1 /* 2 * Copyright (c) 1989, 1991, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 37 * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $ 38 * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.13 2004/03/05 16:57:16 hsu Exp $ 39 */ 40 41 /* 42 * Socket operations for use by nfs 43 */ 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/proc.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/kernel.h> 51 #include <sys/mbuf.h> 52 #include <sys/vnode.h> 53 #include <sys/protosw.h> 54 #include <sys/resourcevar.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/socketops.h> 58 #include <sys/syslog.h> 59 #include <sys/thread.h> 60 #include <sys/tprintf.h> 61 #include <sys/sysctl.h> 62 #include <sys/signalvar.h> 63 64 #include <netinet/in.h> 65 #include <netinet/tcp.h> 66 67 #include "rpcv2.h" 68 #include "nfsproto.h" 69 #include "nfs.h" 70 #include "xdr_subs.h" 71 #include "nfsm_subs.h" 72 #include "nfsmount.h" 73 #include "nfsnode.h" 74 #include "nfsrtt.h" 75 #include "nqnfs.h" 76 77 #define TRUE 1 78 #define FALSE 0 79 80 /* 81 * Estimate rto for an nfs rpc sent via. an unreliable datagram. 82 * Use the mean and mean deviation of rtt for the appropriate type of rpc 83 * for the frequent rpcs and a default for the others. 84 * The justification for doing "other" this way is that these rpcs 85 * happen so infrequently that timer est. would probably be stale. 86 * Also, since many of these rpcs are 87 * non-idempotent, a conservative timeout is desired. 88 * getattr, lookup - A+2D 89 * read, write - A+4D 90 * other - nm_timeo 91 */ 92 #define NFS_RTO(n, t) \ 93 ((t) == 0 ? (n)->nm_timeo : \ 94 ((t) < 3 ? \ 95 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ 96 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) 97 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1] 98 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1] 99 /* 100 * External data, mostly RPC constants in XDR form 101 */ 102 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, 103 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr, 104 rpc_auth_kerb; 105 extern u_int32_t nfs_prog, nqnfs_prog; 106 extern time_t nqnfsstarttime; 107 extern struct nfsstats nfsstats; 108 extern int nfsv3_procid[NFS_NPROCS]; 109 extern int nfs_ticks; 110 111 /* 112 * Defines which timer to use for the procnum. 113 * 0 - default 114 * 1 - getattr 115 * 2 - lookup 116 * 3 - read 117 * 4 - write 118 */ 119 static int proct[NFS_NPROCS] = { 120 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 121 0, 0, 0, 122 }; 123 124 static int nfs_realign_test; 125 static int nfs_realign_count; 126 static int nfs_bufpackets = 4; 127 128 SYSCTL_DECL(_vfs_nfs); 129 130 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, ""); 131 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, ""); 132 SYSCTL_INT(_vfs_nfs, OID_AUTO, bufpackets, CTLFLAG_RW, &nfs_bufpackets, 0, ""); 133 134 135 /* 136 * There is a congestion window for outstanding rpcs maintained per mount 137 * point. The cwnd size is adjusted in roughly the way that: 138 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of 139 * SIGCOMM '88". ACM, August 1988. 140 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout 141 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd 142 * of rpcs is in progress. 143 * (The sent count and cwnd are scaled for integer arith.) 144 * Variants of "slow start" were tried and were found to be too much of a 145 * performance hit (ave. rtt 3 times larger), 146 * I suspect due to the large rtt that nfs rpcs have. 147 */ 148 #define NFS_CWNDSCALE 256 149 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) 150 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; 151 int nfsrtton = 0; 152 struct nfsrtt nfsrtt; 153 struct callout_handle nfs_timer_handle; 154 155 static int nfs_msg (struct thread *,char *,char *); 156 static int nfs_rcvlock (struct nfsreq *); 157 static void nfs_rcvunlock (struct nfsreq *); 158 static void nfs_realign (struct mbuf **pm, int hsiz); 159 static int nfs_receive (struct nfsreq *rep, struct sockaddr **aname, 160 struct mbuf **mp); 161 static void nfs_softterm (struct nfsreq *rep); 162 static int nfs_reconnect (struct nfsreq *rep); 163 #ifndef NFS_NOSERVER 164 static int nfsrv_getstream (struct nfssvc_sock *,int); 165 166 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd, 167 struct nfssvc_sock *slp, 168 struct thread *td, 169 struct mbuf **mreqp) = { 170 nfsrv_null, 171 nfsrv_getattr, 172 nfsrv_setattr, 173 nfsrv_lookup, 174 nfsrv3_access, 175 nfsrv_readlink, 176 nfsrv_read, 177 nfsrv_write, 178 nfsrv_create, 179 nfsrv_mkdir, 180 nfsrv_symlink, 181 nfsrv_mknod, 182 nfsrv_remove, 183 nfsrv_rmdir, 184 nfsrv_rename, 185 nfsrv_link, 186 nfsrv_readdir, 187 nfsrv_readdirplus, 188 nfsrv_statfs, 189 nfsrv_fsinfo, 190 nfsrv_pathconf, 191 nfsrv_commit, 192 nqnfsrv_getlease, 193 nqnfsrv_vacated, 194 nfsrv_noop, 195 nfsrv_noop 196 }; 197 #endif /* NFS_NOSERVER */ 198 199 /* 200 * Initialize sockets and congestion for a new NFS connection. 201 * We do not free the sockaddr if error. 202 */ 203 int 204 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep) 205 { 206 struct socket *so; 207 int s, error, rcvreserve, sndreserve; 208 int pktscale; 209 struct sockaddr *saddr; 210 struct sockaddr_in *sin; 211 struct thread *td = &thread0; /* only used for socreate and sobind */ 212 213 nmp->nm_so = (struct socket *)0; 214 saddr = nmp->nm_nam; 215 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, 216 nmp->nm_soproto, td); 217 if (error) 218 goto bad; 219 so = nmp->nm_so; 220 nmp->nm_soflags = so->so_proto->pr_flags; 221 222 /* 223 * Some servers require that the client port be a reserved port number. 224 */ 225 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) { 226 struct sockopt sopt; 227 int ip; 228 struct sockaddr_in ssin; 229 230 bzero(&sopt, sizeof sopt); 231 ip = IP_PORTRANGE_LOW; 232 sopt.sopt_dir = SOPT_SET; 233 sopt.sopt_level = IPPROTO_IP; 234 sopt.sopt_name = IP_PORTRANGE; 235 sopt.sopt_val = (void *)&ip; 236 sopt.sopt_valsize = sizeof(ip); 237 sopt.sopt_td = NULL; 238 error = sosetopt(so, &sopt); 239 if (error) 240 goto bad; 241 bzero(&ssin, sizeof ssin); 242 sin = &ssin; 243 sin->sin_len = sizeof (struct sockaddr_in); 244 sin->sin_family = AF_INET; 245 sin->sin_addr.s_addr = INADDR_ANY; 246 sin->sin_port = htons(0); 247 error = sobind(so, (struct sockaddr *)sin, td); 248 if (error) 249 goto bad; 250 bzero(&sopt, sizeof sopt); 251 ip = IP_PORTRANGE_DEFAULT; 252 sopt.sopt_dir = SOPT_SET; 253 sopt.sopt_level = IPPROTO_IP; 254 sopt.sopt_name = IP_PORTRANGE; 255 sopt.sopt_val = (void *)&ip; 256 sopt.sopt_valsize = sizeof(ip); 257 sopt.sopt_td = NULL; 258 error = sosetopt(so, &sopt); 259 if (error) 260 goto bad; 261 } 262 263 /* 264 * Protocols that do not require connections may be optionally left 265 * unconnected for servers that reply from a port other than NFS_PORT. 266 */ 267 if (nmp->nm_flag & NFSMNT_NOCONN) { 268 if (nmp->nm_soflags & PR_CONNREQUIRED) { 269 error = ENOTCONN; 270 goto bad; 271 } 272 } else { 273 error = soconnect(so, nmp->nm_nam, td); 274 if (error) 275 goto bad; 276 277 /* 278 * Wait for the connection to complete. Cribbed from the 279 * connect system call but with the wait timing out so 280 * that interruptible mounts don't hang here for a long time. 281 */ 282 s = splnet(); 283 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 284 (void) tsleep((caddr_t)&so->so_timeo, 0, 285 "nfscon", 2 * hz); 286 if ((so->so_state & SS_ISCONNECTING) && 287 so->so_error == 0 && rep && 288 (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){ 289 so->so_state &= ~SS_ISCONNECTING; 290 splx(s); 291 goto bad; 292 } 293 } 294 if (so->so_error) { 295 error = so->so_error; 296 so->so_error = 0; 297 splx(s); 298 goto bad; 299 } 300 splx(s); 301 } 302 so->so_rcv.sb_timeo = (5 * hz); 303 so->so_snd.sb_timeo = (5 * hz); 304 305 /* 306 * Get buffer reservation size from sysctl, but impose reasonable 307 * limits. 