1 /* 2 * Copyright (c) 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * Rick Macklem at The University of Guelph. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 37 * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $ 38 * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.45 2008/07/18 00:09:39 dillon Exp $ 39 */ 40 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/resourcevar.h> 45 #include <sys/signalvar.h> 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/vnode.h> 49 #include <sys/mount.h> 50 #include <sys/kernel.h> 51 #include <sys/mbuf.h> 52 #include <sys/msfbuf.h> 53 54 #include <vm/vm.h> 55 #include <vm/vm_extern.h> 56 #include <vm/vm_page.h> 57 #include <vm/vm_object.h> 58 #include <vm/vm_pager.h> 59 #include <vm/vnode_pager.h> 60 61 #include <sys/buf2.h> 62 #include <sys/thread2.h> 63 64 #include "rpcv2.h" 65 #include "nfsproto.h" 66 #include "nfs.h" 67 #include "nfsmount.h" 68 #include "nfsnode.h" 69 #include "xdr_subs.h" 70 #include "nfsm_subs.h" 71 72 73 static struct buf *nfs_getcacheblk(struct vnode *vp, off_t loffset, 74 int size, struct thread *td); 75 static int nfs_check_dirent(struct nfs_dirent *dp, int maxlen); 76 static void nfsiodone_sync(struct bio *bio); 77 static void nfs_readrpc_bio_done(nfsm_info_t info); 78 static void nfs_writerpc_bio_done(nfsm_info_t info); 79 static void nfs_commitrpc_bio_done(nfsm_info_t info); 80 81 /* 82 * Vnode op for VM getpages. 83 * 84 * nfs_getpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, 85 * int a_reqpage, vm_ooffset_t a_offset) 86 */ 87 int 88 nfs_getpages(struct vop_getpages_args *ap) 89 { 90 struct thread *td = curthread; /* XXX */ 91 int i, error, nextoff, size, toff, count, npages; 92 struct uio uio; 93 struct iovec iov; 94 char *kva; 95 struct vnode *vp; 96 struct nfsmount *nmp; 97 vm_page_t *pages; 98 vm_page_t m; 99 struct msf_buf *msf; 100 101 vp = ap->a_vp; 102 nmp = VFSTONFS(vp->v_mount); 103 pages = ap->a_m; 104 count = ap->a_count; 105 106 if (vp->v_object == NULL) { 107 kprintf("nfs_getpages: called with non-merged cache vnode??\n"); 108 return VM_PAGER_ERROR; 109 } 110 111 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 112 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) 113 (void)nfs_fsinfo(nmp, vp, td); 114 115 npages = btoc(count); 116 117 /* 118 * NOTE that partially valid pages may occur in cases other 119 * then file EOF, such as when a file is partially written and 120 * ftruncate()-extended to a larger size. It is also possible 121 * for the valid bits to be set on garbage beyond the file EOF and 122 * clear in the area before EOF (e.g. m->valid == 0xfc), which can 123 * occur due to vtruncbuf() and the buffer cache's handling of 124 * pages which 'straddle' buffers or when b_bufsize is not a 125 * multiple of PAGE_SIZE.... the buffer cache cannot normally 126 * clear the extra bits. This kind of situation occurs when you 127 * make a small write() (m->valid == 0x03) and then mmap() and 128 * fault in the buffer(m->valid = 0xFF). When NFS flushes the 129 * buffer (vinvalbuf() m->valid = 0xFC) we are left with a mess. 130 * 131 * This is combined with the possibility that the pages are partially 132 * dirty or that there is a buffer backing the pages that is dirty 133 * (even if m->dirty is 0). 134 * 135 * To solve this problem several hacks have been made: (1) NFS 136 * guarentees that the IO block size is a multiple of PAGE_SIZE and 137 * (2) The buffer cache, when invalidating an NFS buffer, will 138 * disregard the buffer's fragmentory b_bufsize and invalidate 139 * the whole page rather then just the piece the buffer owns. 140 * 141 * This allows us to assume that a partially valid page found here 142 * is fully valid (vm_fault will zero'd out areas of the page not 143 * marked as valid). 144 */ 145 m = pages[ap->a_reqpage]; 146 if (m->valid != 0) { 147 for (i = 0; i < npages; ++i) { 148 if (i != ap->a_reqpage) 149 vnode_pager_freepage(pages[i]); 150 } 151 return(0); 152 } 153 154 /* 155 * Use an MSF_BUF as a medium to retrieve data from the pages. 156 */ 157 msf_map_pagelist(&msf, pages, npages, 0); 158 KKASSERT(msf); 159 kva = msf_buf_kva(msf); 160 161 iov.iov_base = kva; 162 iov.iov_len = count; 163 uio.uio_iov = &iov; 164 uio.uio_iovcnt = 1; 165 uio.uio_offset = IDX_TO_OFF(pages[0]->pindex); 166 uio.uio_resid = count; 167 uio.uio_segflg = UIO_SYSSPACE; 168 uio.uio_rw = UIO_READ; 169 uio.uio_td = td; 170 171 error = nfs_readrpc_uio(vp, &uio); 172 msf_buf_free(msf); 173 174 if (error && ((int)uio.uio_resid == count)) { 175 kprintf("nfs_getpages: error %d\n", error); 176 for (i = 0; i < npages; ++i) { 177 if (i != ap->a_reqpage) 178 vnode_pager_freepage(pages[i]); 179 } 180 return VM_PAGER_ERROR; 181 } 182 183 /* 184 * Calculate the number of bytes read and validate only that number 185 * of bytes. Note that due to pending writes, size may be 0. This 186 * does not mean that the remaining data is invalid! 187 */ 188 189 size = count - (int)uio.uio_resid; 190 191 for (i = 0, toff = 0; i < npages; i++, toff = nextoff) { 192 nextoff = toff + PAGE_SIZE; 193 m = pages[i]; 194 195 m->flags &= ~PG_ZERO; 196 197 if (nextoff <= size) { 198 /* 199 * Read operation filled an entire page 200 */ 201 m->valid = VM_PAGE_BITS_ALL; 202 vm_page_undirty(m); 203 } else if (size > toff) { 204 /* 205 * Read operation filled a partial page. 206 */ 207 m->valid = 0; 208 vm_page_set_validclean(m, 0, size - toff); 209 /* handled by vm_fault now */ 210 /* vm_page_zero_invalid(m, TRUE); */ 211 } else { 212 /* 213 * Read operation was short. If no error occured 214 * we may have hit a zero-fill section. We simply 215 * leave valid set to 0. 216 */ 217 ; 218 } 219 if (i != ap->a_reqpage) { 220 /* 221 * Whether or not to leave the page activated is up in 222 * the air, but we should put the page on a page queue 223 * somewhere (it already is in the object). Result: 224 * It appears that emperical results show that 225 * deactivating pages is best. 226 */ 227 228 /* 229 * Just in case someone was asking for this page we 230 * now tell them that it is ok to use. 231 */ 232 if (!error) { 233 if (m->flags & PG_WANTED) 234 vm_page_activate(m); 235 else 236 vm_page_deactivate(m); 237 vm_page_wakeup(m); 238 } else { 239 vnode_pager_freepage(m); 240 } 241 } 242 } 243 return 0; 244 } 245 246 /* 247 * Vnode op for VM putpages. 248 * 249 * nfs_putpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, int a_sync, 250 * int *a_rtvals, vm_ooffset_t a_offset) 251 */ 252 int 253 nfs_putpages(struct vop_putpages_args *ap) 254 { 255 struct thread *td = curthread; 256 struct uio uio; 257 struct iovec iov; 258 char *kva; 259 int iomode, must_commit, i, error, npages, count; 260 off_t offset; 261 int *rtvals; 262 struct vnode *vp; 263 struct nfsmount *nmp; 264 struct nfsnode *np; 265 vm_page_t *pages; 266 struct msf_buf *msf; 267 268 vp = ap->a_vp; 269 np = VTONFS(vp); 270 nmp = VFSTONFS(vp->v_mount); 271 pages = ap->a_m; 272 count = ap->a_count; 273 rtvals = ap->a_rtvals; 274 npages = btoc(count); 275 offset = IDX_TO_OFF(pages[0]->pindex); 276 277 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 278 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) 279 (void)nfs_fsinfo(nmp, vp, td); 280 281 for (i = 0; i < npages; i++) { 282 rtvals[i] = VM_PAGER_AGAIN; 283 } 284 285 /* 286 * When putting pages, do not extend file past EOF. 287 */ 288 289 if (offset + count > np->n_size) { 290 count = np->n_size - offset; 291 if (count < 0) 292 count = 0; 293 } 294 295 /* 296 * Use an MSF_BUF as a medium to retrieve data from the pages. 