1 /* 2 * Copyright (c) 1989, 1991, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 37 * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $ 38 * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.6 2003/07/26 21:48:48 rob Exp $ 39 */ 40 41 /* 42 * Socket operations for use by nfs 43 */ 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/proc.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/kernel.h> 51 #include <sys/mbuf.h> 52 #include <sys/vnode.h> 53 #include <sys/protosw.h> 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 #include <sys/syslog.h> 57 #include <sys/tprintf.h> 58 #include <sys/sysctl.h> 59 #include <sys/signalvar.h> 60 61 #include <netinet/in.h> 62 #include <netinet/tcp.h> 63 64 #include <nfs/rpcv2.h> 65 #include <nfs/nfsproto.h> 66 #include <nfs/nfs.h> 67 #include <nfs/xdr_subs.h> 68 #include <nfs/nfsm_subs.h> 69 #include <nfs/nfsmount.h> 70 #include <nfs/nfsnode.h> 71 #include <nfs/nfsrtt.h> 72 #include <nfs/nqnfs.h> 73 74 #define TRUE 1 75 #define FALSE 0 76 77 /* 78 * Estimate rto for an nfs rpc sent via. an unreliable datagram. 79 * Use the mean and mean deviation of rtt for the appropriate type of rpc 80 * for the frequent rpcs and a default for the others. 81 * The justification for doing "other" this way is that these rpcs 82 * happen so infrequently that timer est. would probably be stale. 83 * Also, since many of these rpcs are 84 * non-idempotent, a conservative timeout is desired. 85 * getattr, lookup - A+2D 86 * read, write - A+4D 87 * other - nm_timeo 88 */ 89 #define NFS_RTO(n, t) \ 90 ((t) == 0 ? (n)->nm_timeo : \ 91 ((t) < 3 ? \ 92 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ 93 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) 94 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1] 95 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1] 96 /* 97 * External data, mostly RPC constants in XDR form 98 */ 99 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, 100 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr, 101 rpc_auth_kerb; 102 extern u_int32_t nfs_prog, nqnfs_prog; 103 extern time_t nqnfsstarttime; 104 extern struct nfsstats nfsstats; 105 extern int nfsv3_procid[NFS_NPROCS]; 106 extern int nfs_ticks; 107 108 /* 109 * Defines which timer to use for the procnum. 110 * 0 - default 111 * 1 - getattr 112 * 2 - lookup 113 * 3 - read 114 * 4 - write 115 */ 116 static int proct[NFS_NPROCS] = { 117 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 118 0, 0, 0, 119 }; 120 121 static int nfs_realign_test; 122 static int nfs_realign_count; 123 static int nfs_bufpackets = 4; 124 125 SYSCTL_DECL(_vfs_nfs); 126 127 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, ""); 128 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, ""); 129 SYSCTL_INT(_vfs_nfs, OID_AUTO, bufpackets, CTLFLAG_RW, &nfs_bufpackets, 0, ""); 130 131 132 /* 133 * There is a congestion window for outstanding rpcs maintained per mount 134 * point. The cwnd size is adjusted in roughly the way that: 135 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of 136 * SIGCOMM '88". ACM, August 1988. 137 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout 138 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd 139 * of rpcs is in progress. 140 * (The sent count and cwnd are scaled for integer arith.) 141 * Variants of "slow start" were tried and were found to be too much of a 142 * performance hit (ave. rtt 3 times larger), 143 * I suspect due to the large rtt that nfs rpcs have. 144 */ 145 #define NFS_CWNDSCALE 256 146 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) 147 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; 148 int nfsrtton = 0; 149 struct nfsrtt nfsrtt; 150 struct callout_handle nfs_timer_handle; 151 152 static int nfs_msg __P((struct thread *,char *,char *)); 153 static int nfs_rcvlock __P((struct nfsreq *)); 154 static void nfs_rcvunlock __P((struct nfsreq *)); 155 static void nfs_realign __P((struct mbuf **pm, int hsiz)); 156 static int nfs_receive __P((struct nfsreq *rep, struct sockaddr **aname, 157 struct mbuf **mp)); 158 static void nfs_softterm __P((struct nfsreq *rep)); 159 static int nfs_reconnect __P((struct nfsreq *rep)); 160 #ifndef NFS_NOSERVER 161 static int nfsrv_getstream __P((struct nfssvc_sock *,int)); 162 163 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *nd, 164 struct nfssvc_sock *slp, 165 struct thread *td, 166 struct mbuf **mreqp)) = { 167 nfsrv_null, 168 nfsrv_getattr, 169 nfsrv_setattr, 170 nfsrv_lookup, 171 nfsrv3_access, 172 nfsrv_readlink, 173 nfsrv_read, 174 nfsrv_write, 175 nfsrv_create, 176 nfsrv_mkdir, 177 nfsrv_symlink, 178 nfsrv_mknod, 179 nfsrv_remove, 180 nfsrv_rmdir, 181 nfsrv_rename, 182 nfsrv_link, 183 nfsrv_readdir, 184 nfsrv_readdirplus, 185 nfsrv_statfs, 186 nfsrv_fsinfo, 187 nfsrv_pathconf, 188 nfsrv_commit, 189 nqnfsrv_getlease, 190 nqnfsrv_vacated, 191 nfsrv_noop, 192 nfsrv_noop 193 }; 194 #endif /* NFS_NOSERVER */ 195 196 /* 197 * Initialize sockets and congestion for a new NFS connection. 198 * We do not free the sockaddr if error. 199 */ 200 int 201 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep) 202 { 203 struct socket *so; 204 int s, error, rcvreserve, sndreserve; 205 int pktscale; 206 struct sockaddr *saddr; 207 struct sockaddr_in *sin; 208 struct thread *td = &thread0; /* only used for socreate and sobind */ 209 210 nmp->nm_so = (struct socket *)0; 211 saddr = nmp->nm_nam; 212 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, 213 nmp->nm_soproto, td); 214 if (error) 215 goto bad; 216 so = nmp->nm_so; 217 nmp->nm_soflags = so->so_proto->pr_flags; 218 219 /* 220 * Some servers require that the client port be a reserved port number. 221 */ 222 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) { 223 struct sockopt sopt; 224 int ip; 225 struct sockaddr_in ssin; 226 227 bzero(&sopt, sizeof sopt); 228 ip = IP_PORTRANGE_LOW; 229 sopt.sopt_dir = SOPT_SET; 230 sopt.sopt_level = IPPROTO_IP; 231 sopt.sopt_name = IP_PORTRANGE; 232 sopt.sopt_val = (void *)&ip; 233 sopt.sopt_valsize = sizeof(ip); 234 sopt.sopt_td = NULL; 235 error = sosetopt(so, &sopt); 236 if (error) 237 goto bad; 238 bzero(&ssin, sizeof ssin); 239 sin = &ssin; 240 sin->sin_len = sizeof (struct sockaddr_in); 241 sin->sin_family = AF_INET; 242 sin->sin_addr.s_addr = INADDR_ANY; 243 sin->sin_port = htons(0); 244 error = sobind(so, (struct sockaddr *)sin, td); 245 if (error) 246 goto bad; 247 bzero(&sopt, sizeof sopt); 248 ip = IP_PORTRANGE_DEFAULT; 249 sopt.sopt_dir = SOPT_SET; 250 sopt.sopt_level = IPPROTO_IP; 251 sopt.sopt_name = IP_PORTRANGE; 252 sopt.sopt_val = (void *)&ip; 253 sopt.sopt_valsize = sizeof(ip); 254 sopt.sopt_td = NULL; 255 error = sosetopt(so, &sopt); 256 if (error) 257 goto bad; 258 } 259 260 /* 261 * Protocols that do not require connections may be optionally left 262 * unconnected for servers that reply from a port other than NFS_PORT. 263 */ 264 if (nmp->nm_flag & NFSMNT_NOCONN) { 265 if (nmp->nm_soflags & PR_CONNREQUIRED) { 266 error = ENOTCONN; 267 goto bad; 268 } 269 } else { 270 error = soconnect(so, nmp->nm_nam, td); 271 if (error) 272 goto bad; 273 274 /* 275 * Wait for the connection to complete. Cribbed from the 276 * connect system call but with the wait timing out so 277 * that interruptible mounts don't hang here for a long time. 278 */ 279 s = splnet(); 280 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 281 (void) tsleep((caddr_t)&so->so_timeo, 0, 282 "nfscon", 2 * hz); 283 if ((so->so_state & SS_ISCONNECTING) && 284 so->so_error == 0 && rep && 285 (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){ 286 so->so_state &= ~SS_ISCONNECTING; 287 splx(s); 288 goto bad; 289 } 290 } 291 if (so->so_error) { 292 error = so->so_error; 293 so->so_error = 0; 294 splx(s); 295 goto bad; 296 } 297 splx(s); 298 } 299 so->so_rcv.sb_timeo = (5 * hz); 300 so->so_snd.sb_timeo = (5 * hz); 301 302 /* 303 * Get buffer reservation size from sysctl, but impose reasonable 304 * limits. 