xref: /dflybsd-src/sys/vfs/nfs/nfs_socket.c (revision 41871674d0079dec70d55eb824f39d07dc7b3310)
1 /*
2  * Copyright (c) 1989, 1991, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_socket.c	8.5 (Berkeley) 3/30/95
37  * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.33 2006/03/27 16:18:39 dillon Exp $
39  */
40 
41 /*
42  * Socket operations for use by nfs
43  */
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/mbuf.h>
52 #include <sys/vnode.h>
53 #include <sys/protosw.h>
54 #include <sys/resourcevar.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/socketops.h>
58 #include <sys/syslog.h>
59 #include <sys/thread.h>
60 #include <sys/tprintf.h>
61 #include <sys/sysctl.h>
62 #include <sys/signalvar.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/tcp.h>
66 #include <sys/thread2.h>
67 
68 #include "rpcv2.h"
69 #include "nfsproto.h"
70 #include "nfs.h"
71 #include "xdr_subs.h"
72 #include "nfsm_subs.h"
73 #include "nfsmount.h"
74 #include "nfsnode.h"
75 #include "nfsrtt.h"
76 
77 #define	TRUE	1
78 #define	FALSE	0
79 
80 /*
81  * Estimate rto for an nfs rpc sent via. an unreliable datagram.
82  * Use the mean and mean deviation of rtt for the appropriate type of rpc
83  * for the frequent rpcs and a default for the others.
84  * The justification for doing "other" this way is that these rpcs
85  * happen so infrequently that timer est. would probably be stale.
86  * Also, since many of these rpcs are
87  * non-idempotent, a conservative timeout is desired.
88  * getattr, lookup - A+2D
89  * read, write     - A+4D
90  * other           - nm_timeo
91  */
92 #define	NFS_RTO(n, t) \
93 	((t) == 0 ? (n)->nm_timeo : \
94 	 ((t) < 3 ? \
95 	  (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
96 	  ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
97 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
98 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
99 /*
100  * External data, mostly RPC constants in XDR form
101  */
102 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
103 	rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
104 	rpc_auth_kerb;
105 extern u_int32_t nfs_prog;
106 extern struct nfsstats nfsstats;
107 extern int nfsv3_procid[NFS_NPROCS];
108 extern int nfs_ticks;
109 
110 /*
111  * Defines which timer to use for the procnum.
112  * 0 - default
113  * 1 - getattr
114  * 2 - lookup
115  * 3 - read
116  * 4 - write
117  */
118 static int proct[NFS_NPROCS] = {
119 	0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
120 	0, 0, 0,
121 };
122 
123 static int nfs_realign_test;
124 static int nfs_realign_count;
125 static int nfs_bufpackets = 4;
126 static int nfs_timer_raced;
127 
128 SYSCTL_DECL(_vfs_nfs);
129 
130 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, "");
131 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, "");
132 SYSCTL_INT(_vfs_nfs, OID_AUTO, bufpackets, CTLFLAG_RW, &nfs_bufpackets, 0, "");
133 
134 
135 /*
136  * There is a congestion window for outstanding rpcs maintained per mount
137  * point. The cwnd size is adjusted in roughly the way that:
138  * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
139  * SIGCOMM '88". ACM, August 1988.
140  * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
141  * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
142  * of rpcs is in progress.
143  * (The sent count and cwnd are scaled for integer arith.)
144  * Variants of "slow start" were tried and were found to be too much of a
145  * performance hit (ave. rtt 3 times larger),
146  * I suspect due to the large rtt that nfs rpcs have.
147  */
148 #define	NFS_CWNDSCALE	256
149 #define	NFS_MAXCWND	(NFS_CWNDSCALE * 32)
150 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
151 int nfsrtton = 0;
152 struct nfsrtt nfsrtt;
153 struct callout	nfs_timer_handle;
154 
155 static int	nfs_msg (struct thread *,char *,char *);
156 static int	nfs_rcvlock (struct nfsreq *);
157 static void	nfs_rcvunlock (struct nfsreq *);
158 static void	nfs_realign (struct mbuf **pm, int hsiz);
159 static int	nfs_receive (struct nfsreq *rep, struct sockaddr **aname,
160 				 struct mbuf **mp);
161 static void	nfs_softterm (struct nfsreq *rep);
162 static int	nfs_reconnect (struct nfsreq *rep);
163 #ifndef NFS_NOSERVER
164 static int	nfsrv_getstream (struct nfssvc_sock *, int, int *);
165 
166 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd,
167 				    struct nfssvc_sock *slp,
168 				    struct thread *td,
169 				    struct mbuf **mreqp) = {
170 	nfsrv_null,
171 	nfsrv_getattr,
172 	nfsrv_setattr,
173 	nfsrv_lookup,
174 	nfsrv3_access,
175 	nfsrv_readlink,
176 	nfsrv_read,
177 	nfsrv_write,
178 	nfsrv_create,
179 	nfsrv_mkdir,
180 	nfsrv_symlink,
181 	nfsrv_mknod,
182 	nfsrv_remove,
183 	nfsrv_rmdir,
184 	nfsrv_rename,
185 	nfsrv_link,
186 	nfsrv_readdir,
187 	nfsrv_readdirplus,
188 	nfsrv_statfs,
189 	nfsrv_fsinfo,
190 	nfsrv_pathconf,
191 	nfsrv_commit,
192 	nfsrv_noop,
193 	nfsrv_noop,
194 	nfsrv_noop,
195 	nfsrv_noop
196 };
197 #endif /* NFS_NOSERVER */
198 
199 /*
200  * Initialize sockets and congestion for a new NFS connection.
201  * We do not free the sockaddr if error.
202  */
203 int
204 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
205 {
206 	struct socket *so;
207 	int error, rcvreserve, sndreserve;
208 	int pktscale;
209 	struct sockaddr *saddr;
210 	struct sockaddr_in *sin;
211 	struct thread *td = &thread0; /* only used for socreate and sobind */
212 
213 	nmp->nm_so = (struct socket *)0;
214 	saddr = nmp->nm_nam;
215 	error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
216 		nmp->nm_soproto, td);
217 	if (error)
218 		goto bad;
219 	so = nmp->nm_so;
220 	nmp->nm_soflags = so->so_proto->pr_flags;
221 
222 	/*
223 	 * Some servers require that the client port be a reserved port number.
224 	 */
225 	if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
226 		struct sockopt sopt;
227 		int ip;
228 		struct sockaddr_in ssin;
229 
230 		bzero(&sopt, sizeof sopt);
231 		ip = IP_PORTRANGE_LOW;
232 		sopt.sopt_level = IPPROTO_IP;
233 		sopt.sopt_name = IP_PORTRANGE;
234 		sopt.sopt_val = (void *)&ip;
235 		sopt.sopt_valsize = sizeof(ip);
236 		sopt.sopt_td = NULL;
237 		error = sosetopt(so, &sopt);
238 		if (error)
239 			goto bad;
240 		bzero(&ssin, sizeof ssin);
241 		sin = &ssin;
242 		sin->sin_len = sizeof (struct sockaddr_in);
243 		sin->sin_family = AF_INET;
244 		sin->sin_addr.s_addr = INADDR_ANY;
245 		sin->sin_port = htons(0);
246 		error = sobind(so, (struct sockaddr *)sin, td);
247 		if (error)
248 			goto bad;
249 		bzero(&sopt, sizeof sopt);
250 		ip = IP_PORTRANGE_DEFAULT;
251 		sopt.sopt_level = IPPROTO_IP;
252 		sopt.sopt_name = IP_PORTRANGE;
253 		sopt.sopt_val = (void *)&ip;
254 		sopt.sopt_valsize = sizeof(ip);
255 		sopt.sopt_td = NULL;
256 		error = sosetopt(so, &sopt);
257 		if (error)
258 			goto bad;
259 	}
260 
261 	/*
262 	 * Protocols that do not require connections may be optionally left
263 	 * unconnected for servers that reply from a port other than NFS_PORT.
264 	 */
265 	if (nmp->nm_flag & NFSMNT_NOCONN) {
266 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
267 			error = ENOTCONN;
268 			goto bad;
269 		}
270 	} else {
271 		error = soconnect(so, nmp->nm_nam, td);
272 		if (error)
273 			goto bad;
274 
275 		/*
276 		 * Wait for the connection to complete. Cribbed from the
277 		 * connect system call but with the wait timing out so
278 		 * that interruptible mounts don't hang here for a long time.
279 		 */
280 		crit_enter();
281 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
282 			(void) tsleep((caddr_t)&so->so_timeo, 0,
283 				"nfscon", 2 * hz);
284 			if ((so->so_state & SS_ISCONNECTING) &&
285 			    so->so_error == 0 && rep &&
286 			    (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){
287 				so->so_state &= ~SS_ISCONNECTING;
288 				crit_exit();
289 				goto bad;
290 			}
291 		}
292 		if (so->so_error) {
293 			error = so->so_error;
294 			so->so_error = 0;
295 			crit_exit();
296 			goto bad;
297 		}
298 		crit_exit();
299 	}
300 	so->so_rcv.sb_timeo = (5 * hz);
301 	so->so_snd.sb_timeo = (5 * hz);
302 
303 	/*
304 	 * Get buffer reservation size from sysctl, but impose reasonable
305 	 * limits.