308 */ 309 pktscale = nfs_bufpackets; 310 if (pktscale < 2) 311 pktscale = 2; 312 if (pktscale > 64) 313 pktscale = 64; 314 315 if (nmp->nm_sotype == SOCK_DGRAM) { 316 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; 317 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 318 NFS_MAXPKTHDR) * pktscale; 319 } else if (nmp->nm_sotype == SOCK_SEQPACKET) { 320 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; 321 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 322 NFS_MAXPKTHDR) * pktscale; 323 } else { 324 if (nmp->nm_sotype != SOCK_STREAM) 325 panic("nfscon sotype"); 326 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 327 struct sockopt sopt; 328 int val; 329 330 bzero(&sopt, sizeof sopt); 331 sopt.sopt_level = SOL_SOCKET; 332 sopt.sopt_name = SO_KEEPALIVE; 333 sopt.sopt_val = &val; 334 sopt.sopt_valsize = sizeof val; 335 val = 1; 336 sosetopt(so, &sopt); 337 } 338 if (so->so_proto->pr_protocol == IPPROTO_TCP) { 339 struct sockopt sopt; 340 int val; 341 342 bzero(&sopt, sizeof sopt); 343 sopt.sopt_level = IPPROTO_TCP; 344 sopt.sopt_name = TCP_NODELAY; 345 sopt.sopt_val = &val; 346 sopt.sopt_valsize = sizeof val; 347 val = 1; 348 sosetopt(so, &sopt); 349 } 350 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + 351 sizeof (u_int32_t)) * pktscale; 352 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + 353 sizeof (u_int32_t)) * pktscale; 354 } 355 error = soreserve(so, sndreserve, rcvreserve, 356 &td->td_proc->p_rlimit[RLIMIT_SBSIZE]); 357 if (error) 358 goto bad; 359 so->so_rcv.sb_flags |= SB_NOINTR; 360 so->so_snd.sb_flags |= SB_NOINTR; 361 362 /* Initialize other non-zero congestion variables */ 363 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = 364 nmp->nm_srtt[3] = (NFS_TIMEO << 3); 365 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = 366 nmp->nm_sdrtt[3] = 0; 367 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ 368 nmp->nm_sent = 0; 369 nmp->nm_timeouts = 0; 370 return (0); 371 372 bad: 373 nfs_disconnect(nmp); 374 return (error); 375 } 376 377 /* 378 * Reconnect routine: 379 * Called when a connection is broken on a reliable protocol. 380 * - clean up the old socket 381 * - nfs_connect() again 382 * - set R_MUSTRESEND for all outstanding requests on mount point 383 * If this fails the mount point is DEAD! 384 * nb: Must be called with the nfs_sndlock() set on the mount point. 385 */ 386 static int 387 nfs_reconnect(rep) 388 struct nfsreq *rep; 389 { 390 struct nfsreq *rp; 391 struct nfsmount *nmp = rep->r_nmp; 392 int error; 393 394 nfs_disconnect(nmp); 395 while ((error = nfs_connect(nmp, rep)) != 0) { 396 if (error == EINTR || error == ERESTART) 397 return (EINTR); 398 (void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0); 399 } 400 401 /* 402 * Loop through outstanding request list and fix up all requests 403 * on old socket. 404 */ 405 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) { 406 if (rp->r_nmp == nmp) 407 rp->r_flags |= R_MUSTRESEND; 408 } 409 return (0); 410 } 411 412 /* 413 * NFS disconnect. Clean up and unlink. 414 */ 415 void 416 nfs_disconnect(nmp) 417 struct nfsmount *nmp; 418 { 419 struct socket *so; 420 421 if (nmp->nm_so) { 422 so = nmp->nm_so; 423 nmp->nm_so = (struct socket *)0; 424 soshutdown(so, 2); 425 soclose(so); 426 } 427 } 428 429 void 430 nfs_safedisconnect(nmp) 431 struct nfsmount *nmp; 432 { 433 struct nfsreq dummyreq; 434 435 bzero(&dummyreq, sizeof(dummyreq)); 436 dummyreq.r_nmp = nmp; 437 dummyreq.r_td = NULL; 438 nfs_rcvlock(&dummyreq); 439 nfs_disconnect(nmp); 440 nfs_rcvunlock(&dummyreq); 441 } 442 443 /* 444 * This is the nfs send routine. For connection based socket types, it 445 * must be called with an nfs_sndlock() on the socket. 446 * "rep == NULL" indicates that it has been called from a server. 447 * For the client side: 448 * - return EINTR if the RPC is terminated, 0 otherwise 449 * - set R_MUSTRESEND if the send fails for any reason 450 * - do any cleanup required by recoverable socket errors (?) 451 * For the server side: 452 * - return EINTR or ERESTART if interrupted by a signal 453 * - return EPIPE if a connection is lost for connection based sockets (TCP...) 454 * - do any cleanup required by recoverable socket errors (?) 455 */ 456 int 457 nfs_send(so, nam, top, rep) 458 struct socket *so; 459 struct sockaddr *nam; 460 struct mbuf *top; 461 struct nfsreq *rep; 462 { 463 struct sockaddr *sendnam; 464 int error, soflags, flags; 465 466 if (rep) { 467 if (rep->r_flags & R_SOFTTERM) { 468 m_freem(top); 469 return (EINTR); 470 } 471 if ((so = rep->r_nmp->nm_so) == NULL) { 472 rep->r_flags |= R_MUSTRESEND; 473 m_freem(top); 474 return (0); 475 } 476 rep->r_flags &= ~R_MUSTRESEND; 477 soflags = rep->r_nmp->nm_soflags; 478 } else 479 soflags = so->so_proto->pr_flags; 480 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) 481 sendnam = (struct sockaddr *)0; 482 else 483 sendnam = nam; 484 if (so->so_type == SOCK_SEQPACKET) 485 flags = MSG_EOR; 486 else 487 flags = 0; 488 489 error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags, 490 curthread /*XXX*/); 491 /* 492 * ENOBUFS for dgram sockets is transient and non fatal. 493 * No need to log, and no need to break a soft mount. 494 */ 495 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) { 496 error = 0; 497 if (rep) /* do backoff retransmit on client */ 498 rep->r_flags |= R_MUSTRESEND; 499 } 500 501 if (error) { 502 if (rep) { 503 log(LOG_INFO, "nfs send error %d for server %s\n",error, 504 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 505 /* 506 * Deal with errors for the client side. 507 */ 508 if (rep->r_flags & R_SOFTTERM) 509 error = EINTR; 510 else 511 rep->r_flags |= R_MUSTRESEND; 512 } else 513 log(LOG_INFO, "nfsd send error %d\n", error); 514 515 /* 516 * Handle any recoverable (soft) socket errors here. (?) 517 */ 518 if (error != EINTR && error != ERESTART && 519 error != EWOULDBLOCK && error != EPIPE) 520 error = 0; 521 } 522 return (error); 523 } 524 525 /* 526 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all 527 * done by soreceive(), but for SOCK_STREAM we must deal with the Record 528 * Mark and consolidate the data into a new mbuf list. 529 * nb: Sometimes TCP passes the data up to soreceive() in long lists of 530 * small mbufs. 531 * For SOCK_STREAM we must be very careful to read an entire record once 532 * we have read any of it, even if the system call has been interrupted. 533 */ 534 static int 535 nfs_receive(struct nfsreq *rep, struct sockaddr **aname, struct mbuf **mp) 536 { 537 struct socket *so; 538 struct uio auio; 539 struct iovec aio; 540 struct mbuf *m; 541 struct mbuf *control; 542 u_int32_t len; 543 struct sockaddr **getnam; 544 int error, sotype, rcvflg; 545 struct thread *td = curthread; /* XXX */ 546 547 /* 548 * Set up arguments for soreceive() 549 */ 550 *mp = (struct mbuf *)0; 551 *aname = (struct sockaddr *)0; 552 sotype = rep->r_nmp->nm_sotype; 553 554 /* 555 * For reliable protocols, lock against other senders/receivers 556 * in case a reconnect is necessary. 557 * For SOCK_STREAM, first get the Record Mark to find out how much 558 * more there is to get. 559 * We must lock the socket against other receivers 560 * until we have an entire rpc request/reply. 561 */ 562 if (sotype != SOCK_DGRAM) { 563 error = nfs_sndlock(rep); 564 if (error) 565 return (error); 566 tryagain: 567 /* 568 * Check for fatal errors and resending request. 569 */ 570 /* 571 * Ugh: If a reconnect attempt just happened, nm_so 572 * would have changed. NULL indicates a failed 573 * attempt that has essentially shut down this 574 * mount point. 