1 /* 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 37 * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $ 38 * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.45 2008/07/18 00:09:39 dillon Exp $ 39 */ 40 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/resourcevar.h> 45 #include <sys/signalvar.h> 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/vnode.h> 49 #include <sys/mount.h> 50 #include <sys/kernel.h> 51 #include <sys/mbuf.h> 52 #include <sys/msfbuf.h> 53 54 #include <vm/vm.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_page.h> 57 #include <vm/vm_object.h> 58 #include <vm/vm_pager.h> 59 #include <vm/vnode_pager.h> 60 61 #include <sys/buf2.h> 62 #include <sys/thread2.h> 63 #include <vm/vm_page2.h> 64 65 #include "rpcv2.h" 66 #include "nfsproto.h" 67 #include "nfs.h" 68 #include "nfsmount.h" 69 #include "nfsnode.h" 70 #include "xdr_subs.h" 71 #include "nfsm_subs.h" 72 73 74 static struct buf *nfs_getcacheblk(struct vnode *vp, off_t loffset, 75 int size, struct thread *td); 76 static int nfs_check_dirent(struct nfs_dirent *dp, int maxlen); 77 static void nfsiodone_sync(struct bio *bio); 78 static void nfs_readrpc_bio_done(nfsm_info_t info); 79 static void nfs_writerpc_bio_done(nfsm_info_t info); 80 static void nfs_commitrpc_bio_done(nfsm_info_t info); 81 82 /* 83 * Vnode op for VM getpages. 84 * 85 * nfs_getpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, 86 * int a_reqpage, vm_ooffset_t a_offset) 87 */ 88 int 89 nfs_getpages(struct vop_getpages_args *ap) 90 { 91 struct thread *td = curthread; /* XXX */ 92 int i, error, nextoff, size, toff, count, npages; 93 struct uio uio; 94 struct iovec iov; 95 char *kva; 96 struct vnode *vp; 97 struct nfsmount *nmp; 98 vm_page_t *pages; 99 vm_page_t m; 100 struct msf_buf *msf; 101 102 vp = ap->a_vp; 103 nmp = VFSTONFS(vp->v_mount); 104 pages = ap->a_m; 105 count = ap->a_count; 106 107 if (vp->v_object == NULL) { 108 kprintf("nfs_getpages: called with non-merged cache vnode??\n"); 109 return VM_PAGER_ERROR; 110 } 111 112 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 113 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) 114 (void)nfs_fsinfo(nmp, vp, td); 115 116 npages = btoc(count); 117 118 /* 119 * NOTE that partially valid pages may occur in cases other 120 * then file EOF, such as when a file is partially written and 121 * ftruncate()-extended to a larger size. It is also possible 122 * for the valid bits to be set on garbage beyond the file EOF and 123 * clear in the area before EOF (e.g. m->valid == 0xfc), which can 124 * occur due to vtruncbuf() and the buffer cache's handling of 125 * pages which 'straddle' buffers or when b_bufsize is not a 126 * multiple of PAGE_SIZE.... the buffer cache cannot normally 127 * clear the extra bits. This kind of situation occurs when you 128 * make a small write() (m->valid == 0x03) and then mmap() and 129 * fault in the buffer(m->valid = 0xFF). When NFS flushes the 130 * buffer (vinvalbuf() m->valid = 0xFC) we are left with a mess. 131 * 132 * This is combined with the possibility that the pages are partially 133 * dirty or that there is a buffer backing the pages that is dirty 134 * (even if m->dirty is 0). 135 * 136 * To solve this problem several hacks have been made: (1) NFS 137 * guarentees that the IO block size is a multiple of PAGE_SIZE and 138 * (2) The buffer cache, when invalidating an NFS buffer, will 139 * disregard the buffer's fragmentory b_bufsize and invalidate 140 * the whole page rather then just the piece the buffer owns. 141 * 142 * This allows us to assume that a partially valid page found here 143 * is fully valid (vm_fault will zero'd out areas of the page not 144 * marked as valid). 145 */ 146 m = pages[ap->a_reqpage]; 147 if (m->valid != 0) { 148 for (i = 0; i < npages; ++i) { 149 if (i != ap->a_reqpage) 150 vnode_pager_freepage(pages[i]); 151 } 152 return(0); 153 } 154 155 /* 156 * Use an MSF_BUF as a medium to retrieve data from the pages. 157 */ 158 msf_map_pagelist(&msf, pages, npages, 0); 159 KKASSERT(msf); 160 kva = msf_buf_kva(msf); 161 162 iov.iov_base = kva; 163 iov.iov_len = count; 164 uio.uio_iov = &iov; 165 uio.uio_iovcnt = 1; 166 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 167 uio.uio_resid = count; 168 uio.uio_segflg = UIO_SYSSPACE; 169 uio.uio_rw = UIO_READ; 170 uio.uio_td = td; 171 172 error = nfs_readrpc_uio(vp, &uio); 173 msf_buf_free(msf); 174 175 if (error && ((int)uio.uio_resid == count)) { 176 kprintf("nfs_getpages: error %d\n", error); 177 for (i = 0; i < npages; ++i) { 178 if (i != ap->a_reqpage) 179 vnode_pager_freepage(pages[i]); 180 } 181 return VM_PAGER_ERROR; 182 } 183 184 /* 185 * Calculate the number of bytes read and validate only that number 186 * of bytes. Note that due to pending writes, size may be 0. This 187 * does not mean that the remaining data is invalid! 188 */ 189 190 size = count - (int)uio.uio_resid; 191 192 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 193 nextoff = toff + PAGE_SIZE; 194 m = pages[i]; 195 196 m->flags &= ~PG_ZERO; 197 198 if (nextoff <= size) { 199 /* 200 * Read operation filled an entire page 201 */ 202 m->valid = VM_PAGE_BITS_ALL; 203 vm_page_undirty(m); 204 } else if (size > toff) { 205 /* 206 * Read operation filled a partial page. 207 */ 208 m->valid = 0; 209 vm_page_set_valid(m, 0, size - toff); 210 vm_page_clear_dirty_end_nonincl(m, 0, size - toff); 211 /* handled by vm_fault now */ 212 /* vm_page_zero_invalid(m, TRUE); */ 213 } else { 214 /* 215 * Read operation was short. If no error occured 216 * we may have hit a zero-fill section. We simply 217 * leave valid set to 0. 218 */ 219 ; 220 } 221 if (i != ap->a_reqpage) { 222 /* 223 * Whether or not to leave the page activated is up in 224 * the air, but we should put the page on a page queue 225 * somewhere (it already is in the object). Result: 226 * It appears that emperical results show that 227 * deactivating pages is best. 228 */ 229 230 /* 231 * Just in case someone was asking for this page we 232 * now tell them that it is ok to use. 233 */ 234 if (!error) { 235 if (m->flags & PG_WANTED) 236 vm_page_activate(m); 237 else 238 vm_page_deactivate(m); 239 vm_page_wakeup(m); 240 } else { 241 vnode_pager_freepage(m); 242 } 243 } 244 } 245 return 0; 246 } 247 248 /* 249 * Vnode op for VM putpages. 250 * 251 * nfs_putpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, int a_sync, 252 * int *a_rtvals, vm_ooffset_t a_offset) 253 */ 254 int 255 nfs_putpages(struct vop_putpages_args *ap) 256 { 257 struct thread *td = curthread; 258 struct uio uio; 259 struct iovec iov; 260 char *kva; 261 int iomode, must_commit, i, error, npages, count; 262 off_t offset; 263 int *rtvals; 264 struct vnode *vp; 265 struct nfsmount *nmp; 266 struct nfsnode *np; 267 vm_page_t *pages; 268 struct msf_buf *msf; 269 270 vp = ap->a_vp; 271 np = VTONFS(vp); 272 nmp = VFSTONFS(vp->v_mount); 273 pages = ap->a_m; 274 count = ap->a_count; 275 rtvals = ap->a_rtvals; 276 npages = btoc(count); 277 offset = IDX_TO_OFF(pages[0]->pindex); 278 279 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 280 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) 281 (void)nfs_fsinfo(nmp, vp, td); 282 283 for (i = 0; i < npages; i++) { 284 rtvals[i] = VM_PAGER_AGAIN; 285 } 286 287 /* 288 * When putting pages, do not extend file past EOF. 289 */ 290 291 if (offset + count > np->n_size) { 292 count = np->n_size - offset; 293 if (count < 0) 294 count = 0; 295 } 296 297 /* 298 * Use an MSF_BUF as a medium to retrieve data from the pages. 