1 /* 2 * Copyright (c) 1989, 1991, 1993, 1995 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 37 * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $ 38 * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.26 2005/03/31 19:28:57 dillon Exp $ 39 */ 40 41 /* 42 * Socket operations for use by nfs 43 */ 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/proc.h> 48 #include <sys/malloc.h> 49 #include <sys/mount.h> 50 #include <sys/kernel.h> 51 #include <sys/mbuf.h> 52 #include <sys/vnode.h> 53 #include <sys/protosw.h> 54 #include <sys/resourcevar.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/socketops.h> 58 #include <sys/syslog.h> 59 #include <sys/thread.h> 60 #include <sys/tprintf.h> 61 #include <sys/sysctl.h> 62 #include <sys/signalvar.h> 63 64 #include <netinet/in.h> 65 #include <netinet/tcp.h> 66 #include <sys/thread2.h> 67 68 #include "rpcv2.h" 69 #include "nfsproto.h" 70 #include "nfs.h" 71 #include "xdr_subs.h" 72 #include "nfsm_subs.h" 73 #include "nfsmount.h" 74 #include "nfsnode.h" 75 #include "nfsrtt.h" 76 #include "nqnfs.h" 77 78 #define TRUE 1 79 #define FALSE 0 80 81 /* 82 * Estimate rto for an nfs rpc sent via. an unreliable datagram. 83 * Use the mean and mean deviation of rtt for the appropriate type of rpc 84 * for the frequent rpcs and a default for the others. 85 * The justification for doing "other" this way is that these rpcs 86 * happen so infrequently that timer est. would probably be stale. 87 * Also, since many of these rpcs are 88 * non-idempotent, a conservative timeout is desired. 89 * getattr, lookup - A+2D 90 * read, write - A+4D 91 * other - nm_timeo 92 */ 93 #define NFS_RTO(n, t) \ 94 ((t) == 0 ? (n)->nm_timeo : \ 95 ((t) < 3 ? \ 96 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ 97 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) 98 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1] 99 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1] 100 /* 101 * External data, mostly RPC constants in XDR form 102 */ 103 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, 104 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr, 105 rpc_auth_kerb; 106 extern u_int32_t nfs_prog, nqnfs_prog; 107 extern time_t nqnfsstarttime; 108 extern struct nfsstats nfsstats; 109 extern int nfsv3_procid[NFS_NPROCS]; 110 extern int nfs_ticks; 111 112 /* 113 * Defines which timer to use for the procnum. 114 * 0 - default 115 * 1 - getattr 116 * 2 - lookup 117 * 3 - read 118 * 4 - write 119 */ 120 static int proct[NFS_NPROCS] = { 121 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 122 0, 0, 0, 123 }; 124 125 static int nfs_realign_test; 126 static int nfs_realign_count; 127 static int nfs_bufpackets = 4; 128 129 SYSCTL_DECL(_vfs_nfs); 130 131 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, ""); 132 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, ""); 133 SYSCTL_INT(_vfs_nfs, OID_AUTO, bufpackets, CTLFLAG_RW, &nfs_bufpackets, 0, ""); 134 135 136 /* 137 * There is a congestion window for outstanding rpcs maintained per mount 138 * point. The cwnd size is adjusted in roughly the way that: 139 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of 140 * SIGCOMM '88". ACM, August 1988. 141 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout 142 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd 143 * of rpcs is in progress. 144 * (The sent count and cwnd are scaled for integer arith.) 145 * Variants of "slow start" were tried and were found to be too much of a 146 * performance hit (ave. rtt 3 times larger), 147 * I suspect due to the large rtt that nfs rpcs have. 148 */ 149 #define NFS_CWNDSCALE 256 150 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) 151 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; 152 int nfsrtton = 0; 153 struct nfsrtt nfsrtt; 154 struct callout nfs_timer_handle; 155 156 static int nfs_msg (struct thread *,char *,char *); 157 static int nfs_rcvlock (struct nfsreq *); 158 static void nfs_rcvunlock (struct nfsreq *); 159 static void nfs_realign (struct mbuf **pm, int hsiz); 160 static int nfs_receive (struct nfsreq *rep, struct sockaddr **aname, 161 struct mbuf **mp); 162 static void nfs_softterm (struct nfsreq *rep); 163 static int nfs_reconnect (struct nfsreq *rep); 164 #ifndef NFS_NOSERVER 165 static int nfsrv_getstream (struct nfssvc_sock *, int, int *); 166 167 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd, 168 struct nfssvc_sock *slp, 169 struct thread *td, 170 struct mbuf **mreqp) = { 171 nfsrv_null, 172 nfsrv_getattr, 173 nfsrv_setattr, 174 nfsrv_lookup, 175 nfsrv3_access, 176 nfsrv_readlink, 177 nfsrv_read, 178 nfsrv_write, 179 nfsrv_create, 180 nfsrv_mkdir, 181 nfsrv_symlink, 182 nfsrv_mknod, 183 nfsrv_remove, 184 nfsrv_rmdir, 185 nfsrv_rename, 186 nfsrv_link, 187 nfsrv_readdir, 188 nfsrv_readdirplus, 189 nfsrv_statfs, 190 nfsrv_fsinfo, 191 nfsrv_pathconf, 192 nfsrv_commit, 193 nqnfsrv_getlease, 194 nqnfsrv_vacated, 195 nfsrv_noop, 196 nfsrv_noop 197 }; 198 #endif /* NFS_NOSERVER */ 199 200 /* 201 * Initialize sockets and congestion for a new NFS connection. 202 * We do not free the sockaddr if error. 203 */ 204 int 205 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep) 206 { 207 struct socket *so; 208 int s, error, rcvreserve, sndreserve; 209 int pktscale; 210 struct sockaddr *saddr; 211 struct sockaddr_in *sin; 212 struct thread *td = &thread0; /* only used for socreate and sobind */ 213 214 nmp->nm_so = (struct socket *)0; 215 saddr = nmp->nm_nam; 216 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, 217 nmp->nm_soproto, td); 218 if (error) 219 goto bad; 220 so = nmp->nm_so; 221 nmp->nm_soflags = so->so_proto->pr_flags; 222 223 /* 224 * Some servers require that the client port be a reserved port number. 225 */ 226 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) { 227 struct sockopt sopt; 228 int ip; 229 struct sockaddr_in ssin; 230 231 bzero(&sopt, sizeof sopt); 232 ip = IP_PORTRANGE_LOW; 233 sopt.sopt_level = IPPROTO_IP; 234 sopt.sopt_name = IP_PORTRANGE; 235 sopt.sopt_val = (void *)&ip; 236 sopt.sopt_valsize = sizeof(ip); 237 sopt.sopt_td = NULL; 238 error = sosetopt(so, &sopt); 239 if (error) 240 goto bad; 241 bzero(&ssin, sizeof ssin); 242 sin = &ssin; 243 sin->sin_len = sizeof (struct sockaddr_in); 244 sin->sin_family = AF_INET; 245 sin->sin_addr.s_addr = INADDR_ANY; 246 sin->sin_port = htons(0); 247 error = sobind(so, (struct sockaddr *)sin, td); 248 if (error) 249 goto bad; 250 bzero(&sopt, sizeof sopt); 251 ip = IP_PORTRANGE_DEFAULT; 252 sopt.sopt_level = IPPROTO_IP; 253 sopt.sopt_name = IP_PORTRANGE; 254 sopt.sopt_val = (void *)&ip; 255 sopt.sopt_valsize = sizeof(ip); 256 sopt.sopt_td = NULL; 257 error = sosetopt(so, &sopt); 258 if (error) 259 goto bad; 260 } 261 262 /* 263 * Protocols that do not require connections may be optionally left 264 * unconnected for servers that reply from a port other than NFS_PORT. 265 */ 266 if (nmp->nm_flag & NFSMNT_NOCONN) { 267 if (nmp->nm_soflags & PR_CONNREQUIRED) { 268 error = ENOTCONN; 269 goto bad; 270 } 271 } else { 272 error = soconnect(so, nmp->nm_nam, td); 273 if (error) 274 goto bad; 275 276 /* 277 * Wait for the connection to complete. Cribbed from the 278 * connect system call but with the wait timing out so 279 * that interruptible mounts don't hang here for a long time. 280 */ 281 s = splnet(); 282 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 283 (void) tsleep((caddr_t)&so->so_timeo, 0, 284 "nfscon", 2 * hz); 285 if ((so->so_state & SS_ISCONNECTING) && 286 so->so_error == 0 && rep && 287 (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){ 288 so->so_state &= ~SS_ISCONNECTING; 289 splx(s); 290 goto bad; 291 } 292 } 293 if (so->so_error) { 294 error = so->so_error; 295 so->so_error = 0; 296 splx(s); 297 goto bad; 298 } 299 splx(s); 300 } 301 so->so_rcv.sb_timeo = (5 * hz); 302 so->so_snd.sb_timeo = (5 * hz); 303 304 /* 305 * Get buffer reservation size from sysctl, but impose reasonable 306 * limits. 