305 */ 306 pktscale = nfs_bufpackets; 307 if (pktscale < 2) 308 pktscale = 2; 309 if (pktscale > 64) 310 pktscale = 64; 311 312 if (nmp->nm_sotype == SOCK_DGRAM) { 313 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; 314 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 315 NFS_MAXPKTHDR) * pktscale; 316 } else if (nmp->nm_sotype == SOCK_SEQPACKET) { 317 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; 318 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 319 NFS_MAXPKTHDR) * pktscale; 320 } else { 321 if (nmp->nm_sotype != SOCK_STREAM) 322 panic("nfscon sotype"); 323 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 324 struct sockopt sopt; 325 int val; 326 327 bzero(&sopt, sizeof sopt); 328 sopt.sopt_level = SOL_SOCKET; 329 sopt.sopt_name = SO_KEEPALIVE; 330 sopt.sopt_val = &val; 331 sopt.sopt_valsize = sizeof val; 332 val = 1; 333 sosetopt(so, &sopt); 334 } 335 if (so->so_proto->pr_protocol == IPPROTO_TCP) { 336 struct sockopt sopt; 337 int val; 338 339 bzero(&sopt, sizeof sopt); 340 sopt.sopt_level = IPPROTO_TCP; 341 sopt.sopt_name = TCP_NODELAY; 342 sopt.sopt_val = &val; 343 sopt.sopt_valsize = sizeof val; 344 val = 1; 345 sosetopt(so, &sopt); 346 } 347 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + 348 sizeof (u_int32_t)) * pktscale; 349 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + 350 sizeof (u_int32_t)) * pktscale; 351 } 352 error = soreserve(so, sndreserve, rcvreserve); 353 if (error) 354 goto bad; 355 so->so_rcv.sb_flags |= SB_NOINTR; 356 so->so_snd.sb_flags |= SB_NOINTR; 357 358 /* Initialize other non-zero congestion variables */ 359 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = 360 nmp->nm_srtt[3] = (NFS_TIMEO << 3); 361 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = 362 nmp->nm_sdrtt[3] = 0; 363 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ 364 nmp->nm_sent = 0; 365 nmp->nm_timeouts = 0; 366 return (0); 367 368 bad: 369 nfs_disconnect(nmp); 370 return (error); 371 } 372 373 /* 374 * Reconnect routine: 375 * Called when a connection is broken on a reliable protocol. 376 * - clean up the old socket 377 * - nfs_connect() again 378 * - set R_MUSTRESEND for all outstanding requests on mount point 379 * If this fails the mount point is DEAD! 380 * nb: Must be called with the nfs_sndlock() set on the mount point. 381 */ 382 static int 383 nfs_reconnect(rep) 384 struct nfsreq *rep; 385 { 386 struct nfsreq *rp; 387 struct nfsmount *nmp = rep->r_nmp; 388 int error; 389 390 nfs_disconnect(nmp); 391 while ((error = nfs_connect(nmp, rep)) != 0) { 392 if (error == EINTR || error == ERESTART) 393 return (EINTR); 394 (void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0); 395 } 396 397 /* 398 * Loop through outstanding request list and fix up all requests 399 * on old socket. 400 */ 401 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) { 402 if (rp->r_nmp == nmp) 403 rp->r_flags |= R_MUSTRESEND; 404 } 405 return (0); 406 } 407 408 /* 409 * NFS disconnect. Clean up and unlink. 410 */ 411 void 412 nfs_disconnect(nmp) 413 struct nfsmount *nmp; 414 { 415 struct socket *so; 416 417 if (nmp->nm_so) { 418 so = nmp->nm_so; 419 nmp->nm_so = (struct socket *)0; 420 soshutdown(so, 2); 421 soclose(so); 422 } 423 } 424 425 void 426 nfs_safedisconnect(nmp) 427 struct nfsmount *nmp; 428 { 429 struct nfsreq dummyreq; 430 431 bzero(&dummyreq, sizeof(dummyreq)); 432 dummyreq.r_nmp = nmp; 433 nfs_rcvlock(&dummyreq); 434 nfs_disconnect(nmp); 435 nfs_rcvunlock(&dummyreq); 436 } 437 438 /* 439 * This is the nfs send routine. For connection based socket types, it 440 * must be called with an nfs_sndlock() on the socket. 441 * "rep == NULL" indicates that it has been called from a server. 442 * For the client side: 443 * - return EINTR if the RPC is terminated, 0 otherwise 444 * - set R_MUSTRESEND if the send fails for any reason 445 * - do any cleanup required by recoverable socket errors (?) 446 * For the server side: 447 * - return EINTR or ERESTART if interrupted by a signal 448 * - return EPIPE if a connection is lost for connection based sockets (TCP...) 449 * - do any cleanup required by recoverable socket errors (?) 450 */ 451 int 452 nfs_send(so, nam, top, rep) 453 struct socket *so; 454 struct sockaddr *nam; 455 struct mbuf *top; 456 struct nfsreq *rep; 457 { 458 struct sockaddr *sendnam; 459 int error, soflags, flags; 460 461 if (rep) { 462 if (rep->r_flags & R_SOFTTERM) { 463 m_freem(top); 464 return (EINTR); 465 } 466 if ((so = rep->r_nmp->nm_so) == NULL) { 467 rep->r_flags |= R_MUSTRESEND; 468 m_freem(top); 469 return (0); 470 } 471 rep->r_flags &= ~R_MUSTRESEND; 472 soflags = rep->r_nmp->nm_soflags; 473 } else 474 soflags = so->so_proto->pr_flags; 475 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) 476 sendnam = (struct sockaddr *)0; 477 else 478 sendnam = nam; 479 if (so->so_type == SOCK_SEQPACKET) 480 flags = MSG_EOR; 481 else 482 flags = 0; 483 484 error = so->so_proto->pr_usrreqs->pru_sosend 485 (so, sendnam, 0, top, 0, flags, curthread /*XXX*/); 486 /* 487 * ENOBUFS for dgram sockets is transient and non fatal. 488 * No need to log, and no need to break a soft mount. 489 */ 490 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) { 491 error = 0; 492 if (rep) /* do backoff retransmit on client */ 493 rep->r_flags |= R_MUSTRESEND; 494 } 495 496 if (error) { 497 if (rep) { 498 log(LOG_INFO, "nfs send error %d for server %s\n",error, 499 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 500 /* 501 * Deal with errors for the client side. 502 */ 503 if (rep->r_flags & R_SOFTTERM) 504 error = EINTR; 505 else 506 rep->r_flags |= R_MUSTRESEND; 507 } else 508 log(LOG_INFO, "nfsd send error %d\n", error); 509 510 /* 511 * Handle any recoverable (soft) socket errors here. (?) 512 */ 513 if (error != EINTR && error != ERESTART && 514 error != EWOULDBLOCK && error != EPIPE) 515 error = 0; 516 } 517 return (error); 518 } 519 520 /* 521 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all 522 * done by soreceive(), but for SOCK_STREAM we must deal with the Record 523 * Mark and consolidate the data into a new mbuf list. 524 * nb: Sometimes TCP passes the data up to soreceive() in long lists of 525 * small mbufs. 526 * For SOCK_STREAM we must be very careful to read an entire record once 527 * we have read any of it, even if the system call has been interrupted. 528 */ 529 static int 530 nfs_receive(struct nfsreq *rep, struct sockaddr **aname, struct mbuf **mp) 531 { 532 struct socket *so; 533 struct uio auio; 534 struct iovec aio; 535 struct mbuf *m; 536 struct mbuf *control; 537 u_int32_t len; 538 struct sockaddr **getnam; 539 int error, sotype, rcvflg; 540 struct thread *td = curthread; /* XXX */ 541 542 /* 543 * Set up arguments for soreceive() 544 */ 545 *mp = (struct mbuf *)0; 546 *aname = (struct sockaddr *)0; 547 sotype = rep->r_nmp->nm_sotype; 548 549 /* 550 * For reliable protocols, lock against other senders/receivers 551 * in case a reconnect is necessary. 552 * For SOCK_STREAM, first get the Record Mark to find out how much 553 * more there is to get. 554 * We must lock the socket against other receivers 555 * until we have an entire rpc request/reply. 556 */ 557 if (sotype != SOCK_DGRAM) { 558 error = nfs_sndlock(rep); 559 if (error) 560 return (error); 561 tryagain: 562 /* 563 * Check for fatal errors and resending request. 564 */ 565 /* 566 * Ugh: If a reconnect attempt just happened, nm_so 567 * would have changed. NULL indicates a failed 568 * attempt that has essentially shut down this 569 * mount point. 