xref: /dflybsd-src/sys/vfs/nfs/nfs_bio.c (revision 5cccfb7b21444e0e73a738d924f82daf27b4854d)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37  * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.45 2008/07/18 00:09:39 dillon Exp $
39  */
40 
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/buf2.h>
52 #include <sys/msfbuf.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_pager.h>
59 #include <vm/vnode_pager.h>
60 
61 #include <sys/thread2.h>
62 
63 #include "rpcv2.h"
64 #include "nfsproto.h"
65 #include "nfs.h"
66 #include "nfsmount.h"
67 #include "nfsnode.h"
68 
69 static struct buf *nfs_getcacheblk(struct vnode *vp, off_t loffset,
70 				   int size, struct thread *td);
71 static int nfs_check_dirent(struct nfs_dirent *dp, int maxlen);
72 
73 extern int nfs_numasync;
74 extern int nfs_pbuf_freecnt;
75 extern struct nfsstats nfsstats;
76 
77 /*
78  * Vnode op for VM getpages.
79  *
80  * nfs_getpages(struct vnode *a_vp, vm_page_t *a_m, int a_count,
81  *		int a_reqpage, vm_ooffset_t a_offset)
82  */
83 int
84 nfs_getpages(struct vop_getpages_args *ap)
85 {
86 	struct thread *td = curthread;		/* XXX */
87 	int i, error, nextoff, size, toff, count, npages;
88 	struct uio uio;
89 	struct iovec iov;
90 	char *kva;
91 	struct vnode *vp;
92 	struct nfsmount *nmp;
93 	vm_page_t *pages;
94 	vm_page_t m;
95 	struct msf_buf *msf;
96 
97 	vp = ap->a_vp;
98 	nmp = VFSTONFS(vp->v_mount);
99 	pages = ap->a_m;
100 	count = ap->a_count;
101 
102 	if (vp->v_object == NULL) {
103 		kprintf("nfs_getpages: called with non-merged cache vnode??\n");
104 		return VM_PAGER_ERROR;
105 	}
106 
107 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
108 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
109 		(void)nfs_fsinfo(nmp, vp, td);
110 
111 	npages = btoc(count);
112 
113 	/*
114 	 * NOTE that partially valid pages may occur in cases other
115 	 * then file EOF, such as when a file is partially written and
116 	 * ftruncate()-extended to a larger size.   It is also possible
117 	 * for the valid bits to be set on garbage beyond the file EOF and
118 	 * clear in the area before EOF (e.g. m->valid == 0xfc), which can
119 	 * occur due to vtruncbuf() and the buffer cache's handling of
120 	 * pages which 'straddle' buffers or when b_bufsize is not a
121 	 * multiple of PAGE_SIZE.... the buffer cache cannot normally
122 	 * clear the extra bits.  This kind of situation occurs when you
123 	 * make a small write() (m->valid == 0x03) and then mmap() and
124 	 * fault in the buffer(m->valid = 0xFF).  When NFS flushes the
125 	 * buffer (vinvalbuf() m->valid = 0xFC) we are left with a mess.
126 	 *
127 	 * This is combined with the possibility that the pages are partially
128 	 * dirty or that there is a buffer backing the pages that is dirty
129 	 * (even if m->dirty is 0).
130 	 *
131 	 * To solve this problem several hacks have been made:  (1) NFS
132 	 * guarentees that the IO block size is a multiple of PAGE_SIZE and
133 	 * (2) The buffer cache, when invalidating an NFS buffer, will
134 	 * disregard the buffer's fragmentory b_bufsize and invalidate
135 	 * the whole page rather then just the piece the buffer owns.
136 	 *
137 	 * This allows us to assume that a partially valid page found here
138 	 * is fully valid (vm_fault will zero'd out areas of the page not
139 	 * marked as valid).
140 	 */
141 	m = pages[ap->a_reqpage];
142 	if (m->valid != 0) {
143 		for (i = 0; i < npages; ++i) {
144 			if (i != ap->a_reqpage)
145 				vnode_pager_freepage(pages[i]);
146 		}
147 		return(0);
148 	}
149 
150 	/*
151 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
152 	 */
153 	msf_map_pagelist(&msf, pages, npages, 0);
154 	KKASSERT(msf);
155 	kva = msf_buf_kva(msf);
156 
157 	iov.iov_base = kva;
158 	iov.iov_len = count;
159 	uio.uio_iov = &iov;
160 	uio.uio_iovcnt = 1;
161 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
162 	uio.uio_resid = count;
163 	uio.uio_segflg = UIO_SYSSPACE;
164 	uio.uio_rw = UIO_READ;
165 	uio.uio_td = td;
166 
167 	error = nfs_readrpc(vp, &uio);
168 	msf_buf_free(msf);
169 
170 	if (error && (uio.uio_resid == count)) {
171 		kprintf("nfs_getpages: error %d\n", error);
172 		for (i = 0; i < npages; ++i) {
173 			if (i != ap->a_reqpage)
174 				vnode_pager_freepage(pages[i]);
175 		}
176 		return VM_PAGER_ERROR;
177 	}
178 
179 	/*
180 	 * Calculate the number of bytes read and validate only that number
181 	 * of bytes.  Note that due to pending writes, size may be 0.  This
182 	 * does not mean that the remaining data is invalid!
183 	 */
184 
185 	size = count - uio.uio_resid;
186 
187 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
188 		nextoff = toff + PAGE_SIZE;
189 		m = pages[i];
190 
191 		m->flags &= ~PG_ZERO;
192 
193 		if (nextoff <= size) {
194 			/*
195 			 * Read operation filled an entire page
196 			 */
197 			m->valid = VM_PAGE_BITS_ALL;
198 			vm_page_undirty(m);
199 		} else if (size > toff) {
200 			/*
201 			 * Read operation filled a partial page.
202 			 */
203 			m->valid = 0;
204 			vm_page_set_validclean(m, 0, size - toff);
205 			/* handled by vm_fault now	  */
206 			/* vm_page_zero_invalid(m, TRUE); */
207 		} else {
208 			/*
209 			 * Read operation was short.  If no error occured
210 			 * we may have hit a zero-fill section.   We simply
211 			 * leave valid set to 0.
212 			 */
213 			;
214 		}
215 		if (i != ap->a_reqpage) {
216 			/*
217 			 * Whether or not to leave the page activated is up in
218 			 * the air, but we should put the page on a page queue
219 			 * somewhere (it already is in the object).  Result:
220 			 * It appears that emperical results show that
221 			 * deactivating pages is best.
222 			 */
223 
224 			/*
225 			 * Just in case someone was asking for this page we
226 			 * now tell them that it is ok to use.
227 			 */
228 			if (!error) {
229 				if (m->flags & PG_WANTED)
230 					vm_page_activate(m);
231 				else
232 					vm_page_deactivate(m);
233 				vm_page_wakeup(m);
234 			} else {
235 				vnode_pager_freepage(m);
236 			}
237 		}
238 	}
239 	return 0;
240 }
241 
242 /*
243  * Vnode op for VM putpages.