575 */ 576 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { 577 nfs_sndunlock(rep); 578 return (EINTR); 579 } 580 so = rep->r_nmp->nm_so; 581 if (!so) { 582 error = nfs_reconnect(rep); 583 if (error) { 584 nfs_sndunlock(rep); 585 return (error); 586 } 587 goto tryagain; 588 } 589 while (rep->r_flags & R_MUSTRESEND) { 590 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 591 nfsstats.rpcretries++; 592 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep); 593 if (error) { 594 if (error == EINTR || error == ERESTART || 595 (error = nfs_reconnect(rep)) != 0) { 596 nfs_sndunlock(rep); 597 return (error); 598 } 599 goto tryagain; 600 } 601 } 602 nfs_sndunlock(rep); 603 if (sotype == SOCK_STREAM) { 604 aio.iov_base = (caddr_t) &len; 605 aio.iov_len = sizeof(u_int32_t); 606 auio.uio_iov = &aio; 607 auio.uio_iovcnt = 1; 608 auio.uio_segflg = UIO_SYSSPACE; 609 auio.uio_rw = UIO_READ; 610 auio.uio_offset = 0; 611 auio.uio_resid = sizeof(u_int32_t); 612 auio.uio_td = td; 613 do { 614 rcvflg = MSG_WAITALL; 615 error = so_pru_soreceive(so, NULL, &auio, NULL, 616 NULL, &rcvflg); 617 if (error == EWOULDBLOCK && rep) { 618 if (rep->r_flags & R_SOFTTERM) 619 return (EINTR); 620 } 621 } while (error == EWOULDBLOCK); 622 if (!error && auio.uio_resid > 0) { 623 /* 624 * Don't log a 0 byte receive; it means 625 * that the socket has been closed, and 626 * can happen during normal operation 627 * (forcible unmount or Solaris server). 628 */ 629 if (auio.uio_resid != sizeof (u_int32_t)) 630 log(LOG_INFO, 631 "short receive (%d/%d) from nfs server %s\n", 632 (int)(sizeof(u_int32_t) - auio.uio_resid), 633 (int)sizeof(u_int32_t), 634 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 635 error = EPIPE; 636 } 637 if (error) 638 goto errout; 639 len = ntohl(len) & ~0x80000000; 640 /* 641 * This is SERIOUS! We are out of sync with the sender 642 * and forcing a disconnect/reconnect is all I can do. 643 */ 644 if (len > NFS_MAXPACKET) { 645 log(LOG_ERR, "%s (%d) from nfs server %s\n", 646 "impossible packet length", 647 len, 648 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 649 error = EFBIG; 650 goto errout; 651 } 652 auio.uio_resid = len; 653 do { 654 rcvflg = MSG_WAITALL; 655 error = so_pru_soreceive(so, NULL, &auio, mp, 656 NULL, &rcvflg); 657 } while (error == EWOULDBLOCK || error == EINTR || 658 error == ERESTART); 659 if (!error && auio.uio_resid > 0) { 660 if (len != auio.uio_resid) 661 log(LOG_INFO, 662 "short receive (%d/%d) from nfs server %s\n", 663 len - auio.uio_resid, len, 664 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 665 error = EPIPE; 666 } 667 } else { 668 /* 669 * NB: Since uio_resid is big, MSG_WAITALL is ignored 670 * and soreceive() will return when it has either a 671 * control msg or a data msg. 672 * We have no use for control msg., but must grab them 673 * and then throw them away so we know what is going 674 * on. 675 */ 676 auio.uio_resid = len = 100000000; /* Anything Big */ 677 auio.uio_td = td; 678 do { 679 rcvflg = 0; 680 error = so_pru_soreceive(so, NULL, &auio, mp, 681 &control, &rcvflg); 682 if (control) 683 m_freem(control); 684 if (error == EWOULDBLOCK && rep) { 685 if (rep->r_flags & R_SOFTTERM) 686 return (EINTR); 687 } 688 } while (error == EWOULDBLOCK || 689 (!error && *mp == NULL && control)); 690 if ((rcvflg & MSG_EOR) == 0) 691 printf("Egad!!\n"); 692 if (!error && *mp == NULL) 693 error = EPIPE; 694 len -= auio.uio_resid; 695 } 696 errout: 697 if (error && error != EINTR && error != ERESTART) { 698 m_freem(*mp); 699 *mp = (struct mbuf *)0; 700 if (error != EPIPE) 701 log(LOG_INFO, 702 "receive error %d from nfs server %s\n", 703 error, 704 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 705 error = nfs_sndlock(rep); 706 if (!error) { 707 error = nfs_reconnect(rep); 708 if (!error) 709 goto tryagain; 710 else 711 nfs_sndunlock(rep); 712 } 713 } 714 } else { 715 if ((so = rep->r_nmp->nm_so) == NULL) 716 return (EACCES); 717 if (so->so_state & SS_ISCONNECTED) 718 getnam = (struct sockaddr **)0; 719 else 720 getnam = aname; 721 auio.uio_resid = len = 1000000; 722 auio.uio_td = td; 723 do { 724 rcvflg = 0; 725 error = so_pru_soreceive(so, getnam, &auio, mp, NULL, 726 &rcvflg); 727 if (error == EWOULDBLOCK && 728 (rep->r_flags & R_SOFTTERM)) 729 return (EINTR); 730 } while (error == EWOULDBLOCK); 731 len -= auio.uio_resid; 732 } 733 if (error) { 734 m_freem(*mp); 735 *mp = (struct mbuf *)0; 736 } 737 /* 738 * Search for any mbufs that are not a multiple of 4 bytes long 739 * or with m_data not longword aligned. 740 * These could cause pointer alignment problems, so copy them to 741 * well aligned mbufs. 742 */ 743 nfs_realign(mp, 5 * NFSX_UNSIGNED); 744 return (error); 745 } 746 747 /* 748 * Implement receipt of reply on a socket. 749 * We must search through the list of received datagrams matching them 750 * with outstanding requests using the xid, until ours is found. 751 */ 752 /* ARGSUSED */ 753 int 754 nfs_reply(myrep) 755 struct nfsreq *myrep; 756 { 757 struct nfsreq *rep; 758 struct nfsmount *nmp = myrep->r_nmp; 759 int32_t t1; 760 struct mbuf *mrep, *md; 761 struct sockaddr *nam; 762 u_int32_t rxid, *tl; 763 caddr_t dpos, cp2; 764 int error; 765 766 /* 767 * Loop around until we get our own reply 768 */ 769 for (;;) { 770 /* 771 * Lock against other receivers so that I don't get stuck in 772 * sbwait() after someone else has received my reply for me. 773 * Also necessary for connection based protocols to avoid 774 * race conditions during a reconnect. 775 * If nfs_rcvlock() returns EALREADY, that means that 776 * the reply has already been recieved by another 777 * process and we can return immediately. In this 778 * case, the lock is not taken to avoid races with 779 * other processes. 780 */ 781 error = nfs_rcvlock(myrep); 782 if (error == EALREADY) 783 return (0); 784 if (error) 785 return (error); 786 /* 787 * Get the next Rpc reply off the socket 788 */ 789 error = nfs_receive(myrep, &nam, &mrep); 790 nfs_rcvunlock(myrep); 791 if (error) { 792 793 /* 794 * Ignore routing errors on connectionless protocols?? 795 */ 796 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 797 nmp->nm_so->so_error = 0; 798 if (myrep->r_flags & R_GETONEREP) 799 return (0); 800 continue; 801 } 802 return (error); 803 } 804 if (nam) 805 FREE(nam, M_SONAME); 806 807 /* 808 * Get the xid and check that it is an rpc reply 809 */ 810 md = mrep; 811 dpos = mtod(md, caddr_t); 812 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED); 813 rxid = *tl++; 814 if (*tl != rpc_reply) { 815 #ifndef NFS_NOSERVER 816 if (nmp->nm_flag & NFSMNT_NQNFS) { 817 if (nqnfs_callback(nmp, mrep, md, dpos)) 818 nfsstats.rpcinvalid++; 819 } else { 820 nfsstats.rpcinvalid++; 821 m_freem(mrep); 822 } 823 #else 824 nfsstats.rpcinvalid++; 825 m_freem(mrep); 826 #endif 827 nfsmout: 828 if (myrep->r_flags & R_GETONEREP) 829 return (0); 830 continue; 831 } 832 833 /* 834 * Loop through the request list to match up the reply 835 * Iff no match, just drop the datagram 836 */ 837 for (rep = nfs_reqq.tqh_first; rep != 0; 838 rep = rep->r_chain.tqe_next) { 839 if (rep->r_mrep == NULL && rxid == rep->r_xid) { 840 /* Found it.. */ 841 rep->r_mrep = mrep; 842 rep->r_md = md; 843 rep->r_dpos = dpos; 844 if (nfsrtton) { 845 struct rttl *rt; 846 847 rt = &nfsrtt.rttl[nfsrtt.pos]; 848 rt->proc = rep->r_procnum; 849 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]); 850 rt->sent = nmp->nm_sent; 851 rt->cwnd = nmp->nm_cwnd; 852 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1]; 853 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1]; 854 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid; 855 getmicrotime(&rt->tstamp); 856 if (rep->r_flags & R_TIMING) 857 rt->rtt = rep->r_rtt; 858 else 859 rt->rtt = 1000000; 860 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ; 861 } 862 /* 863 * Update congestion window. 864 * Do the additive increase of 865 * one rpc/rtt. 866 */ 867 if (nmp->nm_cwnd <= nmp->nm_sent) { 868 nmp->nm_cwnd += 869 (NFS_CWNDSCALE * NFS_CWNDSCALE + 870 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; 871 if (nmp->nm_cwnd > NFS_MAXCWND) 872 nmp->nm_cwnd = NFS_MAXCWND; 873 } 874 if (rep->r_flags & R_SENT) { 875 rep->r_flags &= ~R_SENT; 876 nmp->nm_sent -= NFS_CWNDSCALE; 877 } 878 /* 879 * Update rtt using a gain of 0.125 on the mean 880 * and a gain of 0.25 on the deviation. 