570 */ 571 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { 572 nfs_sndunlock(rep); 573 return (EINTR); 574 } 575 so = rep->r_nmp->nm_so; 576 if (!so) { 577 error = nfs_reconnect(rep); 578 if (error) { 579 nfs_sndunlock(rep); 580 return (error); 581 } 582 goto tryagain; 583 } 584 while (rep->r_flags & R_MUSTRESEND) { 585 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 586 nfsstats.rpcretries++; 587 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep); 588 if (error) { 589 if (error == EINTR || error == ERESTART || 590 (error = nfs_reconnect(rep)) != 0) { 591 nfs_sndunlock(rep); 592 return (error); 593 } 594 goto tryagain; 595 } 596 } 597 nfs_sndunlock(rep); 598 if (sotype == SOCK_STREAM) { 599 aio.iov_base = (caddr_t) &len; 600 aio.iov_len = sizeof(u_int32_t); 601 auio.uio_iov = &aio; 602 auio.uio_iovcnt = 1; 603 auio.uio_segflg = UIO_SYSSPACE; 604 auio.uio_rw = UIO_READ; 605 auio.uio_offset = 0; 606 auio.uio_resid = sizeof(u_int32_t); 607 auio.uio_td = td; 608 do { 609 rcvflg = MSG_WAITALL; 610 error = so->so_proto->pr_usrreqs->pru_soreceive 611 (so, (struct sockaddr **)0, &auio, 612 (struct mbuf **)0, (struct mbuf **)0, 613 &rcvflg); 614 if (error == EWOULDBLOCK && rep) { 615 if (rep->r_flags & R_SOFTTERM) 616 return (EINTR); 617 } 618 } while (error == EWOULDBLOCK); 619 if (!error && auio.uio_resid > 0) { 620 /* 621 * Don't log a 0 byte receive; it means 622 * that the socket has been closed, and 623 * can happen during normal operation 624 * (forcible unmount or Solaris server). 625 */ 626 if (auio.uio_resid != sizeof (u_int32_t)) 627 log(LOG_INFO, 628 "short receive (%d/%d) from nfs server %s\n", 629 (int)(sizeof(u_int32_t) - auio.uio_resid), 630 (int)sizeof(u_int32_t), 631 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 632 error = EPIPE; 633 } 634 if (error) 635 goto errout; 636 len = ntohl(len) & ~0x80000000; 637 /* 638 * This is SERIOUS! We are out of sync with the sender 639 * and forcing a disconnect/reconnect is all I can do. 640 */ 641 if (len > NFS_MAXPACKET) { 642 log(LOG_ERR, "%s (%d) from nfs server %s\n", 643 "impossible packet length", 644 len, 645 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 646 error = EFBIG; 647 goto errout; 648 } 649 auio.uio_resid = len; 650 do { 651 rcvflg = MSG_WAITALL; 652 error = so->so_proto->pr_usrreqs->pru_soreceive 653 (so, (struct sockaddr **)0, 654 &auio, mp, (struct mbuf **)0, &rcvflg); 655 } while (error == EWOULDBLOCK || error == EINTR || 656 error == ERESTART); 657 if (!error && auio.uio_resid > 0) { 658 if (len != auio.uio_resid) 659 log(LOG_INFO, 660 "short receive (%d/%d) from nfs server %s\n", 661 len - auio.uio_resid, len, 662 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 663 error = EPIPE; 664 } 665 } else { 666 /* 667 * NB: Since uio_resid is big, MSG_WAITALL is ignored 668 * and soreceive() will return when it has either a 669 * control msg or a data msg. 670 * We have no use for control msg., but must grab them 671 * and then throw them away so we know what is going 672 * on. 673 */ 674 auio.uio_resid = len = 100000000; /* Anything Big */ 675 auio.uio_td = td; 676 do { 677 rcvflg = 0; 678 error = so->so_proto->pr_usrreqs->pru_soreceive 679 (so, (struct sockaddr **)0, 680 &auio, mp, &control, &rcvflg); 681 if (control) 682 m_freem(control); 683 if (error == EWOULDBLOCK && rep) { 684 if (rep->r_flags & R_SOFTTERM) 685 return (EINTR); 686 } 687 } while (error == EWOULDBLOCK || 688 (!error && *mp == NULL && control)); 689 if ((rcvflg & MSG_EOR) == 0) 690 printf("Egad!!\n"); 691 if (!error && *mp == NULL) 692 error = EPIPE; 693 len -= auio.uio_resid; 694 } 695 errout: 696 if (error && error != EINTR && error != ERESTART) { 697 m_freem(*mp); 698 *mp = (struct mbuf *)0; 699 if (error != EPIPE) 700 log(LOG_INFO, 701 "receive error %d from nfs server %s\n", 702 error, 703 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 704 error = nfs_sndlock(rep); 705 if (!error) { 706 error = nfs_reconnect(rep); 707 if (!error) 708 goto tryagain; 709 else 710 nfs_sndunlock(rep); 711 } 712 } 713 } else { 714 if ((so = rep->r_nmp->nm_so) == NULL) 715 return (EACCES); 716 if (so->so_state & SS_ISCONNECTED) 717 getnam = (struct sockaddr **)0; 718 else 719 getnam = aname; 720 auio.uio_resid = len = 1000000; 721 auio.uio_td = td; 722 do { 723 rcvflg = 0; 724 error = so->so_proto->pr_usrreqs->pru_soreceive 725 (so, getnam, &auio, mp, 726 (struct mbuf **)0, &rcvflg); 727 if (error == EWOULDBLOCK && 728 (rep->r_flags & R_SOFTTERM)) 729 return (EINTR); 730 } while (error == EWOULDBLOCK); 731 len -= auio.uio_resid; 732 } 733 if (error) { 734 m_freem(*mp); 735 *mp = (struct mbuf *)0; 736 } 737 /* 738 * Search for any mbufs that are not a multiple of 4 bytes long 739 * or with m_data not longword aligned. 740 * These could cause pointer alignment problems, so copy them to 741 * well aligned mbufs. 742 */ 743 nfs_realign(mp, 5 * NFSX_UNSIGNED); 744 return (error); 745 } 746 747 /* 748 * Implement receipt of reply on a socket. 749 * We must search through the list of received datagrams matching them 750 * with outstanding requests using the xid, until ours is found. 751 */ 752 /* ARGSUSED */ 753 int 754 nfs_reply(myrep) 755 struct nfsreq *myrep; 756 { 757 struct nfsreq *rep; 758 struct nfsmount *nmp = myrep->r_nmp; 759 int32_t t1; 760 struct mbuf *mrep, *md; 761 struct sockaddr *nam; 762 u_int32_t rxid, *tl; 763 caddr_t dpos, cp2; 764 int error; 765 766 /* 767 * Loop around until we get our own reply 768 */ 769 for (;;) { 770 /* 771 * Lock against other receivers so that I don't get stuck in 772 * sbwait() after someone else has received my reply for me. 773 * Also necessary for connection based protocols to avoid 774 * race conditions during a reconnect. 775 * If nfs_rcvlock() returns EALREADY, that means that 776 * the reply has already been recieved by another 777 * process and we can return immediately. In this 778 * case, the lock is not taken to avoid races with 779 * other processes. 780 */ 781 error = nfs_rcvlock(myrep); 782 if (error == EALREADY) 783 return (0); 784 if (error) 785 return (error); 786 /* 787 * Get the next Rpc reply off the socket 788 */ 789 error = nfs_receive(myrep, &nam, &mrep); 790 nfs_rcvunlock(myrep); 791 if (error) { 792 793 /* 794 * Ignore routing errors on connectionless protocols?? 795 */ 796 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 797 nmp->nm_so->so_error = 0; 798 if (myrep->r_flags & R_GETONEREP) 799 return (0); 800 continue; 801 } 802 return (error); 803 } 804 if (nam) 805 FREE(nam, M_SONAME); 806 807 /* 808 * Get the xid and check that it is an rpc reply 809 */ 810 md = mrep; 811 dpos = mtod(md, caddr_t); 812 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED); 813 rxid = *tl++; 814 if (*tl != rpc_reply) { 815 #ifndef NFS_NOSERVER 816 if (nmp->nm_flag & NFSMNT_NQNFS) { 817 if (nqnfs_callback(nmp, mrep, md, dpos)) 818 nfsstats.rpcinvalid++; 819 } else { 820 nfsstats.rpcinvalid++; 821 m_freem(mrep); 822 } 823 #else 824 nfsstats.rpcinvalid++; 825 m_freem(mrep); 826 #endif 827 nfsmout: 828 if (myrep->r_flags & R_GETONEREP) 829 return (0); 830 continue; 831 } 832 833 /* 834 * Loop through the request list to match up the reply 835 * Iff no match, just drop the datagram 836 */ 837 for (rep = nfs_reqq.tqh_first; rep != 0; 838 rep = rep->r_chain.tqe_next) { 839 if (rep->r_mrep == NULL && rxid == rep->r_xid) { 840 /* Found it.. */ 841 rep->r_mrep = mrep; 842 rep->r_md = md; 843 rep->r_dpos = dpos; 844 if (nfsrtton) { 845 struct rttl *rt; 846 847 rt = &nfsrtt.rttl[nfsrtt.pos]; 848 rt->proc = rep->r_procnum; 849 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]); 850 rt->sent = nmp->nm_sent; 851 rt->cwnd = nmp->nm_cwnd; 852 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1]; 853 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1]; 854 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid; 855 getmicrotime(&rt->tstamp); 856 if (rep->r_flags & R_TIMING) 857 rt->rtt = rep->r_rtt; 858 else 859 rt->rtt = 1000000; 860 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ; 861 } 862 /* 863 * Update congestion window. 864 * Do the additive increase of 865 * one rpc/rtt. 866 */ 867 if (nmp->nm_cwnd <= nmp->nm_sent) { 868 nmp->nm_cwnd += 869 (NFS_CWNDSCALE * NFS_CWNDSCALE + 870 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; 871 if (nmp->nm_cwnd > NFS_MAXCWND) 872 nmp->nm_cwnd = NFS_MAXCWND; 873 } 874 if (rep->r_flags & R_SENT) { 875 rep->r_flags &= ~R_SENT; 876 nmp->nm_sent -= NFS_CWNDSCALE; 877 } 878 /* 879 * Update rtt using a gain of 0.125 on the mean 880 * and a gain of 0.25 on the deviation. 