244  *
245  * nfs_putpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, int a_sync,
246  *		int *a_rtvals, vm_ooffset_t a_offset)
247  */
248 int
249 nfs_putpages(struct vop_putpages_args *ap)
250 {
251 	struct thread *td = curthread;
252 	struct uio uio;
253 	struct iovec iov;
254 	char *kva;
255 	int iomode, must_commit, i, error, npages, count;
256 	off_t offset;
257 	int *rtvals;
258 	struct vnode *vp;
259 	struct nfsmount *nmp;
260 	struct nfsnode *np;
261 	vm_page_t *pages;
262 	struct msf_buf *msf;
263 
264 	vp = ap->a_vp;
265 	np = VTONFS(vp);
266 	nmp = VFSTONFS(vp->v_mount);
267 	pages = ap->a_m;
268 	count = ap->a_count;
269 	rtvals = ap->a_rtvals;
270 	npages = btoc(count);
271 	offset = IDX_TO_OFF(pages[0]->pindex);
272 
273 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
274 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
275 		(void)nfs_fsinfo(nmp, vp, td);
276 
277 	for (i = 0; i < npages; i++) {
278 		rtvals[i] = VM_PAGER_AGAIN;
279 	}
280 
281 	/*
282 	 * When putting pages, do not extend file past EOF.
283 	 */
284 
285 	if (offset + count > np->n_size) {
286 		count = np->n_size - offset;
287 		if (count < 0)
288 			count = 0;
289 	}
290 
291 	/*
292 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
293 	 */
294 	msf_map_pagelist(&msf, pages, npages, 0);
295 	KKASSERT(msf);
296 	kva = msf_buf_kva(msf);
297 
298 	iov.iov_base = kva;
299 	iov.iov_len = count;
300 	uio.uio_iov = &iov;
301 	uio.uio_iovcnt = 1;
302 	uio.uio_offset = offset;
303 	uio.uio_resid = count;
304 	uio.uio_segflg = UIO_SYSSPACE;
305 	uio.uio_rw = UIO_WRITE;
306 	uio.uio_td = td;
307 
308 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
309 	    iomode = NFSV3WRITE_UNSTABLE;
310 	else
311 	    iomode = NFSV3WRITE_FILESYNC;
312 
313 	error = nfs_writerpc(vp, &uio, &iomode, &must_commit);
314 
315 	msf_buf_free(msf);
316 
317 	if (!error) {
318 		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
319 		for (i = 0; i < nwritten; i++) {
320 			rtvals[i] = VM_PAGER_OK;
321 			vm_page_undirty(pages[i]);
322 		}
323 		if (must_commit)
324 			nfs_clearcommit(vp->v_mount);
325 	}
326 	return rtvals[0];
327 }
328 
329 /*
330  * Vnode op for read using bio
331  */
332 int
333 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
334 {
335 	struct nfsnode *np = VTONFS(vp);
336 	int biosize, i;
337 	struct buf *bp = 0, *rabp;
338 	struct vattr vattr;
339 	struct thread *td;
340 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
341 	daddr_t lbn, rabn;
342 	off_t raoffset;
343 	off_t loffset;
344 	int bcount;
345 	int seqcount;
346 	int nra, error = 0, n = 0, on = 0;
347 
348 #ifdef DIAGNOSTIC
349 	if (uio->uio_rw != UIO_READ)
350 		panic("nfs_read mode");
351 #endif
352 	if (uio->uio_resid == 0)
353 		return (0);
354 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
355 		return (EINVAL);
356 	td = uio->uio_td;
357 
358 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
359 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
360 		(void)nfs_fsinfo(nmp, vp, td);
361 	if (vp->v_type != VDIR &&
362 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
363 		return (EFBIG);
364 	biosize = vp->v_mount->mnt_stat.f_iosize;
365 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
366 
367 	/*
368 	 * For nfs, cache consistency can only be maintained approximately.
369 	 * Although RFC1094 does not specify the criteria, the following is
370 	 * believed to be compatible with the reference port.
371 	 *
372 	 * NFS:		If local changes have been made and this is a
373 	 *		directory, the directory must be invalidated and
374 	 *		the attribute cache must be cleared.
375 	 *
376 	 *		GETATTR is called to synchronize the file size.
377 	 *
378 	 *		If remote changes are detected local data is flushed
379 	 *		and the cache is invalidated.
380 	 *
381 	 *		NOTE: In the normal case the attribute cache is not
382 	 *		cleared which means GETATTR may use cached data and
383 	 *		not immediately detect changes made on the server.
384 	 */
385 	if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) {
386 		nfs_invaldir(vp);
387 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
388 		if (error)
389 			return (error);
390 		np->n_attrstamp = 0;
391 	}
392 	error = VOP_GETATTR(vp, &vattr);
393 	if (error)
394 		return (error);
395 	if (np->n_flag & NRMODIFIED) {
396 		if (vp->v_type == VDIR)
397 			nfs_invaldir(vp);
398 		error = nfs_vinvalbuf(vp, V_SAVE, 1);
399 		if (error)
400 			return (error);
401 		np->n_flag &= ~NRMODIFIED;
402 	}
403 	do {
404 	    if (np->n_flag & NDONTCACHE) {
405 		switch (vp->v_type) {
406 		case VREG:
407 			return (nfs_readrpc(vp, uio));
408 		case VLNK:
409 			return (nfs_readlinkrpc(vp, uio));
410 		case VDIR:
411 			break;
412 		default:
413 			kprintf(" NDONTCACHE: type %x unexpected\n", vp->v_type);
414 			break;
415 		};
416 	    }
417 	    switch (vp->v_type) {
418 	    case VREG:
419 		nfsstats.biocache_reads++;
420 		lbn = uio->uio_offset / biosize;
421 		on = uio->uio_offset & (biosize - 1);
422 		loffset = (off_t)lbn * biosize;
423 
424 		/*
425 		 * Start the read ahead(s), as required.
426 		 */
427 		if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
428 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
429 			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
430 			rabn = lbn + 1 + nra;
431 			raoffset = (off_t)rabn * biosize;
432 			if (findblk(vp, raoffset, FINDBLK_TEST) == NULL) {
433 			    rabp = nfs_getcacheblk(vp, raoffset, biosize, td);
434 			    if (!rabp)
435 				return (EINTR);
436 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
437 				rabp->b_flags |= B_ASYNC;
438 				rabp->b_cmd = BUF_CMD_READ;
439 				vfs_busy_pages(vp, rabp);
440 				if (nfs_asyncio(vp, &rabp->b_bio2, td)) {
441 				    rabp->b_flags |= B_INVAL|B_ERROR;
442 				    vfs_unbusy_pages(rabp);
443 				    brelse(rabp);
444 				    break;
445 				}
446 			    } else {
447 				brelse(rabp);
448 			    }
449 			}
450 		    }
451 		}
452 
453 		/*
454 		 * Obtain the buffer cache block.  Figure out the buffer size
455 		 * when we are at EOF.  If we are modifying the size of the
456 		 * buffer based on an EOF condition we need to hold
457 		 * nfs_rslock() through obtaining the buffer to prevent
458 		 * a potential writer-appender from messing with n_size.
