xref: /dflybsd-src/sys/vfs/nfs/nfs_bio.c (revision c6cf4f8f1ebc9e3fe2a8c566f08adfc86122c7bf)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37  * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.20 2005/03/04 05:21:17 dillon Exp $
39  */
40 
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/buf2.h>
52 #include <sys/msfbuf.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_pager.h>
59 #include <vm/vnode_pager.h>
60 
61 #include "rpcv2.h"
62 #include "nfsproto.h"
63 #include "nfs.h"
64 #include "nfsmount.h"
65 #include "nqnfs.h"
66 #include "nfsnode.h"
67 
68 static struct buf *nfs_getcacheblk (struct vnode *vp, daddr_t bn, int size,
69 					struct thread *td);
70 
71 extern int nfs_numasync;
72 extern int nfs_pbuf_freecnt;
73 extern struct nfsstats nfsstats;
74 
75 /*
76  * Vnode op for VM getpages.
77  *
78  * nfs_getpages(struct vnode *a_vp, vm_page_t *a_m, int a_count,
79  *		int a_reqpage, vm_ooffset_t a_offset)
80  */
81 int
82 nfs_getpages(struct vop_getpages_args *ap)
83 {
84 	struct thread *td = curthread;		/* XXX */
85 	int i, error, nextoff, size, toff, count, npages;
86 	struct uio uio;
87 	struct iovec iov;
88 	char *kva;
89 	struct vnode *vp;
90 	struct nfsmount *nmp;
91 	vm_page_t *pages;
92 	vm_page_t m;
93 	struct msf_buf *msf;
94 
95 	vp = ap->a_vp;
96 	nmp = VFSTONFS(vp->v_mount);
97 	pages = ap->a_m;
98 	count = ap->a_count;
99 
100 	if (vp->v_object == NULL) {
101 		printf("nfs_getpages: called with non-merged cache vnode??\n");
102 		return VM_PAGER_ERROR;
103 	}
104 
105 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
106 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
107 		(void)nfs_fsinfo(nmp, vp, td);
108 
109 	npages = btoc(count);
110 
111 	/*
112 	 * NOTE that partially valid pages may occur in cases other
113 	 * then file EOF, such as when a file is partially written and
114 	 * ftruncate()-extended to a larger size.   It is also possible
115 	 * for the valid bits to be set on garbage beyond the file EOF and
116 	 * clear in the area before EOF (e.g. m->valid == 0xfc), which can
117 	 * occur due to vtruncbuf() and the buffer cache's handling of
118 	 * pages which 'straddle' buffers or when b_bufsize is not a
119 	 * multiple of PAGE_SIZE.... the buffer cache cannot normally
120 	 * clear the extra bits.  This kind of situation occurs when you
121 	 * make a small write() (m->valid == 0x03) and then mmap() and
122 	 * fault in the buffer(m->valid = 0xFF).  When NFS flushes the
123 	 * buffer (vinvalbuf() m->valid = 0xFC) we are left with a mess.
124 	 *
125 	 * This is combined with the possibility that the pages are partially
126 	 * dirty or that there is a buffer backing the pages that is dirty
127 	 * (even if m->dirty is 0).
128 	 *
129 	 * To solve this problem several hacks have been made:  (1) NFS
130 	 * guarentees that the IO block size is a multiple of PAGE_SIZE and
131 	 * (2) The buffer cache, when invalidating an NFS buffer, will
132 	 * disregard the buffer's fragmentory b_bufsize and invalidate
133 	 * the whole page rather then just the piece the buffer owns.
134 	 *
135 	 * This allows us to assume that a partially valid page found here
136 	 * is fully valid (vm_fault will zero'd out areas of the page not
137 	 * marked as valid).
138 	 */
139 	m = pages[ap->a_reqpage];
140 	if (m->valid != 0) {
141 		for (i = 0; i < npages; ++i) {
142 			if (i != ap->a_reqpage)
143 				vnode_pager_freepage(pages[i]);
144 		}
145 		return(0);
146 	}
147 
148 	/*
149 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
150 	 */
151 	msf_map_pagelist(&msf, pages, npages, 0);
152 	KKASSERT(msf);
153 	kva = msf_buf_kva(msf);
154 
155 	iov.iov_base = kva;
156 	iov.iov_len = count;
157 	uio.uio_iov = &iov;
158 	uio.uio_iovcnt = 1;
159 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
160 	uio.uio_resid = count;
161 	uio.uio_segflg = UIO_SYSSPACE;
162 	uio.uio_rw = UIO_READ;
163 	uio.uio_td = td;
164 
165 	error = nfs_readrpc(vp, &uio);
166 	msf_buf_free(msf);
167 
168 	if (error && (uio.uio_resid == count)) {
169 		printf("nfs_getpages: error %d\n", error);
170 		for (i = 0; i < npages; ++i) {
171 			if (i != ap->a_reqpage)
172 				vnode_pager_freepage(pages[i]);
173 		}
174 		return VM_PAGER_ERROR;
175 	}
176 
177 	/*
178 	 * Calculate the number of bytes read and validate only that number
179 	 * of bytes.  Note that due to pending writes, size may be 0.  This
180 	 * does not mean that the remaining data is invalid!
181 	 */
182 
183 	size = count - uio.uio_resid;
184 
185 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
186 		nextoff = toff + PAGE_SIZE;
187 		m = pages[i];
188 
189 		m->flags &= ~PG_ZERO;
190 
191 		if (nextoff <= size) {
192 			/*
193 			 * Read operation filled an entire page
194 			 */
195 			m->valid = VM_PAGE_BITS_ALL;
196 			vm_page_undirty(m);
197 		} else if (size > toff) {
198 			/*
199 			 * Read operation filled a partial page.
200 			 */
201 			m->valid = 0;
202 			vm_page_set_validclean(m, 0, size - toff);
203 			/* handled by vm_fault now	  */
204 			/* vm_page_zero_invalid(m, TRUE); */
205 		} else {
206 			/*
207 			 * Read operation was short.  If no error occured
208 			 * we may have hit a zero-fill section.   We simply
209 			 * leave valid set to 0.
210 			 */
211 			;
212 		}
213 		if (i != ap->a_reqpage) {
214 			/*
215 			 * Whether or not to leave the page activated is up in
216 			 * the air, but we should put the page on a page queue
217 			 * somewhere (it already is in the object).  Result:
218 			 * It appears that emperical results show that
219 			 * deactivating pages is best.
220 			 */
221 
222 			/*
223 			 * Just in case someone was asking for this page we
224 			 * now tell them that it is ok to use.
225 			 */
226 			if (!error) {
227 				if (m->flags & PG_WANTED)
228 					vm_page_activate(m);
229 				else
230 					vm_page_deactivate(m);
231 				vm_page_wakeup(m);
232 			} else {
233 				vnode_pager_freepage(m);
234 			}
235 		}
236 	}
237 	return 0;
238 }
239 
240 /*
241  * Vnode op for VM putpages.
