1 /* 2 * Copyright (c) 2011-2014 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression) 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * 3. Neither the name of The DragonFly Project nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific, prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/nlookup.h> 39 #include <sys/vnode.h> 40 #include <sys/mount.h> 41 #include <sys/fcntl.h> 42 #include <sys/buf.h> 43 #include <sys/uuid.h> 44 #include <sys/vfsops.h> 45 #include <sys/sysctl.h> 46 #include <sys/socket.h> 47 #include <sys/objcache.h> 48 49 #include <sys/proc.h> 50 #include <sys/namei.h> 51 #include <sys/mountctl.h> 52 #include <sys/dirent.h> 53 #include <sys/uio.h> 54 55 #include <sys/mutex.h> 56 #include <sys/mutex2.h> 57 58 #include "hammer2.h" 59 #include "hammer2_disk.h" 60 #include "hammer2_mount.h" 61 62 #include "hammer2.h" 63 #include "hammer2_lz4.h" 64 65 #include "zlib/hammer2_zlib.h" 66 67 #define REPORT_REFS_ERRORS 1 /* XXX remove me */ 68 69 MALLOC_DEFINE(M_OBJCACHE, "objcache", "Object Cache"); 70 71 struct hammer2_sync_info { 72 hammer2_trans_t trans; 73 int error; 74 int waitfor; 75 }; 76 77 TAILQ_HEAD(hammer2_mntlist, hammer2_mount); 78 TAILQ_HEAD(hammer2_pfslist, hammer2_pfsmount); 79 static struct hammer2_mntlist hammer2_mntlist; 80 static struct hammer2_pfslist hammer2_pfslist; 81 static struct lock hammer2_mntlk; 82 83 int hammer2_debug; 84 int hammer2_cluster_enable = 1; 85 int hammer2_hardlink_enable = 1; 86 int hammer2_flush_pipe = 100; 87 int hammer2_synchronous_flush = 1; 88 int hammer2_dio_count; 89 long hammer2_limit_dirty_chains; 90 long hammer2_iod_file_read; 91 long hammer2_iod_meta_read; 92 long hammer2_iod_indr_read; 93 long hammer2_iod_fmap_read; 94 long hammer2_iod_volu_read; 95 long hammer2_iod_file_write; 96 long hammer2_iod_meta_write; 97 long hammer2_iod_indr_write; 98 long hammer2_iod_fmap_write; 99 long hammer2_iod_volu_write; 100 long hammer2_ioa_file_read; 101 long hammer2_ioa_meta_read; 102 long hammer2_ioa_indr_read; 103 long hammer2_ioa_fmap_read; 104 long hammer2_ioa_volu_read; 105 long hammer2_ioa_fmap_write; 106 long hammer2_ioa_file_write; 107 long hammer2_ioa_meta_write; 108 long hammer2_ioa_indr_write; 109 long hammer2_ioa_volu_write; 110 111 MALLOC_DECLARE(C_BUFFER); 112 MALLOC_DEFINE(C_BUFFER, "compbuffer", "Buffer used for compression."); 113 114 MALLOC_DECLARE(D_BUFFER); 115 MALLOC_DEFINE(D_BUFFER, "decompbuffer", "Buffer used for decompression."); 116 117 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem"); 118 119 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW, 120 &hammer2_debug, 0, ""); 121 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_enable, CTLFLAG_RW, 122 &hammer2_cluster_enable, 0, ""); 123 SYSCTL_INT(_vfs_hammer2, OID_AUTO, hardlink_enable, CTLFLAG_RW, 124 &hammer2_hardlink_enable, 0, ""); 125 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW, 126 &hammer2_flush_pipe, 0, ""); 127 SYSCTL_INT(_vfs_hammer2, OID_AUTO, synchronous_flush, CTLFLAG_RW, 128 &hammer2_synchronous_flush, 0, ""); 129 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW, 130 &hammer2_limit_dirty_chains, 0, ""); 131 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD, 132 &hammer2_dio_count, 0, ""); 133 134 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW, 135 &hammer2_iod_file_read, 0, ""); 136 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW, 137 &hammer2_iod_meta_read, 0, ""); 138 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW, 139 &hammer2_iod_indr_read, 0, ""); 140 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW, 141 &hammer2_iod_fmap_read, 0, ""); 142 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW, 143 &hammer2_iod_volu_read, 0, ""); 144 145 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW, 146 &hammer2_iod_file_write, 0, ""); 147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW, 148 &hammer2_iod_meta_write, 0, ""); 149 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW, 150 &hammer2_iod_indr_write, 0, ""); 151 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW, 152 &hammer2_iod_fmap_write, 0, ""); 153 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW, 154 &hammer2_iod_volu_write, 0, ""); 155 156 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_file_read, CTLFLAG_RW, 157 &hammer2_ioa_file_read, 0, ""); 158 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_meta_read, CTLFLAG_RW, 159 &hammer2_ioa_meta_read, 0, ""); 160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_indr_read, CTLFLAG_RW, 161 &hammer2_ioa_indr_read, 0, ""); 162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_fmap_read, CTLFLAG_RW, 163 &hammer2_ioa_fmap_read, 0, ""); 164 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_volu_read, CTLFLAG_RW, 165 &hammer2_ioa_volu_read, 0, ""); 166 167 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_file_write, CTLFLAG_RW, 168 &hammer2_ioa_file_write, 0, ""); 169 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_meta_write, CTLFLAG_RW, 170 &hammer2_ioa_meta_write, 0, ""); 171 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_indr_write, CTLFLAG_RW, 172 &hammer2_ioa_indr_write, 0, ""); 173 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_fmap_write, CTLFLAG_RW, 174 &hammer2_ioa_fmap_write, 0, ""); 175 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_volu_write, CTLFLAG_RW, 176 &hammer2_ioa_volu_write, 0, ""); 177 178 static int hammer2_vfs_init(struct vfsconf *conf); 179 static int hammer2_vfs_uninit(struct vfsconf *vfsp); 180 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data, 181 struct ucred *cred); 182 static int hammer2_remount(hammer2_mount_t *, struct mount *, char *, 183 struct vnode *, struct ucred *); 184 static int hammer2_recovery(hammer2_mount_t *hmp); 185 static int hammer2_vfs_unmount(struct mount *mp, int mntflags); 186 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp); 187 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, 188 struct ucred *cred); 189 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, 190 struct ucred *cred); 191 static int hammer2_vfs_vget(struct mount *mp, struct vnode *dvp, 192 ino_t ino, struct vnode **vpp); 193 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp, 194 struct fid *fhp, struct vnode **vpp); 195 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp); 196 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam, 197 int *exflagsp, struct ucred **credanonp); 198 199 static int hammer2_install_volume_header(hammer2_mount_t *hmp); 200 static int hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data); 201 202 static void hammer2_write_thread(void *arg); 203 204 static void hammer2_vfs_unmount_hmp1(struct mount *mp, hammer2_mount_t *hmp); 205 static void hammer2_vfs_unmount_hmp2(struct mount *mp, hammer2_mount_t *hmp); 206 207 /* 208 * Functions for compression in threads, 209 * from hammer2_vnops.c 210 */ 211 static void hammer2_write_file_core(struct buf *bp, hammer2_trans_t *trans, 212 hammer2_inode_t *ip, 213 const hammer2_inode_data_t *ripdata, 214 hammer2_cluster_t *cparent, 215 hammer2_key_t lbase, int ioflag, int pblksize, 216 int *errorp); 217 static void hammer2_compress_and_write(struct buf *bp, hammer2_trans_t *trans, 218 hammer2_inode_t *ip, 219 const hammer2_inode_data_t *ripdata, 220 hammer2_cluster_t *cparent, 221 hammer2_key_t lbase, int ioflag, 222 int pblksize, int *errorp, 223 int comp_algo, int check_algo); 224 static void hammer2_zero_check_and_write(struct buf *bp, 225 hammer2_trans_t *trans, hammer2_inode_t *ip, 226 const hammer2_inode_data_t *ripdata, 227 hammer2_cluster_t *cparent, 228 hammer2_key_t lbase, 229 int ioflag, int pblksize, int *errorp, 230 int check_algo); 231 static int test_block_zeros(const char *buf, size_t bytes); 232 static void zero_write(struct buf *bp, hammer2_trans_t *trans, 233 hammer2_inode_t *ip, 234 const hammer2_inode_data_t *ripdata, 235 hammer2_cluster_t *cparent, 236 hammer2_key_t lbase, 237 int *errorp); 238 static void hammer2_write_bp(hammer2_cluster_t *cluster, struct buf *bp, 239 int ioflag, int pblksize, int *errorp, 240 int check_algo); 241 242 static int hammer2_rcvdmsg(kdmsg_msg_t *msg); 243 static void hammer2_autodmsg(kdmsg_msg_t *msg); 244 static int hammer2_lnk_span_reply(kdmsg_state_t *state, kdmsg_msg_t *msg); 245 246 247 /* 248 * HAMMER2 vfs operations. 249 */ 250 static struct vfsops hammer2_vfsops = { 251 .vfs_init = hammer2_vfs_init, 252 .vfs_uninit = hammer2_vfs_uninit, 253 .vfs_sync = hammer2_vfs_sync, 254 .vfs_mount = hammer2_vfs_mount, 255 .vfs_unmount = hammer2_vfs_unmount, 256 .vfs_root = hammer2_vfs_root, 257 .vfs_statfs = hammer2_vfs_statfs, 258 .vfs_statvfs = hammer2_vfs_statvfs, 259 .vfs_vget = hammer2_vfs_vget, 260 .vfs_vptofh = hammer2_vfs_vptofh, 261 .vfs_fhtovp = hammer2_vfs_fhtovp, 262 .vfs_checkexp = hammer2_vfs_checkexp 263 }; 264 265 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", ""); 266 267 VFS_SET(hammer2_vfsops, hammer2, 0); 268 MODULE_VERSION(hammer2, 1); 269 270 static 271 int 272 hammer2_vfs_init(struct vfsconf *conf) 273 { 274 static struct objcache_malloc_args margs_read; 275 static struct objcache_malloc_args margs_write; 276 277 int error; 278 279 error = 0; 280 281 if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref)) 282 error = EINVAL; 283 if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data)) 284 error = EINVAL; 285 if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data)) 286 error = EINVAL; 287 288 if (error) 289 kprintf("HAMMER2 structure size mismatch; cannot continue.\n"); 290 291 margs_read.objsize = 65536; 292 margs_read.mtype = D_BUFFER; 293 294 margs_write.objsize = 32768; 295 margs_write.mtype = C_BUFFER; 296 297 cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc, 298 0, 1, NULL, NULL, NULL, objcache_malloc_alloc, 299 objcache_malloc_free, &margs_read); 300 cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc, 301 0, 1, NULL, NULL, NULL, objcache_malloc_alloc, 302 objcache_malloc_free, &margs_write); 303 304 lockinit(&hammer2_mntlk, "mntlk", 0, 0); 305 TAILQ_INIT(&hammer2_mntlist); 306 TAILQ_INIT(&hammer2_pfslist); 307 308 hammer2_limit_dirty_chains = desiredvnodes / 10; 309 310 hammer2_trans_manage_init(); 311 312 return (error); 313 } 314 315 static 316 int 317 hammer2_vfs_uninit(struct vfsconf *vfsp __unused) 318 { 319 objcache_destroy(cache_buffer_read); 320 objcache_destroy(cache_buffer_write); 321 return 0; 322 } 323 324 /* 325 * Core PFS allocator. Used to allocate the pmp structure for PFS cluster 326 * mounts and the spmp structure for media (hmp) structures. 