306 	 */
307 	pktscale = nfs_bufpackets;
308 	if (pktscale < 2)
309 		pktscale = 2;
310 	if (pktscale > 64)
311 		pktscale = 64;
312 
313 	if (nmp->nm_sotype == SOCK_DGRAM) {
314 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale;
315 		rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
316 		    NFS_MAXPKTHDR) * pktscale;
317 	} else if (nmp->nm_sotype == SOCK_SEQPACKET) {
318 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * pktscale;
319 		rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
320 		    NFS_MAXPKTHDR) * pktscale;
321 	} else {
322 		if (nmp->nm_sotype != SOCK_STREAM)
323 			panic("nfscon sotype");
324 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
325 			struct sockopt sopt;
326 			int val;
327 
328 			bzero(&sopt, sizeof sopt);
329 			sopt.sopt_level = SOL_SOCKET;
330 			sopt.sopt_name = SO_KEEPALIVE;
331 			sopt.sopt_val = &val;
332 			sopt.sopt_valsize = sizeof val;
333 			val = 1;
334 			sosetopt(so, &sopt);
335 		}
336 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
337 			struct sockopt sopt;
338 			int val;
339 
340 			bzero(&sopt, sizeof sopt);
341 			sopt.sopt_level = IPPROTO_TCP;
342 			sopt.sopt_name = TCP_NODELAY;
343 			sopt.sopt_val = &val;
344 			sopt.sopt_valsize = sizeof val;
345 			val = 1;
346 			sosetopt(so, &sopt);
347 		}
348 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
349 		    sizeof (u_int32_t)) * pktscale;
350 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
351 		    sizeof (u_int32_t)) * pktscale;
352 	}
353 	error = soreserve(so, sndreserve, rcvreserve,
354 			  &td->td_proc->p_rlimit[RLIMIT_SBSIZE]);
355 	if (error)
356 		goto bad;
357 	so->so_rcv.sb_flags |= SB_NOINTR;
358 	so->so_snd.sb_flags |= SB_NOINTR;
359 
360 	/* Initialize other non-zero congestion variables */
361 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] =
362 		nmp->nm_srtt[3] = (NFS_TIMEO << 3);
363 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
364 		nmp->nm_sdrtt[3] = 0;
365 	nmp->nm_cwnd = NFS_MAXCWND / 2;	    /* Initial send window */
366 	nmp->nm_sent = 0;
367 	nmp->nm_timeouts = 0;
368 	return (0);
369 
370 bad:
371 	nfs_disconnect(nmp);
372 	return (error);
373 }
374 
375 /*
376  * Reconnect routine:
377  * Called when a connection is broken on a reliable protocol.
378  * - clean up the old socket
379  * - nfs_connect() again
380  * - set R_MUSTRESEND for all outstanding requests on mount point
381  * If this fails the mount point is DEAD!
382  * nb: Must be called with the nfs_sndlock() set on the mount point.
383  */
384 static int
385 nfs_reconnect(struct nfsreq *rep)
386 {
387 	struct nfsreq *rp;
388 	struct nfsmount *nmp = rep->r_nmp;
389 	int error;
390 
391 	nfs_disconnect(nmp);
392 	while ((error = nfs_connect(nmp, rep)) != 0) {
393 		if (error == EINTR || error == ERESTART)
394 			return (EINTR);
395 		(void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0);
396 	}
397 
398 	/*
399 	 * Loop through outstanding request list and fix up all requests
400 	 * on old socket.
401 	 */
402 	crit_enter();
403 	TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
404 		if (rp->r_nmp == nmp)
405 			rp->r_flags |= R_MUSTRESEND;
406 	}
407 	crit_exit();
408 	return (0);
409 }
410 
411 /*
412  * NFS disconnect. Clean up and unlink.
413  */
414 void
415 nfs_disconnect(struct nfsmount *nmp)
416 {
417 	struct socket *so;
418 
419 	if (nmp->nm_so) {
420 		so = nmp->nm_so;
421 		nmp->nm_so = (struct socket *)0;
422 		soshutdown(so, 2);
423 		soclose(so);
424 	}
425 }
426 
427 void
428 nfs_safedisconnect(struct nfsmount *nmp)
429 {
430 	struct nfsreq dummyreq;
431 
432 	bzero(&dummyreq, sizeof(dummyreq));
433 	dummyreq.r_nmp = nmp;
434 	dummyreq.r_td = NULL;
435 	nfs_rcvlock(&dummyreq);
436 	nfs_disconnect(nmp);
437 	nfs_rcvunlock(&dummyreq);
438 }
439 
440 /*
441  * This is the nfs send routine. For connection based socket types, it
442  * must be called with an nfs_sndlock() on the socket.
443  * "rep == NULL" indicates that it has been called from a server.
444  * For the client side:
445  * - return EINTR if the RPC is terminated, 0 otherwise
446  * - set R_MUSTRESEND if the send fails for any reason
447  * - do any cleanup required by recoverable socket errors (?)
448  * For the server side:
449  * - return EINTR or ERESTART if interrupted by a signal
450  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
451  * - do any cleanup required by recoverable socket errors (?)
452  */
453 int
454 nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top,
455 	 struct nfsreq *rep)
456 {
457 	struct sockaddr *sendnam;
458 	int error, soflags, flags;
459 
460 	if (rep) {
461 		if (rep->r_flags & R_SOFTTERM) {
462 			m_freem(top);
463 			return (EINTR);
464 		}
465 		if ((so = rep->r_nmp->nm_so) == NULL) {
466 			rep->r_flags |= R_MUSTRESEND;
467 			m_freem(top);
468 			return (0);
469 		}
470 		rep->r_flags &= ~R_MUSTRESEND;
471 		soflags = rep->r_nmp->nm_soflags;
472 	} else
473 		soflags = so->so_proto->pr_flags;
474 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
475 		sendnam = (struct sockaddr *)0;
476 	else
477 		sendnam = nam;
478 	if (so->so_type == SOCK_SEQPACKET)
479 		flags = MSG_EOR;
480 	else
481 		flags = 0;
482 
483 	error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags,
484 	    curthread /*XXX*/);
485 	/*
486 	 * ENOBUFS for dgram sockets is transient and non fatal.
487 	 * No need to log, and no need to break a soft mount.
488 	 */
489 	if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
490 		error = 0;
491 		if (rep)		/* do backoff retransmit on client */
492 			rep->r_flags |= R_MUSTRESEND;
493 	}
494 
495 	if (error) {
496 		if (rep) {
497 			log(LOG_INFO, "nfs send error %d for server %s\n",error,
498 			    rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
499 			/*
500 			 * Deal with errors for the client side.
501 			 */
502 			if (rep->r_flags & R_SOFTTERM)
503 				error = EINTR;
504 			else
505 				rep->r_flags |= R_MUSTRESEND;
506 		} else
507 			log(LOG_INFO, "nfsd send error %d\n", error);
508 
509 		/*
510 		 * Handle any recoverable (soft) socket errors here. (?)
511 		 */
512 		if (error != EINTR && error != ERESTART &&
513 			error != EWOULDBLOCK && error != EPIPE)
514 			error = 0;
515 	}
516 	return (error);
517 }
518 
519 /*
520  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
521  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
522  * Mark and consolidate the data into a new mbuf list.
523  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
524  *     small mbufs.
525  * For SOCK_STREAM we must be very careful to read an entire record once
526  * we have read any of it, even if the system call has been interrupted.
527  */
528 static int
529 nfs_receive(struct nfsreq *rep, struct sockaddr **aname, struct mbuf **mp)
530 {
531 	struct socket *so;
532 	struct uio auio;
533 	struct iovec aio;
534 	struct mbuf *m;
535 	struct mbuf *control;
536 	u_int32_t len;
537 	struct sockaddr **getnam;
538 	int error, sotype, rcvflg;
539 	struct thread *td = curthread;	/* XXX */
540 
541 	/*
542 	 * Set up arguments for soreceive()
543 	 */
544 	*mp = (struct mbuf *)0;
545 	*aname = (struct sockaddr *)0;
546 	sotype = rep->r_nmp->nm_sotype;
547 
548 	/*
549 	 * For reliable protocols, lock against other senders/receivers
550 	 * in case a reconnect is necessary.
551 	 * For SOCK_STREAM, first get the Record Mark to find out how much
552 	 * more there is to get.
553 	 * We must lock the socket against other receivers
554 	 * until we have an entire rpc request/reply.
555 	 */
556 	if (sotype != SOCK_DGRAM) {
557 		error = nfs_sndlock(rep);
558 		if (error)
559 			return (error);
560 tryagain:
561 		/*
562 		 * Check for fatal errors and resending request.
563 		 */
564 		/*
565 		 * Ugh: If a reconnect attempt just happened, nm_so
566 		 * would have changed. NULL indicates a failed
567 		 * attempt that has essentially shut down this
568 		 * mount point.
569 		 */
570 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
571 			nfs_sndunlock(rep);
572 			return (EINTR);
573 		}
574 		so = rep->r_nmp->nm_so;
575 		if (!so) {
576 			error = nfs_reconnect(rep);
577 			if (error) {
578 				nfs_sndunlock(rep);
579 				return (error);
580 			}
581 			goto tryagain;
582 		}
583 		while (rep->r_flags & R_MUSTRESEND) {
584 			m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
585 			nfsstats.rpcretries++;
586 			error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
587 			if (error) {
588 				if (error == EINTR || error == ERESTART ||
589 				    (error = nfs_reconnect(rep)) != 0) {
590 					nfs_sndunlock(rep);
591 					return (error);
592 				}
593 				goto tryagain;
594 			}
595 		}
596 		nfs_sndunlock(rep);
597 		if (sotype == SOCK_STREAM) {
598 			aio.iov_base = (caddr_t) &len;
599 			aio.iov_len = sizeof(u_int32_t);
600 			auio.uio_iov = &aio;
601 			auio.uio_iovcnt = 1;
602 			auio.uio_segflg = UIO_SYSSPACE;
603 			auio.uio_rw = UIO_READ;
604 			auio.uio_offset = 0;
605 			auio.uio_resid = sizeof(u_int32_t);
606 			auio.uio_td = td;
607 			do {
608 			   rcvflg = MSG_WAITALL;
609 			   error = so_pru_soreceive(so, NULL, &auio, NULL,
610 			       NULL, &rcvflg);
611 			   if (error == EWOULDBLOCK && rep) {
612 				if (rep->r_flags & R_SOFTTERM)
613 					return (EINTR);
614 			   }
615 			} while (error == EWOULDBLOCK);
616 			if (!error && auio.uio_resid > 0) {
617 			    /*
618 			     * Don't log a 0 byte receive; it means
619 			     * that the socket has been closed, and
620 			     * can happen during normal operation
621 			     * (forcible unmount or Solaris server).
622 			     */
623 			    if (auio.uio_resid != sizeof (u_int32_t))
624 			    log(LOG_INFO,
625 				 "short receive (%d/%d) from nfs server %s\n",
626 				 (int)(sizeof(u_int32_t) - auio.uio_resid),
627 				 (int)sizeof(u_int32_t),
628 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
629 			    error = EPIPE;
630 			}
631 			if (error)
632 				goto errout;
633 			len = ntohl(len) & ~0x80000000;
634 			/*
635 			 * This is SERIOUS! We are out of sync with the sender
636 			 * and forcing a disconnect/reconnect is all I can do.