307 */ 308 pktscale = nfs_bufpackets; 309 if (pktscale < 2) 310 pktscale = 2; 311 if (pktscale > 64) 312 pktscale = 64; 313 314 if (nmp->nm_sotype == SOCK_DGRAM) { 315 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; 316 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 317 NFS_MAXPKTHDR) * pktscale; 318 } else if (nmp->nm_sotype == SOCK_SEQPACKET) { 319 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale; 320 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 321 NFS_MAXPKTHDR) * pktscale; 322 } else { 323 if (nmp->nm_sotype != SOCK_STREAM) 324 panic("nfscon sotype"); 325 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 326 struct sockopt sopt; 327 int val; 328 329 bzero(&sopt, sizeof sopt); 330 sopt.sopt_level = SOL_SOCKET; 331 sopt.sopt_name = SO_KEEPALIVE; 332 sopt.sopt_val = &val; 333 sopt.sopt_valsize = sizeof val; 334 val = 1; 335 sosetopt(so, &sopt); 336 } 337 if (so->so_proto->pr_protocol == IPPROTO_TCP) { 338 struct sockopt sopt; 339 int val; 340 341 bzero(&sopt, sizeof sopt); 342 sopt.sopt_level = IPPROTO_TCP; 343 sopt.sopt_name = TCP_NODELAY; 344 sopt.sopt_val = &val; 345 sopt.sopt_valsize = sizeof val; 346 val = 1; 347 sosetopt(so, &sopt); 348 } 349 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + 350 sizeof (u_int32_t)) * pktscale; 351 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + 352 sizeof (u_int32_t)) * pktscale; 353 } 354 error = soreserve(so, sndreserve, rcvreserve, 355 &td->td_proc->p_rlimit[RLIMIT_SBSIZE]); 356 if (error) 357 goto bad; 358 so->so_rcv.sb_flags |= SB_NOINTR; 359 so->so_snd.sb_flags |= SB_NOINTR; 360 361 /* Initialize other non-zero congestion variables */ 362 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = 363 nmp->nm_srtt[3] = (NFS_TIMEO << 3); 364 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = 365 nmp->nm_sdrtt[3] = 0; 366 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ 367 nmp->nm_sent = 0; 368 nmp->nm_timeouts = 0; 369 return (0); 370 371 bad: 372 nfs_disconnect(nmp); 373 return (error); 374 } 375 376 /* 377 * Reconnect routine: 378 * Called when a connection is broken on a reliable protocol. 379 * - clean up the old socket 380 * - nfs_connect() again 381 * - set R_MUSTRESEND for all outstanding requests on mount point 382 * If this fails the mount point is DEAD! 383 * nb: Must be called with the nfs_sndlock() set on the mount point. 384 */ 385 static int 386 nfs_reconnect(struct nfsreq *rep) 387 { 388 struct nfsreq *rp; 389 struct nfsmount *nmp = rep->r_nmp; 390 int error; 391 392 nfs_disconnect(nmp); 393 while ((error = nfs_connect(nmp, rep)) != 0) { 394 if (error == EINTR || error == ERESTART) 395 return (EINTR); 396 (void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0); 397 } 398 399 /* 400 * Loop through outstanding request list and fix up all requests 401 * on old socket. 402 */ 403 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) { 404 if (rp->r_nmp == nmp) 405 rp->r_flags |= R_MUSTRESEND; 406 } 407 return (0); 408 } 409 410 /* 411 * NFS disconnect. Clean up and unlink. 412 */ 413 void 414 nfs_disconnect(struct nfsmount *nmp) 415 { 416 struct socket *so; 417 418 if (nmp->nm_so) { 419 so = nmp->nm_so; 420 nmp->nm_so = (struct socket *)0; 421 soshutdown(so, 2); 422 soclose(so); 423 } 424 } 425 426 void 427 nfs_safedisconnect(struct nfsmount *nmp) 428 { 429 struct nfsreq dummyreq; 430 431 bzero(&dummyreq, sizeof(dummyreq)); 432 dummyreq.r_nmp = nmp; 433 dummyreq.r_td = NULL; 434 nfs_rcvlock(&dummyreq); 435 nfs_disconnect(nmp); 436 nfs_rcvunlock(&dummyreq); 437 } 438 439 /* 440 * This is the nfs send routine. For connection based socket types, it 441 * must be called with an nfs_sndlock() on the socket. 442 * "rep == NULL" indicates that it has been called from a server. 443 * For the client side: 444 * - return EINTR if the RPC is terminated, 0 otherwise 445 * - set R_MUSTRESEND if the send fails for any reason 446 * - do any cleanup required by recoverable socket errors (?) 447 * For the server side: 448 * - return EINTR or ERESTART if interrupted by a signal 449 * - return EPIPE if a connection is lost for connection based sockets (TCP...) 450 * - do any cleanup required by recoverable socket errors (?) 451 */ 452 int 453 nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top, 454 struct nfsreq *rep) 455 { 456 struct sockaddr *sendnam; 457 int error, soflags, flags; 458 459 if (rep) { 460 if (rep->r_flags & R_SOFTTERM) { 461 m_freem(top); 462 return (EINTR); 463 } 464 if ((so = rep->r_nmp->nm_so) == NULL) { 465 rep->r_flags |= R_MUSTRESEND; 466 m_freem(top); 467 return (0); 468 } 469 rep->r_flags &= ~R_MUSTRESEND; 470 soflags = rep->r_nmp->nm_soflags; 471 } else 472 soflags = so->so_proto->pr_flags; 473 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) 474 sendnam = (struct sockaddr *)0; 475 else 476 sendnam = nam; 477 if (so->so_type == SOCK_SEQPACKET) 478 flags = MSG_EOR; 479 else 480 flags = 0; 481 482 error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags, 483 curthread /*XXX*/); 484 /* 485 * ENOBUFS for dgram sockets is transient and non fatal. 486 * No need to log, and no need to break a soft mount. 487 */ 488 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) { 489 error = 0; 490 if (rep) /* do backoff retransmit on client */ 491 rep->r_flags |= R_MUSTRESEND; 492 } 493 494 if (error) { 495 if (rep) { 496 log(LOG_INFO, "nfs send error %d for server %s\n",error, 497 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 498 /* 499 * Deal with errors for the client side. 500 */ 501 if (rep->r_flags & R_SOFTTERM) 502 error = EINTR; 503 else 504 rep->r_flags |= R_MUSTRESEND; 505 } else 506 log(LOG_INFO, "nfsd send error %d\n", error); 507 508 /* 509 * Handle any recoverable (soft) socket errors here. (?) 510 */ 511 if (error != EINTR && error != ERESTART && 512 error != EWOULDBLOCK && error != EPIPE) 513 error = 0; 514 } 515 return (error); 516 } 517 518 /* 519 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all 520 * done by soreceive(), but for SOCK_STREAM we must deal with the Record 521 * Mark and consolidate the data into a new mbuf list. 522 * nb: Sometimes TCP passes the data up to soreceive() in long lists of 523 * small mbufs. 524 * For SOCK_STREAM we must be very careful to read an entire record once 525 * we have read any of it, even if the system call has been interrupted. 526 */ 527 static int 528 nfs_receive(struct nfsreq *rep, struct sockaddr **aname, struct mbuf **mp) 529 { 530 struct socket *so; 531 struct uio auio; 532 struct iovec aio; 533 struct mbuf *m; 534 struct mbuf *control; 535 u_int32_t len; 536 struct sockaddr **getnam; 537 int error, sotype, rcvflg; 538 struct thread *td = curthread; /* XXX */ 539 540 /* 541 * Set up arguments for soreceive() 542 */ 543 *mp = (struct mbuf *)0; 544 *aname = (struct sockaddr *)0; 545 sotype = rep->r_nmp->nm_sotype; 546 547 /* 548 * For reliable protocols, lock against other senders/receivers 549 * in case a reconnect is necessary. 550 * For SOCK_STREAM, first get the Record Mark to find out how much 551 * more there is to get. 552 * We must lock the socket against other receivers 553 * until we have an entire rpc request/reply. 554 */ 555 if (sotype != SOCK_DGRAM) { 556 error = nfs_sndlock(rep); 557 if (error) 558 return (error); 559 tryagain: 560 /* 561 * Check for fatal errors and resending request. 562 */ 563 /* 564 * Ugh: If a reconnect attempt just happened, nm_so 565 * would have changed. NULL indicates a failed 566 * attempt that has essentially shut down this 567 * mount point. 568 */ 569 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { 570 nfs_sndunlock(rep); 571 return (EINTR); 572 } 573 so = rep->r_nmp->nm_so; 574 if (!so) { 575 error = nfs_reconnect(rep); 576 if (error) { 577 nfs_sndunlock(rep); 578 return (error); 579 } 580 goto tryagain; 581 } 582 while (rep->r_flags & R_MUSTRESEND) { 583 m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT); 584 nfsstats.rpcretries++; 585 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep); 586 if (error) { 587 if (error == EINTR || error == ERESTART || 588 (error = nfs_reconnect(rep)) != 0) { 589 nfs_sndunlock(rep); 590 return (error); 591 } 592 goto tryagain; 593 } 594 } 595 nfs_sndunlock(rep); 596 if (sotype == SOCK_STREAM) { 597 aio.iov_base = (caddr_t) &len; 598 aio.iov_len = sizeof(u_int32_t); 599 auio.uio_iov = &aio; 600 auio.uio_iovcnt = 1; 601 auio.uio_segflg = UIO_SYSSPACE; 602 auio.uio_rw = UIO_READ; 603 auio.uio_offset = 0; 604 auio.uio_resid = sizeof(u_int32_t); 605 auio.uio_td = td; 606 do { 607 rcvflg = MSG_WAITALL; 608 error = so_pru_soreceive(so, NULL, &auio, NULL, 609 NULL, &rcvflg); 610 if (error == EWOULDBLOCK && rep) { 611 if (rep->r_flags & R_SOFTTERM) 612 return (EINTR); 613 } 614 } while (error == EWOULDBLOCK); 615 if (!error && auio.uio_resid > 0) { 616 /* 617 * Don't log a 0 byte receive; it means 618 * that the socket has been closed, and 619 * can happen during normal operation 620 * (forcible unmount or Solaris server). 