1 /* 2 * Copyright (c) 2011-2014 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression) 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * 3. Neither the name of The DragonFly Project nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific, prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/nlookup.h> 39 #include <sys/vnode.h> 40 #include <sys/mount.h> 41 #include <sys/fcntl.h> 42 #include <sys/buf.h> 43 #include <sys/uuid.h> 44 #include <sys/vfsops.h> 45 #include <sys/sysctl.h> 46 #include <sys/socket.h> 47 #include <sys/objcache.h> 48 49 #include <sys/proc.h> 50 #include <sys/namei.h> 51 #include <sys/mountctl.h> 52 #include <sys/dirent.h> 53 #include <sys/uio.h> 54 55 #include <sys/mutex.h> 56 #include <sys/mutex2.h> 57 58 #include "hammer2.h" 59 #include "hammer2_disk.h" 60 #include "hammer2_mount.h" 61 62 #include "hammer2.h" 63 #include "hammer2_lz4.h" 64 65 #include "zlib/hammer2_zlib.h" 66 67 #define REPORT_REFS_ERRORS 1 /* XXX remove me */ 68 69 MALLOC_DEFINE(M_OBJCACHE, "objcache", "Object Cache"); 70 71 struct hammer2_sync_info { 72 hammer2_trans_t trans; 73 int error; 74 int waitfor; 75 }; 76 77 TAILQ_HEAD(hammer2_mntlist, hammer2_mount); 78 TAILQ_HEAD(hammer2_pfslist, hammer2_pfsmount); 79 static struct hammer2_mntlist hammer2_mntlist; 80 static struct hammer2_pfslist hammer2_pfslist; 81 static struct lock hammer2_mntlk; 82 83 int hammer2_debug; 84 int hammer2_cluster_enable = 1; 85 int hammer2_hardlink_enable = 1; 86 int hammer2_flush_pipe = 100; 87 int hammer2_synchronous_flush = 1; 88 int hammer2_dio_count; 89 long hammer2_limit_dirty_chains; 90 long hammer2_iod_file_read; 91 long hammer2_iod_meta_read; 92 long hammer2_iod_indr_read; 93 long hammer2_iod_fmap_read; 94 long hammer2_iod_volu_read; 95 long hammer2_iod_file_write; 96 long hammer2_iod_meta_write; 97 long hammer2_iod_indr_write; 98 long hammer2_iod_fmap_write; 99 long hammer2_iod_volu_write; 100 long hammer2_ioa_file_read; 101 long hammer2_ioa_meta_read; 102 long hammer2_ioa_indr_read; 103 long hammer2_ioa_fmap_read; 104 long hammer2_ioa_volu_read; 105 long hammer2_ioa_fmap_write; 106 long hammer2_ioa_file_write; 107 long hammer2_ioa_meta_write; 108 long hammer2_ioa_indr_write; 109 long hammer2_ioa_volu_write; 110 111 MALLOC_DECLARE(C_BUFFER); 112 MALLOC_DEFINE(C_BUFFER, "compbuffer", "Buffer used for compression."); 113 114 MALLOC_DECLARE(D_BUFFER); 115 MALLOC_DEFINE(D_BUFFER, "decompbuffer", "Buffer used for decompression."); 116 117 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem"); 118 119 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW, 120 &hammer2_debug, 0, ""); 121 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_enable, CTLFLAG_RW, 122 &hammer2_cluster_enable, 0, ""); 123 SYSCTL_INT(_vfs_hammer2, OID_AUTO, hardlink_enable, CTLFLAG_RW, 124 &hammer2_hardlink_enable, 0, ""); 125 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW, 126 &hammer2_flush_pipe, 0, ""); 127 SYSCTL_INT(_vfs_hammer2, OID_AUTO, synchronous_flush, CTLFLAG_RW, 128 &hammer2_synchronous_flush, 0, ""); 129 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW, 130 &hammer2_limit_dirty_chains, 0, ""); 131 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD, 132 &hammer2_dio_count, 0, ""); 133 134 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW, 135 &hammer2_iod_file_read, 0, ""); 136 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW, 137 &hammer2_iod_meta_read, 0, ""); 138 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW, 139 &hammer2_iod_indr_read, 0, ""); 140 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW, 141 &hammer2_iod_fmap_read, 0, ""); 142 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW, 143 &hammer2_iod_volu_read, 0, ""); 144 145 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW, 146 &hammer2_iod_file_write, 0, ""); 147 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW, 148 &hammer2_iod_meta_write, 0, ""); 149 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW, 150 &hammer2_iod_indr_write, 0, ""); 151 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW, 152 &hammer2_iod_fmap_write, 0, ""); 153 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW, 154 &hammer2_iod_volu_write, 0, ""); 155 156 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_file_read, CTLFLAG_RW, 157 &hammer2_ioa_file_read, 0, ""); 158 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_meta_read, CTLFLAG_RW, 159 &hammer2_ioa_meta_read, 0, ""); 160 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_indr_read, CTLFLAG_RW, 161 &hammer2_ioa_indr_read, 0, ""); 162 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_fmap_read, CTLFLAG_RW, 163 &hammer2_ioa_fmap_read, 0, ""); 164 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_volu_read, CTLFLAG_RW, 165 &hammer2_ioa_volu_read, 0, ""); 166 167 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_file_write, CTLFLAG_RW, 168 &hammer2_ioa_file_write, 0, ""); 169 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_meta_write, CTLFLAG_RW, 170 &hammer2_ioa_meta_write, 0, ""); 171 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_indr_write, CTLFLAG_RW, 172 &hammer2_ioa_indr_write, 0, ""); 173 