242  *
243  * nfs_putpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, int a_sync,
244  *		int *a_rtvals, vm_ooffset_t a_offset)
245  */
246 int
247 nfs_putpages(struct vop_putpages_args *ap)
248 {
249 	struct thread *td = curthread;
250 	struct uio uio;
251 	struct iovec iov;
252 	char *kva;
253 	int iomode, must_commit, i, error, npages, count;
254 	off_t offset;
255 	int *rtvals;
256 	struct vnode *vp;
257 	struct nfsmount *nmp;
258 	struct nfsnode *np;
259 	vm_page_t *pages;
260 	struct msf_buf *msf;
261 
262 	vp = ap->a_vp;
263 	np = VTONFS(vp);
264 	nmp = VFSTONFS(vp->v_mount);
265 	pages = ap->a_m;
266 	count = ap->a_count;
267 	rtvals = ap->a_rtvals;
268 	npages = btoc(count);
269 	offset = IDX_TO_OFF(pages[0]->pindex);
270 
271 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
272 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
273 		(void)nfs_fsinfo(nmp, vp, td);
274 
275 	for (i = 0; i < npages; i++) {
276 		rtvals[i] = VM_PAGER_AGAIN;
277 	}
278 
279 	/*
280 	 * When putting pages, do not extend file past EOF.
281 	 */
282 
283 	if (offset + count > np->n_size) {
284 		count = np->n_size - offset;
285 		if (count < 0)
286 			count = 0;
287 	}
288 
289 	/*
290 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
291 	 */
292 	msf_map_pagelist(&msf, pages, npages, 0);
293 	KKASSERT(msf);
294 	kva = msf_buf_kva(msf);
295 
296 	iov.iov_base = kva;
297 	iov.iov_len = count;
298 	uio.uio_iov = &iov;
299 	uio.uio_iovcnt = 1;
300 	uio.uio_offset = offset;
301 	uio.uio_resid = count;
302 	uio.uio_segflg = UIO_SYSSPACE;
303 	uio.uio_rw = UIO_WRITE;
304 	uio.uio_td = td;
305 
306 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
307 	    iomode = NFSV3WRITE_UNSTABLE;
308 	else
309 	    iomode = NFSV3WRITE_FILESYNC;
310 
311 	error = nfs_writerpc(vp, &uio, &iomode, &must_commit);
312 
313 	msf_buf_free(msf);
314 
315 	if (!error) {
316 		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
317 		for (i = 0; i < nwritten; i++) {
318 			rtvals[i] = VM_PAGER_OK;
319 			vm_page_undirty(pages[i]);
320 		}
321 		if (must_commit)
322 			nfs_clearcommit(vp->v_mount);
323 	}
324 	return rtvals[0];
325 }
326 
327 /*
328  * Vnode op for read using bio
329  */
330 int
331 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
332 {
333 	struct nfsnode *np = VTONFS(vp);
334 	int biosize, i;
335 	struct buf *bp = 0, *rabp;
336 	struct vattr vattr;
337 	struct thread *td;
338 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
339 	daddr_t lbn, rabn;
340 	int bcount;
341 	int seqcount;
342 	int nra, error = 0, n = 0, on = 0;
343 
344 #ifdef DIAGNOSTIC
345 	if (uio->uio_rw != UIO_READ)
346 		panic("nfs_read mode");
347 #endif
348 	if (uio->uio_resid == 0)
349 		return (0);
350 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
351 		return (EINVAL);
352 	td = uio->uio_td;
353 
354 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
355 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
356 		(void)nfs_fsinfo(nmp, vp, td);
357 	if (vp->v_type != VDIR &&
358 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
359 		return (EFBIG);
360 	biosize = vp->v_mount->mnt_stat.f_iosize;
361 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
362 	/*
363 	 * For nfs, cache consistency can only be maintained approximately.
364 	 * Although RFC1094 does not specify the criteria, the following is
365 	 * believed to be compatible with the reference port.
366 	 * For nqnfs, full cache consistency is maintained within the loop.
367 	 * For nfs:
368 	 * If the file's modify time on the server has changed since the
369 	 * last read rpc or you have written to the file,
370 	 * you may have lost data cache consistency with the
371 	 * server, so flush all of the file's data out of the cache.
372 	 * Then force a getattr rpc to ensure that you have up to date
373 	 * attributes.
374 	 * NB: This implies that cache data can be read when up to
375 	 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
376 	 * attributes this could be forced by setting n_attrstamp to 0 before
377 	 * the VOP_GETATTR() call.
378 	 */
379 	if ((nmp->nm_flag & NFSMNT_NQNFS) == 0) {
380 		if (np->n_flag & NMODIFIED) {
381 			if (vp->v_type != VREG) {
382 				if (vp->v_type != VDIR)
383 					panic("nfs: bioread, not dir");
384 				nfs_invaldir(vp);
385 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
386 				if (error)
387 					return (error);
388 			}
389 			np->n_attrstamp = 0;
390 			error = VOP_GETATTR(vp, &vattr, td);
391 			if (error)
392 				return (error);
393 			np->n_mtime = vattr.va_mtime.tv_sec;
394 		} else {
395 			error = VOP_GETATTR(vp, &vattr, td);
396 			if (error)
397 				return (error);
398 			if ((np->n_flag & NSIZECHANGED)
399 			    || np->n_mtime != vattr.va_mtime.tv_sec) {
400 				if (vp->v_type == VDIR)
401 					nfs_invaldir(vp);
402 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
403 				if (error)
404 					return (error);
405 				np->n_mtime = vattr.va_mtime.tv_sec;
406 				np->n_flag &= ~NSIZECHANGED;
407 			}
408 		}
409 	}
410 	do {
411 
412 	    /*
413 	     * Get a valid lease. If cached data is stale, flush it.
414 	     */
415 	    if (nmp->nm_flag & NFSMNT_NQNFS) {
416 		if (NQNFS_CKINVALID(vp, np, ND_READ)) {
417 		    do {
418 			error = nqnfs_getlease(vp, ND_READ, td);
419 		    } while (error == NQNFS_EXPIRED);
420 		    if (error)
421 			return (error);
422 		    if (np->n_lrev != np->n_brev ||
423 			(np->n_flag & NQNFSNONCACHE) ||
424 			((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
425 			if (vp->v_type == VDIR)
426 			    nfs_invaldir(vp);
427 			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
428 			if (error)
429 			    return (error);
430 			np->n_brev = np->n_lrev;
431 		    }
432 		} else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
433 		    nfs_invaldir(vp);
434 		    error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
435 		    if (error)
436 			return (error);
437 		}
438 	    }
439 	    if (np->n_flag & NQNFSNONCACHE) {
440 		switch (vp->v_type) {
441 		case VREG:
442 			return (nfs_readrpc(vp, uio));
443 		case VLNK:
444 			return (nfs_readlinkrpc(vp, uio));
445 		case VDIR:
446 			break;
447 		default:
448 			printf(" NQNFSNONCACHE: type %x unexpected\n",
449 				vp->v_type);
450 		};
451 	    }
452 	    switch (vp->v_type) {
453 	    case VREG:
454 		nfsstats.biocache_reads++;
455 		lbn = uio->uio_offset / biosize;
456 		on = uio->uio_offset & (biosize - 1);
457 
458 		/*
459 		 * Start the read ahead(s), as required.