297 */ 298 msf_map_pagelist(&msf, pages, npages, 0); 299 KKASSERT(msf); 300 kva = msf_buf_kva(msf); 301 302 iov.iov_base = kva; 303 iov.iov_len = count; 304 uio.uio_iov = &iov; 305 uio.uio_iovcnt = 1; 306 uio.uio_offset = offset; 307 uio.uio_resid = (size_t)count; 308 uio.uio_segflg = UIO_SYSSPACE; 309 uio.uio_rw = UIO_WRITE; 310 uio.uio_td = td; 311 312 if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0) 313 iomode = NFSV3WRITE_UNSTABLE; 314 else 315 iomode = NFSV3WRITE_FILESYNC; 316 317 error = nfs_writerpc_uio(vp, &uio, &iomode, &must_commit); 318 319 msf_buf_free(msf); 320 321 if (!error) { 322 int nwritten = round_page(count - (int)uio.uio_resid) / PAGE_SIZE; 323 for (i = 0; i < nwritten; i++) { 324 rtvals[i] = VM_PAGER_OK; 325 vm_page_undirty(pages[i]); 326 } 327 if (must_commit) 328 nfs_clearcommit(vp->v_mount); 329 } 330 return rtvals[0]; 331 } 332 333 /* 334 * Vnode op for read using bio 335 */ 336 int 337 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag) 338 { 339 struct nfsnode *np = VTONFS(vp); 340 int biosize, i; 341 struct buf *bp = 0, *rabp; 342 struct vattr vattr; 343 struct thread *td; 344 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 345 daddr_t lbn, rabn; 346 off_t raoffset; 347 off_t loffset; 348 int bcount; 349 int seqcount; 350 int nra, error = 0, n = 0, on = 0; 351 352 #ifdef DIAGNOSTIC 353 if (uio->uio_rw != UIO_READ) 354 panic("nfs_read mode"); 355 #endif 356 if (uio->uio_resid == 0) 357 return (0); 358 if (uio->uio_offset < 0) /* XXX VDIR cookies can be negative */ 359 return (EINVAL); 360 td = uio->uio_td; 361 362 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 363 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) 364 (void)nfs_fsinfo(nmp, vp, td); 365 if (vp->v_type != VDIR && 366 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 367 return (EFBIG); 368 biosize = vp->v_mount->mnt_stat.f_iosize; 369 seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE); 370 371 /* 372 * For nfs, cache consistency can only be maintained approximately. 373 * Although RFC1094 does not specify the criteria, the following is 374 * believed to be compatible with the reference port. 375 * 376 * NFS: If local changes have been made and this is a 377 * directory, the directory must be invalidated and 378 * the attribute cache must be cleared. 379 * 380 * GETATTR is called to synchronize the file size. 381 * 382 * If remote changes are detected local data is flushed 383 * and the cache is invalidated. 384 * 385 * NOTE: In the normal case the attribute cache is not 386 * cleared which means GETATTR may use cached data and 387 * not immediately detect changes made on the server. 388 */ 389 if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) { 390 nfs_invaldir(vp); 391 error = nfs_vinvalbuf(vp, V_SAVE, 1); 392 if (error) 393 return (error); 394 np->n_attrstamp = 0; 395 } 396 error = VOP_GETATTR(vp, &vattr); 397 if (error) 398 return (error); 399 if (np->n_flag & NRMODIFIED) { 400 if (vp->v_type == VDIR) 401 nfs_invaldir(vp); 402 error = nfs_vinvalbuf(vp, V_SAVE, 1); 403 if (error) 404 return (error); 405 np->n_flag &= ~NRMODIFIED; 406 } 407 do { 408 if (np->n_flag & NDONTCACHE) { 409 switch (vp->v_type) { 410 case VREG: 411 return (nfs_readrpc_uio(vp, uio)); 412 case VLNK: 413 return (nfs_readlinkrpc_uio(vp, uio)); 414 case VDIR: 415 break; 416 default: 417 kprintf(" NDONTCACHE: type %x unexpected\n", vp->v_type); 418 break; 419 }; 420 } 421 switch (vp->v_type) { 422 case VREG: 423 nfsstats.biocache_reads++; 424 lbn = uio->uio_offset / biosize; 425 on = uio->uio_offset & (biosize - 1); 426 loffset = (off_t)lbn * biosize; 427 428 /* 429 * Start the read ahead(s), as required. 430 */ 431 if (nmp->nm_readahead > 0 && nfs_asyncok(nmp)) { 432 for (nra = 0; nra < nmp->nm_readahead && nra < seqcount && 433 (off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) { 434 rabn = lbn + 1 + nra; 435 raoffset = (off_t)rabn * biosize; 436 if (findblk(vp, raoffset, FINDBLK_TEST) == NULL) { 437 rabp = nfs_getcacheblk(vp, raoffset, biosize, td); 438 if (!rabp) 439 return (EINTR); 440 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 441 rabp->b_cmd = BUF_CMD_READ; 442 vfs_busy_pages(vp, rabp); 443 nfs_asyncio(vp, &rabp->b_bio2); 444 } else { 445 brelse(rabp); 446 } 447 } 448 } 449 } 450 451 /* 452 * Obtain the buffer cache block. Figure out the buffer size 453 * when we are at EOF. If we are modifying the size of the 454 * buffer based on an EOF condition we need to hold 455 * nfs_rslock() through obtaining the buffer to prevent 456 * a potential writer-appender from messing with n_size. 457 * Otherwise we may accidently truncate the buffer and 458 * lose dirty data. 459 * 460 * Note that bcount is *not* DEV_BSIZE aligned. 461 */ 462 463 again: 464 bcount = biosize; 465 if (loffset >= np->n_size) { 466 bcount = 0; 467 } else if (loffset + biosize > np->n_size) { 468 bcount = np->n_size - loffset; 469 } 470 if (bcount != biosize) { 471 switch(nfs_rslock(np)) { 472 case ENOLCK: 473 goto again; 474 /* not reached */ 475 case EINTR: 476 case ERESTART: 477 return(EINTR); 478 /* not reached */ 479 default: 480 break; 481 } 482 } 483 484 bp = nfs_getcacheblk(vp, loffset, bcount, td); 485 486 if (bcount != biosize) 487 nfs_rsunlock(np); 488 if (!bp) 489 return (EINTR); 490 491 /* 492 * If B_CACHE is not set, we must issue the read. If this 493 * fails, we return an error. 494 */ 495 496 if ((bp->b_flags & B_CACHE) == 0) { 497 bp->b_cmd = BUF_CMD_READ; 498 bp->b_bio2.bio_done = nfsiodone_sync; 499 bp->b_bio2.bio_flags |= BIO_SYNC; 500 vfs_busy_pages(vp, bp); 501 error = nfs_doio(vp, &bp->b_bio2, td); 502 if (error) { 503 brelse(bp); 504 return (error); 505 } 506 } 507 508 /* 509 * on is the offset into the current bp. Figure out how many 510 * bytes we can copy out of the bp. Note that bcount is 511 * NOT DEV_BSIZE aligned. 512 * 513 * Then figure out how many bytes we can copy into the uio. 514 */ 515 516 n = 0; 517 if (on < bcount) 518 n = (int)szmin((unsigned)(bcount - on), uio->uio_resid); 519 break; 520 case VLNK: 521 biosize = min(NFS_MAXPATHLEN, np->n_size); 522 nfsstats.biocache_readlinks++; 523 bp = nfs_getcacheblk(vp, (off_t)0, biosize, td); 524 if (bp == NULL) 525 return (EINTR); 526 if ((bp->b_flags & B_CACHE) == 0) { 527 bp->b_cmd = BUF_CMD_READ; 528 bp->b_bio2.bio_done = nfsiodone_sync; 529 bp->b_bio2.bio_flags |= BIO_SYNC; 530 vfs_busy_pages(vp, bp); 531 error = nfs_doio(vp, &bp->b_bio2, td); 532 if (error) { 533 bp->b_flags |= B_ERROR | B_INVAL; 534 brelse(bp); 535 return (error); 536 } 537 } 538 n = (int)szmin(uio->uio_resid, bp->b_bcount - bp->b_resid); 539 on = 0; 540 break; 541 case VDIR: 542 nfsstats.biocache_readdirs++; 543 if (np->n_direofoffset 544 && uio->uio_offset >= np->n_direofoffset) { 545 return (0); 546 } 547 lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ; 548 on = uio->uio_offset & (NFS_DIRBLKSIZ - 1); 549 loffset = uio->uio_offset - on; 550 bp = nfs_getcacheblk(vp, loffset, NFS_DIRBLKSIZ, td); 551 if (bp == NULL) 552 return (EINTR); 553 554 if ((bp->b_flags & B_CACHE) == 0) { 555 bp->b_cmd = BUF_CMD_READ; 556 bp->b_bio2.bio_done = nfsiodone_sync; 557 bp->b_bio2.bio_flags |= BIO_SYNC; 558 vfs_busy_pages(vp, bp); 559 error = nfs_doio(vp, &bp->b_bio2, td); 560 if (error) 561 brelse(bp); 562 while (error == NFSERR_BAD_COOKIE) { 563 kprintf("got bad cookie vp %p bp %p\n", vp, bp); 564 nfs_invaldir(vp); 565 error = nfs_vinvalbuf(vp, 0, 1); 566 /* 567 * Yuck! The directory has been modified on the 568 * server. The only way to get the block is by 569 * reading from the beginning to get all the 570 * offset cookies. 