621 */ 622 if (auio.uio_resid != sizeof (u_int32_t)) 623 log(LOG_INFO, 624 "short receive (%d/%d) from nfs server %s\n", 625 (int)(sizeof(u_int32_t) - auio.uio_resid), 626 (int)sizeof(u_int32_t), 627 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 628 error = EPIPE; 629 } 630 if (error) 631 goto errout; 632 len = ntohl(len) & ~0x80000000; 633 /* 634 * This is SERIOUS! We are out of sync with the sender 635 * and forcing a disconnect/reconnect is all I can do. 636 */ 637 if (len > NFS_MAXPACKET) { 638 log(LOG_ERR, "%s (%d) from nfs server %s\n", 639 "impossible packet length", 640 len, 641 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 642 error = EFBIG; 643 goto errout; 644 } 645 auio.uio_resid = len; 646 do { 647 rcvflg = MSG_WAITALL; 648 error = so_pru_soreceive(so, NULL, &auio, mp, 649 NULL, &rcvflg); 650 } while (error == EWOULDBLOCK || error == EINTR || 651 error == ERESTART); 652 if (!error && auio.uio_resid > 0) { 653 if (len != auio.uio_resid) 654 log(LOG_INFO, 655 "short receive (%d/%d) from nfs server %s\n", 656 len - auio.uio_resid, len, 657 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 658 error = EPIPE; 659 } 660 } else { 661 /* 662 * NB: Since uio_resid is big, MSG_WAITALL is ignored 663 * and soreceive() will return when it has either a 664 * control msg or a data msg. 665 * We have no use for control msg., but must grab them 666 * and then throw them away so we know what is going 667 * on. 668 */ 669 auio.uio_resid = len = 100000000; /* Anything Big */ 670 auio.uio_td = td; 671 do { 672 rcvflg = 0; 673 error = so_pru_soreceive(so, NULL, &auio, mp, 674 &control, &rcvflg); 675 if (control) 676 m_freem(control); 677 if (error == EWOULDBLOCK && rep) { 678 if (rep->r_flags & R_SOFTTERM) 679 return (EINTR); 680 } 681 } while (error == EWOULDBLOCK || 682 (!error && *mp == NULL && control)); 683 if ((rcvflg & MSG_EOR) == 0) 684 printf("Egad!!\n"); 685 if (!error && *mp == NULL) 686 error = EPIPE; 687 len -= auio.uio_resid; 688 } 689 errout: 690 if (error && error != EINTR && error != ERESTART) { 691 m_freem(*mp); 692 *mp = (struct mbuf *)0; 693 if (error != EPIPE) 694 log(LOG_INFO, 695 "receive error %d from nfs server %s\n", 696 error, 697 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 698 error = nfs_sndlock(rep); 699 if (!error) { 700 error = nfs_reconnect(rep); 701 if (!error) 702 goto tryagain; 703 else 704 nfs_sndunlock(rep); 705 } 706 } 707 } else { 708 if ((so = rep->r_nmp->nm_so) == NULL) 709 return (EACCES); 710 if (so->so_state & SS_ISCONNECTED) 711 getnam = (struct sockaddr **)0; 712 else 713 getnam = aname; 714 auio.uio_resid = len = 1000000; 715 auio.uio_td = td; 716 do { 717 rcvflg = 0; 718 error = so_pru_soreceive(so, getnam, &auio, mp, NULL, 719 &rcvflg); 720 if (error == EWOULDBLOCK && 721 (rep->r_flags & R_SOFTTERM)) 722 return (EINTR); 723 } while (error == EWOULDBLOCK); 724 len -= auio.uio_resid; 725 } 726 if (error) { 727 m_freem(*mp); 728 *mp = (struct mbuf *)0; 729 } 730 /* 731 * Search for any mbufs that are not a multiple of 4 bytes long 732 * or with m_data not longword aligned. 733 * These could cause pointer alignment problems, so copy them to 734 * well aligned mbufs. 735 */ 736 nfs_realign(mp, 5 * NFSX_UNSIGNED); 737 return (error); 738 } 739 740 /* 741 * Implement receipt of reply on a socket. 742 * We must search through the list of received datagrams matching them 743 * with outstanding requests using the xid, until ours is found. 744 */ 745 /* ARGSUSED */ 746 int 747 nfs_reply(struct nfsreq *myrep) 748 { 749 struct nfsreq *rep; 750 struct nfsmount *nmp = myrep->r_nmp; 751 int32_t t1; 752 struct mbuf *mrep, *md; 753 struct sockaddr *nam; 754 u_int32_t rxid, *tl; 755 caddr_t dpos, cp2; 756 int error; 757 758 /* 759 * Loop around until we get our own reply 760 */ 761 for (;;) { 762 /* 763 * Lock against other receivers so that I don't get stuck in 764 * sbwait() after someone else has received my reply for me. 765 * Also necessary for connection based protocols to avoid 766 * race conditions during a reconnect. 767 * If nfs_rcvlock() returns EALREADY, that means that 768 * the reply has already been recieved by another 769 * process and we can return immediately. In this 770 * case, the lock is not taken to avoid races with 771 * other processes. 772 */ 773 error = nfs_rcvlock(myrep); 774 if (error == EALREADY) 775 return (0); 776 if (error) 777 return (error); 778 /* 779 * Get the next Rpc reply off the socket 780 */ 781 error = nfs_receive(myrep, &nam, &mrep); 782 nfs_rcvunlock(myrep); 783 if (error) { 784 785 /* 786 * Ignore routing errors on connectionless protocols?? 787 */ 788 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 789 nmp->nm_so->so_error = 0; 790 if (myrep->r_flags & R_GETONEREP) 791 return (0); 792 continue; 793 } 794 return (error); 795 } 796 if (nam) 797 FREE(nam, M_SONAME); 798 799 /* 800 * Get the xid and check that it is an rpc reply 801 */ 802 md = mrep; 803 dpos = mtod(md, caddr_t); 804 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED); 805 rxid = *tl++; 806 if (*tl != rpc_reply) { 807 #ifndef NFS_NOSERVER 808 if (nmp->nm_flag & NFSMNT_NQNFS) { 809 if (nqnfs_callback(nmp, mrep, md, dpos)) 810 nfsstats.rpcinvalid++; 811 } else { 812 nfsstats.rpcinvalid++; 813 m_freem(mrep); 814 } 815 #else 816 nfsstats.rpcinvalid++; 817 m_freem(mrep); 818 #endif 819 nfsmout: 820 if (myrep->r_flags & R_GETONEREP) 821 return (0); 822 continue; 823 } 824 825 /* 826 * Loop through the request list to match up the reply 827 * Iff no match, just drop the datagram 828 */ 829 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { 830 if (rep->r_mrep == NULL && rxid == rep->r_xid) { 831 /* Found it.. */ 832 rep->r_mrep = mrep; 833 rep->r_md = md; 834 rep->r_dpos = dpos; 835 if (nfsrtton) { 836 struct rttl *rt; 837 838 rt = &nfsrtt.rttl[nfsrtt.pos]; 839 rt->proc = rep->r_procnum; 840 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]); 841 rt->sent = nmp->nm_sent; 842 rt->cwnd = nmp->nm_cwnd; 843 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1]; 844 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1]; 845 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid; 846 getmicrotime(&rt->tstamp); 847 if (rep->r_flags & R_TIMING) 848 rt->rtt = rep->r_rtt; 849 else 850 rt->rtt = 1000000; 851 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ; 852 } 853 /* 854 * Update congestion window. 855 * Do the additive increase of 856 * one rpc/rtt. 857 */ 858 if (nmp->nm_cwnd <= nmp->nm_sent) { 859 nmp->nm_cwnd += 860 (NFS_CWNDSCALE * NFS_CWNDSCALE + 861 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; 862 if (nmp->nm_cwnd > NFS_MAXCWND) 863 nmp->nm_cwnd = NFS_MAXCWND; 864 } 865 crit_enter(); /* nfs_timer interlock*/ 866 if (rep->r_flags & R_SENT) { 867 rep->r_flags &= ~R_SENT; 868 nmp->nm_sent -= NFS_CWNDSCALE; 869 } 870 crit_exit(); 871 /* 872 * Update rtt using a gain of 0.125 on the mean 873 * and a gain of 0.25 on the deviation. 874 */ 875 if (rep->r_flags & R_TIMING) { 876 /* 877 * Since the timer resolution of 878 * NFS_HZ is so course, it can often 879 * result in r_rtt == 0. Since 880 * r_rtt == N means that the actual 881 * rtt is between N+dt and N+2-dt ticks, 882 * add 1. 