637 			 */
638 			if (len > NFS_MAXPACKET) {
639 			    log(LOG_ERR, "%s (%d) from nfs server %s\n",
640 				"impossible packet length",
641 				len,
642 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
643 			    error = EFBIG;
644 			    goto errout;
645 			}
646 			auio.uio_resid = len;
647 			do {
648 			    rcvflg = MSG_WAITALL;
649 			    error =  so_pru_soreceive(so, NULL, &auio, mp,
650 			        NULL, &rcvflg);
651 			} while (error == EWOULDBLOCK || error == EINTR ||
652 				 error == ERESTART);
653 			if (!error && auio.uio_resid > 0) {
654 			    if (len != auio.uio_resid)
655 			    log(LOG_INFO,
656 				"short receive (%d/%d) from nfs server %s\n",
657 				len - auio.uio_resid, len,
658 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
659 			    error = EPIPE;
660 			}
661 		} else {
662 			/*
663 			 * NB: Since uio_resid is big, MSG_WAITALL is ignored
664 			 * and soreceive() will return when it has either a
665 			 * control msg or a data msg.
666 			 * We have no use for control msg., but must grab them
667 			 * and then throw them away so we know what is going
668 			 * on.
669 			 */
670 			auio.uio_resid = len = 100000000; /* Anything Big */
671 			auio.uio_td = td;
672 			do {
673 			    rcvflg = 0;
674 			    error =  so_pru_soreceive(so, NULL, &auio, mp,
675 			        &control, &rcvflg);
676 			    if (control)
677 				m_freem(control);
678 			    if (error == EWOULDBLOCK && rep) {
679 				if (rep->r_flags & R_SOFTTERM)
680 					return (EINTR);
681 			    }
682 			} while (error == EWOULDBLOCK ||
683 				 (!error && *mp == NULL && control));
684 			if ((rcvflg & MSG_EOR) == 0)
685 				printf("Egad!!\n");
686 			if (!error && *mp == NULL)
687 				error = EPIPE;
688 			len -= auio.uio_resid;
689 		}
690 errout:
691 		if (error && error != EINTR && error != ERESTART) {
692 			m_freem(*mp);
693 			*mp = (struct mbuf *)0;
694 			if (error != EPIPE)
695 				log(LOG_INFO,
696 				    "receive error %d from nfs server %s\n",
697 				    error,
698 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
699 			error = nfs_sndlock(rep);
700 			if (!error) {
701 				error = nfs_reconnect(rep);
702 				if (!error)
703 					goto tryagain;
704 				else
705 					nfs_sndunlock(rep);
706 			}
707 		}
708 	} else {
709 		if ((so = rep->r_nmp->nm_so) == NULL)
710 			return (EACCES);
711 		if (so->so_state & SS_ISCONNECTED)
712 			getnam = (struct sockaddr **)0;
713 		else
714 			getnam = aname;
715 		auio.uio_resid = len = 1000000;
716 		auio.uio_td = td;
717 		do {
718 			rcvflg = 0;
719 			error =  so_pru_soreceive(so, getnam, &auio, mp, NULL,
720 			    &rcvflg);
721 			if (error == EWOULDBLOCK &&
722 			    (rep->r_flags & R_SOFTTERM))
723 				return (EINTR);
724 		} while (error == EWOULDBLOCK);
725 		len -= auio.uio_resid;
726 	}
727 	if (error) {
728 		m_freem(*mp);
729 		*mp = (struct mbuf *)0;
730 	}
731 	/*
732 	 * Search for any mbufs that are not a multiple of 4 bytes long
733 	 * or with m_data not longword aligned.
734 	 * These could cause pointer alignment problems, so copy them to
735 	 * well aligned mbufs.
736 	 */
737 	nfs_realign(mp, 5 * NFSX_UNSIGNED);
738 	return (error);
739 }
740 
741 /*
742  * Implement receipt of reply on a socket.
743  * We must search through the list of received datagrams matching them
744  * with outstanding requests using the xid, until ours is found.
745  */
746 /* ARGSUSED */
747 int
748 nfs_reply(struct nfsreq *myrep)
749 {
750 	struct nfsreq *rep;
751 	struct nfsmount *nmp = myrep->r_nmp;
752 	int32_t t1;
753 	struct mbuf *mrep, *md;
754 	struct sockaddr *nam;
755 	u_int32_t rxid, *tl;
756 	caddr_t dpos, cp2;
757 	int error;
758 
759 	/*
760 	 * Loop around until we get our own reply
761 	 */
762 	for (;;) {
763 		/*
764 		 * Lock against other receivers so that I don't get stuck in
765 		 * sbwait() after someone else has received my reply for me.
766 		 * Also necessary for connection based protocols to avoid
767 		 * race conditions during a reconnect.
768 		 * If nfs_rcvlock() returns EALREADY, that means that
769 		 * the reply has already been recieved by another
770 		 * process and we can return immediately.  In this
771 		 * case, the lock is not taken to avoid races with
772 		 * other processes.
773 		 */
774 		error = nfs_rcvlock(myrep);
775 		if (error == EALREADY)
776 			return (0);
777 		if (error)
778 			return (error);
779 		/*
780 		 * Get the next Rpc reply off the socket
781 		 */
782 		error = nfs_receive(myrep, &nam, &mrep);
783 		nfs_rcvunlock(myrep);
784 		if (error) {
785 			/*
786 			 * Ignore routing errors on connectionless protocols??
787 			 */
788 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
789 				nmp->nm_so->so_error = 0;
790 				if (myrep->r_flags & R_GETONEREP)
791 					return (0);
792 				continue;
793 			}
794 			return (error);
795 		}
796 		if (nam)
797 			FREE(nam, M_SONAME);
798 
799 		/*
800 		 * Get the xid and check that it is an rpc reply
801 		 */
802 		md = mrep;
803 		dpos = mtod(md, caddr_t);
804 		nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
805 		rxid = *tl++;
806 		if (*tl != rpc_reply) {
807 			nfsstats.rpcinvalid++;
808 			m_freem(mrep);
809 nfsmout:
810 			if (myrep->r_flags & R_GETONEREP)
811 				return (0);
812 			continue;
813 		}
814 
815 		/*
816 		 * Loop through the request list to match up the reply
817 		 * Iff no match, just drop the datagram.  On match, set
818 		 * r_mrep atomically to prevent the timer from messing
819 		 * around with the request after we have exited the critical
820 		 * section.
821 		 */
822 		crit_enter();
823 		TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
824 			if (rep->r_mrep == NULL && rxid == rep->r_xid) {
825 				rep->r_mrep = mrep;
826 				break;
827 			}
828 		}
829 		crit_exit();
830 
831 		/*
832 		 * Fill in the rest of the reply if we found a match.
833 		 */
834 		if (rep) {
835 			rep->r_md = md;
836 			rep->r_dpos = dpos;
837 			if (nfsrtton) {
838 				struct rttl *rt;
839 
840 				rt = &nfsrtt.rttl[nfsrtt.pos];
841 				rt->proc = rep->r_procnum;
842 				rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
843 				rt->sent = nmp->nm_sent;
844 				rt->cwnd = nmp->nm_cwnd;
845 				rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
846 				rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
847 				rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
848 				getmicrotime(&rt->tstamp);
849 				if (rep->r_flags & R_TIMING)
850 					rt->rtt = rep->r_rtt;
851 				else
852 					rt->rtt = 1000000;
853 				nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
854 			}
855 			/*
856 			 * Update congestion window.
857 			 * Do the additive increase of
858 			 * one rpc/rtt.
859 			 */
860 			if (nmp->nm_cwnd <= nmp->nm_sent) {
861 				nmp->nm_cwnd +=
862 				   (NFS_CWNDSCALE * NFS_CWNDSCALE +
863 				   (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
864 				if (nmp->nm_cwnd > NFS_MAXCWND)
865 					nmp->nm_cwnd = NFS_MAXCWND;
866 			}
867 			crit_enter();	/* nfs_timer interlock for nm_sent */
868 			if (rep->r_flags & R_SENT) {
869 				rep->r_flags &= ~R_SENT;
870 				nmp->nm_sent -= NFS_CWNDSCALE;
871 			}
872 			crit_exit();
873 			/*
874 			 * Update rtt using a gain of 0.125 on the mean
875 			 * and a gain of 0.25 on the deviation.
876 			 */
877 			if (rep->r_flags & R_TIMING) {
878 				/*
879 				 * Since the timer resolution of
880 				 * NFS_HZ is so course, it can often
881 				 * result in r_rtt == 0. Since
882 				 * r_rtt == N means that the actual
883 				 * rtt is between N+dt and N+2-dt ticks,
884 				 * add 1.
885 				 */
886 				t1 = rep->r_rtt + 1;
887 				t1 -= (NFS_SRTT(rep) >> 3);
888 				NFS_SRTT(rep) += t1;
889 				if (t1 < 0)
890 					t1 = -t1;
891 				t1 -= (NFS_SDRTT(rep) >> 2);
892 				NFS_SDRTT(rep) += t1;
893 			}
894 			nmp->nm_timeouts = 0;
895 		}
896 		/*
897 		 * If not matched to a request, drop it.
898 		 * If it's mine, get out.
899 		 */
900 		if (rep == NULL) {
901 			nfsstats.rpcunexpected++;
902 			m_freem(mrep);
903 		} else if (rep == myrep) {
904 			if (rep->r_mrep == NULL)
905 				panic("nfsreply nil");
906 			return (0);
907 		}
908 		if (myrep->r_flags & R_GETONEREP)
909 			return (0);
910 	}
911 }
912 
913 /*
914  * nfs_request - goes something like this
915  *	- fill in request struct
916  *	- links it into list
917  *	- calls nfs_send() for first transmit
918  *	- calls nfs_receive() to get reply
919  *	- break down rpc header and return with nfs reply pointed to
920  *	  by mrep or error
921  * nb: always frees up mreq mbuf list
922  */
923 int
924 nfs_request(struct vnode *vp, struct mbuf *mrest, int procnum,
925 	    struct thread *td, struct ucred *cred, struct mbuf **mrp,
926 	    struct mbuf **mdp, caddr_t *dposp)
927 {
928 	struct mbuf *mrep, *m2;
929 	struct nfsreq *rep;
930 	u_int32_t *tl;
931 	int i;
932 	struct nfsmount *nmp;
933 	struct mbuf *m, *md, *mheadend;
934 	char nickv[RPCX_NICKVERF];
935 	time_t waituntil;
936 	caddr_t dpos, cp2;
937 	int t1, error = 0, mrest_len, auth_len, auth_type;
938 	int trylater_delay = 15, trylater_cnt = 0, failed_auth = 0;
939 	int verf_len, verf_type;
940 	int retdummy;
941 	u_int32_t xid;
942 	char *auth_str, *verf_str;
943 	NFSKERBKEY_T key;		/* save session key */
944 
945 	/* Reject requests while attempting a forced unmount. */
946 	if (vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
947 		m_freem(mrest);
948 		return (ESTALE);
949 	}
950 	nmp = VFSTONFS(vp->v_mount);
951 	MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
952 	rep->r_nmp = nmp;
953 	rep->r_vp = vp;
954 	rep->r_td = td;
955 	rep->r_procnum = procnum;
956 	rep->r_mreq = NULL;
957 	i = 0;
958 	m = mrest;
959 	while (m) {
960 		i += m->m_len;
961 		m = m->m_next;
962 	}
963 	mrest_len = i;
964 
965 	/*
966 	 * Get the RPC header with authorization.