571 * 572 * Leave the last bp intact unless there is an error. 573 * Loop back up to the while if the error is another 574 * NFSERR_BAD_COOKIE (double yuch!). 575 */ 576 for (i = 0; i <= lbn && !error; i++) { 577 if (np->n_direofoffset 578 && (i * NFS_DIRBLKSIZ) >= np->n_direofoffset) 579 return (0); 580 bp = nfs_getcacheblk(vp, (off_t)i * NFS_DIRBLKSIZ, 581 NFS_DIRBLKSIZ, td); 582 if (!bp) 583 return (EINTR); 584 if ((bp->b_flags & B_CACHE) == 0) { 585 bp->b_cmd = BUF_CMD_READ; 586 bp->b_bio2.bio_done = nfsiodone_sync; 587 bp->b_bio2.bio_flags |= BIO_SYNC; 588 vfs_busy_pages(vp, bp); 589 error = nfs_doio(vp, &bp->b_bio2, td); 590 /* 591 * no error + B_INVAL == directory EOF, 592 * use the block. 593 */ 594 if (error == 0 && (bp->b_flags & B_INVAL)) 595 break; 596 } 597 /* 598 * An error will throw away the block and the 599 * for loop will break out. If no error and this 600 * is not the block we want, we throw away the 601 * block and go for the next one via the for loop. 602 */ 603 if (error || i < lbn) 604 brelse(bp); 605 } 606 } 607 /* 608 * The above while is repeated if we hit another cookie 609 * error. If we hit an error and it wasn't a cookie error, 610 * we give up. 611 */ 612 if (error) 613 return (error); 614 } 615 616 /* 617 * If not eof and read aheads are enabled, start one. 618 * (You need the current block first, so that you have the 619 * directory offset cookie of the next block.) 620 */ 621 if (nmp->nm_readahead > 0 && nfs_asyncok(nmp) && 622 (bp->b_flags & B_INVAL) == 0 && 623 (np->n_direofoffset == 0 || 624 loffset + NFS_DIRBLKSIZ < np->n_direofoffset) && 625 (np->n_flag & NDONTCACHE) == 0 && 626 findblk(vp, loffset + NFS_DIRBLKSIZ, FINDBLK_TEST) == NULL 627 ) { 628 rabp = nfs_getcacheblk(vp, loffset + NFS_DIRBLKSIZ, 629 NFS_DIRBLKSIZ, td); 630 if (rabp) { 631 if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) { 632 rabp->b_cmd = BUF_CMD_READ; 633 vfs_busy_pages(vp, rabp); 634 nfs_asyncio(vp, &rabp->b_bio2); 635 } else { 636 brelse(rabp); 637 } 638 } 639 } 640 /* 641 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is 642 * chopped for the EOF condition, we cannot tell how large 643 * NFS directories are going to be until we hit EOF. So 644 * an NFS directory buffer is *not* chopped to its EOF. Now, 645 * it just so happens that b_resid will effectively chop it 646 * to EOF. *BUT* this information is lost if the buffer goes 647 * away and is reconstituted into a B_CACHE state ( due to 648 * being VMIO ) later. So we keep track of the directory eof 649 * in np->n_direofoffset and chop it off as an extra step 650 * right here. 651 */ 652 n = (int)szmin(uio->uio_resid, 653 NFS_DIRBLKSIZ - bp->b_resid - on); 654 if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset) 655 n = np->n_direofoffset - uio->uio_offset; 656 break; 657 default: 658 kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type); 659 break; 660 }; 661 662 switch (vp->v_type) { 663 case VREG: 664 if (n > 0) 665 error = uiomove(bp->b_data + on, (int)n, uio); 666 break; 667 case VLNK: 668 if (n > 0) 669 error = uiomove(bp->b_data + on, (int)n, uio); 670 n = 0; 671 break; 672 case VDIR: 673 if (n > 0) { 674 off_t old_off = uio->uio_offset; 675 caddr_t cpos, epos; 676 struct nfs_dirent *dp; 677 678 /* 679 * We are casting cpos to nfs_dirent, it must be 680 * int-aligned. 681 */ 682 if (on & 3) { 683 error = EINVAL; 684 break; 685 } 686 687 cpos = bp->b_data + on; 688 epos = bp->b_data + on + n; 689 while (cpos < epos && error == 0 && uio->uio_resid > 0) { 690 dp = (struct nfs_dirent *)cpos; 691 error = nfs_check_dirent(dp, (int)(epos - cpos)); 692 if (error) 693 break; 694 if (vop_write_dirent(&error, uio, dp->nfs_ino, 695 dp->nfs_type, dp->nfs_namlen, dp->nfs_name)) { 696 break; 697 } 698 cpos += dp->nfs_reclen; 699 } 700 n = 0; 701 if (error == 0) 702 uio->uio_offset = old_off + cpos - bp->b_data - on; 703 } 704 /* 705 * Invalidate buffer if caching is disabled, forcing a 706 * re-read from the remote later. 707 */ 708 if (np->n_flag & NDONTCACHE) 709 bp->b_flags |= B_INVAL; 710 break; 711 default: 712 kprintf(" nfs_bioread: type %x unexpected\n",vp->v_type); 713 } 714 brelse(bp); 715 } while (error == 0 && uio->uio_resid > 0 && n > 0); 716 return (error); 717 } 718 719 /* 720 * Userland can supply any 'seek' offset when reading a NFS directory. 721 * Validate the structure so we don't panic the kernel. Note that 722 * the element name is nul terminated and the nul is not included 723 * in nfs_namlen. 724 */ 725 static 726 int 727 nfs_check_dirent(struct nfs_dirent *dp, int maxlen) 728 { 729 int nfs_name_off = offsetof(struct nfs_dirent, nfs_name[0]); 730 731 if (nfs_name_off >= maxlen) 732 return (EINVAL); 733 if (dp->nfs_reclen < nfs_name_off || dp->nfs_reclen > maxlen) 734 return (EINVAL); 735 if (nfs_name_off + dp->nfs_namlen >= dp->nfs_reclen) 736 return (EINVAL); 737 if (dp->nfs_reclen & 3) 738 return (EINVAL); 739 return (0); 740 } 741 742 /* 743 * Vnode op for write using bio 744 * 745 * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag, 746 * struct ucred *a_cred) 747 */ 748 int 749 nfs_write(struct vop_write_args *ap) 750 { 751 struct uio *uio = ap->a_uio; 752 struct thread *td = uio->uio_td; 753 struct vnode *vp = ap->a_vp; 754 struct nfsnode *np = VTONFS(vp); 755 int ioflag = ap->a_ioflag; 756 struct buf *bp; 757 struct vattr vattr; 758 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 759 daddr_t lbn; 760 off_t loffset; 761 int n, on, error = 0, iomode, must_commit; 762 int haverslock = 0; 763 int bcount; 764 int biosize; 765 766 #ifdef DIAGNOSTIC 767 if (uio->uio_rw != UIO_WRITE) 768 panic("nfs_write mode"); 769 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread) 770 panic("nfs_write proc"); 771 #endif 772 if (vp->v_type != VREG) 773 return (EIO); 774 if (np->n_flag & NWRITEERR) { 775 np->n_flag &= ~NWRITEERR; 776 return (np->n_error); 777 } 778 if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 && 779 (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) 780 (void)nfs_fsinfo(nmp, vp, td); 781 782 /* 783 * Synchronously flush pending buffers if we are in synchronous 784 * mode or if we are appending. 