883 */ 884 t1 = rep->r_rtt + 1; 885 t1 -= (NFS_SRTT(rep) >> 3); 886 NFS_SRTT(rep) += t1; 887 if (t1 < 0) 888 t1 = -t1; 889 t1 -= (NFS_SDRTT(rep) >> 2); 890 NFS_SDRTT(rep) += t1; 891 } 892 nmp->nm_timeouts = 0; 893 break; 894 } 895 } 896 /* 897 * If not matched to a request, drop it. 898 * If it's mine, get out. 899 */ 900 if (rep == 0) { 901 nfsstats.rpcunexpected++; 902 m_freem(mrep); 903 } else if (rep == myrep) { 904 if (rep->r_mrep == NULL) 905 panic("nfsreply nil"); 906 return (0); 907 } 908 if (myrep->r_flags & R_GETONEREP) 909 return (0); 910 } 911 } 912 913 /* 914 * nfs_request - goes something like this 915 * - fill in request struct 916 * - links it into list 917 * - calls nfs_send() for first transmit 918 * - calls nfs_receive() to get reply 919 * - break down rpc header and return with nfs reply pointed to 920 * by mrep or error 921 * nb: always frees up mreq mbuf list 922 */ 923 int 924 nfs_request(struct vnode *vp, struct mbuf *mrest, int procnum, 925 struct thread *td, struct ucred *cred, struct mbuf **mrp, 926 struct mbuf **mdp, caddr_t *dposp) 927 { 928 struct mbuf *mrep, *m2; 929 struct nfsreq *rep; 930 u_int32_t *tl; 931 int i; 932 struct nfsmount *nmp; 933 struct mbuf *m, *md, *mheadend; 934 struct nfsnode *np; 935 char nickv[RPCX_NICKVERF]; 936 time_t reqtime, waituntil; 937 caddr_t dpos, cp2; 938 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type; 939 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0; 940 int verf_len, verf_type; 941 u_int32_t xid; 942 u_quad_t frev; 943 char *auth_str, *verf_str; 944 NFSKERBKEY_T key; /* save session key */ 945 946 /* Reject requests while attempting a forced unmount. */ 947 if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) { 948 m_freem(mrest); 949 return (ESTALE); 950 } 951 nmp = VFSTONFS(vp->v_mount); 952 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK); 953 rep->r_nmp = nmp; 954 rep->r_vp = vp; 955 rep->r_td = td; 956 rep->r_procnum = procnum; 957 i = 0; 958 m = mrest; 959 while (m) { 960 i += m->m_len; 961 m = m->m_next; 962 } 963 mrest_len = i; 964 965 /* 966 * Get the RPC header with authorization. 967 */ 968 kerbauth: 969 verf_str = auth_str = (char *)0; 970 if (nmp->nm_flag & NFSMNT_KERB) { 971 verf_str = nickv; 972 verf_len = sizeof (nickv); 973 auth_type = RPCAUTH_KERB4; 974 bzero((caddr_t)key, sizeof (key)); 975 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str, 976 &auth_len, verf_str, verf_len)) { 977 error = nfs_getauth(nmp, rep, cred, &auth_str, 978 &auth_len, verf_str, &verf_len, key); 979 if (error) { 980 free((caddr_t)rep, M_NFSREQ); 981 m_freem(mrest); 982 return (error); 983 } 984 } 985 } else { 986 auth_type = RPCAUTH_UNIX; 987 if (cred->cr_ngroups < 1) 988 panic("nfsreq nogrps"); 989 auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ? 990 nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) + 991 5 * NFSX_UNSIGNED; 992 } 993 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, 994 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid); 995 if (auth_str) 996 free(auth_str, M_TEMP); 997 998 /* 999 * For stream protocols, insert a Sun RPC Record Mark. 1000 */ 1001 if (nmp->nm_sotype == SOCK_STREAM) { 1002 M_PREPEND(m, NFSX_UNSIGNED, MB_WAIT); 1003 if (m == NULL) { 1004 free(rep, M_NFSREQ); 1005 return (ENOBUFS); 1006 } 1007 *mtod(m, u_int32_t *) = htonl(0x80000000 | 1008 (m->m_pkthdr.len - NFSX_UNSIGNED)); 1009 } 1010 rep->r_mreq = m; 1011 rep->r_xid = xid; 1012 tryagain: 1013 if (nmp->nm_flag & NFSMNT_SOFT) 1014 rep->r_retry = nmp->nm_retry; 1015 else 1016 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ 1017 rep->r_rtt = rep->r_rexmit = 0; 1018 if (proct[procnum] > 0) 1019 rep->r_flags = R_TIMING | R_MASKTIMER; 1020 else 1021 rep->r_flags = R_MASKTIMER; 1022 rep->r_mrep = NULL; 1023 1024 /* 1025 * Do the client side RPC. 1026 */ 1027 nfsstats.rpcrequests++; 1028 1029 /* 1030 * Chain request into list of outstanding requests. Be sure 1031 * to put it LAST so timer finds oldest requests first. Note 1032 * that R_MASKTIMER is set at the moment to prevent any timer 1033 * action on this request while we are still doing processing on 1034 * it below. splsoftclock() primarily protects nm_sent. Note 1035 * that we may block in this code so there is no atomicy guarentee. 1036 */ 1037 s = splsoftclock(); 1038 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); 1039 1040 /* Get send time for nqnfs */ 1041 reqtime = time_second; 1042 1043 /* 1044 * If backing off another request or avoiding congestion, don't 1045 * send this one now but let timer do it. If not timing a request, 1046 * do it now. 1047 */ 1048 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || 1049 (nmp->nm_flag & NFSMNT_DUMBTIMR) || 1050 nmp->nm_sent < nmp->nm_cwnd)) { 1051 if (nmp->nm_soflags & PR_CONNREQUIRED) 1052 error = nfs_sndlock(rep); 1053 if (!error) { 1054 m2 = m_copym(m, 0, M_COPYALL, MB_WAIT); 1055 error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep); 1056 if (nmp->nm_soflags & PR_CONNREQUIRED) 1057 nfs_sndunlock(rep); 1058 } 1059 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { 1060 nmp->nm_sent += NFS_CWNDSCALE; 1061 rep->r_flags |= R_SENT; 1062 } 1063 } else { 1064 rep->r_rtt = -1; 1065 } 1066 1067 /* 1068 * Let the timer do what it will with the request, then 1069 * wait for the reply from our send or the timer's. 1070 */ 1071 rep->r_flags &= ~R_MASKTIMER; 1072 splx(s); 1073 if (!error || error == EPIPE) 1074 error = nfs_reply(rep); 1075 1076 /* 1077 * RPC done, unlink the request. 1078 */ 1079 s = splsoftclock(); 1080 TAILQ_REMOVE(&nfs_reqq, rep, r_chain); 1081 1082 /* 1083 * Decrement the outstanding request count. 1084 */ 1085 if (rep->r_flags & R_SENT) { 1086 rep->r_flags &= ~R_SENT; 1087 nmp->nm_sent -= NFS_CWNDSCALE; 1088 } 1089 splx(s); 1090 1091 /* 1092 * If there was a successful reply and a tprintf msg. 1093 * tprintf a response. 1094 */ 1095 if (!error && (rep->r_flags & R_TPRINTFMSG)) 1096 nfs_msg(rep->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname, 1097 "is alive again"); 1098 mrep = rep->r_mrep; 1099 md = rep->r_md; 1100 dpos = rep->r_dpos; 1101 if (error) { 1102 m_freem(rep->r_mreq); 1103 free((caddr_t)rep, M_NFSREQ); 1104 return (error); 1105 } 1106 1107 /* 1108 * break down the rpc header and check if ok 1109 */ 1110 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1111 if (*tl++ == rpc_msgdenied) { 1112 if (*tl == rpc_mismatch) 1113 error = EOPNOTSUPP; 1114 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) { 1115 if (!failed_auth) { 1116 failed_auth++; 1117 mheadend->m_next = (struct mbuf *)0; 1118 m_freem(mrep); 1119 m_freem(rep->r_mreq); 1120 goto kerbauth; 1121 } else 1122 error = EAUTH; 1123 } else 1124 error = EACCES; 1125 m_freem(mrep); 1126 m_freem(rep->r_mreq); 1127 free((caddr_t)rep, M_NFSREQ); 1128 return (error); 1129 } 1130 1131 /* 1132 * Grab any Kerberos verifier, otherwise just throw it away. 1133 */ 1134 verf_type = fxdr_unsigned(int, *tl++); 1135 i = fxdr_unsigned(int32_t, *tl); 1136 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) { 1137 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep); 1138 if (error) 1139 goto nfsmout; 1140 } else if (i > 0) 1141 nfsm_adv(nfsm_rndup(i)); 1142 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1143 /* 0 == ok */ 1144 if (*tl == 0) { 1145 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1146 if (*tl != 0) { 1147 error = fxdr_unsigned(int, *tl); 1148 if ((nmp->nm_flag & NFSMNT_NFSV3) && 1149 error == NFSERR_TRYLATER) { 1150 m_freem(mrep); 1151 error = 0; 1152 waituntil = time_second + trylater_delay; 1153 while (time_second < waituntil) 1154 (void) tsleep((caddr_t)&lbolt, 1155 0, "nqnfstry", 0); 1156 trylater_delay *= nfs_backoff[trylater_cnt]; 1157 if (trylater_cnt < 7) 1158 trylater_cnt++; 1159 goto tryagain; 1160 } 1161 1162 /* 1163 * If the File Handle was stale, invalidate the 1164 * lookup cache, just in case. 1165 */ 1166 if (error == ESTALE) 1167 cache_inval_vp(vp, CINV_CHILDREN); 1168 if (nmp->nm_flag & NFSMNT_NFSV3) { 1169 *mrp = mrep; 1170 *mdp = md; 1171 *dposp = dpos; 1172 error |= NFSERR_RETERR; 1173 } else 1174 m_freem(mrep); 1175 m_freem(rep->r_mreq); 1176 free((caddr_t)rep, M_NFSREQ); 1177 return (error); 1178 } 1179 1180 /* 1181 * For nqnfs, get any lease in reply 1182 */ 1183 if (nmp->nm_flag & NFSMNT_NQNFS) { 1184 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1185 if (*tl) { 1186 np = VTONFS(vp); 1187 nqlflag = fxdr_unsigned(int, *tl); 1188 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED); 1189 cachable = fxdr_unsigned(int, *tl++); 1190 reqtime += fxdr_unsigned(int, *tl++); 1191 if (reqtime > time_second) { 1192 frev = fxdr_hyper(tl); 1193 nqnfs_clientlease(nmp, np, nqlflag, 1194 cachable, reqtime, frev); 1195 } 1196 } 1197 } 1198 *mrp = mrep; 1199 *mdp = md; 1200 *dposp = dpos; 1201 m_freem(rep->r_mreq); 1202 FREE((caddr_t)rep, M_NFSREQ); 1203 return (0); 1204 } 1205 m_freem(mrep); 1206 error = EPROTONOSUPPORT; 1207 nfsmout: 1208 m_freem(rep->r_mreq); 1209 free((caddr_t)rep, M_NFSREQ); 1210 return (error); 1211 } 1212 1213 #ifndef NFS_NOSERVER 1214 /* 1215 * Generate the rpc reply header 1216 * siz arg. is used to decide if adding a cluster is worthwhile 1217 */ 1218 int 1219 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp, 1220 int err, int cache, u_quad_t *frev, struct mbuf **mrq, 1221 struct mbuf **mbp, caddr_t *bposp) 1222 { 1223 u_int32_t *tl; 1224 struct mbuf *mreq; 1225 caddr_t bpos; 1226 struct mbuf *mb, *mb2; 1227 1228 MGETHDR(mreq, MB_WAIT, MT_DATA); 1229 mb = mreq; 1230 /* 1231 * If this is a big reply, use a cluster else 1232 * try and leave leading space for the lower level headers. 