460 		 */
461 		if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
462 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
463 			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
464 			rabn = lbn + 1 + nra;
465 			if (!incore(vp, rabn)) {
466 			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
467 			    if (!rabp)
468 				return (EINTR);
469 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
470 				rabp->b_flags |= (B_READ | B_ASYNC);
471 				vfs_busy_pages(rabp, 0);
472 				if (nfs_asyncio(rabp, td)) {
473 				    rabp->b_flags |= B_INVAL|B_ERROR;
474 				    vfs_unbusy_pages(rabp);
475 				    brelse(rabp);
476 				    break;
477 				}
478 			    } else {
479 				brelse(rabp);
480 			    }
481 			}
482 		    }
483 		}
484 
485 		/*
486 		 * Obtain the buffer cache block.  Figure out the buffer size
487 		 * when we are at EOF.  If we are modifying the size of the
488 		 * buffer based on an EOF condition we need to hold
489 		 * nfs_rslock() through obtaining the buffer to prevent
490 		 * a potential writer-appender from messing with n_size.
491 		 * Otherwise we may accidently truncate the buffer and
492 		 * lose dirty data.
493 		 *
494 		 * Note that bcount is *not* DEV_BSIZE aligned.
495 		 */
496 
497 again:
498 		bcount = biosize;
499 		if ((off_t)lbn * biosize >= np->n_size) {
500 			bcount = 0;
501 		} else if ((off_t)(lbn + 1) * biosize > np->n_size) {
502 			bcount = np->n_size - (off_t)lbn * biosize;
503 		}
504 		if (bcount != biosize) {
505 			switch(nfs_rslock(np, td)) {
506 			case ENOLCK:
507 				goto again;
508 				/* not reached */
509 			case EINTR:
510 			case ERESTART:
511 				return(EINTR);
512 				/* not reached */
513 			default:
514 				break;
515 			}
516 		}
517 
518 		bp = nfs_getcacheblk(vp, lbn, bcount, td);
519 
520 		if (bcount != biosize)
521 			nfs_rsunlock(np, td);
522 		if (!bp)
523 			return (EINTR);
524 
525 		/*
526 		 * If B_CACHE is not set, we must issue the read.  If this
527 		 * fails, we return an error.
528 		 */
529 
530 		if ((bp->b_flags & B_CACHE) == 0) {
531 		    bp->b_flags |= B_READ;
532 		    vfs_busy_pages(bp, 0);
533 		    error = nfs_doio(bp, td);
534 		    if (error) {
535 			brelse(bp);
536 			return (error);
537 		    }
538 		}
539 
540 		/*
541 		 * on is the offset into the current bp.  Figure out how many
542 		 * bytes we can copy out of the bp.  Note that bcount is
543 		 * NOT DEV_BSIZE aligned.
544 		 *
545 		 * Then figure out how many bytes we can copy into the uio.
546 		 */
547 
548 		n = 0;
549 		if (on < bcount)
550 			n = min((unsigned)(bcount - on), uio->uio_resid);
551 		break;
552 	    case VLNK:
553 		nfsstats.biocache_readlinks++;
554 		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
555 		if (!bp)
556 			return (EINTR);
557 		if ((bp->b_flags & B_CACHE) == 0) {
558 		    bp->b_flags |= B_READ;
559 		    vfs_busy_pages(bp, 0);
560 		    error = nfs_doio(bp, td);
561 		    if (error) {
562 			bp->b_flags |= B_ERROR;
563 			brelse(bp);
564 			return (error);
565 		    }
566 		}
567 		n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
568 		on = 0;
569 		break;
570 	    case VDIR:
571 		nfsstats.biocache_readdirs++;
572 		if (np->n_direofoffset
573 		    && uio->uio_offset >= np->n_direofoffset) {
574 		    return (0);
575 		}
576 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
577 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
578 		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
579 		if (!bp)
580 		    return (EINTR);
581 		if ((bp->b_flags & B_CACHE) == 0) {
582 		    bp->b_flags |= B_READ;
583 		    vfs_busy_pages(bp, 0);
584 		    error = nfs_doio(bp, td);
585 		    if (error) {
586 			    brelse(bp);
587 		    }
588 		    while (error == NFSERR_BAD_COOKIE) {
589 			printf("got bad cookie vp %p bp %p\n", vp, bp);
590 			nfs_invaldir(vp);
591 			error = nfs_vinvalbuf(vp, 0, td, 1);
592 			/*
593 			 * Yuck! The directory has been modified on the
594 			 * server. The only way to get the block is by
595 			 * reading from the beginning to get all the
596 			 * offset cookies.
597 			 *
598 			 * Leave the last bp intact unless there is an error.
599 			 * Loop back up to the while if the error is another
600 			 * NFSERR_BAD_COOKIE (double yuch!).
601 			 */
602 			for (i = 0; i <= lbn && !error; i++) {
603 			    if (np->n_direofoffset
604 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
605 				    return (0);
606 			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
607 			    if (!bp)
608 				return (EINTR);
609 			    if ((bp->b_flags & B_CACHE) == 0) {
610 				    bp->b_flags |= B_READ;
611 				    vfs_busy_pages(bp, 0);
612 				    error = nfs_doio(bp, td);
613 				    /*
614 				     * no error + B_INVAL == directory EOF,
615 				     * use the block.
616 				     */
617 				    if (error == 0 && (bp->b_flags & B_INVAL))
618 					    break;
619 			    }
620 			    /*
621 			     * An error will throw away the block and the
622 			     * for loop will break out.  If no error and this
623 			     * is not the block we want, we throw away the
624 			     * block and go for the next one via the for loop.
625 			     */
626 			    if (error || i < lbn)
627 				    brelse(bp);
628 			}
629 		    }
630 		    /*
631 		     * The above while is repeated if we hit another cookie
632 		     * error.  If we hit an error and it wasn't a cookie error,
633 		     * we give up.
634 		     */
635 		    if (error)
636 			    return (error);
637 		}
638 
639 		/*
640 		 * If not eof and read aheads are enabled, start one.
641 		 * (You need the current block first, so that you have the
642 		 *  directory offset cookie of the next block.)
