xref: /dflybsd-src/sys/vfs/nfs/nfs_bio.c (revision 312c7cfebd19d8f68ed2d34a9e57a2c1ed7b5f15)
1 /*
2  * Copyright (c) 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
37  * $FreeBSD: /repoman/r/ncvs/src/sys/nfsclient/nfs_bio.c,v 1.130 2004/04/14 23:23:55 peadar Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_bio.c,v 1.31 2006/04/10 17:46:44 dillon Exp $
39  */
40 
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/proc.h>
47 #include <sys/buf.h>
48 #include <sys/vnode.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/buf2.h>
52 #include <sys/msfbuf.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_object.h>
58 #include <vm/vm_pager.h>
59 #include <vm/vnode_pager.h>
60 
61 #include <sys/thread2.h>
62 
63 #include "rpcv2.h"
64 #include "nfsproto.h"
65 #include "nfs.h"
66 #include "nfsmount.h"
67 #include "nfsnode.h"
68 
69 static struct buf *nfs_getcacheblk(struct vnode *vp, off_t loffset,
70 				   int size, struct thread *td);
71 static int nfs_check_dirent(struct nfs_dirent *dp, int maxlen);
72 
73 extern int nfs_numasync;
74 extern int nfs_pbuf_freecnt;
75 extern struct nfsstats nfsstats;
76 
77 /*
78  * Vnode op for VM getpages.
79  *
80  * nfs_getpages(struct vnode *a_vp, vm_page_t *a_m, int a_count,
81  *		int a_reqpage, vm_ooffset_t a_offset)
82  */
83 int
84 nfs_getpages(struct vop_getpages_args *ap)
85 {
86 	struct thread *td = curthread;		/* XXX */
87 	int i, error, nextoff, size, toff, count, npages;
88 	struct uio uio;
89 	struct iovec iov;
90 	char *kva;
91 	struct vnode *vp;
92 	struct nfsmount *nmp;
93 	vm_page_t *pages;
94 	vm_page_t m;
95 	struct msf_buf *msf;
96 
97 	vp = ap->a_vp;
98 	nmp = VFSTONFS(vp->v_mount);
99 	pages = ap->a_m;
100 	count = ap->a_count;
101 
102 	if (vp->v_object == NULL) {
103 		printf("nfs_getpages: called with non-merged cache vnode??\n");
104 		return VM_PAGER_ERROR;
105 	}
106 
107 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
108 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
109 		(void)nfs_fsinfo(nmp, vp, td);
110 
111 	npages = btoc(count);
112 
113 	/*
114 	 * NOTE that partially valid pages may occur in cases other
115 	 * then file EOF, such as when a file is partially written and
116 	 * ftruncate()-extended to a larger size.   It is also possible
117 	 * for the valid bits to be set on garbage beyond the file EOF and
118 	 * clear in the area before EOF (e.g. m->valid == 0xfc), which can
119 	 * occur due to vtruncbuf() and the buffer cache's handling of
120 	 * pages which 'straddle' buffers or when b_bufsize is not a
121 	 * multiple of PAGE_SIZE.... the buffer cache cannot normally
122 	 * clear the extra bits.  This kind of situation occurs when you
123 	 * make a small write() (m->valid == 0x03) and then mmap() and
124 	 * fault in the buffer(m->valid = 0xFF).  When NFS flushes the
125 	 * buffer (vinvalbuf() m->valid = 0xFC) we are left with a mess.
126 	 *
127 	 * This is combined with the possibility that the pages are partially
128 	 * dirty or that there is a buffer backing the pages that is dirty
129 	 * (even if m->dirty is 0).
130 	 *
131 	 * To solve this problem several hacks have been made:  (1) NFS
132 	 * guarentees that the IO block size is a multiple of PAGE_SIZE and
133 	 * (2) The buffer cache, when invalidating an NFS buffer, will
134 	 * disregard the buffer's fragmentory b_bufsize and invalidate
135 	 * the whole page rather then just the piece the buffer owns.
136 	 *
137 	 * This allows us to assume that a partially valid page found here
138 	 * is fully valid (vm_fault will zero'd out areas of the page not
139 	 * marked as valid).
140 	 */
141 	m = pages[ap->a_reqpage];
142 	if (m->valid != 0) {
143 		for (i = 0; i < npages; ++i) {
144 			if (i != ap->a_reqpage)
145 				vnode_pager_freepage(pages[i]);
146 		}
147 		return(0);
148 	}
149 
150 	/*
151 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
152 	 */
153 	msf_map_pagelist(&msf, pages, npages, 0);
154 	KKASSERT(msf);
155 	kva = msf_buf_kva(msf);
156 
157 	iov.iov_base = kva;
158 	iov.iov_len = count;
159 	uio.uio_iov = &iov;
160 	uio.uio_iovcnt = 1;
161 	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
162 	uio.uio_resid = count;
163 	uio.uio_segflg = UIO_SYSSPACE;
164 	uio.uio_rw = UIO_READ;
165 	uio.uio_td = td;
166 
167 	error = nfs_readrpc(vp, &uio);
168 	msf_buf_free(msf);
169 
170 	if (error && (uio.uio_resid == count)) {
171 		printf("nfs_getpages: error %d\n", error);
172 		for (i = 0; i < npages; ++i) {
173 			if (i != ap->a_reqpage)
174 				vnode_pager_freepage(pages[i]);
175 		}
176 		return VM_PAGER_ERROR;
177 	}
178 
179 	/*
180 	 * Calculate the number of bytes read and validate only that number
181 	 * of bytes.  Note that due to pending writes, size may be 0.  This
182 	 * does not mean that the remaining data is invalid!
183 	 */
184 
185 	size = count - uio.uio_resid;
186 
187 	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
188 		nextoff = toff + PAGE_SIZE;
189 		m = pages[i];
190 
191 		m->flags &= ~PG_ZERO;
192 
193 		if (nextoff <= size) {
194 			/*
195 			 * Read operation filled an entire page
196 			 */
197 			m->valid = VM_PAGE_BITS_ALL;
198 			vm_page_undirty(m);
199 		} else if (size > toff) {
200 			/*
201 			 * Read operation filled a partial page.
202 			 */
203 			m->valid = 0;
204 			vm_page_set_validclean(m, 0, size - toff);
205 			/* handled by vm_fault now	  */
206 			/* vm_page_zero_invalid(m, TRUE); */
207 		} else {
208 			/*
209 			 * Read operation was short.  If no error occured
210 			 * we may have hit a zero-fill section.   We simply
211 			 * leave valid set to 0.
212 			 */
213 			;
214 		}
215 		if (i != ap->a_reqpage) {
216 			/*
217 			 * Whether or not to leave the page activated is up in
218 			 * the air, but we should put the page on a page queue
219 			 * somewhere (it already is in the object).  Result:
220 			 * It appears that emperical results show that
221 			 * deactivating pages is best.
222 			 */
223 
224 			/*
225 			 * Just in case someone was asking for this page we
226 			 * now tell them that it is ok to use.
227 			 */
228 			if (!error) {
229 				if (m->flags & PG_WANTED)
230 					vm_page_activate(m);
231 				else
232 					vm_page_deactivate(m);
233 				vm_page_wakeup(m);
234 			} else {
235 				vnode_pager_freepage(m);
236 			}
237 		}
238 	}
239 	return 0;
240 }
241 
242 /*
243  * Vnode op for VM putpages.