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_fmap_write, CTLFLAG_RW, 174 &hammer2_ioa_fmap_write, 0, ""); 175 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, ioa_volu_write, CTLFLAG_RW, 176 &hammer2_ioa_volu_write, 0, ""); 177 178 static int hammer2_vfs_init(struct vfsconf *conf); 179 static int hammer2_vfs_uninit(struct vfsconf *vfsp); 180 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data, 181 struct ucred *cred); 182 static int hammer2_remount(hammer2_mount_t *, struct mount *, char *, 183 struct vnode *, struct ucred *); 184 static int hammer2_recovery(hammer2_mount_t *hmp); 185 static int hammer2_vfs_unmount(struct mount *mp, int mntflags); 186 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp); 187 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, 188 struct ucred *cred); 189 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, 190 struct ucred *cred); 191 static int hammer2_vfs_vget(struct mount *mp, struct vnode *dvp, 192 ino_t ino, struct vnode **vpp); 193 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp, 194 struct fid *fhp, struct vnode **vpp); 195 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp); 196 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam, 197 int *exflagsp, struct ucred **credanonp); 198 199 static int hammer2_install_volume_header(hammer2_mount_t *hmp); 200 static int hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data); 201 202 static void hammer2_write_thread(void *arg); 203 204 static void hammer2_vfs_unmount_hmp1(struct mount *mp, hammer2_mount_t *hmp); 205 static void hammer2_vfs_unmount_hmp2(struct mount *mp, hammer2_mount_t *hmp); 206 207 /* 208 * Functions for compression in threads, 209 * from hammer2_vnops.c 210 */ 211 static void hammer2_write_file_core(struct buf *bp, hammer2_trans_t *trans, 212 hammer2_inode_t *ip, 213 hammer2_inode_data_t *ipdata, 214 hammer2_cluster_t *cparent, 215 hammer2_key_t lbase, int ioflag, int pblksize, 216 int *errorp); 217 static void hammer2_compress_and_write(struct buf *bp, hammer2_trans_t *trans, 218 hammer2_inode_t *ip, 219 const hammer2_inode_data_t *ipdata, 220 hammer2_cluster_t *cparent, 221 hammer2_key_t lbase, int ioflag, 222 int pblksize, int *errorp, int comp_algo); 223 static void hammer2_zero_check_and_write(struct buf *bp, 224 hammer2_trans_t *trans, hammer2_inode_t *ip, 225 const hammer2_inode_data_t *ipdata, 226 hammer2_cluster_t *cparent, 227 hammer2_key_t lbase, 228 int ioflag, int pblksize, int *errorp); 229 static int test_block_zeros(const char *buf, size_t bytes); 230 static void zero_write(struct buf *bp, hammer2_trans_t *trans, 231 hammer2_inode_t *ip, 232 const hammer2_inode_data_t *ipdata, 233 hammer2_cluster_t *cparent, 234 hammer2_key_t lbase, 235 int *errorp); 236 static void hammer2_write_bp(hammer2_cluster_t *cluster, struct buf *bp, 237 int ioflag, int pblksize, int *errorp); 238 239 static int hammer2_rcvdmsg(kdmsg_msg_t *msg); 240 static void hammer2_autodmsg(kdmsg_msg_t *msg); 241 static int hammer2_lnk_span_reply(kdmsg_state_t *state, kdmsg_msg_t *msg); 242 243 244 /* 245 * HAMMER2 vfs operations. 246 */ 247 static struct vfsops hammer2_vfsops = { 248 .vfs_init = hammer2_vfs_init, 249 .vfs_uninit = hammer2_vfs_uninit, 250 .vfs_sync = hammer2_vfs_sync, 251 .vfs_mount = hammer2_vfs_mount, 252 .vfs_unmount = hammer2_vfs_unmount, 253 .vfs_root = hammer2_vfs_root, 254 .vfs_statfs = hammer2_vfs_statfs, 255 .vfs_statvfs = hammer2_vfs_statvfs, 256 .vfs_vget = hammer2_vfs_vget, 257 .vfs_vptofh = hammer2_vfs_vptofh, 258 .vfs_fhtovp = hammer2_vfs_fhtovp, 259 .vfs_checkexp = hammer2_vfs_checkexp 260 }; 261 262 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", ""); 263 264 VFS_SET(hammer2_vfsops, hammer2, 0); 265 MODULE_VERSION(hammer2, 1); 266 267 static 268 int 269 hammer2_vfs_init(struct vfsconf *conf) 270 { 271 static struct objcache_malloc_args margs_read; 272 static struct objcache_malloc_args margs_write; 273 274 int error; 275 276 error = 0; 277 278 if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref)) 279 error = EINVAL; 280 if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data)) 281 error = EINVAL; 282 if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data)) 283 error = EINVAL; 284 285 if (error) 286 kprintf("HAMMER2 structure size mismatch; cannot continue.\n"); 287 288 margs_read.objsize = 65536; 289 margs_read.mtype = D_BUFFER; 290 291 margs_write.objsize = 32768; 292 margs_write.mtype = C_BUFFER; 293 294 cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc, 295 0, 1, NULL, NULL, NULL, objcache_malloc_alloc, 296 objcache_malloc_free, &margs_read); 297 cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc, 298 0, 1, NULL, NULL, NULL, objcache_malloc_alloc, 299 objcache_malloc_free, &margs_write); 300 301 lockinit(&hammer2_mntlk, "mntlk", 0, 0); 302 TAILQ_INIT(&hammer2_mntlist); 303 TAILQ_INIT(&hammer2_pfslist); 304 305 hammer2_limit_dirty_chains = desiredvnodes / 10; 306 307 hammer2_trans_manage_init(); 308 309 return (error); 310 } 311 312 static 313 int 314 hammer2_vfs_uninit(struct vfsconf *vfsp __unused) 315 { 316 objcache_destroy(cache_buffer_read); 317 objcache_destroy(cache_buffer_write); 318 return 0; 319 } 320 321 /* 322 * Core PFS allocator. Used to allocate the pmp structure for PFS cluster 323 * mounts and the spmp structure for media (hmp) structures. 