967 	 */
968 kerbauth:
969 	verf_str = auth_str = (char *)0;
970 	if (nmp->nm_flag & NFSMNT_KERB) {
971 		verf_str = nickv;
972 		verf_len = sizeof (nickv);
973 		auth_type = RPCAUTH_KERB4;
974 		bzero((caddr_t)key, sizeof (key));
975 		if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
976 			&auth_len, verf_str, verf_len)) {
977 			error = nfs_getauth(nmp, rep, cred, &auth_str,
978 				&auth_len, verf_str, &verf_len, key);
979 			if (error) {
980 				free((caddr_t)rep, M_NFSREQ);
981 				m_freem(mrest);
982 				return (error);
983 			}
984 		}
985 	} else {
986 		auth_type = RPCAUTH_UNIX;
987 		if (cred->cr_ngroups < 1)
988 			panic("nfsreq nogrps");
989 		auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
990 			nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
991 			5 * NFSX_UNSIGNED;
992 	}
993 	m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
994 	     auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
995 	if (auth_str)
996 		free(auth_str, M_TEMP);
997 
998 	/*
999 	 * For stream protocols, insert a Sun RPC Record Mark.
1000 	 */
1001 	if (nmp->nm_sotype == SOCK_STREAM) {
1002 		M_PREPEND(m, NFSX_UNSIGNED, MB_WAIT);
1003 		if (m == NULL) {
1004 			free(rep, M_NFSREQ);
1005 			return (ENOBUFS);
1006 		}
1007 		*mtod(m, u_int32_t *) = htonl(0x80000000 |
1008 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
1009 	}
1010 	rep->r_mreq = m;
1011 	rep->r_xid = xid;
1012 tryagain:
1013 	if (nmp->nm_flag & NFSMNT_SOFT)
1014 		rep->r_retry = nmp->nm_retry;
1015 	else
1016 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
1017 	rep->r_rtt = rep->r_rexmit = 0;
1018 	if (proct[procnum] > 0)
1019 		rep->r_flags = R_TIMING | R_MASKTIMER;
1020 	else
1021 		rep->r_flags = R_MASKTIMER;
1022 	rep->r_mrep = NULL;
1023 
1024 	/*
1025 	 * Do the client side RPC.
1026 	 */
1027 	nfsstats.rpcrequests++;
1028 
1029 	/*
1030 	 * Chain request into list of outstanding requests. Be sure
1031 	 * to put it LAST so timer finds oldest requests first.  Note
1032 	 * that R_MASKTIMER is set at the moment to prevent any timer
1033 	 * action on this request while we are still doing processing on
1034 	 * it below.  splsoftclock() primarily protects nm_sent.  Note
1035 	 * that we may block in this code so there is no atomicy guarentee.
1036 	 */
1037 	crit_enter();
1038 	TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1039 
1040 	/*
1041 	 * If backing off another request or avoiding congestion, don't
1042 	 * send this one now but let timer do it.  If not timing a request,
1043 	 * do it now.
1044 	 *
1045 	 * Even though the timer will not mess with our request there is
1046 	 * still the possibility that we will race a reply (which clears
1047 	 * R_SENT), especially on localhost connections, so be very careful
1048 	 * when setting R_SENT.  We could set R_SENT prior to calling
1049 	 * nfs_send() but why bother if the response occurs that quickly?
1050 	 */
1051 	if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1052 	    (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1053 	    nmp->nm_sent < nmp->nm_cwnd)) {
1054 		if (nmp->nm_soflags & PR_CONNREQUIRED)
1055 			error = nfs_sndlock(rep);
1056 		if (!error) {
1057 			m2 = m_copym(m, 0, M_COPYALL, MB_WAIT);
1058 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep);
1059 			if (nmp->nm_soflags & PR_CONNREQUIRED)
1060 				nfs_sndunlock(rep);
1061 		}
1062 		if (!error && (rep->r_flags & R_MUSTRESEND) == 0 &&
1063 		    rep->r_mrep == NULL) {
1064 			KASSERT((rep->r_flags & R_SENT) == 0,
1065 				("R_SENT ASSERT %p", rep));
1066 			nmp->nm_sent += NFS_CWNDSCALE;
1067 			rep->r_flags |= R_SENT;
1068 		}
1069 	} else {
1070 		rep->r_rtt = -1;
1071 	}
1072 
1073 	/*
1074 	 * Let the timer do what it will with the request, then
1075 	 * wait for the reply from our send or the timer's.
1076 	 */
1077 	if (!error || error == EPIPE) {
1078 		rep->r_flags &= ~R_MASKTIMER;
1079 		crit_exit();
1080 		error = nfs_reply(rep);
1081 		crit_enter();
1082 	}
1083 
1084 	/*
1085 	 * RPC done, unlink the request, but don't rip it out from under
1086 	 * the callout timer.
1087 	 */
1088 	while (rep->r_flags & R_LOCKED) {
1089 		nfs_timer_raced = 1;
1090 		tsleep(&nfs_timer_raced, 0, "nfstrac", 0);
1091 	}
1092 	TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1093 
1094 	/*
1095 	 * Decrement the outstanding request count.
1096 	 */
1097 	if (rep->r_flags & R_SENT) {
1098 		rep->r_flags &= ~R_SENT;
1099 		nmp->nm_sent -= NFS_CWNDSCALE;
1100 	}
1101 	crit_exit();
1102 
1103 	/*
1104 	 * If there was a successful reply and a tprintf msg.
1105 	 * tprintf a response.
1106 	 */
1107 	if (!error && (rep->r_flags & R_TPRINTFMSG))
1108 		nfs_msg(rep->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1109 		    "is alive again");
1110 	mrep = rep->r_mrep;
1111 	md = rep->r_md;
1112 	dpos = rep->r_dpos;
1113 	if (error) {
1114 		m_freem(rep->r_mreq);
1115 		free((caddr_t)rep, M_NFSREQ);
1116 		return (error);
1117 	}
1118 
1119 	/*
1120 	 * break down the rpc header and check if ok
1121 	 */
1122 	nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1123 	if (*tl++ == rpc_msgdenied) {
1124 		if (*tl == rpc_mismatch)
1125 			error = EOPNOTSUPP;
1126 		else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1127 			if (!failed_auth) {
1128 				failed_auth++;
1129 				mheadend->m_next = (struct mbuf *)0;
1130 				m_freem(mrep);
1131 				m_freem(rep->r_mreq);
1132 				goto kerbauth;
1133 			} else
1134 				error = EAUTH;
1135 		} else
1136 			error = EACCES;
1137 		m_freem(mrep);
1138 		m_freem(rep->r_mreq);
1139 		free((caddr_t)rep, M_NFSREQ);
1140 		return (error);
1141 	}
1142 
1143 	/*
1144 	 * Grab any Kerberos verifier, otherwise just throw it away.
1145 	 */
1146 	verf_type = fxdr_unsigned(int, *tl++);
1147 	i = fxdr_unsigned(int32_t, *tl);
1148 	if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1149 		error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1150 		if (error)
1151 			goto nfsmout;
1152 	} else if (i > 0)
1153 		nfsm_adv(nfsm_rndup(i));
1154 	nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1155 	/* 0 == ok */
1156 	if (*tl == 0) {
1157 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1158 		if (*tl != 0) {
1159 			error = fxdr_unsigned(int, *tl);
1160 			if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1161 				error == NFSERR_TRYLATER) {
1162 				m_freem(mrep);
1163 				error = 0;
1164 				waituntil = time_second + trylater_delay;
1165 				while (time_second < waituntil)
1166 					(void) tsleep((caddr_t)&lbolt,
1167 						0, "nqnfstry", 0);
1168 				trylater_delay *= nfs_backoff[trylater_cnt];
1169 				if (trylater_cnt < 7)
1170 					trylater_cnt++;
1171 				goto tryagain;
1172 			}
1173 
1174 			/*
1175 			 * If the File Handle was stale, invalidate the
1176 			 * lookup cache, just in case.
1177 			 */
1178 			if (error == ESTALE) {
1179 				retdummy = 0;
1180 				cache_inval_vp(vp, CINV_CHILDREN, &retdummy);
1181 			}
1182 			if (nmp->nm_flag & NFSMNT_NFSV3) {
1183 				*mrp = mrep;
1184 				*mdp = md;
1185 				*dposp = dpos;
1186 				error |= NFSERR_RETERR;
1187 			} else
1188 				m_freem(mrep);
1189 			m_freem(rep->r_mreq);
1190 			free((caddr_t)rep, M_NFSREQ);
1191 			return (error);
1192 		}
1193 
1194 		*mrp = mrep;
1195 		*mdp = md;
1196 		*dposp = dpos;
1197 		m_freem(rep->r_mreq);
1198 		FREE((caddr_t)rep, M_NFSREQ);
1199 		return (0);
1200 	}
1201 	m_freem(mrep);
1202 	error = EPROTONOSUPPORT;
1203 nfsmout:
1204 	m_freem(rep->r_mreq);
1205 	free((caddr_t)rep, M_NFSREQ);
1206 	return (error);
1207 }
1208 
1209 #ifndef NFS_NOSERVER
1210 /*
1211  * Generate the rpc reply header
1212  * siz arg. is used to decide if adding a cluster is worthwhile
1213  */
1214 int
1215 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp,
1216 	    int err, struct mbuf **mrq, struct mbuf **mbp, caddr_t *bposp)
1217 {
1218 	u_int32_t *tl;
1219 	struct mbuf *mreq;
1220 	caddr_t bpos;
1221 	struct mbuf *mb, *mb2;
1222 
1223 	siz += RPC_REPLYSIZ;
1224 	mb = mreq = m_getl(max_hdr + siz, MB_WAIT, MT_DATA, M_PKTHDR, NULL);
1225 	mreq->m_pkthdr.len = 0;
1226 	/*
1227 	 * If this is not a cluster, try and leave leading space
1228 	 * for the lower level headers.