299 */ 300 msf_map_pagelist(&msf, pages, npages, 0); 301 KKASSERT(msf); 302 kva = msf_buf_kva(msf); 303 304 iov.iov_base = kva; 305 iov.iov_len = count; 306 uio.uio_iov = &iov; 307 uio.uio_iovcnt = 1; 308 uio.uio_offset = offset; 309 uio.uio_resid = (size_t)count; 310 uio.uio_segflg = UIO_SYSSPACE; 311 uio.uio_rw = UIO_WRITE; 312 uio.uio_td = td; 313 314 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0) 315 iomode = NFSV3WRITE_UNSTABLE; 316 else 317 iomode = NFSV3WRITE_FILESYNC; 318 319 error = nfs_writerpc_uio(vp, &uio, &iomode, &must_commit); 320 321 msf_buf_free(msf); 322 323 if (!error) { 324 int nwritten = round_page(count - (int)uio.uio_resid) / PAGE_SIZE; 325 for (i = 0; i < nwritten; i++) { 326 rtvals[i] = VM_PAGER_OK; 327 vm_page_undirty(pages[i]); 328 } 329 if (must_commit) 330 nfs_clearcommit(vp->v_mount); 331 } 332 return rtvals[0]; 333 } 334 335 /* 336 * Vnode op for read using bio 337 */ 338 int 339 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag) 340 { 341 struct nfsnode *np = VTONFS(vp); 342 int biosize, i; 343 struct buf *bp = 0, *rabp; 344 struct vattr vattr; 345 struct thread *td; 346 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 347 daddr_t lbn, rabn; 348 off_t raoffset; 349 off_t loffset; 350 int bcount; 351 int seqcount; 352 int nra, error = 0, n = 0, on = 0; 353 354 #ifdef DIAGNOSTIC 355 if (uio->uio_rw != UIO_READ) 356 panic("nfs_read mode"); 357 #endif 358 if (uio->uio_resid == 0) 359 return (0); 360 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 361 return (EINVAL); 362 td = uio->uio_td; 363 364 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 365 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) 366 (void)nfs_fsinfo(nmp, vp, td); 367 if (vp->v_type != VDIR && 368 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 369 return (EFBIG); 370 biosize = vp->v_mount->mnt_stat.f_iosize; 371 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 372 373 /* 374 * For nfs, cache consistency can only be maintained approximately. 375 * Although RFC1094 does not specify the criteria, the following is 376 * believed to be compatible with the reference port. 377 * 378 * NFS: If local changes have been made and this is a 379 * directory, the directory must be invalidated and 380 * the attribute cache must be cleared. 381 * 382 * GETATTR is called to synchronize the file size. 383 * 384 * If remote changes are detected local data is flushed 385 * and the cache is invalidated. 386 * 387 * NOTE: In the normal case the attribute cache is not 388 * cleared which means GETATTR may use cached data and 389 * not immediately detect changes made on the server. 390 */ 391 if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) { 392 nfs_invaldir(vp); 393 error = nfs_vinvalbuf(vp, V_SAVE, 1); 394 if (error) 395 return (error); 396 np->n_attrstamp = 0; 397 } 398 error = VOP_GETATTR(vp, &vattr); 399 if (error) 400 return (error); 401 if (np->n_flag & NRMODIFIED) { 402 if (vp->v_type == VDIR) 403 nfs_invaldir(vp); 404 error = nfs_vinvalbuf(vp, V_SAVE, 1); 405 if (error) 406 return (error); 407 np->n_flag &= ~NRMODIFIED; 408 } 409 do { 410 if (np->n_flag & NDONTCACHE) { 411 switch (vp->v_type) { 412 case VREG: 413 return (nfs_readrpc_uio(vp, uio)); 414 case VLNK: 415 return (nfs_readlinkrpc_uio(vp, uio)); 416 case VDIR: 417 break; 418 default: 419 kprintf(" NDONTCACHE: type %x unexpected\n", vp->v_type); 420 break; 421 }; 422 } 423 switch (vp->v_type) { 424 case VREG: 425 nfsstats.biocache_reads++; 426 lbn = uio->uio_offset / biosize; 427 on = uio->uio_offset & (biosize - 1); 428 loffset = (off_t)lbn * biosize; 429 430 /* 431 * Start the read ahead(s), as required. 432 */ 433 if (nmp->nm_readahead > 0 && nfs_asyncok(nmp)) { 434 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 435 (off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) { 436 rabn = lbn + 1 + nra; 437 raoffset = (off_t)rabn * biosize; 438 if (findblk(vp, raoffset, FINDBLK_TEST) == NULL) { 439 rabp = nfs_getcacheblk(vp, raoffset, biosize, td); 440 if (!rabp) 441 return (EINTR); 442 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 443 rabp->b_cmd = BUF_CMD_READ; 444 vfs_busy_pages(vp, rabp); 445 nfs_asyncio(vp, &rabp->b_bio2); 446 } else { 447 brelse(rabp); 448 } 449 } 450 } 451 } 452 453 /* 454 * Obtain the buffer cache block. Figure out the buffer size 455 * when we are at EOF. If we are modifying the size of the 456 * buffer based on an EOF condition we need to hold 457 * nfs_rslock() through obtaining the buffer to prevent 458 * a potential writer-appender from messing with n_size. 459 * Otherwise we may accidently truncate the buffer and 460 * lose dirty data. 461 * 462 * Note that bcount is *not* DEV_BSIZE aligned. 463 */ 464 465 again: 466 bcount = biosize; 467 if (loffset >= np->n_size) { 468 bcount = 0; 469 } else if (loffset + biosize > np->n_size) { 470 bcount = np->n_size - loffset; 471 } 472 if (bcount != biosize) { 473 switch(nfs_rslock(np)) { 474 case ENOLCK: 475 goto again; 476 /* not reached */ 477 case EINTR: 478 case ERESTART: 479 return(EINTR); 480 /* not reached */ 481 default: 482 break; 483 } 484 } 485 486 bp = nfs_getcacheblk(vp, loffset, bcount, td); 487 488 if (bcount != biosize) 489 nfs_rsunlock(np); 490 if (!bp) 491 return (EINTR); 492 493 /* 494 * If B_CACHE is not set, we must issue the read. If this 495 * fails, we return an error. 496 */ 497 if ((bp->b_flags & B_CACHE) == 0) { 498 bp->b_cmd = BUF_CMD_READ; 499 bp->b_bio2.bio_done = nfsiodone_sync; 500 bp->b_bio2.bio_flags |= BIO_SYNC; 501 vfs_busy_pages(vp, bp); 502 error = nfs_doio(vp, &bp->b_bio2, td); 503 if (error) { 504 brelse(bp); 505 return (error); 506 } 507 } 508 509 /* 510 * on is the offset into the current bp. Figure out how many 511 * bytes we can copy out of the bp. Note that bcount is 512 * NOT DEV_BSIZE aligned. 513 * 514 * Then figure out how many bytes we can copy into the uio. 515 */ 516 n = 0; 517 if (on < bcount) 518 n = (int)szmin((unsigned)(bcount - on), uio->uio_resid); 519 break; 520 case VLNK: 521 biosize = min(NFS_MAXPATHLEN, np->n_size); 522 nfsstats.biocache_readlinks++; 523 bp = nfs_getcacheblk(vp, (off_t)0, biosize, td); 524 if (bp == NULL) 525 return (EINTR); 526 if ((bp->b_flags & B_CACHE) == 0) { 527 bp->b_cmd = BUF_CMD_READ; 528 bp->b_bio2.bio_done = nfsiodone_sync; 529 bp->b_bio2.bio_flags |= BIO_SYNC; 530 vfs_busy_pages(vp, bp); 531 error = nfs_doio(vp, &bp->b_bio2, td); 532 if (error) { 533 bp->b_flags |= B_ERROR | B_INVAL; 534 brelse(bp); 535 return (error); 536 } 537 } 538 n = (int)szmin(uio->uio_resid, bp->b_bcount - bp->b_resid); 539 on = 0; 540 break; 541 case VDIR: 542 nfsstats.biocache_readdirs++; 543 if (np->n_direofoffset 544 && uio->uio_offset >= np->n_direofoffset) { 545 return (0); 546 } 547 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 548 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 549 loffset = uio->uio_offset - on; 550 bp = nfs_getcacheblk(vp, loffset, NFS_DIRBLKSIZ, td); 551 if (bp == NULL) 552 return (EINTR); 553 554 if ((bp->b_flags & B_CACHE) == 0) { 555 bp->b_cmd = BUF_CMD_READ; 556 bp->b_bio2.bio_done = nfsiodone_sync; 557 bp->b_bio2.bio_flags |= BIO_SYNC; 558 vfs_busy_pages(vp, bp); 559 error = nfs_doio(vp, &bp->b_bio2, td); 560 if (error) 561 brelse(bp); 562 while (error == NFSERR_BAD_COOKIE) { 563 kprintf("got bad cookie vp %p bp %p\n", vp, bp); 564 nfs_invaldir(vp); 565 error = nfs_vinvalbuf(vp, 0, 1); 566 /* 567 * Yuck! The directory has been modified on the 568 * server. The only way to get the block is by 569 * reading from the beginning to get all the 570 * offset cookies. 