785 */ 786 if (ioflag & (IO_APPEND | IO_SYNC)) { 787 if (np->n_flag & NLMODIFIED) { 788 np->n_attrstamp = 0; 789 error = nfs_flush(vp, MNT_WAIT, td, 0); 790 /* error = nfs_vinvalbuf(vp, V_SAVE, 1); */ 791 if (error) 792 return (error); 793 } 794 } 795 796 /* 797 * If IO_APPEND then load uio_offset. We restart here if we cannot 798 * get the append lock. 799 */ 800 restart: 801 if (ioflag & IO_APPEND) { 802 np->n_attrstamp = 0; 803 error = VOP_GETATTR(vp, &vattr); 804 if (error) 805 return (error); 806 uio->uio_offset = np->n_size; 807 } 808 809 if (uio->uio_offset < 0) 810 return (EINVAL); 811 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize) 812 return (EFBIG); 813 if (uio->uio_resid == 0) 814 return (0); 815 816 /* 817 * We need to obtain the rslock if we intend to modify np->n_size 818 * in order to guarentee the append point with multiple contending 819 * writers, to guarentee that no other appenders modify n_size 820 * while we are trying to obtain a truncated buffer (i.e. to avoid 821 * accidently truncating data written by another appender due to 822 * the race), and to ensure that the buffer is populated prior to 823 * our extending of the file. We hold rslock through the entire 824 * operation. 825 * 826 * Note that we do not synchronize the case where someone truncates 827 * the file while we are appending to it because attempting to lock 828 * this case may deadlock other parts of the system unexpectedly. 829 */ 830 if ((ioflag & IO_APPEND) || 831 uio->uio_offset + uio->uio_resid > np->n_size) { 832 switch(nfs_rslock(np)) { 833 case ENOLCK: 834 goto restart; 835 /* not reached */ 836 case EINTR: 837 case ERESTART: 838 return(EINTR); 839 /* not reached */ 840 default: 841 break; 842 } 843 haverslock = 1; 844 } 845 846 /* 847 * Maybe this should be above the vnode op call, but so long as 848 * file servers have no limits, i don't think it matters 849 */ 850 if (td->td_proc && uio->uio_offset + uio->uio_resid > 851 td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) { 852 lwpsignal(td->td_proc, td->td_lwp, SIGXFSZ); 853 if (haverslock) 854 nfs_rsunlock(np); 855 return (EFBIG); 856 } 857 858 biosize = vp->v_mount->mnt_stat.f_iosize; 859 860 do { 861 if ((np->n_flag & NDONTCACHE) && uio->uio_iovcnt == 1) { 862 iomode = NFSV3WRITE_FILESYNC; 863 error = nfs_writerpc_uio(vp, uio, &iomode, &must_commit); 864 if (must_commit) 865 nfs_clearcommit(vp->v_mount); 866 break; 867 } 868 nfsstats.biocache_writes++; 869 lbn = uio->uio_offset / biosize; 870 on = uio->uio_offset & (biosize-1); 871 loffset = uio->uio_offset - on; 872 n = (int)szmin((unsigned)(biosize - on), uio->uio_resid); 873 again: 874 /* 875 * Handle direct append and file extension cases, calculate 876 * unaligned buffer size. 877 */ 878 879 if (uio->uio_offset == np->n_size && n) { 880 /* 881 * Get the buffer (in its pre-append state to maintain 882 * B_CACHE if it was previously set). Resize the 883 * nfsnode after we have locked the buffer to prevent 884 * readers from reading garbage. 885 */ 886 bcount = on; 887 bp = nfs_getcacheblk(vp, loffset, bcount, td); 888 889 if (bp != NULL) { 890 long save; 891 892 np->n_size = uio->uio_offset + n; 893 np->n_flag |= NLMODIFIED; 894 vnode_pager_setsize(vp, np->n_size); 895 896 save = bp->b_flags & B_CACHE; 897 bcount += n; 898 allocbuf(bp, bcount); 899 bp->b_flags |= save; 900 } 901 } else { 902 /* 903 * Obtain the locked cache block first, and then 904 * adjust the file's size as appropriate. 905 */ 906 bcount = on + n; 907 if (loffset + bcount < np->n_size) { 908 if (loffset + biosize < np->n_size) 909 bcount = biosize; 910 else 911 bcount = np->n_size - loffset; 912 } 913 bp = nfs_getcacheblk(vp, loffset, bcount, td); 914 if (uio->uio_offset + n > np->n_size) { 915 np->n_size = uio->uio_offset + n; 916 np->n_flag |= NLMODIFIED; 917 vnode_pager_setsize(vp, np->n_size); 918 } 919 } 920 921 if (bp == NULL) { 922 error = EINTR; 923 break; 924 } 925 926 /* 927 * Issue a READ if B_CACHE is not set. In special-append 928 * mode, B_CACHE is based on the buffer prior to the write 929 * op and is typically set, avoiding the read. If a read 930 * is required in special append mode, the server will 931 * probably send us a short-read since we extended the file 932 * on our end, resulting in b_resid == 0 and, thusly, 933 * B_CACHE getting set. 934 * 935 * We can also avoid issuing the read if the write covers 936 * the entire buffer. We have to make sure the buffer state 937 * is reasonable in this case since we will not be initiating 938 * I/O. See the comments in kern/vfs_bio.c's getblk() for 939 * more information. 940 * 941 * B_CACHE may also be set due to the buffer being cached 942 * normally. 943 * 944 * When doing a UIO_NOCOPY write the buffer is not 945 * overwritten and we cannot just set B_CACHE unconditionally 946 * for full-block writes. 947 */ 948 949 if (on == 0 && n == bcount && uio->uio_segflg != UIO_NOCOPY) { 950 bp->b_flags |= B_CACHE; 951 bp->b_flags &= ~(B_ERROR | B_INVAL); 952 } 953 954 if ((bp->b_flags & B_CACHE) == 0) { 955 bp->b_cmd = BUF_CMD_READ; 956 bp->b_bio2.bio_done = nfsiodone_sync; 957 bp->b_bio2.bio_flags |= BIO_SYNC; 958 vfs_busy_pages(vp, bp); 959 error = nfs_doio(vp, &bp->b_bio2, td); 960 if (error) { 961 brelse(bp); 962 break; 963 } 964 } 965 if (!bp) { 966 error = EINTR; 967 break; 968 } 969 np->n_flag |= NLMODIFIED; 970 971 /* 972 * If dirtyend exceeds file size, chop it down. This should 973 * not normally occur but there is an append race where it 974 * might occur XXX, so we log it. 975 * 976 * If the chopping creates a reverse-indexed or degenerate 977 * situation with dirtyoff/end, we 0 both of them. 978 */ 979 980 if (bp->b_dirtyend > bcount) { 981 kprintf("NFS append race @%08llx:%d\n", 982 (long long)bp->b_bio2.bio_offset, 983 bp->b_dirtyend - bcount); 984 bp->b_dirtyend = bcount; 985 } 986 987 if (bp->b_dirtyoff >= bp->b_dirtyend) 988 bp->b_dirtyoff = bp->b_dirtyend = 0; 989 990 /* 991 * If the new write will leave a contiguous dirty 992 * area, just update the b_dirtyoff and b_dirtyend, 993 * otherwise force a write rpc of the old dirty area. 994 * 995 * While it is possible to merge discontiguous writes due to 996 * our having a B_CACHE buffer ( and thus valid read data 997 * for the hole), we don't because it could lead to 998 * significant cache coherency problems with multiple clients, 999 * especially if locking is implemented later on. 1000 * 1001 * as an optimization we could theoretically maintain 1002 * a linked list of discontinuous areas, but we would still 1003 * have to commit them separately so there isn't much 1004 * advantage to it except perhaps a bit of asynchronization. 1005 */ 1006 1007 if (bp->b_dirtyend > 0 && 1008 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 1009 if (bwrite(bp) == EINTR) { 1010 error = EINTR; 1011 break; 1012 } 1013 goto again; 1014 } 1015 1016 error = uiomove((char *)bp->b_data + on, n, uio); 1017 1018 /* 1019 * Since this block is being modified, it must be written 1020 * again and not just committed. Since write clustering does 1021 * not work for the stage 1 data write, only the stage 2 1022 * commit rpc, we have to clear B_CLUSTEROK as well. 1023 */ 1024 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1025 1026 if (error) { 1027 bp->b_flags |= B_ERROR; 1028 brelse(bp); 1029 break; 1030 } 1031 1032 /* 1033 * Only update dirtyoff/dirtyend if not a degenerate 1034 * condition. 