459 		 * Otherwise we may accidently truncate the buffer and
460 		 * lose dirty data.
461 		 *
462 		 * Note that bcount is *not* DEV_BSIZE aligned.
463 		 */
464 
465 again:
466 		bcount = biosize;
467 		if (loffset >= np->n_size) {
468 			bcount = 0;
469 		} else if (loffset + biosize > np->n_size) {
470 			bcount = np->n_size - loffset;
471 		}
472 		if (bcount != biosize) {
473 			switch(nfs_rslock(np)) {
474 			case ENOLCK:
475 				goto again;
476 				/* not reached */
477 			case EINTR:
478 			case ERESTART:
479 				return(EINTR);
480 				/* not reached */
481 			default:
482 				break;
483 			}
484 		}
485 
486 		bp = nfs_getcacheblk(vp, loffset, bcount, td);
487 
488 		if (bcount != biosize)
489 			nfs_rsunlock(np);
490 		if (!bp)
491 			return (EINTR);
492 
493 		/*
494 		 * If B_CACHE is not set, we must issue the read.  If this
495 		 * fails, we return an error.
496 		 */
497 
498 		if ((bp->b_flags & B_CACHE) == 0) {
499 		    bp->b_cmd = BUF_CMD_READ;
500 		    vfs_busy_pages(vp, bp);
501 		    error = nfs_doio(vp, &bp->b_bio2, td);
502 		    if (error) {
503 			brelse(bp);
504 			return (error);
505 		    }
506 		}
507 
508 		/*
509 		 * on is the offset into the current bp.  Figure out how many
510 		 * bytes we can copy out of the bp.  Note that bcount is
511 		 * NOT DEV_BSIZE aligned.
512 		 *
513 		 * Then figure out how many bytes we can copy into the uio.
514 		 */
515 
516 		n = 0;
517 		if (on < bcount)
518 			n = min((unsigned)(bcount - on), uio->uio_resid);
519 		break;
520 	    case VLNK:
521 		biosize = min(NFS_MAXPATHLEN, np->n_size);
522 		nfsstats.biocache_readlinks++;
523 		bp = nfs_getcacheblk(vp, (off_t)0, biosize, td);
524 		if (bp == NULL)
525 			return (EINTR);
526 		if ((bp->b_flags & B_CACHE) == 0) {
527 		    bp->b_cmd = BUF_CMD_READ;
528 		    vfs_busy_pages(vp, bp);
529 		    error = nfs_doio(vp, &bp->b_bio2, td);
530 		    if (error) {
531 			bp->b_flags |= B_ERROR | B_INVAL;
532 			brelse(bp);
533 			return (error);
534 		    }
535 		}
536 		n = min(uio->uio_resid, bp->b_bcount - bp->b_resid);
537 		on = 0;
538 		break;
539 	    case VDIR:
540 		nfsstats.biocache_readdirs++;
541 		if (np->n_direofoffset
542 		    && uio->uio_offset >= np->n_direofoffset) {
543 		    return (0);
544 		}
545 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
546 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
547 		loffset = uio->uio_offset - on;
548 		bp = nfs_getcacheblk(vp, loffset, NFS_DIRBLKSIZ, td);
549 		if (bp == NULL)
550 		    return (EINTR);
551 
552 		if ((bp->b_flags & B_CACHE) == 0) {
553 		    bp->b_cmd = BUF_CMD_READ;
554 		    vfs_busy_pages(vp, bp);
555 		    error = nfs_doio(vp, &bp->b_bio2, td);
556 		    if (error) {
557 			    brelse(bp);
558 		    }
559 		    while (error == NFSERR_BAD_COOKIE) {
560 			kprintf("got bad cookie vp %p bp %p\n", vp, bp);
561 			nfs_invaldir(vp);
562 			error = nfs_vinvalbuf(vp, 0, 1);
563 			/*
564 			 * Yuck! The directory has been modified on the
565 			 * server. The only way to get the block is by
566 			 * reading from the beginning to get all the
567 			 * offset cookies.
568 			 *
569 			 * Leave the last bp intact unless there is an error.
570 			 * Loop back up to the while if the error is another
571 			 * NFSERR_BAD_COOKIE (double yuch!).
572 			 */
573 			for (i = 0; i <= lbn && !error; i++) {
574 			    if (np->n_direofoffset
575 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
576 				    return (0);
577 			    bp = nfs_getcacheblk(vp, (off_t)i * NFS_DIRBLKSIZ,
578 						 NFS_DIRBLKSIZ, td);
579 			    if (!bp)
580 				return (EINTR);
581 			    if ((bp->b_flags & B_CACHE) == 0) {
582 				    bp->b_cmd = BUF_CMD_READ;
583 				    vfs_busy_pages(vp, bp);
584 				    error = nfs_doio(vp, &bp->b_bio2, td);
585 				    /*
586 				     * no error + B_INVAL == directory EOF,
587 				     * use the block.
588 				     */
589 				    if (error == 0 && (bp->b_flags & B_INVAL))
590 					    break;
591 			    }
592 			    /*
593 			     * An error will throw away the block and the
594 			     * for loop will break out.  If no error and this
595 			     * is not the block we want, we throw away the
596 			     * block and go for the next one via the for loop.
597 			     */
598 			    if (error || i < lbn)
599 				    brelse(bp);
600 			}
601 		    }
602 		    /*
603 		     * The above while is repeated if we hit another cookie
604 		     * error.  If we hit an error and it wasn't a cookie error,
605 		     * we give up.
606 		     */
607 		    if (error)
608 			    return (error);
609 		}
610 
611 		/*
612 		 * If not eof and read aheads are enabled, start one.
613 		 * (You need the current block first, so that you have the
614 		 *  directory offset cookie of the next block.)