1233 */ 1234 siz += RPC_REPLYSIZ; 1235 if ((max_hdr + siz) >= MINCLSIZE) { 1236 MCLGET(mreq, MB_WAIT); 1237 } else 1238 mreq->m_data += max_hdr; 1239 tl = mtod(mreq, u_int32_t *); 1240 mreq->m_len = 6 * NFSX_UNSIGNED; 1241 bpos = ((caddr_t)tl) + mreq->m_len; 1242 *tl++ = txdr_unsigned(nd->nd_retxid); 1243 *tl++ = rpc_reply; 1244 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { 1245 *tl++ = rpc_msgdenied; 1246 if (err & NFSERR_AUTHERR) { 1247 *tl++ = rpc_autherr; 1248 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); 1249 mreq->m_len -= NFSX_UNSIGNED; 1250 bpos -= NFSX_UNSIGNED; 1251 } else { 1252 *tl++ = rpc_mismatch; 1253 *tl++ = txdr_unsigned(RPC_VER2); 1254 *tl = txdr_unsigned(RPC_VER2); 1255 } 1256 } else { 1257 *tl++ = rpc_msgaccepted; 1258 1259 /* 1260 * For Kerberos authentication, we must send the nickname 1261 * verifier back, otherwise just RPCAUTH_NULL. 1262 */ 1263 if (nd->nd_flag & ND_KERBFULL) { 1264 struct nfsuid *nuidp; 1265 struct timeval ktvin, ktvout; 1266 1267 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first; 1268 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1269 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid && 1270 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp), 1271 &nuidp->nu_haddr, nd->nd_nam2))) 1272 break; 1273 } 1274 if (nuidp) { 1275 ktvin.tv_sec = 1276 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1); 1277 ktvin.tv_usec = 1278 txdr_unsigned(nuidp->nu_timestamp.tv_usec); 1279 1280 /* 1281 * Encrypt the timestamp in ecb mode using the 1282 * session key. 1283 */ 1284 #ifdef NFSKERB 1285 XXX 1286 #endif 1287 1288 *tl++ = rpc_auth_kerb; 1289 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); 1290 *tl = ktvout.tv_sec; 1291 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1292 *tl++ = ktvout.tv_usec; 1293 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid); 1294 } else { 1295 *tl++ = 0; 1296 *tl++ = 0; 1297 } 1298 } else { 1299 *tl++ = 0; 1300 *tl++ = 0; 1301 } 1302 switch (err) { 1303 case EPROGUNAVAIL: 1304 *tl = txdr_unsigned(RPC_PROGUNAVAIL); 1305 break; 1306 case EPROGMISMATCH: 1307 *tl = txdr_unsigned(RPC_PROGMISMATCH); 1308 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1309 if (nd->nd_flag & ND_NQNFS) { 1310 *tl++ = txdr_unsigned(3); 1311 *tl = txdr_unsigned(3); 1312 } else { 1313 *tl++ = txdr_unsigned(2); 1314 *tl = txdr_unsigned(3); 1315 } 1316 break; 1317 case EPROCUNAVAIL: 1318 *tl = txdr_unsigned(RPC_PROCUNAVAIL); 1319 break; 1320 case EBADRPC: 1321 *tl = txdr_unsigned(RPC_GARBAGE); 1322 break; 1323 default: 1324 *tl = 0; 1325 if (err != NFSERR_RETVOID) { 1326 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1327 if (err) 1328 *tl = txdr_unsigned(nfsrv_errmap(nd, err)); 1329 else 1330 *tl = 0; 1331 } 1332 break; 1333 }; 1334 } 1335 1336 /* 1337 * For nqnfs, piggyback lease as requested. 1338 */ 1339 if ((nd->nd_flag & ND_NQNFS) && err == 0) { 1340 if (nd->nd_flag & ND_LEASE) { 1341 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED); 1342 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE); 1343 *tl++ = txdr_unsigned(cache); 1344 *tl++ = txdr_unsigned(nd->nd_duration); 1345 txdr_hyper(*frev, tl); 1346 } else { 1347 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1348 *tl = 0; 1349 } 1350 } 1351 if (mrq != NULL) 1352 *mrq = mreq; 1353 *mbp = mb; 1354 *bposp = bpos; 1355 if (err != 0 && err != NFSERR_RETVOID) 1356 nfsstats.srvrpc_errs++; 1357 return (0); 1358 } 1359 1360 1361 #endif /* NFS_NOSERVER */ 1362 /* 1363 * Nfs timer routine 1364 * Scan the nfsreq list and retranmit any requests that have timed out 1365 * To avoid retransmission attempts on STREAM sockets (in the future) make 1366 * sure to set the r_retry field to 0 (implies nm_retry == 0). 1367 */ 1368 void 1369 nfs_timer(void *arg /* never used */) 1370 { 1371 struct nfsreq *rep; 1372 struct mbuf *m; 1373 struct socket *so; 1374 struct nfsmount *nmp; 1375 int timeo; 1376 int s, error; 1377 #ifndef NFS_NOSERVER 1378 static long lasttime = 0; 1379 struct nfssvc_sock *slp; 1380 u_quad_t cur_usec; 1381 #endif /* NFS_NOSERVER */ 1382 struct thread *td = &thread0; /* XXX for credentials, will break if sleep */ 1383 1384 s = splnet(); 1385 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) { 1386 nmp = rep->r_nmp; 1387 if (rep->r_mrep || (rep->r_flags & (R_SOFTTERM|R_MASKTIMER))) 1388 continue; 1389 if (nfs_sigintr(nmp, rep, rep->r_td)) { 1390 nfs_softterm(rep); 1391 continue; 1392 } 1393 if (rep->r_rtt >= 0) { 1394 rep->r_rtt++; 1395 if (nmp->nm_flag & NFSMNT_DUMBTIMR) 1396 timeo = nmp->nm_timeo; 1397 else 1398 timeo = NFS_RTO(nmp, proct[rep->r_procnum]); 1399 if (nmp->nm_timeouts > 0) 1400 timeo *= nfs_backoff[nmp->nm_timeouts - 1]; 1401 if (rep->r_rtt <= timeo) 1402 continue; 1403 if (nmp->nm_timeouts < 8) 1404 nmp->nm_timeouts++; 1405 } 1406 /* 1407 * Check for server not responding 1408 */ 1409 if ((rep->r_flags & R_TPRINTFMSG) == 0 && 1410 rep->r_rexmit > nmp->nm_deadthresh) { 1411 nfs_msg(rep->r_td, 1412 nmp->nm_mountp->mnt_stat.f_mntfromname, 1413 "not responding"); 1414 rep->r_flags |= R_TPRINTFMSG; 1415 } 1416 if (rep->r_rexmit >= rep->r_retry) { /* too many */ 1417 nfsstats.rpctimeouts++; 1418 nfs_softterm(rep); 1419 continue; 1420 } 1421 if (nmp->nm_sotype != SOCK_DGRAM) { 1422 if (++rep->r_rexmit > NFS_MAXREXMIT) 1423 rep->r_rexmit = NFS_MAXREXMIT; 1424 continue; 1425 } 1426 if ((so = nmp->nm_so) == NULL) 1427 continue; 1428 1429 /* 1430 * If there is enough space and the window allows.. 1431 * Resend it 1432 * Set r_rtt to -1 in case we fail to send it now. 1433 */ 1434 rep->r_rtt = -1; 1435 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && 1436 ((nmp->nm_flag & NFSMNT_DUMBTIMR) || 1437 (rep->r_flags & R_SENT) || 1438 nmp->nm_sent < nmp->nm_cwnd) && 1439 (m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_DONTWAIT))){ 1440 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0) 1441 error = so_pru_send(so, 0, m, (struct sockaddr *)0, 1442 (struct mbuf *)0, td); 1443 else 1444 error = so_pru_send(so, 0, m, nmp->nm_nam, 1445 (struct mbuf *)0, td); 1446 if (error) { 1447 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) 1448 so->so_error = 0; 1449 } else { 1450 /* 1451 * Iff first send, start timing 1452 * else turn timing off, backoff timer 1453 * and divide congestion window by 2. 1454 */ 1455 if (rep->r_flags & R_SENT) { 1456 rep->r_flags &= ~R_TIMING; 1457 if (++rep->r_rexmit > NFS_MAXREXMIT) 1458 rep->r_rexmit = NFS_MAXREXMIT; 1459 nmp->nm_cwnd >>= 1; 1460 if (nmp->nm_cwnd < NFS_CWNDSCALE) 1461 nmp->nm_cwnd = NFS_CWNDSCALE; 1462 nfsstats.rpcretries++; 1463 } else { 1464 rep->r_flags |= R_SENT; 1465 nmp->nm_sent += NFS_CWNDSCALE; 1466 } 1467 rep->r_rtt = 0; 1468 } 1469 } 1470 } 1471 #ifndef NFS_NOSERVER 1472 /* 1473 * Call the nqnfs server timer once a second to handle leases. 1474 */ 1475 if (lasttime != time_second) { 1476 lasttime = time_second; 1477 nqnfs_serverd(); 1478 } 1479 1480 /* 1481 * Scan the write gathering queues for writes that need to be 1482 * completed now. 1483 */ 1484 cur_usec = nfs_curusec(); 1485 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) { 1486 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec) 1487 nfsrv_wakenfsd(slp, 1); 1488 } 1489 #endif /* NFS_NOSERVER */ 1490 splx(s); 1491 callout_reset(&nfs_timer_handle, nfs_ticks, nfs_timer, NULL); 1492 } 1493 1494 /* 1495 * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and 1496 * wait for all requests to complete. This is used by forced unmounts 1497 * to terminate any outstanding RPCs. 1498 */ 1499 int 1500 nfs_nmcancelreqs(struct nfsmount *nmp) 1501 { 1502 struct nfsreq *req; 1503 int i, s1, s2; 1504 1505 s1 = splnet(); 1506 s2 = splsoftclock(); 1507 TAILQ_FOREACH(req, &nfs_reqq, r_chain) { 1508 if (nmp != req->r_nmp || req->r_mrep != NULL || 1509 (req->r_flags & R_SOFTTERM)) 1510 continue; 1511 nfs_softterm(req); 1512 } 1513 splx(s2); 1514 splx(s1); 1515 1516 for (i = 0; i < 30; i++) { 1517 int s = splnet(); 1518 TAILQ_FOREACH(req, &nfs_reqq, r_chain) { 1519 if (nmp == req->r_nmp) 1520 break; 1521 } 1522 splx(s); 1523 if (req == NULL) 1524 return (0); 1525 tsleep(&lbolt, 0, "nfscancel", 0); 1526 } 1527 return (EBUSY); 1528 } 1529 1530 /* 1531 * Flag a request as being about to terminate (due to NFSMNT_INT/NFSMNT_SOFT). 