, M_NFSREQ); 1178 return (error); 1179 } 1180 1181 /* 1182 * For nqnfs, get any lease in reply 1183 */ 1184 if (nmp->nm_flag & NFSMNT_NQNFS) { 1185 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1186 if (*tl) { 1187 np = VTONFS(vp); 1188 nqlflag = fxdr_unsigned(int, *tl); 1189 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED); 1190 cachable = fxdr_unsigned(int, *tl++); 1191 reqtime += fxdr_unsigned(int, *tl++); 1192 if (reqtime > time_second) { 1193 frev = fxdr_hyper(tl); 1194 nqnfs_clientlease(nmp, np, nqlflag, 1195 cachable, reqtime, frev); 1196 } 1197 } 1198 } 1199 *mrp = mrep; 1200 *mdp = md; 1201 *dposp = dpos; 1202 m_freem(rep->r_mreq); 1203 FREE((caddr_t)rep, M_NFSREQ); 1204 return (0); 1205 } 1206 m_freem(mrep); 1207 error = EPROTONOSUPPORT; 1208 nfsmout: 1209 m_freem(rep->r_mreq); 1210 free((caddr_t)rep, M_NFSREQ); 1211 return (error); 1212 } 1213 1214 #ifndef NFS_NOSERVER 1215 /* 1216 * Generate the rpc reply header 1217 * siz arg. is used to decide if adding a cluster is worthwhile 1218 */ 1219 int 1220 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp, 1221 int err, int cache, u_quad_t *frev, struct mbuf **mrq, 1222 struct mbuf **mbp, caddr_t *bposp) 1223 { 1224 u_int32_t *tl; 1225 struct mbuf *mreq; 1226 caddr_t bpos; 1227 struct mbuf *mb, *mb2; 1228 1229 MGETHDR(mreq, MB_WAIT, MT_DATA); 1230 mb = mreq; 1231 /* 1232 * If this is a big reply, use a cluster else 1233 * try and leave leading space for the lower level headers. 1234 */ 1235 siz += RPC_REPLYSIZ; 1236 if ((max_hdr + siz) >= MINCLSIZE) { 1237 MCLGET(mreq, MB_WAIT); 1238 } else 1239 mreq->m_data += max_hdr; 1240 tl = mtod(mreq, u_int32_t *); 1241 mreq->m_len = 6 * NFSX_UNSIGNED; 1242 bpos = ((caddr_t)tl) + mreq->m_len; 1243 *tl++ = txdr_unsigned(nd->nd_retxid); 1244 *tl++ = rpc_reply; 1245 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { 1246 *tl++ = rpc_msgdenied; 1247 if (err & NFSERR_AUTHERR) { 1248 *tl++ = rpc_autherr; 1249 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); 1250 mreq->m_len -= NFSX_UNSIGNED; 1251 bpos -= NFSX_UNSIGNED; 1252 } else { 1253 *tl++ = rpc_mismatch; 1254 *tl++ = txdr_unsigned(RPC_VER2); 1255 *tl = txdr_unsigned(RPC_VER2); 1256 } 1257 } else { 1258 *tl++ = rpc_msgaccepted; 1259 1260 /* 1261 * For Kerberos authentication, we must send the nickname 1262 * verifier back, otherwise just RPCAUTH_NULL. 1263 */ 1264 if (nd->nd_flag & ND_KERBFULL) { 1265 struct nfsuid *nuidp; 1266 struct timeval ktvin, ktvout; 1267 1268 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first; 1269 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1270 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid && 1271 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp), 1272 &nuidp->nu_haddr, nd->nd_nam2))) 1273 break; 1274 } 1275 if (nuidp) { 1276 ktvin.tv_sec = 1277 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1); 1278 ktvin.tv_usec = 1279 txdr_unsigned(nuidp->nu_timestamp.tv_usec); 1280 1281 /* 1282 * Encrypt the timestamp in ecb mode using the 1283 * session key. 1284 */ 1285 #ifdef NFSKERB 1286 XXX 1287 #endif 1288 1289 *tl++ = rpc_auth_kerb; 1290 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); 1291 *tl = ktvout.tv_sec; 1292 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1293 *tl++ = ktvout.tv_usec; 1294 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid); 1295 } else { 1296 *tl++ = 0; 1297 *tl++ = 0; 1298 } 1299 } else { 1300 *tl++ = 0; 1301 *tl++ = 0; 1302 } 1303 switch (err) { 1304 case EPROGUNAVAIL: 1305 *tl = txdr_unsigned(RPC_PROGUNAVAIL); 1306 break; 1307 case EPROGMISMATCH: 1308 *tl = txdr_unsigned(RPC_PROGMISMATCH); 1309 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1310 if (nd->nd_flag & ND_NQNFS) { 1311 *tl++ = txdr_unsigned(3); 1312 *tl = txdr_unsigned(3); 1313 } else { 1314 *tl++ = txdr_unsigned(2); 1315 *tl = txdr_unsigned(3); 1316 } 1317 break; 1318 case EPROCUNAVAIL: 1319 *tl = txdr_unsigned(RPC_PROCUNAVAIL); 1320 break; 1321 case EBADRPC: 1322 *tl = txdr_unsigned(RPC_GARBAGE); 1323 break; 1324 default: 1325 *tl = 0; 1326 if (err != NFSERR_RETVOID) { 1327 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1328 if (err) 1329 *tl = txdr_unsigned(nfsrv_errmap(nd, err)); 1330 else 1331 *tl = 0; 1332 } 1333 break; 1334 }; 1335 } 1336 1337 /* 1338 * For nqnfs, piggyback lease as requested. 