881 */ 882 if (rep->r_flags & R_TIMING) { 883 /* 884 * Since the timer resolution of 885 * NFS_HZ is so course, it can often 886 * result in r_rtt == 0. Since 887 * r_rtt == N means that the actual 888 * rtt is between N+dt and N+2-dt ticks, 889 * add 1. 890 */ 891 t1 = rep->r_rtt + 1; 892 t1 -= (NFS_SRTT(rep) >> 3); 893 NFS_SRTT(rep) += t1; 894 if (t1 < 0) 895 t1 = -t1; 896 t1 -= (NFS_SDRTT(rep) >> 2); 897 NFS_SDRTT(rep) += t1; 898 } 899 nmp->nm_timeouts = 0; 900 break; 901 } 902 } 903 /* 904 * If not matched to a request, drop it. 905 * If it's mine, get out. 906 */ 907 if (rep == 0) { 908 nfsstats.rpcunexpected++; 909 m_freem(mrep); 910 } else if (rep == myrep) { 911 if (rep->r_mrep == NULL) 912 panic("nfsreply nil"); 913 return (0); 914 } 915 if (myrep->r_flags & R_GETONEREP) 916 return (0); 917 } 918 } 919 920 /* 921 * nfs_request - goes something like this 922 * - fill in request struct 923 * - links it into list 924 * - calls nfs_send() for first transmit 925 * - calls nfs_receive() to get reply 926 * - break down rpc header and return with nfs reply pointed to 927 * by mrep or error 928 * nb: always frees up mreq mbuf list 929 */ 930 int 931 nfs_request(vp, mrest, procnum, td, cred, mrp, mdp, dposp) 932 struct vnode *vp; 933 struct mbuf *mrest; 934 int procnum; 935 struct thread *td; 936 struct ucred *cred; 937 struct mbuf **mrp; 938 struct mbuf **mdp; 939 caddr_t *dposp; 940 { 941 struct mbuf *mrep, *m2; 942 struct nfsreq *rep; 943 u_int32_t *tl; 944 int i; 945 struct nfsmount *nmp; 946 struct mbuf *m, *md, *mheadend; 947 struct nfsnode *np; 948 char nickv[RPCX_NICKVERF]; 949 time_t reqtime, waituntil; 950 caddr_t dpos, cp2; 951 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type; 952 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0; 953 int verf_len, verf_type; 954 u_int32_t xid; 955 u_quad_t frev; 956 char *auth_str, *verf_str; 957 NFSKERBKEY_T key; /* save session key */ 958 959 /* Reject requests while attempting a forced unmount. */ 960 if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) { 961 m_freem(mrest); 962 return (ESTALE); 963 } 964 nmp = VFSTONFS(vp->v_mount); 965 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK); 966 rep->r_nmp = nmp; 967 rep->r_vp = vp; 968 rep->r_td = td; 969 rep->r_procnum = procnum; 970 i = 0; 971 m = mrest; 972 while (m) { 973 i += m->m_len; 974 m = m->m_next; 975 } 976 mrest_len = i; 977 978 /* 979 * Get the RPC header with authorization. 980 */ 981 kerbauth: 982 verf_str = auth_str = (char *)0; 983 if (nmp->nm_flag & NFSMNT_KERB) { 984 verf_str = nickv; 985 verf_len = sizeof (nickv); 986 auth_type = RPCAUTH_KERB4; 987 bzero((caddr_t)key, sizeof (key)); 988 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str, 989 &auth_len, verf_str, verf_len)) { 990 error = nfs_getauth(nmp, rep, cred, &auth_str, 991 &auth_len, verf_str, &verf_len, key); 992 if (error) { 993 free((caddr_t)rep, M_NFSREQ); 994 m_freem(mrest); 995 return (error); 996 } 997 } 998 } else { 999 auth_type = RPCAUTH_UNIX; 1000 if (cred->cr_ngroups < 1) 1001 panic("nfsreq nogrps"); 1002 auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ? 1003 nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) + 1004 5 * NFSX_UNSIGNED; 1005 } 1006 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, 1007 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid); 1008 if (auth_str) 1009 free(auth_str, M_TEMP); 1010 1011 /* 1012 * For stream protocols, insert a Sun RPC Record Mark. 1013 */ 1014 if (nmp->nm_sotype == SOCK_STREAM) { 1015 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT); 1016 *mtod(m, u_int32_t *) = htonl(0x80000000 | 1017 (m->m_pkthdr.len - NFSX_UNSIGNED)); 1018 } 1019 rep->r_mreq = m; 1020 rep->r_xid = xid; 1021 tryagain: 1022 if (nmp->nm_flag & NFSMNT_SOFT) 1023 rep->r_retry = nmp->nm_retry; 1024 else 1025 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ 1026 rep->r_rtt = rep->r_rexmit = 0; 1027 if (proct[procnum] > 0) 1028 rep->r_flags = R_TIMING; 1029 else 1030 rep->r_flags = 0; 1031 rep->r_mrep = NULL; 1032 1033 /* 1034 * Do the client side RPC. 1035 */ 1036 nfsstats.rpcrequests++; 1037 /* 1038 * Chain request into list of outstanding requests. Be sure 1039 * to put it LAST so timer finds oldest requests first. 1040 */ 1041 s = splsoftclock(); 1042 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); 1043 1044 /* Get send time for nqnfs */ 1045 reqtime = time_second; 1046 1047 /* 1048 * If backing off another request or avoiding congestion, don't 1049 * send this one now but let timer do it. If not timing a request, 1050 * do it now. 1051 */ 1052 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || 1053 (nmp->nm_flag & NFSMNT_DUMBTIMR) || 1054 nmp->nm_sent < nmp->nm_cwnd)) { 1055 splx(s); 1056 if (nmp->nm_soflags & PR_CONNREQUIRED) 1057 error = nfs_sndlock(rep); 1058 if (!error) { 1059 m2 = m_copym(m, 0, M_COPYALL, M_WAIT); 1060 error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep); 1061 if (nmp->nm_soflags & PR_CONNREQUIRED) 1062 nfs_sndunlock(rep); 1063 } 1064 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { 1065 nmp->nm_sent += NFS_CWNDSCALE; 1066 rep->r_flags |= R_SENT; 1067 } 1068 } else { 1069 splx(s); 1070 rep->r_rtt = -1; 1071 } 1072 1073 /* 1074 * Wait for the reply from our send or the timer's. 1075 */ 1076 if (!error || error == EPIPE) 1077 error = nfs_reply(rep); 1078 1079 /* 1080 * RPC done, unlink the request. 1081 */ 1082 s = splsoftclock(); 1083 TAILQ_REMOVE(&nfs_reqq, rep, r_chain); 1084 splx(s); 1085 1086 /* 1087 * Decrement the outstanding request count. 1088 */ 1089 if (rep->r_flags & R_SENT) { 1090 rep->r_flags &= ~R_SENT; /* paranoia */ 1091 nmp->nm_sent -= NFS_CWNDSCALE; 1092 } 1093 1094 /* 1095 * If there was a successful reply and a tprintf msg. 1096 * tprintf a response. 1097 */ 1098 if (!error && (rep->r_flags & R_TPRINTFMSG)) 1099 nfs_msg(rep->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname, 1100 "is alive again"); 1101 mrep = rep->r_mrep; 1102 md = rep->r_md; 1103 dpos = rep->r_dpos; 1104 if (error) { 1105 m_freem(rep->r_mreq); 1106 free((caddr_t)rep, M_NFSREQ); 1107 return (error); 1108 } 1109 1110 /* 1111 * break down the rpc header and check if ok 1112 */ 1113 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1114 if (*tl++ == rpc_msgdenied) { 1115 if (*tl == rpc_mismatch) 1116 error = EOPNOTSUPP; 1117 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) { 1118 if (!failed_auth) { 1119 failed_auth++; 1120 mheadend->m_next = (struct mbuf *)0; 1121 m_freem(mrep); 1122 m_freem(rep->r_mreq); 1123 goto kerbauth; 1124 } else 1125 error = EAUTH; 1126 } else 1127 error = EACCES; 1128 m_freem(mrep); 1129 m_freem(rep->r_mreq); 1130 free((caddr_t)rep, M_NFSREQ); 1131 return (error); 1132 } 1133 1134 /* 1135 * Grab any Kerberos verifier, otherwise just throw it away. 1136 */ 1137 verf_type = fxdr_unsigned(int, *tl++); 1138 i = fxdr_unsigned(int32_t, *tl); 1139 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) { 1140 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep); 1141 if (error) 1142 goto nfsmout; 1143 } else if (i > 0) 1144 nfsm_adv(nfsm_rndup(i)); 1145 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1146 /* 0 == ok */ 1147 if (*tl == 0) { 1148 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1149 if (*tl != 0) { 1150 error = fxdr_unsigned(int, *tl); 1151 if ((nmp->nm_flag & NFSMNT_NFSV3) && 1152 error == NFSERR_TRYLATER) { 1153 m_freem(mrep); 1154 error = 0; 1155 waituntil = time_second + trylater_delay; 1156 while (time_second < waituntil) 1157 (void) tsleep((caddr_t)&lbolt, 1158 0, "nqnfstry", 0); 1159 trylater_delay *= nfs_backoff[trylater_cnt]; 1160 if (trylater_cnt < 7) 1161 trylater_cnt++; 1162 goto tryagain; 1163 } 1164 1165 /* 1166 * If the File Handle was stale, invalidate the 1167 * lookup cache, just in case. 1168 */ 1169 if (error == ESTALE) 1170 cache_purge(vp); 1171 if (nmp->nm_flag & NFSMNT_NFSV3) { 1172 *mrp = mrep; 1173 *mdp = md; 1174 *dposp = dpos; 1175 error |= NFSERR_RETERR; 1176 } else 1177 m_freem(mrep); 