881 */ 882 if (rep->r_flags & R_TIMING) { 883 /* 884 * Since the timer resolution of 885 * NFS_HZ is so course, it can often 886 * result in r_rtt == 0. Since 887 * r_rtt == N means that the actual 888 * rtt is between N+dt and N+2-dt ticks, 889 * add 1. 890 */ 891 t1 = rep->r_rtt + 1; 892 t1 -= (NFS_SRTT(rep) >> 3); 893 NFS_SRTT(rep) += t1; 894 if (t1 < 0) 895 t1 = -t1; 896 t1 -= (NFS_SDRTT(rep) >> 2); 897 NFS_SDRTT(rep) += t1; 898 } 899 nmp->nm_timeouts = 0; 900 break; 901 } 902 } 903 /* 904 * If not matched to a request, drop it. 905 * If it's mine, get out. 906 */ 907 if (rep == 0) { 908 nfsstats.rpcunexpected++; 909 m_freem(mrep); 910 } else if (rep == myrep) { 911 if (rep->r_mrep == NULL) 912 panic("nfsreply nil"); 913 return (0); 914 } 915 if (myrep->r_flags & R_GETONEREP) 916 return (0); 917 } 918 } 919 920 /* 921 * nfs_request - goes something like this 922 * - fill in request struct 923 * - links it into list 924 * - calls nfs_send() for first transmit 925 * - calls nfs_receive() to get reply 926 * - break down rpc header and return with nfs reply pointed to 927 * by mrep or error 928 * nb: always frees up mreq mbuf list 929 */ 930 int 931 nfs_request(vp, mrest, procnum, td, cred, mrp, mdp, dposp) 932 struct vnode *vp; 933 struct mbuf *mrest; 934 int procnum; 935 struct thread *td; 936 struct ucred *cred; 937 struct mbuf **mrp; 938 struct mbuf **mdp; 939 caddr_t *dposp; 940 { 941 struct mbuf *mrep, *m2; 942 struct nfsreq *rep; 943 u_int32_t *tl; 944 int i; 945 struct nfsmount *nmp; 946 struct mbuf *m, *md, *mheadend; 947 struct nfsnode *np; 948 char nickv[RPCX_NICKVERF]; 949 time_t reqtime, waituntil; 950 caddr_t dpos, cp2; 951 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type; 952 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0; 953 int verf_len, verf_type; 954 u_int32_t xid; 955 u_quad_t frev; 956 char *auth_str, *verf_str; 957 NFSKERBKEY_T key; /* save session key */ 958 959 /* Reject requests while attempting a forced unmount. */ 960 if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) { 961 m_freem(mrest); 962 return (ESTALE); 963 } 964 nmp = VFSTONFS(vp->v_mount); 965 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK); 966 rep->r_nmp = nmp; 967 rep->r_vp = vp; 968 rep->r_td = td; 969 rep->r_procnum = procnum; 970 i = 0; 971 m = mrest; 972 while (m) { 973 i += m->m_len; 974 m = m->m_next; 975 } 976 mrest_len = i; 977 978 /* 979 * Get the RPC header with authorization. 980 */ 981 kerbauth: 982 verf_str = auth_str = (char *)0; 983 if (nmp->nm_flag & NFSMNT_KERB) { 984 verf_str = nickv; 985 verf_len = sizeof (nickv); 986 auth_type = RPCAUTH_KERB4; 987 bzero((caddr_t)key, sizeof (key)); 988 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str, 989 &auth_len, verf_str, verf_len)) { 990 error = nfs_getauth(nmp, rep, cred, &auth_str, 991 &auth_len, verf_str, &verf_len, key); 992 if (error) { 993 free((caddr_t)rep, M_NFSREQ); 994 m_freem(mrest); 995 return (error); 996 } 997 } 998 } else { 999 auth_type = RPCAUTH_UNIX; 1000 if (cred->cr_ngroups < 1) 1001 panic("nfsreq nogrps"); 1002 auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ? 1003 nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) + 1004 5 * NFSX_UNSIGNED; 1005 } 1006 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, 1007 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid); 1008 if (auth_str) 1009 free(auth_str, M_TEMP); 1010 1011 /* 1012 * For stream protocols, insert a Sun RPC Record Mark. 1013 */ 1014 if (nmp->nm_sotype == SOCK_STREAM) { 1015 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT); 1016 if (m == NULL) 1017 return (ENOBUFS); 1018 *mtod(m, u_int32_t *) = htonl(0x80000000 | 1019 (m->m_pkthdr.len - NFSX_UNSIGNED)); 1020 } 1021 rep->r_mreq = m; 1022 rep->r_xid = xid; 1023 tryagain: 1024 if (nmp->nm_flag & NFSMNT_SOFT) 1025 rep->r_retry = nmp->nm_retry; 1026 else 1027 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ 1028 rep->r_rtt = rep->r_rexmit = 0; 1029 if (proct[procnum] > 0) 1030 rep->r_flags = R_TIMING; 1031 else 1032 rep->r_flags = 0; 1033 rep->r_mrep = NULL; 1034 1035 /* 1036 * Do the client side RPC. 1037 */ 1038 nfsstats.rpcrequests++; 1039 /* 1040 * Chain request into list of outstanding requests. Be sure 1041 * to put it LAST so timer finds oldest requests first. 1042 */ 1043 s = splsoftclock(); 1044 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); 1045 1046 /* Get send time for nqnfs */ 1047 reqtime = time_second; 1048 1049 /* 1050 * If backing off another request or avoiding congestion, don't 1051 * send this one now but let timer do it. If not timing a request, 1052 * do it now. 1053 */ 1054 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || 1055 (nmp->nm_flag & NFSMNT_DUMBTIMR) || 1056 nmp->nm_sent < nmp->nm_cwnd)) { 1057 splx(s); 1058 if (nmp->nm_soflags & PR_CONNREQUIRED) 1059 error = nfs_sndlock(rep); 1060 if (!error) { 1061 m2 = m_copym(m, 0, M_COPYALL, M_WAIT); 1062 error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep); 1063 if (nmp->nm_soflags & PR_CONNREQUIRED) 1064 nfs_sndunlock(rep); 1065 } 1066 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { 1067 nmp->nm_sent += NFS_CWNDSCALE; 1068 rep->r_flags |= R_SENT; 1069 } 1070 } else { 1071 splx(s); 1072 rep->r_rtt = -1; 1073 } 1074 1075 /* 1076 * Wait for the reply from our send or the timer's. 1077 */ 1078 if (!error || error == EPIPE) 1079 error = nfs_reply(rep); 1080 1081 /* 1082 * RPC done, unlink the request. 1083 */ 1084 s = splsoftclock(); 1085 TAILQ_REMOVE(&nfs_reqq, rep, r_chain); 1086 splx(s); 1087 1088 /* 1089 * Decrement the outstanding request count. 1090 */ 1091 if (rep->r_flags & R_SENT) { 1092 rep->r_flags &= ~R_SENT; /* paranoia */ 1093 nmp->nm_sent -= NFS_CWNDSCALE; 1094 } 1095 1096 /* 1097 * If there was a successful reply and a tprintf msg. 1098 * tprintf a response. 1099 */ 1100 if (!error && (rep->r_flags & R_TPRINTFMSG)) 1101 nfs_msg(rep->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname, 1102 "is alive again"); 1103 mrep = rep->r_mrep; 1104 md = rep->r_md; 1105 dpos = rep->r_dpos; 1106 if (error) { 1107 m_freem(rep->r_mreq); 1108 free((caddr_t)rep, M_NFSREQ); 1109 return (error); 1110 } 1111 1112 /* 1113 * break down the rpc header and check if ok 1114 */ 1115 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1116 if (*tl++ == rpc_msgdenied) { 1117 if (*tl == rpc_mismatch) 1118 error = EOPNOTSUPP; 1119 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) { 1120 if (!failed_auth) { 1121 failed_auth++; 1122 mheadend->m_next = (struct mbuf *)0; 1123 m_freem(mrep); 1124 m_freem(rep->r_mreq); 1125 goto kerbauth; 1126 } else 1127 error = EAUTH; 1128 } else 1129 error = EACCES; 1130 m_freem(mrep); 1131 m_freem(rep->r_mreq); 1132 free((caddr_t)rep, M_NFSREQ); 1133 return (error); 1134 } 1135 1136 /* 1137 * Grab any Kerberos verifier, otherwise just throw it away. 1138 */ 1139 verf_type = fxdr_unsigned(int, *tl++); 1140 i = fxdr_unsigned(int32_t, *tl); 1141 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) { 1142 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep); 1143 if (error) 1144 goto nfsmout; 1145 } else if (i > 0) 1146 nfsm_adv(nfsm_rndup(i)); 1147 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1148 /* 0 == ok */ 1149 if (*tl == 0) { 1150 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1151 if (*tl != 0) { 1152 error = fxdr_unsigned(int, *tl); 1153 if ((nmp->nm_flag & NFSMNT_NFSV3) && 1154 error == NFSERR_TRYLATER) { 1155 m_freem(mrep); 1156 error = 0; 1157 waituntil = time_second + trylater_delay; 1158 while (time_second < waituntil) 1159 (void) tsleep((caddr_t)&lbolt, 1160 0, "nqnfstry", 0); 1161 trylater_delay *= nfs_backoff[trylater_cnt]; 1162 if (trylater_cnt < 7) 1163 trylater_cnt++; 1164 goto tryagain; 1165 } 1166 1167 /* 1168 * If the File Handle was stale, invalidate the 1169 * lookup cache, just in case. 1170 */ 1171 if (error == ESTALE) 1172 cache_purge(vp); 1173 if (nmp->nm_flag & NFSMNT_NFSV3) { 1174 *mrp = mrep; 1175 *mdp = md; 1176 *dposp = dpos; 1177 error |= NFSERR_RETERR; 1178 } else 1179 m_freem(mrep); 1180 m_freem(rep->r_mreq); 1181 free((caddr_t)rep, M_NFSREQ); 