571 * 572 * Leave the last bp intact unless there is an error. 573 * Loop back up to the while if the error is another 574 * NFSERR_BAD_COOKIE (double yuch!). 575 */ 576 for (i = 0; i <= lbn && !error; i++) { 577 if (np->n_direofoffset 578 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) 579 return (0); 580 bp = nfs_getcacheblk(vp, (off_t)i * NFS_DIRBLKSIZ, 581 NFS_DIRBLKSIZ, td); 582 if (!bp) 583 return (EINTR); 584 if ((bp->b_flags & B_CACHE) == 0) { 585 bp->b_cmd = BUF_CMD_READ; 586 bp->b_bio2.bio_done = nfsiodone_sync; 587 bp->b_bio2.bio_flags |= BIO_SYNC; 588 vfs_busy_pages(vp, bp); 589 error = nfs_doio(vp, &bp->b_bio2, td); 590 /* 591 * no error + B_INVAL == directory EOF, 592 * use the block. 593 */ 594 if (error == 0 && (bp->b_flags & B_INVAL)) 595 break; 596 } 597 /* 598 * An error will throw away the block and the 599 * for loop will break out. If no error and this 600 * is not the block we want, we throw away the 601 * block and go for the next one via the for loop. 602 */ 603 if (error || i < lbn) 604 brelse(bp); 605 } 606 } 607 /* 608 * The above while is repeated if we hit another cookie 609 * error. If we hit an error and it wasn't a cookie error, 610 * we give up. 611 */ 612 if (error) 613 return (error); 614 } 615 616 /* 617 * If not eof and read aheads are enabled, start one. 618 * (You need the current block first, so that you have the 619 * directory offset cookie of the next block.) 620 */ 621 if (nmp->nm_readahead > 0 && nfs_asyncok(nmp) && 622 (bp->b_flags & B_INVAL) == 0 && 623 (np->n_direofoffset == 0 || 624 loffset + NFS_DIRBLKSIZ < np->n_direofoffset) && 625 (np->n_flag & NDONTCACHE) == 0 && 626 findblk(vp, loffset + NFS_DIRBLKSIZ, FINDBLK_TEST) == NULL 627 ) { 628 rabp = nfs_getcacheblk(vp, loffset + NFS_DIRBLKSIZ, 629 NFS_DIRBLKSIZ, td); 630 if (rabp) { 631 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 632 rabp->b_cmd = BUF_CMD_READ; 633 vfs_busy_pages(vp, rabp); 634 nfs_asyncio(vp, &rabp->b_bio2); 635 } else { 636 brelse(rabp); 637 } 638 } 639 } 640 /* 641 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 642 * chopped for the EOF condition, we cannot tell how large 643 * NFS directories are going to be until we hit EOF. So 644 * an NFS directory buffer is *not* chopped to its EOF. Now, 645 * it just so happens that b_resid will effectively chop it 646 * to EOF. *BUT* this information is lost if the buffer goes 647 * away and is reconstituted into a B_CACHE state ( due to 648 * being VMIO ) later. So we keep track of the directory eof 649 * in np->n_direofoffset and chop it off as an extra step 650 * right here. 651 */ 652 n = (int)szmin(uio->uio_resid, 653 NFS_DIRBLKSIZ - bp->b_resid - on); 654 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 655 n = np->n_direofoffset - uio->uio_offset; 656 break; 657 default: 658 kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type); 659 break; 660 }; 661 662 switch (vp->v_type) { 663 case VREG: 664 if (n > 0) 665 error = uiomove(bp->b_data + on, (int)n, uio); 666 break; 667 case VLNK: 668 if (n > 0) 669 error = uiomove(bp->b_data + on, (int)n, uio); 670 n = 0; 671 break; 672 case VDIR: 673 if (n > 0) { 674 off_t old_off = uio->uio_offset; 675 caddr_t cpos, epos; 676 struct nfs_dirent *dp; 677 678 /* 679 * We are casting cpos to nfs_dirent, it must be 680 * int-aligned. 681 */ 682 if (on & 3) { 683 error = EINVAL; 684 break; 685 } 686 687 cpos = bp->b_data + on; 688 epos = bp->b_data + on + n; 689 while (cpos < epos && error == 0 && uio->uio_resid > 0) { 690 dp = (struct nfs_dirent *)cpos; 691 error = nfs_check_dirent(dp, (int)(epos - cpos)); 692 if (error) 693 break; 694 if (vop_write_dirent(&error, uio, dp->nfs_ino, 695 dp->nfs_type, dp->nfs_namlen, dp->nfs_name)) { 696 break; 697 } 698 cpos += dp->nfs_reclen; 699 } 700 n = 0; 701 if (error == 0) 702 uio->uio_offset = old_off + cpos - bp->b_data - on; 703 } 704 /* 705 * Invalidate buffer if caching is disabled, forcing a 706 * re-read from the remote later. 707 */ 708 if (np->n_flag & NDONTCACHE) 709 bp->b_flags |= B_INVAL; 710 break; 711 default: 712 kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type); 713 } 714 brelse(bp); 715 } while (error == 0 && uio->uio_resid > 0 && n > 0); 716 return (error); 717 } 718 719 /* 720 * Userland can supply any 'seek' offset when reading a NFS directory. 721 * Validate the structure so we don't panic the kernel. Note that 722 * the element name is nul terminated and the nul is not included 723 * in nfs_namlen. 724 */ 725 static 726 int 727 nfs_check_dirent(struct nfs_dirent *dp, int maxlen) 728 { 729 int nfs_name_off = offsetof(struct nfs_dirent, nfs_name[0]); 730 731 if (nfs_name_off >= maxlen) 732 return (EINVAL); 733 if (dp->nfs_reclen < nfs_name_off || dp->nfs_reclen > maxlen) 734 return (EINVAL); 735 if (nfs_name_off + dp->nfs_namlen >= dp->nfs_reclen) 736 return (EINVAL); 737 if (dp->nfs_reclen & 3) 738 return (EINVAL); 739 return (0); 740 } 741 742 /* 743 * Vnode op for write using bio 744 * 745 * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 746 * struct ucred *a_cred) 747 */ 748 int 749 nfs_write(struct vop_write_args *ap) 750 { 751 struct uio *uio = ap->a_uio; 752 struct thread *td = uio->uio_td; 753 struct vnode *vp = ap->a_vp; 754 struct nfsnode *np = VTONFS(vp); 755 int ioflag = ap->a_ioflag; 756 struct buf *bp; 757 struct vattr vattr; 758 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 759 daddr_t lbn; 760 off_t loffset; 761 int n, on, error = 0, iomode, must_commit; 762 int haverslock = 0; 763 int bcount; 764 int biosize; 765 766 #ifdef DIAGNOSTIC 767 if (uio->uio_rw != UIO_WRITE) 768 panic("nfs_write mode"); 769 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread) 770 panic("nfs_write proc"); 771 #endif 772 if (vp->v_type != VREG) 773 return (EIO); 774 if (np->n_flag & NWRITEERR) { 775 np->n_flag &= ~NWRITEERR; 776 return (np->n_error); 777 } 778 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 779 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) 780 (void)nfs_fsinfo(nmp, vp, td); 781 782 /* 783 * Synchronously flush pending buffers if we are in synchronous 784 * mode or if we are appending. 