1178 m_freem(rep->r_mreq); 1179 free((caddr_t)rep, M_NFSREQ); 1180 return (error); 1181 } 1182 1183 /* 1184 * For nqnfs, get any lease in reply 1185 */ 1186 if (nmp->nm_flag & NFSMNT_NQNFS) { 1187 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1188 if (*tl) { 1189 np = VTONFS(vp); 1190 nqlflag = fxdr_unsigned(int, *tl); 1191 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED); 1192 cachable = fxdr_unsigned(int, *tl++); 1193 reqtime += fxdr_unsigned(int, *tl++); 1194 if (reqtime > time_second) { 1195 frev = fxdr_hyper(tl); 1196 nqnfs_clientlease(nmp, np, nqlflag, 1197 cachable, reqtime, frev); 1198 } 1199 } 1200 } 1201 *mrp = mrep; 1202 *mdp = md; 1203 *dposp = dpos; 1204 m_freem(rep->r_mreq); 1205 FREE((caddr_t)rep, M_NFSREQ); 1206 return (0); 1207 } 1208 m_freem(mrep); 1209 error = EPROTONOSUPPORT; 1210 nfsmout: 1211 m_freem(rep->r_mreq); 1212 free((caddr_t)rep, M_NFSREQ); 1213 return (error); 1214 } 1215 1216 #ifndef NFS_NOSERVER 1217 /* 1218 * Generate the rpc reply header 1219 * siz arg. is used to decide if adding a cluster is worthwhile 1220 */ 1221 int 1222 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp) 1223 int siz; 1224 struct nfsrv_descript *nd; 1225 struct nfssvc_sock *slp; 1226 int err; 1227 int cache; 1228 u_quad_t *frev; 1229 struct mbuf **mrq; 1230 struct mbuf **mbp; 1231 caddr_t *bposp; 1232 { 1233 u_int32_t *tl; 1234 struct mbuf *mreq; 1235 caddr_t bpos; 1236 struct mbuf *mb, *mb2; 1237 1238 MGETHDR(mreq, M_WAIT, MT_DATA); 1239 mb = mreq; 1240 /* 1241 * If this is a big reply, use a cluster else 1242 * try and leave leading space for the lower level headers. 1243 */ 1244 siz += RPC_REPLYSIZ; 1245 if ((max_hdr + siz) >= MINCLSIZE) { 1246 MCLGET(mreq, M_WAIT); 1247 } else 1248 mreq->m_data += max_hdr; 1249 tl = mtod(mreq, u_int32_t *); 1250 mreq->m_len = 6 * NFSX_UNSIGNED; 1251 bpos = ((caddr_t)tl) + mreq->m_len; 1252 *tl++ = txdr_unsigned(nd->nd_retxid); 1253 *tl++ = rpc_reply; 1254 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { 1255 *tl++ = rpc_msgdenied; 1256 if (err & NFSERR_AUTHERR) { 1257 *tl++ = rpc_autherr; 1258 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); 1259 mreq->m_len -= NFSX_UNSIGNED; 1260 bpos -= NFSX_UNSIGNED; 1261 } else { 1262 *tl++ = rpc_mismatch; 1263 *tl++ = txdr_unsigned(RPC_VER2); 1264 *tl = txdr_unsigned(RPC_VER2); 1265 } 1266 } else { 1267 *tl++ = rpc_msgaccepted; 1268 1269 /* 1270 * For Kerberos authentication, we must send the nickname 1271 * verifier back, otherwise just RPCAUTH_NULL. 1272 */ 1273 if (nd->nd_flag & ND_KERBFULL) { 1274 struct nfsuid *nuidp; 1275 struct timeval ktvin, ktvout; 1276 1277 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first; 1278 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1279 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid && 1280 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp), 1281 &nuidp->nu_haddr, nd->nd_nam2))) 1282 break; 1283 } 1284 if (nuidp) { 1285 ktvin.tv_sec = 1286 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1); 1287 ktvin.tv_usec = 1288 txdr_unsigned(nuidp->nu_timestamp.tv_usec); 1289 1290 /* 1291 * Encrypt the timestamp in ecb mode using the 1292 * session key. 1293 */ 1294 #ifdef NFSKERB 1295 XXX 1296 #endif 1297 1298 *tl++ = rpc_auth_kerb; 1299 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); 1300 *tl = ktvout.tv_sec; 1301 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1302 *tl++ = ktvout.tv_usec; 1303 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid); 1304 } else { 1305 *tl++ = 0; 1306 *tl++ = 0; 1307 } 1308 } else { 1309 *tl++ = 0; 1310 *tl++ = 0; 1311 } 1312 switch (err) { 1313 case EPROGUNAVAIL: 1314 *tl = txdr_unsigned(RPC_PROGUNAVAIL); 1315 break; 1316 case EPROGMISMATCH: 1317 *tl = txdr_unsigned(RPC_PROGMISMATCH); 1318 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1319 if (nd->nd_flag & ND_NQNFS) { 1320 *tl++ = txdr_unsigned(3); 1321 *tl = txdr_unsigned(3); 1322 } else { 1323 *tl++ = txdr_unsigned(2); 1324 *tl = txdr_unsigned(3); 1325 } 1326 break; 1327 case EPROCUNAVAIL: 1328 *tl = txdr_unsigned(RPC_PROCUNAVAIL); 1329 break; 1330 case EBADRPC: 1331 *tl = txdr_unsigned(RPC_GARBAGE); 1332 break; 1333 default: 1334 *tl = 0; 1335 if (err != NFSERR_RETVOID) { 1336 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1337 if (err) 1338 *tl = txdr_unsigned(nfsrv_errmap(nd, err)); 1339 else 1340 *tl = 0; 1341 } 1342 break; 1343 }; 1344 } 1345 1346 /* 1347 * For nqnfs, piggyback lease as requested. 1348 */ 1349 if ((nd->nd_flag & ND_NQNFS) && err == 0) { 1350 if (nd->nd_flag & ND_LEASE) { 1351 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED); 1352 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE); 1353 *tl++ = txdr_unsigned(cache); 1354 *tl++ = txdr_unsigned(nd->nd_duration); 1355 txdr_hyper(*frev, tl); 1356 } else { 1357 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1358 *tl = 0; 1359 } 1360 } 1361 if (mrq != NULL) 1362 *mrq = mreq; 1363 *mbp = mb; 1364 *bposp = bpos; 1365 if (err != 0 && err != NFSERR_RETVOID) 1366 nfsstats.srvrpc_errs++; 1367 return (0); 1368 } 1369 1370 1371 #endif /* NFS_NOSERVER */ 1372 /* 1373 * Nfs timer routine 1374 * Scan the nfsreq list and retranmit any requests that have timed out 1375 * To avoid retransmission attempts on STREAM sockets (in the future) make 1376 * sure to set the r_retry field to 0 (implies nm_retry == 0). 1377 */ 1378 void 1379 nfs_timer(arg) 1380 void *arg; /* never used */ 1381 { 1382 struct nfsreq *rep; 1383 struct mbuf *m; 1384 struct socket *so; 1385 struct nfsmount *nmp; 1386 int timeo; 1387 int s, error; 1388 #ifndef NFS_NOSERVER 1389 static long lasttime = 0; 1390 struct nfssvc_sock *slp; 1391 u_quad_t cur_usec; 1392 #endif /* NFS_NOSERVER */ 1393 struct thread *td = &thread0; /* XXX for credentials, will break if sleep */ 1394 1395 s = splnet(); 1396 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) { 1397 nmp = rep->r_nmp; 1398 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) 1399 continue; 1400 if (nfs_sigintr(nmp, rep, rep->r_td)) { 1401 nfs_softterm(rep); 1402 continue; 1403 } 1404 if (rep->r_rtt >= 0) { 1405 rep->r_rtt++; 1406 if (nmp->nm_flag & NFSMNT_DUMBTIMR) 1407 timeo = nmp->nm_timeo; 1408 else 1409 timeo = NFS_RTO(nmp, proct[rep->r_procnum]); 1410 if (nmp->nm_timeouts > 0) 1411 timeo *= nfs_backoff[nmp->nm_timeouts - 1]; 1412 if (rep->r_rtt <= timeo) 1413 continue; 1414 if (nmp->nm_timeouts < 8) 1415 nmp->nm_timeouts++; 1416 } 1417 /* 1418 * Check for server not responding 1419 */ 1420 if ((rep->r_flags & R_TPRINTFMSG) == 0 && 1421 rep->r_rexmit > nmp->nm_deadthresh) { 1422 nfs_msg(rep->r_td, 1423 nmp->nm_mountp->mnt_stat.f_mntfromname, 1424 "not responding"); 1425 rep->r_flags |= R_TPRINTFMSG; 1426 } 1427 if (rep->r_rexmit >= rep->r_retry) { /* too many */ 1428 nfsstats.rpctimeouts++; 1429 nfs_softterm(rep); 1430 continue; 1431 } 1432 if (nmp->nm_sotype != SOCK_DGRAM) { 1433 if (++rep->r_rexmit > NFS_MAXREXMIT) 1434 rep->r_rexmit = NFS_MAXREXMIT; 1435 continue; 1436 } 1437 if ((so = nmp->nm_so) == NULL) 1438 continue; 1439 1440 /* 1441 * If there is enough space and the window allows.. 1442 * Resend it 1443 * Set r_rtt to -1 in case we fail to send it now. 1444 */ 1445 rep->r_rtt = -1; 1446 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && 1447 ((nmp->nm_flag & NFSMNT_DUMBTIMR) || 1448 (rep->r_flags & R_SENT) || 1449 nmp->nm_sent < nmp->nm_cwnd) && 1450 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){ 1451 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0) 1452 error = (*so->so_proto->pr_usrreqs->pru_send) 1453 (so, 0, m, (struct sockaddr *)0, 1454 (struct mbuf *)0, td); 1455 else 1456 error = (*so->so_proto->pr_usrreqs->pru_send) 1457 (so, 0, m, nmp->nm_nam, (struct mbuf *)0, 1458 td); 1459 if (error) { 1460 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) 1461 so->so_error = 0; 1462 } else { 1463 /* 1464 * Iff first send, start timing 1465 * else turn timing off, backoff timer 1466 * and divide congestion window by 2. 