324 */ 325 static hammer2_pfsmount_t * 326 hammer2_pfsalloc(const hammer2_inode_data_t *ipdata, hammer2_tid_t alloc_tid) 327 { 328 hammer2_pfsmount_t *pmp; 329 330 pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO); 331 kmalloc_create(&pmp->minode, "HAMMER2-inodes"); 332 kmalloc_create(&pmp->mmsg, "HAMMER2-pfsmsg"); 333 lockinit(&pmp->lock, "pfslk", 0, 0); 334 spin_init(&pmp->inum_spin); 335 RB_INIT(&pmp->inum_tree); 336 TAILQ_INIT(&pmp->unlinkq); 337 spin_init(&pmp->unlinkq_spin); 338 339 pmp->alloc_tid = alloc_tid + 1; /* our first media transaction id */ 340 pmp->flush_tid = pmp->alloc_tid; 341 if (ipdata) { 342 pmp->inode_tid = ipdata->pfs_inum + 1; 343 pmp->pfs_clid = ipdata->pfs_clid; 344 } 345 mtx_init(&pmp->wthread_mtx); 346 bioq_init(&pmp->wthread_bioq); 347 348 return pmp; 349 } 350 351 /* 352 * Mount or remount HAMMER2 fileystem from physical media 353 * 354 * mountroot 355 * mp mount point structure 356 * path NULL 357 * data <unused> 358 * cred <unused> 359 * 360 * mount 361 * mp mount point structure 362 * path path to mount point 363 * data pointer to argument structure in user space 364 * volume volume path (device@LABEL form) 365 * hflags user mount flags 366 * cred user credentials 367 * 368 * RETURNS: 0 Success 369 * !0 error number 370 */ 371 static 372 int 373 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data, 374 struct ucred *cred) 375 { 376 struct hammer2_mount_info info; 377 hammer2_pfsmount_t *pmp; 378 hammer2_pfsmount_t *spmp; 379 hammer2_mount_t *hmp; 380 hammer2_key_t key_next; 381 hammer2_key_t key_dummy; 382 hammer2_key_t lhc; 383 struct vnode *devvp; 384 struct nlookupdata nd; 385 hammer2_chain_t *parent; 386 hammer2_chain_t *rchain; 387 hammer2_cluster_t *cluster; 388 hammer2_cluster_t *cparent; 389 const hammer2_inode_data_t *ipdata; 390 hammer2_blockref_t bref; 391 struct file *fp; 392 char devstr[MNAMELEN]; 393 size_t size; 394 size_t done; 395 char *dev; 396 char *label; 397 int ronly = 1; 398 int error; 399 int cache_index; 400 int ddflag; 401 int i; 402 403 hmp = NULL; 404 pmp = NULL; 405 dev = NULL; 406 label = NULL; 407 devvp = NULL; 408 cache_index = -1; 409 410 kprintf("hammer2_mount\n"); 411 412 if (path == NULL) { 413 /* 414 * Root mount 415 */ 416 bzero(&info, sizeof(info)); 417 info.cluster_fd = -1; 418 return (EOPNOTSUPP); 419 } else { 420 /* 421 * Non-root mount or updating a mount 422 */ 423 error = copyin(data, &info, sizeof(info)); 424 if (error) 425 return (error); 426 427 error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done); 428 if (error) 429 return (error); 430 431 /* Extract device and label */ 432 dev = devstr; 433 label = strchr(devstr, '@'); 434 if (label == NULL || 435 ((label + 1) - dev) > done) { 436 return (EINVAL); 437 } 438 *label = '\0'; 439 label++; 440 if (*label == '\0') 441 return (EINVAL); 442 443 if (mp->mnt_flag & MNT_UPDATE) { 444 /* Update mount */ 445 /* HAMMER2 implements NFS export via mountctl */ 446 pmp = MPTOPMP(mp); 447 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) { 448 hmp = pmp->iroot->cluster.array[i]->hmp; 449 devvp = hmp->devvp; 450 error = hammer2_remount(hmp, mp, path, 451 devvp, cred); 452 if (error) 453 break; 454 } 455 /*hammer2_inode_install_hidden(pmp);*/ 456 457 return error; 458 } 459 } 460 461 /* 462 * HMP device mount 463 * 464 * Lookup name and verify it refers to a block device. 465 */ 466 error = nlookup_init(&nd, dev, UIO_SYSSPACE, NLC_FOLLOW); 467 if (error == 0) 468 error = nlookup(&nd); 469 if (error == 0) 470 error = cache_vref(&nd.nl_nch, nd.nl_cred, &devvp); 471 nlookup_done(&nd); 472 473 if (error == 0) { 474 if (vn_isdisk(devvp, &error)) 475 error = vfs_mountedon(devvp); 476 } 477 478 /* 479 * Determine if the device has already been mounted. After this 480 * check hmp will be non-NULL if we are doing the second or more 481 * hammer2 mounts from the same device. 482 */ 483 lockmgr(&hammer2_mntlk, LK_EXCLUSIVE); 484 TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) { 485 if (hmp->devvp == devvp) 486 break; 487 } 488 489 /* 490 * Open the device if this isn't a secondary mount and construct 491 * the H2 device mount (hmp). 492 */ 493 if (hmp == NULL) { 494 hammer2_chain_t *schain; 495 hammer2_xid_t xid; 496 497 if (error == 0 && vcount(devvp) > 0) 498 error = EBUSY; 499 500 /* 501 * Now open the device 502 */ 503 if (error == 0) { 504 ronly = ((mp->mnt_flag & MNT_RDONLY) != 0); 505 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 506 error = vinvalbuf(devvp, V_SAVE, 0, 0); 507 if (error == 0) { 508 error = VOP_OPEN(devvp, 509 ronly ? FREAD : FREAD | FWRITE, 510 FSCRED, NULL); 511 } 512 vn_unlock(devvp); 513 } 514 if (error && devvp) { 515 vrele(devvp); 516 devvp = NULL; 517 } 518 if (error) { 519 lockmgr(&hammer2_mntlk, LK_RELEASE); 520 return error; 521 } 522 hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO); 523 hmp->ronly = ronly; 524 hmp->devvp = devvp; 525 kmalloc_create(&hmp->mchain, "HAMMER2-chains"); 526 TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry); 527 RB_INIT(&hmp->iotree); 528 529 lockinit(&hmp->vollk, "h2vol", 0, 0); 530 531 /* 532 * vchain setup. vchain.data is embedded. 