1182 return (error); 1183 } 1184 1185 /* 1186 * For nqnfs, get any lease in reply 1187 */ 1188 if (nmp->nm_flag & NFSMNT_NQNFS) { 1189 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1190 if (*tl) { 1191 np = VTONFS(vp); 1192 nqlflag = fxdr_unsigned(int, *tl); 1193 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED); 1194 cachable = fxdr_unsigned(int, *tl++); 1195 reqtime += fxdr_unsigned(int, *tl++); 1196 if (reqtime > time_second) { 1197 frev = fxdr_hyper(tl); 1198 nqnfs_clientlease(nmp, np, nqlflag, 1199 cachable, reqtime, frev); 1200 } 1201 } 1202 } 1203 *mrp = mrep; 1204 *mdp = md; 1205 *dposp = dpos; 1206 m_freem(rep->r_mreq); 1207 FREE((caddr_t)rep, M_NFSREQ); 1208 return (0); 1209 } 1210 m_freem(mrep); 1211 error = EPROTONOSUPPORT; 1212 nfsmout: 1213 m_freem(rep->r_mreq); 1214 free((caddr_t)rep, M_NFSREQ); 1215 return (error); 1216 } 1217 1218 #ifndef NFS_NOSERVER 1219 /* 1220 * Generate the rpc reply header 1221 * siz arg. is used to decide if adding a cluster is worthwhile 1222 */ 1223 int 1224 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp) 1225 int siz; 1226 struct nfsrv_descript *nd; 1227 struct nfssvc_sock *slp; 1228 int err; 1229 int cache; 1230 u_quad_t *frev; 1231 struct mbuf **mrq; 1232 struct mbuf **mbp; 1233 caddr_t *bposp; 1234 { 1235 u_int32_t *tl; 1236 struct mbuf *mreq; 1237 caddr_t bpos; 1238 struct mbuf *mb, *mb2; 1239 1240 MGETHDR(mreq, M_WAIT, MT_DATA); 1241 mb = mreq; 1242 /* 1243 * If this is a big reply, use a cluster else 1244 * try and leave leading space for the lower level headers. 1245 */ 1246 siz += RPC_REPLYSIZ; 1247 if ((max_hdr + siz) >= MINCLSIZE) { 1248 MCLGET(mreq, M_WAIT); 1249 } else 1250 mreq->m_data += max_hdr; 1251 tl = mtod(mreq, u_int32_t *); 1252 mreq->m_len = 6 * NFSX_UNSIGNED; 1253 bpos = ((caddr_t)tl) + mreq->m_len; 1254 *tl++ = txdr_unsigned(nd->nd_retxid); 1255 *tl++ = rpc_reply; 1256 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { 1257 *tl++ = rpc_msgdenied; 1258 if (err & NFSERR_AUTHERR) { 1259 *tl++ = rpc_autherr; 1260 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); 1261 mreq->m_len -= NFSX_UNSIGNED; 1262 bpos -= NFSX_UNSIGNED; 1263 } else { 1264 *tl++ = rpc_mismatch; 1265 *tl++ = txdr_unsigned(RPC_VER2); 1266 *tl = txdr_unsigned(RPC_VER2); 1267 } 1268 } else { 1269 *tl++ = rpc_msgaccepted; 1270 1271 /* 1272 * For Kerberos authentication, we must send the nickname 1273 * verifier back, otherwise just RPCAUTH_NULL. 1274 */ 1275 if (nd->nd_flag & ND_KERBFULL) { 1276 struct nfsuid *nuidp; 1277 struct timeval ktvin, ktvout; 1278 1279 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first; 1280 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1281 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid && 1282 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp), 1283 &nuidp->nu_haddr, nd->nd_nam2))) 1284 break; 1285 } 1286 if (nuidp) { 1287 ktvin.tv_sec = 1288 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1); 1289 ktvin.tv_usec = 1290 txdr_unsigned(nuidp->nu_timestamp.tv_usec); 1291 1292 /* 1293 * Encrypt the timestamp in ecb mode using the 1294 * session key. 1295 */ 1296 #ifdef NFSKERB 1297 XXX 1298 #endif 1299 1300 *tl++ = rpc_auth_kerb; 1301 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); 1302 *tl = ktvout.tv_sec; 1303 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1304 *tl++ = ktvout.tv_usec; 1305 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid); 1306 } else { 1307 *tl++ = 0; 1308 *tl++ = 0; 1309 } 1310 } else { 1311 *tl++ = 0; 1312 *tl++ = 0; 1313 } 1314 switch (err) { 1315 case EPROGUNAVAIL: 1316 *tl = txdr_unsigned(RPC_PROGUNAVAIL); 1317 break; 1318 case EPROGMISMATCH: 1319 *tl = txdr_unsigned(RPC_PROGMISMATCH); 1320 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1321 if (nd->nd_flag & ND_NQNFS) { 1322 *tl++ = txdr_unsigned(3); 1323 *tl = txdr_unsigned(3); 1324 } else { 1325 *tl++ = txdr_unsigned(2); 1326 *tl = txdr_unsigned(3); 1327 } 1328 break; 1329 case EPROCUNAVAIL: 1330 *tl = txdr_unsigned(RPC_PROCUNAVAIL); 1331 break; 1332 case EBADRPC: 1333 *tl = txdr_unsigned(RPC_GARBAGE); 1334 break; 1335 default: 1336 *tl = 0; 1337 if (err != NFSERR_RETVOID) { 1338 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1339 if (err) 1340 *tl = txdr_unsigned(nfsrv_errmap(nd, err)); 1341 else 1342 *tl = 0; 1343 } 1344 break; 1345 }; 1346 } 1347 1348 /* 1349 * For nqnfs, piggyback lease as requested. 1350 */ 1351 if ((nd->nd_flag & ND_NQNFS) && err == 0) { 1352 if (nd->nd_flag & ND_LEASE) { 1353 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED); 1354 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE); 1355 *tl++ = txdr_unsigned(cache); 1356 *tl++ = txdr_unsigned(nd->nd_duration); 1357 txdr_hyper(*frev, tl); 1358 } else { 1359 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1360 *tl = 0; 1361 } 1362 } 1363 if (mrq != NULL) 1364 *mrq = mreq; 1365 *mbp = mb; 1366 *bposp = bpos; 1367 if (err != 0 && err != NFSERR_RETVOID) 1368 nfsstats.srvrpc_errs++; 1369 return (0); 1370 } 1371 1372 1373 #endif /* NFS_NOSERVER */ 1374 /* 1375 * Nfs timer routine 1376 * Scan the nfsreq list and retranmit any requests that have timed out 1377 * To avoid retransmission attempts on STREAM sockets (in the future) make 1378 * sure to set the r_retry field to 0 (implies nm_retry == 0). 1379 */ 1380 void 1381 nfs_timer(arg) 1382 void *arg; /* never used */ 1383 { 1384 struct nfsreq *rep; 1385 struct mbuf *m; 1386 struct socket *so; 1387 struct nfsmount *nmp; 1388 int timeo; 1389 int s, error; 1390 #ifndef NFS_NOSERVER 1391 static long lasttime = 0; 1392 struct nfssvc_sock *slp; 1393 u_quad_t cur_usec; 1394 #endif /* NFS_NOSERVER */ 1395 struct thread *td = &thread0; /* XXX for credentials, will break if sleep */ 1396 1397 s = splnet(); 1398 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) { 1399 nmp = rep->r_nmp; 1400 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) 1401 continue; 1402 if (nfs_sigintr(nmp, rep, rep->r_td)) { 1403 nfs_softterm(rep); 1404 continue; 1405 } 1406 if (rep->r_rtt >= 0) { 1407 rep->r_rtt++; 1408 if (nmp->nm_flag & NFSMNT_DUMBTIMR) 1409 timeo = nmp->nm_timeo; 1410 else 1411 timeo = NFS_RTO(nmp, proct[rep->r_procnum]); 1412 if (nmp->nm_timeouts > 0) 1413 timeo *= nfs_backoff[nmp->nm_timeouts - 1]; 1414 if (rep->r_rtt <= timeo) 1415 continue; 1416 if (nmp->nm_timeouts < 8) 1417 nmp->nm_timeouts++; 1418 } 1419 /* 1420 * Check for server not responding 1421 */ 1422 if ((rep->r_flags & R_TPRINTFMSG) == 0 && 1423 rep->r_rexmit > nmp->nm_deadthresh) { 1424 nfs_msg(rep->r_td, 1425 nmp->nm_mountp->mnt_stat.f_mntfromname, 1426 "not responding"); 1427 rep->r_flags |= R_TPRINTFMSG; 1428 } 1429 if (rep->r_rexmit >= rep->r_retry) { /* too many */ 1430 nfsstats.rpctimeouts++; 1431 nfs_softterm(rep); 1432 continue; 1433 } 1434 if (nmp->nm_sotype != SOCK_DGRAM) { 1435 if (++rep->r_rexmit > NFS_MAXREXMIT) 1436 rep->r_rexmit = NFS_MAXREXMIT; 1437 continue; 1438 } 1439 if ((so = nmp->nm_so) == NULL) 1440 continue; 1441 1442 /* 1443 * If there is enough space and the window allows.. 1444 * Resend it 1445 * Set r_rtt to -1 in case we fail to send it now. 1446 */ 1447 rep->r_rtt = -1; 1448 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && 1449 ((nmp->nm_flag & NFSMNT_DUMBTIMR) || 1450 (rep->r_flags & R_SENT) || 1451 nmp->nm_sent < nmp->nm_cwnd) && 1452 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){ 1453 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0) 1454 error = so_pru_send(so, 0, m, (struct sockaddr *)0, 1455 (struct mbuf *)0, td); 1456 else 1457 error = so_pru_send(so, 0, m, nmp->nm_nam, 1458 (struct mbuf *)0, td); 1459 if (error) { 1460 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) 1461 so->so_error = 0; 1462 } else { 1463 /* 1464 * Iff first send, start timing 1465 * else turn timing off, backoff timer 1466 * and divide congestion window by 2. 