785 */ 786 if (ioflag & (IO_APPEND | IO_SYNC)) { 787 if (np->n_flag & NLMODIFIED) { 788 np->n_attrstamp = 0; 789 error = nfs_flush(vp, MNT_WAIT, td, 0); 790 /* error = nfs_vinvalbuf(vp, V_SAVE, 1); */ 791 if (error) 792 return (error); 793 } 794 } 795 796 /* 797 * If IO_APPEND then load uio_offset. We restart here if we cannot 798 * get the append lock. 799 */ 800 restart: 801 if (ioflag & IO_APPEND) { 802 np->n_attrstamp = 0; 803 error = VOP_GETATTR(vp, &vattr); 804 if (error) 805 return (error); 806 uio->uio_offset = np->n_size; 807 } 808 809 if (uio->uio_offset < 0) 810 return (EINVAL); 811 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 812 return (EFBIG); 813 if (uio->uio_resid == 0) 814 return (0); 815 816 /* 817 * We need to obtain the rslock if we intend to modify np->n_size 818 * in order to guarentee the append point with multiple contending 819 * writers, to guarentee that no other appenders modify n_size 820 * while we are trying to obtain a truncated buffer (i.e. to avoid 821 * accidently truncating data written by another appender due to 822 * the race), and to ensure that the buffer is populated prior to 823 * our extending of the file. We hold rslock through the entire 824 * operation. 825 * 826 * Note that we do not synchronize the case where someone truncates 827 * the file while we are appending to it because attempting to lock 828 * this case may deadlock other parts of the system unexpectedly. 829 */ 830 if ((ioflag & IO_APPEND) || 831 uio->uio_offset + uio->uio_resid > np->n_size) { 832 switch(nfs_rslock(np)) { 833 case ENOLCK: 834 goto restart; 835 /* not reached */ 836 case EINTR: 837 case ERESTART: 838 return(EINTR); 839 /* not reached */ 840 default: 841 break; 842 } 843 haverslock = 1; 844 } 845 846 /* 847 * Maybe this should be above the vnode op call, but so long as 848 * file servers have no limits, i don't think it matters 849 */ 850 if (td->td_proc && uio->uio_offset + uio->uio_resid > 851 td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) { 852 lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ); 853 if (haverslock) 854 nfs_rsunlock(np); 855 return (EFBIG); 856 } 857 858 biosize = vp->v_mount->mnt_stat.f_iosize; 859 860 do { 861 if ((np->n_flag & NDONTCACHE) && uio->uio_iovcnt == 1) { 862 iomode = NFSV3WRITE_FILESYNC; 863 error = nfs_writerpc_uio(vp, uio, &iomode, &must_commit); 864 if (must_commit) 865 nfs_clearcommit(vp->v_mount); 866 break; 867 } 868 nfsstats.biocache_writes++; 869 lbn = uio->uio_offset / biosize; 870 on = uio->uio_offset & (biosize-1); 871 loffset = uio->uio_offset - on; 872 n = (int)szmin((unsigned)(biosize - on), uio->uio_resid); 873 again: 874 /* 875 * Handle direct append and file extension cases, calculate 876 * unaligned buffer size. 877 */ 878 879 if (uio->uio_offset == np->n_size && n) { 880 /* 881 * Get the buffer (in its pre-append state to maintain 882 * B_CACHE if it was previously set). Resize the 883 * nfsnode after we have locked the buffer to prevent 884 * readers from reading garbage. 885 */ 886 bcount = on; 887 bp = nfs_getcacheblk(vp, loffset, bcount, td); 888 889 if (bp != NULL) { 890 long save; 891 892 np->n_size = uio->uio_offset + n; 893 np->n_flag |= NLMODIFIED; 894 vnode_pager_setsize(vp, np->n_size); 895 896 save = bp->b_flags & B_CACHE; 897 bcount += n; 898 allocbuf(bp, bcount); 899 bp->b_flags |= save; 900 } 901 } else { 902 /* 903 * Obtain the locked cache block first, and then 904 * adjust the file's size as appropriate. 905 */ 906 bcount = on + n; 907 if (loffset + bcount < np->n_size) { 908 if (loffset + biosize < np->n_size) 909 bcount = biosize; 910 else 911 bcount = np->n_size - loffset; 912 } 913 bp = nfs_getcacheblk(vp, loffset, bcount, td); 914 if (uio->uio_offset + n > np->n_size) { 915 np->n_size = uio->uio_offset + n; 916 np->n_flag |= NLMODIFIED; 917 vnode_pager_setsize(vp, np->n_size); 918 } 919 } 920 921 if (bp == NULL) { 922 error = EINTR; 923 break; 924 } 925 926 /* 927 * Avoid a read by setting B_CACHE where the data we 928 * intend to write covers the entire buffer. This also 929 * handles the normal append case as bcount will have 930 * byte resolution. The buffer state must also be adjusted. 931 * 932 * See the comments in kern/vfs_bio.c's getblk() for 933 * more information. 934 * 935 * When doing a UIO_NOCOPY write the buffer is not 936 * overwritten and we cannot just set B_CACHE unconditionally 937 * for full-block writes. 938 */ 939 if (on == 0 && n == bcount && uio->uio_segflg != UIO_NOCOPY) { 940 bp->b_flags |= B_CACHE; 941 bp->b_flags &= ~(B_ERROR | B_INVAL); 942 } 943 944 /* 945 * b_resid may be set due to file EOF if we extended out. 946 * The NFS bio code will zero the difference anyway so 947 * just acknowledged the fact and set b_resid to 0. 948 */ 949 if ((bp->b_flags & B_CACHE) == 0) { 950 bp->b_cmd = BUF_CMD_READ; 951 bp->b_bio2.bio_done = nfsiodone_sync; 952 bp->b_bio2.bio_flags |= BIO_SYNC; 953 vfs_busy_pages(vp, bp); 954 error = nfs_doio(vp, &bp->b_bio2, td); 955 if (error) { 956 brelse(bp); 957 break; 958 } 959 bp->b_resid = 0; 960 } 961 if (!bp) { 962 error = EINTR; 963 break; 964 } 965 np->n_flag |= NLMODIFIED; 966 967 /* 968 * If dirtyend exceeds file size, chop it down. This should 969 * not normally occur but there is an append race where it 970 * might occur XXX, so we log it. 971 * 972 * If the chopping creates a reverse-indexed or degenerate 973 * situation with dirtyoff/end, we 0 both of them. 974 */ 975 976 if (bp->b_dirtyend > bcount) { 977 kprintf("NFS append race @%08llx:%d\n", 978 (long long)bp->b_bio2.bio_offset, 979 bp->b_dirtyend - bcount); 980 bp->b_dirtyend = bcount; 981 } 982 983 if (bp->b_dirtyoff >= bp->b_dirtyend) 984 bp->b_dirtyoff = bp->b_dirtyend = 0; 985 986 /* 987 * If the new write will leave a contiguous dirty 988 * area, just update the b_dirtyoff and b_dirtyend, 989 * otherwise force a write rpc of the old dirty area. 990 * 991 * While it is possible to merge discontiguous writes due to 992 * our having a B_CACHE buffer ( and thus valid read data 993 * for the hole), we don't because it could lead to 994 * significant cache coherency problems with multiple clients, 995 * especially if locking is implemented later on. 996 * 997 * as an optimization we could theoretically maintain 998 * a linked list of discontinuous areas, but we would still 999 * have to commit them separately so there isn't much 1000 * advantage to it except perhaps a bit of asynchronization. 1001 */ 1002 if (bp->b_dirtyend > 0 && 1003 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1004 if (bwrite(bp) == EINTR) { 1005 error = EINTR; 1006 break; 1007 } 1008 goto again; 1009 } 1010 1011 error = uiomove((char *)bp->b_data + on, n, uio); 1012 1013 /* 1014 * Since this block is being modified, it must be written 1015 * again and not just committed. Since write clustering does 1016 * not work for the stage 1 data write, only the stage 2 1017 * commit rpc, we have to clear B_CLUSTEROK as well. 1018 */ 1019 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1020 1021 if (error) { 1022 bp->b_flags |= B_ERROR; 1023 brelse(bp); 1024 break; 1025 } 1026 1027 /* 1028 * Only update dirtyoff/dirtyend if not a degenerate 1029 * condition. 1030 * 1031 * The underlying VM pages have been marked valid by 1032 * virtue of acquiring the bp. Because the entire buffer 1033 * is marked dirty we do not have to worry about cleaning 1034 * out the related dirty bits (and wouldn't really know 1035 * how to deal with byte ranges anyway) 1036 */ 1037 if (n) { 1038 if (bp->b_dirtyend > 0) { 1039 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1040 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1041 } else { 1042 bp->b_dirtyoff = on; 1043 bp->b_dirtyend = on + n; 1044 } 1045 } 1046 1047 /* 1048 * If the lease is non-cachable or IO_SYNC do bwrite(). 