1229 	 */
1230 	if ((max_hdr + siz) < MINCLSIZE)
1231 		mreq->m_data += max_hdr;
1232 	tl = mtod(mreq, u_int32_t *);
1233 	mreq->m_len = 6 * NFSX_UNSIGNED;
1234 	bpos = ((caddr_t)tl) + mreq->m_len;
1235 	*tl++ = txdr_unsigned(nd->nd_retxid);
1236 	*tl++ = rpc_reply;
1237 	if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1238 		*tl++ = rpc_msgdenied;
1239 		if (err & NFSERR_AUTHERR) {
1240 			*tl++ = rpc_autherr;
1241 			*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1242 			mreq->m_len -= NFSX_UNSIGNED;
1243 			bpos -= NFSX_UNSIGNED;
1244 		} else {
1245 			*tl++ = rpc_mismatch;
1246 			*tl++ = txdr_unsigned(RPC_VER2);
1247 			*tl = txdr_unsigned(RPC_VER2);
1248 		}
1249 	} else {
1250 		*tl++ = rpc_msgaccepted;
1251 
1252 		/*
1253 		 * For Kerberos authentication, we must send the nickname
1254 		 * verifier back, otherwise just RPCAUTH_NULL.
1255 		 */
1256 		if (nd->nd_flag & ND_KERBFULL) {
1257 		    struct nfsuid *nuidp;
1258 		    struct timeval ktvin, ktvout;
1259 
1260 		    for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1261 			nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1262 			if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1263 			    (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1264 			     &nuidp->nu_haddr, nd->nd_nam2)))
1265 			    break;
1266 		    }
1267 		    if (nuidp) {
1268 			ktvin.tv_sec =
1269 			    txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1270 			ktvin.tv_usec =
1271 			    txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1272 
1273 			/*
1274 			 * Encrypt the timestamp in ecb mode using the
1275 			 * session key.
1276 			 */
1277 #ifdef NFSKERB
1278 			XXX
1279 #endif
1280 
1281 			*tl++ = rpc_auth_kerb;
1282 			*tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1283 			*tl = ktvout.tv_sec;
1284 			nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1285 			*tl++ = ktvout.tv_usec;
1286 			*tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1287 		    } else {
1288 			*tl++ = 0;
1289 			*tl++ = 0;
1290 		    }
1291 		} else {
1292 			*tl++ = 0;
1293 			*tl++ = 0;
1294 		}
1295 		switch (err) {
1296 		case EPROGUNAVAIL:
1297 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
1298 			break;
1299 		case EPROGMISMATCH:
1300 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
1301 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1302 			*tl++ = txdr_unsigned(2);
1303 			*tl = txdr_unsigned(3);
1304 			break;
1305 		case EPROCUNAVAIL:
1306 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
1307 			break;
1308 		case EBADRPC:
1309 			*tl = txdr_unsigned(RPC_GARBAGE);
1310 			break;
1311 		default:
1312 			*tl = 0;
1313 			if (err != NFSERR_RETVOID) {
1314 				nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1315 				if (err)
1316 				    *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1317 				else
1318 				    *tl = 0;
1319 			}
1320 			break;
1321 		};
1322 	}
1323 
1324 	if (mrq != NULL)
1325 	    *mrq = mreq;
1326 	*mbp = mb;
1327 	*bposp = bpos;
1328 	if (err != 0 && err != NFSERR_RETVOID)
1329 		nfsstats.srvrpc_errs++;
1330 	return (0);
1331 }
1332 
1333 
1334 #endif /* NFS_NOSERVER */
1335 /*
1336  * Nfs timer routine
1337  * Scan the nfsreq list and retranmit any requests that have timed out
1338  * To avoid retransmission attempts on STREAM sockets (in the future) make
1339  * sure to set the r_retry field to 0 (implies nm_retry == 0).
1340  */
1341 void
1342 nfs_timer(void *arg /* never used */)
1343 {
1344 	struct nfsreq *rep;
1345 	struct mbuf *m;
1346 	struct socket *so;
1347 	struct nfsmount *nmp;
1348 	int timeo;
1349 	int error;
1350 #ifndef NFS_NOSERVER
1351 	struct nfssvc_sock *slp;
1352 	u_quad_t cur_usec;
1353 #endif /* NFS_NOSERVER */
1354 	struct thread *td = &thread0; /* XXX for credentials, will break if sleep */
1355 
1356 	crit_enter();
1357 	TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
1358 		nmp = rep->r_nmp;
1359 		if (rep->r_mrep || (rep->r_flags & (R_SOFTTERM|R_MASKTIMER)))
1360 			continue;
1361 		rep->r_flags |= R_LOCKED;
1362 		if (nfs_sigintr(nmp, rep, rep->r_td)) {
1363 			nfs_softterm(rep);
1364 			goto skip;
1365 		}
1366 		if (rep->r_rtt >= 0) {
1367 			rep->r_rtt++;
1368 			if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1369 				timeo = nmp->nm_timeo;
1370 			else
1371 				timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1372 			if (nmp->nm_timeouts > 0)
1373 				timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1374 			if (rep->r_rtt <= timeo)
1375 				goto skip;
1376 			if (nmp->nm_timeouts < 8)
1377 				nmp->nm_timeouts++;
1378 		}
1379 		/*
1380 		 * Check for server not responding
1381 		 */
1382 		if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1383 		     rep->r_rexmit > nmp->nm_deadthresh) {
1384 			nfs_msg(rep->r_td,
1385 			    nmp->nm_mountp->mnt_stat.f_mntfromname,
1386 			    "not responding");
1387 			rep->r_flags |= R_TPRINTFMSG;
1388 		}
1389 		if (rep->r_rexmit >= rep->r_retry) {	/* too many */
1390 			nfsstats.rpctimeouts++;
1391 			nfs_softterm(rep);
1392 			goto skip;
1393 		}
1394 		if (nmp->nm_sotype != SOCK_DGRAM) {
1395 			if (++rep->r_rexmit > NFS_MAXREXMIT)
1396 				rep->r_rexmit = NFS_MAXREXMIT;
1397 			goto skip;
1398 		}
1399 		if ((so = nmp->nm_so) == NULL)
1400 			goto skip;
1401 
1402 		/*
1403 		 * If there is enough space and the window allows..
1404 		 *	Resend it
1405 		 * Set r_rtt to -1 in case we fail to send it now.
1406 		 */
1407 		rep->r_rtt = -1;
1408 		if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1409 		   ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1410 		    (rep->r_flags & R_SENT) ||
1411 		    nmp->nm_sent < nmp->nm_cwnd) &&
1412 		   (m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_DONTWAIT))){
1413 			if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1414 			    error = so_pru_send(so, 0, m, (struct sockaddr *)0,
1415 				     (struct mbuf *)0, td);
1416 			else
1417 			    error = so_pru_send(so, 0, m, nmp->nm_nam,
1418 			        (struct mbuf *)0, td);
1419 			if (error) {
1420 				if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1421 					so->so_error = 0;
1422 			} else if (rep->r_mrep == NULL) {
1423 				/*
1424 				 * Iff first send, start timing
1425 				 * else turn timing off, backoff timer
1426 				 * and divide congestion window by 2.
1427 				 *
1428 				 * It is possible for the so_pru_send() to
1429 				 * block and for us to race a reply so we
1430 				 * only do this if the reply field has not
1431 				 * been filled in.  R_LOCKED will prevent
1432 				 * the request from being ripped out from under
1433 				 * us entirely.
1434 				 */
1435 				if (rep->r_flags & R_SENT) {
1436 					rep->r_flags &= ~R_TIMING;
1437 					if (++rep->r_rexmit > NFS_MAXREXMIT)
1438 						rep->r_rexmit = NFS_MAXREXMIT;
1439 					nmp->nm_cwnd >>= 1;
1440 					if (nmp->nm_cwnd < NFS_CWNDSCALE)
1441 						nmp->nm_cwnd = NFS_CWNDSCALE;
1442 					nfsstats.rpcretries++;
1443 				} else {
1444 					rep->r_flags |= R_SENT;
1445 					nmp->nm_sent += NFS_CWNDSCALE;
1446 				}
1447 				rep->r_rtt = 0;
1448 			}
1449 		}
1450 skip:
1451 		rep->r_flags &= ~R_LOCKED;
1452 	}
1453 #ifndef NFS_NOSERVER
1454 
1455 	/*
1456 	 * Scan the write gathering queues for writes that need to be
1457 	 * completed now.
1458 	 */
1459 	cur_usec = nfs_curusec();
1460 	TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1461 	    if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1462 		nfsrv_wakenfsd(slp, 1);
1463 	}
1464 #endif /* NFS_NOSERVER */
1465 
1466 	/*
1467 	 * Due to possible blocking, a client operation may be waiting for
1468 	 * us to finish processing this request so it can remove it.
1469 	 */
1470 	if (nfs_timer_raced) {
1471 		nfs_timer_raced = 0;
1472 		wakeup(&nfs_timer_raced);
1473 	}
1474 	crit_exit();
1475 	callout_reset(&nfs_timer_handle, nfs_ticks, nfs_timer, NULL);
1476 }
1477 
1478 /*
1479  * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
1480  * wait for all requests to complete. This is used by forced unmounts
1481  * to terminate any outstanding RPCs.
1482  */
1483 int
1484 nfs_nmcancelreqs(struct nfsmount *nmp)
1485 {
1486 	struct nfsreq *req;
1487 	int i;
1488 
1489 	crit_enter();
1490 	TAILQ_FOREACH(req, &nfs_reqq, r_chain) {
1491 		if (nmp != req->r_nmp || req->r_mrep != NULL ||
1492 		    (req->r_flags & R_SOFTTERM)) {
1493 			continue;
1494 		}
1495 		nfs_softterm(req);
1496 	}
1497 	crit_exit();
1498 
1499 	for (i = 0; i < 30; i++) {
1500 		crit_enter();
1501 		TAILQ_FOREACH(req, &nfs_reqq, r_chain) {
1502 			if (nmp == req->r_nmp)
1503 				break;
1504 		}
1505 		crit_exit();
1506 		if (req == NULL)
1507 			return (0);
1508 		tsleep(&lbolt, 0, "nfscancel", 0);
1509 	}
1510 	return (EBUSY);
1511 }
1512 
1513 /*
1514  * Flag a request as being about to terminate (due to NFSMNT_INT/NFSMNT_SOFT).