244  *
245  * nfs_putpages(struct vnode *a_vp, vm_page_t *a_m, int a_count, int a_sync,
246  *		int *a_rtvals, vm_ooffset_t a_offset)
247  */
248 int
249 nfs_putpages(struct vop_putpages_args *ap)
250 {
251 	struct thread *td = curthread;
252 	struct uio uio;
253 	struct iovec iov;
254 	char *kva;
255 	int iomode, must_commit, i, error, npages, count;
256 	off_t offset;
257 	int *rtvals;
258 	struct vnode *vp;
259 	struct nfsmount *nmp;
260 	struct nfsnode *np;
261 	vm_page_t *pages;
262 	struct msf_buf *msf;
263 
264 	vp = ap->a_vp;
265 	np = VTONFS(vp);
266 	nmp = VFSTONFS(vp->v_mount);
267 	pages = ap->a_m;
268 	count = ap->a_count;
269 	rtvals = ap->a_rtvals;
270 	npages = btoc(count);
271 	offset = IDX_TO_OFF(pages[0]->pindex);
272 
273 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
274 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
275 		(void)nfs_fsinfo(nmp, vp, td);
276 
277 	for (i = 0; i < npages; i++) {
278 		rtvals[i] = VM_PAGER_AGAIN;
279 	}
280 
281 	/*
282 	 * When putting pages, do not extend file past EOF.
283 	 */
284 
285 	if (offset + count > np->n_size) {
286 		count = np->n_size - offset;
287 		if (count < 0)
288 			count = 0;
289 	}
290 
291 	/*
292 	 * Use an MSF_BUF as a medium to retrieve data from the pages.
293 	 */
294 	msf_map_pagelist(&msf, pages, npages, 0);
295 	KKASSERT(msf);
296 	kva = msf_buf_kva(msf);
297 
298 	iov.iov_base = kva;
299 	iov.iov_len = count;
300 	uio.uio_iov = &iov;
301 	uio.uio_iovcnt = 1;
302 	uio.uio_offset = offset;
303 	uio.uio_resid = count;
304 	uio.uio_segflg = UIO_SYSSPACE;
305 	uio.uio_rw = UIO_WRITE;
306 	uio.uio_td = td;
307 
308 	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
309 	    iomode = NFSV3WRITE_UNSTABLE;
310 	else
311 	    iomode = NFSV3WRITE_FILESYNC;
312 
313 	error = nfs_writerpc(vp, &uio, &iomode, &must_commit);
314 
315 	msf_buf_free(msf);
316 
317 	if (!error) {
318 		int nwritten = round_page(count - uio.uio_resid) / PAGE_SIZE;
319 		for (i = 0; i < nwritten; i++) {
320 			rtvals[i] = VM_PAGER_OK;
321 			vm_page_undirty(pages[i]);
322 		}
323 		if (must_commit)
324 			nfs_clearcommit(vp->v_mount);
325 	}
326 	return rtvals[0];
327 }
328 
329 /*
330  * Vnode op for read using bio
331  */
332 int
333 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag)
334 {
335 	struct nfsnode *np = VTONFS(vp);
336 	int biosize, i;
337 	struct buf *bp = 0, *rabp;
338 	struct vattr vattr;
339 	struct thread *td;
340 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
341 	daddr_t lbn, rabn;
342 	off_t raoffset;
343 	off_t loffset;
344 	int bcount;
345 	int seqcount;
346 	int nra, error = 0, n = 0, on = 0;
347 
348 #ifdef DIAGNOSTIC
349 	if (uio->uio_rw != UIO_READ)
350 		panic("nfs_read mode");
351 #endif
352 	if (uio->uio_resid == 0)
353 		return (0);
354 	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
355 		return (EINVAL);
356 	td = uio->uio_td;
357 
358 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
359 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
360 		(void)nfs_fsinfo(nmp, vp, td);
361 	if (vp->v_type != VDIR &&
362 	    (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
363 		return (EFBIG);
364 	biosize = vp->v_mount->mnt_stat.f_iosize;
365 	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
366 
367 	/*
368 	 * For nfs, cache consistency can only be maintained approximately.
369 	 * Although RFC1094 does not specify the criteria, the following is
370 	 * believed to be compatible with the reference port.
371 	 *
372 	 * NFS:		If local changes have been made and this is a
373 	 *		directory, the directory must be invalidated and
374 	 *		the attribute cache must be cleared.
375 	 *
376 	 *		GETATTR is called to synchronize the file size.
377 	 *
378 	 *		If remote changes are detected local data is flushed
379 	 *		and the cache is invalidated.
380 	 *
381 	 *		NOTE: In the normal case the attribute cache is not
382 	 *		cleared which means GETATTR may use cached data and
383 	 *		not immediately detect changes made on the server.
384 	 */
385 	if ((np->n_flag & NLMODIFIED) && vp->v_type == VDIR) {
386 		nfs_invaldir(vp);
387 		error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
388 		if (error)
389 			return (error);
390 		np->n_attrstamp = 0;
391 	}
392 	error = VOP_GETATTR(vp, &vattr, td);
393 	if (error)
394 		return (error);
395 	if (np->n_flag & NRMODIFIED) {
396 		if (vp->v_type == VDIR)
397 			nfs_invaldir(vp);
398 		error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
399 		if (error)
400 			return (error);
401 		np->n_flag &= ~NRMODIFIED;
402 	}
403 	do {
404 	    if (np->n_flag & NDONTCACHE) {
405 		switch (vp->v_type) {
406 		case VREG:
407 			return (nfs_readrpc(vp, uio));
408 		case VLNK:
409 			return (nfs_readlinkrpc(vp, uio));
410 		case VDIR:
411 			break;
412 		default:
413 			printf(" NDONTCACHE: type %x unexpected\n", vp->v_type);
414 			break;
415 		};
416 	    }
417 	    switch (vp->v_type) {
418 	    case VREG:
419 		nfsstats.biocache_reads++;
420 		lbn = uio->uio_offset / biosize;
421 		on = uio->uio_offset & (biosize - 1);
422 		loffset = (off_t)lbn * biosize;
423 
424 		/*
425 		 * Start the read ahead(s), as required.
426 		 */
427 		if (nfs_numasync > 0 && nmp->nm_readahead > 0) {
428 		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
429 			(off_t)(lbn + 1 + nra) * biosize < np->n_size; nra++) {
430 			rabn = lbn + 1 + nra;
431 			raoffset = (off_t)rabn * biosize;
432 			if (!findblk(vp, raoffset)) {
433 			    rabp = nfs_getcacheblk(vp, raoffset, biosize, td);
434 			    if (!rabp)
435 				return (EINTR);
436 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
437 				rabp->b_flags |= (B_READ | B_ASYNC);
438 				vfs_busy_pages(rabp, 0);
439 				if (nfs_asyncio(vp, &rabp->b_bio2, td)) {
440 				    rabp->b_flags |= B_INVAL|B_ERROR;
441 				    vfs_unbusy_pages(rabp);
442 				    brelse(rabp);
443 				    break;
444 				}
445 			    } else {
446 				brelse(rabp);
447 			    }
448 			}
449 		    }
450 		}
451 
452 		/*
453 		 * Obtain the buffer cache block.  Figure out the buffer size
454 		 * when we are at EOF.  If we are modifying the size of the
455 		 * buffer based on an EOF condition we need to hold
456 		 * nfs_rslock() through obtaining the buffer to prevent
457 		 * a potential writer-appender from messing with n_size.