643 		 */
644 		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
645 		    (bp->b_flags & B_INVAL) == 0 &&
646 		    (np->n_direofoffset == 0 ||
647 		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
648 		    !(np->n_flag & NQNFSNONCACHE) &&
649 		    !incore(vp, lbn + 1)) {
650 			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
651 			if (rabp) {
652 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
653 				rabp->b_flags |= (B_READ | B_ASYNC);
654 				vfs_busy_pages(rabp, 0);
655 				if (nfs_asyncio(rabp, td)) {
656 				    rabp->b_flags |= B_INVAL|B_ERROR;
657 				    vfs_unbusy_pages(rabp);
658 				    brelse(rabp);
659 				}
660 			    } else {
661 				brelse(rabp);
662 			    }
663 			}
664 		}
665 		/*
666 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
667 		 * chopped for the EOF condition, we cannot tell how large
668 		 * NFS directories are going to be until we hit EOF.  So
669 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
670 		 * it just so happens that b_resid will effectively chop it
671 		 * to EOF.  *BUT* this information is lost if the buffer goes
672 		 * away and is reconstituted into a B_CACHE state ( due to
673 		 * being VMIO ) later.  So we keep track of the directory eof
674 		 * in np->n_direofoffset and chop it off as an extra step
675 		 * right here.
676 		 */
677 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
678 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
679 			n = np->n_direofoffset - uio->uio_offset;
680 		break;
681 	    default:
682 		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
683 		break;
684 	    };
685 
686 	    if (n > 0) {
687 		    error = uiomove(bp->b_data + on, (int)n, uio);
688 	    }
689 	    switch (vp->v_type) {
690 	    case VREG:
691 		break;
692 	    case VLNK:
693 		n = 0;
694 		break;
695 	    case VDIR:
696 		/*
697 		 * Invalidate buffer if caching is disabled, forcing a
698 		 * re-read from the remote later.
699 		 */
700 		if (np->n_flag & NQNFSNONCACHE)
701 			bp->b_flags |= B_INVAL;
702 		break;
703 	    default:
704 		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
705 	    }
706 	    brelse(bp);
707 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
708 	return (error);
709 }
710 
711 /*
712  * Vnode op for write using bio
713  *
714  * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
715  *	     struct ucred *a_cred)
716  */
717 int
718 nfs_write(struct vop_write_args *ap)
719 {
720 	int biosize;
721 	struct uio *uio = ap->a_uio;
722 	struct thread *td = uio->uio_td;
723 	struct vnode *vp = ap->a_vp;
724 	struct nfsnode *np = VTONFS(vp);
725 	int ioflag = ap->a_ioflag;
726 	struct buf *bp;
727 	struct vattr vattr;
728 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
729 	daddr_t lbn;
730 	int bcount;
731 	int n, on, error = 0, iomode, must_commit;
732 	int haverslock = 0;
733 
734 #ifdef DIAGNOSTIC
735 	if (uio->uio_rw != UIO_WRITE)
736 		panic("nfs_write mode");
737 	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
738 		panic("nfs_write proc");
739 #endif
740 	if (vp->v_type != VREG)
741 		return (EIO);
742 	if (np->n_flag & NWRITEERR) {
743 		np->n_flag &= ~NWRITEERR;
744 		return (np->n_error);
745 	}
746 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
747 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
748 		(void)nfs_fsinfo(nmp, vp, td);
749 
750 	/*
751 	 * Synchronously flush pending buffers if we are in synchronous
752 	 * mode or if we are appending.
753 	 */
754 	if (ioflag & (IO_APPEND | IO_SYNC)) {
755 		if (np->n_flag & NMODIFIED) {
756 			np->n_attrstamp = 0;
757 			error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
758 			if (error)
759 				return (error);
760 		}
761 	}
762 
763 	/*
764 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
765 	 * get the append lock.
766 	 */
767 restart:
768 	if (ioflag & IO_APPEND) {
769 		np->n_attrstamp = 0;
770 		error = VOP_GETATTR(vp, &vattr, td);
771 		if (error)
772 			return (error);
773 		uio->uio_offset = np->n_size;
774 	}
775 
776 	if (uio->uio_offset < 0)
777 		return (EINVAL);
778 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
779 		return (EFBIG);
780 	if (uio->uio_resid == 0)
781 		return (0);
782 
783 	/*
784 	 * We need to obtain the rslock if we intend to modify np->n_size
785 	 * in order to guarentee the append point with multiple contending
786 	 * writers, to guarentee that no other appenders modify n_size
787 	 * while we are trying to obtain a truncated buffer (i.e. to avoid
788 	 * accidently truncating data written by another appender due to
789 	 * the race), and to ensure that the buffer is populated prior to
790 	 * our extending of the file.  We hold rslock through the entire
791 	 * operation.
792 	 *
793 	 * Note that we do not synchronize the case where someone truncates
794 	 * the file while we are appending to it because attempting to lock
795 	 * this case may deadlock other parts of the system unexpectedly.
796 	 */
797 	if ((ioflag & IO_APPEND) ||
798 	    uio->uio_offset + uio->uio_resid > np->n_size) {
799 		switch(nfs_rslock(np, td)) {
800 		case ENOLCK:
801 			goto restart;
802 			/* not reached */
803 		case EINTR:
804 		case ERESTART:
805 			return(EINTR);
806 			/* not reached */
807 		default:
808 			break;
809 		}
810 		haverslock = 1;
811 	}
812 
813 	/*
814 	 * Maybe this should be above the vnode op call, but so long as
815 	 * file servers have no limits, i don't think it matters
816 	 */
817 	if (td->td_proc && uio->uio_offset + uio->uio_resid >
818 	      td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
819 		psignal(td->td_proc, SIGXFSZ);
820 		if (haverslock)
821 			nfs_rsunlock(np, td);
822 		return (EFBIG);
823 	}
824 
825 	biosize = vp->v_mount->mnt_stat.f_iosize;
826 
827 	do {
828 		/*
829 		 * Check for a valid write lease.
830 		 */
831 		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
832 		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
833 			do {
834 				error = nqnfs_getlease(vp, ND_WRITE, td);
835 			} while (error == NQNFS_EXPIRED);
836 			if (error)
837 				break;
838 			if (np->n_lrev != np->n_brev ||
839 			    (np->n_flag & NQNFSNONCACHE)) {
840 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
841 				if (error)
842 					break;
843 				np->n_brev = np->n_lrev;
844 			}
845 		}
846 		if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
847 		    iomode = NFSV3WRITE_FILESYNC;
848 		    error = nfs_writerpc(vp, uio, &iomode, &must_commit);
849 		    if (must_commit)
850 			    nfs_clearcommit(vp->v_mount);
851 		    break;
852 		}
853 		nfsstats.biocache_writes++;
854 		lbn = uio->uio_offset / biosize;
855 		on = uio->uio_offset & (biosize-1);
856 		n = min((unsigned)(biosize - on), uio->uio_resid);
857 again:
858 		/*
859 		 * Handle direct append and file extension cases, calculate
860 		 * unaligned buffer size.