327 */ 328 static hammer2_pfsmount_t * 329 hammer2_pfsalloc(const hammer2_inode_data_t *ripdata, hammer2_tid_t alloc_tid) 330 { 331 hammer2_pfsmount_t *pmp; 332 333 pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO); 334 kmalloc_create(&pmp->minode, "HAMMER2-inodes"); 335 kmalloc_create(&pmp->mmsg, "HAMMER2-pfsmsg"); 336 lockinit(&pmp->lock, "pfslk", 0, 0); 337 spin_init(&pmp->inum_spin, "hm2pfsalloc_inum"); 338 RB_INIT(&pmp->inum_tree); 339 TAILQ_INIT(&pmp->unlinkq); 340 spin_init(&pmp->list_spin, "hm2pfsalloc_list"); 341 342 pmp->alloc_tid = alloc_tid + 1; /* our first media transaction id */ 343 pmp->flush_tid = pmp->alloc_tid; 344 if (ripdata) { 345 pmp->inode_tid = ripdata->pfs_inum + 1; 346 pmp->pfs_clid = ripdata->pfs_clid; 347 } 348 mtx_init(&pmp->wthread_mtx); 349 bioq_init(&pmp->wthread_bioq); 350 351 return pmp; 352 } 353 354 /* 355 * Mount or remount HAMMER2 fileystem from physical media 356 * 357 * mountroot 358 * mp mount point structure 359 * path NULL 360 * data <unused> 361 * cred <unused> 362 * 363 * mount 364 * mp mount point structure 365 * path path to mount point 366 * data pointer to argument structure in user space 367 * volume volume path (device@LABEL form) 368 * hflags user mount flags 369 * cred user credentials 370 * 371 * RETURNS: 0 Success 372 * !0 error number 373 */ 374 static 375 int 376 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data, 377 struct ucred *cred) 378 { 379 struct hammer2_mount_info info; 380 hammer2_pfsmount_t *pmp; 381 hammer2_pfsmount_t *spmp; 382 hammer2_mount_t *hmp; 383 hammer2_key_t key_next; 384 hammer2_key_t key_dummy; 385 hammer2_key_t lhc; 386 struct vnode *devvp; 387 struct nlookupdata nd; 388 hammer2_chain_t *parent; 389 hammer2_chain_t *rchain; 390 hammer2_cluster_t *cluster; 391 hammer2_cluster_t *cparent; 392 const hammer2_inode_data_t *ripdata; 393 hammer2_blockref_t bref; 394 struct file *fp; 395 char devstr[MNAMELEN]; 396 size_t size; 397 size_t done; 398 char *dev; 399 char *label; 400 int ronly = 1; 401 int error; 402 int cache_index; 403 int ddflag; 404 int i; 405 406 hmp = NULL; 407 pmp = NULL; 408 dev = NULL; 409 label = NULL; 410 devvp = NULL; 411 cache_index = -1; 412 413 kprintf("hammer2_mount\n"); 414 415 if (path == NULL) { 416 /* 417 * Root mount 418 */ 419 bzero(&info, sizeof(info)); 420 info.cluster_fd = -1; 421 return (EOPNOTSUPP); 422 } else { 423 /* 424 * Non-root mount or updating a mount 425 */ 426 error = copyin(data, &info, sizeof(info)); 427 if (error) 428 return (error); 429 430 error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done); 431 if (error) 432 return (error); 433 434 /* Extract device and label */ 435 dev = devstr; 436 label = strchr(devstr, '@'); 437 if (label == NULL || 438 ((label + 1) - dev) > done) { 439 return (EINVAL); 440 } 441 *label = '\0'; 442 label++; 443 if (*label == '\0') 444 return (EINVAL); 445 446 if (mp->mnt_flag & MNT_UPDATE) { 447 /* Update mount */ 448 /* HAMMER2 implements NFS export via mountctl */ 449 pmp = MPTOPMP(mp); 450 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) { 451 hmp = pmp->iroot->cluster.array[i]->hmp; 452 devvp = hmp->devvp; 453 error = hammer2_remount(hmp, mp, path, 454 devvp, cred); 455 if (error) 456 break; 457 } 458 /*hammer2_inode_install_hidden(pmp);*/ 459 460 return error; 461 } 462 } 463 464 /* 465 * HMP device mount 466 * 467 * Lookup name and verify it refers to a block device. 468 */ 469 error = nlookup_init(&nd, dev, UIO_SYSSPACE, NLC_FOLLOW); 470 if (error == 0) 471 error = nlookup(&nd); 472 if (error == 0) 473 error = cache_vref(&nd.nl_nch, nd.nl_cred, &devvp); 474 nlookup_done(&nd); 475 476 if (error == 0) { 477 if (vn_isdisk(devvp, &error)) 478 error = vfs_mountedon(devvp); 479 } 480 481 /* 482 * Determine if the device has already been mounted. After this 483 * check hmp will be non-NULL if we are doing the second or more 484 * hammer2 mounts from the same device. 485 */ 486 lockmgr(&hammer2_mntlk, LK_EXCLUSIVE); 487 TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) { 488 if (hmp->devvp == devvp) 489 break; 490 } 491 492 /* 493 * Open the device if this isn't a secondary mount and construct 494 * the H2 device mount (hmp). 495 */ 496 if (hmp == NULL) { 497 hammer2_chain_t *schain; 498 hammer2_xid_t xid; 499 500 if (error == 0 && vcount(devvp) > 0) 501 error = EBUSY; 502 503 /* 504 * Now open the device 505 */ 506 if (error == 0) { 507 ronly = ((mp->mnt_flag & MNT_RDONLY) != 0); 508 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 509 error = vinvalbuf(devvp, V_SAVE, 0, 0); 510 if (error == 0) { 511 error = VOP_OPEN(devvp, 512 ronly ? FREAD : FREAD | FWRITE, 513 FSCRED, NULL); 514 } 515 vn_unlock(devvp); 516 } 517 if (error && devvp) { 518 vrele(devvp); 519 devvp = NULL; 520 } 521 if (error) { 522 lockmgr(&hammer2_mntlk, LK_RELEASE); 523 return error; 524 } 525 hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO); 526 hmp->ronly = ronly; 527 hmp->devvp = devvp; 528 kmalloc_create(&hmp->mchain, "HAMMER2-chains"); 529 TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry); 530 RB_INIT(&hmp->iotree); 531 spin_init(&hmp->io_spin, "hm2mount_io"); 532 spin_init(&hmp->list_spin, "hm2mount_list"); 533 TAILQ_INIT(&hmp->flushq); 534 535 lockinit(&hmp->vollk, "h2vol", 0, 0); 536 537 /* 538 * vchain setup. vchain.data is embedded. 539 * vchain.refs is initialized and will never drop to 0. 540 * 541 * NOTE! voldata is not yet loaded. 542 */ 543 hmp->vchain.hmp = hmp; 544 hmp->vchain.refs = 1; 545 hmp->vchain.data = (void *)&hmp->voldata; 546 hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME; 547 hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX; 548 hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid; 549 550 hammer2_chain_core_alloc(NULL, &hmp->vchain); 551 /* hmp->vchain.u.xxx is left NULL */ 552 553 /* 554 * fchain setup. fchain.data is embedded. 555 * fchain.refs is initialized and will never drop to 0. 556 * 557 * The data is not used but needs to be initialized to 558 * pass assertion muster. We use this chain primarily 559 * as a placeholder for the freemap's top-level RBTREE 560 * so it does not interfere with the volume's topology 561 * RBTREE. 562 */ 563 hmp->fchain.hmp = hmp; 564 hmp->fchain.refs = 1; 565 hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset; 566 hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP; 567 hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX; 568 hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid; 569 hmp->fchain.bref.methods = 570 HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) | 571 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE); 572 573 hammer2_chain_core_alloc(NULL, &hmp->fchain); 574 /* hmp->fchain.u.xxx is left NULL */ 575 576 /* 577 * Install the volume header and initialize fields from 578 * voldata. 579 */ 580 error = hammer2_install_volume_header(hmp); 581 if (error) { 582 ++hmp->pmp_count; 583 hammer2_vfs_unmount_hmp1(mp, hmp); 584 hammer2_vfs_unmount_hmp2(mp, hmp); 585 lockmgr(&hammer2_mntlk, LK_RELEASE); 586 hammer2_vfs_unmount(mp, MNT_FORCE); 587 return error; 588 } 589 590 /* 591 * Really important to get these right or flush will get 592 * confused. 593 */ 594 hmp->spmp = hammer2_pfsalloc(NULL, hmp->voldata.mirror_tid); 595 kprintf("alloc spmp %p tid %016jx\n", 596 hmp->spmp, hmp->voldata.mirror_tid); 597 spmp = hmp->spmp; 598 spmp->inode_tid = 1; 599 600 xid = 0; 601 hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid; 602 hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid; 603 hmp->vchain.pmp = spmp; 604 hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid; 605 hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid; 606 hmp->fchain.pmp = spmp; 607 608 /* 609 * First locate the super-root inode, which is key 0 610 * relative to the volume header's blockset. 611 * 612 * Then locate the root inode by scanning the directory keyspace 613 * represented by the label. 614 */ 615 parent = hammer2_chain_lookup_init(&hmp->vchain, 0); 616 schain = hammer2_chain_lookup(&parent, &key_dummy, 617 HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY, 618 &cache_index, 0, &ddflag); 619 hammer2_chain_lookup_done(parent); 620 if (schain == NULL) { 621 kprintf("hammer2_mount: invalid super-root\n"); 622 ++hmp->pmp_count; 623 hammer2_vfs_unmount_hmp1(mp, hmp); 624 hammer2_vfs_unmount_hmp2(mp, hmp); 625 lockmgr(&hammer2_mntlk, LK_RELEASE); 626 hammer2_vfs_unmount(mp, MNT_FORCE); 627 return EINVAL; 628 } 629 630 /* 631 * Sanity-check schain's pmp, finish initializing spmp. 632 */ 633 ripdata = &hammer2_chain_rdata(schain)->ipdata; 634 KKASSERT(schain->pmp == spmp); 635 spmp->pfs_clid = ripdata->pfs_clid; 636 637 /* 638 * NOTE: inode_get sucks up schain's lock. 639 */ 640 cluster = hammer2_cluster_from_chain(schain); 641 spmp->iroot = hammer2_inode_get(spmp, NULL, cluster); 642 spmp->spmp_hmp = hmp; 643 hammer2_inode_ref(spmp->iroot); 644 hammer2_inode_unlock_ex(spmp->iroot, cluster); 645 schain = NULL; 646 /* leave spmp->iroot with one ref */ 647 648 if ((mp->mnt_flag & MNT_RDONLY) == 0) { 649 error = hammer2_recovery(hmp); 650 /* XXX do something with error */ 651 } 652 ++hmp->pmp_count; 653 654 /* 655 * XXX RDONLY stuff is totally broken FIXME XXX 656 * 657 * Automatic LNK_CONN 658 * Automatic handling of received LNK_SPAN 659 * No automatic LNK_SPAN generation - we do this ourselves 660 */ 661 kdmsg_iocom_init(&hmp->iocom, hmp, 662 KDMSG_IOCOMF_AUTOCONN | 663 KDMSG_IOCOMF_AUTORXSPAN, 664 hmp->mchain, hammer2_rcvdmsg); 665 666 /* 667 * Ref the cluster management messaging descriptor. The mount 668 * program deals with the other end of the communications pipe. 669 */ 670 fp = holdfp(curproc->p_fd, info.cluster_fd, -1); 671 if (fp) { 672 hammer2_cluster_reconnect(hmp, fp); 673 } else { 674 kprintf("hammer2_mount: bad cluster_fd!\n"); 675 } 676 } else { 677 spmp = hmp->spmp; 678 ++hmp->pmp_count; 679 } 680 681 /* 682 * Lookup mount point under the media-localized super-root. 683 * 684 * cluster->pmp will incorrectly point to spmp and must be fixed 685 * up later on. 686 */ 687 cparent = hammer2_inode_lock_ex(spmp->iroot); 688 lhc = hammer2_dirhash(label, strlen(label)); 689 cluster = hammer2_cluster_lookup(cparent, &key_next, 690 lhc, lhc + HAMMER2_DIRHASH_LOMASK, 691 0, &ddflag); 692 while (cluster) { 693 if (hammer2_cluster_type(cluster) == HAMMER2_BREF_TYPE_INODE && 694 strcmp(label, 695 hammer2_cluster_rdata(cluster)->ipdata.filename) == 0) { 696 break; 697 } 698 cluster = hammer2_cluster_next(cparent, cluster, &key_next, 699 key_next, 700 lhc + HAMMER2_DIRHASH_LOMASK, 0); 701 } 702 hammer2_inode_unlock_ex(spmp->iroot, cparent); 703 704 if (cluster == NULL) { 705 kprintf("hammer2_mount: PFS label not found\n"); 706 hammer2_vfs_unmount_hmp1(mp, hmp); 707 hammer2_vfs_unmount_hmp2(mp, hmp); 708 lockmgr(&hammer2_mntlk, LK_RELEASE); 709 hammer2_vfs_unmount(mp, MNT_FORCE); 710 return EINVAL; 711 } 712 713 for (i = 0; i < cluster->nchains; ++i) { 714 rchain = cluster->array[i]; 715 if (rchain->flags & HAMMER2_CHAIN_MOUNTED) { 716 kprintf("hammer2_mount: PFS label already mounted!