458 		 * Otherwise we may accidently truncate the buffer and
459 		 * lose dirty data.
460 		 *
461 		 * Note that bcount is *not* DEV_BSIZE aligned.
462 		 */
463 
464 again:
465 		bcount = biosize;
466 		if (loffset >= np->n_size) {
467 			bcount = 0;
468 		} else if (loffset + biosize > np->n_size) {
469 			bcount = np->n_size - loffset;
470 		}
471 		if (bcount != biosize) {
472 			switch(nfs_rslock(np, td)) {
473 			case ENOLCK:
474 				goto again;
475 				/* not reached */
476 			case EINTR:
477 			case ERESTART:
478 				return(EINTR);
479 				/* not reached */
480 			default:
481 				break;
482 			}
483 		}
484 
485 		bp = nfs_getcacheblk(vp, loffset, bcount, td);
486 
487 		if (bcount != biosize)
488 			nfs_rsunlock(np, td);
489 		if (!bp)
490 			return (EINTR);
491 
492 		/*
493 		 * If B_CACHE is not set, we must issue the read.  If this
494 		 * fails, we return an error.
495 		 */
496 
497 		if ((bp->b_flags & B_CACHE) == 0) {
498 		    bp->b_flags |= B_READ;
499 		    vfs_busy_pages(bp, 0);
500 		    error = nfs_doio(vp, &bp->b_bio2, td);
501 		    if (error) {
502 			brelse(bp);
503 			return (error);
504 		    }
505 		}
506 
507 		/*
508 		 * on is the offset into the current bp.  Figure out how many
509 		 * bytes we can copy out of the bp.  Note that bcount is
510 		 * NOT DEV_BSIZE aligned.
511 		 *
512 		 * Then figure out how many bytes we can copy into the uio.
513 		 */
514 
515 		n = 0;
516 		if (on < bcount)
517 			n = min((unsigned)(bcount - on), uio->uio_resid);
518 		break;
519 	    case VLNK:
520 		biosize = min(NFS_MAXPATHLEN, np->n_size);
521 		nfsstats.biocache_readlinks++;
522 		bp = nfs_getcacheblk(vp, (off_t)0, biosize, td);
523 		if (bp == NULL)
524 			return (EINTR);
525 		if ((bp->b_flags & B_CACHE) == 0) {
526 		    bp->b_flags |= B_READ;
527 		    vfs_busy_pages(bp, 0);
528 		    error = nfs_doio(vp, &bp->b_bio2, td);
529 		    if (error) {
530 			bp->b_flags |= B_ERROR;
531 			brelse(bp);
532 			return (error);
533 		    }
534 		}
535 		n = min(uio->uio_resid, bp->b_bcount - bp->b_resid);
536 		on = 0;
537 		break;
538 	    case VDIR:
539 		nfsstats.biocache_readdirs++;
540 		if (np->n_direofoffset
541 		    && uio->uio_offset >= np->n_direofoffset) {
542 		    return (0);
543 		}
544 		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
545 		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
546 		loffset = uio->uio_offset - on;
547 		bp = nfs_getcacheblk(vp, loffset, NFS_DIRBLKSIZ, td);
548 		if (bp == NULL)
549 		    return (EINTR);
550 
551 		if ((bp->b_flags & B_CACHE) == 0) {
552 		    bp->b_flags |= B_READ;
553 		    vfs_busy_pages(bp, 0);
554 		    error = nfs_doio(vp, &bp->b_bio2, td);
555 		    if (error) {
556 			    brelse(bp);
557 		    }
558 		    while (error == NFSERR_BAD_COOKIE) {
559 			printf("got bad cookie vp %p bp %p\n", vp, bp);
560 			nfs_invaldir(vp);
561 			error = nfs_vinvalbuf(vp, 0, td, 1);
562 			/*
563 			 * Yuck! The directory has been modified on the
564 			 * server. The only way to get the block is by
565 			 * reading from the beginning to get all the
566 			 * offset cookies.
567 			 *
568 			 * Leave the last bp intact unless there is an error.
569 			 * Loop back up to the while if the error is another
570 			 * NFSERR_BAD_COOKIE (double yuch!).
571 			 */
572 			for (i = 0; i <= lbn && !error; i++) {
573 			    if (np->n_direofoffset
574 				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
575 				    return (0);
576 			    bp = nfs_getcacheblk(vp, (off_t)i * NFS_DIRBLKSIZ,
577 						 NFS_DIRBLKSIZ, td);
578 			    if (!bp)
579 				return (EINTR);
580 			    if ((bp->b_flags & B_CACHE) == 0) {
581 				    bp->b_flags |= B_READ;
582 				    vfs_busy_pages(bp, 0);
583 				    error = nfs_doio(vp, &bp->b_bio2, td);
584 				    /*
585 				     * no error + B_INVAL == directory EOF,
586 				     * use the block.
587 				     */
588 				    if (error == 0 && (bp->b_flags & B_INVAL))
589 					    break;
590 			    }
591 			    /*
592 			     * An error will throw away the block and the
593 			     * for loop will break out.  If no error and this
594 			     * is not the block we want, we throw away the
595 			     * block and go for the next one via the for loop.
596 			     */
597 			    if (error || i < lbn)
598 				    brelse(bp);
599 			}
600 		    }
601 		    /*
602 		     * The above while is repeated if we hit another cookie
603 		     * error.  If we hit an error and it wasn't a cookie error,
604 		     * we give up.
605 		     */
606 		    if (error)
607 			    return (error);
608 		}
609 
610 		/*
611 		 * If not eof and read aheads are enabled, start one.
612 		 * (You need the current block first, so that you have the
613 		 *  directory offset cookie of the next block.)
614 		 */
615 		if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
616 		    (bp->b_flags & B_INVAL) == 0 &&
617 		    (np->n_direofoffset == 0 ||
618 		    loffset + NFS_DIRBLKSIZ < np->n_direofoffset) &&
619 		    (np->n_flag & NDONTCACHE) == 0 &&
620 		    !findblk(vp, loffset + NFS_DIRBLKSIZ)) {
621 			rabp = nfs_getcacheblk(vp, loffset + NFS_DIRBLKSIZ,
622 					       NFS_DIRBLKSIZ, td);
623 			if (rabp) {
624 			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
625 				rabp->b_flags |= (B_READ | B_ASYNC);
626 				vfs_busy_pages(rabp, 0);
627 				if (nfs_asyncio(vp, &rabp->b_bio2, td)) {
628 				    rabp->b_flags |= B_INVAL|B_ERROR;
629 				    vfs_unbusy_pages(rabp);
630 				    brelse(rabp);
631 				}
632 			    } else {
633 				brelse(rabp);
634 			    }
635 			}
636 		}
637 		/*
638 		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
639 		 * chopped for the EOF condition, we cannot tell how large
640 		 * NFS directories are going to be until we hit EOF.  So
641 		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
642 		 * it just so happens that b_resid will effectively chop it
643 		 * to EOF.  *BUT* this information is lost if the buffer goes
644 		 * away and is reconstituted into a B_CACHE state ( due to
645 		 * being VMIO ) later.  So we keep track of the directory eof
646 		 * in np->n_direofoffset and chop it off as an extra step
647 		 * right here.