533 * vchain.refs is initialized and will never drop to 0. 534 * 535 * NOTE! voldata is not yet loaded. 536 */ 537 hmp->vchain.hmp = hmp; 538 hmp->vchain.refs = 1; 539 hmp->vchain.data = (void *)&hmp->voldata; 540 hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME; 541 hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX; 542 hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid; 543 hmp->vchain.delete_xid = HAMMER2_XID_MAX; 544 545 hammer2_chain_core_alloc(NULL, &hmp->vchain, NULL); 546 /* hmp->vchain.u.xxx is left NULL */ 547 548 /* 549 * fchain setup. fchain.data is embedded. 550 * fchain.refs is initialized and will never drop to 0. 551 * 552 * The data is not used but needs to be initialized to 553 * pass assertion muster. We use this chain primarily 554 * as a placeholder for the freemap's top-level RBTREE 555 * so it does not interfere with the volume's topology 556 * RBTREE. 557 */ 558 hmp->fchain.hmp = hmp; 559 hmp->fchain.refs = 1; 560 hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset; 561 hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP; 562 hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX; 563 hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid; 564 hmp->fchain.bref.methods = 565 HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) | 566 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE); 567 hmp->fchain.delete_xid = HAMMER2_XID_MAX; 568 569 hammer2_chain_core_alloc(NULL, &hmp->fchain, NULL); 570 /* hmp->fchain.u.xxx is left NULL */ 571 572 /* 573 * Install the volume header and initialize fields from 574 * voldata. 575 */ 576 error = hammer2_install_volume_header(hmp); 577 if (error) { 578 ++hmp->pmp_count; 579 hammer2_vfs_unmount_hmp1(mp, hmp); 580 hammer2_vfs_unmount_hmp2(mp, hmp); 581 hammer2_vfs_unmount(mp, MNT_FORCE); 582 return error; 583 } 584 585 /* 586 * Really important to get these right or flush will get 587 * confused. 588 */ 589 hmp->spmp = hammer2_pfsalloc(NULL, hmp->voldata.mirror_tid); 590 kprintf("alloc spmp %p tid %016jx\n", 591 hmp->spmp, hmp->voldata.mirror_tid); 592 spmp = hmp->spmp; 593 spmp->inode_tid = 1; 594 595 xid = 0; 596 hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid; 597 hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid; 598 hmp->vchain.modify_xid = xid; 599 hmp->vchain.update_xlo = xid; 600 hmp->vchain.update_xhi = xid; 601 hmp->vchain.pmp = spmp; 602 hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid; 603 hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid; 604 hmp->fchain.modify_xid = xid; 605 hmp->fchain.update_xlo = xid; 606 hmp->fchain.update_xhi = xid; 607 hmp->fchain.pmp = spmp; 608 609 /* 610 * First locate the super-root inode, which is key 0 611 * relative to the volume header's blockset. 612 * 613 * Then locate the root inode by scanning the directory keyspace 614 * represented by the label. 615 */ 616 parent = hammer2_chain_lookup_init(&hmp->vchain, 0); 617 schain = hammer2_chain_lookup(&parent, &key_dummy, 618 HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY, 619 &cache_index, 0, &ddflag); 620 hammer2_chain_lookup_done(parent); 621 if (schain == NULL) { 622 kprintf("hammer2_mount: invalid super-root\n"); 623 ++hmp->pmp_count; 624 hammer2_vfs_unmount_hmp1(mp, hmp); 625 hammer2_vfs_unmount_hmp2(mp, hmp); 626 hammer2_vfs_unmount(mp, MNT_FORCE); 627 return EINVAL; 628 } 629 630 /* 631 * Sanity-check schain's pmp, finish initializing spmp. 632 */ 633 KKASSERT(schain->pmp == spmp); 634 spmp->pfs_clid = schain->data->ipdata.pfs_clid; 635 636 /* 637 * NOTE: The CHAIN_PFSROOT is not set on the super-root inode. 638 * NOTE: inode_get sucks up schain's lock. 639 */ 640 cluster = hammer2_cluster_from_chain(schain); 641 spmp->iroot = hammer2_inode_get(spmp, NULL, cluster); 642 spmp->spmp_hmp = hmp; 643 hammer2_inode_ref(spmp->iroot); 644 hammer2_inode_unlock_ex(spmp->iroot, cluster); 645 schain = NULL; 646 /* leave spmp->iroot with one ref */ 647 648 if ((mp->mnt_flag & MNT_RDONLY) == 0) { 649 error = hammer2_recovery(hmp); 650 /* XXX do something with error */ 651 } 652 ++hmp->pmp_count; 653 654 /* 655 * XXX RDONLY stuff is totally broken FIXME XXX 656 * 657 * Automatic LNK_CONN 658 * Automatic handling of received LNK_SPAN 659 * Automatic handling of received LNK_CIRC 660 * No automatic LNK_SPAN generation - we do this ourselves 661 * No automatic LNK_CIRC generation - we do this ourselves 662 */ 663 kdmsg_iocom_init(&hmp->iocom, hmp, 664 KDMSG_IOCOMF_AUTOCONN | 665 KDMSG_IOCOMF_AUTORXSPAN | 666 KDMSG_IOCOMF_AUTORXCIRC, 667 hmp->mchain, hammer2_rcvdmsg); 668 669 /* 670 * Ref the cluster management messaging descriptor. The mount 671 * program deals with the other end of the communications pipe. 672 */ 673 fp = holdfp(curproc->p_fd, info.cluster_fd, -1); 674 if (fp) { 675 hammer2_cluster_reconnect(hmp, fp); 676 } else { 677 kprintf("hammer2_mount: bad cluster_fd!