861 		 */
862 
863 		if (uio->uio_offset == np->n_size && n) {
864 			/*
865 			 * Get the buffer (in its pre-append state to maintain
866 			 * B_CACHE if it was previously set).  Resize the
867 			 * nfsnode after we have locked the buffer to prevent
868 			 * readers from reading garbage.
869 			 */
870 			bcount = on;
871 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
872 
873 			if (bp != NULL) {
874 				long save;
875 
876 				np->n_size = uio->uio_offset + n;
877 				np->n_flag |= NMODIFIED;
878 				vnode_pager_setsize(vp, np->n_size);
879 
880 				save = bp->b_flags & B_CACHE;
881 				bcount += n;
882 				allocbuf(bp, bcount);
883 				bp->b_flags |= save;
884 			}
885 		} else {
886 			/*
887 			 * Obtain the locked cache block first, and then
888 			 * adjust the file's size as appropriate.
889 			 */
890 			bcount = on + n;
891 			if ((off_t)lbn * biosize + bcount < np->n_size) {
892 				if ((off_t)(lbn + 1) * biosize < np->n_size)
893 					bcount = biosize;
894 				else
895 					bcount = np->n_size - (off_t)lbn * biosize;
896 			}
897 			bp = nfs_getcacheblk(vp, lbn, bcount, td);
898 			if (uio->uio_offset + n > np->n_size) {
899 				np->n_size = uio->uio_offset + n;
900 				np->n_flag |= NMODIFIED;
901 				vnode_pager_setsize(vp, np->n_size);
902 			}
903 		}
904 
905 		if (!bp) {
906 			error = EINTR;
907 			break;
908 		}
909 
910 		/*
911 		 * Issue a READ if B_CACHE is not set.  In special-append
912 		 * mode, B_CACHE is based on the buffer prior to the write
913 		 * op and is typically set, avoiding the read.  If a read
914 		 * is required in special append mode, the server will
915 		 * probably send us a short-read since we extended the file
916 		 * on our end, resulting in b_resid == 0 and, thusly,
917 		 * B_CACHE getting set.
918 		 *
919 		 * We can also avoid issuing the read if the write covers
920 		 * the entire buffer.  We have to make sure the buffer state
921 		 * is reasonable in this case since we will not be initiating
922 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
923 		 * more information.
924 		 *
925 		 * B_CACHE may also be set due to the buffer being cached
926 		 * normally.
927 		 */
928 
929 		if (on == 0 && n == bcount) {
930 			bp->b_flags |= B_CACHE;
931 			bp->b_flags &= ~(B_ERROR | B_INVAL);
932 		}
933 
934 		if ((bp->b_flags & B_CACHE) == 0) {
935 			bp->b_flags |= B_READ;
936 			vfs_busy_pages(bp, 0);
937 			error = nfs_doio(bp, td);
938 			if (error) {
939 				brelse(bp);
940 				break;
941 			}
942 		}
943 		if (!bp) {
944 			error = EINTR;
945 			break;
946 		}
947 		np->n_flag |= NMODIFIED;
948 
949 		/*
950 		 * If dirtyend exceeds file size, chop it down.  This should
951 		 * not normally occur but there is an append race where it
952 		 * might occur XXX, so we log it.
953 		 *
954 		 * If the chopping creates a reverse-indexed or degenerate
955 		 * situation with dirtyoff/end, we 0 both of them.
956 		 */
957 
958 		if (bp->b_dirtyend > bcount) {
959 			printf("NFS append race @%lx:%d\n",
960 			    (long)bp->b_blkno * DEV_BSIZE,
961 			    bp->b_dirtyend - bcount);
962 			bp->b_dirtyend = bcount;
963 		}
964 
965 		if (bp->b_dirtyoff >= bp->b_dirtyend)
966 			bp->b_dirtyoff = bp->b_dirtyend = 0;
967 
968 		/*
969 		 * If the new write will leave a contiguous dirty
970 		 * area, just update the b_dirtyoff and b_dirtyend,
971 		 * otherwise force a write rpc of the old dirty area.
972 		 *
973 		 * While it is possible to merge discontiguous writes due to
974 		 * our having a B_CACHE buffer ( and thus valid read data
975 		 * for the hole), we don't because it could lead to
976 		 * significant cache coherency problems with multiple clients,
977 		 * especially if locking is implemented later on.
978 		 *
979 		 * as an optimization we could theoretically maintain
980 		 * a linked list of discontinuous areas, but we would still
981 		 * have to commit them separately so there isn't much
982 		 * advantage to it except perhaps a bit of asynchronization.
983 		 */
984 
985 		if (bp->b_dirtyend > 0 &&
986 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
987 			if (VOP_BWRITE(bp->b_vp, bp) == EINTR) {
988 				error = EINTR;
989 				break;
990 			}
991 			goto again;
992 		}
993 
994 		/*
995 		 * Check for valid write lease and get one as required.
996 		 * In case getblk() and/or bwrite() delayed us.
997 		 */
998 		if ((nmp->nm_flag & NFSMNT_NQNFS) &&
999 		    NQNFS_CKINVALID(vp, np, ND_WRITE)) {
1000 			do {
1001 				error = nqnfs_getlease(vp, ND_WRITE, td);
1002 			} while (error == NQNFS_EXPIRED);
1003 			if (error) {
1004 				brelse(bp);
1005 				break;
1006 			}
1007 			if (np->n_lrev != np->n_brev ||
1008 			    (np->n_flag & NQNFSNONCACHE)) {
1009 				brelse(bp);
1010 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
1011 				if (error)
1012 					break;
1013 				np->n_brev = np->n_lrev;
1014 				goto again;
1015 			}
1016 		}
1017 
1018 		error = uiomove((char *)bp->b_data + on, n, uio);
1019 
1020 		/*
1021 		 * Since this block is being modified, it must be written
1022 		 * again and not just committed.  Since write clustering does
1023 		 * not work for the stage 1 data write, only the stage 2
1024 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1025 		 */
1026 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1027 
1028 		if (error) {
1029 			bp->b_flags |= B_ERROR;
1030 			brelse(bp);
1031 			break;
1032 		}
1033 
1034 		/*
1035 		 * Only update dirtyoff/dirtyend if not a degenerate
1036 		 * condition.