615 		 */
616 		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
617 		    (bp->b_flags & B_INVAL) == 0 &&
618 		    (np->n_direofoffset == 0 ||
619 		    loffset + NFS_DIRBLKSIZ < np->n_direofoffset) &&
620 		    (np->n_flag & NDONTCACHE) == 0 &&
621 		    findblk(vp, loffset + NFS_DIRBLKSIZ, FINDBLK_TEST) == NULL
622 		) {
623 			rabp = nfs_getcacheblk(vp, loffset + NFS_DIRBLKSIZ,
624 					       NFS_DIRBLKSIZ, td);
625 			if (rabp) {
626 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
627 				rabp->b_flags |= B_ASYNC;
628 				rabp->b_cmd = BUF_CMD_READ;
629 				vfs_busy_pages(vp, rabp);
630 				if (nfs_asyncio(vp, &rabp->b_bio2, td)) {
631 				    rabp->b_flags |= B_INVAL|B_ERROR;
632 				    vfs_unbusy_pages(rabp);
633 				    brelse(rabp);
634 				}
635 			    } else {
636 				brelse(rabp);
637 			    }
638 			}
639 		}
640 		/*
641 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
642 		 * chopped for the EOF condition, we cannot tell how large
643 		 * NFS directories are going to be until we hit EOF.  So
644 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
645 		 * it just so happens that b_resid will effectively chop it
646 		 * to EOF.  *BUT* this information is lost if the buffer goes
647 		 * away and is reconstituted into a B_CACHE state ( due to
648 		 * being VMIO ) later.  So we keep track of the directory eof
649 		 * in np->n_direofoffset and chop it off as an extra step
650 		 * right here.
651 		 */
652 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
653 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
654 			n = np->n_direofoffset - uio->uio_offset;
655 		break;
656 	    default:
657 		kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
658 		break;
659 	    };
660 
661 	    switch (vp->v_type) {
662 	    case VREG:
663 		if (n > 0)
664 		    error = uiomove(bp->b_data + on, (int)n, uio);
665 		break;
666 	    case VLNK:
667 		if (n > 0)
668 		    error = uiomove(bp->b_data + on, (int)n, uio);
669 		n = 0;
670 		break;
671 	    case VDIR:
672 		if (n > 0) {
673 		    off_t old_off = uio->uio_offset;
674 		    caddr_t cpos, epos;
675 		    struct nfs_dirent *dp;
676 
677 		    /*
678 		     * We are casting cpos to nfs_dirent, it must be
679 		     * int-aligned.
680 		     */
681 		    if (on & 3) {
682 			error = EINVAL;
683 			break;
684 		    }
685 
686 		    cpos = bp->b_data + on;
687 		    epos = bp->b_data + on + n;
688 		    while (cpos < epos && error == 0 && uio->uio_resid > 0) {
689 			    dp = (struct nfs_dirent *)cpos;
690 			    error = nfs_check_dirent(dp, (int)(epos - cpos));
691 			    if (error)
692 				    break;
693 			    if (vop_write_dirent(&error, uio, dp->nfs_ino,
694 				dp->nfs_type, dp->nfs_namlen, dp->nfs_name)) {
695 				    break;
696 			    }
697 			    cpos += dp->nfs_reclen;
698 		    }
699 		    n = 0;
700 		    if (error == 0)
701 			    uio->uio_offset = old_off + cpos - bp->b_data - on;
702 		}
703 		/*
704 		 * Invalidate buffer if caching is disabled, forcing a
705 		 * re-read from the remote later.
706 		 */
707 		if (np->n_flag & NDONTCACHE)
708 			bp->b_flags |= B_INVAL;
709 		break;
710 	    default:
711 		kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type);
712 	    }
713 	    brelse(bp);
714 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
715 	return (error);
716 }
717 
718 /*
719  * Userland can supply any 'seek' offset when reading a NFS directory.
720  * Validate the structure so we don't panic the kernel.  Note that
721  * the element name is nul terminated and the nul is not included
722  * in nfs_namlen.
723  */
724 static
725 int
726 nfs_check_dirent(struct nfs_dirent *dp, int maxlen)
727 {
728 	int nfs_name_off = offsetof(struct nfs_dirent, nfs_name[0]);
729 
730 	if (nfs_name_off >= maxlen)
731 		return (EINVAL);
732 	if (dp->nfs_reclen < nfs_name_off || dp->nfs_reclen > maxlen)
733 		return (EINVAL);
734 	if (nfs_name_off + dp->nfs_namlen >= dp->nfs_reclen)
735 		return (EINVAL);
736 	if (dp->nfs_reclen & 3)
737 		return (EINVAL);
738 	return (0);
739 }
740 
741 /*
742  * Vnode op for write using bio
743  *
744  * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
745  *	     struct ucred *a_cred)
746  */
747 int
748 nfs_write(struct vop_write_args *ap)
749 {
750 	struct uio *uio = ap->a_uio;
751 	struct thread *td = uio->uio_td;
752 	struct vnode *vp = ap->a_vp;
753 	struct nfsnode *np = VTONFS(vp);
754 	int ioflag = ap->a_ioflag;
755 	struct buf *bp;
756 	struct vattr vattr;
757 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
758 	daddr_t lbn;
759 	off_t loffset;
760 	int n, on, error = 0, iomode, must_commit;
761 	int haverslock = 0;
762 	int bcount;
763 	int biosize;
764 
765 #ifdef DIAGNOSTIC
766 	if (uio->uio_rw != UIO_WRITE)
767 		panic("nfs_write mode");
768 	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
769 		panic("nfs_write proc");
770 #endif
771 	if (vp->v_type != VREG)
772 		return (EIO);
773 	if (np->n_flag & NWRITEERR) {
774 		np->n_flag &= ~NWRITEERR;
775 		return (np->n_error);
776 	}
777 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
778 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
779 		(void)nfs_fsinfo(nmp, vp, td);
780 
781 	/*
782 	 * Synchronously flush pending buffers if we are in synchronous
783 	 * mode or if we are appending.
784 	 */
785 	if (ioflag & (IO_APPEND | IO_SYNC)) {
786 		if (np->n_flag & NLMODIFIED) {
787 			np->n_attrstamp = 0;
788 			error = nfs_flush(vp, MNT_WAIT, td, 0);
789 			/* error = nfs_vinvalbuf(vp, V_SAVE, 1); */
790 			if (error)
791 				return (error);
792 		}
793 	}
794 
795 	/*
796 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
797 	 * get the append lock.
798 	 */
799 restart:
800 	if (ioflag & IO_APPEND) {
801 		np->n_attrstamp = 0;
802 		error = VOP_GETATTR(vp, &vattr);
803 		if (error)
804 			return (error);
805 		uio->uio_offset = np->n_size;
806 	}
807 
808 	if (uio->uio_offset < 0)
809 		return (EINVAL);
810 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
811 		return (EFBIG);
812 	if (uio->uio_resid == 0)
813 		return (0);
814 
815 	/*
816 	 * We need to obtain the rslock if we intend to modify np->n_size
817 	 * in order to guarentee the append point with multiple contending
818 	 * writers, to guarentee that no other appenders modify n_size
819 	 * while we are trying to obtain a truncated buffer (i.e. to avoid
820 	 * accidently truncating data written by another appender due to
821 	 * the race), and to ensure that the buffer is populated prior to
822 	 * our extending of the file.  We hold rslock through the entire
823 	 * operation.
824 	 *
825 	 * Note that we do not synchronize the case where someone truncates
826 	 * the file while we are appending to it because attempting to lock
827 	 * this case may deadlock other parts of the system unexpectedly.