\n"); 678 } 679 } else { 680 spmp = hmp->spmp; 681 ++hmp->pmp_count; 682 } 683 684 /* 685 * Lookup mount point under the media-localized super-root. 686 * 687 * cluster->pmp will incorrectly point to spmp and must be fixed 688 * up later on. 689 */ 690 cparent = hammer2_inode_lock_ex(spmp->iroot); 691 lhc = hammer2_dirhash(label, strlen(label)); 692 cluster = hammer2_cluster_lookup(cparent, &key_next, 693 lhc, lhc + HAMMER2_DIRHASH_LOMASK, 694 0, &ddflag); 695 while (cluster) { 696 if (hammer2_cluster_type(cluster) == HAMMER2_BREF_TYPE_INODE && 697 strcmp(label, 698 hammer2_cluster_data(cluster)->ipdata.filename) == 0) { 699 break; 700 } 701 cluster = hammer2_cluster_next(cparent, cluster, &key_next, 702 key_next, 703 lhc + HAMMER2_DIRHASH_LOMASK, 0); 704 } 705 hammer2_inode_unlock_ex(spmp->iroot, cparent); 706 707 if (cluster == NULL) { 708 kprintf("hammer2_mount: PFS label not found\n"); 709 hammer2_vfs_unmount_hmp1(mp, hmp); 710 hammer2_vfs_unmount_hmp2(mp, hmp); 711 lockmgr(&hammer2_mntlk, LK_RELEASE); 712 hammer2_vfs_unmount(mp, MNT_FORCE); 713 return EINVAL; 714 } 715 716 for (i = 0; i < cluster->nchains; ++i) { 717 rchain = cluster->array[i]; 718 KKASSERT(rchain->pmp == NULL); 719 if (rchain->flags & HAMMER2_CHAIN_MOUNTED) { 720 kprintf("hammer2_mount: PFS label already mounted!\n"); 721 hammer2_cluster_unlock(cluster); 722 hammer2_vfs_unmount_hmp1(mp, hmp); 723 hammer2_vfs_unmount_hmp2(mp, hmp); 724 lockmgr(&hammer2_mntlk, LK_RELEASE); 725 hammer2_vfs_unmount(mp, MNT_FORCE); 726 return EBUSY; 727 } 728 #if 0 729 if (rchain->flags & HAMMER2_CHAIN_RECYCLE) { 730 kprintf("hammer2_mount: PFS label is recycling\n"); 731 hammer2_cluster_unlock(cluster); 732 hammer2_vfs_unmount_hmp1(mp, hmp); 733 hammer2_vfs_unmount_hmp2(mp, hmp); 734 lockmgr(&hammer2_mntlk, LK_RELEASE); 735 hammer2_vfs_unmount(mp, MNT_FORCE); 736 return EBUSY; 737 } 738 #endif 739 } 740 741 /* 742 * Check to see if the cluster id is already mounted at the mount 743 * point. If it is, add us to the cluster. 744 */ 745 ipdata = &hammer2_cluster_data(cluster)->ipdata; 746 hammer2_cluster_bref(cluster, &bref); 747 TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) { 748 if (pmp->spmp_hmp == NULL && 749 bcmp(&pmp->pfs_clid, &ipdata->pfs_clid, 750 sizeof(pmp->pfs_clid)) == 0) { 751 break; 752 } 753 } 754 755 if (pmp) { 756 int i; 757 int j; 758 759 hammer2_inode_ref(pmp->iroot); 760 ccms_thread_lock(&pmp->iroot->topo_cst, CCMS_STATE_EXCLUSIVE); 761 762 if (pmp->iroot->cluster.nchains + cluster->nchains > 763 HAMMER2_MAXCLUSTER) { 764 kprintf("hammer2_mount: cluster full!\n"); 765 766 ccms_thread_unlock(&pmp->iroot->topo_cst); 767 hammer2_inode_drop(pmp->iroot); 768 769 hammer2_cluster_unlock(cluster); 770 hammer2_vfs_unmount_hmp1(mp, hmp); 771 hammer2_vfs_unmount_hmp2(mp, hmp); 772 lockmgr(&hammer2_mntlk, LK_RELEASE); 773 hammer2_vfs_unmount(mp, MNT_FORCE); 774 return EBUSY; 775 } 776 kprintf("hammer2_vfs_mount: Adding pfs to existing cluster\n"); 777 j = pmp->iroot->cluster.nchains; 778 for (i = 0; i < cluster->nchains; ++i) { 779 rchain = cluster->array[i]; 780 KKASSERT(rchain->pmp == NULL); 781 rchain->pmp = pmp; 782 hammer2_chain_ref(cluster->array[i]); 783 pmp->iroot->cluster.array[j] = cluster->array[i]; 784 ++j; 785 } 786 pmp->iroot->cluster.nchains = j; 787 ccms_thread_unlock(&pmp->iroot->topo_cst); 788 hammer2_inode_drop(pmp->iroot); 789 hammer2_cluster_unlock(cluster); 790 lockmgr(&hammer2_mntlk, LK_RELEASE); 791 792 kprintf("ok\n"); 793 hammer2_inode_install_hidden(pmp); 794 795 return ERANGE; 796 } 797 798 /* 799 * Block device opened successfully, finish initializing the 800 * mount structure. 801 * 802 * From this point on we have to call hammer2_unmount() on failure. 803 */ 804 pmp = hammer2_pfsalloc(ipdata, bref.mirror_tid); 805 kprintf("PMP mirror_tid is %016jx\n", bref.mirror_tid); 806 for (i = 0; i < cluster->nchains; ++i) { 807 rchain = cluster->array[i]; 808 KKASSERT(rchain->pmp == NULL); 809 rchain->pmp = pmp; 810 atomic_set_int(&rchain->flags, HAMMER2_CHAIN_MOUNTED); 811 } 812 cluster->pmp = pmp; 813 814 ccms_domain_init(&pmp->ccms_dom); 815 TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry); 816 lockmgr(&hammer2_mntlk, LK_RELEASE); 817 818 kprintf("hammer2_mount hmp=%p pmp=%p pmpcnt=%d\n", 819 hmp, pmp, hmp->pmp_count); 820 821 mp->mnt_flag = MNT_LOCAL; 822 mp->mnt_kern_flag |= MNTK_ALL_MPSAFE; /* all entry pts are SMP */ 823 mp->mnt_kern_flag |= MNTK_THR_SYNC; /* new vsyncscan semantics */ 824 825 /* 826 * required mount structure initializations 827 */ 828 mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE; 829 mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE; 830 831 mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE; 832 mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE; 833 834 /* 835 * Optional fields 836 */ 837 mp->mnt_iosize_max = MAXPHYS; 838 mp->mnt_data = (qaddr_t)pmp; 839 pmp->mp = mp; 840 841 /* 842 * After this point hammer2_vfs_unmount() has visibility on hmp 843 * and manual hmp1/hmp2 calls are not needed on fatal errors. 844 */ 845 pmp->iroot = hammer2_inode_get(pmp, NULL, cluster); 846 hammer2_inode_ref(pmp->iroot); /* ref for pmp->iroot */ 847 hammer2_inode_unlock_ex(pmp->iroot, cluster); 848 849 /* 850 * The logical file buffer bio write thread handles things 851 * like physical block assignment and compression. 