\n"); 717 hammer2_cluster_unlock(cluster); 718 hammer2_vfs_unmount_hmp1(mp, hmp); 719 hammer2_vfs_unmount_hmp2(mp, hmp); 720 lockmgr(&hammer2_mntlk, LK_RELEASE); 721 hammer2_vfs_unmount(mp, MNT_FORCE); 722 return EBUSY; 723 } 724 KKASSERT(rchain->pmp == NULL); 725 #if 0 726 if (rchain->flags & HAMMER2_CHAIN_RECYCLE) { 727 kprintf("hammer2_mount: PFS label is recycling\n"); 728 hammer2_cluster_unlock(cluster); 729 hammer2_vfs_unmount_hmp1(mp, hmp); 730 hammer2_vfs_unmount_hmp2(mp, hmp); 731 lockmgr(&hammer2_mntlk, LK_RELEASE); 732 hammer2_vfs_unmount(mp, MNT_FORCE); 733 return EBUSY; 734 } 735 #endif 736 } 737 738 /* 739 * Check to see if the cluster id is already mounted at the mount 740 * point. If it is, add us to the cluster. 741 */ 742 ripdata = &hammer2_cluster_rdata(cluster)->ipdata; 743 hammer2_cluster_bref(cluster, &bref); 744 TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) { 745 if (pmp->spmp_hmp == NULL && 746 bcmp(&pmp->pfs_clid, &ripdata->pfs_clid, 747 sizeof(pmp->pfs_clid)) == 0) { 748 break; 749 } 750 } 751 752 if (pmp) { 753 int i; 754 int j; 755 756 hammer2_inode_ref(pmp->iroot); 757 ccms_thread_lock(&pmp->iroot->topo_cst, CCMS_STATE_EXCLUSIVE); 758 759 if (pmp->iroot->cluster.nchains + cluster->nchains > 760 HAMMER2_MAXCLUSTER) { 761 kprintf("hammer2_mount: cluster full!\n"); 762 763 ccms_thread_unlock(&pmp->iroot->topo_cst); 764 hammer2_inode_drop(pmp->iroot); 765 766 hammer2_cluster_unlock(cluster); 767 hammer2_vfs_unmount_hmp1(mp, hmp); 768 hammer2_vfs_unmount_hmp2(mp, hmp); 769 lockmgr(&hammer2_mntlk, LK_RELEASE); 770 hammer2_vfs_unmount(mp, MNT_FORCE); 771 return EBUSY; 772 } 773 kprintf("hammer2_vfs_mount: Adding pfs to existing cluster\n"); 774 j = pmp->iroot->cluster.nchains; 775 for (i = 0; i < cluster->nchains; ++i) { 776 rchain = cluster->array[i]; 777 KKASSERT(rchain->pmp == NULL); 778 rchain->pmp = pmp; 779 hammer2_chain_ref(cluster->array[i]); 780 pmp->iroot->cluster.array[j] = cluster->array[i]; 781 ++j; 782 } 783 pmp->iroot->cluster.nchains = j; 784 ccms_thread_unlock(&pmp->iroot->topo_cst); 785 hammer2_inode_drop(pmp->iroot); 786 hammer2_cluster_unlock(cluster); 787 lockmgr(&hammer2_mntlk, LK_RELEASE); 788 789 kprintf("ok\n"); 790 hammer2_inode_install_hidden(pmp); 791 792 return ERANGE; 793 } 794 795 /* 796 * Block device opened successfully, finish initializing the 797 * mount structure. 798 * 799 * From this point on we have to call hammer2_unmount() on failure. 800 */ 801 pmp = hammer2_pfsalloc(ripdata, bref.mirror_tid); 802 kprintf("PMP mirror_tid is %016jx\n", bref.mirror_tid); 803 for (i = 0; i < cluster->nchains; ++i) { 804 rchain = cluster->array[i]; 805 KKASSERT(rchain->pmp == NULL); 806 rchain->pmp = pmp; 807 atomic_set_int(&rchain->flags, HAMMER2_CHAIN_MOUNTED); 808 } 809 cluster->pmp = pmp; 810 811 ccms_domain_init(&pmp->ccms_dom); 812 TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry); 813 lockmgr(&hammer2_mntlk, LK_RELEASE); 814 815 kprintf("hammer2_mount hmp=%p pmp=%p pmpcnt=%d\n", 816 hmp, pmp, hmp->pmp_count); 817 818 mp->mnt_flag = MNT_LOCAL; 819 mp->mnt_kern_flag |= MNTK_ALL_MPSAFE; /* all entry pts are SMP */ 820 mp->mnt_kern_flag |= MNTK_THR_SYNC; /* new vsyncscan semantics */ 821 822 /* 823 * required mount structure initializations 824 */ 825 mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE; 826 mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE; 827 828 mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE; 829 mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE; 830 831 /* 832 * Optional fields 833 */ 834 mp->mnt_iosize_max = MAXPHYS; 835 mp->mnt_data = (qaddr_t)pmp; 836 pmp->mp = mp; 837 838 /* 839 * After this point hammer2_vfs_unmount() has visibility on hmp 840 * and manual hmp1/hmp2 calls are not needed on fatal errors. 841 */ 842 pmp->iroot = hammer2_inode_get(pmp, NULL, cluster); 843 hammer2_inode_ref(pmp->iroot); /* ref for pmp->iroot */ 844 hammer2_inode_unlock_ex(pmp->iroot, cluster); 845 846 /* 847 * The logical file buffer bio write thread handles things 848 * like physical block assignment and compression. 849 * 850 * (only applicable to pfs mounts, not applicable to spmp) 851 */ 852 pmp->wthread_destroy = 0; 853 lwkt_create(hammer2_write_thread, pmp, 854 &pmp->wthread_td, NULL, 0, -1, "hwrite-%s", label); 855 856 /* 857 * With the cluster operational install ihidden. 858 * (only applicable to pfs mounts, not applicable to spmp) 859 */ 860 hammer2_inode_install_hidden(pmp); 861 862 /* 863 * Finish setup 864 */ 865 vfs_getnewfsid(mp); 866 vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops); 867 vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops); 868 vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops); 869 870 copyinstr(info.volume, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, &size); 871 bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size); 872 bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname)); 873 copyinstr(path, mp->mnt_stat.f_mntonname, 874 sizeof(mp->mnt_stat.f_mntonname) - 1, 875 &size); 876 877 /* 878 * Initial statfs to prime mnt_stat. 879 */ 880 hammer2_vfs_statfs(mp, &mp->mnt_stat, cred); 881 882 return 0; 883 } 884 885 /* 886 * Handle bioq for strategy write 887 */ 888 static 889 void 890 hammer2_write_thread(void *arg) 891 { 892 hammer2_pfsmount_t *pmp; 893 struct bio *bio; 894 struct buf *bp; 895 hammer2_trans_t trans; 896 struct vnode *vp; 897 hammer2_inode_t *ip; 898 hammer2_cluster_t *cparent; 899 hammer2_inode_data_t *wipdata; 900 hammer2_key_t lbase; 901 int lblksize; 902 int pblksize; 903 int error; 904 905 pmp = arg; 906 907 mtx_lock(&pmp->wthread_mtx); 908 while (pmp->wthread_destroy == 0) { 909 if (bioq_first(&pmp->wthread_bioq) == NULL) { 910 mtxsleep(&pmp->wthread_bioq, &pmp->wthread_mtx, 911 0, "h2bioqw", 0); 912 } 913 cparent = NULL; 914 915 hammer2_trans_init(&trans, pmp, HAMMER2_TRANS_BUFCACHE); 916 917 while ((bio = bioq_takefirst(&pmp->wthread_bioq)) != NULL) { 918 /* 919 * dummy bio for synchronization. The transaction 920 * must be reinitialized. 921 */ 922 if (bio->bio_buf == NULL) { 923 bio->bio_flags |= BIO_DONE; 924 wakeup(bio); 925 hammer2_trans_done(&trans); 926 hammer2_trans_init(&trans, pmp, 927 HAMMER2_TRANS_BUFCACHE); 928 continue; 929 } 930 931 /* 932 * else normal bio processing 933 */ 934 mtx_unlock(&pmp->wthread_mtx); 935 936 hammer2_lwinprog_drop(pmp); 937 938 error = 0; 939 bp = bio->bio_buf; 940 vp = bp->b_vp; 941 ip = VTOI(vp); 942 943 /* 944 * Inode is modified, flush size and mtime changes 945 * to ensure that the file size remains consistent 946 * with the buffers being flushed. 947 * 948 * NOTE: The inode_fsync() call only flushes the 949 * inode's meta-data state, it doesn't try 950 * to flush underlying buffers or chains. 951 */ 952 cparent = hammer2_inode_lock_ex(ip); 953 if (ip->flags & (HAMMER2_INODE_RESIZED | 954 HAMMER2_INODE_MTIME)) { 955 hammer2_inode_fsync(&trans, ip, cparent); 956 } 957 wipdata = hammer2_cluster_modify_ip(&trans, ip, 958 cparent, 0); 959 lblksize = hammer2_calc_logical(ip, bio->bio_offset, 960 &lbase, NULL); 961 pblksize = hammer2_calc_physical(ip, wipdata, lbase); 962 hammer2_write_file_core(bp, &trans, ip, wipdata, 963 cparent, 964 lbase, IO_ASYNC, 965 pblksize, &error); 966 hammer2_cluster_modsync(cparent); 967 hammer2_inode_unlock_ex(ip, cparent); 968 if (error) { 969 kprintf("hammer2: error in buffer write\n"); 970 bp->b_flags |= B_ERROR; 971 bp->b_error = EIO; 972 } 973 biodone(bio); 974 mtx_lock(&pmp->wthread_mtx); 975 } 976 hammer2_trans_done(&trans); 977 } 978 pmp->wthread_destroy = -1; 979 wakeup(&pmp->wthread_destroy); 980 981 mtx_unlock(&pmp->wthread_mtx); 982 } 983 984 void 985 hammer2_bioq_sync(hammer2_pfsmount_t *pmp) 986 { 987 struct bio sync_bio; 988 989 bzero(&sync_bio, sizeof(sync_bio)); /* dummy with no bio_buf */ 990 mtx_lock(&pmp->wthread_mtx); 991 if (pmp->wthread_destroy == 0 && 992 TAILQ_FIRST(&pmp->wthread_bioq.queue)) { 993 bioq_insert_tail(&pmp->wthread_bioq, &sync_bio); 994 while ((sync_bio.bio_flags & BIO_DONE) == 0) 995 mtxsleep(&sync_bio, &pmp->wthread_mtx, 0, "h2bioq", 0); 996 } 997 mtx_unlock(&pmp->wthread_mtx); 998 } 999 1000 /* 1001 * Return a chain suitable for I/O, creating the chain if necessary 1002 * and assigning its physical block. 1003 */ 1004 static 1005 hammer2_cluster_t * 1006 hammer2_assign_physical(hammer2_trans_t *trans, 1007 hammer2_inode_t *ip, hammer2_cluster_t *cparent, 1008 hammer2_key_t lbase, int pblksize, int *errorp) 1009 { 1010 hammer2_cluster_t *cluster; 1011 hammer2_cluster_t *dparent; 1012 hammer2_key_t key_dummy; 1013 int pradix = hammer2_getradix(pblksize); 1014 int ddflag; 1015 1016 /* 1017 * Locate the chain associated with lbase, return a locked chain. 1018 * However, do not instantiate any data reference (which utilizes a 1019 * device buffer) because we will be using direct IO via the 1020 * logical buffer cache buffer. 1021 */ 1022 *errorp = 0; 1023 KKASSERT(pblksize >= HAMMER2_ALLOC_MIN); 1024 retry: 1025 dparent = hammer2_cluster_lookup_init(cparent, 0); 1026 cluster = hammer2_cluster_lookup(dparent, &key_dummy, 1027 lbase, lbase, 1028 HAMMER2_LOOKUP_NODATA, &ddflag); 1029 1030 if (cluster == NULL) { 1031 /* 1032 * We found a hole, create a new chain entry. 1033 * 1034 * NOTE: DATA chains are created without device backing 1035 * store (nor do we want any). 1036 */ 1037 *errorp = hammer2_cluster_create(trans, dparent, &cluster, 1038 lbase, HAMMER2_PBUFRADIX, 1039 HAMMER2_BREF_TYPE_DATA, 1040 pblksize, 0); 1041 if (cluster == NULL) { 1042 hammer2_cluster_lookup_done(dparent); 1043 panic("hammer2_cluster_create: par=%p error=%d\n", 1044 dparent->focus, *errorp); 1045 goto retry; 1046 } 1047 /*ip->delta_dcount += pblksize;*/ 1048 } else { 1049 switch (hammer2_cluster_type(cluster)) { 1050 case HAMMER2_BREF_TYPE_INODE: 1051 /* 1052 * The data is embedded in the inode. The 1053 * caller is responsible for marking the inode 1054 * modified and copying the data to the embedded 1055 * area. 1056 */ 1057 break; 1058 case HAMMER2_BREF_TYPE_DATA: 1059 if (hammer2_cluster_need_resize(cluster, pblksize)) { 1060 hammer2_cluster_resize(trans, ip, 1061 dparent, cluster, 1062 pradix, 1063 HAMMER2_MODIFY_OPTDATA); 1064 } 1065 1066 /* 1067 * DATA buffers must be marked modified whether the 1068 * data is in a logical buffer or not. We also have 1069 * to make this call to fixup the chain data pointers 1070 * after resizing in case this is an encrypted or 1071 * compressed buffer. 1072 */ 1073 hammer2_cluster_modify(trans, cluster, 1074 HAMMER2_MODIFY_OPTDATA); 1075 break; 1076 default: 1077 panic("hammer2_assign_physical: bad type"); 1078 /* NOT REACHED */ 1079 break; 1080 } 1081 } 1082 1083 /* 1084 * Cleanup. If cluster wound up being the inode itself, i.e. 1085 * the DIRECTDATA case for offset 0, then we need to update cparent. 