1532 * The nm_send count is decremented now to avoid deadlocks when the process in 1533 * soreceive() hasn't yet managed to send its own request. 1534 * 1535 * This routine must be called at splsoftclock() to protect r_flags and 1536 * nm_sent. 1537 */ 1538 1539 static void 1540 nfs_softterm(struct nfsreq *rep) 1541 { 1542 rep->r_flags |= R_SOFTTERM; 1543 1544 if (rep->r_flags & R_SENT) { 1545 rep->r_nmp->nm_sent -= NFS_CWNDSCALE; 1546 rep->r_flags &= ~R_SENT; 1547 } 1548 } 1549 1550 /* 1551 * Test for a termination condition pending on the process. 1552 * This is used for NFSMNT_INT mounts. 1553 */ 1554 int 1555 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td) 1556 { 1557 sigset_t tmpset; 1558 struct proc *p; 1559 1560 if (rep && (rep->r_flags & R_SOFTTERM)) 1561 return (EINTR); 1562 /* Terminate all requests while attempting a forced unmount. */ 1563 if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF) 1564 return (EINTR); 1565 if (!(nmp->nm_flag & NFSMNT_INT)) 1566 return (0); 1567 /* td might be NULL YYY */ 1568 if (td == NULL || (p = td->td_proc) == NULL) 1569 return (0); 1570 1571 tmpset = p->p_siglist; 1572 SIGSETNAND(tmpset, p->p_sigmask); 1573 SIGSETNAND(tmpset, p->p_sigignore); 1574 if (SIGNOTEMPTY(p->p_siglist) && NFSINT_SIGMASK(tmpset)) 1575 return (EINTR); 1576 1577 return (0); 1578 } 1579 1580 /* 1581 * Lock a socket against others. 1582 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply 1583 * and also to avoid race conditions between the processes with nfs requests 1584 * in progress when a reconnect is necessary. 1585 */ 1586 int 1587 nfs_sndlock(struct nfsreq *rep) 1588 { 1589 int *statep = &rep->r_nmp->nm_state; 1590 struct thread *td; 1591 int slptimeo; 1592 int slpflag; 1593 int error; 1594 1595 slpflag = 0; 1596 slptimeo = 0; 1597 td = rep->r_td; 1598 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1599 slpflag = PCATCH; 1600 1601 error = 0; 1602 crit_enter(); 1603 while (*statep & NFSSTA_SNDLOCK) { 1604 *statep |= NFSSTA_WANTSND; 1605 if (nfs_sigintr(rep->r_nmp, rep, td)) { 1606 error = EINTR; 1607 break; 1608 } 1609 tsleep((caddr_t)statep, slpflag, "nfsndlck", slptimeo); 1610 if (slpflag == PCATCH) { 1611 slpflag = 0; 1612 slptimeo = 2 * hz; 1613 } 1614 } 1615 /* Always fail if our request has been cancelled. */ 1616 if ((rep->r_flags & R_SOFTTERM)) 1617 error = EINTR; 1618 if (error == 0) 1619 *statep |= NFSSTA_SNDLOCK; 1620 crit_exit(); 1621 return (error); 1622 } 1623 1624 /* 1625 * Unlock the stream socket for others. 1626 */ 1627 void 1628 nfs_sndunlock(struct nfsreq *rep) 1629 { 1630 int *statep = &rep->r_nmp->nm_state; 1631 1632 if ((*statep & NFSSTA_SNDLOCK) == 0) 1633 panic("nfs sndunlock"); 1634 crit_enter(); 1635 *statep &= ~NFSSTA_SNDLOCK; 1636 if (*statep & NFSSTA_WANTSND) { 1637 *statep &= ~NFSSTA_WANTSND; 1638 wakeup((caddr_t)statep); 1639 } 1640 crit_exit(); 1641 } 1642 1643 static int 1644 nfs_rcvlock(struct nfsreq *rep) 1645 { 1646 int *statep = &rep->r_nmp->nm_state; 1647 int slpflag; 1648 int slptimeo; 1649 int error; 1650 1651 /* 1652 * Unconditionally check for completion in case another nfsiod 1653 * get the packet while the caller was blocked, before the caller 1654 * called us. Packet reception is handled by mainline code which 1655 * is protected by the BGL at the moment. 1656 * 1657 * We do not strictly need the second check just before the 1658 * tsleep(), but it's good defensive programming. 1659 */ 1660 if (rep->r_mrep != NULL) 1661 return (EALREADY); 1662 1663 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1664 slpflag = PCATCH; 1665 else 1666 slpflag = 0; 1667 slptimeo = 0; 1668 error = 0; 1669 crit_enter(); 1670 while (*statep & NFSSTA_RCVLOCK) { 1671 if (nfs_sigintr(rep->r_nmp, rep, rep->r_td)) { 1672 error = EINTR; 1673 break; 1674 } 1675 if (rep->r_mrep != NULL) { 1676 error = EALREADY; 1677 break; 1678 } 1679 *statep |= NFSSTA_WANTRCV; 1680 tsleep((caddr_t)statep, slpflag, "nfsrcvlk", slptimeo); 1681 /* 1682 * If our reply was recieved while we were sleeping, 1683 * then just return without taking the lock to avoid a 1684 * situation where a single iod could 'capture' the 1685 * recieve lock. 1686 */ 1687 if (rep->r_mrep != NULL) { 1688 error = EALREADY; 1689 break; 1690 } 1691 if (slpflag == PCATCH) { 1692 slpflag = 0; 1693 slptimeo = 2 * hz; 1694 } 1695 } 1696 if (error == 0) { 1697 *statep |= NFSSTA_RCVLOCK; 1698 rep->r_nmp->nm_rcvlock_td = curthread; /* DEBUGGING */ 1699 } 1700 crit_exit(); 1701 return (error); 1702 } 1703 1704 /* 1705 * Unlock the stream socket for others. 1706 */ 1707 static void 1708 nfs_rcvunlock(struct nfsreq *rep) 1709 { 1710 int *statep = &rep->r_nmp->nm_state; 1711 1712 if ((*statep & NFSSTA_RCVLOCK) == 0) 1713 panic("nfs rcvunlock"); 1714 crit_enter(); 1715 rep->r_nmp->nm_rcvlock_td = (void *)-1; /* DEBUGGING */ 1716 *statep &= ~NFSSTA_RCVLOCK; 1717 if (*statep & NFSSTA_WANTRCV) { 1718 *statep &= ~NFSSTA_WANTRCV; 1719 wakeup((caddr_t)statep); 1720 } 1721 crit_exit(); 1722 } 1723 1724 /* 1725 * nfs_realign: 1726 * 1727 * Check for badly aligned mbuf data and realign by copying the unaligned 1728 * portion of the data into a new mbuf chain and freeing the portions 1729 * of the old chain that were replaced. 1730 * 1731 * We cannot simply realign the data within the existing mbuf chain 1732 * because the underlying buffers may contain other rpc commands and 1733 * we cannot afford to overwrite them. 1734 * 1735 * We would prefer to avoid this situation entirely. The situation does 1736 * not occur with NFS/UDP and is supposed to only occassionally occur 1737 * with TCP. Use vfs.nfs.realign_count and realign_test to check this. 1738 */ 1739 static void 1740 nfs_realign(struct mbuf **pm, int hsiz) 1741 { 1742 struct mbuf *m; 1743 struct mbuf *n = NULL; 1744 int off = 0; 1745 1746 ++nfs_realign_test; 1747 1748 while ((m = *pm) != NULL) { 1749 if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3)) { 1750 MGET(n, MB_WAIT, MT_DATA); 1751 if (m->m_len >= MINCLSIZE) { 1752 MCLGET(n, MB_WAIT); 1753 } 1754 n->m_len = 0; 1755 break; 1756 } 1757 pm = &m->m_next; 1758 } 1759 1760 /* 1761 * If n is non-NULL, loop on m copying data, then replace the 1762 * portion of the chain that had to be realigned. 1763 */ 1764 if (n != NULL) { 1765 ++nfs_realign_count; 1766 while (m) { 1767 m_copyback(n, off, m->m_len, mtod(m, caddr_t)); 1768 off += m->m_len; 1769 m = m->m_next; 1770 } 1771 m_freem(*pm); 1772 *pm = n; 1773 } 1774 } 1775 1776 #ifndef NFS_NOSERVER 1777 1778 /* 1779 * Parse an RPC request 1780 * - verify it 1781 * - fill in the cred struct. 1782 */ 1783 int 1784 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header) 1785 { 1786 int len, i; 1787 u_int32_t *tl; 1788 int32_t t1; 1789 struct uio uio; 1790 struct iovec iov; 1791 caddr_t dpos, cp2, cp; 1792 u_int32_t nfsvers, auth_type; 1793 uid_t nickuid; 1794 int error = 0, nqnfs = 0, ticklen; 1795 struct mbuf *mrep, *md; 1796 struct nfsuid *nuidp; 1797 struct timeval tvin, tvout; 1798 #if 0 /* until encrypted keys are implemented */ 1799 NFSKERBKEYSCHED_T keys; /* stores key schedule */ 1800 #endif 1801 1802 mrep = nd->nd_mrep; 1803 md = nd->nd_md; 1804 dpos = nd->nd_dpos; 1805 if (has_header) { 1806 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); 1807 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); 1808 if (*tl++ != rpc_call) { 1809 m_freem(mrep); 1810 return (EBADRPC); 1811 } 1812 } else 1813 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 1814 nd->nd_repstat = 0; 1815 nd->nd_flag = 0; 1816 if (*tl++ != rpc_vers) { 1817 nd->nd_repstat = ERPCMISMATCH; 1818 nd->nd_procnum = NFSPROC_NOOP; 1819 return (0); 1820 } 1821 if (*tl != nfs_prog) { 1822 if (*tl == nqnfs_prog) 1823 nqnfs++; 1824 else { 1825 nd->nd_repstat = EPROGUNAVAIL; 1826 nd->nd_procnum = NFSPROC_NOOP; 1827 return (0); 1828 } 1829 } 1830 tl++; 1831 nfsvers = fxdr_unsigned(u_int32_t, *tl++); 1832 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) || 1833 (nfsvers != NQNFS_VER3 && nqnfs)) { 1834 nd->nd_repstat = EPROGMISMATCH; 1835 nd->nd_procnum = NFSPROC_NOOP; 1836 return (0); 1837 } 1838 if (nqnfs) 1839 nd->nd_flag = (ND_NFSV3 | ND_NQNFS); 1840 else if (nfsvers == NFS_VER3) 1841 nd->nd_flag = ND_NFSV3; 1842 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); 