1049 * 1050 * IO_INVAL appears to be unused. The idea appears to be 1051 * to turn off caching in this case. Very odd. XXX 1052 * 1053 * If nfs_async is set bawrite() will use an unstable write 1054 * (build dirty bufs on the server), so we might as well 1055 * push it out with bawrite(). If nfs_async is not set we 1056 * use bdwrite() to cache dirty bufs on the client. 1057 */ 1058 if ((np->n_flag & NDONTCACHE) || (ioflag & IO_SYNC)) { 1059 if (ioflag & IO_INVAL) 1060 bp->b_flags |= B_NOCACHE; 1061 error = bwrite(bp); 1062 if (error) 1063 break; 1064 if (np->n_flag & NDONTCACHE) { 1065 error = nfs_vinvalbuf(vp, V_SAVE, 1); 1066 if (error) 1067 break; 1068 } 1069 } else if ((n + on) == biosize && nfs_async) { 1070 bawrite(bp); 1071 } else { 1072 bdwrite(bp); 1073 } 1074 } while (uio->uio_resid > 0 && n > 0); 1075 1076 if (haverslock) 1077 nfs_rsunlock(np); 1078 1079 return (error); 1080 } 1081 1082 /* 1083 * Get an nfs cache block. 1084 * 1085 * Allocate a new one if the block isn't currently in the cache 1086 * and return the block marked busy. If the calling process is 1087 * interrupted by a signal for an interruptible mount point, return 1088 * NULL. 1089 * 1090 * The caller must carefully deal with the possible B_INVAL state of 1091 * the buffer. nfs_startio() clears B_INVAL (and nfs_asyncio() clears it 1092 * indirectly), so synchronous reads can be issued without worrying about 1093 * the B_INVAL state. We have to be a little more careful when dealing 1094 * with writes (see comments in nfs_write()) when extending a file past 1095 * its EOF. 1096 */ 1097 static struct buf * 1098 nfs_getcacheblk(struct vnode *vp, off_t loffset, int size, struct thread *td) 1099 { 1100 struct buf *bp; 1101 struct mount *mp; 1102 struct nfsmount *nmp; 1103 1104 mp = vp->v_mount; 1105 nmp = VFSTONFS(mp); 1106 1107 if (nmp->nm_flag & NFSMNT_INT) { 1108 bp = getblk(vp, loffset, size, GETBLK_PCATCH, 0); 1109 while (bp == NULL) { 1110 if (nfs_sigintr(nmp, NULL, td)) 1111 return (NULL); 1112 bp = getblk(vp, loffset, size, 0, 2 * hz); 1113 } 1114 } else { 1115 bp = getblk(vp, loffset, size, 0, 0); 1116 } 1117 1118 /* 1119 * bio2, the 'device' layer. Since BIOs use 64 bit byte offsets 1120 * now, no translation is necessary. 1121 */ 1122 bp->b_bio2.bio_offset = loffset; 1123 return (bp); 1124 } 1125 1126 /* 1127 * Flush and invalidate all dirty buffers. If another process is already 1128 * doing the flush, just wait for completion. 1129 */ 1130 int 1131 nfs_vinvalbuf(struct vnode *vp, int flags, int intrflg) 1132 { 1133 struct nfsnode *np = VTONFS(vp); 1134 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1135 int error = 0, slpflag, slptimeo; 1136 thread_t td = curthread; 1137 1138 if (vp->v_flag & VRECLAIMED) 1139 return (0); 1140 1141 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1142 intrflg = 0; 1143 if (intrflg) { 1144 slpflag = PCATCH; 1145 slptimeo = 2 * hz; 1146 } else { 1147 slpflag = 0; 1148 slptimeo = 0; 1149 } 1150 /* 1151 * First wait for any other process doing a flush to complete. 1152 */ 1153 while (np->n_flag & NFLUSHINPROG) { 1154 np->n_flag |= NFLUSHWANT; 1155 error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo); 1156 if (error && intrflg && nfs_sigintr(nmp, NULL, td)) 1157 return (EINTR); 1158 } 1159 1160 /* 1161 * Now, flush as required. 1162 */ 1163 np->n_flag |= NFLUSHINPROG; 1164 error = vinvalbuf(vp, flags, slpflag, 0); 1165 while (error) { 1166 if (intrflg && nfs_sigintr(nmp, NULL, td)) { 1167 np->n_flag &= ~NFLUSHINPROG; 1168 if (np->n_flag & NFLUSHWANT) { 1169 np->n_flag &= ~NFLUSHWANT; 1170 wakeup((caddr_t)&np->n_flag); 1171 } 1172 return (EINTR); 1173 } 1174 error = vinvalbuf(vp, flags, 0, slptimeo); 1175 } 1176 np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG); 1177 if (np->n_flag & NFLUSHWANT) { 1178 np->n_flag &= ~NFLUSHWANT; 1179 wakeup((caddr_t)&np->n_flag); 1180 } 1181 return (0); 1182 } 1183 1184 /* 1185 * Return true (non-zero) if the txthread and rxthread are operational 1186 * and we do not already have too many not-yet-started BIO's built up. 1187 */ 1188 int 1189 nfs_asyncok(struct nfsmount *nmp) 1190 { 1191 return (nmp->nm_bioqlen < nfs_maxasyncbio && 1192 nmp->nm_bioqlen < nmp->nm_maxasync_scaled / NFS_ASYSCALE && 1193 nmp->nm_rxstate <= NFSSVC_PENDING && 1194 nmp->nm_txstate <= NFSSVC_PENDING); 1195 } 1196 1197 /* 1198 * The read-ahead code calls this to queue a bio to the txthread. 1199 * 1200 * We don't touch the bio otherwise... that is, we do not even 1201 * construct or send the initial rpc. The txthread will do it 1202 * for us. 1203 * 1204 * NOTE! nm_bioqlen is not decremented until the request completes, 1205 * so it does not reflect the number of bio's on bioq. 1206 */ 1207 void 1208 nfs_asyncio(struct vnode *vp, struct bio *bio) 1209 { 1210 struct buf *bp = bio->bio_buf; 1211 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1212 1213 KKASSERT(vp->v_tag == VT_NFS); 1214 BUF_KERNPROC(bp); 1215 bio->bio_driver_info = vp; 1216 crit_enter(); 1217 TAILQ_INSERT_TAIL(&nmp->nm_bioq, bio, bio_act); 1218 atomic_add_int(&nmp->nm_bioqlen, 1); 1219 crit_exit(); 1220 nfssvc_iod_writer_wakeup(nmp); 1221 } 1222 1223 /* 1224 * nfs_dio() - Execute a BIO operation synchronously. The BIO will be 1225 * completed and its error returned. The caller is responsible 1226 * for brelse()ing it. ONLY USE FOR BIO_SYNC IOs! Otherwise 1227 * our error probe will be against an invalid pointer. 1228 * 1229 * nfs_startio()- Execute a BIO operation assynchronously. 1230 * 1231 * NOTE: nfs_asyncio() is used to initiate an asynchronous BIO operation, 1232 * which basically just queues it to the txthread. nfs_startio() 1233 * actually initiates the I/O AFTER it has gotten to the txthread. 1234 * 1235 * NOTE: td might be NULL. 1236 */ 1237 void 1238 nfs_startio(struct vnode *vp, struct bio *bio, struct thread *td) 1239 { 1240 struct buf *bp = bio->bio_buf; 1241 struct nfsnode *np; 1242 struct nfsmount *nmp; 1243 1244 KKASSERT(vp->v_tag == VT_NFS); 1245 np = VTONFS(vp); 1246 nmp = VFSTONFS(vp->v_mount); 1247 1248 /* 1249 * clear B_ERROR and B_INVAL state prior to initiating the I/O. We 1250 * do this here so we do not have to do it in all the code that 1251 * calls us. 1252 */ 1253 bp->b_flags &= ~(B_ERROR | B_INVAL); 1254 1255 KASSERT(bp->b_cmd != BUF_CMD_DONE, 1256 ("nfs_doio: bp %p already marked done!", bp)); 1257 1258 if (bp->b_cmd == BUF_CMD_READ) { 1259 switch (vp->v_type) { 1260 case VREG: 1261 nfsstats.read_bios++; 1262 nfs_readrpc_bio(vp, bio); 1263 break; 1264 case VLNK: 1265 #if 0 1266 bio->bio_offset = 0; 1267 nfsstats.readlink_bios++; 1268 nfs_readlinkrpc_bio(vp, bio); 1269 #else 1270 nfs_doio(vp, bio, td); 1271 #endif 1272 break; 1273 case VDIR: 1274 /* 1275 * NOTE: If nfs_readdirplusrpc_bio() is requested but 1276 * not supported, it will chain to 1277 * nfs_readdirrpc_bio(). 