1467 */ 1468 if (rep->r_flags & R_SENT) { 1469 rep->r_flags &= ~R_TIMING; 1470 if (++rep->r_rexmit > NFS_MAXREXMIT) 1471 rep->r_rexmit = NFS_MAXREXMIT; 1472 nmp->nm_cwnd >>= 1; 1473 if (nmp->nm_cwnd < NFS_CWNDSCALE) 1474 nmp->nm_cwnd = NFS_CWNDSCALE; 1475 nfsstats.rpcretries++; 1476 } else { 1477 rep->r_flags |= R_SENT; 1478 nmp->nm_sent += NFS_CWNDSCALE; 1479 } 1480 rep->r_rtt = 0; 1481 } 1482 } 1483 } 1484 #ifndef NFS_NOSERVER 1485 /* 1486 * Call the nqnfs server timer once a second to handle leases. 1487 */ 1488 if (lasttime != time_second) { 1489 lasttime = time_second; 1490 nqnfs_serverd(); 1491 } 1492 1493 /* 1494 * Scan the write gathering queues for writes that need to be 1495 * completed now. 1496 */ 1497 cur_usec = nfs_curusec(); 1498 for (slp = nfssvc_sockhead.tqh_first; slp != 0; 1499 slp = slp->ns_chain.tqe_next) { 1500 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec) 1501 nfsrv_wakenfsd(slp); 1502 } 1503 #endif /* NFS_NOSERVER */ 1504 splx(s); 1505 nfs_timer_handle = timeout(nfs_timer, (void *)0, nfs_ticks); 1506 } 1507 1508 /* 1509 * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and 1510 * wait for all requests to complete. This is used by forced unmounts 1511 * to terminate any outstanding RPCs. 1512 */ 1513 int 1514 nfs_nmcancelreqs(nmp) 1515 struct nfsmount *nmp; 1516 { 1517 struct nfsreq *req; 1518 int i, s; 1519 1520 s = splnet(); 1521 TAILQ_FOREACH(req, &nfs_reqq, r_chain) { 1522 if (nmp != req->r_nmp || req->r_mrep != NULL || 1523 (req->r_flags & R_SOFTTERM)) 1524 continue; 1525 nfs_softterm(req); 1526 } 1527 splx(s); 1528 1529 for (i = 0; i < 30; i++) { 1530 s = splnet(); 1531 TAILQ_FOREACH(req, &nfs_reqq, r_chain) { 1532 if (nmp == req->r_nmp) 1533 break; 1534 } 1535 splx(s); 1536 if (req == NULL) 1537 return (0); 1538 tsleep(&lbolt, 0, "nfscancel", 0); 1539 } 1540 return (EBUSY); 1541 } 1542 1543 /* 1544 * Flag a request as being about to terminate (due to NFSMNT_INT/NFSMNT_SOFT). 1545 * The nm_send count is decremented now to avoid deadlocks when the process in 1546 * soreceive() hasn't yet managed to send its own request. 1547 */ 1548 1549 static void 1550 nfs_softterm(rep) 1551 struct nfsreq *rep; 1552 { 1553 rep->r_flags |= R_SOFTTERM; 1554 1555 if (rep->r_flags & R_SENT) { 1556 rep->r_nmp->nm_sent -= NFS_CWNDSCALE; 1557 rep->r_flags &= ~R_SENT; 1558 } 1559 } 1560 1561 /* 1562 * Test for a termination condition pending on the process. 1563 * This is used for NFSMNT_INT mounts. 1564 */ 1565 int 1566 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td) 1567 { 1568 sigset_t tmpset; 1569 struct proc *p; 1570 1571 if (rep && (rep->r_flags & R_SOFTTERM)) 1572 return (EINTR); 1573 /* Terminate all requests while attempting a forced unmount. */ 1574 if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF) 1575 return (EINTR); 1576 if (!(nmp->nm_flag & NFSMNT_INT)) 1577 return (0); 1578 /* td might be NULL YYY */ 1579 if (td == NULL || (p = td->td_proc) == NULL) 1580 return (0); 1581 1582 tmpset = p->p_siglist; 1583 SIGSETNAND(tmpset, p->p_sigmask); 1584 SIGSETNAND(tmpset, p->p_sigignore); 1585 if (SIGNOTEMPTY(p->p_siglist) && NFSINT_SIGMASK(tmpset)) 1586 return (EINTR); 1587 1588 return (0); 1589 } 1590 1591 /* 1592 * Lock a socket against others. 1593 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply 1594 * and also to avoid race conditions between the processes with nfs requests 1595 * in progress when a reconnect is necessary. 1596 */ 1597 int 1598 nfs_sndlock(struct nfsreq *rep) 1599 { 1600 int *statep = &rep->r_nmp->nm_state; 1601 struct thread *td; 1602 int slpflag = 0, slptimeo = 0; 1603 1604 td = rep->r_td; 1605 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1606 slpflag = PCATCH; 1607 while (*statep & NFSSTA_SNDLOCK) { 1608 if (nfs_sigintr(rep->r_nmp, rep, td)) 1609 return (EINTR); 1610 *statep |= NFSSTA_WANTSND; 1611 (void) tsleep((caddr_t)statep, slpflag, 1612 "nfsndlck", slptimeo); 1613 if (slpflag == PCATCH) { 1614 slpflag = 0; 1615 slptimeo = 2 * hz; 1616 } 1617 } 1618 /* Always fail if our request has been cancelled. */ 1619 if ((rep->r_flags & R_SOFTTERM)) 1620 return (EINTR); 1621 *statep |= NFSSTA_SNDLOCK; 1622 return (0); 1623 } 1624 1625 /* 1626 * Unlock the stream socket for others. 1627 */ 1628 void 1629 nfs_sndunlock(rep) 1630 struct nfsreq *rep; 1631 { 1632 int *statep = &rep->r_nmp->nm_state; 1633 1634 if ((*statep & NFSSTA_SNDLOCK) == 0) 1635 panic("nfs sndunlock"); 1636 *statep &= ~NFSSTA_SNDLOCK; 1637 if (*statep & NFSSTA_WANTSND) { 1638 *statep &= ~NFSSTA_WANTSND; 1639 wakeup((caddr_t)statep); 1640 } 1641 } 1642 1643 static int 1644 nfs_rcvlock(rep) 1645 struct nfsreq *rep; 1646 { 1647 int *statep = &rep->r_nmp->nm_state; 1648 int slpflag, slptimeo = 0; 1649 1650 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1651 slpflag = PCATCH; 1652 else 1653 slpflag = 0; 1654 while (*statep & NFSSTA_RCVLOCK) { 1655 if (nfs_sigintr(rep->r_nmp, rep, rep->r_td)) 1656 return (EINTR); 1657 *statep |= NFSSTA_WANTRCV; 1658 (void) tsleep((caddr_t)statep, slpflag, "nfsrcvlk", slptimeo); 1659 /* 1660 * If our reply was recieved while we were sleeping, 1661 * then just return without taking the lock to avoid a 1662 * situation where a single iod could 'capture' the 1663 * recieve lock. 1664 */ 1665 if (rep->r_mrep != NULL) 1666 return (EALREADY); 1667 if (slpflag == PCATCH) { 1668 slpflag = 0; 1669 slptimeo = 2 * hz; 1670 } 1671 } 1672 *statep |= NFSSTA_RCVLOCK; 1673 return (0); 1674 } 1675 1676 /* 1677 * Unlock the stream socket for others. 1678 */ 1679 static void 1680 nfs_rcvunlock(rep) 1681 struct nfsreq *rep; 1682 { 1683 int *statep = &rep->r_nmp->nm_state; 1684 1685 if ((*statep & NFSSTA_RCVLOCK) == 0) 1686 panic("nfs rcvunlock"); 1687 *statep &= ~NFSSTA_RCVLOCK; 1688 if (*statep & NFSSTA_WANTRCV) { 1689 *statep &= ~NFSSTA_WANTRCV; 1690 wakeup((caddr_t)statep); 1691 } 1692 } 1693 1694 /* 1695 * nfs_realign: 1696 * 1697 * Check for badly aligned mbuf data and realign by copying the unaligned 1698 * portion of the data into a new mbuf chain and freeing the portions 1699 * of the old chain that were replaced. 1700 * 1701 * We cannot simply realign the data within the existing mbuf chain 1702 * because the underlying buffers may contain other rpc commands and 1703 * we cannot afford to overwrite them. 1704 * 1705 * We would prefer to avoid this situation entirely. The situation does 1706 * not occur with NFS/UDP and is supposed to only occassionally occur 1707 * with TCP. Use vfs.nfs.realign_count and realign_test to check this. 1708 */ 1709 static void 1710 nfs_realign(pm, hsiz) 1711 struct mbuf **pm; 1712 int hsiz; 1713 { 1714 struct mbuf *m; 1715 struct mbuf *n = NULL; 1716 int off = 0; 1717 1718 ++nfs_realign_test; 1719 1720 while ((m = *pm) != NULL) { 1721 if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3)) { 1722 MGET(n, M_WAIT, MT_DATA); 1723 if (m->m_len >= MINCLSIZE) { 1724 MCLGET(n, M_WAIT); 1725 } 1726 n->m_len = 0; 1727 break; 1728 } 1729 pm = &m->m_next; 1730 } 1731 1732 /* 1733 * If n is non-NULL, loop on m copying data, then replace the 1734 * portion of the chain that had to be realigned. 1735 */ 1736 if (n != NULL) { 1737 ++nfs_realign_count; 1738 while (m) { 1739 m_copyback(n, off, m->m_len, mtod(m, caddr_t)); 1740 off += m->m_len; 1741 m = m->m_next; 1742 } 1743 m_freem(*pm); 1744 *pm = n; 1745 } 1746 } 1747 1748 #ifndef NFS_NOSERVER 1749 1750 /* 1751 * Parse an RPC request 1752 * - verify it 1753 * - fill in the cred struct. 