1515  * The nm_send count is decremented now to avoid deadlocks when the process in
1516  * soreceive() hasn't yet managed to send its own request.
1517  *
1518  * This routine must be called at splsoftclock() to protect r_flags and
1519  * nm_sent.
1520  */
1521 
1522 static void
1523 nfs_softterm(struct nfsreq *rep)
1524 {
1525 	rep->r_flags |= R_SOFTTERM;
1526 
1527 	if (rep->r_flags & R_SENT) {
1528 		rep->r_nmp->nm_sent -= NFS_CWNDSCALE;
1529 		rep->r_flags &= ~R_SENT;
1530 	}
1531 }
1532 
1533 /*
1534  * Test for a termination condition pending on the process.
1535  * This is used for NFSMNT_INT mounts.
1536  */
1537 int
1538 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td)
1539 {
1540 	sigset_t tmpset;
1541 	struct proc *p;
1542 
1543 	if (rep && (rep->r_flags & R_SOFTTERM))
1544 		return (EINTR);
1545 	/* Terminate all requests while attempting a forced unmount. */
1546 	if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)
1547 		return (EINTR);
1548 	if (!(nmp->nm_flag & NFSMNT_INT))
1549 		return (0);
1550 	/* td might be NULL YYY */
1551 	if (td == NULL || (p = td->td_proc) == NULL)
1552 		return (0);
1553 
1554 	tmpset = p->p_siglist;
1555 	SIGSETNAND(tmpset, p->p_sigmask);
1556 	SIGSETNAND(tmpset, p->p_sigignore);
1557 	if (SIGNOTEMPTY(p->p_siglist) && NFSINT_SIGMASK(tmpset))
1558 		return (EINTR);
1559 
1560 	return (0);
1561 }
1562 
1563 /*
1564  * Lock a socket against others.
1565  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1566  * and also to avoid race conditions between the processes with nfs requests
1567  * in progress when a reconnect is necessary.
1568  */
1569 int
1570 nfs_sndlock(struct nfsreq *rep)
1571 {
1572 	int *statep = &rep->r_nmp->nm_state;
1573 	struct thread *td;
1574 	int slptimeo;
1575 	int slpflag;
1576 	int error;
1577 
1578 	slpflag = 0;
1579 	slptimeo = 0;
1580 	td = rep->r_td;
1581 	if (rep->r_nmp->nm_flag & NFSMNT_INT)
1582 		slpflag = PCATCH;
1583 
1584 	error = 0;
1585 	crit_enter();
1586 	while (*statep & NFSSTA_SNDLOCK) {
1587 		*statep |= NFSSTA_WANTSND;
1588 		if (nfs_sigintr(rep->r_nmp, rep, td)) {
1589 			error = EINTR;
1590 			break;
1591 		}
1592 		tsleep((caddr_t)statep, slpflag, "nfsndlck", slptimeo);
1593 		if (slpflag == PCATCH) {
1594 			slpflag = 0;
1595 			slptimeo = 2 * hz;
1596 		}
1597 	}
1598 	/* Always fail if our request has been cancelled. */
1599 	if ((rep->r_flags & R_SOFTTERM))
1600 		error = EINTR;
1601 	if (error == 0)
1602 		*statep |= NFSSTA_SNDLOCK;
1603 	crit_exit();
1604 	return (error);
1605 }
1606 
1607 /*
1608  * Unlock the stream socket for others.
1609  */
1610 void
1611 nfs_sndunlock(struct nfsreq *rep)
1612 {
1613 	int *statep = &rep->r_nmp->nm_state;
1614 
1615 	if ((*statep & NFSSTA_SNDLOCK) == 0)
1616 		panic("nfs sndunlock");
1617 	crit_enter();
1618 	*statep &= ~NFSSTA_SNDLOCK;
1619 	if (*statep & NFSSTA_WANTSND) {
1620 		*statep &= ~NFSSTA_WANTSND;
1621 		wakeup((caddr_t)statep);
1622 	}
1623 	crit_exit();
1624 }
1625 
1626 static int
1627 nfs_rcvlock(struct nfsreq *rep)
1628 {
1629 	int *statep = &rep->r_nmp->nm_state;
1630 	int slpflag;
1631 	int slptimeo;
1632 	int error;
1633 
1634 	/*
1635 	 * Unconditionally check for completion in case another nfsiod
1636 	 * get the packet while the caller was blocked, before the caller
1637 	 * called us.  Packet reception is handled by mainline code which
1638 	 * is protected by the BGL at the moment.
1639 	 *
1640 	 * We do not strictly need the second check just before the
1641 	 * tsleep(), but it's good defensive programming.
1642 	 */
1643 	if (rep->r_mrep != NULL)
1644 		return (EALREADY);
1645 
1646 	if (rep->r_nmp->nm_flag & NFSMNT_INT)
1647 		slpflag = PCATCH;
1648 	else
1649 		slpflag = 0;
1650 	slptimeo = 0;
1651 	error = 0;
1652 	crit_enter();
1653 	while (*statep & NFSSTA_RCVLOCK) {
1654 		if (nfs_sigintr(rep->r_nmp, rep, rep->r_td)) {
1655 			error = EINTR;
1656 			break;
1657 		}
1658 		if (rep->r_mrep != NULL) {
1659 			error = EALREADY;
1660 			break;
1661 		}
1662 		*statep |= NFSSTA_WANTRCV;
1663 		tsleep((caddr_t)statep, slpflag, "nfsrcvlk", slptimeo);
1664 		/*
1665 		 * If our reply was recieved while we were sleeping,
1666 		 * then just return without taking the lock to avoid a
1667 		 * situation where a single iod could 'capture' the
1668 		 * recieve lock.
1669 		 */
1670 		if (rep->r_mrep != NULL) {
1671 			error = EALREADY;
1672 			break;
1673 		}
1674 		if (slpflag == PCATCH) {
1675 			slpflag = 0;
1676 			slptimeo = 2 * hz;
1677 		}
1678 	}
1679 	if (error == 0) {
1680 		*statep |= NFSSTA_RCVLOCK;
1681 		rep->r_nmp->nm_rcvlock_td = curthread;	/* DEBUGGING */
1682 	}
1683 	crit_exit();
1684 	return (error);
1685 }
1686 
1687 /*
1688  * Unlock the stream socket for others.
1689  */
1690 static void
1691 nfs_rcvunlock(struct nfsreq *rep)
1692 {
1693 	int *statep = &rep->r_nmp->nm_state;
1694 
1695 	if ((*statep & NFSSTA_RCVLOCK) == 0)
1696 		panic("nfs rcvunlock");
1697 	crit_enter();
1698 	rep->r_nmp->nm_rcvlock_td = (void *)-1;	/* DEBUGGING */
1699 	*statep &= ~NFSSTA_RCVLOCK;
1700 	if (*statep & NFSSTA_WANTRCV) {
1701 		*statep &= ~NFSSTA_WANTRCV;
1702 		wakeup((caddr_t)statep);
1703 	}
1704 	crit_exit();
1705 }
1706 
1707 /*
1708  *	nfs_realign:
1709  *
1710  *	Check for badly aligned mbuf data and realign by copying the unaligned
1711  *	portion of the data into a new mbuf chain and freeing the portions
1712  *	of the old chain that were replaced.
1713  *
1714  *	We cannot simply realign the data within the existing mbuf chain
1715  *	because the underlying buffers may contain other rpc commands and
1716  *	we cannot afford to overwrite them.
1717  *
1718  *	We would prefer to avoid this situation entirely.  The situation does
1719  *	not occur with NFS/UDP and is supposed to only occassionally occur
1720  *	with TCP.  Use vfs.nfs.realign_count and realign_test to check this.
1721  */
1722 static void
1723 nfs_realign(struct mbuf **pm, int hsiz)
1724 {
1725 	struct mbuf *m;
1726 	struct mbuf *n = NULL;
1727 	int off = 0;
1728 
1729 	++nfs_realign_test;
1730 
1731 	while ((m = *pm) != NULL) {
1732 		if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3)) {
1733 			n = m_getl(m->m_len, MB_WAIT, MT_DATA, 0, NULL);
1734 			n->m_len = 0;
1735 			break;
1736 		}
1737 		pm = &m->m_next;
1738 	}
1739 
1740 	/*
1741 	 * If n is non-NULL, loop on m copying data, then replace the
1742 	 * portion of the chain that had to be realigned.
1743 	 */
1744 	if (n != NULL) {
1745 		++nfs_realign_count;
1746 		while (m) {
1747 			m_copyback(n, off, m->m_len, mtod(m, caddr_t));
1748 			off += m->m_len;
1749 			m = m->m_next;
1750 		}
1751 		m_freem(*pm);
1752 		*pm = n;
1753 	}
1754 }
1755 
1756 #ifndef NFS_NOSERVER
1757 
1758 /*
1759  * Parse an RPC request
1760  * - verify it
1761  * - fill in the cred struct.
1762  */
1763 int
1764 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header)
1765 {
1766 	int len, i;
1767 	u_int32_t *tl;
1768 	int32_t t1;
1769 	struct uio uio;
1770 	struct iovec iov;
1771 	caddr_t dpos, cp2, cp;
1772 	u_int32_t nfsvers, auth_type;
1773 	uid_t nickuid;
1774 	int error = 0, ticklen;
1775 	struct mbuf *mrep, *md;
1776 	struct nfsuid *nuidp;
1777 	struct timeval tvin, tvout;
1778 #if 0				/* until encrypted keys are implemented */
1779 	NFSKERBKEYSCHED_T keys;	/* stores key schedule */
1780 #endif
1781 
1782 	mrep = nd->nd_mrep;
1783 	md = nd->nd_md;
1784 	dpos = nd->nd_dpos;
1785 	if (has_header) {
1786 		nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1787 		nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1788 		if (*tl++ != rpc_call) {
1789 			m_freem(mrep);
1790 			return (EBADRPC);
1791 		}
1792 	} else
1793 		nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1794 	nd->nd_repstat = 0;
1795 	nd->nd_flag = 0;
1796 	if (*tl++ != rpc_vers) {
1797 		nd->nd_repstat = ERPCMISMATCH;
1798 		nd->nd_procnum = NFSPROC_NOOP;
1799 		return (0);
1800 	}
1801 	if (*tl != nfs_prog) {
1802 		nd->nd_repstat = EPROGUNAVAIL;
1803 		nd->nd_procnum = NFSPROC_NOOP;
1804 		return (0);
1805 	}
1806 	tl++;
1807 	nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1808 	if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
1809 		nd->nd_repstat = EPROGMISMATCH;
1810 		nd->nd_procnum = NFSPROC_NOOP;
1811 		return (0);
1812 	}
1813 	if (nfsvers == NFS_VER3)
1814 		nd->nd_flag = ND_NFSV3;
1815 	nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1816 	if (nd->nd_procnum == NFSPROC_NULL)
1817 		return (0);
1818 	if (nd->nd_procnum >= NFS_NPROCS ||
1819 		(nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1820 		(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1821 		nd->nd_repstat = EPROCUNAVAIL;
1822 		nd->nd_procnum = NFSPROC_NOOP;
1823 		return (0);
1824 	}
1825 	if ((nd->nd_flag & ND_NFSV3) == 0)
1826 		nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1827 	auth_type = *tl++;
1828 	len = fxdr_unsigned(int, *tl++);
1829 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
1830 		m_freem(mrep);
1831 		return (EBADRPC);
1832 	}
1833 
1834 	nd->nd_flag &= ~ND_KERBAUTH;
1835 	/*
1836 	 * Handle auth_unix or auth_kerb.