1037 		 */
1038 		if (n) {
1039 			if (bp->b_dirtyend > 0) {
1040 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1041 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1042 			} else {
1043 				bp->b_dirtyoff = on;
1044 				bp->b_dirtyend = on + n;
1045 			}
1046 			vfs_bio_set_validclean(bp, on, n);
1047 		}
1048 		/*
1049 		 * If IO_NOWDRAIN then set B_NOWDRAIN (e.g. nfs-backed VN
1050 		 * filesystem).  XXX also use for loopback NFS mounts.
1051 		 */
1052 		if (ioflag & IO_NOWDRAIN)
1053 			bp->b_flags |= B_NOWDRAIN;
1054 
1055 		/*
1056 		 * If the lease is non-cachable or IO_SYNC do bwrite().
1057 		 *
1058 		 * IO_INVAL appears to be unused.  The idea appears to be
1059 		 * to turn off caching in this case.  Very odd.  XXX
1060 		 */
1061 		if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
1062 			if (ioflag & IO_INVAL)
1063 				bp->b_flags |= B_NOCACHE;
1064 			error = VOP_BWRITE(bp->b_vp, bp);
1065 			if (error)
1066 				break;
1067 			if (np->n_flag & NQNFSNONCACHE) {
1068 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
1069 				if (error)
1070 					break;
1071 			}
1072 		} else if ((n + on) == biosize &&
1073 			(nmp->nm_flag & NFSMNT_NQNFS) == 0) {
1074 			bp->b_flags |= B_ASYNC;
1075 			(void)nfs_writebp(bp, 0, 0);
1076 		} else {
1077 			bdwrite(bp);
1078 		}
1079 	} while (uio->uio_resid > 0 && n > 0);
1080 
1081 	if (haverslock)
1082 		nfs_rsunlock(np, td);
1083 
1084 	return (error);
1085 }
1086 
1087 /*
1088  * Get an nfs cache block.
1089  *
1090  * Allocate a new one if the block isn't currently in the cache
1091  * and return the block marked busy. If the calling process is
1092  * interrupted by a signal for an interruptible mount point, return
1093  * NULL.
1094  *
1095  * The caller must carefully deal with the possible B_INVAL state of
1096  * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1097  * indirectly), so synchronous reads can be issued without worrying about
1098  * the B_INVAL state.  We have to be a little more careful when dealing
1099  * with writes (see comments in nfs_write()) when extending a file past
1100  * its EOF.
1101  */
1102 static struct buf *
1103 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1104 {
1105 	struct buf *bp;
1106 	struct mount *mp;
1107 	struct nfsmount *nmp;
1108 
1109 	mp = vp->v_mount;
1110 	nmp = VFSTONFS(mp);
1111 
1112 	if (nmp->nm_flag & NFSMNT_INT) {
1113 		bp = getblk(vp, bn, size, PCATCH, 0);
1114 		while (bp == (struct buf *)0) {
1115 			if (nfs_sigintr(nmp, (struct nfsreq *)0, td))
1116 				return ((struct buf *)0);
1117 			bp = getblk(vp, bn, size, 0, 2 * hz);
1118 		}
1119 	} else {
1120 		bp = getblk(vp, bn, size, 0, 0);
1121 	}
1122 
1123 	if (vp->v_type == VREG) {
1124 		int biosize;
1125 
1126 		biosize = mp->mnt_stat.f_iosize;
1127 		bp->b_blkno = bn * (biosize / DEV_BSIZE);
1128 	}
1129 	return (bp);
1130 }
1131 
1132 /*
1133  * Flush and invalidate all dirty buffers. If another process is already
1134  * doing the flush, just wait for completion.
1135  */
1136 int
1137 nfs_vinvalbuf(struct vnode *vp, int flags,
1138 	      struct thread *td, int intrflg)
1139 {
1140 	struct nfsnode *np = VTONFS(vp);
1141 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1142 	int error = 0, slpflag, slptimeo;
1143 
1144 	if (vp->v_flag & VRECLAIMED)
1145 		return (0);
1146 
1147 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1148 		intrflg = 0;
1149 	if (intrflg) {
1150 		slpflag = PCATCH;
1151 		slptimeo = 2 * hz;
1152 	} else {
1153 		slpflag = 0;
1154 		slptimeo = 0;
1155 	}
1156 	/*
1157 	 * First wait for any other process doing a flush to complete.
1158 	 */
1159 	while (np->n_flag & NFLUSHINPROG) {
1160 		np->n_flag |= NFLUSHWANT;
1161 		error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
1162 		if (error && intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, td))
1163 			return (EINTR);
1164 	}
1165 
1166 	/*
1167 	 * Now, flush as required.
1168 	 */
1169 	np->n_flag |= NFLUSHINPROG;
1170 	error = vinvalbuf(vp, flags, td, slpflag, 0);
1171 	while (error) {
1172 		if (intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
1173 			np->n_flag &= ~NFLUSHINPROG;
1174 			if (np->n_flag & NFLUSHWANT) {
1175 				np->n_flag &= ~NFLUSHWANT;
1176 				wakeup((caddr_t)&np->n_flag);
1177 			}
1178 			return (EINTR);
1179 		}
1180 		error = vinvalbuf(vp, flags, td, 0, slptimeo);
1181 	}
1182 	np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
1183 	if (np->n_flag & NFLUSHWANT) {
1184 		np->n_flag &= ~NFLUSHWANT;
1185 		wakeup((caddr_t)&np->n_flag);
1186 	}
1187 	return (0);
1188 }
1189 
1190 /*
1191  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1192  * This is mainly to avoid queueing async I/O requests when the nfsiods
1193  * are all hung on a dead server.
1194  *
1195  * Note: nfs_asyncio() does not clear (B_ERROR|B_INVAL) but when the bp
1196  * is eventually dequeued by the async daemon, nfs_doio() *will*.
1197  */
1198 int
1199 nfs_asyncio(struct buf *bp, struct thread *td)
1200 {
1201 	struct nfsmount *nmp;
1202 	int i;
1203 	int gotiod;
1204 	int slpflag = 0;
1205 	int slptimeo = 0;
1206 	int error;
1207 
1208 	/*
1209 	 * If no async daemons then return EIO to force caller to run the rpc
1210 	 * synchronously.
1211 	 */
1212 	if (nfs_numasync == 0)
1213 		return (EIO);
1214 
1215 	nmp = VFSTONFS(bp->b_vp->v_mount);
1216 
1217 	/*
1218 	 * Commits are usually short and sweet so lets save some cpu and
1219 	 * leave the async daemons for more important rpc's (such as reads
1220 	 * and writes).
1221 	 */
1222 	if ((bp->b_flags & (B_READ|B_NEEDCOMMIT)) == B_NEEDCOMMIT &&
1223 	    (nmp->nm_bufqiods > nfs_numasync / 2)) {
1224 		return(EIO);
1225 	}
1226 
1227 again:
1228 	if (nmp->nm_flag & NFSMNT_INT)
1229 		slpflag = PCATCH;
1230 	gotiod = FALSE;
1231 
1232 	/*
1233 	 * Find a free iod to process this request.