1467 */ 1468 if (rep->r_flags & R_SENT) { 1469 rep->r_flags &= ~R_TIMING; 1470 if (++rep->r_rexmit > NFS_MAXREXMIT) 1471 rep->r_rexmit = NFS_MAXREXMIT; 1472 nmp->nm_cwnd >>= 1; 1473 if (nmp->nm_cwnd < NFS_CWNDSCALE) 1474 nmp->nm_cwnd = NFS_CWNDSCALE; 1475 nfsstats.rpcretries++; 1476 } else { 1477 rep->r_flags |= R_SENT; 1478 nmp->nm_sent += NFS_CWNDSCALE; 1479 } 1480 rep->r_rtt = 0; 1481 } 1482 } 1483 } 1484 #ifndef NFS_NOSERVER 1485 /* 1486 * Call the nqnfs server timer once a second to handle leases. 1487 */ 1488 if (lasttime != time_second) { 1489 lasttime = time_second; 1490 nqnfs_serverd(); 1491 } 1492 1493 /* 1494 * Scan the write gathering queues for writes that need to be 1495 * completed now. 1496 */ 1497 cur_usec = nfs_curusec(); 1498 for (slp = nfssvc_sockhead.tqh_first; slp != 0; 1499 slp = slp->ns_chain.tqe_next) { 1500 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec) 1501 nfsrv_wakenfsd(slp); 1502 } 1503 #endif /* NFS_NOSERVER */ 1504 splx(s); 1505 nfs_timer_handle = timeout(nfs_timer, (void *)0, nfs_ticks); 1506 } 1507 1508 /* 1509 * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and 1510 * wait for all requests to complete. This is used by forced unmounts 1511 * to terminate any outstanding RPCs. 1512 */ 1513 int 1514 nfs_nmcancelreqs(nmp) 1515 struct nfsmount *nmp; 1516 { 1517 struct nfsreq *req; 1518 int i, s; 1519 1520 s = splnet(); 1521 TAILQ_FOREACH(req, &nfs_reqq, r_chain) { 1522 if (nmp != req->r_nmp || req->r_mrep != NULL || 1523 (req->r_flags & R_SOFTTERM)) 1524 continue; 1525 nfs_softterm(req); 1526 } 1527 splx(s); 1528 1529 for (i = 0; i < 30; i++) { 1530 s = splnet(); 1531 TAILQ_FOREACH(req, &nfs_reqq, r_chain) { 1532 if (nmp == req->r_nmp) 1533 break; 1534 } 1535 splx(s); 1536 if (req == NULL) 1537 return (0); 1538 tsleep(&lbolt, 0, "nfscancel", 0); 1539 } 1540 return (EBUSY); 1541 } 1542 1543 /* 1544 * Flag a request as being about to terminate (due to NFSMNT_INT/NFSMNT_SOFT). 1545 * The nm_send count is decremented now to avoid deadlocks when the process in 1546 * soreceive() hasn't yet managed to send its own request. 1547 */ 1548 1549 static void 1550 nfs_softterm(rep) 1551 struct nfsreq *rep; 1552 { 1553 rep->r_flags |= R_SOFTTERM; 1554 1555 if (rep->r_flags & R_SENT) { 1556 rep->r_nmp->nm_sent -= NFS_CWNDSCALE; 1557 rep->r_flags &= ~R_SENT; 1558 } 1559 } 1560 1561 /* 1562 * Test for a termination condition pending on the process. 1563 * This is used for NFSMNT_INT mounts. 1564 */ 1565 int 1566 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td) 1567 { 1568 sigset_t tmpset; 1569 struct proc *p; 1570 1571 if (rep && (rep->r_flags & R_SOFTTERM)) 1572 return (EINTR); 1573 /* Terminate all requests while attempting a forced unmount. */ 1574 if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF) 1575 return (EINTR); 1576 if (!(nmp->nm_flag & NFSMNT_INT)) 1577 return (0); 1578 KKASSERT(td); 1579 if ((p = td->td_proc) == NULL) 1580 return (0); 1581 1582 tmpset = p->p_siglist; 1583 SIGSETNAND(tmpset, p->p_sigmask); 1584 SIGSETNAND(tmpset, p->p_sigignore); 1585 if (SIGNOTEMPTY(p->p_siglist) && NFSINT_SIGMASK(tmpset)) 1586 return (EINTR); 1587 1588 return (0); 1589 } 1590 1591 /* 1592 * Lock a socket against others. 1593 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply 1594 * and also to avoid race conditions between the processes with nfs requests 1595 * in progress when a reconnect is necessary. 1596 */ 1597 int 1598 nfs_sndlock(struct nfsreq *rep) 1599 { 1600 int *statep = &rep->r_nmp->nm_state; 1601 struct thread *td; 1602 int slpflag = 0, slptimeo = 0; 1603 1604 td = rep->r_td; 1605 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1606 slpflag = PCATCH; 1607 while (*statep & NFSSTA_SNDLOCK) { 1608 if (nfs_sigintr(rep->r_nmp, rep, td)) 1609 return (EINTR); 1610 *statep |= NFSSTA_WANTSND; 1611 (void) tsleep((caddr_t)statep, slpflag, 1612 "nfsndlck", slptimeo); 1613 if (slpflag == PCATCH) { 1614 slpflag = 0; 1615 slptimeo = 2 * hz; 1616 } 1617 } 1618 /* Always fail if our request has been cancelled. */ 1619 if ((rep->r_flags & R_SOFTTERM)) 1620 return (EINTR); 1621 *statep |= NFSSTA_SNDLOCK; 1622 return (0); 1623 } 1624 1625 /* 1626 * Unlock the stream socket for others. 1627 */ 1628 void 1629 nfs_sndunlock(rep) 1630 struct nfsreq *rep; 1631 { 1632 int *statep = &rep->r_nmp->nm_state; 1633 1634 if ((*statep & NFSSTA_SNDLOCK) == 0) 1635 panic("nfs sndunlock"); 1636 *statep &= ~NFSSTA_SNDLOCK; 1637 if (*statep & NFSSTA_WANTSND) { 1638 *statep &= ~NFSSTA_WANTSND; 1639 wakeup((caddr_t)statep); 1640 } 1641 } 1642 1643 static int 1644 nfs_rcvlock(rep) 1645 struct nfsreq *rep; 1646 { 1647 int *statep = &rep->r_nmp->nm_state; 1648 int slpflag, slptimeo = 0; 1649 1650 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1651 slpflag = PCATCH; 1652 else 1653 slpflag = 0; 1654 while (*statep & NFSSTA_RCVLOCK) { 1655 if (nfs_sigintr(rep->r_nmp, rep, rep->r_td)) 1656 return (EINTR); 1657 *statep |= NFSSTA_WANTRCV; 1658 (void) tsleep((caddr_t)statep, slpflag, "nfsrcvlk", slptimeo); 1659 /* 1660 * If our reply was recieved while we were sleeping, 1661 * then just return without taking the lock to avoid a 1662 * situation where a single iod could 'capture' the 1663 * recieve lock. 1664 */ 1665 if (rep->r_mrep != NULL) 1666 return (EALREADY); 1667 if (slpflag == PCATCH) { 1668 slpflag = 0; 1669 slptimeo = 2 * hz; 1670 } 1671 } 1672 *statep |= NFSSTA_RCVLOCK; 1673 return (0); 1674 } 1675 1676 /* 1677 * Unlock the stream socket for others. 1678 */ 1679 static void 1680 nfs_rcvunlock(rep) 1681 struct nfsreq *rep; 1682 { 1683 int *statep = &rep->r_nmp->nm_state; 1684 1685 if ((*statep & NFSSTA_RCVLOCK) == 0) 1686 panic("nfs rcvunlock"); 1687 *statep &= ~NFSSTA_RCVLOCK; 1688 if (*statep & NFSSTA_WANTRCV) { 1689 *statep &= ~NFSSTA_WANTRCV; 1690 wakeup((caddr_t)statep); 1691 } 1692 } 1693 1694 /* 1695 * nfs_realign: 1696 * 1697 * Check for badly aligned mbuf data and realign by copying the unaligned 1698 * portion of the data into a new mbuf chain and freeing the portions 1699 * of the old chain that were replaced. 1700 * 1701 * We cannot simply realign the data within the existing mbuf chain 1702 * because the underlying buffers may contain other rpc commands and 1703 * we cannot afford to overwrite them. 1704 * 1705 * We would prefer to avoid this situation entirely. The situation does 1706 * not occur with NFS/UDP and is supposed to only occassionally occur 1707 * with TCP. Use vfs.nfs.realign_count and realign_test to check this. 1708 */ 1709 static void 1710 nfs_realign(pm, hsiz) 1711 struct mbuf **pm; 1712 int hsiz; 1713 { 1714 struct mbuf *m; 1715 struct mbuf *n = NULL; 1716 int off = 0; 1717 1718 ++nfs_realign_test; 1719 1720 while ((m = *pm) != NULL) { 1721 if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3)) { 1722 MGET(n, M_WAIT, MT_DATA); 1723 if (m->m_len >= MINCLSIZE) { 1724 MCLGET(n, M_WAIT); 1725 } 1726 n->m_len = 0; 1727 break; 1728 } 1729 pm = &m->m_next; 1730 } 1731 1732 /* 1733 * If n is non-NULL, loop on m copying data, then replace the 1734 * portion of the chain that had to be realigned. 1735 */ 1736 if (n != NULL) { 1737 ++nfs_realign_count; 1738 while (m) { 1739 m_copyback(n, off, m->m_len, mtod(m, caddr_t)); 1740 off += m->m_len; 1741 m = m->m_next; 1742 } 1743 m_freem(*pm); 1744 *pm = n; 1745 } 1746 } 1747 1748 #ifndef NFS_NOSERVER 1749 1750 /* 1751 * Parse an RPC request 1752 * - verify it 1753 * - fill in the cred struct. 