1086 * The caller expects cparent to not become stale. 1087 */ 1088 hammer2_cluster_lookup_done(dparent); 1089 /* dparent = NULL; safety */ 1090 if (cluster && ddflag) 1091 hammer2_cluster_replace_locked(cparent, cluster); 1092 return (cluster); 1093 } 1094 1095 /* 1096 * bio queued from hammer2_vnops.c. 1097 * 1098 * The core write function which determines which path to take 1099 * depending on compression settings. We also have to locate the 1100 * related clusters so we can calculate and set the check data for 1101 * the blockref. 1102 */ 1103 static 1104 void 1105 hammer2_write_file_core(struct buf *bp, hammer2_trans_t *trans, 1106 hammer2_inode_t *ip, 1107 const hammer2_inode_data_t *ripdata, 1108 hammer2_cluster_t *cparent, 1109 hammer2_key_t lbase, int ioflag, int pblksize, 1110 int *errorp) 1111 { 1112 hammer2_cluster_t *cluster; 1113 1114 switch(HAMMER2_DEC_ALGO(ripdata->comp_algo)) { 1115 case HAMMER2_COMP_NONE: 1116 /* 1117 * We have to assign physical storage to the buffer 1118 * we intend to dirty or write now to avoid deadlocks 1119 * in the strategy code later. 1120 * 1121 * This can return NOOFFSET for inode-embedded data. 1122 * The strategy code will take care of it in that case. 1123 */ 1124 cluster = hammer2_assign_physical(trans, ip, cparent, 1125 lbase, pblksize, 1126 errorp); 1127 hammer2_write_bp(cluster, bp, ioflag, pblksize, errorp, 1128 ripdata->check_algo); 1129 if (cluster) 1130 hammer2_cluster_unlock(cluster); 1131 break; 1132 case HAMMER2_COMP_AUTOZERO: 1133 /* 1134 * Check for zero-fill only 1135 */ 1136 hammer2_zero_check_and_write(bp, trans, ip, 1137 ripdata, cparent, lbase, 1138 ioflag, pblksize, errorp, 1139 ripdata->check_algo); 1140 break; 1141 case HAMMER2_COMP_LZ4: 1142 case HAMMER2_COMP_ZLIB: 1143 default: 1144 /* 1145 * Check for zero-fill and attempt compression. 1146 */ 1147 hammer2_compress_and_write(bp, trans, ip, 1148 ripdata, cparent, 1149 lbase, ioflag, 1150 pblksize, errorp, 1151 ripdata->comp_algo, 1152 ripdata->check_algo); 1153 break; 1154 } 1155 } 1156 1157 /* 1158 * Generic function that will perform the compression in compression 1159 * write path. The compression algorithm is determined by the settings 1160 * obtained from inode. 1161 */ 1162 static 1163 void 1164 hammer2_compress_and_write(struct buf *bp, hammer2_trans_t *trans, 1165 hammer2_inode_t *ip, const hammer2_inode_data_t *ripdata, 1166 hammer2_cluster_t *cparent, 1167 hammer2_key_t lbase, int ioflag, int pblksize, 1168 int *errorp, int comp_algo, int check_algo) 1169 { 1170 hammer2_cluster_t *cluster; 1171 hammer2_chain_t *chain; 1172 int comp_size; 1173 int comp_block_size; 1174 int i; 1175 char *comp_buffer; 1176 1177 if (test_block_zeros(bp->b_data, pblksize)) { 1178 zero_write(bp, trans, ip, ripdata, cparent, lbase, errorp); 1179 return; 1180 } 1181 1182 comp_size = 0; 1183 comp_buffer = NULL; 1184 1185 KKASSERT(pblksize / 2 <= 32768); 1186 1187 if (ip->comp_heuristic < 8 || (ip->comp_heuristic & 7) == 0) { 1188 z_stream strm_compress; 1189 int comp_level; 1190 int ret; 1191 1192 switch(HAMMER2_DEC_ALGO(comp_algo)) { 1193 case HAMMER2_COMP_LZ4: 1194 comp_buffer = objcache_get(cache_buffer_write, 1195 M_INTWAIT); 1196 comp_size = LZ4_compress_limitedOutput( 1197 bp->b_data, 1198 &comp_buffer[sizeof(int)], 1199 pblksize, 1200 pblksize / 2 - sizeof(int)); 1201 /* 1202 * We need to prefix with the size, LZ4 1203 * doesn't do it for us. Add the related 1204 * overhead. 1205 */ 1206 *(int *)comp_buffer = comp_size; 1207 if (comp_size) 1208 comp_size += sizeof(int); 1209 break; 1210 case HAMMER2_COMP_ZLIB: 1211 comp_level = HAMMER2_DEC_LEVEL(comp_algo); 1212 if (comp_level == 0) 1213 comp_level = 6; /* default zlib compression */ 1214 else if (comp_level < 6) 1215 comp_level = 6; 1216 else if (comp_level > 9) 1217 comp_level = 9; 1218 ret = deflateInit(&strm_compress, comp_level); 1219 if (ret != Z_OK) { 1220 kprintf("HAMMER2 ZLIB: fatal error " 1221 "on deflateInit.\n"); 1222 } 1223 1224 comp_buffer = objcache_get(cache_buffer_write, 1225 M_INTWAIT); 1226 strm_compress.next_in = bp->b_data; 1227 strm_compress.avail_in = pblksize; 1228 strm_compress.next_out = comp_buffer; 1229 strm_compress.avail_out = pblksize / 2; 1230 ret = deflate(&strm_compress, Z_FINISH); 1231 if (ret == Z_STREAM_END) { 1232 comp_size = pblksize / 2 - 1233 strm_compress.avail_out; 1234 } else { 1235 comp_size = 0; 1236 } 1237 ret = deflateEnd(&strm_compress); 1238 break; 1239 default: 1240 kprintf("Error: Unknown compression method.\n"); 1241 kprintf("Comp_method = %d.\n", comp_algo); 1242 break; 1243 } 1244 } 1245 1246 if (comp_size == 0) { 1247 /* 1248 * compression failed or turned off 1249 */ 1250 comp_block_size = pblksize; /* safety */ 1251 if (++ip->comp_heuristic > 128) 1252 ip->comp_heuristic = 8; 1253 } else { 1254 /* 1255 * compression succeeded 1256 */ 1257 ip->comp_heuristic = 0; 1258 if (comp_size <= 1024) { 1259 comp_block_size = 1024; 1260 } else if (comp_size <= 2048) { 1261 comp_block_size = 2048; 1262 } else if (comp_size <= 4096) { 1263 comp_block_size = 4096; 1264 } else if (comp_size <= 8192) { 1265 comp_block_size = 8192; 1266 } else if (comp_size <= 16384) { 1267 comp_block_size = 16384; 1268 } else if (comp_size <= 32768) { 1269 comp_block_size = 32768; 1270 } else { 1271 panic("hammer2: WRITE PATH: " 1272 "Weird comp_size value."); 1273 /* NOT REACHED */ 1274 comp_block_size = pblksize; 1275 } 1276 } 1277 1278 cluster = hammer2_assign_physical(trans, ip, cparent, 1279 lbase, comp_block_size, 1280 errorp); 1281 ripdata = NULL; 1282 1283 if (*errorp) { 1284 kprintf("WRITE PATH: An error occurred while " 1285 "assigning physical space.\n"); 1286 KKASSERT(cluster == NULL); 1287 goto done; 1288 } 1289 1290 for (i = 0; i < cluster->nchains; ++i) { 1291 hammer2_inode_data_t *wipdata; 1292 hammer2_io_t *dio; 1293 char *bdata; 1294 1295 chain = cluster->array[i]; /* XXX */ 1296 KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED); 1297 1298 switch(chain->bref.type) { 1299 case HAMMER2_BREF_TYPE_INODE: 1300 wipdata = &hammer2_chain_wdata(chain)->ipdata; 1301 KKASSERT(wipdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA); 1302 KKASSERT(bp->b_loffset == 0); 1303 bcopy(bp->b_data, wipdata->u.data, 1304 HAMMER2_EMBEDDED_BYTES); 1305 break; 1306 case HAMMER2_BREF_TYPE_DATA: 1307 /* 1308 * Optimize out the read-before-write 1309 * if possible. 1310 */ 1311 *errorp = hammer2_io_newnz(chain->hmp, 1312 chain->bref.data_off, 1313 chain->bytes, 1314 &dio); 1315 if (*errorp) { 1316 hammer2_io_brelse(&dio); 1317 kprintf("hammer2: WRITE PATH: " 1318 "dbp bread error\n"); 1319 break; 1320 } 1321 bdata = hammer2_io_data(dio, chain->bref.data_off); 1322 1323 /* 1324 * When loading the block make sure we don't 1325 * leave garbage after the compressed data. 1326 */ 1327 if (comp_size) { 1328 chain->bref.methods = 1329 HAMMER2_ENC_COMP(comp_algo) + 1330 HAMMER2_ENC_CHECK(check_algo); 1331 bcopy(comp_buffer, bdata, comp_size); 1332 if (comp_size != comp_block_size) { 1333 bzero(bdata + comp_size, 1334 comp_block_size - comp_size); 1335 } 1336 } else { 1337 chain->bref.methods = 1338 HAMMER2_ENC_COMP( 1339 HAMMER2_COMP_NONE) + 1340 HAMMER2_ENC_CHECK(check_algo); 1341 bcopy(bp->b_data, bdata, pblksize); 1342 } 1343 1344 /* 1345 * The flush code doesn't calculate check codes for 1346 * file data (doing so can result in excessive I/O), 1347 * so we do it here. 1348 */ 1349 hammer2_chain_setcheck(chain, bdata); 1350 1351 /* 1352 * Device buffer is now valid, chain is no longer in 1353 * the initial state. 1354 * 1355 * (No blockref table worries with file data) 1356 */ 1357 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL); 1358 1359 /* Now write the related bdp. */ 1360 if (ioflag & IO_SYNC) { 1361 /* 1362 * Synchronous I/O requested. 1363 */ 1364 hammer2_io_bwrite(&dio); 1365 /* 1366 } else if ((ioflag & IO_DIRECT) && 1367 loff + n == pblksize) { 1368 hammer2_io_bdwrite(&dio); 1369 */ 1370 } else if (ioflag & IO_ASYNC) { 1371 hammer2_io_bawrite(&dio); 1372 } else { 1373 hammer2_io_bdwrite(&dio); 1374 } 1375 break; 1376 default: 1377 panic("hammer2_write_bp: bad chain type %d\n", 1378 chain->bref.type); 1379 /* NOT REACHED */ 1380 break; 1381 } 1382 } 1383 done: 1384 if (cluster) 1385 hammer2_cluster_unlock(cluster); 1386 if (comp_buffer) 1387 objcache_put(cache_buffer_write, comp_buffer); 1388 } 1389 1390 /* 1391 * Function that performs zero-checking and writing without compression, 1392 * it corresponds to default zero-checking path. 1393 */ 1394 static 1395 void 1396 hammer2_zero_check_and_write(struct buf *bp, hammer2_trans_t *trans, 1397 hammer2_inode_t *ip, const hammer2_inode_data_t *ripdata, 1398 hammer2_cluster_t *cparent, 1399 hammer2_key_t lbase, int ioflag, int pblksize, int *errorp, 1400 int check_algo) 1401 { 1402 hammer2_cluster_t *cluster; 1403 1404 if (test_block_zeros(bp->b_data, pblksize)) { 1405 zero_write(bp, trans, ip, ripdata, cparent, lbase, errorp); 1406 } else { 1407 cluster = hammer2_assign_physical(trans, ip, cparent, 1408 lbase, pblksize, errorp); 1409 hammer2_write_bp(cluster, bp, ioflag, pblksize, errorp, 1410 check_algo); 1411 if (cluster) 1412 hammer2_cluster_unlock(cluster); 1413 } 1414 } 1415 1416 /* 1417 * A function to test whether a block of data contains only zeros, 1418 * returns TRUE (non-zero) if the block is all zeros. 1419 */ 1420 static 1421 int 1422 test_block_zeros(const char *buf, size_t bytes) 1423 { 1424 size_t i; 1425 1426 for (i = 0; i < bytes; i += sizeof(long)) { 1427 if (*(const long *)(buf + i) != 0) 1428 return (0); 1429 } 1430 return (1); 1431 } 1432 1433 /* 1434 * Function to "write" a block that contains only zeros. 