1234 	 */
1235 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
1236 		if (nfs_iodwant[i]) {
1237 			/*
1238 			 * Found one, so wake it up and tell it which
1239 			 * mount to process.
1240 			 */
1241 			NFS_DPF(ASYNCIO,
1242 				("nfs_asyncio: waking iod %d for mount %p\n",
1243 				 i, nmp));
1244 			nfs_iodwant[i] = NULL;
1245 			nfs_iodmount[i] = nmp;
1246 			nmp->nm_bufqiods++;
1247 			wakeup((caddr_t)&nfs_iodwant[i]);
1248 			gotiod = TRUE;
1249 			break;
1250 		}
1251 
1252 	/*
1253 	 * If none are free, we may already have an iod working on this mount
1254 	 * point.  If so, it will process our request.
1255 	 */
1256 	if (!gotiod) {
1257 		if (nmp->nm_bufqiods > 0) {
1258 			NFS_DPF(ASYNCIO,
1259 				("nfs_asyncio: %d iods are already processing mount %p\n",
1260 				 nmp->nm_bufqiods, nmp));
1261 			gotiod = TRUE;
1262 		}
1263 	}
1264 
1265 	/*
1266 	 * If we have an iod which can process the request, then queue
1267 	 * the buffer.
1268 	 */
1269 	if (gotiod) {
1270 		/*
1271 		 * Ensure that the queue never grows too large.  We still want
1272 		 * to asynchronize so we block rather then return EIO.
1273 		 */
1274 		while (nmp->nm_bufqlen >= 2*nfs_numasync) {
1275 			NFS_DPF(ASYNCIO,
1276 				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1277 			nmp->nm_bufqwant = TRUE;
1278 			error = tsleep(&nmp->nm_bufq, slpflag,
1279 				       "nfsaio", slptimeo);
1280 			if (error) {
1281 				if (nfs_sigintr(nmp, NULL, td))
1282 					return (EINTR);
1283 				if (slpflag == PCATCH) {
1284 					slpflag = 0;
1285 					slptimeo = 2 * hz;
1286 				}
1287 			}
1288 			/*
1289 			 * We might have lost our iod while sleeping,
1290 			 * so check and loop if nescessary.
1291 			 */
1292 			if (nmp->nm_bufqiods == 0) {
1293 				NFS_DPF(ASYNCIO,
1294 					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1295 				goto again;
1296 			}
1297 		}
1298 
1299 		if ((bp->b_flags & B_READ) == 0)
1300 			bp->b_flags |= B_WRITEINPROG;
1301 
1302 		BUF_KERNPROC(bp);
1303 		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1304 		nmp->nm_bufqlen++;
1305 		return (0);
1306 	}
1307 
1308 	/*
1309 	 * All the iods are busy on other mounts, so return EIO to
1310 	 * force the caller to process the i/o synchronously.
1311 	 */
1312 	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1313 	return (EIO);
1314 }
1315 
1316 /*
1317  * Do an I/O operation to/from a cache block. This may be called
1318  * synchronously or from an nfsiod.
1319  *
1320  * NOTE! TD MIGHT BE NULL
1321  */
1322 int
1323 nfs_doio(struct buf *bp, struct thread *td)
1324 {
1325 	struct uio *uiop;
1326 	struct vnode *vp;
1327 	struct nfsnode *np;
1328 	struct nfsmount *nmp;
1329 	int error = 0, iomode, must_commit = 0;
1330 	struct uio uio;
1331 	struct iovec io;
1332 
1333 	vp = bp->b_vp;
1334 	np = VTONFS(vp);
1335 	nmp = VFSTONFS(vp->v_mount);
1336 	uiop = &uio;
1337 	uiop->uio_iov = &io;
1338 	uiop->uio_iovcnt = 1;
1339 	uiop->uio_segflg = UIO_SYSSPACE;
1340 	uiop->uio_td = td;
1341 
1342 	/*
1343 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1344 	 * do this here so we do not have to do it in all the code that
1345 	 * calls us.
1346 	 */
1347 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1348 
1349 	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1350 
1351 	/*
1352 	 * Historically, paging was done with physio, but no more.
1353 	 */
1354 	if (bp->b_flags & B_PHYS) {
1355 	    /*
1356 	     * ...though reading /dev/drum still gets us here.
1357 	     */
1358 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1359 	    /* mapping was done by vmapbuf() */
1360 	    io.iov_base = bp->b_data;
1361 	    uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1362 	    if (bp->b_flags & B_READ) {
1363 		uiop->uio_rw = UIO_READ;
1364 		nfsstats.read_physios++;
1365 		error = nfs_readrpc(vp, uiop);
1366 	    } else {
1367 		int com;
1368 
1369 		iomode = NFSV3WRITE_DATASYNC;
1370 		uiop->uio_rw = UIO_WRITE;
1371 		nfsstats.write_physios++;
1372 		error = nfs_writerpc(vp, uiop, &iomode, &com);
1373 	    }
1374 	    if (error) {
1375 		bp->b_flags |= B_ERROR;
1376 		bp->b_error = error;
1377 	    }
1378 	} else if (bp->b_flags & B_READ) {
1379 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1380 	    io.iov_base = bp->b_data;
1381 	    uiop->uio_rw = UIO_READ;
1382 
1383 	    switch (vp->v_type) {
1384 	    case VREG:
1385 		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1386 		nfsstats.read_bios++;
1387 		error = nfs_readrpc(vp, uiop);
1388 
1389 		if (!error) {
1390 		    if (uiop->uio_resid) {
1391 			/*
1392 			 * If we had a short read with no error, we must have
1393 			 * hit a file hole.  We should zero-fill the remainder.
1394 			 * This can also occur if the server hits the file EOF.
1395 			 *
1396 			 * Holes used to be able to occur due to pending
1397 			 * writes, but that is not possible any longer.
1398 			 */
1399 			int nread = bp->b_bcount - uiop->uio_resid;
1400 			int left  = uiop->uio_resid;
1401 
1402 			if (left > 0)
1403 				bzero((char *)bp->b_data + nread, left);
1404 			uiop->uio_resid = 0;
1405 		    }
1406 		}
1407 		if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1408 			(((nmp->nm_flag & NFSMNT_NQNFS) &&
1409 			  NQNFS_CKINVALID(vp, np, ND_READ) &&
1410 			  np->n_lrev != np->n_brev) ||
1411 			 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
1412 			  np->n_mtime != np->n_vattr.va_mtime.tv_sec))) {
1413 			uprintf("Process killed due to text file modification\n");
1414 			psignal(td->td_proc, SIGKILL);
1415 			PHOLD(td->td_proc);
1416 		}
1417 		break;
1418 	    case VLNK:
1419 		uiop->uio_offset = (off_t)0;
1420 		nfsstats.readlink_bios++;
1421 		error = nfs_readlinkrpc(vp, uiop);
1422 		break;
1423 	    case VDIR:
1424 		nfsstats.readdir_bios++;
1425 		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1426 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1427 			error = nfs_readdirplusrpc(vp, uiop);
1428 			if (error == NFSERR_NOTSUPP)
1429 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1430 		}
1431 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1432 			error = nfs_readdirrpc(vp, uiop);
1433 		/*
1434 		 * end-of-directory sets B_INVAL but does not generate an
1435 		 * error.