1837 	 */
1838 	if (auth_type == rpc_auth_unix) {
1839 		len = fxdr_unsigned(int, *++tl);
1840 		if (len < 0 || len > NFS_MAXNAMLEN) {
1841 			m_freem(mrep);
1842 			return (EBADRPC);
1843 		}
1844 		nfsm_adv(nfsm_rndup(len));
1845 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1846 		bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
1847 		nd->nd_cr.cr_ref = 1;
1848 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1849 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1850 		len = fxdr_unsigned(int, *tl);
1851 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1852 			m_freem(mrep);
1853 			return (EBADRPC);
1854 		}
1855 		nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1856 		for (i = 1; i <= len; i++)
1857 		    if (i < NGROUPS)
1858 			nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1859 		    else
1860 			tl++;
1861 		nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
1862 		if (nd->nd_cr.cr_ngroups > 1)
1863 		    nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1864 		len = fxdr_unsigned(int, *++tl);
1865 		if (len < 0 || len > RPCAUTH_MAXSIZ) {
1866 			m_freem(mrep);
1867 			return (EBADRPC);
1868 		}
1869 		if (len > 0)
1870 			nfsm_adv(nfsm_rndup(len));
1871 	} else if (auth_type == rpc_auth_kerb) {
1872 		switch (fxdr_unsigned(int, *tl++)) {
1873 		case RPCAKN_FULLNAME:
1874 			ticklen = fxdr_unsigned(int, *tl);
1875 			*((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1876 			uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1877 			nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1878 			if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1879 				m_freem(mrep);
1880 				return (EBADRPC);
1881 			}
1882 			uio.uio_offset = 0;
1883 			uio.uio_iov = &iov;
1884 			uio.uio_iovcnt = 1;
1885 			uio.uio_segflg = UIO_SYSSPACE;
1886 			iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1887 			iov.iov_len = RPCAUTH_MAXSIZ - 4;
1888 			nfsm_mtouio(&uio, uio.uio_resid);
1889 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1890 			if (*tl++ != rpc_auth_kerb ||
1891 				fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1892 				printf("Bad kerb verifier\n");
1893 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1894 				nd->nd_procnum = NFSPROC_NOOP;
1895 				return (0);
1896 			}
1897 			nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1898 			tl = (u_int32_t *)cp;
1899 			if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1900 				printf("Not fullname kerb verifier\n");
1901 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1902 				nd->nd_procnum = NFSPROC_NOOP;
1903 				return (0);
1904 			}
1905 			cp += NFSX_UNSIGNED;
1906 			bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
1907 			nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1908 			nd->nd_flag |= ND_KERBFULL;
1909 			nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1910 			break;
1911 		case RPCAKN_NICKNAME:
1912 			if (len != 2 * NFSX_UNSIGNED) {
1913 				printf("Kerb nickname short\n");
1914 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1915 				nd->nd_procnum = NFSPROC_NOOP;
1916 				return (0);
1917 			}
1918 			nickuid = fxdr_unsigned(uid_t, *tl);
1919 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1920 			if (*tl++ != rpc_auth_kerb ||
1921 				fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1922 				printf("Kerb nick verifier bad\n");
1923 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1924 				nd->nd_procnum = NFSPROC_NOOP;
1925 				return (0);
1926 			}
1927 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1928 			tvin.tv_sec = *tl++;
1929 			tvin.tv_usec = *tl;
1930 
1931 			for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
1932 			    nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1933 				if (nuidp->nu_cr.cr_uid == nickuid &&
1934 				    (!nd->nd_nam2 ||
1935 				     netaddr_match(NU_NETFAM(nuidp),
1936 				      &nuidp->nu_haddr, nd->nd_nam2)))
1937 					break;
1938 			}
1939 			if (!nuidp) {
1940 				nd->nd_repstat =
1941 					(NFSERR_AUTHERR|AUTH_REJECTCRED);
1942 				nd->nd_procnum = NFSPROC_NOOP;
1943 				return (0);
1944 			}
1945 
1946 			/*
1947 			 * Now, decrypt the timestamp using the session key
1948 			 * and validate it.
1949 			 */
1950 #ifdef NFSKERB
1951 			XXX
1952 #endif
1953 
1954 			tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
1955 			tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
1956 			if (nuidp->nu_expire < time_second ||
1957 			    nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
1958 			    (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
1959 			     nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
1960 				nuidp->nu_expire = 0;
1961 				nd->nd_repstat =
1962 				    (NFSERR_AUTHERR|AUTH_REJECTVERF);
1963 				nd->nd_procnum = NFSPROC_NOOP;
1964 				return (0);
1965 			}
1966 			nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
1967 			nd->nd_flag |= ND_KERBNICK;
1968 		};
1969 	} else {
1970 		nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1971 		nd->nd_procnum = NFSPROC_NOOP;
1972 		return (0);
1973 	}
1974 
1975 	nd->nd_md = md;
1976 	nd->nd_dpos = dpos;
1977 	return (0);
1978 nfsmout:
1979 	return (error);
1980 }
1981 
1982 #endif
1983 
1984 /*
1985  * Send a message to the originating process's terminal.  The thread and/or
1986  * process may be NULL.  YYY the thread should not be NULL but there may
1987  * still be some uio_td's that are still being passed as NULL through to
1988  * nfsm_request().
1989  */
1990 static int
1991 nfs_msg(struct thread *td, char *server, char *msg)
1992 {
1993 	tpr_t tpr;
1994 
1995 	if (td && td->td_proc)
1996 		tpr = tprintf_open(td->td_proc);
1997 	else
1998 		tpr = NULL;
1999 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
2000 	tprintf_close(tpr);
2001 	return (0);
2002 }
2003 
2004 #ifndef NFS_NOSERVER
2005 /*
2006  * Socket upcall routine for the nfsd sockets.
2007  * The caddr_t arg is a pointer to the "struct nfssvc_sock".
2008  * Essentially do as much as possible non-blocking, else punt and it will
2009  * be called with MB_WAIT from an nfsd.
2010  */
2011 void
2012 nfsrv_rcv(struct socket *so, void *arg, int waitflag)
2013 {
2014 	struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2015 	struct mbuf *m;
2016 	struct mbuf *mp;
2017 	struct sockaddr *nam;
2018 	struct uio auio;
2019 	int flags, error;
2020 	int nparallel_wakeup = 0;
2021 
2022 	if ((slp->ns_flag & SLP_VALID) == 0)
2023 		return;
2024 
2025 	/*
2026 	 * Do not allow an infinite number of completed RPC records to build
2027 	 * up before we stop reading data from the socket.  Otherwise we could
2028 	 * end up holding onto an unreasonable number of mbufs for requests
2029 	 * waiting for service.
2030 	 *
2031 	 * This should give pretty good feedback to the TCP
2032 	 * layer and prevents a memory crunch for other protocols.
2033 	 *
2034 	 * Note that the same service socket can be dispatched to several
2035 	 * nfs servers simultaniously.
2036 	 *
2037 	 * the tcp protocol callback calls us with MB_DONTWAIT.
2038 	 * nfsd calls us with MB_WAIT (typically).
2039 	 */
2040 	if (waitflag == MB_DONTWAIT && slp->ns_numrec >= nfsd_waiting / 2 + 1) {
2041 		slp->ns_flag |= SLP_NEEDQ;
2042 		goto dorecs;
2043 	}
2044 
2045 	/*
2046 	 * Handle protocol specifics to parse an RPC request.  We always
2047 	 * pull from the socket using non-blocking I/O.
2048 	 */
2049 	auio.uio_td = NULL;
2050 	if (so->so_type == SOCK_STREAM) {
2051 		/*
2052 		 * The data has to be read in an orderly fashion from a TCP
2053 		 * stream, unlike a UDP socket.  It is possible for soreceive
2054 		 * and/or nfsrv_getstream() to block, so make sure only one
2055 		 * entity is messing around with the TCP stream at any given
2056 		 * moment.  The receive sockbuf's lock in soreceive is not
2057 		 * sufficient.
2058 		 *
2059 		 * Note that this procedure can be called from any number of
2060 		 * NFS severs *OR* can be upcalled directly from a TCP
2061 		 * protocol thread.
2062 		 */
2063 		if (slp->ns_flag & SLP_GETSTREAM) {
2064 			slp->ns_flag |= SLP_NEEDQ;
2065 			goto dorecs;
2066 		}
2067 		slp->ns_flag |= SLP_GETSTREAM;
2068 
2069 		/*
2070 		 * Do soreceive().
2071 		 */
2072 		auio.uio_resid = 1000000000;
2073 		flags = MSG_DONTWAIT;
2074 		error = so_pru_soreceive(so, &nam, &auio, &mp, NULL, &flags);
2075 		if (error || mp == (struct mbuf *)0) {
2076 			if (error == EWOULDBLOCK)
2077 				slp->ns_flag |= SLP_NEEDQ;
2078 			else
2079 				slp->ns_flag |= SLP_DISCONN;
2080 			slp->ns_flag &= ~SLP_GETSTREAM;
2081 			goto dorecs;
2082 		}
2083 		m = mp;
2084 		if (slp->ns_rawend) {
2085 			slp->ns_rawend->m_next = m;
2086 			slp->ns_cc += 1000000000 - auio.uio_resid;
2087 		} else {
2088 			slp->ns_raw = m;
2089 			slp->ns_cc = 1000000000 - auio.uio_resid;
2090 		}
2091 		while (m->m_next)
2092 			m = m->m_next;
2093 		slp->ns_rawend = m;
2094 
2095 		/*
2096 		 * Now try and parse as many record(s) as we can out of the
2097 		 * raw stream data.