1339 */ 1340 if ((nd->nd_flag & ND_NQNFS) && err == 0) { 1341 if (nd->nd_flag & ND_LEASE) { 1342 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED); 1343 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE); 1344 *tl++ = txdr_unsigned(cache); 1345 *tl++ = txdr_unsigned(nd->nd_duration); 1346 txdr_hyper(*frev, tl); 1347 } else { 1348 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1349 *tl = 0; 1350 } 1351 } 1352 if (mrq != NULL) 1353 *mrq = mreq; 1354 *mbp = mb; 1355 *bposp = bpos; 1356 if (err != 0 && err != NFSERR_RETVOID) 1357 nfsstats.srvrpc_errs++; 1358 return (0); 1359 } 1360 1361 1362 #endif /* NFS_NOSERVER */ 1363 /* 1364 * Nfs timer routine 1365 * Scan the nfsreq list and retranmit any requests that have timed out 1366 * To avoid retransmission attempts on STREAM sockets (in the future) make 1367 * sure to set the r_retry field to 0 (implies nm_retry == 0). 1368 */ 1369 void 1370 nfs_timer(void *arg /* never used */) 1371 { 1372 struct nfsreq *rep; 1373 struct mbuf *m; 1374 struct socket *so; 1375 struct nfsmount *nmp; 1376 int timeo; 1377 int s, error; 1378 #ifndef NFS_NOSERVER 1379 static long lasttime = 0; 1380 struct nfssvc_sock *slp; 1381 u_quad_t cur_usec; 1382 #endif /* NFS_NOSERVER */ 1383 struct thread *td = &thread0; /* XXX for credentials, will break if sleep */ 1384 1385 s = splnet(); 1386 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) { 1387 nmp = rep->r_nmp; 1388 if (rep->r_mrep || (rep->r_flags & (R_SOFTTERM|R_MASKTIMER))) 1389 continue; 1390 if (nfs_sigintr(nmp, rep, rep->r_td)) { 1391 nfs_softterm(rep); 1392 continue; 1393 } 1394 if (rep->r_rtt >= 0) { 1395 rep->r_rtt++; 1396 if (nmp->nm_flag & NFSMNT_DUMBTIMR) 1397 timeo = nmp->nm_timeo; 1398 else 1399 timeo = NFS_RTO(nmp, proct[rep->r_procnum]); 1400 if (nmp->nm_timeouts > 0) 1401 timeo *= nfs_backoff[nmp->nm_timeouts - 1]; 1402 if (rep->r_rtt <= timeo) 1403 continue; 1404 if (nmp->nm_timeouts < 8) 1405 nmp->nm_timeouts++; 1406 } 1407 /* 1408 * Check for server not responding 1409 */ 1410 if ((rep->r_flags & R_TPRINTFMSG) == 0 && 1411 rep->r_rexmit > nmp->nm_deadthresh) { 1412 nfs_msg(rep->r_td, 1413 nmp->nm_mountp->mnt_stat.f_mntfromname, 1414 "not responding"); 1415 rep->r_flags |= R_TPRINTFMSG; 1416 } 1417 if (rep->r_rexmit >= rep->r_retry) { /* too many */ 1418 nfsstats.rpctimeouts++; 1419 nfs_softterm(rep); 1420 continue; 1421 } 1422 if (nmp->nm_sotype != SOCK_DGRAM) { 1423 if (++rep->r_rexmit > NFS_MAXREXMIT) 1424 rep->r_rexmit = NFS_MAXREXMIT; 1425 continue; 1426 } 1427 if ((so = nmp->nm_so) == NULL) 1428 continue; 1429 1430 /* 1431 * If there is enough space and the window allows.. 1432 * Resend it 1433 * Set r_rtt to -1 in case we fail to send it now. 1434 */ 1435 rep->r_rtt = -1; 1436 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && 1437 ((nmp->nm_flag & NFSMNT_DUMBTIMR) || 1438 (rep->r_flags & R_SENT) || 1439 nmp->nm_sent < nmp->nm_cwnd) && 1440 (m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_DONTWAIT))){ 1441 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0) 1442 error = so_pru_send(so, 0, m, (struct sockaddr *)0, 1443 (struct mbuf *)0, td); 1444 else 1445 error = so_pru_send(so, 0, m, nmp->nm_nam, 1446 (struct mbuf *)0, td); 1447 if (error) { 1448 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) 1449 so->so_error = 0; 1450 } else { 1451 /* 1452 * Iff first send, start timing 1453 * else turn timing off, backoff timer 1454 * and divide congestion window by 2. 1455 */ 1456 if (rep->r_flags & R_SENT) { 1457 rep->r_flags &= ~R_TIMING; 1458 if (++rep->r_rexmit > NFS_MAXREXMIT) 1459 rep->r_rexmit = NFS_MAXREXMIT; 1460 nmp->nm_cwnd >>= 1; 1461 if (nmp->nm_cwnd < NFS_CWNDSCALE) 1462 nmp->nm_cwnd = NFS_CWNDSCALE; 1463 nfsstats.rpcretries++; 1464 } else { 1465 rep->r_flags |= R_SENT; 1466 nmp->nm_sent += NFS_CWNDSCALE; 1467 } 1468 rep->r_rtt = 0; 1469 } 1470 } 1471 } 1472 #ifndef NFS_NOSERVER 1473 /* 1474 * Call the nqnfs server timer once a second to handle leases. 