648 		 */
649 		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
650 		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
651 			n = np->n_direofoffset - uio->uio_offset;
652 		break;
653 	    default:
654 		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
655 		break;
656 	    };
657 
658 	    switch (vp->v_type) {
659 	    case VREG:
660 		if (n > 0)
661 		    error = uiomove(bp->b_data + on, (int)n, uio);
662 		break;
663 	    case VLNK:
664 		if (n > 0)
665 		    error = uiomove(bp->b_data + on, (int)n, uio);
666 		n = 0;
667 		break;
668 	    case VDIR:
669 		if (n > 0) {
670 		    off_t old_off = uio->uio_offset;
671 		    caddr_t cpos, epos;
672 		    struct nfs_dirent *dp;
673 
674 		    /*
675 		     * We are casting cpos to nfs_dirent, it must be
676 		     * int-aligned.
677 		     */
678 		    if (on & 3) {
679 			error = EINVAL;
680 			break;
681 		    }
682 
683 		    cpos = bp->b_data + on;
684 		    epos = bp->b_data + on + n;
685 		    while (cpos < epos && error == 0 && uio->uio_resid > 0) {
686 			    dp = (struct nfs_dirent *)cpos;
687 			    error = nfs_check_dirent(dp, (int)(epos - cpos));
688 			    if (error)
689 				    break;
690 			    if (vop_write_dirent(&error, uio, dp->nfs_ino,
691 				dp->nfs_type, dp->nfs_namlen, dp->nfs_name)) {
692 				    break;
693 			    }
694 			    cpos += dp->nfs_reclen;
695 		    }
696 		    n = 0;
697 		    if (error == 0)
698 			    uio->uio_offset = old_off + cpos - bp->b_data - on;
699 		}
700 		/*
701 		 * Invalidate buffer if caching is disabled, forcing a
702 		 * re-read from the remote later.
703 		 */
704 		if (np->n_flag & NDONTCACHE)
705 			bp->b_flags |= B_INVAL;
706 		break;
707 	    default:
708 		printf(" nfs_bioread: type %x unexpected\n",vp->v_type);
709 	    }
710 	    brelse(bp);
711 	} while (error == 0 && uio->uio_resid > 0 && n > 0);
712 	return (error);
713 }
714 
715 /*
716  * Userland can supply any 'seek' offset when reading a NFS directory.
717  * Validate the structure so we don't panic the kernel.  Note that
718  * the element name is nul terminated and the nul is not included
719  * in nfs_namlen.
720  */
721 static
722 int
723 nfs_check_dirent(struct nfs_dirent *dp, int maxlen)
724 {
725 	int nfs_name_off = offsetof(struct nfs_dirent, nfs_name[0]);
726 
727 	if (nfs_name_off >= maxlen)
728 		return (EINVAL);
729 	if (dp->nfs_reclen < nfs_name_off || dp->nfs_reclen > maxlen)
730 		return (EINVAL);
731 	if (nfs_name_off + dp->nfs_namlen >= dp->nfs_reclen)
732 		return (EINVAL);
733 	if (dp->nfs_reclen & 3)
734 		return (EINVAL);
735 	return (0);
736 }
737 
738 /*
739  * Vnode op for write using bio
740  *
741  * nfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
742  *	     struct ucred *a_cred)
743  */
744 int
745 nfs_write(struct vop_write_args *ap)
746 {
747 	struct uio *uio = ap->a_uio;
748 	struct thread *td = uio->uio_td;
749 	struct vnode *vp = ap->a_vp;
750 	struct nfsnode *np = VTONFS(vp);
751 	int ioflag = ap->a_ioflag;
752 	struct buf *bp;
753 	struct vattr vattr;
754 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
755 	daddr_t lbn;
756 	off_t loffset;
757 	int n, on, error = 0, iomode, must_commit;
758 	int haverslock = 0;
759 	int bcount;
760 	int biosize;
761 
762 #ifdef DIAGNOSTIC
763 	if (uio->uio_rw != UIO_WRITE)
764 		panic("nfs_write mode");
765 	if (uio->uio_segflg == UIO_USERSPACE && uio->uio_td != curthread)
766 		panic("nfs_write proc");
767 #endif
768 	if (vp->v_type != VREG)
769 		return (EIO);
770 	if (np->n_flag & NWRITEERR) {
771 		np->n_flag &= ~NWRITEERR;
772 		return (np->n_error);
773 	}
774 	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
775 	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0)
776 		(void)nfs_fsinfo(nmp, vp, td);
777 
778 	/*
779 	 * Synchronously flush pending buffers if we are in synchronous
780 	 * mode or if we are appending.
781 	 */
782 	if (ioflag & (IO_APPEND | IO_SYNC)) {
783 		if (np->n_flag & NLMODIFIED) {
784 			np->n_attrstamp = 0;
785 			error = nfs_flush(vp, MNT_WAIT, td, 0);
786 			/* error = nfs_vinvalbuf(vp, V_SAVE, td, 1); */
787 			if (error)
788 				return (error);
789 		}
790 	}
791 
792 	/*
793 	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
794 	 * get the append lock.
795 	 */
796 restart:
797 	if (ioflag & IO_APPEND) {
798 		np->n_attrstamp = 0;
799 		error = VOP_GETATTR(vp, &vattr, td);
800 		if (error)
801 			return (error);
802 		uio->uio_offset = np->n_size;
803 	}
804 
805 	if (uio->uio_offset < 0)
806 		return (EINVAL);
807 	if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
808 		return (EFBIG);
809 	if (uio->uio_resid == 0)
810 		return (0);
811 
812 	/*
813 	 * We need to obtain the rslock if we intend to modify np->n_size
814 	 * in order to guarentee the append point with multiple contending
815 	 * writers, to guarentee that no other appenders modify n_size
816 	 * while we are trying to obtain a truncated buffer (i.e. to avoid
817 	 * accidently truncating data written by another appender due to
818 	 * the race), and to ensure that the buffer is populated prior to
819 	 * our extending of the file.  We hold rslock through the entire
820 	 * operation.
821 	 *
822 	 * Note that we do not synchronize the case where someone truncates
823 	 * the file while we are appending to it because attempting to lock
824 	 * this case may deadlock other parts of the system unexpectedly.