1435 */ 1436 static 1437 void 1438 zero_write(struct buf *bp, hammer2_trans_t *trans, 1439 hammer2_inode_t *ip, const hammer2_inode_data_t *ripdata, 1440 hammer2_cluster_t *cparent, 1441 hammer2_key_t lbase, int *errorp __unused) 1442 { 1443 hammer2_cluster_t *cluster; 1444 hammer2_media_data_t *data; 1445 hammer2_key_t key_dummy; 1446 int ddflag; 1447 1448 cparent = hammer2_cluster_lookup_init(cparent, 0); 1449 cluster = hammer2_cluster_lookup(cparent, &key_dummy, lbase, lbase, 1450 HAMMER2_LOOKUP_NODATA, &ddflag); 1451 if (cluster) { 1452 data = hammer2_cluster_wdata(cluster); 1453 1454 if (ddflag) { 1455 KKASSERT(cluster->focus->flags & 1456 HAMMER2_CHAIN_MODIFIED); 1457 bzero(data->ipdata.u.data, HAMMER2_EMBEDDED_BYTES); 1458 hammer2_cluster_modsync(cluster); 1459 } else { 1460 hammer2_cluster_delete(trans, cparent, cluster, 1461 HAMMER2_DELETE_PERMANENT); 1462 } 1463 hammer2_cluster_unlock(cluster); 1464 } 1465 hammer2_cluster_lookup_done(cparent); 1466 } 1467 1468 /* 1469 * Function to write the data as it is, without performing any sort of 1470 * compression. This function is used in path without compression and 1471 * default zero-checking path. 1472 */ 1473 static 1474 void 1475 hammer2_write_bp(hammer2_cluster_t *cluster, struct buf *bp, int ioflag, 1476 int pblksize, int *errorp, int check_algo) 1477 { 1478 hammer2_chain_t *chain; 1479 hammer2_inode_data_t *wipdata; 1480 hammer2_io_t *dio; 1481 char *bdata; 1482 int error; 1483 int i; 1484 1485 error = 0; /* XXX TODO below */ 1486 1487 for (i = 0; i < cluster->nchains; ++i) { 1488 chain = cluster->array[i]; /* XXX */ 1489 KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED); 1490 1491 switch(chain->bref.type) { 1492 case HAMMER2_BREF_TYPE_INODE: 1493 wipdata = &hammer2_chain_wdata(chain)->ipdata; 1494 KKASSERT(wipdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA); 1495 KKASSERT(bp->b_loffset == 0); 1496 bcopy(bp->b_data, wipdata->u.data, 1497 HAMMER2_EMBEDDED_BYTES); 1498 error = 0; 1499 break; 1500 case HAMMER2_BREF_TYPE_DATA: 1501 error = hammer2_io_newnz(chain->hmp, 1502 chain->bref.data_off, 1503 chain->bytes, &dio); 1504 if (error) { 1505 hammer2_io_bqrelse(&dio); 1506 kprintf("hammer2: WRITE PATH: " 1507 "dbp bread error\n"); 1508 break; 1509 } 1510 bdata = hammer2_io_data(dio, chain->bref.data_off); 1511 1512 chain->bref.methods = HAMMER2_ENC_COMP( 1513 HAMMER2_COMP_NONE) + 1514 HAMMER2_ENC_CHECK(check_algo); 1515 bcopy(bp->b_data, bdata, chain->bytes); 1516 1517 /* 1518 * The flush code doesn't calculate check codes for 1519 * file data (doing so can result in excessive I/O), 1520 * so we do it here. 1521 */ 1522 hammer2_chain_setcheck(chain, bdata); 1523 1524 /* 1525 * Device buffer is now valid, chain is no longer in 1526 * the initial state. 1527 * 1528 * (No blockref table worries with file data) 1529 */ 1530 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL); 1531 1532 if (ioflag & IO_SYNC) { 1533 /* 1534 * Synchronous I/O requested. 1535 */ 1536 hammer2_io_bwrite(&dio); 1537 /* 1538 } else if ((ioflag & IO_DIRECT) && 1539 loff + n == pblksize) { 1540 hammer2_io_bdwrite(&dio); 1541 */ 1542 } else if (ioflag & IO_ASYNC) { 1543 hammer2_io_bawrite(&dio); 1544 } else { 1545 hammer2_io_bdwrite(&dio); 1546 } 1547 break; 1548 default: 1549 panic("hammer2_write_bp: bad chain type %d\n", 1550 chain->bref.type); 1551 /* NOT REACHED */ 1552 error = 0; 1553 break; 1554 } 1555 KKASSERT(error == 0); /* XXX TODO */ 1556 } 1557 *errorp = error; 1558 } 1559 1560 static 1561 int 1562 hammer2_remount(hammer2_mount_t *hmp, struct mount *mp, char *path, 1563 struct vnode *devvp, struct ucred *cred) 1564 { 1565 int error; 1566 1567 if (hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) { 1568 error = hammer2_recovery(hmp); 1569 } else { 1570 error = 0; 1571 } 1572 return error; 1573 } 1574 1575 static 1576 int 1577 hammer2_vfs_unmount(struct mount *mp, int mntflags) 1578 { 1579 hammer2_pfsmount_t *pmp; 1580 hammer2_mount_t *hmp; 1581 hammer2_chain_t *rchain; 1582 hammer2_cluster_t *cluster; 1583 int flags; 1584 int error = 0; 1585 int i; 1586 1587 pmp = MPTOPMP(mp); 1588 1589 if (pmp == NULL) 1590 return(0); 1591 1592 lockmgr(&hammer2_mntlk, LK_EXCLUSIVE); 1593 TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry); 1594 1595 /* 1596 * If mount initialization proceeded far enough we must flush 1597 * its vnodes. 1598 */ 1599 if (mntflags & MNT_FORCE) 1600 flags = FORCECLOSE; 1601 else 1602 flags = 0; 1603 if (pmp->iroot) { 1604 error = vflush(mp, 0, flags); 1605 if (error) 1606 goto failed; 1607 } 1608 1609 ccms_domain_uninit(&pmp->ccms_dom); 1610 1611 if (pmp->wthread_td) { 1612 mtx_lock(&pmp->wthread_mtx); 1613 pmp->wthread_destroy = 1; 1614 wakeup(&pmp->wthread_bioq); 1615 while (pmp->wthread_destroy != -1) { 1616 mtxsleep(&pmp->wthread_destroy, 1617 &pmp->wthread_mtx, 0, 1618 "umount-sleep", 0); 1619 } 1620 mtx_unlock(&pmp->wthread_mtx); 1621 pmp->wthread_td = NULL; 1622 } 1623 1624 /* 1625 * Cleanup our reference on ihidden. 1626 */ 1627 if (pmp->ihidden) { 1628 hammer2_inode_drop(pmp->ihidden); 1629 pmp->ihidden = NULL; 1630 } 1631 1632 /* 1633 * Cleanup our reference on iroot. iroot is (should) not be needed 1634 * by the flush code. 1635 */ 1636 if (pmp->iroot) { 1637 cluster = &pmp->iroot->cluster; 1638 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) { 1639 rchain = pmp->iroot->cluster.array[i]; 1640 if (rchain == NULL) 1641 continue; 1642 hmp = rchain->hmp; 1643 hammer2_vfs_unmount_hmp1(mp, hmp); 1644 1645 atomic_clear_int(&rchain->flags, HAMMER2_CHAIN_MOUNTED); 1646 #if REPORT_REFS_ERRORS 1647 if (rchain->refs != 1) 1648 kprintf("PMP->RCHAIN %p REFS WRONG %d\n", 1649 rchain, rchain->refs); 1650 #else 1651 KKASSERT(rchain->refs == 1); 1652 #endif 1653 hammer2_chain_drop(rchain); 1654 cluster->array[i] = NULL; 1655 hammer2_vfs_unmount_hmp2(mp, hmp); 1656 } 1657 cluster->focus = NULL; 1658 1659 #if REPORT_REFS_ERRORS 1660 if (pmp->iroot->refs != 1) 1661 kprintf("PMP->IROOT %p REFS WRONG %d\n", 1662 pmp->iroot, pmp->iroot->refs); 1663 #else 1664 KKASSERT(pmp->iroot->refs == 1); 1665 #endif 1666 /* ref for pmp->iroot */ 1667 hammer2_inode_drop(pmp->iroot); 1668 pmp->iroot = NULL; 1669 } 1670 1671 pmp->mp = NULL; 1672 mp->mnt_data = NULL; 1673 1674 kmalloc_destroy(&pmp->mmsg); 1675 kmalloc_destroy(&pmp->minode); 1676 1677 kfree(pmp, M_HAMMER2); 1678 error = 0; 1679 1680 failed: 1681 lockmgr(&hammer2_mntlk, LK_RELEASE); 1682 1683 return (error); 1684 } 1685 1686 static 1687 void 1688 hammer2_vfs_unmount_hmp1(struct mount *mp, hammer2_mount_t *hmp) 1689 { 1690 hammer2_mount_exlock(hmp); 1691 --hmp->pmp_count; 1692 1693 kprintf("hammer2_unmount hmp=%p pmpcnt=%d\n", hmp, hmp->pmp_count); 1694 1695 kdmsg_iocom_uninit(&hmp->iocom); /* XXX chain depend deadlck? */ 1696 1697 /* 1698 * Cycle the volume data lock as a safety (probably not needed any 1699 * more). To ensure everything is out we need to flush at least 1700 * three times. (1) The running of the unlinkq can dirty the 1701 * filesystem, (2) A normal flush can dirty the freemap, and 1702 * (3) ensure that the freemap is fully synchronized. 1703 * 1704 * The next mount's recovery scan can clean everything up but we want 1705 * to leave the filesystem in a 100% clean state on a normal unmount. 1706 */ 1707 hammer2_voldata_lock(hmp); 1708 hammer2_voldata_unlock(hmp); 1709 if (mp->mnt_data) { 1710 hammer2_vfs_sync(mp, MNT_WAIT); 1711 hammer2_vfs_sync(mp, MNT_WAIT); 1712 hammer2_vfs_sync(mp, MNT_WAIT); 1713 } 1714 1715 if (hmp->pmp_count == 0) { 1716 if ((hmp->vchain.flags | hmp->fchain.flags) & 1717 HAMMER2_CHAIN_FLUSH_MASK) { 1718 kprintf("hammer2_unmount: chains left over " 1719 "after final sync\n"); 1720 kprintf(" vchain %08x\n", hmp->vchain.flags); 1721 kprintf(" fchain %08x\n", hmp->fchain.flags); 1722 1723 if (hammer2_debug & 0x0010) 1724 Debugger("entered debugger"); 1725 } 1726 } 1727 } 1728 1729 static 1730 void 1731 hammer2_vfs_unmount_hmp2(struct mount *mp, hammer2_mount_t *hmp) 1732 { 1733 hammer2_pfsmount_t *spmp; 1734 struct vnode *devvp; 1735 int dumpcnt; 1736 int ronly = ((mp->mnt_flag & MNT_RDONLY) != 0); 1737 1738 /* 1739 * If no PFS's left drop the master hammer2_mount for the 1740 * device. 1741 */ 1742 if (hmp->pmp_count == 0) { 1743 /* 1744 * Clean up SPMP and the super-root inode 1745 */ 1746 spmp = hmp->spmp; 1747 if (spmp) { 1748 if (spmp->iroot) { 1749 hammer2_inode_drop(spmp->iroot); 1750 spmp->iroot = NULL; 1751 } 1752 hmp->spmp = NULL; 1753 kmalloc_destroy(&spmp->mmsg); 1754 kmalloc_destroy(&spmp->minode); 1755 kfree(spmp, M_HAMMER2); 1756 } 1757 1758 /* 1759 * Finish up with the device vnode 1760 */ 1761 if ((devvp = hmp->devvp) != NULL) { 1762 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1763 vinvalbuf(devvp, (ronly ? 0 : V_SAVE), 0, 0); 1764 hmp->devvp = NULL; 1765 VOP_CLOSE(devvp, (ronly ? FREAD : FREAD|FWRITE), NULL); 1766 vn_unlock(devvp); 1767 vrele(devvp); 1768 devvp = NULL; 1769 } 1770 1771 /* 1772 * Clear vchain/fchain flags that might prevent final cleanup 1773 * of these chains. 1774 */ 1775 if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) { 1776 atomic_clear_int(&hmp->vchain.flags, 1777 HAMMER2_CHAIN_MODIFIED); 1778 hammer2_pfs_memory_wakeup(hmp->vchain.pmp); 1779 hammer2_chain_drop(&hmp->vchain); 1780 } 1781 if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) { 1782 atomic_clear_int(&hmp->vchain.flags, 1783 HAMMER2_CHAIN_UPDATE); 1784 hammer2_chain_drop(&hmp->vchain); 1785 } 1786 1787 if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) { 1788 atomic_clear_int(&hmp->fchain.flags, 1789 HAMMER2_CHAIN_MODIFIED); 1790 hammer2_pfs_memory_wakeup(hmp->fchain.pmp); 1791 hammer2_chain_drop(&hmp->fchain); 1792 } 1793 if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) { 1794 atomic_clear_int(&hmp->fchain.flags, 1795 HAMMER2_CHAIN_UPDATE); 1796 hammer2_chain_drop(&hmp->fchain); 1797 } 1798 1799 /* 1800 * Final drop of embedded freemap root chain to 1801 * clean up fchain.core (fchain structure is not 1802 * flagged ALLOCATED so it is cleaned out and then 1803 * left to rot). 1804 */ 1805 hammer2_chain_drop(&hmp->fchain); 1806 1807 /* 1808 * Final drop of embedded volume root chain to clean 1809 * up vchain.core (vchain structure is not flagged 1810 * ALLOCATED so it is cleaned out and then left to 1811 * rot). 