1475 */ 1476 if (lasttime != time_second) { 1477 lasttime = time_second; 1478 nqnfs_serverd(); 1479 } 1480 1481 /* 1482 * Scan the write gathering queues for writes that need to be 1483 * completed now. 1484 */ 1485 cur_usec = nfs_curusec(); 1486 for (slp = nfssvc_sockhead.tqh_first; slp != 0; 1487 slp = slp->ns_chain.tqe_next) { 1488 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec) 1489 nfsrv_wakenfsd(slp); 1490 } 1491 #endif /* NFS_NOSERVER */ 1492 splx(s); 1493 nfs_timer_handle = timeout(nfs_timer, (void *)0, nfs_ticks); 1494 } 1495 1496 /* 1497 * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and 1498 * wait for all requests to complete. This is used by forced unmounts 1499 * to terminate any outstanding RPCs. 1500 */ 1501 int 1502 nfs_nmcancelreqs(struct nfsmount *nmp) 1503 { 1504 struct nfsreq *req; 1505 int i, s1, s2; 1506 1507 s1 = splnet(); 1508 s2 = splsoftclock(); 1509 TAILQ_FOREACH(req, &nfs_reqq, r_chain) { 1510 if (nmp != req->r_nmp || req->r_mrep != NULL || 1511 (req->r_flags & R_SOFTTERM)) 1512 continue; 1513 nfs_softterm(req); 1514 } 1515 splx(s2); 1516 splx(s1); 1517 1518 for (i = 0; i < 30; i++) { 1519 int s = splnet(); 1520 TAILQ_FOREACH(req, &nfs_reqq, r_chain) { 1521 if (nmp == req->r_nmp) 1522 break; 1523 } 1524 splx(s); 1525 if (req == NULL) 1526 return (0); 1527 tsleep(&lbolt, 0, "nfscancel", 0); 1528 } 1529 return (EBUSY); 1530 } 1531 1532 /* 1533 * Flag a request as being about to terminate (due to NFSMNT_INT/NFSMNT_SOFT). 1534 * The nm_send count is decremented now to avoid deadlocks when the process in 1535 * soreceive() hasn't yet managed to send its own request. 1536 * 1537 * This routine must be called at splsoftclock() to protect r_flags and 1538 * nm_sent. 1539 */ 1540 1541 static void 1542 nfs_softterm(struct nfsreq *rep) 1543 { 1544 rep->r_flags |= R_SOFTTERM; 1545 1546 if (rep->r_flags & R_SENT) { 1547 rep->r_nmp->nm_sent -= NFS_CWNDSCALE; 1548 rep->r_flags &= ~R_SENT; 1549 } 1550 } 1551 1552 /* 1553 * Test for a termination condition pending on the process. 1554 * This is used for NFSMNT_INT mounts. 1555 */ 1556 int 1557 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td) 1558 { 1559 sigset_t tmpset; 1560 struct proc *p; 1561 1562 if (rep && (rep->r_flags & R_SOFTTERM)) 1563 return (EINTR); 1564 /* Terminate all requests while attempting a forced unmount. */ 1565 if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF) 1566 return (EINTR); 1567 if (!(nmp->nm_flag & NFSMNT_INT)) 1568 return (0); 1569 /* td might be NULL YYY */ 1570 if (td == NULL || (p = td->td_proc) == NULL) 1571 return (0); 1572 1573 tmpset = p->p_siglist; 1574 SIGSETNAND(tmpset, p->p_sigmask); 1575 SIGSETNAND(tmpset, p->p_sigignore); 1576 if (SIGNOTEMPTY(p->p_siglist) && NFSINT_SIGMASK(tmpset)) 1577 return (EINTR); 1578 1579 return (0); 1580 } 1581 1582 /* 1583 * Lock a socket against others. 1584 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply 1585 * and also to avoid race conditions between the processes with nfs requests 1586 * in progress when a reconnect is necessary. 1587 */ 1588 int 1589 nfs_sndlock(struct nfsreq *rep) 1590 { 1591 int *statep = &rep->r_nmp->nm_state; 1592 struct thread *td; 1593 int slptimeo; 1594 int slpflag; 1595 int error; 1596 1597 slpflag = 0; 1598 slptimeo = 0; 1599 td = rep->r_td; 1600 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1601 slpflag = PCATCH; 1602 1603 error = 0; 1604 crit_enter(); 1605 while (*statep & NFSSTA_SNDLOCK) { 1606 *statep |= NFSSTA_WANTSND; 1607 if (nfs_sigintr(rep->r_nmp, rep, td)) { 1608 error = EINTR; 1609 break; 1610 } 1611 tsleep((caddr_t)statep, slpflag, "nfsndlck", slptimeo); 1612 if (slpflag == PCATCH) { 1613 slpflag = 0; 1614 slptimeo = 2 * hz; 1615 } 1616 } 1617 /* Always fail if our request has been cancelled. */ 1618 if ((rep->r_flags & R_SOFTTERM)) 1619 error = EINTR; 1620 if (error == 0) 1621 *statep |= NFSSTA_SNDLOCK; 1622 crit_exit(); 1623 return (error); 1624 } 1625 1626 /* 1627 * Unlock the stream socket for others. 