825 	 */
826 	if ((ioflag & IO_APPEND) ||
827 	    uio->uio_offset + uio->uio_resid > np->n_size) {
828 		switch(nfs_rslock(np, td)) {
829 		case ENOLCK:
830 			goto restart;
831 			/* not reached */
832 		case EINTR:
833 		case ERESTART:
834 			return(EINTR);
835 			/* not reached */
836 		default:
837 			break;
838 		}
839 		haverslock = 1;
840 	}
841 
842 	/*
843 	 * Maybe this should be above the vnode op call, but so long as
844 	 * file servers have no limits, i don't think it matters
845 	 */
846 	if (td->td_proc && uio->uio_offset + uio->uio_resid >
847 	      td->td_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
848 		psignal(td->td_proc, SIGXFSZ);
849 		if (haverslock)
850 			nfs_rsunlock(np, td);
851 		return (EFBIG);
852 	}
853 
854 	biosize = vp->v_mount->mnt_stat.f_iosize;
855 
856 	do {
857 		if ((np->n_flag & NDONTCACHE) && uio->uio_iovcnt == 1) {
858 		    iomode = NFSV3WRITE_FILESYNC;
859 		    error = nfs_writerpc(vp, uio, &iomode, &must_commit);
860 		    if (must_commit)
861 			    nfs_clearcommit(vp->v_mount);
862 		    break;
863 		}
864 		nfsstats.biocache_writes++;
865 		lbn = uio->uio_offset / biosize;
866 		on = uio->uio_offset & (biosize-1);
867 		loffset = uio->uio_offset - on;
868 		n = min((unsigned)(biosize - on), uio->uio_resid);
869 again:
870 		/*
871 		 * Handle direct append and file extension cases, calculate
872 		 * unaligned buffer size.
873 		 */
874 
875 		if (uio->uio_offset == np->n_size && n) {
876 			/*
877 			 * Get the buffer (in its pre-append state to maintain
878 			 * B_CACHE if it was previously set).  Resize the
879 			 * nfsnode after we have locked the buffer to prevent
880 			 * readers from reading garbage.
881 			 */
882 			bcount = on;
883 			bp = nfs_getcacheblk(vp, loffset, bcount, td);
884 
885 			if (bp != NULL) {
886 				long save;
887 
888 				np->n_size = uio->uio_offset + n;
889 				np->n_flag |= NLMODIFIED;
890 				vnode_pager_setsize(vp, np->n_size);
891 
892 				save = bp->b_flags & B_CACHE;
893 				bcount += n;
894 				allocbuf(bp, bcount);
895 				bp->b_flags |= save;
896 			}
897 		} else {
898 			/*
899 			 * Obtain the locked cache block first, and then
900 			 * adjust the file's size as appropriate.
901 			 */
902 			bcount = on + n;
903 			if (loffset + bcount < np->n_size) {
904 				if (loffset + biosize < np->n_size)
905 					bcount = biosize;
906 				else
907 					bcount = np->n_size - loffset;
908 			}
909 			bp = nfs_getcacheblk(vp, loffset, bcount, td);
910 			if (uio->uio_offset + n > np->n_size) {
911 				np->n_size = uio->uio_offset + n;
912 				np->n_flag |= NLMODIFIED;
913 				vnode_pager_setsize(vp, np->n_size);
914 			}
915 		}
916 
917 		if (bp == NULL) {
918 			error = EINTR;
919 			break;
920 		}
921 
922 		/*
923 		 * Issue a READ if B_CACHE is not set.  In special-append
924 		 * mode, B_CACHE is based on the buffer prior to the write
925 		 * op and is typically set, avoiding the read.  If a read
926 		 * is required in special append mode, the server will
927 		 * probably send us a short-read since we extended the file
928 		 * on our end, resulting in b_resid == 0 and, thusly,
929 		 * B_CACHE getting set.
930 		 *
931 		 * We can also avoid issuing the read if the write covers
932 		 * the entire buffer.  We have to make sure the buffer state
933 		 * is reasonable in this case since we will not be initiating
934 		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
935 		 * more information.
936 		 *
937 		 * B_CACHE may also be set due to the buffer being cached
938 		 * normally.
939 		 */
940 
941 		if (on == 0 && n == bcount) {
942 			bp->b_flags |= B_CACHE;
943 			bp->b_flags &= ~(B_ERROR | B_INVAL);
944 		}
945 
946 		if ((bp->b_flags & B_CACHE) == 0) {
947 			bp->b_flags |= B_READ;
948 			vfs_busy_pages(bp, 0);
949 			error = nfs_doio(vp, &bp->b_bio2, td);
950 			if (error) {
951 				brelse(bp);
952 				break;
953 			}
954 		}
955 		if (!bp) {
956 			error = EINTR;
957 			break;
958 		}
959 		np->n_flag |= NLMODIFIED;
960 
961 		/*
962 		 * If dirtyend exceeds file size, chop it down.  This should
963 		 * not normally occur but there is an append race where it
964 		 * might occur XXX, so we log it.
965 		 *
966 		 * If the chopping creates a reverse-indexed or degenerate
967 		 * situation with dirtyoff/end, we 0 both of them.
968 		 */
969 
970 		if (bp->b_dirtyend > bcount) {
971 			printf("NFS append race @%08llx:%d\n",
972 			    bp->b_bio2.bio_offset,
973 			    bp->b_dirtyend - bcount);
974 			bp->b_dirtyend = bcount;
975 		}
976 
977 		if (bp->b_dirtyoff >= bp->b_dirtyend)
978 			bp->b_dirtyoff = bp->b_dirtyend = 0;
979 
980 		/*
981 		 * If the new write will leave a contiguous dirty
982 		 * area, just update the b_dirtyoff and b_dirtyend,
983 		 * otherwise force a write rpc of the old dirty area.
984 		 *
985 		 * While it is possible to merge discontiguous writes due to
986 		 * our having a B_CACHE buffer ( and thus valid read data
987 		 * for the hole), we don't because it could lead to
988 		 * significant cache coherency problems with multiple clients,
989 		 * especially if locking is implemented later on.
990 		 *
991 		 * as an optimization we could theoretically maintain
992 		 * a linked list of discontinuous areas, but we would still
993 		 * have to commit them separately so there isn't much
994 		 * advantage to it except perhaps a bit of asynchronization.
995 		 */
996 
997 		if (bp->b_dirtyend > 0 &&
998 		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
999 			if (VOP_BWRITE(vp, bp) == EINTR) {
1000 				error = EINTR;
1001 				break;
1002 			}
1003 			goto again;
1004 		}
1005 
1006 		error = uiomove((char *)bp->b_data + on, n, uio);
1007 
1008 		/*
1009 		 * Since this block is being modified, it must be written
1010 		 * again and not just committed.  Since write clustering does
1011 		 * not work for the stage 1 data write, only the stage 2
1012 		 * commit rpc, we have to clear B_CLUSTEROK as well.
1013 		 */
1014 		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1015 
1016 		if (error) {
1017 			bp->b_flags |= B_ERROR;
1018 			brelse(bp);
1019 			break;
1020 		}
1021 
1022 		/*
1023 		 * Only update dirtyoff/dirtyend if not a degenerate
1024 		 * condition.
1025 		 */
1026 		if (n) {
1027 			if (bp->b_dirtyend > 0) {
1028 				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1029 				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1030 			} else {
1031 				bp->b_dirtyoff = on;
1032 				bp->b_dirtyend = on + n;
1033 			}
1034 			vfs_bio_set_validclean(bp, on, n);
1035 		}
1036 		/*
1037 		 * If IO_NOWDRAIN then set B_NOWDRAIN (e.g. nfs-backed VN
1038 		 * filesystem).  XXX also use for loopback NFS mounts.