828 	 */
829 	if ((ioflag & IO_APPEND) ||
830 	    uio->uio_offset + uio->uio_resid > np->n_size) {
831 		switch(nfs_rslock(np)) {
832 		case ENOLCK:
833 			goto restart;
834 			/* not reached */
835 		case EINTR:
836 		case ERESTART:
837 			return(EINTR);
838 			/* not reached */
839 		default:
840 			break;
841 		}
842 		haverslock = 1;
843 	}
844 
845 	/*
846 	 * Maybe this should be above the vnode op call, but so long as
847 	 * file servers have no limits, i don't think it matters
848 	 */
849 	if (td->td_proc && uio->uio_offset + uio->uio_resid >
850 	      td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
851 		lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ);
852 		if (haverslock)
853 			nfs_rsunlock(np);
854 		return (EFBIG);
855 	}
856 
857 	biosize = vp->v_mount->mnt_stat.f_iosize;
858 
859 	do {
860 		if ((np->n_flag & NDONTCACHE) && uio->uio_iovcnt == 1) {
861 		    iomode = NFSV3WRITE_FILESYNC;
862 		    error = nfs_writerpc(vp, uio, &iomode, &must_commit);
863 		    if (must_commit)
864 			    nfs_clearcommit(vp->v_mount);
865 		    break;
866 		}
867 		nfsstats.biocache_writes++;
868 		lbn = uio->uio_offset / biosize;
869 		on = uio->uio_offset & (biosize-1);
870 		loffset = uio->uio_offset - on;
871 		n = min((unsigned)(biosize - on), uio->uio_resid);
872 again:
873 		/*
874 		 * Handle direct append and file extension cases, calculate
875 		 * unaligned buffer size.
876 		 */
877 
878 		if (uio->uio_offset == np->n_size && n) {
879 			/*
880 			 * Get the buffer (in its pre-append state to maintain
881 			 * B_CACHE if it was previously set).  Resize the
882 			 * nfsnode after we have locked the buffer to prevent
883 			 * readers from reading garbage.
884 			 */
885 			bcount = on;
886 			bp = nfs_getcacheblk(vp, loffset, bcount, td);
887 
888 			if (bp != NULL) {
889 				long save;
890 
891 				np->n_size = uio->uio_offset + n;
892 				np->n_flag |= NLMODIFIED;
893 				vnode_pager_setsize(vp, np->n_size);
894 
895 				save = bp->b_flags & B_CACHE;
896 				bcount += n;
897 				allocbuf(bp, bcount);
898 				bp->b_flags |= save;
899 			}
900 		} else {
901 			/*
902 			 * Obtain the locked cache block first, and then
903 			 * adjust the file's size as appropriate.
904 			 */
905 			bcount = on + n;
906 			if (loffset + bcount < np->n_size) {
907 				if (loffset + biosize < np->n_size)
908 					bcount = biosize;
909 				else
910 					bcount = np->n_size - loffset;
911 			}
912 			bp = nfs_getcacheblk(vp, loffset, bcount, td);
913 			if (uio->uio_offset + n > np->n_size) {
914 				np->n_size = uio->uio_offset + n;
915 				np->n_flag |= NLMODIFIED;
916 				vnode_pager_setsize(vp, np->n_size);
917 			}
918 		}
919 
920 		if (bp == NULL) {
921 			error = EINTR;
922 			break;
923 		}
924 
925 		/*
926 		 * Issue a READ if B_CACHE is not set.  In special-append
927 		 * mode, B_CACHE is based on the buffer prior to the write
928 		 * op and is typically set, avoiding the read.  If a read
929 		 * is required in special append mode, the server will
930 		 * probably send us a short-read since we extended the file
931 		 * on our end, resulting in b_resid == 0 and, thusly,
932 		 * B_CACHE getting set.
933 		 *
934 		 * We can also avoid issuing the read if the write covers
935 		 * the entire buffer.  We have to make sure the buffer state
936 		 * is reasonable in this case since we will not be initiating
937 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
938 		 * more information.
939 		 *
940 		 * B_CACHE may also be set due to the buffer being cached
941 		 * normally.
942 		 *
943 		 * When doing a UIO_NOCOPY write the buffer is not
944 		 * overwritten and we cannot just set B_CACHE unconditionally
945 		 * for full-block writes.
946 		 */
947 
948 		if (on == 0 && n == bcount && uio->uio_segflg != UIO_NOCOPY) {
949 			bp->b_flags |= B_CACHE;
950 			bp->b_flags &= ~(B_ERROR | B_INVAL);
951 		}
952 
953 		if ((bp->b_flags & B_CACHE) == 0) {
954 			bp->b_cmd = BUF_CMD_READ;
955 			vfs_busy_pages(vp, bp);
956 			error = nfs_doio(vp, &bp->b_bio2, td);
957 			if (error) {
958 				brelse(bp);
959 				break;
960 			}
961 		}
962 		if (!bp) {
963 			error = EINTR;
964 			break;
965 		}
966 		np->n_flag |= NLMODIFIED;
967 
968 		/*
969 		 * If dirtyend exceeds file size, chop it down.  This should
970 		 * not normally occur but there is an append race where it
971 		 * might occur XXX, so we log it.
972 		 *
973 		 * If the chopping creates a reverse-indexed or degenerate
974 		 * situation with dirtyoff/end, we 0 both of them.
975 		 */
976 
977 		if (bp->b_dirtyend > bcount) {
978 			kprintf("NFS append race @%08llx:%d\n",
979 			    (long long)bp->b_bio2.bio_offset,
980 			    bp->b_dirtyend - bcount);
981 			bp->b_dirtyend = bcount;
982 		}
983 
984 		if (bp->b_dirtyoff >= bp->b_dirtyend)
985 			bp->b_dirtyoff = bp->b_dirtyend = 0;
986 
987 		/*
988 		 * If the new write will leave a contiguous dirty
989 		 * area, just update the b_dirtyoff and b_dirtyend,
990 		 * otherwise force a write rpc of the old dirty area.
991 		 *
992 		 * While it is possible to merge discontiguous writes due to
993 		 * our having a B_CACHE buffer ( and thus valid read data
994 		 * for the hole), we don't because it could lead to
995 		 * significant cache coherency problems with multiple clients,
996 		 * especially if locking is implemented later on.
997 		 *
998 		 * as an optimization we could theoretically maintain
999 		 * a linked list of discontinuous areas, but we would still
1000 		 * have to commit them separately so there isn't much
1001 		 * advantage to it except perhaps a bit of asynchronization.