852 * 853 * (only applicable to pfs mounts, not applicable to spmp) 854 */ 855 pmp->wthread_destroy = 0; 856 lwkt_create(hammer2_write_thread, pmp, 857 &pmp->wthread_td, NULL, 0, -1, "hwrite-%s", label); 858 859 /* 860 * With the cluster operational install ihidden. 861 * (only applicable to pfs mounts, not applicable to spmp) 862 */ 863 hammer2_inode_install_hidden(pmp); 864 865 /* 866 * Finish setup 867 */ 868 vfs_getnewfsid(mp); 869 vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops); 870 vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops); 871 vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops); 872 873 copyinstr(info.volume, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, &size); 874 bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size); 875 bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname)); 876 copyinstr(path, mp->mnt_stat.f_mntonname, 877 sizeof(mp->mnt_stat.f_mntonname) - 1, 878 &size); 879 880 /* 881 * Initial statfs to prime mnt_stat. 882 */ 883 hammer2_vfs_statfs(mp, &mp->mnt_stat, cred); 884 885 return 0; 886 } 887 888 /* 889 * Handle bioq for strategy write 890 */ 891 static 892 void 893 hammer2_write_thread(void *arg) 894 { 895 hammer2_pfsmount_t *pmp; 896 struct bio *bio; 897 struct buf *bp; 898 hammer2_trans_t trans; 899 struct vnode *vp; 900 hammer2_inode_t *ip; 901 hammer2_cluster_t *cparent; 902 hammer2_inode_data_t *wipdata; 903 hammer2_key_t lbase; 904 int lblksize; 905 int pblksize; 906 int error; 907 908 pmp = arg; 909 910 mtx_lock(&pmp->wthread_mtx); 911 while (pmp->wthread_destroy == 0) { 912 if (bioq_first(&pmp->wthread_bioq) == NULL) { 913 mtxsleep(&pmp->wthread_bioq, &pmp->wthread_mtx, 914 0, "h2bioqw", 0); 915 } 916 cparent = NULL; 917 918 hammer2_trans_init(&trans, pmp, HAMMER2_TRANS_BUFCACHE); 919 920 while ((bio = bioq_takefirst(&pmp->wthread_bioq)) != NULL) { 921 /* 922 * dummy bio for synchronization. The transaction 923 * must be reinitialized. 924 */ 925 if (bio->bio_buf == NULL) { 926 bio->bio_flags |= BIO_DONE; 927 wakeup(bio); 928 hammer2_trans_done(&trans); 929 hammer2_trans_init(&trans, pmp, 930 HAMMER2_TRANS_BUFCACHE); 931 continue; 932 } 933 934 /* 935 * else normal bio processing 936 */ 937 mtx_unlock(&pmp->wthread_mtx); 938 939 hammer2_lwinprog_drop(pmp); 940 941 error = 0; 942 bp = bio->bio_buf; 943 vp = bp->b_vp; 944 ip = VTOI(vp); 945 946 /* 947 * Inode is modified, flush size and mtime changes 948 * to ensure that the file size remains consistent 949 * with the buffers being flushed. 950 * 951 * NOTE: The inode_fsync() call only flushes the 952 * inode's meta-data state, it doesn't try 953 * to flush underlying buffers or chains. 954 */ 955 cparent = hammer2_inode_lock_ex(ip); 956 if (ip->flags & (HAMMER2_INODE_RESIZED | 957 HAMMER2_INODE_MTIME)) { 958 hammer2_inode_fsync(&trans, ip, cparent); 959 } 960 wipdata = hammer2_cluster_modify_ip(&trans, ip, 961 cparent, 0); 962 lblksize = hammer2_calc_logical(ip, bio->bio_offset, 963 &lbase, NULL); 964 pblksize = hammer2_calc_physical(ip, wipdata, lbase); 965 hammer2_write_file_core(bp, &trans, ip, wipdata, 966 cparent, 967 lbase, IO_ASYNC, 968 pblksize, &error); 969 hammer2_cluster_modsync(cparent); 970 hammer2_inode_unlock_ex(ip, cparent); 971 if (error) { 972 kprintf("hammer2: error in buffer write\n"); 973 bp->b_flags |= B_ERROR; 974 bp->b_error = EIO; 975 } 976 biodone(bio); 977 mtx_lock(&pmp->wthread_mtx); 978 } 979 hammer2_trans_done(&trans); 980 } 981 pmp->wthread_destroy = -1; 982 wakeup(&pmp->wthread_destroy); 983 984 mtx_unlock(&pmp->wthread_mtx); 985 } 986 987 void 988 hammer2_bioq_sync(hammer2_pfsmount_t *pmp) 989 { 990 struct bio sync_bio; 991 992 bzero(&sync_bio, sizeof(sync_bio)); /* dummy with no bio_buf */ 993 mtx_lock(&pmp->wthread_mtx); 994 if (pmp->wthread_destroy == 0 && 995 TAILQ_FIRST(&pmp->wthread_bioq.queue)) { 996 bioq_insert_tail(&pmp->wthread_bioq, &sync_bio); 997 while ((sync_bio.bio_flags & BIO_DONE) == 0) 998 mtxsleep(&sync_bio, &pmp->wthread_mtx, 0, "h2bioq", 0); 999 } 1000 mtx_unlock(&pmp->wthread_mtx); 1001 } 1002 1003 /* 1004 * Return a chain suitable for I/O, creating the chain if necessary 1005 * and assigning its physical block. 1006 */ 1007 static 1008 hammer2_cluster_t * 1009 hammer2_assign_physical(hammer2_trans_t *trans, 1010 hammer2_inode_t *ip, hammer2_cluster_t *cparent, 1011 hammer2_key_t lbase, int pblksize, int *errorp) 1012 { 1013 hammer2_cluster_t *cluster; 1014 hammer2_cluster_t *dparent; 1015 hammer2_key_t key_dummy; 1016 int pradix = hammer2_getradix(pblksize); 1017 int ddflag; 1018 1019 /* 1020 * Locate the chain associated with lbase, return a locked chain. 1021 * However, do not instantiate any data reference (which utilizes a 1022 * device buffer) because we will be using direct IO via the 1023 * logical buffer cache buffer. 1024 */ 1025 *errorp = 0; 1026 KKASSERT(pblksize >= HAMMER2_ALLOC_MIN); 1027 retry: 1028 dparent = hammer2_cluster_lookup_init(cparent, 0); 1029 cluster = hammer2_cluster_lookup(dparent, &key_dummy, 1030 lbase, lbase, 1031 HAMMER2_LOOKUP_NODATA, &ddflag); 1032 1033 if (cluster == NULL) { 1034 /* 1035 * We found a hole, create a new chain entry. 