1812 */ 1813 dumpcnt = 50; 1814 hammer2_dump_chain(&hmp->vchain, 0, &dumpcnt, 'v'); 1815 dumpcnt = 50; 1816 hammer2_dump_chain(&hmp->fchain, 0, &dumpcnt, 'f'); 1817 hammer2_mount_unlock(hmp); 1818 hammer2_chain_drop(&hmp->vchain); 1819 1820 hammer2_io_cleanup(hmp, &hmp->iotree); 1821 if (hmp->iofree_count) { 1822 kprintf("io_cleanup: %d I/O's left hanging\n", 1823 hmp->iofree_count); 1824 } 1825 1826 TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry); 1827 kmalloc_destroy(&hmp->mchain); 1828 kfree(hmp, M_HAMMER2); 1829 } else { 1830 hammer2_mount_unlock(hmp); 1831 } 1832 } 1833 1834 static 1835 int 1836 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp, 1837 ino_t ino, struct vnode **vpp) 1838 { 1839 kprintf("hammer2_vget\n"); 1840 return (EOPNOTSUPP); 1841 } 1842 1843 static 1844 int 1845 hammer2_vfs_root(struct mount *mp, struct vnode **vpp) 1846 { 1847 hammer2_pfsmount_t *pmp; 1848 hammer2_cluster_t *cparent; 1849 int error; 1850 struct vnode *vp; 1851 1852 pmp = MPTOPMP(mp); 1853 if (pmp->iroot == NULL) { 1854 *vpp = NULL; 1855 error = EINVAL; 1856 } else { 1857 cparent = hammer2_inode_lock_sh(pmp->iroot); 1858 vp = hammer2_igetv(pmp->iroot, cparent, &error); 1859 hammer2_inode_unlock_sh(pmp->iroot, cparent); 1860 *vpp = vp; 1861 if (vp == NULL) 1862 kprintf("vnodefail\n"); 1863 } 1864 1865 return (error); 1866 } 1867 1868 /* 1869 * Filesystem status 1870 * 1871 * XXX incorporate ipdata->inode_quota and data_quota 1872 */ 1873 static 1874 int 1875 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred) 1876 { 1877 hammer2_pfsmount_t *pmp; 1878 hammer2_mount_t *hmp; 1879 1880 pmp = MPTOPMP(mp); 1881 KKASSERT(pmp->iroot->cluster.nchains >= 1); 1882 hmp = pmp->iroot->cluster.focus->hmp; /* XXX */ 1883 1884 mp->mnt_stat.f_files = pmp->inode_count; 1885 mp->mnt_stat.f_ffree = 0; 1886 mp->mnt_stat.f_blocks = hmp->voldata.allocator_size / HAMMER2_PBUFSIZE; 1887 mp->mnt_stat.f_bfree = hmp->voldata.allocator_free / HAMMER2_PBUFSIZE; 1888 mp->mnt_stat.f_bavail = mp->mnt_stat.f_bfree; 1889 1890 *sbp = mp->mnt_stat; 1891 return (0); 1892 } 1893 1894 static 1895 int 1896 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred) 1897 { 1898 hammer2_pfsmount_t *pmp; 1899 hammer2_mount_t *hmp; 1900 1901 pmp = MPTOPMP(mp); 1902 KKASSERT(pmp->iroot->cluster.nchains >= 1); 1903 hmp = pmp->iroot->cluster.focus->hmp; /* XXX */ 1904 1905 mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE; 1906 mp->mnt_vstat.f_files = pmp->inode_count; 1907 mp->mnt_vstat.f_ffree = 0; 1908 mp->mnt_vstat.f_blocks = hmp->voldata.allocator_size / HAMMER2_PBUFSIZE; 1909 mp->mnt_vstat.f_bfree = hmp->voldata.allocator_free / HAMMER2_PBUFSIZE; 1910 mp->mnt_vstat.f_bavail = mp->mnt_vstat.f_bfree; 1911 1912 *sbp = mp->mnt_vstat; 1913 return (0); 1914 } 1915 1916 /* 1917 * Mount-time recovery (RW mounts) 1918 * 1919 * Updates to the free block table are allowed to lag flushes by one 1920 * transaction. In case of a crash, then on a fresh mount we must do an 1921 * incremental scan of the last committed transaction id and make sure that 1922 * all related blocks have been marked allocated. 1923 * 1924 * The super-root topology and each PFS has its own transaction id domain, 1925 * so we must track PFS boundary transitions. 1926 */ 1927 struct hammer2_recovery_elm { 1928 TAILQ_ENTRY(hammer2_recovery_elm) entry; 1929 hammer2_chain_t *chain; 1930 hammer2_tid_t sync_tid; 1931 }; 1932 1933 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm); 1934 1935 struct hammer2_recovery_info { 1936 struct hammer2_recovery_list list; 1937 int depth; 1938 }; 1939 1940 static int hammer2_recovery_scan(hammer2_trans_t *trans, hammer2_mount_t *hmp, 1941 hammer2_chain_t *parent, 1942 struct hammer2_recovery_info *info, 1943 hammer2_tid_t sync_tid); 1944 1945 #define HAMMER2_RECOVERY_MAXDEPTH 10 1946 1947 static 1948 int 1949 hammer2_recovery(hammer2_mount_t *hmp) 1950 { 1951 hammer2_trans_t trans; 1952 struct hammer2_recovery_info info; 1953 struct hammer2_recovery_elm *elm; 1954 hammer2_chain_t *parent; 1955 hammer2_tid_t sync_tid; 1956 int error; 1957 int cumulative_error = 0; 1958 1959 hammer2_trans_init(&trans, hmp->spmp, 0); 1960 1961 sync_tid = 0; 1962 TAILQ_INIT(&info.list); 1963 info.depth = 0; 1964 parent = hammer2_chain_lookup_init(&hmp->vchain, 0); 1965 cumulative_error = hammer2_recovery_scan(&trans, hmp, parent, 1966 &info, sync_tid); 1967 hammer2_chain_lookup_done(parent); 1968 1969 while ((elm = TAILQ_FIRST(&info.list)) != NULL) { 1970 TAILQ_REMOVE(&info.list, elm, entry); 1971 parent = elm->chain; 1972 sync_tid = elm->sync_tid; 1973 kfree(elm, M_HAMMER2); 1974 1975 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS | 1976 HAMMER2_RESOLVE_NOREF); 1977 error = hammer2_recovery_scan(&trans, hmp, parent, 1978 &info, sync_tid); 1979 hammer2_chain_unlock(parent); 1980 if (error) 1981 cumulative_error = error; 1982 } 1983 hammer2_trans_done(&trans); 1984 1985 return cumulative_error; 1986 } 1987 1988 static 1989 int 1990 hammer2_recovery_scan(hammer2_trans_t *trans, hammer2_mount_t *hmp, 1991 hammer2_chain_t *parent, 1992 struct hammer2_recovery_info *info, 1993 hammer2_tid_t sync_tid) 1994 { 1995 const hammer2_inode_data_t *ripdata; 1996 hammer2_chain_t *chain; 1997 int cache_index; 1998 int cumulative_error = 0; 1999 int pfs_boundary = 0; 2000 int error; 2001 2002 /* 2003 * Adjust freemap to ensure that the block(s) are marked allocated. 2004 */ 2005 if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) { 2006 hammer2_freemap_adjust(trans, hmp, &parent->bref, 2007 HAMMER2_FREEMAP_DORECOVER); 2008 } 2009 2010 /* 2011 * Check type for recursive scan 2012 */ 2013 switch(parent->bref.type) { 2014 case HAMMER2_BREF_TYPE_VOLUME: 2015 /* data already instantiated */ 2016 break; 2017 case HAMMER2_BREF_TYPE_INODE: 2018 /* 2019 * Must instantiate data for DIRECTDATA test and also 2020 * for recursion. 2021 */ 2022 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS); 2023 ripdata = &hammer2_chain_rdata(parent)->ipdata; 2024 if (ripdata->op_flags & HAMMER2_OPFLAG_DIRECTDATA) { 2025 /* not applicable to recovery scan */ 2026 hammer2_chain_unlock(parent); 2027 return 0; 2028 } 2029 if ((ripdata->op_flags & HAMMER2_OPFLAG_PFSROOT) && 2030 info->depth != 0) { 2031 pfs_boundary = 1; 2032 sync_tid = parent->bref.mirror_tid - 1; 2033 } 2034 hammer2_chain_unlock(parent); 2035 break; 2036 case HAMMER2_BREF_TYPE_INDIRECT: 2037 /* 2038 * Must instantiate data for recursion 2039 */ 2040 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS); 2041 hammer2_chain_unlock(parent); 2042 break; 2043 case HAMMER2_BREF_TYPE_DATA: 2044 case HAMMER2_BREF_TYPE_FREEMAP: 2045 case HAMMER2_BREF_TYPE_FREEMAP_NODE: 2046 case HAMMER2_BREF_TYPE_FREEMAP_LEAF: 2047 /* not applicable to recovery scan */ 2048 return 0; 2049 break; 2050 default: 2051 return EDOM; 2052 } 2053 2054 /* 2055 * Defer operation if depth limit reached or if we are crossing a 2056 * PFS boundary. 2057 */ 2058 if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH || pfs_boundary) { 2059 struct hammer2_recovery_elm *elm; 2060 2061 elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK); 2062 elm->chain = parent; 2063 elm->sync_tid = sync_tid; 2064 hammer2_chain_ref(parent); 2065 TAILQ_INSERT_TAIL(&info->list, elm, entry); 2066 /* unlocked by caller */ 2067 2068 return(0); 2069 } 2070 2071 2072 /* 2073 * Recursive scan of the last flushed transaction only. We are 2074 * doing this without pmp assignments so don't leave the chains 2075 * hanging around after we are done with them. 2076 */ 2077 cache_index = 0; 2078 chain = hammer2_chain_scan(parent, NULL, &cache_index, 2079 HAMMER2_LOOKUP_NODATA); 2080 while (chain) { 2081 atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE); 2082 if (chain->bref.mirror_tid >= sync_tid) { 2083 ++info->depth; 2084 error = hammer2_recovery_scan(trans, hmp, chain, 2085 info, sync_tid); 2086 --info->depth; 2087 if (error) 2088 cumulative_error = error; 2089 } 2090 chain = hammer2_chain_scan(parent, chain, &cache_index, 2091 HAMMER2_LOOKUP_NODATA); 2092 } 2093 2094 return cumulative_error; 2095 } 2096 2097 /* 2098 * Sync the entire filesystem; this is called from the filesystem syncer 2099 * process periodically and whenever a user calls sync(1) on the hammer 2100 * mountpoint. 2101 * 2102 * Currently is actually called from the syncer! \o/ 2103 * 2104 * This task will have to snapshot the state of the dirty inode chain. 2105 * From that, it will have to make sure all of the inodes on the dirty 2106 * chain have IO initiated. We make sure that io is initiated for the root 2107 * block. 2108 * 2109 * If waitfor is set, we wait for media to acknowledge the new rootblock. 2110 * 2111 * THINKS: side A vs side B, to have sync not stall all I/O? 2112 */ 2113 int 2114 hammer2_vfs_sync(struct mount *mp, int waitfor) 2115 { 2116 struct hammer2_sync_info info; 2117 hammer2_inode_t *iroot; 2118 hammer2_chain_t *chain; 2119 hammer2_chain_t *parent; 2120 hammer2_pfsmount_t *pmp; 2121 hammer2_mount_t *hmp; 2122 int flags; 2123 int error; 2124 int total_error; 2125 int force_fchain; 2126 int i; 2127 int j; 2128 2129 pmp = MPTOPMP(mp); 2130 iroot = pmp->iroot; 2131 KKASSERT(iroot); 2132 KKASSERT(iroot->pmp == pmp); 2133 2134 /* 2135 * We can't acquire locks on existing vnodes while in a transaction 2136 * without risking a deadlock. This assumes that vfsync() can be 2137 * called without the vnode locked (which it can in DragonFly). 2138 * Otherwise we'd have to implement a multi-pass or flag the lock 2139 * failures and retry. 2140 * 2141 * The reclamation code interlocks with the sync list's token 2142 * (by removing the vnode from the scan list) before unlocking 2143 * the inode, giving us time to ref the inode. 2144 */ 2145 /*flags = VMSC_GETVP;*/ 2146 flags = 0; 2147 if (waitfor & MNT_LAZY) 2148 flags |= VMSC_ONEPASS; 2149 2150 /* 2151 * Start our flush transaction. This does not return until all 2152 * concurrent transactions have completed and will prevent any 2153 * new transactions from running concurrently, except for the 2154 * buffer cache transactions. 2155 * 2156 * For efficiency do an async pass before making sure with a 2157 * synchronous pass on all related buffer cache buffers. It 2158 * should theoretically not be possible for any new file buffers 2159 * to be instantiated during this sequence. 2160 */ 2161 hammer2_trans_init(&info.trans, pmp, HAMMER2_TRANS_ISFLUSH | 2162 HAMMER2_TRANS_PREFLUSH); 2163 hammer2_run_unlinkq(&info.trans, pmp); 2164 2165 info.error = 0; 2166 info.waitfor = MNT_NOWAIT; 2167 vsyncscan(mp, flags | VMSC_NOWAIT, hammer2_sync_scan2, &info); 2168 info.waitfor = MNT_WAIT; 2169 vsyncscan(mp, flags, hammer2_sync_scan2, &info); 2170 2171 /* 2172 * Clear PREFLUSH. This prevents (or asserts on) any new logical 2173 * buffer cache flushes which occur during the flush. Device buffers 2174 * are not affected. 2175 */ 2176 2177 #if 0 2178 if (info.error == 0 && (waitfor & MNT_WAIT)) { 2179 info.waitfor = waitfor; 2180 vsyncscan(mp, flags, hammer2_sync_scan2, &info); 2181 2182 } 2183 #endif 2184 hammer2_bioq_sync(info.trans.pmp); 2185 atomic_clear_int(&info.trans.flags, HAMMER2_TRANS_PREFLUSH); 2186 2187 total_error = 0; 2188 2189 /* 2190 * Flush all storage elements making up the cluster 2191 * 2192 * We must also flush any deleted siblings because the super-root 2193 * flush won't do it for us. They all must be staged or the 2194 * super-root flush will not be able to update its block table 2195 * properly. 2196 * 2197 * XXX currently done serially instead of concurrently 2198 */ 2199 for (i = 0; iroot && i < iroot->cluster.nchains; ++i) { 2200 chain = iroot->cluster.array[i]; 2201 if (chain) { 2202 hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS); 2203 hammer2_flush(&info.trans, chain); 2204 hammer2_chain_unlock(chain); 2205 } 2206 } 2207 #if 0 2208 hammer2_trans_done(&info.trans); 2209 #endif 2210 2211 /* 2212 * Flush all volume roots to synchronize PFS flushes with the 2213 * storage media. Use a super-root transaction for each one. 2214 * 2215 * The flush code will detect super-root -> pfs-root chain 2216 * transitions using the last pfs-root flush. 