1039 		 */
1040 		if (ioflag & IO_NOWDRAIN)
1041 			bp->b_flags |= B_NOWDRAIN;
1042 
1043 		/*
1044 		 * If the lease is non-cachable or IO_SYNC do bwrite().
1045 		 *
1046 		 * IO_INVAL appears to be unused.  The idea appears to be
1047 		 * to turn off caching in this case.  Very odd.  XXX
1048 		 */
1049 		if ((np->n_flag & NDONTCACHE) || (ioflag & IO_SYNC)) {
1050 			if (ioflag & IO_INVAL)
1051 				bp->b_flags |= B_NOCACHE;
1052 			error = VOP_BWRITE(vp, bp);
1053 			if (error)
1054 				break;
1055 			if (np->n_flag & NDONTCACHE) {
1056 				error = nfs_vinvalbuf(vp, V_SAVE, td, 1);
1057 				if (error)
1058 					break;
1059 			}
1060 		} else if ((n + on) == biosize) {
1061 			bp->b_flags |= B_ASYNC;
1062 			nfs_writebp(bp, 0, 0);
1063 		} else {
1064 			bdwrite(bp);
1065 		}
1066 	} while (uio->uio_resid > 0 && n > 0);
1067 
1068 	if (haverslock)
1069 		nfs_rsunlock(np, td);
1070 
1071 	return (error);
1072 }
1073 
1074 /*
1075  * Get an nfs cache block.
1076  *
1077  * Allocate a new one if the block isn't currently in the cache
1078  * and return the block marked busy. If the calling process is
1079  * interrupted by a signal for an interruptible mount point, return
1080  * NULL.
1081  *
1082  * The caller must carefully deal with the possible B_INVAL state of
1083  * the buffer.  nfs_doio() clears B_INVAL (and nfs_asyncio() clears it
1084  * indirectly), so synchronous reads can be issued without worrying about
1085  * the B_INVAL state.  We have to be a little more careful when dealing
1086  * with writes (see comments in nfs_write()) when extending a file past
1087  * its EOF.
1088  */
1089 static struct buf *
1090 nfs_getcacheblk(struct vnode *vp, off_t loffset, int size, struct thread *td)
1091 {
1092 	struct buf *bp;
1093 	struct mount *mp;
1094 	struct nfsmount *nmp;
1095 
1096 	mp = vp->v_mount;
1097 	nmp = VFSTONFS(mp);
1098 
1099 	if (nmp->nm_flag & NFSMNT_INT) {
1100 		bp = getblk(vp, loffset, size, PCATCH, 0);
1101 		while (bp == NULL) {
1102 			if (nfs_sigintr(nmp, (struct nfsreq *)0, td))
1103 				return (NULL);
1104 			bp = getblk(vp, loffset, size, 0, 2 * hz);
1105 		}
1106 	} else {
1107 		bp = getblk(vp, loffset, size, 0, 0);
1108 	}
1109 
1110 	/*
1111 	 * bio2, the 'device' layer.  Since BIOs use 64 bit byte offsets
1112 	 * now, no translation is necessary.
1113 	 */
1114 	bp->b_bio2.bio_offset = loffset;
1115 	return (bp);
1116 }
1117 
1118 /*
1119  * Flush and invalidate all dirty buffers. If another process is already
1120  * doing the flush, just wait for completion.
1121  */
1122 int
1123 nfs_vinvalbuf(struct vnode *vp, int flags,
1124 	      struct thread *td, int intrflg)
1125 {
1126 	struct nfsnode *np = VTONFS(vp);
1127 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1128 	int error = 0, slpflag, slptimeo;
1129 
1130 	if (vp->v_flag & VRECLAIMED)
1131 		return (0);
1132 
1133 	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1134 		intrflg = 0;
1135 	if (intrflg) {
1136 		slpflag = PCATCH;
1137 		slptimeo = 2 * hz;
1138 	} else {
1139 		slpflag = 0;
1140 		slptimeo = 0;
1141 	}
1142 	/*
1143 	 * First wait for any other process doing a flush to complete.
1144 	 */
1145 	while (np->n_flag & NFLUSHINPROG) {
1146 		np->n_flag |= NFLUSHWANT;
1147 		error = tsleep((caddr_t)&np->n_flag, 0, "nfsvinval", slptimeo);
1148 		if (error && intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, td))
1149 			return (EINTR);
1150 	}
1151 
1152 	/*
1153 	 * Now, flush as required.
1154 	 */
1155 	np->n_flag |= NFLUSHINPROG;
1156 	error = vinvalbuf(vp, flags, td, slpflag, 0);
1157 	while (error) {
1158 		if (intrflg && nfs_sigintr(nmp, (struct nfsreq *)0, td)) {
1159 			np->n_flag &= ~NFLUSHINPROG;
1160 			if (np->n_flag & NFLUSHWANT) {
1161 				np->n_flag &= ~NFLUSHWANT;
1162 				wakeup((caddr_t)&np->n_flag);
1163 			}
1164 			return (EINTR);
1165 		}
1166 		error = vinvalbuf(vp, flags, td, 0, slptimeo);
1167 	}
1168 	np->n_flag &= ~(NLMODIFIED | NFLUSHINPROG);
1169 	if (np->n_flag & NFLUSHWANT) {
1170 		np->n_flag &= ~NFLUSHWANT;
1171 		wakeup((caddr_t)&np->n_flag);
1172 	}
1173 	return (0);
1174 }
1175 
1176 /*
1177  * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1178  * This is mainly to avoid queueing async I/O requests when the nfsiods
1179  * are all hung on a dead server.
1180  *
1181  * Note: nfs_asyncio() does not clear (B_ERROR|B_INVAL) but when the bp
1182  * is eventually dequeued by the async daemon, nfs_doio() *will*.
1183  */
1184 int
1185 nfs_asyncio(struct vnode *vp, struct bio *bio, struct thread *td)
1186 {
1187 	struct buf *bp = bio->bio_buf;
1188 	struct nfsmount *nmp;
1189 	int i;
1190 	int gotiod;
1191 	int slpflag = 0;
1192 	int slptimeo = 0;
1193 	int error;
1194 
1195 	/*
1196 	 * If no async daemons then return EIO to force caller to run the rpc
1197 	 * synchronously.
1198 	 */
1199 	if (nfs_numasync == 0)
1200 		return (EIO);
1201 
1202 	KKASSERT(vp->v_tag == VT_NFS);
1203 	nmp = VFSTONFS(vp->v_mount);
1204 
1205 	/*
1206 	 * Commits are usually short and sweet so lets save some cpu and
1207 	 * leave the async daemons for more important rpc's (such as reads
1208 	 * and writes).
1209 	 */
1210 	if ((bp->b_flags & (B_READ|B_NEEDCOMMIT)) == B_NEEDCOMMIT &&
1211 	    (nmp->nm_bioqiods > nfs_numasync / 2)) {
1212 		return(EIO);
1213 	}
1214 
1215 again:
1216 	if (nmp->nm_flag & NFSMNT_INT)
1217 		slpflag = PCATCH;
1218 	gotiod = FALSE;
1219 
1220 	/*
1221 	 * Find a free iod to process this request.