1278 */ 1279 #if 0 1280 nfsstats.readdir_bios++; 1281 uiop->uio_offset = bio->bio_offset; 1282 if (nmp->nm_flag & NFSMNT_RDIRPLUS) 1283 nfs_readdirplusrpc_bio(vp, bio); 1284 else 1285 nfs_readdirrpc_bio(vp, bio); 1286 #else 1287 nfs_doio(vp, bio, td); 1288 #endif 1289 break; 1290 default: 1291 kprintf("nfs_doio: type %x unexpected\n",vp->v_type); 1292 bp->b_flags |= B_ERROR; 1293 bp->b_error = EINVAL; 1294 biodone(bio); 1295 break; 1296 } 1297 } else { 1298 /* 1299 * If we only need to commit, try to commit. If this fails 1300 * it will chain through to the write. Basically all the logic 1301 * in nfs_doio() is replicated. 1302 */ 1303 KKASSERT(bp->b_cmd == BUF_CMD_WRITE); 1304 if (bp->b_flags & B_NEEDCOMMIT) 1305 nfs_commitrpc_bio(vp, bio); 1306 else 1307 nfs_writerpc_bio(vp, bio); 1308 } 1309 } 1310 1311 int 1312 nfs_doio(struct vnode *vp, struct bio *bio, struct thread *td) 1313 { 1314 struct buf *bp = bio->bio_buf; 1315 struct uio *uiop; 1316 struct nfsnode *np; 1317 struct nfsmount *nmp; 1318 int error = 0; 1319 int iomode, must_commit; 1320 size_t n; 1321 struct uio uio; 1322 struct iovec io; 1323 1324 KKASSERT(vp->v_tag == VT_NFS); 1325 np = VTONFS(vp); 1326 nmp = VFSTONFS(vp->v_mount); 1327 uiop = &uio; 1328 uiop->uio_iov = &io; 1329 uiop->uio_iovcnt = 1; 1330 uiop->uio_segflg = UIO_SYSSPACE; 1331 uiop->uio_td = td; 1332 1333 /* 1334 * clear B_ERROR and B_INVAL state prior to initiating the I/O. We 1335 * do this here so we do not have to do it in all the code that 1336 * calls us. 1337 */ 1338 bp->b_flags &= ~(B_ERROR | B_INVAL); 1339 1340 KASSERT(bp->b_cmd != BUF_CMD_DONE, 1341 ("nfs_doio: bp %p already marked done!", bp)); 1342 1343 if (bp->b_cmd == BUF_CMD_READ) { 1344 io.iov_len = uiop->uio_resid = (size_t)bp->b_bcount; 1345 io.iov_base = bp->b_data; 1346 uiop->uio_rw = UIO_READ; 1347 1348 switch (vp->v_type) { 1349 case VREG: 1350 /* 1351 * When reading from a regular file zero-fill any residual. 1352 * Note that this residual has nothing to do with NFS short 1353 * reads, which nfs_readrpc_uio() will handle for us. 1354 * 1355 * We have to do this because when we are write extending 1356 * a file the server may not have the same notion of 1357 * filesize as we do. Our BIOs should already be sized 1358 * (b_bcount) to account for the file EOF. 1359 */ 1360 nfsstats.read_bios++; 1361 uiop->uio_offset = bio->bio_offset; 1362 error = nfs_readrpc_uio(vp, uiop); 1363 if (error == 0 && uiop->uio_resid) { 1364 n = (size_t)bp->b_bcount - uiop->uio_resid; 1365 bzero(bp->b_data + n, bp->b_bcount - n); 1366 uiop->uio_resid = 0; 1367 } 1368 if (td && td->td_proc && (vp->v_flag & VTEXT) && 1369 np->n_mtime != np->n_vattr.va_mtime.tv_sec) { 1370 uprintf("Process killed due to text file modification\n"); 1371 ksignal(td->td_proc, SIGKILL); 1372 } 1373 break; 1374 case VLNK: 1375 uiop->uio_offset = 0; 1376 nfsstats.readlink_bios++; 1377 error = nfs_readlinkrpc_uio(vp, uiop); 1378 break; 1379 case VDIR: 1380 nfsstats.readdir_bios++; 1381 uiop->uio_offset = bio->bio_offset; 1382 if (nmp->nm_flag & NFSMNT_RDIRPLUS) { 1383 error = nfs_readdirplusrpc_uio(vp, uiop); 1384 if (error == NFSERR_NOTSUPP) 1385 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1386 } 1387 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1388 error = nfs_readdirrpc_uio(vp, uiop); 1389 /* 1390 * end-of-directory sets B_INVAL but does not generate an 1391 * error. 1392 */ 1393 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1394 bp->b_flags |= B_INVAL; 1395 break; 1396 default: 1397 kprintf("nfs_doio: type %x unexpected\n",vp->v_type); 1398 break; 1399 }; 1400 if (error) { 1401 bp->b_flags |= B_ERROR; 1402 bp->b_error = error; 1403 } 1404 bp->b_resid = uiop->uio_resid; 1405 } else { 1406 /* 1407 * If we only need to commit, try to commit 1408 */ 1409 KKASSERT(bp->b_cmd == BUF_CMD_WRITE); 1410 if (bp->b_flags & B_NEEDCOMMIT) { 1411 int retv; 1412 off_t off; 1413 1414 off = bio->bio_offset + bp->b_dirtyoff; 1415 retv = nfs_commitrpc_uio(vp, off, 1416 bp->b_dirtyend - bp->b_dirtyoff, 1417 td); 1418 if (retv == 0) { 1419 bp->b_dirtyoff = bp->b_dirtyend = 0; 1420 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1421 bp->b_resid = 0; 1422 biodone(bio); 1423 return(0); 1424 } 1425 if (retv == NFSERR_STALEWRITEVERF) { 1426 nfs_clearcommit(vp->v_mount); 1427 } 1428 } 1429 1430 /* 1431 * Setup for actual write 1432 */ 1433 if (bio->bio_offset + bp->b_dirtyend > np->n_size) 1434 bp->b_dirtyend = np->n_size - bio->bio_offset; 1435 1436 if (bp->b_dirtyend > bp->b_dirtyoff) { 1437 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1438 - bp->b_dirtyoff; 1439 uiop->uio_offset = bio->bio_offset + bp->b_dirtyoff; 1440 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1441 uiop->uio_rw = UIO_WRITE; 1442 nfsstats.write_bios++; 1443 1444 if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0) 1445 iomode = NFSV3WRITE_UNSTABLE; 1446 else 1447 iomode = NFSV3WRITE_FILESYNC; 1448 1449 must_commit = 0; 1450 error = nfs_writerpc_uio(vp, uiop, &iomode, &must_commit); 1451 1452 /* 1453 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1454 * to cluster the buffers needing commit. This will allow 1455 * the system to submit a single commit rpc for the whole 1456 * cluster. We can do this even if the buffer is not 100% 1457 * dirty (relative to the NFS blocksize), so we optimize the 1458 * append-to-file-case. 1459 * 1460 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1461 * cleared because write clustering only works for commit 1462 * rpc's, not for the data portion of the write). 1463 */ 1464 1465 if (!error && iomode == NFSV3WRITE_UNSTABLE) { 1466 bp->b_flags |= B_NEEDCOMMIT; 1467 if (bp->b_dirtyoff == 0 1468 && bp->b_dirtyend == bp->b_bcount) 1469 bp->b_flags |= B_CLUSTEROK; 1470 } else { 1471 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1472 } 1473 1474 /* 1475 * For an interrupted write, the buffer is still valid 1476 * and the write hasn't been pushed to the server yet, 1477 * so we can't set B_ERROR and report the interruption 1478 * by setting B_EINTR. For the async case, B_EINTR 1479 * is not relevant, so the rpc attempt is essentially 1480 * a noop. For the case of a V3 write rpc not being 1481 * committed to stable storage, the block is still 1482 * dirty and requires either a commit rpc or another 1483 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1484 * the block is reused. This is indicated by setting 1485 * the B_DELWRI and B_NEEDCOMMIT flags. 1486 * 1487 * If the buffer is marked B_PAGING, it does not reside on 1488 * the vp's paging queues so we cannot call bdirty(). The 1489 * bp in this case is not an NFS cache block so we should 1490 * be safe. XXX 1491 */ 1492 if (error == EINTR 1493 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1494 crit_enter(); 1495 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1496 if ((bp->b_flags & B_PAGING) == 0) 1497 bdirty(bp); 1498 if (error) 1499 bp->b_flags |= B_EINTR; 1500 crit_exit(); 1501 } else { 1502 if (error) { 1503 bp->b_flags |= B_ERROR; 1504 bp->b_error = np->n_error = error; 1505 np->n_flag |= NWRITEERR; 1506 } 1507 bp->b_dirtyoff = bp->b_dirtyend = 0; 1508 } 1509 if (must_commit) 1510 nfs_clearcommit(vp->v_mount); 1511 bp->b_resid = uiop->uio_resid; 1512 } else { 1513 bp->b_resid = 0; 1514 } 1515 } 1516 1517 /* 1518 * I/O was run synchronously, biodone() it and calculate the 1519 * error to return. 