1035 */ 1036 if (n) { 1037 if (bp->b_dirtyend > 0) { 1038 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 1039 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 1040 } else { 1041 bp->b_dirtyoff = on; 1042 bp->b_dirtyend = on + n; 1043 } 1044 vfs_bio_set_validclean(bp, on, n); 1045 } 1046 1047 /* 1048 * If the lease is non-cachable or IO_SYNC do bwrite(). 1049 * 1050 * IO_INVAL appears to be unused. The idea appears to be 1051 * to turn off caching in this case. Very odd. XXX 1052 * 1053 * If nfs_async is set bawrite() will use an unstable write 1054 * (build dirty bufs on the server), so we might as well 1055 * push it out with bawrite(). If nfs_async is not set we 1056 * use bdwrite() to cache dirty bufs on the client. 1057 */ 1058 if ((np->n_flag & NDONTCACHE) || (ioflag & IO_SYNC)) { 1059 if (ioflag & IO_INVAL) 1060 bp->b_flags |= B_NOCACHE; 1061 error = bwrite(bp); 1062 if (error) 1063 break; 1064 if (np->n_flag & NDONTCACHE) { 1065 error = nfs_vinvalbuf(vp, V_SAVE, 1); 1066 if (error) 1067 break; 1068 } 1069 } else if ((n + on) == biosize && nfs_async) { 1070 bawrite(bp); 1071 } else { 1072 bdwrite(bp); 1073 } 1074 } while (uio->uio_resid > 0 && n > 0); 1075 1076 if (haverslock) 1077 nfs_rsunlock(np); 1078 1079 return (error); 1080 } 1081 1082 /* 1083 * Get an nfs cache block. 1084 * 1085 * Allocate a new one if the block isn't currently in the cache 1086 * and return the block marked busy. If the calling process is 1087 * interrupted by a signal for an interruptible mount point, return 1088 * NULL. 1089 * 1090 * The caller must carefully deal with the possible B_INVAL state of 1091 * the buffer. nfs_startio() clears B_INVAL (and nfs_asyncio() clears it 1092 * indirectly), so synchronous reads can be issued without worrying about 1093 * the B_INVAL state. We have to be a little more careful when dealing 1094 * with writes (see comments in nfs_write()) when extending a file past 1095 * its EOF. 1096 */ 1097 static struct buf * 1098 nfs_getcacheblk(struct vnode *vp, off_t loffset, int size, struct thread *td) 1099 { 1100 struct buf *bp; 1101 struct mount *mp; 1102 struct nfsmount *nmp; 1103 1104 mp = vp->v_mount; 1105 nmp = VFSTONFS(mp); 1106 1107 if (nmp->nm_flag & NFSMNT_INT) { 1108 bp = getblk(vp, loffset, size, GETBLK_PCATCH, 0); 1109 while (bp == NULL) { 1110 if (nfs_sigintr(nmp, NULL, td)) 1111 return (NULL); 1112 bp = getblk(vp, loffset, size, 0, 2 * hz); 1113 } 1114 } else { 1115 bp = getblk(vp, loffset, size, 0, 0); 1116 } 1117 1118 /* 1119 * bio2, the 'device' layer. Since BIOs use 64 bit byte offsets 1120 * now, no translation is necessary. 1121 */ 1122 bp->b_bio2.bio_offset = loffset; 1123 return (bp); 1124 } 1125 1126 /* 1127 * Flush and invalidate all dirty buffers. If another process is already 1128 * doing the flush, just wait for completion. 1129 */ 1130 int 1131 nfs_vinvalbuf(struct vnode *vp, int flags, int intrflg) 1132 { 1133 struct nfsnode *np = VTONFS(vp); 1134 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1135 int error = 0, slpflag, slptimeo; 1136 thread_t td = curthread; 1137 1138 if (vp->v_flag & VRECLAIMED) 1139 return (0); 1140 1141 if ((nmp->nm_flag & NFSMNT_INT) == 0) 1142 intrflg = 0; 1143 if (intrflg) { 1144 slpflag = PCATCH; 1145 slptimeo = 2 * hz; 1146 } else { 1147 slpflag = 0; 1148 slptimeo = 0; 1149 } 1150 /* 1151 * First wait for any other process doing a flush to complete. 1152 */ 1153 while (np->n_flag & NFLUSHINPROG) { 1154 np->n_flag |= NFLUSHWANT; 1155 error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo); 1156 if (error && intrflg && nfs_sigintr(nmp, NULL, td)) 1157 return (EINTR); 1158 } 1159 1160 /* 1161 * Now, flush as required. 1162 */ 1163 np->n_flag |= NFLUSHINPROG; 1164 error = vinvalbuf(vp, flags, slpflag, 0); 1165 while (error) { 1166 if (intrflg && nfs_sigintr(nmp, NULL, td)) { 1167 np->n_flag &= ~NFLUSHINPROG; 1168 if (np->n_flag & NFLUSHWANT) { 1169 np->n_flag &= ~NFLUSHWANT; 1170 wakeup((caddr_t)&np->n_flag); 1171 } 1172 return (EINTR); 1173 } 1174 error = vinvalbuf(vp, flags, 0, slptimeo); 1175 } 1176 np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG); 1177 if (np->n_flag & NFLUSHWANT) { 1178 np->n_flag &= ~NFLUSHWANT; 1179 wakeup((caddr_t)&np->n_flag); 1180 } 1181 return (0); 1182 } 1183 1184 /* 1185 * Return true (non-zero) if the txthread and rxthread are operational 1186 * and we do not already have too many not-yet-started BIO's built up. 1187 */ 1188 int 1189 nfs_asyncok(struct nfsmount *nmp) 1190 { 1191 return (nmp->nm_bioqlen < nfs_maxasyncbio && 1192 nmp->nm_bioqlen < nmp->nm_maxasync_scaled / NFS_ASYSCALE && 1193 nmp->nm_rxstate <= NFSSVC_PENDING && 1194 nmp->nm_txstate <= NFSSVC_PENDING); 1195 } 1196 1197 /* 1198 * The read-ahead code calls this to queue a bio to the txthread. 1199 * 1200 * We don't touch the bio otherwise... that is, we do not even 1201 * construct or send the initial rpc. The txthread will do it 1202 * for us. 1203 * 1204 * NOTE! nm_bioqlen is not decremented until the request completes, 1205 * so it does not reflect the number of bio's on bioq. 1206 */ 1207 void 1208 nfs_asyncio(struct vnode *vp, struct bio *bio) 1209 { 1210 struct buf *bp = bio->bio_buf; 1211 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1212 1213 KKASSERT(vp->v_tag == VT_NFS); 1214 BUF_KERNPROC(bp); 1215 bio->bio_driver_info = vp; 1216 crit_enter(); 1217 TAILQ_INSERT_TAIL(&nmp->nm_bioq, bio, bio_act); 1218 atomic_add_int(&nmp->nm_bioqlen, 1); 1219 crit_exit(); 1220 nfssvc_iod_writer_wakeup(nmp); 1221 } 1222 1223 /* 1224 * nfs_dio() - Execute a BIO operation synchronously. The BIO will be 1225 * completed and its error returned. The caller is responsible 1226 * for brelse()ing it. ONLY USE FOR BIO_SYNC IOs! Otherwise 1227 * our error probe will be against an invalid pointer. 1228 * 1229 * nfs_startio()- Execute a BIO operation assynchronously. 1230 * 1231 * NOTE: nfs_asyncio() is used to initiate an asynchronous BIO operation, 1232 * which basically just queues it to the txthread. nfs_startio() 1233 * actually initiates the I/O AFTER it has gotten to the txthread. 1234 * 1235 * NOTE: td might be NULL. 1236 */ 1237 void 1238 nfs_startio(struct vnode *vp, struct bio *bio, struct thread *td) 1239 { 1240 struct buf *bp = bio->bio_buf; 1241 struct nfsnode *np; 1242 struct nfsmount *nmp; 1243 1244 KKASSERT(vp->v_tag == VT_NFS); 1245 np = VTONFS(vp); 1246 nmp = VFSTONFS(vp->v_mount); 1247 1248 /* 1249 * clear B_ERROR and B_INVAL state prior to initiating the I/O. We 1250 * do this here so we do not have to do it in all the code that 1251 * calls us. 1252 */ 1253 bp->b_flags &= ~(B_ERROR | B_INVAL); 1254 1255 KASSERT(bp->b_cmd != BUF_CMD_DONE, 1256 ("nfs_doio: bp %p already marked done!", bp)); 1257 1258 if (bp->b_cmd == BUF_CMD_READ) { 1259 switch (vp->v_type) { 1260 case VREG: 1261 nfsstats.read_bios++; 1262 nfs_readrpc_bio(vp, bio); 1263 break; 1264 case VLNK: 1265 #if 0 1266 bio->bio_offset = 0; 1267 nfsstats.readlink_bios++; 1268 nfs_readlinkrpc_bio(vp, bio); 1269 #else 1270 nfs_doio(vp, bio, td); 1271 #endif 1272 break; 1273 case VDIR: 1274 /* 1275 * NOTE: If nfs_readdirplusrpc_bio() is requested but 1276 * not supported, it will chain to 1277 * nfs_readdirrpc_bio(). 