2098 		 */
2099 		error = nfsrv_getstream(slp, waitflag, &nparallel_wakeup);
2100 		if (error) {
2101 			if (error == EPERM)
2102 				slp->ns_flag |= SLP_DISCONN;
2103 			else
2104 				slp->ns_flag |= SLP_NEEDQ;
2105 		}
2106 		slp->ns_flag &= ~SLP_GETSTREAM;
2107 	} else {
2108 		/*
2109 		 * For UDP soreceive typically pulls just one packet, loop
2110 		 * to get the whole batch.
2111 		 */
2112 		do {
2113 			auio.uio_resid = 1000000000;
2114 			flags = MSG_DONTWAIT;
2115 			error = so_pru_soreceive(so, &nam, &auio, &mp, NULL,
2116 			    &flags);
2117 			if (mp) {
2118 				struct nfsrv_rec *rec;
2119 				int mf = (waitflag & MB_DONTWAIT) ?
2120 					    M_NOWAIT : M_WAITOK;
2121 				rec = malloc(sizeof(struct nfsrv_rec),
2122 					     M_NFSRVDESC, mf);
2123 				if (!rec) {
2124 					if (nam)
2125 						FREE(nam, M_SONAME);
2126 					m_freem(mp);
2127 					continue;
2128 				}
2129 				nfs_realign(&mp, 10 * NFSX_UNSIGNED);
2130 				rec->nr_address = nam;
2131 				rec->nr_packet = mp;
2132 				STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2133 				++slp->ns_numrec;
2134 				++nparallel_wakeup;
2135 			}
2136 			if (error) {
2137 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2138 					&& error != EWOULDBLOCK) {
2139 					slp->ns_flag |= SLP_DISCONN;
2140 					goto dorecs;
2141 				}
2142 			}
2143 		} while (mp);
2144 	}
2145 
2146 	/*
2147 	 * If we were upcalled from the tcp protocol layer and we have
2148 	 * fully parsed records ready to go, or there is new data pending,
2149 	 * or something went wrong, try to wake up an nfsd thread to deal
2150 	 * with it.
2151 	 */
2152 dorecs:
2153 	if (waitflag == MB_DONTWAIT && (slp->ns_numrec > 0
2154 	     || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) {
2155 		nfsrv_wakenfsd(slp, nparallel_wakeup);
2156 	}
2157 }
2158 
2159 /*
2160  * Try and extract an RPC request from the mbuf data list received on a
2161  * stream socket. The "waitflag" argument indicates whether or not it
2162  * can sleep.
2163  */
2164 static int
2165 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag, int *countp)
2166 {
2167 	struct mbuf *m, **mpp;
2168 	char *cp1, *cp2;
2169 	int len;
2170 	struct mbuf *om, *m2, *recm;
2171 	u_int32_t recmark;
2172 
2173 	for (;;) {
2174 	    if (slp->ns_reclen == 0) {
2175 		if (slp->ns_cc < NFSX_UNSIGNED)
2176 			return (0);
2177 		m = slp->ns_raw;
2178 		if (m->m_len >= NFSX_UNSIGNED) {
2179 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
2180 			m->m_data += NFSX_UNSIGNED;
2181 			m->m_len -= NFSX_UNSIGNED;
2182 		} else {
2183 			cp1 = (caddr_t)&recmark;
2184 			cp2 = mtod(m, caddr_t);
2185 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2186 				while (m->m_len == 0) {
2187 					m = m->m_next;
2188 					cp2 = mtod(m, caddr_t);
2189 				}
2190 				*cp1++ = *cp2++;
2191 				m->m_data++;
2192 				m->m_len--;
2193 			}
2194 		}
2195 		slp->ns_cc -= NFSX_UNSIGNED;
2196 		recmark = ntohl(recmark);
2197 		slp->ns_reclen = recmark & ~0x80000000;
2198 		if (recmark & 0x80000000)
2199 			slp->ns_flag |= SLP_LASTFRAG;
2200 		else
2201 			slp->ns_flag &= ~SLP_LASTFRAG;
2202 		if (slp->ns_reclen > NFS_MAXPACKET || slp->ns_reclen <= 0) {
2203 			log(LOG_ERR, "%s (%d) from nfs client\n",
2204 			    "impossible packet length",
2205 			    slp->ns_reclen);
2206 			return (EPERM);
2207 		}
2208 	    }
2209 
2210 	    /*
2211 	     * Now get the record part.
2212 	     *
2213 	     * Note that slp->ns_reclen may be 0.  Linux sometimes
2214 	     * generates 0-length RPCs
2215 	     */
2216 	    recm = NULL;
2217 	    if (slp->ns_cc == slp->ns_reclen) {
2218 		recm = slp->ns_raw;
2219 		slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2220 		slp->ns_cc = slp->ns_reclen = 0;
2221 	    } else if (slp->ns_cc > slp->ns_reclen) {
2222 		len = 0;
2223 		m = slp->ns_raw;
2224 		om = (struct mbuf *)0;
2225 
2226 		while (len < slp->ns_reclen) {
2227 			if ((len + m->m_len) > slp->ns_reclen) {
2228 				m2 = m_copym(m, 0, slp->ns_reclen - len,
2229 					waitflag);
2230 				if (m2) {
2231 					if (om) {
2232 						om->m_next = m2;
2233 						recm = slp->ns_raw;
2234 					} else
2235 						recm = m2;
2236 					m->m_data += slp->ns_reclen - len;
2237 					m->m_len -= slp->ns_reclen - len;
2238 					len = slp->ns_reclen;
2239 				} else {
2240 					return (EWOULDBLOCK);
2241 				}
2242 			} else if ((len + m->m_len) == slp->ns_reclen) {
2243 				om = m;
2244 				len += m->m_len;
2245 				m = m->m_next;
2246 				recm = slp->ns_raw;
2247 				om->m_next = (struct mbuf *)0;
2248 			} else {
2249 				om = m;
2250 				len += m->m_len;
2251 				m = m->m_next;
2252 			}
2253 		}
2254 		slp->ns_raw = m;
2255 		slp->ns_cc -= len;
2256 		slp->ns_reclen = 0;
2257 	    } else {
2258 		return (0);
2259 	    }
2260 
2261 	    /*
2262 	     * Accumulate the fragments into a record.
2263 	     */
2264 	    mpp = &slp->ns_frag;
2265 	    while (*mpp)
2266 		mpp = &((*mpp)->m_next);
2267 	    *mpp = recm;
2268 	    if (slp->ns_flag & SLP_LASTFRAG) {
2269 		struct nfsrv_rec *rec;
2270 		int mf = (waitflag & MB_DONTWAIT) ? M_NOWAIT : M_WAITOK;
2271 		rec = malloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf);
2272 		if (!rec) {
2273 		    m_freem(slp->ns_frag);
2274 		} else {
2275 		    nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED);
2276 		    rec->nr_address = (struct sockaddr *)0;
2277 		    rec->nr_packet = slp->ns_frag;
2278 		    STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2279 		    ++slp->ns_numrec;
2280 		    ++*countp;
2281 		}
2282 		slp->ns_frag = (struct mbuf *)0;
2283 	    }
2284 	}
2285 }
2286 
2287 /*
2288  * Parse an RPC header.
2289  */
2290 int
2291 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2292 	    struct nfsrv_descript **ndp)
2293 {
2294 	struct nfsrv_rec *rec;
2295 	struct mbuf *m;
2296 	struct sockaddr *nam;
2297 	struct nfsrv_descript *nd;
2298 	int error;
2299 
2300 	*ndp = NULL;
2301 	if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec))
2302 		return (ENOBUFS);
2303 	rec = STAILQ_FIRST(&slp->ns_rec);
2304 	STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link);
2305 	KKASSERT(slp->ns_numrec > 0);
2306 	--slp->ns_numrec;
2307 	nam = rec->nr_address;
2308 	m = rec->nr_packet;
2309 	free(rec, M_NFSRVDESC);
2310 	MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2311 		M_NFSRVDESC, M_WAITOK);
2312 	nd->nd_md = nd->nd_mrep = m;
2313 	nd->nd_nam2 = nam;
2314 	nd->nd_dpos = mtod(m, caddr_t);
2315 	error = nfs_getreq(nd, nfsd, TRUE);
2316 	if (error) {
2317 		if (nam) {
2318 			FREE(nam, M_SONAME);
2319 		}
2320 		free((caddr_t)nd, M_NFSRVDESC);
2321 		return (error);
2322 	}
2323 	*ndp = nd;
2324 	nfsd->nfsd_nd = nd;
2325 	return (0);
2326 }
2327 
2328 /*
2329  * Try to assign service sockets to nfsd threads based on the number
2330  * of new rpc requests that have been queued on the service socket.
2331  *
2332  * If no nfsd's are available or additonal requests are pending, set the
2333  * NFSD_CHECKSLP flag so that one of the running nfsds will go look for
2334  * the work in the nfssvc_sock list when it is finished processing its
2335  * current work.  This flag is only cleared when an nfsd can not find
2336  * any new work to perform.
2337  */
2338 void
2339 nfsrv_wakenfsd(struct nfssvc_sock *slp, int nparallel)
2340 {
2341 	struct nfsd *nd;
2342 
2343 	if ((slp->ns_flag & SLP_VALID) == 0)
2344 		return;
2345 	if (nparallel <= 1)
2346 		nparallel = 1;
2347 	TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) {
2348 		if (nd->nfsd_flag & NFSD_WAITING) {
2349 			nd->nfsd_flag &= ~NFSD_WAITING;
2350 			if (nd->nfsd_slp)
2351 				panic("nfsd wakeup");
2352 			slp->ns_sref++;
2353 			nd->nfsd_slp = slp;
2354 			wakeup((caddr_t)nd);
2355 			if (--nparallel == 0)
2356 				break;
2357 		}
2358 	}
2359 	if (nparallel) {
2360 		slp->ns_flag |= SLP_DOREC;
2361 		nfsd_head_flag |= NFSD_CHECKSLP;
2362 	}
2363 }
2364 #endif /* NFS_NOSERVER */
2365