1222 	 */
1223 	for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
1224 		if (nfs_iodwant[i]) {
1225 			/*
1226 			 * Found one, so wake it up and tell it which
1227 			 * mount to process.
1228 			 */
1229 			NFS_DPF(ASYNCIO,
1230 				("nfs_asyncio: waking iod %d for mount %p\n",
1231 				 i, nmp));
1232 			nfs_iodwant[i] = NULL;
1233 			nfs_iodmount[i] = nmp;
1234 			nmp->nm_bioqiods++;
1235 			wakeup((caddr_t)&nfs_iodwant[i]);
1236 			gotiod = TRUE;
1237 			break;
1238 		}
1239 
1240 	/*
1241 	 * If none are free, we may already have an iod working on this mount
1242 	 * point.  If so, it will process our request.
1243 	 */
1244 	if (!gotiod) {
1245 		if (nmp->nm_bioqiods > 0) {
1246 			NFS_DPF(ASYNCIO,
1247 				("nfs_asyncio: %d iods are already processing mount %p\n",
1248 				 nmp->nm_bioqiods, nmp));
1249 			gotiod = TRUE;
1250 		}
1251 	}
1252 
1253 	/*
1254 	 * If we have an iod which can process the request, then queue
1255 	 * the buffer.
1256 	 */
1257 	if (gotiod) {
1258 		/*
1259 		 * Ensure that the queue never grows too large.  We still want
1260 		 * to asynchronize so we block rather then return EIO.
1261 		 */
1262 		while (nmp->nm_bioqlen >= 2*nfs_numasync) {
1263 			NFS_DPF(ASYNCIO,
1264 				("nfs_asyncio: waiting for mount %p queue to drain\n", nmp));
1265 			nmp->nm_bioqwant = TRUE;
1266 			error = tsleep(&nmp->nm_bioq, slpflag,
1267 				       "nfsaio", slptimeo);
1268 			if (error) {
1269 				if (nfs_sigintr(nmp, NULL, td))
1270 					return (EINTR);
1271 				if (slpflag == PCATCH) {
1272 					slpflag = 0;
1273 					slptimeo = 2 * hz;
1274 				}
1275 			}
1276 			/*
1277 			 * We might have lost our iod while sleeping,
1278 			 * so check and loop if nescessary.
1279 			 */
1280 			if (nmp->nm_bioqiods == 0) {
1281 				NFS_DPF(ASYNCIO,
1282 					("nfs_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1283 				goto again;
1284 			}
1285 		}
1286 		BUF_KERNPROC(bp);
1287 
1288 		/*
1289 		 * The passed bio's buffer is not necessary associated with
1290 		 * the NFS vnode it is being written to.  Store the NFS vnode
1291 		 * in the BIO driver info.
1292 		 */
1293 		bio->bio_driver_info = vp;
1294 		TAILQ_INSERT_TAIL(&nmp->nm_bioq, bio, bio_act);
1295 		nmp->nm_bioqlen++;
1296 		return (0);
1297 	}
1298 
1299 	/*
1300 	 * All the iods are busy on other mounts, so return EIO to
1301 	 * force the caller to process the i/o synchronously.
1302 	 */
1303 	NFS_DPF(ASYNCIO, ("nfs_asyncio: no iods available, i/o is synchronous\n"));
1304 	return (EIO);
1305 }
1306 
1307 /*
1308  * Do an I/O operation to/from a cache block. This may be called
1309  * synchronously or from an nfsiod.  The BIO is normalized for DEV_BSIZE.
1310  *
1311  * NOTE! TD MIGHT BE NULL
1312  */
1313 int
1314 nfs_doio(struct vnode *vp, struct bio *bio, struct thread *td)
1315 {
1316 	struct buf *bp = bio->bio_buf;
1317 	struct uio *uiop;
1318 	struct nfsnode *np;
1319 	struct nfsmount *nmp;
1320 	int error = 0, iomode, must_commit = 0;
1321 	struct uio uio;
1322 	struct iovec io;
1323 
1324 	KKASSERT(vp->v_tag == VT_NFS);
1325 	np = VTONFS(vp);
1326 	nmp = VFSTONFS(vp->v_mount);
1327 	uiop = &uio;
1328 	uiop->uio_iov = &io;
1329 	uiop->uio_iovcnt = 1;
1330 	uiop->uio_segflg = UIO_SYSSPACE;
1331 	uiop->uio_td = td;
1332 
1333 	/*
1334 	 * clear B_ERROR and B_INVAL state prior to initiating the I/O.  We
1335 	 * do this here so we do not have to do it in all the code that
1336 	 * calls us.
1337 	 */
1338 	bp->b_flags &= ~(B_ERROR | B_INVAL);
1339 
1340 	KASSERT(!(bp->b_flags & B_DONE), ("nfs_doio: bp %p already marked done", bp));
1341 
1342 	/*
1343 	 * Historically, paging was done with physio, but no more.
1344 	 */
1345 	if (bp->b_flags & B_PHYS) {
1346 	    /*
1347 	     * ...though reading /dev/drum still gets us here.
1348 	     */
1349 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1350 	    /* mapping was done by vmapbuf() */
1351 	    io.iov_base = bp->b_data;
1352 	    uiop->uio_offset = bio->bio_offset;
1353 	    if (bp->b_flags & B_READ) {
1354 		uiop->uio_rw = UIO_READ;
1355 		nfsstats.read_physios++;
1356 		error = nfs_readrpc(vp, uiop);
1357 	    } else {
1358 		int com;
1359 
1360 		iomode = NFSV3WRITE_DATASYNC;
1361 		uiop->uio_rw = UIO_WRITE;
1362 		nfsstats.write_physios++;
1363 		error = nfs_writerpc(vp, uiop, &iomode, &com);
1364 	    }
1365 	    if (error) {
1366 		bp->b_flags |= B_ERROR;
1367 		bp->b_error = error;
1368 	    }
1369 	} else if (bp->b_flags & B_READ) {
1370 	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1371 	    io.iov_base = bp->b_data;
1372 	    uiop->uio_rw = UIO_READ;
1373 
1374 	    switch (vp->v_type) {
1375 	    case VREG:
1376 		uiop->uio_offset = bio->bio_offset;
1377 		nfsstats.read_bios++;
1378 		error = nfs_readrpc(vp, uiop);
1379 
1380 		if (!error) {
1381 		    if (uiop->uio_resid) {
1382 			/*
1383 			 * If we had a short read with no error, we must have
1384 			 * hit a file hole.  We should zero-fill the remainder.
1385 			 * This can also occur if the server hits the file EOF.
1386 			 *
1387 			 * Holes used to be able to occur due to pending
1388 			 * writes, but that is not possible any longer.