1436 		 */
1437 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1438 			bp->b_flags |= B_INVAL;
1439 		break;
1440 	    default:
1441 		printf("nfs_doio:  type %x unexpected\n",vp->v_type);
1442 		break;
1443 	    };
1444 	    if (error) {
1445 		bp->b_flags |= B_ERROR;
1446 		bp->b_error = error;
1447 	    }
1448 	} else {
1449 	    /*
1450 	     * If we only need to commit, try to commit
1451 	     */
1452 	    if (bp->b_flags & B_NEEDCOMMIT) {
1453 		    int retv;
1454 		    off_t off;
1455 
1456 		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1457 		    bp->b_flags |= B_WRITEINPROG;
1458 		    retv = nfs_commit(bp->b_vp, off,
1459 				bp->b_dirtyend - bp->b_dirtyoff, td);
1460 		    bp->b_flags &= ~B_WRITEINPROG;
1461 		    if (retv == 0) {
1462 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1463 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1464 			    bp->b_resid = 0;
1465 			    biodone(bp);
1466 			    return (0);
1467 		    }
1468 		    if (retv == NFSERR_STALEWRITEVERF) {
1469 			    nfs_clearcommit(bp->b_vp->v_mount);
1470 		    }
1471 	    }
1472 
1473 	    /*
1474 	     * Setup for actual write
1475 	     */
1476 
1477 	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1478 		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1479 
1480 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1481 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1482 		    - bp->b_dirtyoff;
1483 		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1484 		    + bp->b_dirtyoff;
1485 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1486 		uiop->uio_rw = UIO_WRITE;
1487 		nfsstats.write_bios++;
1488 
1489 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1490 		    iomode = NFSV3WRITE_UNSTABLE;
1491 		else
1492 		    iomode = NFSV3WRITE_FILESYNC;
1493 
1494 		bp->b_flags |= B_WRITEINPROG;
1495 		error = nfs_writerpc(vp, uiop, &iomode, &must_commit);
1496 
1497 		/*
1498 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1499 		 * to cluster the buffers needing commit.  This will allow
1500 		 * the system to submit a single commit rpc for the whole
1501 		 * cluster.  We can do this even if the buffer is not 100%
1502 		 * dirty (relative to the NFS blocksize), so we optimize the
1503 		 * append-to-file-case.
1504 		 *
1505 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1506 		 * cleared because write clustering only works for commit
1507 		 * rpc's, not for the data portion of the write).
1508 		 */
1509 
1510 		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1511 		    bp->b_flags |= B_NEEDCOMMIT;
1512 		    if (bp->b_dirtyoff == 0
1513 			&& bp->b_dirtyend == bp->b_bcount)
1514 			bp->b_flags |= B_CLUSTEROK;
1515 		} else {
1516 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1517 		}
1518 		bp->b_flags &= ~B_WRITEINPROG;
1519 
1520 		/*
1521 		 * For an interrupted write, the buffer is still valid
1522 		 * and the write hasn't been pushed to the server yet,
1523 		 * so we can't set B_ERROR and report the interruption
1524 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1525 		 * is not relevant, so the rpc attempt is essentially
1526 		 * a noop.  For the case of a V3 write rpc not being
1527 		 * committed to stable storage, the block is still
1528 		 * dirty and requires either a commit rpc or another
1529 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1530 		 * the block is reused. This is indicated by setting
1531 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1532 		 *
1533 		 * If the buffer is marked B_PAGING, it does not reside on
1534 		 * the vp's paging queues so we cannot call bdirty().  The
1535 		 * bp in this case is not an NFS cache block so we should
1536 		 * be safe. XXX
1537 		 */
1538     		if (error == EINTR
1539 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1540 			int s;
1541 
1542 			s = splbio();
1543 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1544 			if ((bp->b_flags & B_PAGING) == 0) {
1545 			    bdirty(bp);
1546 			    bp->b_flags &= ~B_DONE;
1547 			}
1548 			if (error && (bp->b_flags & B_ASYNC) == 0)
1549 			    bp->b_flags |= B_EINTR;
1550 			splx(s);
1551 	    	} else {
1552 		    if (error) {
1553 			bp->b_flags |= B_ERROR;
1554 			bp->b_error = np->n_error = error;
1555 			np->n_flag |= NWRITEERR;
1556 		    }
1557 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1558 		}
1559 	    } else {
1560 		bp->b_resid = 0;
1561 		biodone(bp);
1562 		return (0);
1563 	    }
1564 	}
1565 	bp->b_resid = uiop->uio_resid;
1566 	if (must_commit)
1567 	    nfs_clearcommit(vp->v_mount);
1568 	biodone(bp);
1569 	return (error);
1570 }
1571 
1572 /*
1573  * Used to aid in handling ftruncate() operations on the NFS client side.
1574  * Truncation creates a number of special problems for NFS.  We have to
1575  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1576  * we have to properly handle VM pages or (potentially dirty) buffers
1577  * that straddle the truncation point.
1578  */
1579 
1580 int
1581 nfs_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize)
1582 {
1583 	struct nfsnode *np = VTONFS(vp);
1584 	u_quad_t tsize = np->n_size;
1585 	int biosize = vp->v_mount->mnt_stat.f_iosize;
1586 	int error = 0;
1587 
1588 	np->n_size = nsize;
1589 
1590 	if (np->n_size < tsize) {
1591 		struct buf *bp;
1592 		daddr_t lbn;
1593 		int bufsize;
1594 
1595 		/*
1596 		 * vtruncbuf() doesn't get the buffer overlapping the
1597 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1598 		 * buffer that now needs to be truncated.
1599 		 */
1600 		error = vtruncbuf(vp, td, nsize, biosize);
1601 		lbn = nsize / biosize;
1602 		bufsize = nsize & (biosize - 1);
1603 		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1604 		if (bp->b_dirtyoff > bp->b_bcount)
1605 			bp->b_dirtyoff = bp->b_bcount;
1606 		if (bp->b_dirtyend > bp->b_bcount)
1607 			bp->b_dirtyend = bp->b_bcount;
1608 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1609 		brelse(bp);
1610 	} else {
1611 		vnode_pager_setsize(vp, nsize);
1612 	}
1613 	return(error);
1614 }
1615 
1616