1754 */ 1755 int 1756 nfs_getreq(nd, nfsd, has_header) 1757 struct nfsrv_descript *nd; 1758 struct nfsd *nfsd; 1759 int has_header; 1760 { 1761 int len, i; 1762 u_int32_t *tl; 1763 int32_t t1; 1764 struct uio uio; 1765 struct iovec iov; 1766 caddr_t dpos, cp2, cp; 1767 u_int32_t nfsvers, auth_type; 1768 uid_t nickuid; 1769 int error = 0, nqnfs = 0, ticklen; 1770 struct mbuf *mrep, *md; 1771 struct nfsuid *nuidp; 1772 struct timeval tvin, tvout; 1773 #if 0 /* until encrypted keys are implemented */ 1774 NFSKERBKEYSCHED_T keys; /* stores key schedule */ 1775 #endif 1776 1777 mrep = nd->nd_mrep; 1778 md = nd->nd_md; 1779 dpos = nd->nd_dpos; 1780 if (has_header) { 1781 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); 1782 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); 1783 if (*tl++ != rpc_call) { 1784 m_freem(mrep); 1785 return (EBADRPC); 1786 } 1787 } else 1788 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 1789 nd->nd_repstat = 0; 1790 nd->nd_flag = 0; 1791 if (*tl++ != rpc_vers) { 1792 nd->nd_repstat = ERPCMISMATCH; 1793 nd->nd_procnum = NFSPROC_NOOP; 1794 return (0); 1795 } 1796 if (*tl != nfs_prog) { 1797 if (*tl == nqnfs_prog) 1798 nqnfs++; 1799 else { 1800 nd->nd_repstat = EPROGUNAVAIL; 1801 nd->nd_procnum = NFSPROC_NOOP; 1802 return (0); 1803 } 1804 } 1805 tl++; 1806 nfsvers = fxdr_unsigned(u_int32_t, *tl++); 1807 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) || 1808 (nfsvers != NQNFS_VER3 && nqnfs)) { 1809 nd->nd_repstat = EPROGMISMATCH; 1810 nd->nd_procnum = NFSPROC_NOOP; 1811 return (0); 1812 } 1813 if (nqnfs) 1814 nd->nd_flag = (ND_NFSV3 | ND_NQNFS); 1815 else if (nfsvers == NFS_VER3) 1816 nd->nd_flag = ND_NFSV3; 1817 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); 1818 if (nd->nd_procnum == NFSPROC_NULL) 1819 return (0); 1820 if (nd->nd_procnum >= NFS_NPROCS || 1821 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) || 1822 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { 1823 nd->nd_repstat = EPROCUNAVAIL; 1824 nd->nd_procnum = NFSPROC_NOOP; 1825 return (0); 1826 } 1827 if ((nd->nd_flag & ND_NFSV3) == 0) 1828 nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; 1829 auth_type = *tl++; 1830 len = fxdr_unsigned(int, *tl++); 1831 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1832 m_freem(mrep); 1833 return (EBADRPC); 1834 } 1835 1836 nd->nd_flag &= ~ND_KERBAUTH; 1837 /* 1838 * Handle auth_unix or auth_kerb. 1839 */ 1840 if (auth_type == rpc_auth_unix) { 1841 len = fxdr_unsigned(int, *++tl); 1842 if (len < 0 || len > NFS_MAXNAMLEN) { 1843 m_freem(mrep); 1844 return (EBADRPC); 1845 } 1846 nfsm_adv(nfsm_rndup(len)); 1847 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1848 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred)); 1849 nd->nd_cr.cr_ref = 1; 1850 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++); 1851 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++); 1852 len = fxdr_unsigned(int, *tl); 1853 if (len < 0 || len > RPCAUTH_UNIXGIDS) { 1854 m_freem(mrep); 1855 return (EBADRPC); 1856 } 1857 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); 1858 for (i = 1; i <= len; i++) 1859 if (i < NGROUPS) 1860 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++); 1861 else 1862 tl++; 1863 nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1); 1864 if (nd->nd_cr.cr_ngroups > 1) 1865 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups); 1866 len = fxdr_unsigned(int, *++tl); 1867 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1868 m_freem(mrep); 1869 return (EBADRPC); 1870 } 1871 if (len > 0) 1872 nfsm_adv(nfsm_rndup(len)); 1873 } else if (auth_type == rpc_auth_kerb) { 1874 switch (fxdr_unsigned(int, *tl++)) { 1875 case RPCAKN_FULLNAME: 1876 ticklen = fxdr_unsigned(int, *tl); 1877 *((u_int32_t *)nfsd->nfsd_authstr) = *tl; 1878 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; 1879 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; 1880 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { 1881 m_freem(mrep); 1882 return (EBADRPC); 1883 } 1884 uio.uio_offset = 0; 1885 uio.uio_iov = &iov; 1886 uio.uio_iovcnt = 1; 1887 uio.uio_segflg = UIO_SYSSPACE; 1888 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4]; 1889 iov.iov_len = RPCAUTH_MAXSIZ - 4; 1890 nfsm_mtouio(&uio, uio.uio_resid); 1891 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1892 if (*tl++ != rpc_auth_kerb || 1893 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { 1894 printf("Bad kerb verifier\n"); 1895 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1896 nd->nd_procnum = NFSPROC_NOOP; 1897 return (0); 1898 } 1899 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED); 1900 tl = (u_int32_t *)cp; 1901 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { 1902 printf("Not fullname kerb verifier\n"); 1903 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1904 nd->nd_procnum = NFSPROC_NOOP; 1905 return (0); 1906 } 1907 cp += NFSX_UNSIGNED; 1908 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED); 1909 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; 1910 nd->nd_flag |= ND_KERBFULL; 1911 nfsd->nfsd_flag |= NFSD_NEEDAUTH; 1912 break; 1913 case RPCAKN_NICKNAME: 1914 if (len != 2 * NFSX_UNSIGNED) { 1915 printf("Kerb nickname short\n"); 1916 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); 1917 nd->nd_procnum = NFSPROC_NOOP; 1918 return (0); 1919 } 1920 nickuid = fxdr_unsigned(uid_t, *tl); 1921 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1922 if (*tl++ != rpc_auth_kerb || 1923 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { 1924 printf("Kerb nick verifier bad\n"); 1925 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1926 nd->nd_procnum = NFSPROC_NOOP; 1927 return (0); 1928 } 1929 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1930 tvin.tv_sec = *tl++; 1931 tvin.tv_usec = *tl; 1932 1933 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first; 1934 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1935 if (nuidp->nu_cr.cr_uid == nickuid && 1936 (!nd->nd_nam2 || 1937 netaddr_match(NU_NETFAM(nuidp), 1938 &nuidp->nu_haddr, nd->nd_nam2))) 1939 break; 1940 } 1941 if (!nuidp) { 1942 nd->nd_repstat = 1943 (NFSERR_AUTHERR|AUTH_REJECTCRED); 1944 nd->nd_procnum = NFSPROC_NOOP; 1945 return (0); 1946 } 1947 1948 /* 1949 * Now, decrypt the timestamp using the session key 1950 * and validate it. 1951 */ 1952 #ifdef NFSKERB 1953 XXX 1954 #endif 1955 1956 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); 1957 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); 1958 if (nuidp->nu_expire < time_second || 1959 nuidp->nu_timestamp.tv_sec > tvout.tv_sec || 1960 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && 1961 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { 1962 nuidp->nu_expire = 0; 1963 nd->nd_repstat = 1964 (NFSERR_AUTHERR|AUTH_REJECTVERF); 1965 nd->nd_procnum = NFSPROC_NOOP; 1966 return (0); 1967 } 1968 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr); 1969 nd->nd_flag |= ND_KERBNICK; 1970 }; 1971 } else { 1972 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); 1973 nd->nd_procnum = NFSPROC_NOOP; 1974 return (0); 1975 } 1976 1977 /* 1978 * For nqnfs, get piggybacked lease request. 1979 */ 1980 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) { 1981 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1982 nd->nd_flag |= fxdr_unsigned(int, *tl); 1983 if (nd->nd_flag & ND_LEASE) { 1984 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1985 nd->nd_duration = fxdr_unsigned(int32_t, *tl); 1986 } else 1987 nd->nd_duration = NQ_MINLEASE; 1988 } else 1989 nd->nd_duration = NQ_MINLEASE; 1990 nd->nd_md = md; 1991 nd->nd_dpos = dpos; 1992 return (0); 1993 nfsmout: 1994 return (error); 1995 } 1996 1997 #endif 1998 1999 /* 2000 * Send a message to the originating process's terminal. The thread and/or 2001 * process may be NULL. YYY the thread should not be NULL but there may 2002 * still be some uio_td's that are still being passed as NULL through to 2003 * nfsm_request(). 2004 */ 2005 static int 2006 nfs_msg(struct thread *td, char *server, char *msg) 2007 { 2008 tpr_t tpr; 2009 2010 if (td && td->td_proc) 2011 tpr = tprintf_open(td->td_proc); 2012 else 2013 tpr = NULL; 2014 tprintf(tpr, "nfs server %s: %s\n", server, msg); 2015 tprintf_close(tpr); 2016 return (0); 2017 } 2018 2019 #ifndef NFS_NOSERVER 2020 /* 2021 * Socket upcall routine for the nfsd sockets. 2022 * The caddr_t arg is a pointer to the "struct nfssvc_sock". 