1843 if (nd->nd_procnum == NFSPROC_NULL) 1844 return (0); 1845 if (nd->nd_procnum >= NFS_NPROCS || 1846 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) || 1847 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { 1848 nd->nd_repstat = EPROCUNAVAIL; 1849 nd->nd_procnum = NFSPROC_NOOP; 1850 return (0); 1851 } 1852 if ((nd->nd_flag & ND_NFSV3) == 0) 1853 nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; 1854 auth_type = *tl++; 1855 len = fxdr_unsigned(int, *tl++); 1856 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1857 m_freem(mrep); 1858 return (EBADRPC); 1859 } 1860 1861 nd->nd_flag &= ~ND_KERBAUTH; 1862 /* 1863 * Handle auth_unix or auth_kerb. 1864 */ 1865 if (auth_type == rpc_auth_unix) { 1866 len = fxdr_unsigned(int, *++tl); 1867 if (len < 0 || len > NFS_MAXNAMLEN) { 1868 m_freem(mrep); 1869 return (EBADRPC); 1870 } 1871 nfsm_adv(nfsm_rndup(len)); 1872 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1873 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred)); 1874 nd->nd_cr.cr_ref = 1; 1875 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++); 1876 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++); 1877 len = fxdr_unsigned(int, *tl); 1878 if (len < 0 || len > RPCAUTH_UNIXGIDS) { 1879 m_freem(mrep); 1880 return (EBADRPC); 1881 } 1882 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); 1883 for (i = 1; i <= len; i++) 1884 if (i < NGROUPS) 1885 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++); 1886 else 1887 tl++; 1888 nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1); 1889 if (nd->nd_cr.cr_ngroups > 1) 1890 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups); 1891 len = fxdr_unsigned(int, *++tl); 1892 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1893 m_freem(mrep); 1894 return (EBADRPC); 1895 } 1896 if (len > 0) 1897 nfsm_adv(nfsm_rndup(len)); 1898 } else if (auth_type == rpc_auth_kerb) { 1899 switch (fxdr_unsigned(int, *tl++)) { 1900 case RPCAKN_FULLNAME: 1901 ticklen = fxdr_unsigned(int, *tl); 1902 *((u_int32_t *)nfsd->nfsd_authstr) = *tl; 1903 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; 1904 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; 1905 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { 1906 m_freem(mrep); 1907 return (EBADRPC); 1908 } 1909 uio.uio_offset = 0; 1910 uio.uio_iov = &iov; 1911 uio.uio_iovcnt = 1; 1912 uio.uio_segflg = UIO_SYSSPACE; 1913 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4]; 1914 iov.iov_len = RPCAUTH_MAXSIZ - 4; 1915 nfsm_mtouio(&uio, uio.uio_resid); 1916 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1917 if (*tl++ != rpc_auth_kerb || 1918 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { 1919 printf("Bad kerb verifier\n"); 1920 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1921 nd->nd_procnum = NFSPROC_NOOP; 1922 return (0); 1923 } 1924 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED); 1925 tl = (u_int32_t *)cp; 1926 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { 1927 printf("Not fullname kerb verifier\n"); 1928 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1929 nd->nd_procnum = NFSPROC_NOOP; 1930 return (0); 1931 } 1932 cp += NFSX_UNSIGNED; 1933 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED); 1934 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; 1935 nd->nd_flag |= ND_KERBFULL; 1936 nfsd->nfsd_flag |= NFSD_NEEDAUTH; 1937 break; 1938 case RPCAKN_NICKNAME: 1939 if (len != 2 * NFSX_UNSIGNED) { 1940 printf("Kerb nickname short\n"); 1941 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); 1942 nd->nd_procnum = NFSPROC_NOOP; 1943 return (0); 1944 } 1945 nickuid = fxdr_unsigned(uid_t, *tl); 1946 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1947 if (*tl++ != rpc_auth_kerb || 1948 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { 1949 printf("Kerb nick verifier bad\n"); 1950 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1951 nd->nd_procnum = NFSPROC_NOOP; 1952 return (0); 1953 } 1954 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1955 tvin.tv_sec = *tl++; 1956 tvin.tv_usec = *tl; 1957 1958 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first; 1959 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1960 if (nuidp->nu_cr.cr_uid == nickuid && 1961 (!nd->nd_nam2 || 1962 netaddr_match(NU_NETFAM(nuidp), 1963 &nuidp->nu_haddr, nd->nd_nam2))) 1964 break; 1965 } 1966 if (!nuidp) { 1967 nd->nd_repstat = 1968 (NFSERR_AUTHERR|AUTH_REJECTCRED); 1969 nd->nd_procnum = NFSPROC_NOOP; 1970 return (0); 1971 } 1972 1973 /* 1974 * Now, decrypt the timestamp using the session key 1975 * and validate it. 1976 */ 1977 #ifdef NFSKERB 1978 XXX 1979 #endif 1980 1981 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); 1982 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); 1983 if (nuidp->nu_expire < time_second || 1984 nuidp->nu_timestamp.tv_sec > tvout.tv_sec || 1985 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && 1986 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { 1987 nuidp->nu_expire = 0; 1988 nd->nd_repstat = 1989 (NFSERR_AUTHERR|AUTH_REJECTVERF); 1990 nd->nd_procnum = NFSPROC_NOOP; 1991 return (0); 1992 } 1993 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr); 1994 nd->nd_flag |= ND_KERBNICK; 1995 }; 1996 } else { 1997 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); 1998 nd->nd_procnum = NFSPROC_NOOP; 1999 return (0); 2000 } 2001 2002 /* 2003 * For nqnfs, get piggybacked lease request. 2004 */ 2005 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) { 2006 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 2007 nd->nd_flag |= fxdr_unsigned(int, *tl); 2008 if (nd->nd_flag & ND_LEASE) { 2009 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 2010 nd->nd_duration = fxdr_unsigned(int32_t, *tl); 2011 } else 2012 nd->nd_duration = NQ_MINLEASE; 2013 } else 2014 nd->nd_duration = NQ_MINLEASE; 2015 nd->nd_md = md; 2016 nd->nd_dpos = dpos; 2017 return (0); 2018 nfsmout: 2019 return (error); 2020 } 2021 2022 #endif 2023 2024 /* 2025 * Send a message to the originating process's terminal. The thread and/or 2026 * process may be NULL. YYY the thread should not be NULL but there may 2027 * still be some uio_td's that are still being passed as NULL through to 2028 * nfsm_request(). 2029 */ 2030 static int 2031 nfs_msg(struct thread *td, char *server, char *msg) 2032 { 2033 tpr_t tpr; 2034 2035 if (td && td->td_proc) 2036 tpr = tprintf_open(td->td_proc); 2037 else 2038 tpr = NULL; 2039 tprintf(tpr, "nfs server %s: %s\n", server, msg); 2040 tprintf_close(tpr); 2041 return (0); 2042 } 2043 2044 #ifndef NFS_NOSERVER 2045 /* 2046 * Socket upcall routine for the nfsd sockets. 2047 * The caddr_t arg is a pointer to the "struct nfssvc_sock". 2048 * Essentially do as much as possible non-blocking, else punt and it will 2049 * be called with MB_WAIT from an nfsd. 2050 */ 2051 void 2052 nfsrv_rcv(struct socket *so, void *arg, int waitflag) 2053 { 2054 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; 2055 struct mbuf *m; 2056 struct mbuf *mp; 2057 struct sockaddr *nam; 2058 struct uio auio; 2059 int flags, error; 2060 int nparallel_wakeup = 0; 2061 2062 if ((slp->ns_flag & SLP_VALID) == 0) 2063 return; 2064 2065 /* 2066 * Do not allow an infinite number of completed RPC records to build 2067 * up before we stop reading data from the socket. Otherwise we could 2068 * end up holding onto an unreasonable number of mbufs for requests 2069 * waiting for service. 2070 * 2071 * This should give pretty good feedback to the TCP 2072 * layer and prevents a memory crunch for other protocols. 2073 * 2074 * Note that the same service socket can be dispatched to several 2075 * nfs servers simultaniously. 2076 * 2077 * the tcp protocol callback calls us with MB_DONTWAIT. 2078 * nfsd calls us with MB_WAIT (typically). 2079 */ 2080 if (waitflag == MB_DONTWAIT && slp->ns_numrec >= nfsd_waiting / 2 + 1) { 2081 slp->ns_flag |= SLP_NEEDQ; 2082 goto dorecs; 2083 } 2084 2085 /* 2086 * Handle protocol specifics to parse an RPC request. We always 2087 * pull from the socket using non-blocking I/O. 2088 */ 2089 auio.uio_td = NULL; 2090 if (so->so_type == SOCK_STREAM) { 2091 /* 2092 * The data has to be read in an orderly fashion from a TCP 2093 * stream, unlike a UDP socket. It is possible for soreceive 2094 * and/or nfsrv_getstream() to block, so make sure only one 2095 * entity is messing around with the TCP stream at any given 2096 * moment. The receive sockbuf's lock in soreceive is not 2097 * sufficient. 