1389 			 */
1390 			int nread = bp->b_bcount - uiop->uio_resid;
1391 			int left  = uiop->uio_resid;
1392 
1393 			if (left > 0)
1394 				bzero((char *)bp->b_data + nread, left);
1395 			uiop->uio_resid = 0;
1396 		    }
1397 		}
1398 		if (td && td->td_proc && (vp->v_flag & VTEXT) &&
1399 		    np->n_mtime != np->n_vattr.va_mtime.tv_sec) {
1400 			uprintf("Process killed due to text file modification\n");
1401 			psignal(td->td_proc, SIGKILL);
1402 		}
1403 		break;
1404 	    case VLNK:
1405 		uiop->uio_offset = 0;
1406 		nfsstats.readlink_bios++;
1407 		error = nfs_readlinkrpc(vp, uiop);
1408 		break;
1409 	    case VDIR:
1410 		nfsstats.readdir_bios++;
1411 		uiop->uio_offset = bio->bio_offset;
1412 		if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
1413 			error = nfs_readdirplusrpc(vp, uiop);
1414 			if (error == NFSERR_NOTSUPP)
1415 				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1416 		}
1417 		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1418 			error = nfs_readdirrpc(vp, uiop);
1419 		/*
1420 		 * end-of-directory sets B_INVAL but does not generate an
1421 		 * error.
1422 		 */
1423 		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1424 			bp->b_flags |= B_INVAL;
1425 		break;
1426 	    default:
1427 		printf("nfs_doio:  type %x unexpected\n",vp->v_type);
1428 		break;
1429 	    };
1430 	    if (error) {
1431 		bp->b_flags |= B_ERROR;
1432 		bp->b_error = error;
1433 	    }
1434 	} else {
1435 	    /*
1436 	     * If we only need to commit, try to commit
1437 	     */
1438 	    if (bp->b_flags & B_NEEDCOMMIT) {
1439 		    int retv;
1440 		    off_t off;
1441 
1442 		    off = bio->bio_offset + bp->b_dirtyoff;
1443 		    retv = nfs_commit(vp, off,
1444 				bp->b_dirtyend - bp->b_dirtyoff, td);
1445 		    if (retv == 0) {
1446 			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1447 			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1448 			    bp->b_resid = 0;
1449 			    biodone(bio);
1450 			    return (0);
1451 		    }
1452 		    if (retv == NFSERR_STALEWRITEVERF) {
1453 			    nfs_clearcommit(vp->v_mount);
1454 		    }
1455 	    }
1456 
1457 	    /*
1458 	     * Setup for actual write
1459 	     */
1460 
1461 	    if (bio->bio_offset + bp->b_dirtyend > np->n_size)
1462 		bp->b_dirtyend = np->n_size - bio->bio_offset;
1463 
1464 	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1465 		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1466 		    - bp->b_dirtyoff;
1467 		uiop->uio_offset = bio->bio_offset + bp->b_dirtyoff;
1468 		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1469 		uiop->uio_rw = UIO_WRITE;
1470 		nfsstats.write_bios++;
1471 
1472 		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1473 		    iomode = NFSV3WRITE_UNSTABLE;
1474 		else
1475 		    iomode = NFSV3WRITE_FILESYNC;
1476 
1477 		error = nfs_writerpc(vp, uiop, &iomode, &must_commit);
1478 
1479 		/*
1480 		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1481 		 * to cluster the buffers needing commit.  This will allow
1482 		 * the system to submit a single commit rpc for the whole
1483 		 * cluster.  We can do this even if the buffer is not 100%
1484 		 * dirty (relative to the NFS blocksize), so we optimize the
1485 		 * append-to-file-case.
1486 		 *
1487 		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1488 		 * cleared because write clustering only works for commit
1489 		 * rpc's, not for the data portion of the write).
1490 		 */
1491 
1492 		if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1493 		    bp->b_flags |= B_NEEDCOMMIT;
1494 		    if (bp->b_dirtyoff == 0
1495 			&& bp->b_dirtyend == bp->b_bcount)
1496 			bp->b_flags |= B_CLUSTEROK;
1497 		} else {
1498 		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1499 		}
1500 
1501 		/*
1502 		 * For an interrupted write, the buffer is still valid
1503 		 * and the write hasn't been pushed to the server yet,
1504 		 * so we can't set B_ERROR and report the interruption
1505 		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1506 		 * is not relevant, so the rpc attempt is essentially
1507 		 * a noop.  For the case of a V3 write rpc not being
1508 		 * committed to stable storage, the block is still
1509 		 * dirty and requires either a commit rpc or another
1510 		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1511 		 * the block is reused. This is indicated by setting
1512 		 * the B_DELWRI and B_NEEDCOMMIT flags.
1513 		 *
1514 		 * If the buffer is marked B_PAGING, it does not reside on
1515 		 * the vp's paging queues so we cannot call bdirty().  The
1516 		 * bp in this case is not an NFS cache block so we should
1517 		 * be safe. XXX
1518 		 */
1519     		if (error == EINTR
1520 		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1521 			crit_enter();
1522 			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1523 			if ((bp->b_flags & B_PAGING) == 0) {
1524 			    bdirty(bp);
1525 			    bp->b_flags &= ~B_DONE;
1526 			}
1527 			if (error && (bp->b_flags & B_ASYNC) == 0)
1528 			    bp->b_flags |= B_EINTR;
1529 			crit_exit();
1530 	    	} else {
1531 		    if (error) {
1532 			bp->b_flags |= B_ERROR;
1533 			bp->b_error = np->n_error = error;
1534 			np->n_flag |= NWRITEERR;
1535 		    }
1536 		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1537 		}
1538 	    } else {
1539 		bp->b_resid = 0;
1540 		biodone(bio);
1541 		return (0);
1542 	    }
1543 	}
1544 	bp->b_resid = uiop->uio_resid;
1545 	if (must_commit)
1546 	    nfs_clearcommit(vp->v_mount);
1547 	biodone(bio);
1548 	return (error);
1549 }
1550 
1551 /*
1552  * Used to aid in handling ftruncate() operations on the NFS client side.
1553  * Truncation creates a number of special problems for NFS.  We have to
1554  * throw away VM pages and buffer cache buffers that are beyond EOF, and
1555  * we have to properly handle VM pages or (potentially dirty) buffers
1556  * that straddle the truncation point.
1557  */
1558 
1559 int
1560 nfs_meta_setsize(struct vnode *vp, struct thread *td, u_quad_t nsize)
1561 {
1562 	struct nfsnode *np = VTONFS(vp);
1563 	u_quad_t tsize = np->n_size;
1564 	int biosize = vp->v_mount->mnt_stat.f_iosize;
1565 	int error = 0;
1566 
1567 	np->n_size = nsize;
1568 
1569 	if (np->n_size < tsize) {
1570 		struct buf *bp;
1571 		daddr_t lbn;
1572 		off_t loffset;
1573 		int bufsize;
1574 
1575 		/*
1576 		 * vtruncbuf() doesn't get the buffer overlapping the
1577 		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1578 		 * buffer that now needs to be truncated.
1579 		 */
1580 		error = vtruncbuf(vp, td, nsize, biosize);
1581 		lbn = nsize / biosize;
1582 		bufsize = nsize & (biosize - 1);
1583 		loffset = nsize - bufsize;
1584 		bp = nfs_getcacheblk(vp, loffset, bufsize, td);
1585 		if (bp->b_dirtyoff > bp->b_bcount)
1586 			bp->b_dirtyoff = bp->b_bcount;
1587 		if (bp->b_dirtyend > bp->b_bcount)
1588 			bp->b_dirtyend = bp->b_bcount;
1589 		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1590 		brelse(bp);
1591 	} else {
1592 		vnode_pager_setsize(vp, nsize);
1593 	}
1594 	return(error);
1595 }
1596 
1597