2217 */ 2218 for (i = 0; iroot && i < iroot->cluster.nchains; ++i) { 2219 chain = iroot->cluster.array[i]; 2220 if (chain == NULL) 2221 continue; 2222 2223 hmp = chain->hmp; 2224 2225 /* 2226 * We only have to flush each hmp once 2227 */ 2228 for (j = i - 1; j >= 0; --j) { 2229 if (iroot->cluster.array[j] && 2230 iroot->cluster.array[j]->hmp == hmp) 2231 break; 2232 } 2233 if (j >= 0) 2234 continue; 2235 hammer2_trans_spmp(&info.trans, hmp->spmp); 2236 2237 /* 2238 * Force an update of the XID from the PFS root to the 2239 * topology root. We couldn't do this from the PFS 2240 * transaction because a SPMP transaction is needed. 2241 * This does not modify blocks, instead what it does is 2242 * allow the flush code to find the transition point and 2243 * then update on the way back up. 2244 */ 2245 parent = chain->parent; 2246 KKASSERT(chain->pmp != parent->pmp); 2247 hammer2_chain_setflush(&info.trans, parent); 2248 2249 /* 2250 * Media mounts have two 'roots', vchain for the topology 2251 * and fchain for the free block table. Flush both. 2252 * 2253 * Note that the topology and free block table are handled 2254 * independently, so the free block table can wind up being 2255 * ahead of the topology. We depend on the bulk free scan 2256 * code to deal with any loose ends. 2257 */ 2258 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS); 2259 hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS); 2260 if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) { 2261 /* 2262 * This will also modify vchain as a side effect, 2263 * mark vchain as modified now. 2264 */ 2265 hammer2_voldata_modify(hmp); 2266 chain = &hmp->fchain; 2267 hammer2_flush(&info.trans, chain); 2268 KKASSERT(chain == &hmp->fchain); 2269 } 2270 hammer2_chain_unlock(&hmp->fchain); 2271 hammer2_chain_unlock(&hmp->vchain); 2272 2273 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS); 2274 if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) { 2275 chain = &hmp->vchain; 2276 hammer2_flush(&info.trans, chain); 2277 KKASSERT(chain == &hmp->vchain); 2278 force_fchain = 1; 2279 } else { 2280 force_fchain = 0; 2281 } 2282 hammer2_chain_unlock(&hmp->vchain); 2283 2284 #if 0 2285 hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS); 2286 if ((hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) || 2287 force_fchain) { 2288 /* this will also modify vchain as a side effect */ 2289 chain = &hmp->fchain; 2290 hammer2_flush(&info.trans, chain); 2291 KKASSERT(chain == &hmp->fchain); 2292 } 2293 hammer2_chain_unlock(&hmp->fchain); 2294 #endif 2295 2296 error = 0; 2297 2298 /* 2299 * We can't safely flush the volume header until we have 2300 * flushed any device buffers which have built up. 2301 * 2302 * XXX this isn't being incremental 2303 */ 2304 vn_lock(hmp->devvp, LK_EXCLUSIVE | LK_RETRY); 2305 error = VOP_FSYNC(hmp->devvp, MNT_WAIT, 0); 2306 vn_unlock(hmp->devvp); 2307 2308 /* 2309 * The flush code sets CHAIN_VOLUMESYNC to indicate that the 2310 * volume header needs synchronization via hmp->volsync. 2311 * 2312 * XXX synchronize the flag & data with only this flush XXX 2313 */ 2314 if (error == 0 && 2315 (hmp->vchain.flags & HAMMER2_CHAIN_VOLUMESYNC)) { 2316 struct buf *bp; 2317 2318 /* 2319 * Synchronize the disk before flushing the volume 2320 * header. 2321 */ 2322 bp = getpbuf(NULL); 2323 bp->b_bio1.bio_offset = 0; 2324 bp->b_bufsize = 0; 2325 bp->b_bcount = 0; 2326 bp->b_cmd = BUF_CMD_FLUSH; 2327 bp->b_bio1.bio_done = biodone_sync; 2328 bp->b_bio1.bio_flags |= BIO_SYNC; 2329 vn_strategy(hmp->devvp, &bp->b_bio1); 2330 biowait(&bp->b_bio1, "h2vol"); 2331 relpbuf(bp, NULL); 2332 2333 /* 2334 * Then we can safely flush the version of the 2335 * volume header synchronized by the flush code. 2336 */ 2337 i = hmp->volhdrno + 1; 2338 if (i >= HAMMER2_NUM_VOLHDRS) 2339 i = 0; 2340 if (i * HAMMER2_ZONE_BYTES64 + HAMMER2_SEGSIZE > 2341 hmp->volsync.volu_size) { 2342 i = 0; 2343 } 2344 kprintf("sync volhdr %d %jd\n", 2345 i, (intmax_t)hmp->volsync.volu_size); 2346 bp = getblk(hmp->devvp, i * HAMMER2_ZONE_BYTES64, 2347 HAMMER2_PBUFSIZE, 0, 0); 2348 atomic_clear_int(&hmp->vchain.flags, 2349 HAMMER2_CHAIN_VOLUMESYNC); 2350 bcopy(&hmp->volsync, bp->b_data, HAMMER2_PBUFSIZE); 2351 bawrite(bp); 2352 hmp->volhdrno = i; 2353 } 2354 if (error) 2355 total_error = error; 2356 2357 #if 0 2358 hammer2_trans_done(&info.trans); 2359 #endif 2360 } 2361 hammer2_trans_done(&info.trans); 2362 2363 return (total_error); 2364 } 2365 2366 /* 2367 * Sync passes. 2368 */ 2369 static int 2370 hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data) 2371 { 2372 struct hammer2_sync_info *info = data; 2373 hammer2_inode_t *ip; 2374 int error; 2375 2376 /* 2377 * 2378 */ 2379 ip = VTOI(vp); 2380 if (ip == NULL) 2381 return(0); 2382 if (vp->v_type == VNON || vp->v_type == VBAD) { 2383 vclrisdirty(vp); 2384 return(0); 2385 } 2386 if ((ip->flags & HAMMER2_INODE_MODIFIED) == 0 && 2387 RB_EMPTY(&vp->v_rbdirty_tree)) { 2388 vclrisdirty(vp); 2389 return(0); 2390 } 2391 2392 /* 2393 * VOP_FSYNC will start a new transaction so replicate some code 2394 * here to do it inline (see hammer2_vop_fsync()). 2395 * 2396 * WARNING: The vfsync interacts with the buffer cache and might 2397 * block, we can't hold the inode lock at that time. 2398 * However, we MUST ref ip before blocking to ensure that 2399 * it isn't ripped out from under us (since we do not 2400 * hold a lock on the vnode). 2401 */ 2402 hammer2_inode_ref(ip); 2403 atomic_clear_int(&ip->flags, HAMMER2_INODE_MODIFIED); 2404 if (vp) 2405 vfsync(vp, MNT_NOWAIT, 1, NULL, NULL); 2406 2407 hammer2_inode_drop(ip); 2408 #if 1 2409 error = 0; 2410 if (error) 2411 info->error = error; 2412 #endif 2413 return(0); 2414 } 2415 2416 static 2417 int 2418 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp) 2419 { 2420 return (0); 2421 } 2422 2423 static 2424 int 2425 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp, 2426 struct fid *fhp, struct vnode **vpp) 2427 { 2428 return (0); 2429 } 2430 2431 static 2432 int 2433 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam, 2434 int *exflagsp, struct ucred **credanonp) 2435 { 2436 return (0); 2437 } 2438 2439 /* 2440 * Support code for hammer2_vfs_mount(). Read, verify, and install the volume 2441 * header into the HMP 2442 * 2443 * XXX read four volhdrs and use the one with the highest TID whos CRC 2444 * matches. 2445 * 2446 * XXX check iCRCs. 2447 * 2448 * XXX For filesystems w/ less than 4 volhdrs, make sure to not write to 2449 * nonexistant locations. 2450 * 2451 * XXX Record selected volhdr and ring updates to each of 4 volhdrs 2452 */ 2453 static 2454 int 2455 hammer2_install_volume_header(hammer2_mount_t *hmp) 2456 { 2457 hammer2_volume_data_t *vd; 2458 struct buf *bp; 2459 hammer2_crc32_t crc0, crc, bcrc0, bcrc; 2460 int error_reported; 2461 int error; 2462 int valid; 2463 int i; 2464 2465 error_reported = 0; 2466 error = 0; 2467 valid = 0; 2468 bp = NULL; 2469 2470 /* 2471 * There are up to 4 copies of the volume header (syncs iterate 2472 * between them so there is no single master). We don't trust the 2473 * volu_size field so we don't know precisely how large the filesystem 2474 * is, so depend on the OS to return an error if we go beyond the 2475 * block device's EOF. 2476 */ 2477 for (i = 0; i < HAMMER2_NUM_VOLHDRS; i++) { 2478 error = bread(hmp->devvp, i * HAMMER2_ZONE_BYTES64, 2479 HAMMER2_VOLUME_BYTES, &bp); 2480 if (error) { 2481 brelse(bp); 2482 bp = NULL; 2483 continue; 2484 } 2485 2486 vd = (struct hammer2_volume_data *) bp->b_data; 2487 if ((vd->magic != HAMMER2_VOLUME_ID_HBO) && 2488 (vd->magic != HAMMER2_VOLUME_ID_ABO)) { 2489 brelse(bp); 2490 bp = NULL; 2491 continue; 2492 } 2493 2494 if (vd->magic == HAMMER2_VOLUME_ID_ABO) { 2495 /* XXX: Reversed-endianness filesystem */ 2496 kprintf("hammer2: reverse-endian filesystem detected"); 2497 brelse(bp); 2498 bp = NULL; 2499 continue; 2500 } 2501 2502 crc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT0]; 2503 crc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC0_OFF, 2504 HAMMER2_VOLUME_ICRC0_SIZE); 2505 bcrc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT1]; 2506 bcrc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC1_OFF, 2507 HAMMER2_VOLUME_ICRC1_SIZE); 2508 if ((crc0 != crc) || (bcrc0 != bcrc)) { 2509 kprintf("hammer2 volume header crc " 2510 "mismatch copy #%d %08x/%08x\n", 2511 i, crc0, crc); 2512 error_reported = 1; 2513 brelse(bp); 2514 bp = NULL; 2515 continue; 2516 } 2517 if (valid == 0 || hmp->voldata.mirror_tid < vd->mirror_tid) { 2518 valid = 1; 2519 hmp->voldata = *vd; 2520 hmp->volhdrno = i; 2521 } 2522 brelse(bp); 2523 bp = NULL; 2524 } 2525 if (valid) { 2526 hmp->volsync = hmp->voldata; 2527 error = 0; 2528 if (error_reported || bootverbose || 1) { /* 1/DEBUG */ 2529 kprintf("hammer2: using volume header #%d\n", 2530 hmp->volhdrno); 2531 } 2532 } else { 2533 error = EINVAL; 2534 kprintf("hammer2: no valid volume headers found!\n"); 2535 } 2536 return (error); 2537 } 2538 2539 /* 2540 * Reconnect using the passed file pointer. The caller must ref the 2541 * fp for us. 2542 */ 2543 void 2544 hammer2_cluster_reconnect(hammer2_mount_t *hmp, struct file *fp) 2545 { 2546 size_t name_len; 2547 const char *name = "disk-volume"; 2548 2549 /* 2550 * Closes old comm descriptor, kills threads, cleans up 2551 * states, then installs the new descriptor and creates 2552 * new threads. 2553 */ 2554 kdmsg_iocom_reconnect(&hmp->iocom, fp, "hammer2"); 2555 2556 /* 2557 * Setup LNK_CONN fields for autoinitiated state machine. We 2558 * will use SPANs to advertise multiple PFSs so only pass the 2559 * fsid and HAMMER2_PFSTYPE_SUPROOT for the AUTOCONN. 2560 * 2561 * We are not initiating a LNK_SPAN so we do not have to set-up 2562 * iocom.auto_lnk_span. 2563 */ 2564 bzero(&hmp->iocom.auto_lnk_conn.pfs_clid, 2565 sizeof(hmp->iocom.auto_lnk_conn.pfs_clid)); 2566 hmp->iocom.auto_lnk_conn.pfs_fsid = hmp->voldata.fsid; 2567 hmp->iocom.auto_lnk_conn.pfs_type = HAMMER2_PFSTYPE_SUPROOT; 2568 hmp->iocom.auto_lnk_conn.proto_version = DMSG_SPAN_PROTO_1; 2569 #if 0 2570 hmp->iocom.auto_lnk_conn.peer_type = hmp->voldata.peer_type; 2571 #endif 2572 hmp->iocom.auto_lnk_conn.peer_type = DMSG_PEER_HAMMER2; 2573 2574 /* 2575 * Filter adjustment. Clients do not need visibility into other 2576 * clients (otherwise millions of clients would present a serious 2577 * problem). The fs_label also serves to restrict the namespace. 