1628 */ 1629 void 1630 nfs_sndunlock(struct nfsreq *rep) 1631 { 1632 int *statep = &rep->r_nmp->nm_state; 1633 1634 if ((*statep & NFSSTA_SNDLOCK) == 0) 1635 panic("nfs sndunlock"); 1636 crit_enter(); 1637 *statep &= ~NFSSTA_SNDLOCK; 1638 if (*statep & NFSSTA_WANTSND) { 1639 *statep &= ~NFSSTA_WANTSND; 1640 wakeup((caddr_t)statep); 1641 } 1642 crit_exit(); 1643 } 1644 1645 static int 1646 nfs_rcvlock(struct nfsreq *rep) 1647 { 1648 int *statep = &rep->r_nmp->nm_state; 1649 int slpflag; 1650 int slptimeo; 1651 int error; 1652 1653 /* 1654 * Unconditionally check for completion in case another nfsiod 1655 * get the packet while the caller was blocked, before the caller 1656 * called us. Packet reception is handled by mainline code which 1657 * is protected by the BGL at the moment. 1658 * 1659 * We do not strictly need the second check just before the 1660 * tsleep(), but it's good defensive programming. 1661 */ 1662 if (rep->r_mrep != NULL) 1663 return (EALREADY); 1664 1665 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1666 slpflag = PCATCH; 1667 else 1668 slpflag = 0; 1669 slptimeo = 0; 1670 error = 0; 1671 crit_enter(); 1672 while (*statep & NFSSTA_RCVLOCK) { 1673 if (nfs_sigintr(rep->r_nmp, rep, rep->r_td)) { 1674 error = EINTR; 1675 break; 1676 } 1677 if (rep->r_mrep != NULL) { 1678 error = EALREADY; 1679 break; 1680 } 1681 *statep |= NFSSTA_WANTRCV; 1682 tsleep((caddr_t)statep, slpflag, "nfsrcvlk", slptimeo); 1683 /* 1684 * If our reply was recieved while we were sleeping, 1685 * then just return without taking the lock to avoid a 1686 * situation where a single iod could 'capture' the 1687 * recieve lock. 1688 */ 1689 if (rep->r_mrep != NULL) { 1690 error = EALREADY; 1691 break; 1692 } 1693 if (slpflag == PCATCH) { 1694 slpflag = 0; 1695 slptimeo = 2 * hz; 1696 } 1697 } 1698 if (error == 0) { 1699 *statep |= NFSSTA_RCVLOCK; 1700 rep->r_nmp->nm_rcvlock_td = curthread; /* DEBUGGING */ 1701 } 1702 crit_exit(); 1703 return (error); 1704 } 1705 1706 /* 1707 * Unlock the stream socket for others. 1708 */ 1709 static void 1710 nfs_rcvunlock(struct nfsreq *rep) 1711 { 1712 int *statep = &rep->r_nmp->nm_state; 1713 1714 if ((*statep & NFSSTA_RCVLOCK) == 0) 1715 panic("nfs rcvunlock"); 1716 crit_enter(); 1717 rep->r_nmp->nm_rcvlock_td = (void *)-1; /* DEBUGGING */ 1718 *statep &= ~NFSSTA_RCVLOCK; 1719 if (*statep & NFSSTA_WANTRCV) { 1720 *statep &= ~NFSSTA_WANTRCV; 1721 wakeup((caddr_t)statep); 1722 } 1723 crit_exit(); 1724 } 1725 1726 /* 1727 * nfs_realign: 1728 * 1729 * Check for badly aligned mbuf data and realign by copying the unaligned 1730 * portion of the data into a new mbuf chain and freeing the portions 1731 * of the old chain that were replaced. 1732 * 1733 * We cannot simply realign the data within the existing mbuf chain 1734 * because the underlying buffers may contain other rpc commands and 1735 * we cannot afford to overwrite them. 1736 * 1737 * We would prefer to avoid this situation entirely. The situation does 1738 * not occur with NFS/UDP and is supposed to only occassionally occur 1739 * with TCP. Use vfs.nfs.realign_count and realign_test to check this. 1740 */ 1741 static void 1742 nfs_realign(struct mbuf **pm, int hsiz) 1743 { 1744 struct mbuf *m; 1745 struct mbuf *n = NULL; 1746 int off = 0; 1747 1748 ++nfs_realign_test; 1749 1750 while ((m = *pm) != NULL) { 1751 if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3)) { 1752 MGET(n, MB_WAIT, MT_DATA); 1753 if (m->m_len >= MINCLSIZE) { 1754 MCLGET(n, MB_WAIT); 1755 } 1756 n->m_len = 0; 1757 break; 1758 } 1759 pm = &m->m_next; 1760 } 1761 1762 /* 1763 * If n is non-NULL, loop on m copying data, then replace the 1764 * portion of the chain that had to be realigned. 1765 */ 1766 if (n != NULL) { 1767 ++nfs_realign_count; 1768 while (m) { 1769 m_copyback(n, off, m->m_len, mtod(m, caddr_t)); 1770 off += m->m_len; 1771 m = m->m_next; 1772 } 1773 m_freem(*pm); 1774 *pm = n; 1775 } 1776 } 1777 1778 #ifndef NFS_NOSERVER 1779 1780 /* 1781 * Parse an RPC request 1782 * - verify it 1783 * - fill in the cred struct. 