2098 * 2099 * Note that this procedure can be called from any number of 2100 * NFS severs *OR* can be upcalled directly from a TCP 2101 * protocol thread. 2102 */ 2103 if (slp->ns_flag & SLP_GETSTREAM) { 2104 slp->ns_flag |= SLP_NEEDQ; 2105 goto dorecs; 2106 } 2107 slp->ns_flag |= SLP_GETSTREAM; 2108 2109 /* 2110 * Do soreceive(). 2111 */ 2112 auio.uio_resid = 1000000000; 2113 flags = MSG_DONTWAIT; 2114 error = so_pru_soreceive(so, &nam, &auio, &mp, NULL, &flags); 2115 if (error || mp == (struct mbuf *)0) { 2116 if (error == EWOULDBLOCK) 2117 slp->ns_flag |= SLP_NEEDQ; 2118 else 2119 slp->ns_flag |= SLP_DISCONN; 2120 slp->ns_flag &= ~SLP_GETSTREAM; 2121 goto dorecs; 2122 } 2123 m = mp; 2124 if (slp->ns_rawend) { 2125 slp->ns_rawend->m_next = m; 2126 slp->ns_cc += 1000000000 - auio.uio_resid; 2127 } else { 2128 slp->ns_raw = m; 2129 slp->ns_cc = 1000000000 - auio.uio_resid; 2130 } 2131 while (m->m_next) 2132 m = m->m_next; 2133 slp->ns_rawend = m; 2134 2135 /* 2136 * Now try and parse as many record(s) as we can out of the 2137 * raw stream data. 2138 */ 2139 error = nfsrv_getstream(slp, waitflag, &nparallel_wakeup); 2140 if (error) { 2141 if (error == EPERM) 2142 slp->ns_flag |= SLP_DISCONN; 2143 else 2144 slp->ns_flag |= SLP_NEEDQ; 2145 } 2146 slp->ns_flag &= ~SLP_GETSTREAM; 2147 } else { 2148 /* 2149 * For UDP soreceive typically pulls just one packet, loop 2150 * to get the whole batch. 2151 */ 2152 do { 2153 auio.uio_resid = 1000000000; 2154 flags = MSG_DONTWAIT; 2155 error = so_pru_soreceive(so, &nam, &auio, &mp, NULL, 2156 &flags); 2157 if (mp) { 2158 struct nfsrv_rec *rec; 2159 int mf = (waitflag & MB_DONTWAIT) ? 2160 M_NOWAIT : M_WAITOK; 2161 rec = malloc(sizeof(struct nfsrv_rec), 2162 M_NFSRVDESC, mf); 2163 if (!rec) { 2164 if (nam) 2165 FREE(nam, M_SONAME); 2166 m_freem(mp); 2167 continue; 2168 } 2169 nfs_realign(&mp, 10 * NFSX_UNSIGNED); 2170 rec->nr_address = nam; 2171 rec->nr_packet = mp; 2172 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link); 2173 ++slp->ns_numrec; 2174 ++nparallel_wakeup; 2175 } 2176 if (error) { 2177 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) 2178 && error != EWOULDBLOCK) { 2179 slp->ns_flag |= SLP_DISCONN; 2180 goto dorecs; 2181 } 2182 } 2183 } while (mp); 2184 } 2185 2186 /* 2187 * If we were upcalled from the tcp protocol layer and we have 2188 * fully parsed records ready to go, or there is new data pending, 2189 * or something went wrong, try to wake up an nfsd thread to deal 2190 * with it. 2191 */ 2192 dorecs: 2193 if (waitflag == MB_DONTWAIT && (slp->ns_numrec > 0 2194 || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) { 2195 nfsrv_wakenfsd(slp, nparallel_wakeup); 2196 } 2197 } 2198 2199 /* 2200 * Try and extract an RPC request from the mbuf data list received on a 2201 * stream socket. The "waitflag" argument indicates whether or not it 2202 * can sleep. 2203 */ 2204 static int 2205 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag, int *countp) 2206 { 2207 struct mbuf *m, **mpp; 2208 char *cp1, *cp2; 2209 int len; 2210 struct mbuf *om, *m2, *recm; 2211 u_int32_t recmark; 2212 2213 for (;;) { 2214 if (slp->ns_reclen == 0) { 2215 if (slp->ns_cc < NFSX_UNSIGNED) 2216 return (0); 2217 m = slp->ns_raw; 2218 if (m->m_len >= NFSX_UNSIGNED) { 2219 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED); 2220 m->m_data += NFSX_UNSIGNED; 2221 m->m_len -= NFSX_UNSIGNED; 2222 } else { 2223 cp1 = (caddr_t)&recmark; 2224 cp2 = mtod(m, caddr_t); 2225 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) { 2226 while (m->m_len == 0) { 2227 m = m->m_next; 2228 cp2 = mtod(m, caddr_t); 2229 } 2230 *cp1++ = *cp2++; 2231 m->m_data++; 2232 m->m_len--; 2233 } 2234 } 2235 slp->ns_cc -= NFSX_UNSIGNED; 2236 recmark = ntohl(recmark); 2237 slp->ns_reclen = recmark & ~0x80000000; 2238 if (recmark & 0x80000000) 2239 slp->ns_flag |= SLP_LASTFRAG; 2240 else 2241 slp->ns_flag &= ~SLP_LASTFRAG; 2242 if (slp->ns_reclen > NFS_MAXPACKET) { 2243 log(LOG_ERR, "%s (%d) from nfs client\n", 2244 "impossible packet length", 2245 slp->ns_reclen); 2246 return (EPERM); 2247 } 2248 } 2249 2250 /* 2251 * Now get the record part. 2252 * 2253 * Note that slp->ns_reclen may be 0. Linux sometimes 2254 * generates 0-length RPCs 2255 */ 2256 recm = NULL; 2257 if (slp->ns_cc == slp->ns_reclen) { 2258 recm = slp->ns_raw; 2259 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0; 2260 slp->ns_cc = slp->ns_reclen = 0; 2261 } else if (slp->ns_cc > slp->ns_reclen) { 2262 len = 0; 2263 m = slp->ns_raw; 2264 om = (struct mbuf *)0; 2265 2266 while (len < slp->ns_reclen) { 2267 if ((len + m->m_len) > slp->ns_reclen) { 2268 m2 = m_copym(m, 0, slp->ns_reclen - len, 2269 waitflag); 2270 if (m2) { 2271 if (om) { 2272 om->m_next = m2; 2273 recm = slp->ns_raw; 2274 } else 2275 recm = m2; 2276 m->m_data += slp->ns_reclen - len; 2277 m->m_len -= slp->ns_reclen - len; 2278 len = slp->ns_reclen; 2279 } else { 2280 return (EWOULDBLOCK); 2281 } 2282 } else if ((len + m->m_len) == slp->ns_reclen) { 2283 om = m; 2284 len += m->m_len; 2285 m = m->m_next; 2286 recm = slp->ns_raw; 2287 om->m_next = (struct mbuf *)0; 2288 } else { 2289 om = m; 2290 len += m->m_len; 2291 m = m->m_next; 2292 } 2293 } 2294 slp->ns_raw = m; 2295 slp->ns_cc -= len; 2296 slp->ns_reclen = 0; 2297 } else { 2298 return (0); 2299 } 2300 2301 /* 2302 * Accumulate the fragments into a record. 2303 */ 2304 mpp = &slp->ns_frag; 2305 while (*mpp) 2306 mpp = &((*mpp)->m_next); 2307 *mpp = recm; 2308 if (slp->ns_flag & SLP_LASTFRAG) { 2309 struct nfsrv_rec *rec; 2310 int mf = (waitflag & MB_DONTWAIT) ? M_NOWAIT : M_WAITOK; 2311 rec = malloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf); 2312 if (!rec) { 2313 m_freem(slp->ns_frag); 2314 } else { 2315 nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED); 2316 rec->nr_address = (struct sockaddr *)0; 2317 rec->nr_packet = slp->ns_frag; 2318 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link); 2319 ++slp->ns_numrec; 2320 ++*countp; 2321 } 2322 slp->ns_frag = (struct mbuf *)0; 2323 } 2324 } 2325 } 2326 2327 /* 2328 * Parse an RPC header. 2329 */ 2330 int 2331 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd, 2332 struct nfsrv_descript **ndp) 2333 { 2334 struct nfsrv_rec *rec; 2335 struct mbuf *m; 2336 struct sockaddr *nam; 2337 struct nfsrv_descript *nd; 2338 int error; 2339 2340 *ndp = NULL; 2341 if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec)) 2342 return (ENOBUFS); 2343 rec = STAILQ_FIRST(&slp->ns_rec); 2344 STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link); 2345 KKASSERT(slp->ns_numrec > 0); 2346 --slp->ns_numrec; 2347 nam = rec->nr_address; 2348 m = rec->nr_packet; 2349 free(rec, M_NFSRVDESC); 2350 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript), 2351 M_NFSRVDESC, M_WAITOK); 2352 nd->nd_md = nd->nd_mrep = m; 2353 nd->nd_nam2 = nam; 2354 nd->nd_dpos = mtod(m, caddr_t); 2355 error = nfs_getreq(nd, nfsd, TRUE); 2356 if (error) { 2357 if (nam) { 2358 FREE(nam, M_SONAME); 2359 } 2360 free((caddr_t)nd, M_NFSRVDESC); 2361 return (error); 2362 } 2363 *ndp = nd; 2364 nfsd->nfsd_nd = nd; 2365 return (0); 2366 } 2367 2368 /* 2369 * Try to assign service sockets to nfsd threads based on the number 2370 * of new rpc requests that have been queued on the service socket. 2371 * 2372 * If no nfsd's are available or additonal requests are pending, set the 2373 * NFSD_CHECKSLP flag so that one of the running nfsds will go look for 2374 * the work in the nfssvc_sock list when it is finished processing its 2375 * current work. This flag is only cleared when an nfsd can not find 2376 * any new work to perform. 2377 */ 2378 void 2379 nfsrv_wakenfsd(struct nfssvc_sock *slp, int nparallel) 2380 { 2381 struct nfsd *nd; 2382 2383 if ((slp->ns_flag & SLP_VALID) == 0) 2384 return; 2385 if (nparallel <= 1) 2386 nparallel = 1; 2387 TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) { 2388 if (nd->nfsd_flag & NFSD_WAITING) { 2389 nd->nfsd_flag &= ~NFSD_WAITING; 2390 if (nd->nfsd_slp) 2391 panic("nfsd wakeup"); 2392 slp->ns_sref++; 2393 nd->nfsd_slp = slp; 2394 wakeup((caddr_t)nd); 2395 if (--nparallel == 0) 2396 break; 2397 } 2398 } 2399 if (nparallel) { 2400 slp->ns_flag |= SLP_DOREC; 2401 nfsd_head_flag |= NFSD_CHECKSLP; 2402 } 2403 } 2404 #endif /* NFS_NOSERVER */ 2405