1754 */ 1755 int 1756 nfs_getreq(nd, nfsd, has_header) 1757 struct nfsrv_descript *nd; 1758 struct nfsd *nfsd; 1759 int has_header; 1760 { 1761 int len, i; 1762 u_int32_t *tl; 1763 int32_t t1; 1764 struct uio uio; 1765 struct iovec iov; 1766 caddr_t dpos, cp2, cp; 1767 u_int32_t nfsvers, auth_type; 1768 uid_t nickuid; 1769 int error = 0, nqnfs = 0, ticklen; 1770 struct mbuf *mrep, *md; 1771 struct nfsuid *nuidp; 1772 struct timeval tvin, tvout; 1773 #if 0 /* until encrypted keys are implemented */ 1774 NFSKERBKEYSCHED_T keys; /* stores key schedule */ 1775 #endif 1776 1777 mrep = nd->nd_mrep; 1778 md = nd->nd_md; 1779 dpos = nd->nd_dpos; 1780 if (has_header) { 1781 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); 1782 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); 1783 if (*tl++ != rpc_call) { 1784 m_freem(mrep); 1785 return (EBADRPC); 1786 } 1787 } else 1788 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 1789 nd->nd_repstat = 0; 1790 nd->nd_flag = 0; 1791 if (*tl++ != rpc_vers) { 1792 nd->nd_repstat = ERPCMISMATCH; 1793 nd->nd_procnum = NFSPROC_NOOP; 1794 return (0); 1795 } 1796 if (*tl != nfs_prog) { 1797 if (*tl == nqnfs_prog) 1798 nqnfs++; 1799 else { 1800 nd->nd_repstat = EPROGUNAVAIL; 1801 nd->nd_procnum = NFSPROC_NOOP; 1802 return (0); 1803 } 1804 } 1805 tl++; 1806 nfsvers = fxdr_unsigned(u_int32_t, *tl++); 1807 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) || 1808 (nfsvers != NQNFS_VER3 && nqnfs)) { 1809 nd->nd_repstat = EPROGMISMATCH; 1810 nd->nd_procnum = NFSPROC_NOOP; 1811 return (0); 1812 } 1813 if (nqnfs) 1814 nd->nd_flag = (ND_NFSV3 | ND_NQNFS); 1815 else if (nfsvers == NFS_VER3) 1816 nd->nd_flag = ND_NFSV3; 1817 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); 1818 if (nd->nd_procnum == NFSPROC_NULL) 1819 return (0); 1820 if (nd->nd_procnum >= NFS_NPROCS || 1821 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) || 1822 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { 1823 nd->nd_repstat = EPROCUNAVAIL; 1824 nd->nd_procnum = NFSPROC_NOOP; 1825 return (0); 1826 } 1827 if ((nd->nd_flag & ND_NFSV3) == 0) 1828 nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; 1829 auth_type = *tl++; 1830 len = fxdr_unsigned(int, *tl++); 1831 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1832 m_freem(mrep); 1833 return (EBADRPC); 1834 } 1835 1836 nd->nd_flag &= ~ND_KERBAUTH; 1837 /* 1838 * Handle auth_unix or auth_kerb. 1839 */ 1840 if (auth_type == rpc_auth_unix) { 1841 len = fxdr_unsigned(int, *++tl); 1842 if (len < 0 || len > NFS_MAXNAMLEN) { 1843 m_freem(mrep); 1844 return (EBADRPC); 1845 } 1846 nfsm_adv(nfsm_rndup(len)); 1847 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1848 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred)); 1849 nd->nd_cr.cr_ref = 1; 1850 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++); 1851 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++); 1852 len = fxdr_unsigned(int, *tl); 1853 if (len < 0 || len > RPCAUTH_UNIXGIDS) { 1854 m_freem(mrep); 1855 return (EBADRPC); 1856 } 1857 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); 1858 for (i = 1; i <= len; i++) 1859 if (i < NGROUPS) 1860 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++); 1861 else 1862 tl++; 1863 nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1); 1864 if (nd->nd_cr.cr_ngroups > 1) 1865 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups); 1866 len = fxdr_unsigned(int, *++tl); 1867 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1868 m_freem(mrep); 1869 return (EBADRPC); 1870 } 1871 if (len > 0) 1872 nfsm_adv(nfsm_rndup(len)); 1873 } else if (auth_type == rpc_auth_kerb) { 1874 switch (fxdr_unsigned(int, *tl++)) { 1875 case RPCAKN_FULLNAME: 1876 ticklen = fxdr_unsigned(int, *tl); 1877 *((u_int32_t *)nfsd->nfsd_authstr) = *tl; 1878 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; 1879 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; 1880 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { 1881 m_freem(mrep); 1882 return (EBADRPC); 1883 } 1884 uio.uio_offset = 0; 1885 uio.uio_iov = &iov; 1886 uio.uio_iovcnt = 1; 1887 uio.uio_segflg = UIO_SYSSPACE; 1888 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4]; 1889 iov.iov_len = RPCAUTH_MAXSIZ - 4; 1890 nfsm_mtouio(&uio, uio.uio_resid); 1891 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1892 if (*tl++ != rpc_auth_kerb || 1893 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { 1894 printf("Bad kerb verifier\n"); 1895 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1896 nd->nd_procnum = NFSPROC_NOOP; 1897 return (0); 1898 } 1899 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED); 1900 tl = (u_int32_t *)cp; 1901 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { 1902 printf("Not fullname kerb verifier\n"); 1903 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1904 nd->nd_procnum = NFSPROC_NOOP; 1905 return (0); 1906 } 1907 cp += NFSX_UNSIGNED; 1908 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED); 1909 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; 1910 nd->nd_flag |= ND_KERBFULL; 1911 nfsd->nfsd_flag |= NFSD_NEEDAUTH; 1912 break; 1913 case RPCAKN_NICKNAME: 1914 if (len != 2 * NFSX_UNSIGNED) { 1915 printf("Kerb nickname short\n"); 1916 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); 1917 nd->nd_procnum = NFSPROC_NOOP; 1918 return (0); 1919 } 1920 nickuid = fxdr_unsigned(uid_t, *tl); 1921 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1922 if (*tl++ != rpc_auth_kerb || 1923 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { 1924 printf("Kerb nick verifier bad\n"); 1925 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1926 nd->nd_procnum = NFSPROC_NOOP; 1927 return (0); 1928 } 1929 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1930 tvin.tv_sec = *tl++; 1931 tvin.tv_usec = *tl; 1932 1933 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first; 1934 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1935 if (nuidp->nu_cr.cr_uid == nickuid && 1936 (!nd->nd_nam2 || 1937 netaddr_match(NU_NETFAM(nuidp), 1938 &nuidp->nu_haddr, nd->nd_nam2))) 1939 break; 1940 } 1941 if (!nuidp) { 1942 nd->nd_repstat = 1943 (NFSERR_AUTHERR|AUTH_REJECTCRED); 1944 nd->nd_procnum = NFSPROC_NOOP; 1945 return (0); 1946 } 1947 1948 /* 1949 * Now, decrypt the timestamp using the session key 1950 * and validate it. 1951 */ 1952 #ifdef NFSKERB 1953 XXX 1954 #endif 1955 1956 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); 1957 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); 1958 if (nuidp->nu_expire < time_second || 1959 nuidp->nu_timestamp.tv_sec > tvout.tv_sec || 1960 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && 1961 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { 1962 nuidp->nu_expire = 0; 1963 nd->nd_repstat = 1964 (NFSERR_AUTHERR|AUTH_REJECTVERF); 1965 nd->nd_procnum = NFSPROC_NOOP; 1966 return (0); 1967 } 1968 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr); 1969 nd->nd_flag |= ND_KERBNICK; 1970 }; 1971 } else { 1972 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); 1973 nd->nd_procnum = NFSPROC_NOOP; 1974 return (0); 1975 } 1976 1977 /* 1978 * For nqnfs, get piggybacked lease request. 1979 */ 1980 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) { 1981 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1982 nd->nd_flag |= fxdr_unsigned(int, *tl); 1983 if (nd->nd_flag & ND_LEASE) { 1984 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1985 nd->nd_duration = fxdr_unsigned(int32_t, *tl); 1986 } else 1987 nd->nd_duration = NQ_MINLEASE; 1988 } else 1989 nd->nd_duration = NQ_MINLEASE; 1990 nd->nd_md = md; 1991 nd->nd_dpos = dpos; 1992 return (0); 1993 nfsmout: 1994 return (error); 1995 } 1996 1997 #endif 1998 1999 /* 2000 * Send a message to the originating process's terminal. The thread and/or 2001 * process may be NULL. YYY the thread should not be NULL but there may 2002 * still be some uio_td's that are still being passed as NULL through to 2003 * nfsm_request(). 2004 */ 2005 static int 2006 nfs_msg(struct thread *td, char *server, char *msg) 2007 { 2008 tpr_t tpr; 2009 2010 if (td && td->td_proc) 2011 tpr = tprintf_open(td->td_proc); 2012 else 2013 tpr = NULL; 2014 tprintf(tpr, "nfs server %s: %s\n", server, msg); 2015 tprintf_close(tpr); 2016 return (0); 2017 } 2018 2019 #ifndef NFS_NOSERVER 2020 /* 2021 * Socket upcall routine for the nfsd sockets. 2022 * The caddr_t arg is a pointer to the "struct nfssvc_sock". 