1520 */ 1521 biodone(bio); 1522 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 1523 if (bp->b_flags & B_EINTR) 1524 return (EINTR); 1525 if (bp->b_flags & B_ERROR) 1526 return (bp->b_error ? bp->b_error : EIO); 1527 return (0); 1528 } 1529 1530 /* 1531 * Used to aid in handling ftruncate() operations on the NFS client side. 1532 * Truncation creates a number of special problems for NFS. We have to 1533 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1534 * we have to properly handle VM pages or (potentially dirty) buffers 1535 * that straddle the truncation point. 1536 */ 1537 1538 int 1539 nfs_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize) 1540 { 1541 struct nfsnode *np = VTONFS(vp); 1542 u_quad_t tsize = np->n_size; 1543 int biosize = vp->v_mount->mnt_stat.f_iosize; 1544 int error = 0; 1545 1546 np->n_size = nsize; 1547 1548 if (nsize < tsize) { 1549 struct buf *bp; 1550 off_t loffset; 1551 int bufsize; 1552 1553 /* 1554 * vtruncbuf() doesn't get the buffer overlapping the 1555 * truncation point. We may have a B_DELWRI and/or B_CACHE 1556 * buffer that now needs to be truncated. 1557 */ 1558 error = vtruncbuf(vp, nsize, biosize); 1559 bufsize = nsize & (biosize - 1); 1560 loffset = nsize - bufsize; 1561 bp = nfs_getcacheblk(vp, loffset, bufsize, td); 1562 if (bp->b_dirtyoff > bp->b_bcount) 1563 bp->b_dirtyoff = bp->b_bcount; 1564 if (bp->b_dirtyend > bp->b_bcount) 1565 bp->b_dirtyend = bp->b_bcount; 1566 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1567 brelse(bp); 1568 } else { 1569 vnode_pager_setsize(vp, nsize); 1570 } 1571 return(error); 1572 } 1573 1574 /* 1575 * Synchronous completion for nfs_doio. Call bpdone() with elseit=FALSE. 1576 * Caller is responsible for brelse()'ing the bp. 1577 */ 1578 static void 1579 nfsiodone_sync(struct bio *bio) 1580 { 1581 bio->bio_flags = 0; 1582 bpdone(bio->bio_buf, 0); 1583 } 1584 1585 /* 1586 * nfs read rpc - BIO version 1587 */ 1588 void 1589 nfs_readrpc_bio(struct vnode *vp, struct bio *bio) 1590 { 1591 struct buf *bp = bio->bio_buf; 1592 u_int32_t *tl; 1593 struct nfsmount *nmp; 1594 int error = 0, len, tsiz; 1595 struct nfsm_info *info; 1596 1597 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK); 1598 info->mrep = NULL; 1599 info->v3 = NFS_ISV3(vp); 1600 1601 nmp = VFSTONFS(vp->v_mount); 1602 tsiz = bp->b_bcount; 1603 KKASSERT(tsiz <= nmp->nm_rsize); 1604 if (bio->bio_offset + tsiz > nmp->nm_maxfilesize) { 1605 error = EFBIG; 1606 goto nfsmout; 1607 } 1608 nfsstats.rpccnt[NFSPROC_READ]++; 1609 len = tsiz; 1610 nfsm_reqhead(info, vp, NFSPROC_READ, 1611 NFSX_FH(info->v3) + NFSX_UNSIGNED * 3); 1612 ERROROUT(nfsm_fhtom(info, vp)); 1613 tl = nfsm_build(info, NFSX_UNSIGNED * 3); 1614 if (info->v3) { 1615 txdr_hyper(bio->bio_offset, tl); 1616 *(tl + 2) = txdr_unsigned(len); 1617 } else { 1618 *tl++ = txdr_unsigned(bio->bio_offset); 1619 *tl++ = txdr_unsigned(len); 1620 *tl = 0; 1621 } 1622 info->bio = bio; 1623 info->done = nfs_readrpc_bio_done; 1624 nfsm_request_bio(info, vp, NFSPROC_READ, NULL, 1625 nfs_vpcred(vp, ND_READ)); 1626 return; 1627 nfsmout: 1628 kfree(info, M_NFSREQ); 1629 bp->b_error = error; 1630 bp->b_flags |= B_ERROR; 1631 biodone(bio); 1632 } 1633 1634 static void 1635 nfs_readrpc_bio_done(nfsm_info_t info) 1636 { 1637 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount); 1638 struct bio *bio = info->bio; 1639 struct buf *bp = bio->bio_buf; 1640 u_int32_t *tl; 1641 int attrflag; 1642 int retlen; 1643 int eof; 1644 int error = 0; 1645 1646 KKASSERT(info->state == NFSM_STATE_DONE); 1647 1648 if (info->v3) { 1649 ERROROUT(nfsm_postop_attr(info, info->vp, &attrflag, 1650 NFS_LATTR_NOSHRINK)); 1651 NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED)); 1652 eof = fxdr_unsigned(int, *(tl + 1)); 1653 } else { 1654 ERROROUT(nfsm_loadattr(info, info->vp, NULL)); 1655 eof = 0; 1656 } 1657 NEGATIVEOUT(retlen = nfsm_strsiz(info, nmp->nm_rsize)); 1658 ERROROUT(nfsm_mtobio(info, bio, retlen)); 1659 m_freem(info->mrep); 1660 info->mrep = NULL; 1661 1662 /* 1663 * No error occured, if retlen is less then bcount and no EOF 1664 * and NFSv3 a zero-fill short read occured. 1665 * 1666 * For NFSv2 a short-read indicates EOF. 1667 */ 1668 if (retlen < bp->b_bcount && info->v3 && eof == 0) { 1669 bzero(bp->b_data + retlen, bp->b_bcount - retlen); 1670 retlen = bp->b_bcount; 1671 } 1672 1673 /* 1674 * If we hit an EOF we still zero-fill, but return the expected 1675 * b_resid anyway. This should normally not occur since async 1676 * BIOs are not used for read-before-write case. Races against 1677 * the server can cause it though and we don't want to leave 1678 * garbage in the buffer. 1679 */ 1680 if (retlen < bp->b_bcount) { 1681 bzero(bp->b_data + retlen, bp->b_bcount - retlen); 1682 } 1683 bp->b_resid = 0; 1684 /* bp->b_resid = bp->b_bcount - retlen; */ 1685 nfsmout: 1686 kfree(info, M_NFSREQ); 1687 if (error) { 1688 bp->b_error = error; 1689 bp->b_flags |= B_ERROR; 1690 } 1691 biodone(bio); 1692 } 1693 1694 /* 1695 * nfs write call - BIO version 1696 */ 1697 void 1698 nfs_writerpc_bio(struct vnode *vp, struct bio *bio) 1699 { 1700 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1701 struct nfsnode *np = VTONFS(vp); 1702 struct buf *bp = bio->bio_buf; 1703 u_int32_t *tl; 1704 int len; 1705 int iomode; 1706 int error = 0; 1707 struct nfsm_info *info; 1708 off_t offset; 1709 1710 /* 1711 * Setup for actual write. Just clean up the bio if there 1712 * is nothing to do. 1713 */ 1714 if (bio->bio_offset + bp->b_dirtyend > np->n_size) 1715 bp->b_dirtyend = np->n_size - bio->bio_offset; 1716 1717 if (bp->b_dirtyend <= bp->b_dirtyoff) { 1718 bp->b_resid = 0; 1719 biodone(bio); 1720 return; 1721 } 1722 len = bp->b_dirtyend - bp->b_dirtyoff; 1723 offset = bio->bio_offset + bp->b_dirtyoff; 1724 if (offset + len > nmp->nm_maxfilesize) { 1725 bp->b_flags |= B_ERROR; 1726 bp->b_error = EFBIG; 1727 biodone(bio); 1728 return; 1729 } 1730 bp->b_resid = len; 1731 nfsstats.write_bios++; 1732 1733 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK); 1734 info->mrep = NULL; 1735 info->v3 = NFS_ISV3(vp); 1736 info->info_writerpc.must_commit = 0; 1737 if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0) 1738 iomode = NFSV3WRITE_UNSTABLE; 1739 else 1740 iomode = NFSV3WRITE_FILESYNC; 1741 1742 KKASSERT(len <= nmp->nm_wsize); 1743 1744 nfsstats.rpccnt[NFSPROC_WRITE]++; 1745 nfsm_reqhead(info, vp, NFSPROC_WRITE, 1746 NFSX_FH(info->v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len)); 1747 ERROROUT(nfsm_fhtom(info, vp)); 1748 if (info->v3) { 1749 tl = nfsm_build(info, 5 * NFSX_UNSIGNED); 1750 txdr_hyper(offset, tl); 1751 tl += 2; 1752 *tl++ = txdr_unsigned(len); 1753 *tl++ = txdr_unsigned(iomode); 1754 *tl = txdr_unsigned(len); 1755 } else { 1756 u_int32_t x; 1757 1758 tl = nfsm_build(info, 4 * NFSX_UNSIGNED); 1759 /* Set both "begin" and "current" to non-garbage. */ 1760 x = txdr_unsigned((u_int32_t)offset); 1761 *tl++ = x; /* "begin offset" */ 1762 *tl++ = x; /* "current offset" */ 1763 x = txdr_unsigned(len); 1764 *tl++ = x; /* total to this offset */ 1765 *tl = x; /* size of this write */ 1766 } 1767 ERROROUT(nfsm_biotom(info, bio, bp->b_dirtyoff, len)); 1768 info->bio = bio; 1769 info->done = nfs_writerpc_bio_done; 1770 nfsm_request_bio(info, vp, NFSPROC_WRITE, NULL, 1771 nfs_vpcred(vp, ND_WRITE)); 1772 return; 1773 nfsmout: 1774 kfree(info, M_NFSREQ); 1775 bp->b_error = error; 1776 bp->b_flags |= B_ERROR; 1777 biodone(bio); 1778 } 1779 1780 static void 1781 nfs_writerpc_bio_done(nfsm_info_t info) 1782 { 1783 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount); 1784 struct nfsnode *np = VTONFS(info->vp); 1785 struct bio *bio = info->bio; 1786 struct buf *bp = bio->bio_buf; 1787 int wccflag = NFSV3_WCCRATTR; 1788 int iomode = NFSV3WRITE_FILESYNC; 1789 int commit; 1790 int rlen; 1791 int error; 1792 int len = bp->b_resid; /* b_resid was set to shortened length */ 1793 u_int32_t *tl; 1794 1795 if (info->v3) { 1796 /* 1797 * The write RPC returns a before and after mtime. The 1798 * nfsm_wcc_data() macro checks the before n_mtime 1799 * against the before time and stores the after time 1800 * in the nfsnode's cached vattr and n_mtime field. 