1784 */ 1785 int 1786 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header) 1787 { 1788 int len, i; 1789 u_int32_t *tl; 1790 int32_t t1; 1791 struct uio uio; 1792 struct iovec iov; 1793 caddr_t dpos, cp2, cp; 1794 u_int32_t nfsvers, auth_type; 1795 uid_t nickuid; 1796 int error = 0, nqnfs = 0, ticklen; 1797 struct mbuf *mrep, *md; 1798 struct nfsuid *nuidp; 1799 struct timeval tvin, tvout; 1800 #if 0 /* until encrypted keys are implemented */ 1801 NFSKERBKEYSCHED_T keys; /* stores key schedule */ 1802 #endif 1803 1804 mrep = nd->nd_mrep; 1805 md = nd->nd_md; 1806 dpos = nd->nd_dpos; 1807 if (has_header) { 1808 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); 1809 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); 1810 if (*tl++ != rpc_call) { 1811 m_freem(mrep); 1812 return (EBADRPC); 1813 } 1814 } else 1815 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 1816 nd->nd_repstat = 0; 1817 nd->nd_flag = 0; 1818 if (*tl++ != rpc_vers) { 1819 nd->nd_repstat = ERPCMISMATCH; 1820 nd->nd_procnum = NFSPROC_NOOP; 1821 return (0); 1822 } 1823 if (*tl != nfs_prog) { 1824 if (*tl == nqnfs_prog) 1825 nqnfs++; 1826 else { 1827 nd->nd_repstat = EPROGUNAVAIL; 1828 nd->nd_procnum = NFSPROC_NOOP; 1829 return (0); 1830 } 1831 } 1832 tl++; 1833 nfsvers = fxdr_unsigned(u_int32_t, *tl++); 1834 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) || 1835 (nfsvers != NQNFS_VER3 && nqnfs)) { 1836 nd->nd_repstat = EPROGMISMATCH; 1837 nd->nd_procnum = NFSPROC_NOOP; 1838 return (0); 1839 } 1840 if (nqnfs) 1841 nd->nd_flag = (ND_NFSV3 | ND_NQNFS); 1842 else if (nfsvers == NFS_VER3) 1843 nd->nd_flag = ND_NFSV3; 1844 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); 1845 if (nd->nd_procnum == NFSPROC_NULL) 1846 return (0); 1847 if (nd->nd_procnum >= NFS_NPROCS || 1848 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) || 1849 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { 1850 nd->nd_repstat = EPROCUNAVAIL; 1851 nd->nd_procnum = NFSPROC_NOOP; 1852 return (0); 1853 } 1854 if ((nd->nd_flag & ND_NFSV3) == 0) 1855 nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; 1856 auth_type = *tl++; 1857 len = fxdr_unsigned(int, *tl++); 1858 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1859 m_freem(mrep); 1860 return (EBADRPC); 1861 } 1862 1863 nd->nd_flag &= ~ND_KERBAUTH; 1864 /* 1865 * Handle auth_unix or auth_kerb. 1866 */ 1867 if (auth_type == rpc_auth_unix) { 1868 len = fxdr_unsigned(int, *++tl); 1869 if (len < 0 || len > NFS_MAXNAMLEN) { 1870 m_freem(mrep); 1871 return (EBADRPC); 1872 } 1873 nfsm_adv(nfsm_rndup(len)); 1874 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1875 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred)); 1876 nd->nd_cr.cr_ref = 1; 1877 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++); 1878 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++); 1879 len = fxdr_unsigned(int, *tl); 1880 if (len < 0 || len > RPCAUTH_UNIXGIDS) { 1881 m_freem(mrep); 1882 return (EBADRPC); 1883 } 1884 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); 1885 for (i = 1; i <= len; i++) 1886 if (i < NGROUPS) 1887 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++); 1888 else 1889 tl++; 1890 nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1); 1891 if (nd->nd_cr.cr_ngroups > 1) 1892 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups); 1893 len = fxdr_unsigned(int, *++tl); 1894 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1895 m_freem(mrep); 1896 return (EBADRPC); 1897 } 1898 if (len > 0) 1899 nfsm_adv(nfsm_rndup(len)); 1900 } else if (auth_type == rpc_auth_kerb) { 1901 switch (fxdr_unsigned(int, *tl++)) { 1902 case RPCAKN_FULLNAME: 1903 ticklen = fxdr_unsigned(int, *tl); 1904 *((u_int32_t *)nfsd->nfsd_authstr) = *tl; 1905 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; 1906 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; 1907 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { 1908 m_freem(mrep); 1909 return (EBADRPC); 1910 } 1911 uio.uio_offset = 0; 1912 uio.uio_iov = &iov; 1913 uio.uio_iovcnt = 1; 1914 uio.uio_segflg = UIO_SYSSPACE; 1915 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4]; 1916 iov.iov_len = RPCAUTH_MAXSIZ - 4; 1917 nfsm_mtouio(&uio, uio.uio_resid); 