2023 * Essentially do as much as possible non-blocking, else punt and it will 2024 * be called with M_WAIT from an nfsd. 2025 */ 2026 void 2027 nfsrv_rcv(so, arg, waitflag) 2028 struct socket *so; 2029 void *arg; 2030 int waitflag; 2031 { 2032 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; 2033 struct mbuf *m; 2034 struct mbuf *mp; 2035 struct sockaddr *nam; 2036 struct uio auio; 2037 int flags, error; 2038 2039 if ((slp->ns_flag & SLP_VALID) == 0) 2040 return; 2041 #ifdef notdef 2042 /* 2043 * Define this to test for nfsds handling this under heavy load. 2044 */ 2045 if (waitflag == M_DONTWAIT) { 2046 slp->ns_flag |= SLP_NEEDQ; goto dorecs; 2047 } 2048 #endif 2049 auio.uio_td = NULL; 2050 if (so->so_type == SOCK_STREAM) { 2051 /* 2052 * If there are already records on the queue, defer soreceive() 2053 * to an nfsd so that there is feedback to the TCP layer that 2054 * the nfs servers are heavily loaded. 2055 */ 2056 if (STAILQ_FIRST(&slp->ns_rec) && waitflag == M_DONTWAIT) { 2057 slp->ns_flag |= SLP_NEEDQ; 2058 goto dorecs; 2059 } 2060 2061 /* 2062 * Do soreceive(). 2063 */ 2064 auio.uio_resid = 1000000000; 2065 flags = MSG_DONTWAIT; 2066 error = so->so_proto->pr_usrreqs->pru_soreceive 2067 (so, &nam, &auio, &mp, (struct mbuf **)0, &flags); 2068 if (error || mp == (struct mbuf *)0) { 2069 if (error == EWOULDBLOCK) 2070 slp->ns_flag |= SLP_NEEDQ; 2071 else 2072 slp->ns_flag |= SLP_DISCONN; 2073 goto dorecs; 2074 } 2075 m = mp; 2076 if (slp->ns_rawend) { 2077 slp->ns_rawend->m_next = m; 2078 slp->ns_cc += 1000000000 - auio.uio_resid; 2079 } else { 2080 slp->ns_raw = m; 2081 slp->ns_cc = 1000000000 - auio.uio_resid; 2082 } 2083 while (m->m_next) 2084 m = m->m_next; 2085 slp->ns_rawend = m; 2086 2087 /* 2088 * Now try and parse record(s) out of the raw stream data. 2089 */ 2090 error = nfsrv_getstream(slp, waitflag); 2091 if (error) { 2092 if (error == EPERM) 2093 slp->ns_flag |= SLP_DISCONN; 2094 else 2095 slp->ns_flag |= SLP_NEEDQ; 2096 } 2097 } else { 2098 do { 2099 auio.uio_resid = 1000000000; 2100 flags = MSG_DONTWAIT; 2101 error = so->so_proto->pr_usrreqs->pru_soreceive 2102 (so, &nam, &auio, &mp, 2103 (struct mbuf **)0, &flags); 2104 if (mp) { 2105 struct nfsrv_rec *rec; 2106 rec = malloc(sizeof(struct nfsrv_rec), 2107 M_NFSRVDESC, waitflag); 2108 if (!rec) { 2109 if (nam) 2110 FREE(nam, M_SONAME); 2111 m_freem(mp); 2112 continue; 2113 } 2114 nfs_realign(&mp, 10 * NFSX_UNSIGNED); 2115 rec->nr_address = nam; 2116 rec->nr_packet = mp; 2117 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link); 2118 } 2119 if (error) { 2120 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) 2121 && error != EWOULDBLOCK) { 2122 slp->ns_flag |= SLP_DISCONN; 2123 goto dorecs; 2124 } 2125 } 2126 } while (mp); 2127 } 2128 2129 /* 2130 * Now try and process the request records, non-blocking. 2131 */ 2132 dorecs: 2133 if (waitflag == M_DONTWAIT && 2134 (STAILQ_FIRST(&slp->ns_rec) 2135 || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) 2136 nfsrv_wakenfsd(slp); 2137 } 2138 2139 /* 2140 * Try and extract an RPC request from the mbuf data list received on a 2141 * stream socket. The "waitflag" argument indicates whether or not it 2142 * can sleep. 2143 */ 2144 static int 2145 nfsrv_getstream(slp, waitflag) 2146 struct nfssvc_sock *slp; 2147 int waitflag; 2148 { 2149 struct mbuf *m, **mpp; 2150 char *cp1, *cp2; 2151 int len; 2152 struct mbuf *om, *m2, *recm; 2153 u_int32_t recmark; 2154 2155 if (slp->ns_flag & SLP_GETSTREAM) 2156 panic("nfs getstream"); 2157 slp->ns_flag |= SLP_GETSTREAM; 2158 for (;;) { 2159 if (slp->ns_reclen == 0) { 2160 if (slp->ns_cc < NFSX_UNSIGNED) { 2161 slp->ns_flag &= ~SLP_GETSTREAM; 2162 return (0); 2163 } 2164 m = slp->ns_raw; 2165 if (m->m_len >= NFSX_UNSIGNED) { 2166 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED); 2167 m->m_data += NFSX_UNSIGNED; 2168 m->m_len -= NFSX_UNSIGNED; 2169 } else { 2170 cp1 = (caddr_t)&recmark; 2171 cp2 = mtod(m, caddr_t); 2172 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) { 2173 while (m->m_len == 0) { 2174 m = m->m_next; 2175 cp2 = mtod(m, caddr_t); 2176 } 2177 *cp1++ = *cp2++; 2178 m->m_data++; 2179 m->m_len--; 2180 } 2181 } 2182 slp->ns_cc -= NFSX_UNSIGNED; 2183 recmark = ntohl(recmark); 2184 slp->ns_reclen = recmark & ~0x80000000; 2185 if (recmark & 0x80000000) 2186 slp->ns_flag |= SLP_LASTFRAG; 2187 else 2188 slp->ns_flag &= ~SLP_LASTFRAG; 2189 if (slp->ns_reclen > NFS_MAXPACKET) { 2190 slp->ns_flag &= ~SLP_GETSTREAM; 2191 return (EPERM); 2192 } 2193 } 2194 2195 /* 2196 * Now get the record part. 2197 * 2198 * Note that slp->ns_reclen may be 0. Linux sometimes 2199 * generates 0-length RPCs 2200 */ 2201 recm = NULL; 2202 if (slp->ns_cc == slp->ns_reclen) { 2203 recm = slp->ns_raw; 2204 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0; 2205 slp->ns_cc = slp->ns_reclen = 0; 2206 } else if (slp->ns_cc > slp->ns_reclen) { 2207 len = 0; 2208 m = slp->ns_raw; 2209 om = (struct mbuf *)0; 2210 2211 while (len < slp->ns_reclen) { 2212 if ((len + m->m_len) > slp->ns_reclen) { 2213 m2 = m_copym(m, 0, slp->ns_reclen - len, 2214 waitflag); 2215 if (m2) { 2216 if (om) { 2217 om->m_next = m2; 2218 recm = slp->ns_raw; 2219 } else 2220 recm = m2; 2221 m->m_data += slp->ns_reclen - len; 2222 m->m_len -= slp->ns_reclen - len; 2223 len = slp->ns_reclen; 2224 } else { 2225 slp->ns_flag &= ~SLP_GETSTREAM; 2226 return (EWOULDBLOCK); 2227 } 2228 } else if ((len + m->m_len) == slp->ns_reclen) { 2229 om = m; 2230 len += m->m_len; 2231 m = m->m_next; 2232 recm = slp->ns_raw; 2233 om->m_next = (struct mbuf *)0; 2234 } else { 2235 om = m; 2236 len += m->m_len; 2237 m = m->m_next; 2238 } 2239 } 2240 slp->ns_raw = m; 2241 slp->ns_cc -= len; 2242 slp->ns_reclen = 0; 2243 } else { 2244 slp->ns_flag &= ~SLP_GETSTREAM; 2245 return (0); 2246 } 2247 2248 /* 2249 * Accumulate the fragments into a record. 2250 */ 2251 mpp = &slp->ns_frag; 2252 while (*mpp) 2253 mpp = &((*mpp)->m_next); 2254 *mpp = recm; 2255 if (slp->ns_flag & SLP_LASTFRAG) { 2256 struct nfsrv_rec *rec; 2257 rec = malloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, waitflag); 2258 if (!rec) { 2259 m_freem(slp->ns_frag); 2260 } else { 2261 nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED); 2262 rec->nr_address = (struct sockaddr *)0; 2263 rec->nr_packet = slp->ns_frag; 2264 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link); 2265 } 2266 slp->ns_frag = (struct mbuf *)0; 2267 } 2268 } 2269 } 2270 2271 /* 2272 * Parse an RPC header. 2273 */ 2274 int 2275 nfsrv_dorec(slp, nfsd, ndp) 2276 struct nfssvc_sock *slp; 2277 struct nfsd *nfsd; 2278 struct nfsrv_descript **ndp; 2279 { 2280 struct nfsrv_rec *rec; 2281 struct mbuf *m; 2282 struct sockaddr *nam; 2283 struct nfsrv_descript *nd; 2284 int error; 2285 2286 *ndp = NULL; 2287 if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec)) 2288 return (ENOBUFS); 2289 rec = STAILQ_FIRST(&slp->ns_rec); 2290 STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link); 2291 nam = rec->nr_address; 2292 m = rec->nr_packet; 2293 free(rec, M_NFSRVDESC); 2294 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript), 2295 M_NFSRVDESC, M_WAITOK); 2296 nd->nd_md = nd->nd_mrep = m; 2297 nd->nd_nam2 = nam; 2298 nd->nd_dpos = mtod(m, caddr_t); 2299 error = nfs_getreq(nd, nfsd, TRUE); 2300 if (error) { 2301 if (nam) { 2302 FREE(nam, M_SONAME); 2303 } 2304 free((caddr_t)nd, M_NFSRVDESC); 2305 return (error); 2306 } 2307 *ndp = nd; 2308 nfsd->nfsd_nd = nd; 2309 return (0); 2310 } 2311 2312 /* 2313 * Search for a sleeping nfsd and wake it up. 2314 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the 2315 * running nfsds will go look for the work in the nfssvc_sock list. 2316 */ 2317 void 2318 nfsrv_wakenfsd(slp) 2319 struct nfssvc_sock *slp; 2320 { 2321 struct nfsd *nd; 2322 2323 if ((slp->ns_flag & SLP_VALID) == 0) 2324 return; 2325 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) { 2326 if (nd->nfsd_flag & NFSD_WAITING) { 2327 nd->nfsd_flag &= ~NFSD_WAITING; 2328 if (nd->nfsd_slp) 2329 panic("nfsd wakeup"); 2330 slp->ns_sref++; 2331 nd->nfsd_slp = slp; 2332 wakeup((caddr_t)nd); 2333 return; 2334 } 2335 } 2336 slp->ns_flag |= SLP_DOREC; 2337 nfsd_head_flag |= NFSD_CHECKSLP; 2338 } 2339 #endif /* NFS_NOSERVER */ 2340