1002 		 */
1003 
1004 		if (bp->b_dirtyend > 0 &&
1005 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1006 			if (bwrite(bp) == EINTR) {
1007 				error = EINTR;
1008 				break;
1009 			}
1010 			goto again;
1011 		}
1012 
1013 		error = uiomove((char *)bp->b_data + on, n, uio);
1014 
1015 		/*
1016 		 * Since this block is being modified, it must be written
1017 		 * again and not just committed.  Since write clustering does
1018 		 * not work for the stage 1 data write, only the stage 2
1019 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1020 		 */
1021 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1022 
1023 		if (error) {
1024 			bp->b_flags |= B_ERROR;
1025 			brelse(bp);
1026 			break;
1027 		}
1028 
1029 		/*
1030 		 * Only update dirtyoff/dirtyend if not a degenerate
1031 		 * condition.
1032 		 */
1033 		if (n) {
1034 			if (bp->b_dirtyend > 0) {
1035 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1036 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1037 			} else {
1038 				bp->b_dirtyoff = on;
1039 				bp->b_dirtyend = on + n;
1040 			}
1041 			vfs_bio_set_validclean(bp, on, n);
1042 		}
1043 
1044 		/*
1045 		 * If the lease is non-cachable or IO_SYNC do bwrite().
1046 		 *
1047 		 * IO_INVAL appears to be unused.  The idea appears to be
1048 		 * to turn off caching in this case.  Very odd.  XXX
1049 		 *
1050 		 * If nfs_async is set bawrite() will use an unstable write
1051 		 * (build dirty bufs on the server), so we might as well
1052 		 * push it out with bawrite().  If nfs_async is not set we
1053 		 * use bdwrite() to cache dirty bufs on the client.
1054 		 */
1055 		if ((np->n_flag & NDONTCACHE) || (ioflag & IO_SYNC)) {
1056 			if (ioflag & IO_INVAL)
1057 				bp->b_flags |= B_NOCACHE;
1058 			error = bwrite(bp);
1059 			if (error)
1060 				break;
1061 			if (np->n_flag & NDONTCACHE) {
1062 				error = nfs_vinvalbuf(vp, V_SAVE, 1);
1063 				if (error)
1064 					break;
1065 			}
1066 		} else if ((n + on) == biosize && nfs_async) {
1067 			bawrite(bp);
1068 		} else {
1069 			bdwrite(bp);
1070 		}
1071 	} while (uio->uio_resid > 0 && n > 0);
1072 
1073 	if (haverslock)
1074 		nfs_rsunlock(np);
1075 
1076 	return (error);
1077 }
1078 
1079 /*
1080  * Get an nfs cache block.
1081  *
1082  * Allocate a new one if the block isn't currently in the cache
1083  * and return the block marked busy. If the calling process is
1084  * interrupted by a signal for an interruptible mount point, return
1085  * NULL.
1086  *
1087  * The caller must carefully deal with the possible B_INVAL state of
1088  * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1089  * indirectly), so synchronous reads can be issued without worrying about
1090  * the B_INVAL state.  We have to be a little more careful when dealing
1091  * with writes (see comments in nfs_write()) when extending a file past
1092  * its EOF.
1093  */
1094 static struct buf *
1095 nfs_getcacheblk(struct vnode *vp, off_t loffset, int size, struct thread *td)
1096 {
1097 	struct buf *bp;
1098 	struct mount *mp;
1099 	struct nfsmount *nmp;
1100 
1101 	mp = vp->v_mount;
1102 	nmp = VFSTONFS(mp);
1103 
1104 	if (nmp->nm_flag & NFSMNT_INT) {
1105 		bp = getblk(vp, loffset, size, GETBLK_PCATCH, 0);
1106 		while (bp == NULL) {
1107 			if (nfs_sigintr(nmp, NULL, td))
1108 				return (NULL);
1109 			bp = getblk(vp, loffset, size, 0, 2 * hz);
1110 		}
1111 	} else {
1112 		bp = getblk(vp, loffset, size, 0, 0);
1113 	}
1114 
1115 	/*
1116 	 * bio2, the 'device' layer.  Since BIOs use 64 bit byte offsets
1117 	 * now, no translation is necessary.
1118 	 */
1119 	bp->b_bio2.bio_offset = loffset;
1120 	return (bp);
1121 }
1122 
1123 /*
1124  * Flush and invalidate all dirty buffers. If another process is already
1125  * doing the flush, just wait for completion.
1126  */
1127 int
1128 nfs_vinvalbuf(struct vnode *vp, int flags, int intrflg)
1129 {
1130 	struct nfsnode *np = VTONFS(vp);
1131 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1132 	int error = 0, slpflag, slptimeo;
1133 	thread_t td = curthread;
1134 
1135 	if (vp->v_flag & VRECLAIMED)
1136 		return (0);
1137 
1138 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1139 		intrflg = 0;
1140 	if (intrflg) {
1141 		slpflag = PCATCH;
1142 		slptimeo = 2 * hz;
1143 	} else {
1144 		slpflag = 0;
1145 		slptimeo = 0;
1146 	}
1147 	/*
1148 	 * First wait for any other process doing a flush to complete.
1149 	 */
1150 	while (np->n_flag & NFLUSHINPROG) {
1151 		np->n_flag |= NFLUSHWANT;
1152 		error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
1153 		if (error && intrflg && nfs_sigintr(nmp, NULL, td))
1154 			return (EINTR);
1155 	}
1156 
1157 	/*
1158 	 * Now, flush as required.
1159 	 */
1160 	np->n_flag |= NFLUSHINPROG;
1161 	error = vinvalbuf(vp, flags, slpflag, 0);
1162 	while (error) {
1163 		if (intrflg && nfs_sigintr(nmp, NULL, td)) {
1164 			np->n_flag &= ~NFLUSHINPROG;
1165 			if (np->n_flag & NFLUSHWANT) {
1166 				np->n_flag &= ~NFLUSHWANT;
1167 				wakeup((caddr_t)&np->n_flag);
1168 			}
1169 			return (EINTR);
1170 		}
1171 		error = vinvalbuf(vp, flags, 0, slptimeo);
1172 	}
1173 	np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG);
1174 	if (np->n_flag & NFLUSHWANT) {
1175 		np->n_flag &= ~NFLUSHWANT;
1176 		wakeup((caddr_t)&np->n_flag);
1177 	}
1178 	return (0);
1179 }
1180 
1181 /*
1182  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1183  * This is mainly to avoid queueing async I/O requests when the nfsiods
1184  * are all hung on a dead server.
1185  *
1186  * Note: nfs_asyncio() does not clear (B_ERROR|B_INVAL) but when the bp
1187  * is eventually dequeued by the async daemon, nfs_doio() *will*.
1188  */
1189 int
1190 nfs_asyncio(struct vnode *vp, struct bio *bio, struct thread *td)
1191 {
1192 	struct buf *bp = bio->bio_buf;
1193 	struct nfsmount *nmp;
1194 	int i;
1195 	int gotiod;
1196 	int slpflag = 0;
1197 	int slptimeo = 0;
1198 	int error;
1199 
1200 	/*
1201 	 * If no async daemons then return EIO to force caller to run the rpc
1202 	 * synchronously.