1918 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1919 if (*tl++ != rpc_auth_kerb || 1920 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { 1921 printf("Bad kerb verifier\n"); 1922 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1923 nd->nd_procnum = NFSPROC_NOOP; 1924 return (0); 1925 } 1926 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED); 1927 tl = (u_int32_t *)cp; 1928 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { 1929 printf("Not fullname kerb verifier\n"); 1930 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1931 nd->nd_procnum = NFSPROC_NOOP; 1932 return (0); 1933 } 1934 cp += NFSX_UNSIGNED; 1935 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED); 1936 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; 1937 nd->nd_flag |= ND_KERBFULL; 1938 nfsd->nfsd_flag |= NFSD_NEEDAUTH; 1939 break; 1940 case RPCAKN_NICKNAME: 1941 if (len != 2 * NFSX_UNSIGNED) { 1942 printf("Kerb nickname short\n"); 1943 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); 1944 nd->nd_procnum = NFSPROC_NOOP; 1945 return (0); 1946 } 1947 nickuid = fxdr_unsigned(uid_t, *tl); 1948 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1949 if (*tl++ != rpc_auth_kerb || 1950 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { 1951 printf("Kerb nick verifier bad\n"); 1952 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1953 nd->nd_procnum = NFSPROC_NOOP; 1954 return (0); 1955 } 1956 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1957 tvin.tv_sec = *tl++; 1958 tvin.tv_usec = *tl; 1959 1960 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first; 1961 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1962 if (nuidp->nu_cr.cr_uid == nickuid && 1963 (!nd->nd_nam2 || 1964 netaddr_match(NU_NETFAM(nuidp), 1965 &nuidp->nu_haddr, nd->nd_nam2))) 1966 break; 1967 } 1968 if (!nuidp) { 1969 nd->nd_repstat = 1970 (NFSERR_AUTHERR|AUTH_REJECTCRED); 1971 nd->nd_procnum = NFSPROC_NOOP; 1972 return (0); 1973 } 1974 1975 /* 1976 * Now, decrypt the timestamp using the session key 1977 * and validate it. 1978 */ 1979 #ifdef NFSKERB 1980 XXX 1981 #endif 1982 1983 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); 1984 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); 1985 if (nuidp->nu_expire < time_second || 1986 nuidp->nu_timestamp.tv_sec > tvout.tv_sec || 1987 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && 1988 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { 1989 nuidp->nu_expire = 0; 1990 nd->nd_repstat = 1991 (NFSERR_AUTHERR|AUTH_REJECTVERF); 1992 nd->nd_procnum = NFSPROC_NOOP; 1993 return (0); 1994 } 1995 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr); 1996 nd->nd_flag |= ND_KERBNICK; 1997 }; 1998 } else { 1999 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); 2000 nd->nd_procnum = NFSPROC_NOOP; 2001 return (0); 2002 } 2003 2004 /* 2005 * For nqnfs, get piggybacked lease request. 2006 */ 2007 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) { 2008 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 2009 nd->nd_flag |= fxdr_unsigned(int, *tl); 2010 if (nd->nd_flag & ND_LEASE) { 2011 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 2012 nd->nd_duration = fxdr_unsigned(int32_t, *tl); 2013 } else 2014 nd->nd_duration = NQ_MINLEASE; 2015 } else 2016 nd->nd_duration = NQ_MINLEASE; 2017 nd->nd_md = md; 2018 nd->nd_dpos = dpos; 2019 return (0); 2020 nfsmout: 2021 return (error); 2022 } 2023 2024 #endif 2025 2026 /* 2027 * Send a message to the originating process's terminal. The thread and/or 2028 * process may be NULL. YYY the thread should not be NULL but there may 2029 * still be some uio_td's that are still being passed as NULL through to 2030 * nfsm_request(). 2031 */ 2032 static int 2033 nfs_msg(struct thread *td, char *server, char *msg) 2034 { 2035 tpr_t tpr; 2036 2037 if (td && td->td_proc) 2038 tpr = tprintf_open(td->td_proc); 2039 else 2040 tpr = NULL; 2041 tprintf(tpr, "nfs server %s: %s\n", server, msg); 2042 tprintf_close(tpr); 2043 return (0); 2044 } 2045 2046 #ifndef NFS_NOSERVER 2047 /* 2048 * Socket upcall routine for the nfsd sockets. 