1278 */ 1279 #if 0 1280 nfsstats.readdir_bios++; 1281 uiop->uio_offset = bio->bio_offset; 1282 if (nmp->nm_flag & NFSMNT_RDIRPLUS) 1283 nfs_readdirplusrpc_bio(vp, bio); 1284 else 1285 nfs_readdirrpc_bio(vp, bio); 1286 #else 1287 nfs_doio(vp, bio, td); 1288 #endif 1289 break; 1290 default: 1291 kprintf("nfs_doio: type %x unexpected\n",vp->v_type); 1292 bp->b_flags |= B_ERROR; 1293 bp->b_error = EINVAL; 1294 biodone(bio); 1295 break; 1296 } 1297 } else { 1298 /* 1299 * If we only need to commit, try to commit. If this fails 1300 * it will chain through to the write. Basically all the logic 1301 * in nfs_doio() is replicated. 1302 */ 1303 KKASSERT(bp->b_cmd == BUF_CMD_WRITE); 1304 if (bp->b_flags & B_NEEDCOMMIT) 1305 nfs_commitrpc_bio(vp, bio); 1306 else 1307 nfs_writerpc_bio(vp, bio); 1308 } 1309 } 1310 1311 int 1312 nfs_doio(struct vnode *vp, struct bio *bio, struct thread *td) 1313 { 1314 struct buf *bp = bio->bio_buf; 1315 struct uio *uiop; 1316 struct nfsnode *np; 1317 struct nfsmount *nmp; 1318 int error = 0; 1319 int iomode, must_commit; 1320 struct uio uio; 1321 struct iovec io; 1322 1323 KKASSERT(vp->v_tag == VT_NFS); 1324 np = VTONFS(vp); 1325 nmp = VFSTONFS(vp->v_mount); 1326 uiop = &uio; 1327 uiop->uio_iov = &io; 1328 uiop->uio_iovcnt = 1; 1329 uiop->uio_segflg = UIO_SYSSPACE; 1330 uiop->uio_td = td; 1331 1332 /* 1333 * clear B_ERROR and B_INVAL state prior to initiating the I/O. We 1334 * do this here so we do not have to do it in all the code that 1335 * calls us. 1336 */ 1337 bp->b_flags &= ~(B_ERROR | B_INVAL); 1338 1339 KASSERT(bp->b_cmd != BUF_CMD_DONE, 1340 ("nfs_doio: bp %p already marked done!", bp)); 1341 1342 if (bp->b_cmd == BUF_CMD_READ) { 1343 io.iov_len = uiop->uio_resid = (size_t)bp->b_bcount; 1344 io.iov_base = bp->b_data; 1345 uiop->uio_rw = UIO_READ; 1346 1347 switch (vp->v_type) { 1348 case VREG: 1349 nfsstats.read_bios++; 1350 uiop->uio_offset = bio->bio_offset; 1351 error = nfs_readrpc_uio(vp, uiop); 1352 if (error == 0) { 1353 if (uiop->uio_resid) { 1354 /* 1355 * If we had a short read with no error, we must have 1356 * hit a file hole. We should zero-fill the remainder. 1357 * This can also occur if the server hits the file EOF. 1358 * 1359 * Holes used to be able to occur due to pending 1360 * writes, but that is not possible any longer. 1361 */ 1362 int nread = bp->b_bcount - bp->b_resid; 1363 int left = bp->b_resid; 1364 1365 if (left > 0) 1366 bzero((char *)bp->b_data + nread, left); 1367 bp->b_resid = 0; 1368 } 1369 } 1370 if (td && td->td_proc && (vp->v_flag & VTEXT) && 1371 np->n_mtime != np->n_vattr.va_mtime.tv_sec) { 1372 uprintf("Process killed due to text file modification\n"); 1373 ksignal(td->td_proc, SIGKILL); 1374 } 1375 break; 1376 case VLNK: 1377 uiop->uio_offset = 0; 1378 nfsstats.readlink_bios++; 1379 error = nfs_readlinkrpc_uio(vp, uiop); 1380 break; 1381 case VDIR: 1382 nfsstats.readdir_bios++; 1383 uiop->uio_offset = bio->bio_offset; 1384 if (nmp->nm_flag & NFSMNT_RDIRPLUS) { 1385 error = nfs_readdirplusrpc_uio(vp, uiop); 1386 if (error == NFSERR_NOTSUPP) 1387 nmp->nm_flag &= ~NFSMNT_RDIRPLUS; 1388 } 1389 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0) 1390 error = nfs_readdirrpc_uio(vp, uiop); 1391 /* 1392 * end-of-directory sets B_INVAL but does not generate an 1393 * error. 1394 */ 1395 if (error == 0 && uiop->uio_resid == bp->b_bcount) 1396 bp->b_flags |= B_INVAL; 1397 break; 1398 default: 1399 kprintf("nfs_doio: type %x unexpected\n",vp->v_type); 1400 break; 1401 }; 1402 if (error) { 1403 bp->b_flags |= B_ERROR; 1404 bp->b_error = error; 1405 } 1406 bp->b_resid = uiop->uio_resid; 1407 } else { 1408 /* 1409 * If we only need to commit, try to commit 1410 */ 1411 KKASSERT(bp->b_cmd == BUF_CMD_WRITE); 1412 if (bp->b_flags & B_NEEDCOMMIT) { 1413 int retv; 1414 off_t off; 1415 1416 off = bio->bio_offset + bp->b_dirtyoff; 1417 retv = nfs_commitrpc_uio(vp, off, 1418 bp->b_dirtyend - bp->b_dirtyoff, 1419 td); 1420 if (retv == 0) { 1421 bp->b_dirtyoff = bp->b_dirtyend = 0; 1422 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1423 bp->b_resid = 0; 1424 biodone(bio); 1425 return(0); 1426 } 1427 if (retv == NFSERR_STALEWRITEVERF) { 1428 nfs_clearcommit(vp->v_mount); 1429 } 1430 } 1431 1432 /* 1433 * Setup for actual write 1434 */ 1435 if (bio->bio_offset + bp->b_dirtyend > np->n_size) 1436 bp->b_dirtyend = np->n_size - bio->bio_offset; 1437 1438 if (bp->b_dirtyend > bp->b_dirtyoff) { 1439 io.iov_len = uiop->uio_resid = bp->b_dirtyend 1440 - bp->b_dirtyoff; 1441 uiop->uio_offset = bio->bio_offset + bp->b_dirtyoff; 1442 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 1443 uiop->uio_rw = UIO_WRITE; 1444 nfsstats.write_bios++; 1445 1446 if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0) 1447 iomode = NFSV3WRITE_UNSTABLE; 1448 else 1449 iomode = NFSV3WRITE_FILESYNC; 1450 1451 must_commit = 0; 1452 error = nfs_writerpc_uio(vp, uiop, &iomode, &must_commit); 1453 1454 /* 1455 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1456 * to cluster the buffers needing commit. This will allow 1457 * the system to submit a single commit rpc for the whole 1458 * cluster. We can do this even if the buffer is not 100% 1459 * dirty (relative to the NFS blocksize), so we optimize the 1460 * append-to-file-case. 1461 * 1462 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1463 * cleared because write clustering only works for commit 1464 * rpc's, not for the data portion of the write). 1465 */ 1466 1467 if (!error && iomode == NFSV3WRITE_UNSTABLE) { 1468 bp->b_flags |= B_NEEDCOMMIT; 1469 if (bp->b_dirtyoff == 0 1470 && bp->b_dirtyend == bp->b_bcount) 1471 bp->b_flags |= B_CLUSTEROK; 1472 } else { 1473 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1474 } 1475 1476 /* 1477 * For an interrupted write, the buffer is still valid 1478 * and the write hasn't been pushed to the server yet, 1479 * so we can't set B_ERROR and report the interruption 1480 * by setting B_EINTR. For the async case, B_EINTR 1481 * is not relevant, so the rpc attempt is essentially 1482 * a noop. For the case of a V3 write rpc not being 1483 * committed to stable storage, the block is still 1484 * dirty and requires either a commit rpc or another 1485 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1486 * the block is reused. This is indicated by setting 1487 * the B_DELWRI and B_NEEDCOMMIT flags. 1488 * 1489 * If the buffer is marked B_PAGING, it does not reside on 1490 * the vp's paging queues so we cannot call bdirty(). The 1491 * bp in this case is not an NFS cache block so we should 1492 * be safe. XXX 1493 */ 1494 if (error == EINTR 1495 || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1496 crit_enter(); 1497 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1498 if ((bp->b_flags & B_PAGING) == 0) 1499 bdirty(bp); 1500 if (error) 1501 bp->b_flags |= B_EINTR; 1502 crit_exit(); 1503 } else { 1504 if (error) { 1505 bp->b_flags |= B_ERROR; 1506 bp->b_error = np->n_error = error; 1507 np->n_flag |= NWRITEERR; 1508 } 1509 bp->b_dirtyoff = bp->b_dirtyend = 0; 1510 } 1511 if (must_commit) 1512 nfs_clearcommit(vp->v_mount); 1513 bp->b_resid = uiop->uio_resid; 1514 } else { 1515 bp->b_resid = 0; 1516 } 1517 } 1518 1519 /* 1520 * I/O was run synchronously, biodone() it and calculate the 1521 * error to return. 