1203 	 */
1204 	if (nfs_numasync == 0)
1205 		return (EIO);
1206 
1207 	KKASSERT(vp->v_tag == VT_NFS);
1208 	nmp = VFSTONFS(vp->v_mount);
1209 
1210 	/*
1211 	 * Commits are usually short and sweet so lets save some cpu and
1212 	 * leave the async daemons for more important rpc's (such as reads
1213 	 * and writes).
1214 	 */
1215 	if (bp->b_cmd == BUF_CMD_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1216 	    (nmp->nm_bioqiods > nfs_numasync / 2)) {
1217 		return(EIO);
1218 	}
1219 
1220 again:
1221 	if (nmp->nm_flag & NFSMNT_INT)
1222 		slpflag = PCATCH;
1223 	gotiod = FALSE;
1224 
1225 	/*
1226 	 * Find a free iod to process this request.
1227 	 */
1228 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
1229 		if (nfs_iodwant[i]) {
1230 			/*
1231 			 * Found one, so wake it up and tell it which
1232 			 * mount to process.
1233 			 */
1234 			NFS_DPF(ASYNCIO,
1235 				("nfs_asyncio: waking iod %d for mount %p\n",
1236 				 i, nmp));
1237 			nfs_iodwant[i] = NULL;
1238 			nfs_iodmount[i] = nmp;
1239 			nmp->nm_bioqiods++;
1240 			wakeup((caddr_t)&nfs_iodwant[i]);
1241 			gotiod = TRUE;
1242 			break;
1243 		}
1244 
1245 	/*
1246 	 * If none are free, we may already have an iod working on this mount
1247 	 * point.  If so, it will process our request.
1248 	 */
1249 	if (!gotiod) {
1250 		if (nmp->nm_bioqiods > 0) {
1251 			NFS_DPF(ASYNCIO,
1252 				("nfs_asyncio: %d iods are already processing mount %p\n",
1253 				 nmp->nm_bioqiods, nmp));
1254 			gotiod = TRUE;
1255 		}
1256 	}
1257 
1258 	/*
1259 	 * If we have an iod which can process the request, then queue
1260 	 * the buffer.
1261 	 */
1262 	if (gotiod) {
1263 		/*
1264 		 * Ensure that the queue never grows too large.  We still want
1265 		 * to asynchronize so we block rather then return EIO.
1266 		 */
1267 		while (nmp->nm_bioqlen >= 2*nfs_numasync) {
1268 			NFS_DPF(ASYNCIO,
1269 				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1270 			nmp->nm_bioqwant = TRUE;
1271 			error = tsleep(&nmp->nm_bioq, slpflag,
1272 				       "nfsaio", slptimeo);
1273 			if (error) {
1274 				if (nfs_sigintr(nmp, NULL, td))
1275 					return (EINTR);
1276 				if (slpflag == PCATCH) {
1277 					slpflag = 0;
1278 					slptimeo = 2 * hz;
1279 				}
1280 			}
1281 			/*
1282 			 * We might have lost our iod while sleeping,
1283 			 * so check and loop if nescessary.
1284 			 */
1285 			if (nmp->nm_bioqiods == 0) {
1286 				NFS_DPF(ASYNCIO,
1287 					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1288 				goto again;
1289 			}
1290 		}
1291 		BUF_KERNPROC(bp);
1292 
1293 		/*
1294 		 * The passed bio's buffer is not necessary associated with
1295 		 * the NFS vnode it is being written to.  Store the NFS vnode
1296 		 * in the BIO driver info.
1297 		 */
1298 		bio->bio_driver_info = vp;
1299 		TAILQ_INSERT_TAIL(&nmp->nm_bioq, bio, bio_act);
1300 		nmp->nm_bioqlen++;
1301 		return (0);
1302 	}
1303 
1304 	/*
1305 	 * All the iods are busy on other mounts, so return EIO to
1306 	 * force the caller to process the i/o synchronously.
1307 	 */
1308 	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1309 	return (EIO);
1310 }
1311 
1312 /*
1313  * Do an I/O operation to/from a cache block. This may be called
1314  * synchronously or from an nfsiod.  The BIO is normalized for DEV_BSIZE.
1315  *
1316  * NOTE! TD MIGHT BE NULL
1317  */
1318 int
1319 nfs_doio(struct vnode *vp, struct bio *bio, struct thread *td)
1320 {
1321 	struct buf *bp = bio->bio_buf;
1322 	struct uio *uiop;
1323 	struct nfsnode *np;
1324 	struct nfsmount *nmp;
1325 	int error = 0, iomode, must_commit = 0;
1326 	struct uio uio;
1327 	struct iovec io;
1328 
1329 	KKASSERT(vp->v_tag == VT_NFS);
1330 	np = VTONFS(vp);
1331 	nmp = VFSTONFS(vp->v_mount);
1332 	uiop = &uio;
1333 	uiop->uio_iov = &io;
1334 	uiop->uio_iovcnt = 1;
1335 	uiop->uio_segflg = UIO_SYSSPACE;
1336 	uiop->uio_td = td;
1337 
1338 	/*
1339 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1340 	 * do this here so we do not have to do it in all the code that
1341 	 * calls us.
1342 	 */
1343 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1344 
1345 
1346 	KASSERT(bp->b_cmd != BUF_CMD_DONE,
1347 		("nfs_doio: bp %p already marked done!", bp));
1348 
1349 	if (bp->b_cmd == BUF_CMD_READ) {
1350 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1351 	    io.iov_base = bp->b_data;
1352 	    uiop->uio_rw = UIO_READ;
1353 
1354 	    switch (vp->v_type) {
1355 	    case VREG:
1356 		uiop->uio_offset = bio->bio_offset;
1357 		nfsstats.read_bios++;
1358 		error = nfs_readrpc(vp, uiop);
1359 
1360 		if (!error) {
1361 		    if (uiop->uio_resid) {
1362 			/*
1363 			 * If we had a short read with no error, we must have
1364 			 * hit a file hole.  We should zero-fill the remainder.
1365 			 * This can also occur if the server hits the file EOF.
1366 			 *
1367 			 * Holes used to be able to occur due to pending
1368 			 * writes, but that is not possible any longer.