2049 * The caddr_t arg is a pointer to the "struct nfssvc_sock". 2050 * Essentially do as much as possible non-blocking, else punt and it will 2051 * be called with MB_WAIT from an nfsd. 2052 */ 2053 void 2054 nfsrv_rcv(struct socket *so, void *arg, int waitflag) 2055 { 2056 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; 2057 struct mbuf *m; 2058 struct mbuf *mp; 2059 struct sockaddr *nam; 2060 struct uio auio; 2061 int flags, error; 2062 2063 if ((slp->ns_flag & SLP_VALID) == 0) 2064 return; 2065 #ifdef notdef 2066 /* 2067 * Define this to test for nfsds handling this under heavy load. 2068 */ 2069 if (waitflag == MB_DONTWAIT) { 2070 slp->ns_flag |= SLP_NEEDQ; goto dorecs; 2071 } 2072 #endif 2073 auio.uio_td = NULL; 2074 if (so->so_type == SOCK_STREAM) { 2075 /* 2076 * If there are already records on the queue, defer soreceive() 2077 * to an nfsd so that there is feedback to the TCP layer that 2078 * the nfs servers are heavily loaded. 2079 */ 2080 if (STAILQ_FIRST(&slp->ns_rec) && waitflag == MB_DONTWAIT) { 2081 slp->ns_flag |= SLP_NEEDQ; 2082 goto dorecs; 2083 } 2084 2085 /* 2086 * Do soreceive(). 2087 */ 2088 auio.uio_resid = 1000000000; 2089 flags = MSG_DONTWAIT; 2090 error = so_pru_soreceive(so, &nam, &auio, &mp, NULL, &flags); 2091 if (error || mp == (struct mbuf *)0) { 2092 if (error == EWOULDBLOCK) 2093 slp->ns_flag |= SLP_NEEDQ; 2094 else 2095 slp->ns_flag |= SLP_DISCONN; 2096 goto dorecs; 2097 } 2098 m = mp; 2099 if (slp->ns_rawend) { 2100 slp->ns_rawend->m_next = m; 2101 slp->ns_cc += 1000000000 - auio.uio_resid; 2102 } else { 2103 slp->ns_raw = m; 2104 slp->ns_cc = 1000000000 - auio.uio_resid; 2105 } 2106 while (m->m_next) 2107 m = m->m_next; 2108 slp->ns_rawend = m; 2109 2110 /* 2111 * Now try and parse record(s) out of the raw stream data. 2112 */ 2113 error = nfsrv_getstream(slp, waitflag); 2114 if (error) { 2115 if (error == EPERM) 2116 slp->ns_flag |= SLP_DISCONN; 2117 else 2118 slp->ns_flag |= SLP_NEEDQ; 2119 } 2120 } else { 2121 do { 2122 auio.uio_resid = 1000000000; 2123 flags = MSG_DONTWAIT; 2124 error = so_pru_soreceive(so, &nam, &auio, &mp, NULL, 2125 &flags); 2126 if (mp) { 2127 struct nfsrv_rec *rec; 2128 int mf = (waitflag & MB_DONTWAIT) ? 2129 M_NOWAIT : M_WAITOK; 2130 rec = malloc(sizeof(struct nfsrv_rec), 2131 M_NFSRVDESC, mf); 2132 if (!rec) { 2133 if (nam) 2134 FREE(nam, M_SONAME); 2135 m_freem(mp); 2136 continue; 2137 } 2138 nfs_realign(&mp, 10 * NFSX_UNSIGNED); 2139 rec->nr_address = nam; 2140 rec->nr_packet = mp; 2141 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link); 2142 } 2143 if (error) { 2144 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) 2145 && error != EWOULDBLOCK) { 2146 slp->ns_flag |= SLP_DISCONN; 2147 goto dorecs; 2148 } 2149 } 2150 } while (mp); 2151 } 2152 2153 /* 2154 * Now try and process the request records, non-blocking. 2155 */ 2156 dorecs: 2157 if (waitflag == MB_DONTWAIT && 2158 (STAILQ_FIRST(&slp->ns_rec) 2159 || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) 2160 nfsrv_wakenfsd(slp); 2161 } 2162 2163 /* 2164 * Try and extract an RPC request from the mbuf data list received on a 2165 * stream socket. The "waitflag" argument indicates whether or not it 2166 * can sleep. 2167 */ 2168 static int 2169 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag) 2170 { 2171 struct mbuf *m, **mpp; 2172 char *cp1, *cp2; 2173 int len; 2174 struct mbuf *om, *m2, *recm; 2175 u_int32_t recmark; 2176 2177 if (slp->ns_flag & SLP_GETSTREAM) 2178 panic("nfs getstream"); 2179 slp->ns_flag |= SLP_GETSTREAM; 2180 for (;;) { 2181 if (slp->ns_reclen == 0) { 2182 if (slp->ns_cc < NFSX_UNSIGNED) { 2183 slp->ns_flag &= ~SLP_GETSTREAM; 2184 return (0); 2185 } 2186 m = slp->ns_raw; 2187 if (m->m_len >= NFSX_UNSIGNED) { 2188 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED); 2189 m->m_data += NFSX_UNSIGNED; 2190 m->m_len -= NFSX_UNSIGNED; 2191 } else { 2192 cp1 = (caddr_t)&recmark; 2193 cp2 = mtod(m, caddr_t); 2194 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) { 2195 while (m->m_len == 0) { 2196 m = m->m_next; 2197 cp2 = mtod(m, caddr_t); 2198 } 2199 *cp1++ = *cp2++; 2200 m->m_data++; 