1036 * 1037 * NOTE: DATA chains are created without device backing 1038 * store (nor do we want any). 1039 */ 1040 *errorp = hammer2_cluster_create(trans, dparent, &cluster, 1041 lbase, HAMMER2_PBUFRADIX, 1042 HAMMER2_BREF_TYPE_DATA, 1043 pblksize); 1044 if (cluster == NULL) { 1045 hammer2_cluster_lookup_done(dparent); 1046 panic("hammer2_cluster_create: par=%p error=%d\n", 1047 dparent->focus, *errorp); 1048 goto retry; 1049 } 1050 /*ip->delta_dcount += pblksize;*/ 1051 } else { 1052 switch (hammer2_cluster_type(cluster)) { 1053 case HAMMER2_BREF_TYPE_INODE: 1054 /* 1055 * The data is embedded in the inode. The 1056 * caller is responsible for marking the inode 1057 * modified and copying the data to the embedded 1058 * area. 1059 */ 1060 break; 1061 case HAMMER2_BREF_TYPE_DATA: 1062 if (hammer2_cluster_bytes(cluster) != pblksize) { 1063 hammer2_cluster_resize(trans, ip, 1064 dparent, cluster, 1065 pradix, 1066 HAMMER2_MODIFY_OPTDATA); 1067 } 1068 hammer2_cluster_modify(trans, cluster, 1069 HAMMER2_MODIFY_OPTDATA); 1070 break; 1071 default: 1072 panic("hammer2_assign_physical: bad type"); 1073 /* NOT REACHED */ 1074 break; 1075 } 1076 } 1077 1078 /* 1079 * Cleanup. If cluster wound up being the inode itself, i.e. 1080 * the DIRECTDATA case for offset 0, then we need to update cparent. 1081 * The caller expects cparent to not become stale. 1082 */ 1083 hammer2_cluster_lookup_done(dparent); 1084 /* dparent = NULL; safety */ 1085 if (cluster && ddflag) 1086 hammer2_cluster_replace_locked(cparent, cluster); 1087 return (cluster); 1088 } 1089 1090 /* 1091 * From hammer2_vnops.c. 1092 * The core write function which determines which path to take 1093 * depending on compression settings. 1094 */ 1095 static 1096 void 1097 hammer2_write_file_core(struct buf *bp, hammer2_trans_t *trans, 1098 hammer2_inode_t *ip, hammer2_inode_data_t *ipdata, 1099 hammer2_cluster_t *cparent, 1100 hammer2_key_t lbase, int ioflag, int pblksize, 1101 int *errorp) 1102 { 1103 hammer2_cluster_t *cluster; 1104 1105 switch(HAMMER2_DEC_COMP(ipdata->comp_algo)) { 1106 case HAMMER2_COMP_NONE: 1107 /* 1108 * We have to assign physical storage to the buffer 1109 * we intend to dirty or write now to avoid deadlocks 1110 * in the strategy code later. 1111 * 1112 * This can return NOOFFSET for inode-embedded data. 1113 * The strategy code will take care of it in that case. 1114 */ 1115 cluster = hammer2_assign_physical(trans, ip, cparent, 1116 lbase, pblksize, 1117 errorp); 1118 hammer2_write_bp(cluster, bp, ioflag, pblksize, errorp); 1119 if (cluster) 1120 hammer2_cluster_unlock(cluster); 1121 break; 1122 case HAMMER2_COMP_AUTOZERO: 1123 /* 1124 * Check for zero-fill only 1125 */ 1126 hammer2_zero_check_and_write(bp, trans, ip, 1127 ipdata, cparent, lbase, 1128 ioflag, pblksize, errorp); 1129 break; 1130 case HAMMER2_COMP_LZ4: 1131 case HAMMER2_COMP_ZLIB: 1132 default: 1133 /* 1134 * Check for zero-fill and attempt compression. 1135 */ 1136 hammer2_compress_and_write(bp, trans, ip, 1137 ipdata, cparent, 1138 lbase, ioflag, 1139 pblksize, errorp, 1140 ipdata->comp_algo); 1141 break; 1142 } 1143 } 1144 1145 /* 1146 * Generic function that will perform the compression in compression 1147 * write path. The compression algorithm is determined by the settings 1148 * obtained from inode. 1149 */ 1150 static 1151 void 1152 hammer2_compress_and_write(struct buf *bp, hammer2_trans_t *trans, 1153 hammer2_inode_t *ip, const hammer2_inode_data_t *ipdata, 1154 hammer2_cluster_t *cparent, 1155 hammer2_key_t lbase, int ioflag, int pblksize, 1156 int *errorp, int comp_algo) 1157 { 1158 hammer2_cluster_t *cluster; 1159 hammer2_chain_t *chain; 1160 int comp_size; 1161 int comp_block_size; 1162 int i; 1163 char *comp_buffer; 1164 1165 if (test_block_zeros(bp->b_data, pblksize)) { 1166 zero_write(bp, trans, ip, ipdata, cparent, lbase, errorp); 1167 return; 1168 } 1169 1170 comp_size = 0; 1171 comp_buffer = NULL; 1172 1173 KKASSERT(pblksize / 2 <= 32768); 1174 1175 if (ip->comp_heuristic < 8 || (ip->comp_heuristic & 7) == 0) { 1176 z_stream strm_compress; 1177 int comp_level; 1178 int ret; 1179 1180 switch(HAMMER2_DEC_COMP(comp_algo)) { 1181 case HAMMER2_COMP_LZ4: 1182 comp_buffer = objcache_get(cache_buffer_write, 1183 M_INTWAIT); 1184 comp_size = LZ4_compress_limitedOutput( 1185 bp->b_data, 1186 &comp_buffer[sizeof(int)], 1187 pblksize, 1188 pblksize / 2 - sizeof(int)); 1189 /* 1190 * We need to prefix with the size, LZ4 1191 * doesn't do it for us. Add the related 1192 * overhead. 1193 */ 1194 *(int *)comp_buffer = comp_size; 1195 if (comp_size) 1196 comp_size += sizeof(int); 1197 break; 1198 case HAMMER2_COMP_ZLIB: 1199 comp_level = HAMMER2_DEC_LEVEL(comp_algo); 1200 if (comp_level == 0) 1201 comp_level = 6; /* default zlib compression */ 1202 else if (comp_level < 6) 1203 comp_level = 6; 1204 else if (comp_level > 9) 1205 comp_level = 9; 1206 ret = deflateInit(&strm_compress, comp_level); 1207 if (ret != Z_OK) { 1208 kprintf("HAMMER2 ZLIB: fatal error " 1209 "on deflateInit.