1369 			 */
1370 			int nread = bp->b_bcount - uiop->uio_resid;
1371 			int left  = uiop->uio_resid;
1372 
1373 			if (left > 0)
1374 				bzero((char *)bp->b_data + nread, left);
1375 			uiop->uio_resid = 0;
1376 		    }
1377 		}
1378 		if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1379 		    np->n_mtime != np->n_vattr.va_mtime.tv_sec) {
1380 			uprintf("Process killed due to text file modification\n");
1381 			ksignal(td->td_proc, SIGKILL);
1382 		}
1383 		break;
1384 	    case VLNK:
1385 		uiop->uio_offset = 0;
1386 		nfsstats.readlink_bios++;
1387 		error = nfs_readlinkrpc(vp, uiop);
1388 		break;
1389 	    case VDIR:
1390 		nfsstats.readdir_bios++;
1391 		uiop->uio_offset = bio->bio_offset;
1392 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1393 			error = nfs_readdirplusrpc(vp, uiop);
1394 			if (error == NFSERR_NOTSUPP)
1395 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1396 		}
1397 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1398 			error = nfs_readdirrpc(vp, uiop);
1399 		/*
1400 		 * end-of-directory sets B_INVAL but does not generate an
1401 		 * error.
1402 		 */
1403 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1404 			bp->b_flags |= B_INVAL;
1405 		break;
1406 	    default:
1407 		kprintf("nfs_doio:  type %x unexpected\n",vp->v_type);
1408 		break;
1409 	    };
1410 	    if (error) {
1411 		bp->b_flags |= B_ERROR;
1412 		bp->b_error = error;
1413 	    }
1414 	} else {
1415 	    /*
1416 	     * If we only need to commit, try to commit
1417 	     */
1418 	    KKASSERT(bp->b_cmd == BUF_CMD_WRITE);
1419 	    if (bp->b_flags & B_NEEDCOMMIT) {
1420 		    int retv;
1421 		    off_t off;
1422 
1423 		    off = bio->bio_offset + bp->b_dirtyoff;
1424 		    retv = nfs_commit(vp, off,
1425 				bp->b_dirtyend - bp->b_dirtyoff, td);
1426 		    if (retv == 0) {
1427 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1428 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1429 			    bp->b_resid = 0;
1430 			    biodone(bio);
1431 			    return (0);
1432 		    }
1433 		    if (retv == NFSERR_STALEWRITEVERF) {
1434 			    nfs_clearcommit(vp->v_mount);
1435 		    }
1436 	    }
1437 
1438 	    /*
1439 	     * Setup for actual write
1440 	     */
1441 
1442 	    if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1443 		bp->b_dirtyend = np->n_size - bio->bio_offset;
1444 
1445 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1446 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1447 		    - bp->b_dirtyoff;
1448 		uiop->uio_offset = bio->bio_offset + bp->b_dirtyoff;
1449 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1450 		uiop->uio_rw = UIO_WRITE;
1451 		nfsstats.write_bios++;
1452 
1453 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1454 		    iomode = NFSV3WRITE_UNSTABLE;
1455 		else
1456 		    iomode = NFSV3WRITE_FILESYNC;
1457 
1458 		error = nfs_writerpc(vp, uiop, &iomode, &must_commit);
1459 
1460 		/*
1461 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1462 		 * to cluster the buffers needing commit.  This will allow
1463 		 * the system to submit a single commit rpc for the whole
1464 		 * cluster.  We can do this even if the buffer is not 100%
1465 		 * dirty (relative to the NFS blocksize), so we optimize the
1466 		 * append-to-file-case.
1467 		 *
1468 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1469 		 * cleared because write clustering only works for commit
1470 		 * rpc's, not for the data portion of the write).
1471 		 */
1472 
1473 		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1474 		    bp->b_flags |= B_NEEDCOMMIT;
1475 		    if (bp->b_dirtyoff == 0
1476 			&& bp->b_dirtyend == bp->b_bcount)
1477 			bp->b_flags |= B_CLUSTEROK;
1478 		} else {
1479 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1480 		}
1481 
1482 		/*
1483 		 * For an interrupted write, the buffer is still valid
1484 		 * and the write hasn't been pushed to the server yet,
1485 		 * so we can't set B_ERROR and report the interruption
1486 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1487 		 * is not relevant, so the rpc attempt is essentially
1488 		 * a noop.  For the case of a V3 write rpc not being
1489 		 * committed to stable storage, the block is still
1490 		 * dirty and requires either a commit rpc or another
1491 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1492 		 * the block is reused. This is indicated by setting
1493 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1494 		 *
1495 		 * If the buffer is marked B_PAGING, it does not reside on
1496 		 * the vp's paging queues so we cannot call bdirty().  The
1497 		 * bp in this case is not an NFS cache block so we should
1498 		 * be safe. XXX
1499 		 */
1500     		if (error == EINTR
1501 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1502 			crit_enter();
1503 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1504 			if ((bp->b_flags & B_PAGING) == 0)
1505 			    bdirty(bp);
1506 			if (error && (bp->b_flags & B_ASYNC) == 0)
1507 			    bp->b_flags |= B_EINTR;
1508 			crit_exit();
1509 	    	} else {
1510 		    if (error) {
1511 			bp->b_flags |= B_ERROR;
1512 			bp->b_error = np->n_error = error;
1513 			np->n_flag |= NWRITEERR;
1514 		    }
1515 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1516 		}
1517 	    } else {
1518 		bp->b_resid = 0;
1519 		biodone(bio);
1520 		return (0);
1521 	    }
1522 	}
1523 	bp->b_resid = uiop->uio_resid;
1524 	if (must_commit)
1525 	    nfs_clearcommit(vp->v_mount);
1526 	biodone(bio);
1527 	return (error);
1528 }
1529 
1530 /*
1531  * Used to aid in handling ftruncate() operations on the NFS client side.
1532  * Truncation creates a number of special problems for NFS.  We have to
1533  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1534  * we have to properly handle VM pages or (potentially dirty) buffers
1535  * that straddle the truncation point.
1536  */
1537 
1538 int
1539 nfs_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize)
1540 {
1541 	struct nfsnode *np = VTONFS(vp);
1542 	u_quad_t tsize = np->n_size;
1543 	int biosize = vp->v_mount->mnt_stat.f_iosize;
1544 	int error = 0;
1545 
1546 	np->n_size = nsize;
1547 
1548 	if (np->n_size < tsize) {
1549 		struct buf *bp;
1550 		daddr_t lbn;
1551 		off_t loffset;
1552 		int bufsize;
1553 
1554 		/*
1555 		 * vtruncbuf() doesn't get the buffer overlapping the
1556 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1557 		 * buffer that now needs to be truncated.
1558 		 */
1559 		error = vtruncbuf(vp, nsize, biosize);
1560 		lbn = nsize / biosize;
1561 		bufsize = nsize & (biosize - 1);
1562 		loffset = nsize - bufsize;
1563 		bp = nfs_getcacheblk(vp, loffset, bufsize, td);
1564 		if (bp->b_dirtyoff > bp->b_bcount)
1565 			bp->b_dirtyoff = bp->b_bcount;
1566 		if (bp->b_dirtyend > bp->b_bcount)
1567 			bp->b_dirtyend = bp->b_bcount;
1568 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1569 		brelse(bp);
1570 	} else {
1571 		vnode_pager_setsize(vp, nsize);
1572 	}
1573 	return(error);
1574 }
1575 
1576