1522 */ 1523 biodone(bio); 1524 KKASSERT(bp->b_cmd == BUF_CMD_DONE); 1525 if (bp->b_flags & B_EINTR) 1526 return (EINTR); 1527 if (bp->b_flags & B_ERROR) 1528 return (bp->b_error ? bp->b_error : EIO); 1529 return (0); 1530 } 1531 1532 /* 1533 * Used to aid in handling ftruncate() operations on the NFS client side. 1534 * Truncation creates a number of special problems for NFS. We have to 1535 * throw away VM pages and buffer cache buffers that are beyond EOF, and 1536 * we have to properly handle VM pages or (potentially dirty) buffers 1537 * that straddle the truncation point. 1538 */ 1539 1540 int 1541 nfs_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize) 1542 { 1543 struct nfsnode *np = VTONFS(vp); 1544 u_quad_t tsize = np->n_size; 1545 int biosize = vp->v_mount->mnt_stat.f_iosize; 1546 int error = 0; 1547 1548 np->n_size = nsize; 1549 1550 if (np->n_size < tsize) { 1551 struct buf *bp; 1552 daddr_t lbn; 1553 off_t loffset; 1554 int bufsize; 1555 1556 /* 1557 * vtruncbuf() doesn't get the buffer overlapping the 1558 * truncation point. We may have a B_DELWRI and/or B_CACHE 1559 * buffer that now needs to be truncated. 1560 */ 1561 error = vtruncbuf(vp, nsize, biosize); 1562 lbn = nsize / biosize; 1563 bufsize = nsize & (biosize - 1); 1564 loffset = nsize - bufsize; 1565 bp = nfs_getcacheblk(vp, loffset, bufsize, td); 1566 if (bp->b_dirtyoff > bp->b_bcount) 1567 bp->b_dirtyoff = bp->b_bcount; 1568 if (bp->b_dirtyend > bp->b_bcount) 1569 bp->b_dirtyend = bp->b_bcount; 1570 bp->b_flags |= B_RELBUF; /* don't leave garbage around */ 1571 brelse(bp); 1572 } else { 1573 vnode_pager_setsize(vp, nsize); 1574 } 1575 return(error); 1576 } 1577 1578 /* 1579 * Synchronous completion for nfs_doio. Call bpdone() with elseit=FALSE. 1580 * Caller is responsible for brelse()'ing the bp. 1581 */ 1582 static void 1583 nfsiodone_sync(struct bio *bio) 1584 { 1585 bio->bio_flags = 0; 1586 bpdone(bio->bio_buf, 0); 1587 } 1588 1589 /* 1590 * nfs read rpc - BIO version 1591 */ 1592 void 1593 nfs_readrpc_bio(struct vnode *vp, struct bio *bio) 1594 { 1595 struct buf *bp = bio->bio_buf; 1596 u_int32_t *tl; 1597 struct nfsmount *nmp; 1598 int error = 0, len, tsiz; 1599 struct nfsm_info *info; 1600 1601 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK); 1602 info->mrep = NULL; 1603 info->v3 = NFS_ISV3(vp); 1604 1605 nmp = VFSTONFS(vp->v_mount); 1606 tsiz = bp->b_bcount; 1607 KKASSERT(tsiz <= nmp->nm_rsize); 1608 if (bio->bio_offset + tsiz > nmp->nm_maxfilesize) { 1609 error = EFBIG; 1610 goto nfsmout; 1611 } 1612 nfsstats.rpccnt[NFSPROC_READ]++; 1613 len = tsiz; 1614 nfsm_reqhead(info, vp, NFSPROC_READ, 1615 NFSX_FH(info->v3) + NFSX_UNSIGNED * 3); 1616 ERROROUT(nfsm_fhtom(info, vp)); 1617 tl = nfsm_build(info, NFSX_UNSIGNED * 3); 1618 if (info->v3) { 1619 txdr_hyper(bio->bio_offset, tl); 1620 *(tl + 2) = txdr_unsigned(len); 1621 } else { 1622 *tl++ = txdr_unsigned(bio->bio_offset); 1623 *tl++ = txdr_unsigned(len); 1624 *tl = 0; 1625 } 1626 info->bio = bio; 1627 info->done = nfs_readrpc_bio_done; 1628 nfsm_request_bio(info, vp, NFSPROC_READ, NULL, 1629 nfs_vpcred(vp, ND_READ)); 1630 return; 1631 nfsmout: 1632 kfree(info, M_NFSREQ); 1633 bp->b_error = error; 1634 bp->b_flags |= B_ERROR; 1635 biodone(bio); 1636 } 1637 1638 static void 1639 nfs_readrpc_bio_done(nfsm_info_t info) 1640 { 1641 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount); 1642 struct bio *bio = info->bio; 1643 struct buf *bp = bio->bio_buf; 1644 u_int32_t *tl; 1645 int attrflag; 1646 int retlen; 1647 int eof; 1648 int error = 0; 1649 1650 KKASSERT(info->state == NFSM_STATE_DONE); 1651 1652 if (info->v3) { 1653 ERROROUT(nfsm_postop_attr(info, info->vp, &attrflag, 1654 NFS_LATTR_NOSHRINK)); 1655 NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED)); 1656 eof = fxdr_unsigned(int, *(tl + 1)); 1657 } else { 1658 ERROROUT(nfsm_loadattr(info, info->vp, NULL)); 1659 eof = 0; 1660 } 1661 NEGATIVEOUT(retlen = nfsm_strsiz(info, nmp->nm_rsize)); 1662 ERROROUT(nfsm_mtobio(info, bio, retlen)); 1663 m_freem(info->mrep); 1664 info->mrep = NULL; 1665 1666 /* 1667 * No error occured, fill the hole if any 1668 */ 1669 if (retlen < bp->b_bcount) { 1670 bzero(bp->b_data + retlen, bp->b_bcount - retlen); 1671 } 1672 bp->b_resid = bp->b_bcount - retlen; 1673 #if 0 1674 /* retlen */ 1675 tsiz -= retlen; 1676 if (info.v3) { 1677 if (eof || retlen == 0) { 1678 tsiz = 0; 1679 } 1680 } else if (retlen < len) { 1681 tsiz = 0; 1682 } 1683 #endif 1684 nfsmout: 1685 kfree(info, M_NFSREQ); 1686 if (error) { 1687 bp->b_error = error; 1688 bp->b_flags |= B_ERROR; 1689 } 1690 biodone(bio); 1691 } 1692 1693 /* 1694 * nfs write call - BIO version 1695 */ 1696 void 1697 nfs_writerpc_bio(struct vnode *vp, struct bio *bio) 1698 { 1699 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1700 struct nfsnode *np = VTONFS(vp); 1701 struct buf *bp = bio->bio_buf; 1702 u_int32_t *tl; 1703 int len; 1704 int iomode; 1705 int error = 0; 1706 struct nfsm_info *info; 1707 off_t offset; 1708 1709 /* 1710 * Setup for actual write. Just clean up the bio if there 1711 * is nothing to do. 1712 */ 1713 if (bio->bio_offset + bp->b_dirtyend > np->n_size) 1714 bp->b_dirtyend = np->n_size - bio->bio_offset; 1715 1716 if (bp->b_dirtyend <= bp->b_dirtyoff) { 1717 bp->b_resid = 0; 1718 biodone(bio); 1719 return; 1720 } 1721 len = bp->b_dirtyend - bp->b_dirtyoff; 1722 offset = bio->bio_offset + bp->b_dirtyoff; 1723 if (offset + len > nmp->nm_maxfilesize) { 1724 bp->b_flags |= B_ERROR; 1725 bp->b_error = EFBIG; 1726 biodone(bio); 1727 return; 1728 } 1729 bp->b_resid = len; 1730 nfsstats.write_bios++; 1731 1732 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK); 1733 info->mrep = NULL; 1734 info->v3 = NFS_ISV3(vp); 1735 info->info_writerpc.must_commit = 0; 1736 if ((bp->b_flags & (B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == 0) 1737 iomode = NFSV3WRITE_UNSTABLE; 1738 else 1739 iomode = NFSV3WRITE_FILESYNC; 1740 1741 KKASSERT(len <= nmp->nm_wsize); 1742 1743 nfsstats.rpccnt[NFSPROC_WRITE]++; 1744 nfsm_reqhead(info, vp, NFSPROC_WRITE, 1745 NFSX_FH(info->v3) + 5 * NFSX_UNSIGNED + nfsm_rndup(len)); 1746 ERROROUT(nfsm_fhtom(info, vp)); 1747 if (info->v3) { 1748 tl = nfsm_build(info, 5 * NFSX_UNSIGNED); 1749 txdr_hyper(offset, tl); 1750 tl += 2; 1751 *tl++ = txdr_unsigned(len); 1752 *tl++ = txdr_unsigned(iomode); 1753 *tl = txdr_unsigned(len); 1754 } else { 1755 u_int32_t x; 1756 1757 tl = nfsm_build(info, 4 * NFSX_UNSIGNED); 1758 /* Set both "begin" and "current" to non-garbage. */ 1759 x = txdr_unsigned((u_int32_t)offset); 1760 *tl++ = x; /* "begin offset" */ 1761 *tl++ = x; /* "current offset" */ 1762 x = txdr_unsigned(len); 1763 *tl++ = x; /* total to this offset */ 1764 *tl = x; /* size of this write */ 1765 } 1766 ERROROUT(nfsm_biotom(info, bio, bp->b_dirtyoff, len)); 1767 info->bio = bio; 1768 info->done = nfs_writerpc_bio_done; 1769 nfsm_request_bio(info, vp, NFSPROC_WRITE, NULL, 1770 nfs_vpcred(vp, ND_WRITE)); 1771 return; 1772 nfsmout: 1773 kfree(info, M_NFSREQ); 1774 bp->b_error = error; 1775 bp->b_flags |= B_ERROR; 1776 biodone(bio); 1777 } 1778 1779 static void 1780 nfs_writerpc_bio_done(nfsm_info_t info) 1781 { 1782 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount); 1783 struct nfsnode *np = VTONFS(info->vp); 1784 struct bio *bio = info->bio; 1785 struct buf *bp = bio->bio_buf; 1786 int wccflag = NFSV3_WCCRATTR; 1787 int iomode = NFSV3WRITE_FILESYNC; 1788 int commit; 1789 int rlen; 1790 int error; 1791 int len = bp->b_resid; /* b_resid was set to shortened length */ 1792 u_int32_t *tl; 1793 1794 if (info->v3) { 1795 /* 1796 * The write RPC returns a before and after mtime. The 1797 * nfsm_wcc_data() macro checks the before n_mtime 1798 * against the before time and stores the after time 1799 * in the nfsnode's cached vattr and n_mtime field. 