2201 m->m_len--; 2202 } 2203 } 2204 slp->ns_cc -= NFSX_UNSIGNED; 2205 recmark = ntohl(recmark); 2206 slp->ns_reclen = recmark & ~0x80000000; 2207 if (recmark & 0x80000000) 2208 slp->ns_flag |= SLP_LASTFRAG; 2209 else 2210 slp->ns_flag &= ~SLP_LASTFRAG; 2211 if (slp->ns_reclen > NFS_MAXPACKET) { 2212 slp->ns_flag &= ~SLP_GETSTREAM; 2213 return (EPERM); 2214 } 2215 } 2216 2217 /* 2218 * Now get the record part. 2219 * 2220 * Note that slp->ns_reclen may be 0. Linux sometimes 2221 * generates 0-length RPCs 2222 */ 2223 recm = NULL; 2224 if (slp->ns_cc == slp->ns_reclen) { 2225 recm = slp->ns_raw; 2226 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0; 2227 slp->ns_cc = slp->ns_reclen = 0; 2228 } else if (slp->ns_cc > slp->ns_reclen) { 2229 len = 0; 2230 m = slp->ns_raw; 2231 om = (struct mbuf *)0; 2232 2233 while (len < slp->ns_reclen) { 2234 if ((len + m->m_len) > slp->ns_reclen) { 2235 m2 = m_copym(m, 0, slp->ns_reclen - len, 2236 waitflag); 2237 if (m2) { 2238 if (om) { 2239 om->m_next = m2; 2240 recm = slp->ns_raw; 2241 } else 2242 recm = m2; 2243 m->m_data += slp->ns_reclen - len; 2244 m->m_len -= slp->ns_reclen - len; 2245 len = slp->ns_reclen; 2246 } else { 2247 slp->ns_flag &= ~SLP_GETSTREAM; 2248 return (EWOULDBLOCK); 2249 } 2250 } else if ((len + m->m_len) == slp->ns_reclen) { 2251 om = m; 2252 len += m->m_len; 2253 m = m->m_next; 2254 recm = slp->ns_raw; 2255 om->m_next = (struct mbuf *)0; 2256 } else { 2257 om = m; 2258 len += m->m_len; 2259 m = m->m_next; 2260 } 2261 } 2262 slp->ns_raw = m; 2263 slp->ns_cc -= len; 2264 slp->ns_reclen = 0; 2265 } else { 2266 slp->ns_flag &= ~SLP_GETSTREAM; 2267 return (0); 2268 } 2269 2270 /* 2271 * Accumulate the fragments into a record. 2272 */ 2273 mpp = &slp->ns_frag; 2274 while (*mpp) 2275 mpp = &((*mpp)->m_next); 2276 *mpp = recm; 2277 if (slp->ns_flag & SLP_LASTFRAG) { 2278 struct nfsrv_rec *rec; 2279 int mf = (waitflag & MB_DONTWAIT) ? M_NOWAIT : M_WAITOK; 2280 rec = malloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf); 2281 if (!rec) { 2282 m_freem(slp->ns_frag); 2283 } else { 2284 nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED); 2285 rec->nr_address = (struct sockaddr *)0; 2286 rec->nr_packet = slp->ns_frag; 2287 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link); 2288 } 2289 slp->ns_frag = (struct mbuf *)0; 2290 } 2291 } 2292 } 2293 2294 /* 2295 * Parse an RPC header. 2296 */ 2297 int 2298 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd, 2299 struct nfsrv_descript **ndp) 2300 { 2301 struct nfsrv_rec *rec; 2302 struct mbuf *m; 2303 struct sockaddr *nam; 2304 struct nfsrv_descript *nd; 2305 int error; 2306 2307 *ndp = NULL; 2308 if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec)) 2309 return (ENOBUFS); 2310 rec = STAILQ_FIRST(&slp->ns_rec); 2311 STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link); 2312 nam = rec->nr_address; 2313 m = rec->nr_packet; 2314 free(rec, M_NFSRVDESC); 2315 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript), 2316 M_NFSRVDESC, M_WAITOK); 2317 nd->nd_md = nd->nd_mrep = m; 2318 nd->nd_nam2 = nam; 2319 nd->nd_dpos = mtod(m, caddr_t); 2320 error = nfs_getreq(nd, nfsd, TRUE); 2321 if (error) { 2322 if (nam) { 2323 FREE(nam, M_SONAME); 2324 } 2325 free((caddr_t)nd, M_NFSRVDESC); 2326 return (error); 2327 } 2328 *ndp = nd; 2329 nfsd->nfsd_nd = nd; 2330 return (0); 2331 } 2332 2333 /* 2334 * Search for a sleeping nfsd and wake it up. 2335 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the 2336 * running nfsds will go look for the work in the nfssvc_sock list. 2337 */ 2338 void 2339 nfsrv_wakenfsd(struct nfssvc_sock *slp) 2340 { 2341 struct nfsd *nd; 2342 2343 if ((slp->ns_flag & SLP_VALID) == 0) 2344 return; 2345 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) { 2346 if (nd->nfsd_flag & NFSD_WAITING) { 2347 nd->nfsd_flag &= ~NFSD_WAITING; 2348 if (nd->nfsd_slp) 2349 panic("nfsd wakeup"); 2350 slp->ns_sref++; 2351 nd->nfsd_slp = slp; 2352 wakeup((caddr_t)nd); 2353 return; 2354 } 2355 } 2356 slp->ns_flag |= SLP_DOREC; 2357 nfsd_head_flag |= NFSD_CHECKSLP; 2358 } 2359 #endif /* NFS_NOSERVER */ 2360