2023 * Essentially do as much as possible non-blocking, else punt and it will 2024 * be called with M_WAIT from an nfsd. 2025 */ 2026 void 2027 nfsrv_rcv(so, arg, waitflag) 2028 struct socket *so; 2029 void *arg; 2030 int waitflag; 2031 { 2032 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; 2033 struct mbuf *m; 2034 struct mbuf *mp; 2035 struct sockaddr *nam; 2036 struct uio auio; 2037 int flags, error; 2038 2039 if ((slp->ns_flag & SLP_VALID) == 0) 2040 return; 2041 #ifdef notdef 2042 /* 2043 * Define this to test for nfsds handling this under heavy load. 2044 */ 2045 if (waitflag == M_DONTWAIT) { 2046 slp->ns_flag |= SLP_NEEDQ; goto dorecs; 2047 } 2048 #endif 2049 auio.uio_td = NULL; 2050 if (so->so_type == SOCK_STREAM) { 2051 /* 2052 * If there are already records on the queue, defer soreceive() 2053 * to an nfsd so that there is feedback to the TCP layer that 2054 * the nfs servers are heavily loaded. 2055 */ 2056 if (STAILQ_FIRST(&slp->ns_rec) && waitflag == M_DONTWAIT) { 2057 slp->ns_flag |= SLP_NEEDQ; 2058 goto dorecs; 2059 } 2060 2061 /* 2062 * Do soreceive(). 2063 */ 2064 auio.uio_resid = 1000000000; 2065 flags = MSG_DONTWAIT; 2066 error = so_pru_soreceive(so, &nam, &auio, &mp, NULL, &flags); 2067 if (error || mp == (struct mbuf *)0) { 2068 if (error == EWOULDBLOCK) 2069 slp->ns_flag |= SLP_NEEDQ; 2070 else 2071 slp->ns_flag |= SLP_DISCONN; 2072 goto dorecs; 2073 } 2074 m = mp; 2075 if (slp->ns_rawend) { 2076 slp->ns_rawend->m_next = m; 2077 slp->ns_cc += 1000000000 - auio.uio_resid; 2078 } else { 2079 slp->ns_raw = m; 2080 slp->ns_cc = 1000000000 - auio.uio_resid; 2081 } 2082 while (m->m_next) 2083 m = m->m_next; 2084 slp->ns_rawend = m; 2085 2086 /* 2087 * Now try and parse record(s) out of the raw stream data. 2088 */ 2089 error = nfsrv_getstream(slp, waitflag); 2090 if (error) { 2091 if (error == EPERM) 2092 slp->ns_flag |= SLP_DISCONN; 2093 else 2094 slp->ns_flag |= SLP_NEEDQ; 2095 } 2096 } else { 2097 do { 2098 auio.uio_resid = 1000000000; 2099 flags = MSG_DONTWAIT; 2100 error = so_pru_soreceive(so, &nam, &auio, &mp, NULL, 2101 &flags); 2102 if (mp) { 2103 struct nfsrv_rec *rec; 2104 int mf = (waitflag & M_DONTWAIT) ? 2105 M_NOWAIT : M_WAITOK; 2106 rec = malloc(sizeof(struct nfsrv_rec), 2107 M_NFSRVDESC, mf); 2108 if (!rec) { 2109 if (nam) 2110 FREE(nam, M_SONAME); 2111 m_freem(mp); 2112 continue; 2113 } 2114 nfs_realign(&mp, 10 * NFSX_UNSIGNED); 2115 rec->nr_address = nam; 2116 rec->nr_packet = mp; 2117 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link); 2118 } 2119 if (error) { 2120 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) 2121 && error != EWOULDBLOCK) { 2122 slp->ns_flag |= SLP_DISCONN; 2123 goto dorecs; 2124 } 2125 } 2126 } while (mp); 2127 } 2128 2129 /* 2130 * Now try and process the request records, non-blocking. 2131 */ 2132 dorecs: 2133 if (waitflag == M_DONTWAIT && 2134 (STAILQ_FIRST(&slp->ns_rec) 2135 || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) 2136 nfsrv_wakenfsd(slp); 2137 } 2138 2139 /* 2140 * Try and extract an RPC request from the mbuf data list received on a 2141 * stream socket. The "waitflag" argument indicates whether or not it 2142 * can sleep. 2143 */ 2144 static int 2145 nfsrv_getstream(slp, waitflag) 2146 struct nfssvc_sock *slp; 2147 int waitflag; 2148 { 2149 struct mbuf *m, **mpp; 2150 char *cp1, *cp2; 2151 int len; 2152 struct mbuf *om, *m2, *recm; 2153 u_int32_t recmark; 2154 2155 if (slp->ns_flag & SLP_GETSTREAM) 2156 panic("nfs getstream"); 2157 slp->ns_flag |= SLP_GETSTREAM; 2158 for (;;) { 2159 if (slp->ns_reclen == 0) { 2160 if (slp->ns_cc < NFSX_UNSIGNED) { 2161 slp->ns_flag &= ~SLP_GETSTREAM; 2162 return (0); 2163 } 2164 m = slp->ns_raw; 2165 if (m->m_len >= NFSX_UNSIGNED) { 2166 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED); 2167 m->m_data += NFSX_UNSIGNED; 2168 m->m_len -= NFSX_UNSIGNED; 2169 } else { 2170 cp1 = (caddr_t)&recmark; 2171 cp2 = mtod(m, caddr_t); 2172 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) { 2173 while (m->m_len == 0) { 2174 m = m->m_next; 2175 cp2 = mtod(m, caddr_t); 2176 } 2177 *cp1++ = *cp2++; 2178 m->m_data++; 2179 m->m_len--; 2180 } 2181 } 2182 slp->ns_cc -= NFSX_UNSIGNED; 2183 recmark = ntohl(recmark); 2184 slp->ns_reclen = recmark & ~0x80000000; 2185 if (recmark & 0x80000000) 2186 slp->ns_flag |= SLP_LASTFRAG; 2187 else 2188 slp->ns_flag &= ~SLP_LASTFRAG; 2189 if (slp->ns_reclen > NFS_MAXPACKET) { 2190 slp->ns_flag &= ~SLP_GETSTREAM; 2191 return (EPERM); 2192 } 2193 } 2194 2195 /* 2196 * Now get the record part. 2197 * 2198 * Note that slp->ns_reclen may be 0. Linux sometimes 2199 * generates 0-length RPCs 2200 */ 2201 recm = NULL; 2202 if (slp->ns_cc == slp->ns_reclen) { 2203 recm = slp->ns_raw; 2204 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0; 2205 slp->ns_cc = slp->ns_reclen = 0; 2206 } else if (slp->ns_cc > slp->ns_reclen) { 2207 len = 0; 2208 m = slp->ns_raw; 2209 om = (struct mbuf *)0; 2210 2211 while (len < slp->ns_reclen) { 2212 if ((len + m->m_len) > slp->ns_reclen) { 2213 m2 = m_copym(m, 0, slp->ns_reclen - len, 2214 waitflag); 2215 if (m2) { 2216 if (om) { 2217 om->m_next = m2; 2218 recm = slp->ns_raw; 2219 } else 2220 recm = m2; 2221 m->m_data += slp->ns_reclen - len; 2222 m->m_len -= slp->ns_reclen - len; 2223 len = slp->ns_reclen; 2224 } else { 2225 slp->ns_flag &= ~SLP_GETSTREAM; 2226 return (EWOULDBLOCK); 2227 } 2228 } else if ((len + m->m_len) == slp->ns_reclen) { 2229 om = m; 2230 len += m->m_len; 2231 m = m->m_next; 2232 recm = slp->ns_raw; 2233 om->m_next = (struct mbuf *)0; 2234 } else { 2235 om = m; 2236 len += m->m_len; 2237 m = m->m_next; 2238 } 2239 } 2240 slp->ns_raw = m; 2241 slp->ns_cc -= len; 2242 slp->ns_reclen = 0; 2243 } else { 2244 slp->ns_flag &= ~SLP_GETSTREAM; 2245 return (0); 2246 } 2247 2248 /* 2249 * Accumulate the fragments into a record. 2250 */ 2251 mpp = &slp->ns_frag; 2252 while (*mpp) 2253 mpp = &((*mpp)->m_next); 2254 *mpp = recm; 2255 if (slp->ns_flag & SLP_LASTFRAG) { 2256 struct nfsrv_rec *rec; 2257 int mf = (waitflag & M_DONTWAIT) ? M_NOWAIT : M_WAITOK; 2258 rec = malloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf); 2259 if (!rec) { 2260 m_freem(slp->ns_frag); 2261 } else { 2262 nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED); 2263 rec->nr_address = (struct sockaddr *)0; 2264 rec->nr_packet = slp->ns_frag; 2265 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link); 2266 } 2267 slp->ns_frag = (struct mbuf *)0; 2268 } 2269 } 2270 } 2271 2272 /* 2273 * Parse an RPC header. 2274 */ 2275 int 2276 nfsrv_dorec(slp, nfsd, ndp) 2277 struct nfssvc_sock *slp; 2278 struct nfsd *nfsd; 2279 struct nfsrv_descript **ndp; 2280 { 2281 struct nfsrv_rec *rec; 2282 struct mbuf *m; 2283 struct sockaddr *nam; 2284 struct nfsrv_descript *nd; 2285 int error; 2286 2287 *ndp = NULL; 2288 if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec)) 2289 return (ENOBUFS); 2290 rec = STAILQ_FIRST(&slp->ns_rec); 2291 STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link); 2292 nam = rec->nr_address; 2293 m = rec->nr_packet; 2294 free(rec, M_NFSRVDESC); 2295 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript), 2296 M_NFSRVDESC, M_WAITOK); 2297 nd->nd_md = nd->nd_mrep = m; 2298 nd->nd_nam2 = nam; 2299 nd->nd_dpos = mtod(m, caddr_t); 2300 error = nfs_getreq(nd, nfsd, TRUE); 2301 if (error) { 2302 if (nam) { 2303 FREE(nam, M_SONAME); 2304 } 2305 free((caddr_t)nd, M_NFSRVDESC); 2306 return (error); 2307 } 2308 *ndp = nd; 2309 nfsd->nfsd_nd = nd; 2310 return (0); 2311 } 2312 2313 /* 2314 * Search for a sleeping nfsd and wake it up. 2315 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the 2316 * running nfsds will go look for the work in the nfssvc_sock list. 2317 */ 2318 void 2319 nfsrv_wakenfsd(slp) 2320 struct nfssvc_sock *slp; 2321 { 2322 struct nfsd *nd; 2323 2324 if ((slp->ns_flag & SLP_VALID) == 0) 2325 return; 2326 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) { 2327 if (nd->nfsd_flag & NFSD_WAITING) { 2328 nd->nfsd_flag &= ~NFSD_WAITING; 2329 if (nd->nfsd_slp) 2330 panic("nfsd wakeup"); 2331 slp->ns_sref++; 2332 nd->nfsd_slp = slp; 2333 wakeup((caddr_t)nd); 2334 return; 2335 } 2336 } 2337 slp->ns_flag |= SLP_DOREC; 2338 nfsd_head_flag |= NFSD_CHECKSLP; 2339 } 2340 #endif /* NFS_NOSERVER */ 2341