1800 * The NRMODIFIED bit will be set if the before 1801 * time did not match the original mtime. 1802 */ 1803 wccflag = NFSV3_WCCCHK; 1804 ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag)); 1805 if (error == 0) { 1806 NULLOUT(tl = nfsm_dissect(info, 2 * NFSX_UNSIGNED + NFSX_V3WRITEVERF)); 1807 rlen = fxdr_unsigned(int, *tl++); 1808 if (rlen == 0) { 1809 error = NFSERR_IO; 1810 m_freem(info->mrep); 1811 info->mrep = NULL; 1812 goto nfsmout; 1813 } else if (rlen < len) { 1814 #if 0 1815 /* 1816 * XXX what do we do here? 1817 */ 1818 backup = len - rlen; 1819 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base - backup; 1820 uiop->uio_iov->iov_len += backup; 1821 uiop->uio_offset -= backup; 1822 uiop->uio_resid += backup; 1823 len = rlen; 1824 #endif 1825 } 1826 commit = fxdr_unsigned(int, *tl++); 1827 1828 /* 1829 * Return the lowest committment level 1830 * obtained by any of the RPCs. 1831 */ 1832 if (iomode == NFSV3WRITE_FILESYNC) 1833 iomode = commit; 1834 else if (iomode == NFSV3WRITE_DATASYNC && 1835 commit == NFSV3WRITE_UNSTABLE) 1836 iomode = commit; 1837 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0){ 1838 bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); 1839 nmp->nm_state |= NFSSTA_HASWRITEVERF; 1840 } else if (bcmp(tl, nmp->nm_verf, NFSX_V3WRITEVERF)) { 1841 info->info_writerpc.must_commit = 1; 1842 bcopy(tl, (caddr_t)nmp->nm_verf, NFSX_V3WRITEVERF); 1843 } 1844 } 1845 } else { 1846 ERROROUT(nfsm_loadattr(info, info->vp, NULL)); 1847 } 1848 m_freem(info->mrep); 1849 info->mrep = NULL; 1850 len = 0; 1851 nfsmout: 1852 if (info->vp->v_mount->mnt_flag & MNT_ASYNC) 1853 iomode = NFSV3WRITE_FILESYNC; 1854 bp->b_resid = len; 1855 1856 /* 1857 * End of RPC. Now clean up the bp. 1858 * 1859 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try 1860 * to cluster the buffers needing commit. This will allow 1861 * the system to submit a single commit rpc for the whole 1862 * cluster. We can do this even if the buffer is not 100% 1863 * dirty (relative to the NFS blocksize), so we optimize the 1864 * append-to-file-case. 1865 * 1866 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be 1867 * cleared because write clustering only works for commit 1868 * rpc's, not for the data portion of the write). 1869 */ 1870 if (!error && iomode == NFSV3WRITE_UNSTABLE) { 1871 bp->b_flags |= B_NEEDCOMMIT; 1872 if (bp->b_dirtyoff == 0 && bp->b_dirtyend == bp->b_bcount) 1873 bp->b_flags |= B_CLUSTEROK; 1874 } else { 1875 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1876 } 1877 1878 /* 1879 * For an interrupted write, the buffer is still valid 1880 * and the write hasn't been pushed to the server yet, 1881 * so we can't set B_ERROR and report the interruption 1882 * by setting B_EINTR. For the async case, B_EINTR 1883 * is not relevant, so the rpc attempt is essentially 1884 * a noop. For the case of a V3 write rpc not being 1885 * committed to stable storage, the block is still 1886 * dirty and requires either a commit rpc or another 1887 * write rpc with iomode == NFSV3WRITE_FILESYNC before 1888 * the block is reused. This is indicated by setting 1889 * the B_DELWRI and B_NEEDCOMMIT flags. 1890 * 1891 * If the buffer is marked B_PAGING, it does not reside on 1892 * the vp's paging queues so we cannot call bdirty(). The 1893 * bp in this case is not an NFS cache block so we should 1894 * be safe. XXX 1895 */ 1896 if (error == EINTR || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 1897 crit_enter(); 1898 bp->b_flags &= ~(B_INVAL|B_NOCACHE); 1899 if ((bp->b_flags & B_PAGING) == 0) 1900 bdirty(bp); 1901 if (error) 1902 bp->b_flags |= B_EINTR; 1903 crit_exit(); 1904 } else { 1905 if (error) { 1906 bp->b_flags |= B_ERROR; 1907 bp->b_error = np->n_error = error; 1908 np->n_flag |= NWRITEERR; 1909 } 1910 bp->b_dirtyoff = bp->b_dirtyend = 0; 1911 } 1912 if (info->info_writerpc.must_commit) 1913 nfs_clearcommit(info->vp->v_mount); 1914 kfree(info, M_NFSREQ); 1915 if (error) { 1916 bp->b_flags |= B_ERROR; 1917 bp->b_error = error; 1918 } 1919 biodone(bio); 1920 } 1921 1922 /* 1923 * Nfs Version 3 commit rpc - BIO version 1924 * 1925 * This function issues the commit rpc and will chain to a write 1926 * rpc if necessary. 1927 */ 1928 void 1929 nfs_commitrpc_bio(struct vnode *vp, struct bio *bio) 1930 { 1931 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 1932 struct buf *bp = bio->bio_buf; 1933 struct nfsm_info *info; 1934 int error = 0; 1935 u_int32_t *tl; 1936 1937 if ((nmp->nm_state & NFSSTA_HASWRITEVERF) == 0) { 1938 bp->b_dirtyoff = bp->b_dirtyend = 0; 1939 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1940 bp->b_resid = 0; 1941 biodone(bio); 1942 return; 1943 } 1944 1945 info = kmalloc(sizeof(*info), M_NFSREQ, M_WAITOK); 1946 info->mrep = NULL; 1947 info->v3 = 1; 1948 1949 nfsstats.rpccnt[NFSPROC_COMMIT]++; 1950 nfsm_reqhead(info, vp, NFSPROC_COMMIT, NFSX_FH(1)); 1951 ERROROUT(nfsm_fhtom(info, vp)); 1952 tl = nfsm_build(info, 3 * NFSX_UNSIGNED); 1953 txdr_hyper(bio->bio_offset + bp->b_dirtyoff, tl); 1954 tl += 2; 1955 *tl = txdr_unsigned(bp->b_dirtyend - bp->b_dirtyoff); 1956 info->bio = bio; 1957 info->done = nfs_commitrpc_bio_done; 1958 nfsm_request_bio(info, vp, NFSPROC_COMMIT, NULL, 1959 nfs_vpcred(vp, ND_WRITE)); 1960 return; 1961 nfsmout: 1962 /* 1963 * Chain to write RPC on (early) error 1964 */ 1965 kfree(info, M_NFSREQ); 1966 nfs_writerpc_bio(vp, bio); 1967 } 1968 1969 static void 1970 nfs_commitrpc_bio_done(nfsm_info_t info) 1971 { 1972 struct nfsmount *nmp = VFSTONFS(info->vp->v_mount); 1973 struct bio *bio = info->bio; 1974 struct buf *bp = bio->bio_buf; 1975 u_int32_t *tl; 1976 int wccflag = NFSV3_WCCRATTR; 1977 int error = 0; 1978 1979 ERROROUT(nfsm_wcc_data(info, info->vp, &wccflag)); 1980 if (error == 0) { 1981 NULLOUT(tl = nfsm_dissect(info, NFSX_V3WRITEVERF)); 1982 if (bcmp(nmp->nm_verf, tl, NFSX_V3WRITEVERF)) { 1983 bcopy(tl, nmp->nm_verf, NFSX_V3WRITEVERF); 1984 error = NFSERR_STALEWRITEVERF; 1985 } 1986 } 1987 m_freem(info->mrep); 1988 info->mrep = NULL; 1989 1990 /* 1991 * On completion we must chain to a write bio if an 1992 * error occurred. 1993 */ 1994 nfsmout: 1995 kfree(info, M_NFSREQ); 1996 if (error == 0) { 1997 bp->b_dirtyoff = bp->b_dirtyend = 0; 1998 bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK); 1999 bp->b_resid = 0; 2000 biodone(bio); 2001 } else { 2002 kprintf("commitrpc_bioC %lld -> CHAIN WRITE\n", bio->bio_offset); 2003 nfs_writerpc_bio(info->vp, bio); 2004 } 2005 } 2006 2007