2578 */ 2579 hmp->iocom.auto_lnk_conn.peer_mask = 1LLU << DMSG_PEER_HAMMER2; 2580 hmp->iocom.auto_lnk_conn.pfs_mask = (uint64_t)-1; 2581 2582 #if 0 2583 switch (ipdata->pfs_type) { 2584 case DMSG_PFSTYPE_CLIENT: 2585 hmp->iocom.auto_lnk_conn.peer_mask &= 2586 ~(1LLU << DMSG_PFSTYPE_CLIENT); 2587 break; 2588 default: 2589 break; 2590 } 2591 #endif 2592 2593 name_len = strlen(name); 2594 if (name_len >= sizeof(hmp->iocom.auto_lnk_conn.fs_label)) 2595 name_len = sizeof(hmp->iocom.auto_lnk_conn.fs_label) - 1; 2596 bcopy(name, hmp->iocom.auto_lnk_conn.fs_label, name_len); 2597 hmp->iocom.auto_lnk_conn.fs_label[name_len] = 0; 2598 2599 kdmsg_iocom_autoinitiate(&hmp->iocom, hammer2_autodmsg); 2600 } 2601 2602 static int 2603 hammer2_rcvdmsg(kdmsg_msg_t *msg) 2604 { 2605 kprintf("RCVMSG %08x\n", msg->tcmd); 2606 2607 switch(msg->tcmd) { 2608 case DMSG_DBG_SHELL: 2609 /* 2610 * (non-transaction) 2611 * Execute shell command (not supported atm) 2612 */ 2613 kdmsg_msg_result(msg, DMSG_ERR_NOSUPP); 2614 break; 2615 case DMSG_DBG_SHELL | DMSGF_REPLY: 2616 /* 2617 * (non-transaction) 2618 */ 2619 if (msg->aux_data) { 2620 msg->aux_data[msg->aux_size - 1] = 0; 2621 kprintf("HAMMER2 DBG: %s\n", msg->aux_data); 2622 } 2623 break; 2624 default: 2625 /* 2626 * Unsupported message received. We only need to 2627 * reply if it's a transaction in order to close our end. 2628 * Ignore any one-way messages or any further messages 2629 * associated with the transaction. 2630 * 2631 * NOTE: This case also includes DMSG_LNK_ERROR messages 2632 * which might be one-way, replying to those would 2633 * cause an infinite ping-pong. 2634 */ 2635 if (msg->any.head.cmd & DMSGF_CREATE) 2636 kdmsg_msg_reply(msg, DMSG_ERR_NOSUPP); 2637 break; 2638 } 2639 return(0); 2640 } 2641 2642 /* 2643 * This function is called after KDMSG has automatically handled processing 2644 * of a LNK layer message (typically CONN, SPAN, or CIRC). 2645 * 2646 * We tag off the LNK_CONN to trigger our LNK_VOLCONF messages which 2647 * advertises all available hammer2 super-root volumes. 2648 */ 2649 static void hammer2_update_spans(hammer2_mount_t *hmp, kdmsg_state_t *state); 2650 2651 static void 2652 hammer2_autodmsg(kdmsg_msg_t *msg) 2653 { 2654 hammer2_mount_t *hmp = msg->state->iocom->handle; 2655 int copyid; 2656 2657 kprintf("RCAMSG %08x\n", msg->tcmd); 2658 2659 switch(msg->tcmd) { 2660 case DMSG_LNK_CONN | DMSGF_CREATE | DMSGF_REPLY: 2661 case DMSG_LNK_CONN | DMSGF_CREATE | DMSGF_DELETE | DMSGF_REPLY: 2662 if (msg->any.head.cmd & DMSGF_CREATE) { 2663 kprintf("HAMMER2: VOLDATA DUMP\n"); 2664 2665 /* 2666 * Dump the configuration stored in the volume header. 2667 * This will typically be import/export access rights, 2668 * master encryption keys (encrypted), etc. 2669 */ 2670 hammer2_voldata_lock(hmp); 2671 copyid = 0; 2672 while (copyid < HAMMER2_COPYID_COUNT) { 2673 if (hmp->voldata.copyinfo[copyid].copyid) 2674 hammer2_volconf_update(hmp, copyid); 2675 ++copyid; 2676 } 2677 hammer2_voldata_unlock(hmp); 2678 2679 kprintf("HAMMER2: INITIATE SPANs\n"); 2680 hammer2_update_spans(hmp, msg->state); 2681 } 2682 if ((msg->any.head.cmd & DMSGF_DELETE) && 2683 msg->state && (msg->state->txcmd & DMSGF_DELETE) == 0) { 2684 kprintf("HAMMER2: CONN WAS TERMINATED\n"); 2685 } 2686 break; 2687 default: 2688 break; 2689 } 2690 } 2691 2692 /* 2693 * Update LNK_SPAN state 2694 */ 2695 static void 2696 hammer2_update_spans(hammer2_mount_t *hmp, kdmsg_state_t *state) 2697 { 2698 const hammer2_inode_data_t *ripdata; 2699 hammer2_cluster_t *cparent; 2700 hammer2_cluster_t *cluster; 2701 hammer2_pfsmount_t *spmp; 2702 hammer2_key_t key_next; 2703 kdmsg_msg_t *rmsg; 2704 size_t name_len; 2705 int ddflag; 2706 2707 /* 2708 * Lookup mount point under the media-localized super-root. 2709 * 2710 * cluster->pmp will incorrectly point to spmp and must be fixed 2711 * up later on. 2712 */ 2713 spmp = hmp->spmp; 2714 cparent = hammer2_inode_lock_ex(spmp->iroot); 2715 cluster = hammer2_cluster_lookup(cparent, &key_next, 2716 HAMMER2_KEY_MIN, 2717 HAMMER2_KEY_MAX, 2718 0, &ddflag); 2719 while (cluster) { 2720 if (hammer2_cluster_type(cluster) != HAMMER2_BREF_TYPE_INODE) 2721 continue; 2722 ripdata = &hammer2_cluster_rdata(cluster)->ipdata; 2723 kprintf("UPDATE SPANS: %s\n", ripdata->filename); 2724 2725 rmsg = kdmsg_msg_alloc(state, DMSG_LNK_SPAN | DMSGF_CREATE, 2726 hammer2_lnk_span_reply, NULL); 2727 rmsg->any.lnk_span.pfs_clid = ripdata->pfs_clid; 2728 rmsg->any.lnk_span.pfs_fsid = ripdata->pfs_fsid; 2729 rmsg->any.lnk_span.pfs_type = ripdata->pfs_type; 2730 rmsg->any.lnk_span.peer_type = DMSG_PEER_HAMMER2; 2731 rmsg->any.lnk_span.proto_version = DMSG_SPAN_PROTO_1; 2732 name_len = ripdata->name_len; 2733 if (name_len >= sizeof(rmsg->any.lnk_span.fs_label)) 2734 name_len = sizeof(rmsg->any.lnk_span.fs_label) - 1; 2735 bcopy(ripdata->filename, rmsg->any.lnk_span.fs_label, name_len); 2736 2737 kdmsg_msg_write(rmsg); 2738 2739 cluster = hammer2_cluster_next(cparent, cluster, 2740 &key_next, 2741 key_next, 2742 HAMMER2_KEY_MAX, 2743 0); 2744 } 2745 hammer2_inode_unlock_ex(spmp->iroot, cparent); 2746 } 2747 2748 static 2749 int 2750 hammer2_lnk_span_reply(kdmsg_state_t *state, kdmsg_msg_t *msg) 2751 { 2752 if ((state->txcmd & DMSGF_DELETE) == 0 && 2753 (msg->any.head.cmd & DMSGF_DELETE)) { 2754 kdmsg_msg_reply(msg, 0); 2755 } 2756 return 0; 2757 } 2758 2759 /* 2760 * Volume configuration updates are passed onto the userland service 2761 * daemon via the open LNK_CONN transaction. 2762 */ 2763 void 2764 hammer2_volconf_update(hammer2_mount_t *hmp, int index) 2765 { 2766 kdmsg_msg_t *msg; 2767 2768 /* XXX interlock against connection state termination */ 2769 kprintf("volconf update %p\n", hmp->iocom.conn_state); 2770 if (hmp->iocom.conn_state) { 2771 kprintf("TRANSMIT VOLCONF VIA OPEN CONN TRANSACTION\n"); 2772 msg = kdmsg_msg_alloc(hmp->iocom.conn_state, 2773 DMSG_LNK_HAMMER2_VOLCONF, 2774 NULL, NULL); 2775 H2_LNK_VOLCONF(msg)->copy = hmp->voldata.copyinfo[index]; 2776 H2_LNK_VOLCONF(msg)->mediaid = hmp->voldata.fsid; 2777 H2_LNK_VOLCONF(msg)->index = index; 2778 kdmsg_msg_write(msg); 2779 } 2780 } 2781 2782 /* 2783 * This handles hysteresis on regular file flushes. Because the BIOs are 2784 * routed to a thread it is possible for an excessive number to build up 2785 * and cause long front-end stalls long before the runningbuffspace limit 2786 * is hit, so we implement hammer2_flush_pipe to control the 2787 * hysteresis. 2788 * 2789 * This is a particular problem when compression is used. 2790 */ 2791 void 2792 hammer2_lwinprog_ref(hammer2_pfsmount_t *pmp) 2793 { 2794 atomic_add_int(&pmp->count_lwinprog, 1); 2795 } 2796 2797 void 2798 hammer2_lwinprog_drop(hammer2_pfsmount_t *pmp) 2799 { 2800 int lwinprog; 2801 2802 lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1); 2803 if ((lwinprog & HAMMER2_LWINPROG_WAITING) && 2804 (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) { 2805 atomic_clear_int(&pmp->count_lwinprog, 2806 HAMMER2_LWINPROG_WAITING); 2807 wakeup(&pmp->count_lwinprog); 2808 } 2809 } 2810 2811 void 2812 hammer2_lwinprog_wait(hammer2_pfsmount_t *pmp) 2813 { 2814 int lwinprog; 2815 2816 for (;;) { 2817 lwinprog = pmp->count_lwinprog; 2818 cpu_ccfence(); 2819 if ((lwinprog & HAMMER2_LWINPROG_MASK) < hammer2_flush_pipe) 2820 break; 2821 tsleep_interlock(&pmp->count_lwinprog, 0); 2822 atomic_set_int(&pmp->count_lwinprog, HAMMER2_LWINPROG_WAITING); 2823 lwinprog = pmp->count_lwinprog; 2824 if ((lwinprog & HAMMER2_LWINPROG_MASK) < hammer2_flush_pipe) 2825 break; 2826 tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz); 2827 } 2828 } 2829 2830 /* 2831 * Manage excessive memory resource use for chain and related 2832 * structures. 2833 */ 2834 void 2835 hammer2_pfs_memory_wait(hammer2_pfsmount_t *pmp) 2836 { 2837 uint32_t waiting; 2838 uint32_t count; 2839 uint32_t limit; 2840 #if 0 2841 static int zzticks; 2842 #endif 2843 2844 /* 2845 * Atomic check condition and wait. Also do an early speedup of 2846 * the syncer to try to avoid hitting the wait. 2847 */ 2848 for (;;) { 2849 waiting = pmp->inmem_dirty_chains; 2850 cpu_ccfence(); 2851 count = waiting & HAMMER2_DIRTYCHAIN_MASK; 2852 2853 limit = pmp->mp->mnt_nvnodelistsize / 10; 2854 if (limit < hammer2_limit_dirty_chains) 2855 limit = hammer2_limit_dirty_chains; 2856 if (limit < 1000) 2857 limit = 1000; 2858 2859 #if 0 2860 if ((int)(ticks - zzticks) > hz) { 2861 zzticks = ticks; 2862 kprintf("count %ld %ld\n", count, limit); 2863 } 2864 #endif 2865 2866 /* 2867 * Block if there are too many dirty chains present, wait 2868 * for the flush to clean some out. 2869 */ 2870 if (count > limit) { 2871 tsleep_interlock(&pmp->inmem_dirty_chains, 0); 2872 if (atomic_cmpset_int(&pmp->inmem_dirty_chains, 2873 waiting, 2874 waiting | HAMMER2_DIRTYCHAIN_WAITING)) { 2875 speedup_syncer(pmp->mp); 2876 tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED, 2877 "chnmem", hz); 2878 } 2879 continue; /* loop on success or fail */ 2880 } 2881 2882 /* 2883 * Try to start an early flush before we are forced to block. 2884 */ 2885 if (count > limit * 7 / 10) 2886 speedup_syncer(pmp->mp); 2887 break; 2888 } 2889 } 2890 2891 void 2892 hammer2_pfs_memory_inc(hammer2_pfsmount_t *pmp) 2893 { 2894 if (pmp) { 2895 atomic_add_int(&pmp->inmem_dirty_chains, 1); 2896 } 2897 } 2898 2899 void 2900 hammer2_pfs_memory_wakeup(hammer2_pfsmount_t *pmp) 2901 { 2902 uint32_t waiting; 2903 2904 if (pmp == NULL) 2905 return; 2906 2907 for (;;) { 2908 waiting = pmp->inmem_dirty_chains; 2909 cpu_ccfence(); 2910 if (atomic_cmpset_int(&pmp->inmem_dirty_chains, 2911 waiting, 2912 (waiting - 1) & 2913 ~HAMMER2_DIRTYCHAIN_WAITING)) { 2914 break; 2915 } 2916 } 2917 2918 if (waiting & HAMMER2_DIRTYCHAIN_WAITING) 2919 wakeup(&pmp->inmem_dirty_chains); 2920 } 2921 2922 /* 2923 * Debugging 2924 */ 2925 void 2926 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int *countp, char pfx) 2927 { 2928 hammer2_chain_t *scan; 2929 hammer2_chain_t *parent; 2930 2931 --*countp; 2932 if (*countp == 0) { 2933 kprintf("%*.*s...\n", tab, tab, ""); 2934 return; 2935 } 2936 if (*countp < 0) 2937 return; 2938 kprintf("%*.*s%c-chain %p.%d %016jx/%d mir=%016jx\n", 2939 tab, tab, "", pfx, 2940 chain, chain->bref.type, 2941 chain->bref.key, chain->bref.keybits, 2942 chain->bref.mirror_tid); 2943 2944 kprintf("%*.*s [%08x] (%s) refs=%d\n", 2945 tab, tab, "", 2946 chain->flags, 2947 ((chain->bref.type == HAMMER2_BREF_TYPE_INODE && 2948 chain->data) ? (char *)chain->data->ipdata.filename : "?"), 2949 chain->refs); 2950 2951 kprintf("%*.*s core [%08x]", 2952 tab, tab, "", 2953 chain->core.flags); 2954 2955 parent = chain->parent; 2956 if (parent) 2957 kprintf("\n%*.*s p=%p [pflags %08x prefs %d", 2958 tab, tab, "", 2959 parent, parent->flags, parent->refs); 2960 if (RB_EMPTY(&chain->core.rbtree)) { 2961 kprintf("\n"); 2962 } else { 2963 kprintf(" {\n"); 2964 RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree) 2965 hammer2_dump_chain(scan, tab + 4, countp, 'a'); 2966 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data) 2967 kprintf("%*.*s}(%s)\n", tab, tab, "", 2968 chain->data->ipdata.filename); 2969 else 2970 kprintf("%*.*s}\n", tab, tab, ""); 2971 } 2972 } 2973