1801 * The NRMODIFIED bit will be set if the before 1802 * time did not match the original mtime. 1803 */ 1804 wccflag = NFSV3_WCCCHK; 1805 ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag)); 1806 if (error == 0) { 1807 NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF)); 1808 rlen = fxdr_unsigned(int, *tl++); 1809 if (rlen == 0) { 1810 error = NFSERR_IO; 1811 m_freem(info->mrep); 1812 info->mrep = NULL; 1813 goto nfsmout; 1814 } else if (rlen < len) { 1815 #if 0 1816 /* 1817 * XXX what do we do here? 1818 */ 1819 backup = len - rlen; 1820 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup; 1821 uiop->uio_iov->iov_len += backup; 1822 uiop->uio_offset -= backup; 1823 uiop->uio_resid += backup; 1824 len = rlen; 1825 #endif 1826 } 1827 commit = fxdr_unsigned(int, *tl++); 1828 1829 /* 1830 * Return the lowest committment level 1831 * obtained by any of the RPCs. 1832 */ 1833 if (iomode == NFSV3WRITE_FILESYNC) 1834 iomode = commit; 1835 else if (iomode == NFSV3WRITE_DATASYNC && 1836 commit == NFSV3WRITE_UNSTABLE) 1837 iomode = commit; 1838 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){ 1839 bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); 1840 nmp->nm_state |= NFSSTA_HASWRITEVERF; 1841 } else if (bcmp(tl, nmp->nm_verf, NFSX_V3WRITEVERF)) { 1842 info->info_writerpc.must_commit = 1; 1843 bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); 1844 } 1845 } 1846 } else { 1847 ERROROUT(nfsm_loadattr(info, info->vp, NULL)); 1848 } 1849 m_freem(info->mrep); 1850 info->mrep = NULL; 1851 len = 0; 1852 nfsmout: 1853 if (info->vp->v_mount->mnt_flag & MNT_ASYNC) 1854 iomode = NFSV3WRITE_FILESYNC; 1855 bp->b_resid = len; 1856 1857 /* 1858 * End of RPC. Now clean up the bp. 1859 * 1860 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1861 * to cluster the buffers needing commit. This will allow 1862 * the system to submit a single commit rpc for the whole 1863 * cluster. We can do this even if the buffer is not 100% 1864 * dirty (relative to the NFS blocksize), so we optimize the 1865 * append-to-file-case. 1866 * 1867 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1868 * cleared because write clustering only works for commit 1869 * rpc's, not for the data portion of the write). 1870 */ 1871 if (!error && iomode == NFSV3WRITE_UNSTABLE) { 1872 bp->b_flags |= B_NEEDCOMMIT; 1873 if (bp->b_dirtyoff == 0 && bp->b_dirtyend == bp->b_bcount) 1874 bp->b_flags |= B_CLUSTEROK; 1875 } else { 1876 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1877 } 1878 1879 /* 1880 * For an interrupted write, the buffer is still valid 1881 * and the write hasn't been pushed to the server yet, 1882 * so we can't set B_ERROR and report the interruption 1883 * by setting B_EINTR. For the async case, B_EINTR 1884 * is not relevant, so the rpc attempt is essentially 1885 * a noop. For the case of a V3 write rpc not being 1886 * committed to stable storage, the block is still 1887 * dirty and requires either a commit rpc or another 1888 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1889 * the block is reused. This is indicated by setting 1890 * the B_DELWRI and B_NEEDCOMMIT flags. 1891 * 1892 * If the buffer is marked B_PAGING, it does not reside on 1893 * the vp's paging queues so we cannot call bdirty(). The 1894 * bp in this case is not an NFS cache block so we should 1895 * be safe. XXX 1896 */ 1897 if (error == EINTR || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1898 crit_enter(); 1899 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1900 if ((bp->b_flags & B_PAGING) == 0) 1901 bdirty(bp); 1902 if (error) 1903 bp->b_flags |= B_EINTR; 1904 crit_exit(); 1905 } else { 1906 if (error) { 1907 bp->b_flags |= B_ERROR; 1908 bp->b_error = np->n_error = error; 1909 np->n_flag |= NWRITEERR; 1910 } 1911 bp->b_dirtyoff = bp->b_dirtyend = 0; 1912 } 1913 if (info->info_writerpc.must_commit) 1914 nfs_clearcommit(info->vp->v_mount); 1915 kfree(info, M_NFSREQ); 1916 if (error) { 1917 bp->b_flags |= B_ERROR; 1918 bp->b_error = error; 1919 } 1920 biodone(bio); 1921 } 1922 1923 /* 1924 * Nfs Version 3 commit rpc - BIO version 1925 * 1926 * This function issues the commit rpc and will chain to a write 1927 * rpc if necessary. 1928 */ 1929 void 1930 nfs_commitrpc_bio(struct vnode *vp, struct bio *bio) 1931 { 1932 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1933 struct buf *bp = bio->bio_buf; 1934 struct nfsm_info *info; 1935 int error = 0; 1936 u_int32_t *tl; 1937 1938 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) { 1939 bp->b_dirtyoff = bp->b_dirtyend = 0; 1940 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1941 bp->b_resid = 0; 1942 biodone(bio); 1943 return; 1944 } 1945 1946 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK); 1947 info->mrep = NULL; 1948 info->v3 = 1; 1949 1950 nfsstats.rpccnt[NFSPROC_COMMIT]++; 1951 nfsm_reqhead(info, vp, NFSPROC_COMMIT, NFSX_FH(1)); 1952 ERROROUT(nfsm_fhtom(info, vp)); 1953 tl = nfsm_build(info, 3 * NFSX_UNSIGNED); 1954 txdr_hyper(bio->bio_offset + bp->b_dirtyoff, tl); 1955 tl += 2; 1956 *tl = txdr_unsigned(bp->b_dirtyend - bp->b_dirtyoff); 1957 info->bio = bio; 1958 info->done = nfs_commitrpc_bio_done; 1959 nfsm_request_bio(info, vp, NFSPROC_COMMIT, NULL, 1960 nfs_vpcred(vp, ND_WRITE)); 1961 return; 1962 nfsmout: 1963 /* 1964 * Chain to write RPC on (early) error 1965 */ 1966 kfree(info, M_NFSREQ); 1967 nfs_writerpc_bio(vp, bio); 1968 } 1969 1970 static void 1971 nfs_commitrpc_bio_done(nfsm_info_t info) 1972 { 1973 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount); 1974 struct bio *bio = info->bio; 1975 struct buf *bp = bio->bio_buf; 1976 u_int32_t *tl; 1977 int wccflag = NFSV3_WCCRATTR; 1978 int error = 0; 1979 1980 ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag)); 1981 if (error == 0) { 1982 NULLOUT(tl = nfsm_dissect(info, NFSX_V3WRITEVERF)); 1983 if (bcmp(nmp->nm_verf, tl, NFSX_V3WRITEVERF)) { 1984 bcopy(tl, nmp->nm_verf, NFSX_V3WRITEVERF); 1985 error = NFSERR_STALEWRITEVERF; 1986 } 1987 } 1988 m_freem(info->mrep); 1989 info->mrep = NULL; 1990 1991 /* 1992 * On completion we must chain to a write bio if an 1993 * error occurred. 1994 */ 1995 nfsmout: 1996 kfree(info, M_NFSREQ); 1997 if (error == 0) { 1998 bp->b_dirtyoff = bp->b_dirtyend = 0; 1999 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 2000 bp->b_resid = 0; 2001 biodone(bio); 2002 } else { 2003 nfs_writerpc_bio(info->vp, bio); 2004 } 2005 } 2006 2007