\n"); 1210 } 1211 1212 comp_buffer = objcache_get(cache_buffer_write, 1213 M_INTWAIT); 1214 strm_compress.next_in = bp->b_data; 1215 strm_compress.avail_in = pblksize; 1216 strm_compress.next_out = comp_buffer; 1217 strm_compress.avail_out = pblksize / 2; 1218 ret = deflate(&strm_compress, Z_FINISH); 1219 if (ret == Z_STREAM_END) { 1220 comp_size = pblksize / 2 - 1221 strm_compress.avail_out; 1222 } else { 1223 comp_size = 0; 1224 } 1225 ret = deflateEnd(&strm_compress); 1226 break; 1227 default: 1228 kprintf("Error: Unknown compression method.\n"); 1229 kprintf("Comp_method = %d.\n", comp_algo); 1230 break; 1231 } 1232 } 1233 1234 if (comp_size == 0) { 1235 /* 1236 * compression failed or turned off 1237 */ 1238 comp_block_size = pblksize; /* safety */ 1239 if (++ip->comp_heuristic > 128) 1240 ip->comp_heuristic = 8; 1241 } else { 1242 /* 1243 * compression succeeded 1244 */ 1245 ip->comp_heuristic = 0; 1246 if (comp_size <= 1024) { 1247 comp_block_size = 1024; 1248 } else if (comp_size <= 2048) { 1249 comp_block_size = 2048; 1250 } else if (comp_size <= 4096) { 1251 comp_block_size = 4096; 1252 } else if (comp_size <= 8192) { 1253 comp_block_size = 8192; 1254 } else if (comp_size <= 16384) { 1255 comp_block_size = 16384; 1256 } else if (comp_size <= 32768) { 1257 comp_block_size = 32768; 1258 } else { 1259 panic("hammer2: WRITE PATH: " 1260 "Weird comp_size value."); 1261 /* NOT REACHED */ 1262 comp_block_size = pblksize; 1263 } 1264 } 1265 1266 cluster = hammer2_assign_physical(trans, ip, cparent, 1267 lbase, comp_block_size, 1268 errorp); 1269 ipdata = &hammer2_cluster_data(cparent)->ipdata; 1270 1271 if (*errorp) { 1272 kprintf("WRITE PATH: An error occurred while " 1273 "assigning physical space.\n"); 1274 KKASSERT(cluster == NULL); 1275 goto done; 1276 } 1277 1278 for (i = 0; i < cluster->nchains; ++i) { 1279 hammer2_io_t *dio; 1280 char *bdata; 1281 int temp_check; 1282 1283 chain = cluster->array[i]; 1284 KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED); 1285 1286 switch(chain->bref.type) { 1287 case HAMMER2_BREF_TYPE_INODE: 1288 KKASSERT(chain->data->ipdata.op_flags & 1289 HAMMER2_OPFLAG_DIRECTDATA); 1290 KKASSERT(bp->b_loffset == 0); 1291 bcopy(bp->b_data, chain->data->ipdata.u.data, 1292 HAMMER2_EMBEDDED_BYTES); 1293 break; 1294 case HAMMER2_BREF_TYPE_DATA: 1295 temp_check = HAMMER2_DEC_CHECK(chain->bref.methods); 1296 1297 /* 1298 * Optimize out the read-before-write 1299 * if possible. 1300 */ 1301 *errorp = hammer2_io_newnz(chain->hmp, 1302 chain->bref.data_off, 1303 chain->bytes, 1304 &dio); 1305 if (*errorp) { 1306 hammer2_io_brelse(&dio); 1307 kprintf("hammer2: WRITE PATH: " 1308 "dbp bread error\n"); 1309 break; 1310 } 1311 bdata = hammer2_io_data(dio, chain->bref.data_off); 1312 1313 /* 1314 * When loading the block make sure we don't 1315 * leave garbage after the compressed data. 1316 */ 1317 if (comp_size) { 1318 chain->bref.methods = 1319 HAMMER2_ENC_COMP(comp_algo) + 1320 HAMMER2_ENC_CHECK(temp_check); 1321 bcopy(comp_buffer, bdata, comp_size); 1322 if (comp_size != comp_block_size) { 1323 bzero(bdata + comp_size, 1324 comp_block_size - comp_size); 1325 } 1326 } else { 1327 chain->bref.methods = 1328 HAMMER2_ENC_COMP( 1329 HAMMER2_COMP_NONE) + 1330 HAMMER2_ENC_CHECK(temp_check); 1331 bcopy(bp->b_data, bdata, pblksize); 1332 } 1333 1334 /* 1335 * Device buffer is now valid, chain is no 1336 * longer in the initial state. 1337 */ 1338 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL); 1339 1340 /* Now write the related bdp. */ 1341 if (ioflag & IO_SYNC) { 1342 /* 1343 * Synchronous I/O requested. 1344 */ 1345 hammer2_io_bwrite(&dio); 1346 /* 1347 } else if ((ioflag & IO_DIRECT) && 1348 loff + n == pblksize) { 1349 hammer2_io_bdwrite(&dio); 1350 */ 1351 } else if (ioflag & IO_ASYNC) { 1352 hammer2_io_bawrite(&dio); 1353 } else { 1354 hammer2_io_bdwrite(&dio); 1355 } 1356 break; 1357 default: 1358 panic("hammer2_write_bp: bad chain type %d\n", 1359 chain->bref.type); 1360 /* NOT REACHED */ 1361 break; 1362 } 1363 } 1364 done: 1365 if (cluster) 1366 hammer2_cluster_unlock(cluster); 1367 if (comp_buffer) 1368 objcache_put(cache_buffer_write, comp_buffer); 1369 } 1370 1371 /* 1372 * Function that performs zero-checking and writing without compression, 1373 * it corresponds to default zero-checking path. 1374 */ 1375 static 1376 void 1377 hammer2_zero_check_and_write(struct buf *bp, hammer2_trans_t *trans, 1378 hammer2_inode_t *ip, const hammer2_inode_data_t *ipdata, 1379 hammer2_cluster_t *cparent, 1380 hammer2_key_t lbase, int ioflag, int pblksize, int *errorp) 1381 { 1382 hammer2_cluster_t *cluster; 1383 1384 if (test_block_zeros(bp->b_data, pblksize)) { 1385 zero_write(bp, trans, ip, ipdata, cparent, lbase, errorp); 1386 } else { 1387 cluster = hammer2_assign_physical(trans, ip, cparent, 1388 lbase, pblksize, errorp); 1389 hammer2_write_bp(cluster, bp, ioflag, pblksize, errorp); 1390 if (cluster) 1391 hammer2_cluster_unlock(cluster); 1392 } 1393 } 1394 1395 /* 1396 * A function to test whether a block of data contains only zeros, 1397 * returns TRUE (non-zero) if the block is all zeros. 1398 */ 1399 static 1400 int 1401 test_block_zeros(const char *buf, size_t bytes) 1402 { 1403 size_t i; 1404 1405 for (i = 0; i < bytes; i += sizeof(long)) { 1406 if (*(const long *)(buf + i) != 0) 1407 return (0); 1408 } 1409 return (1); 1410 } 1411 1412 /* 1413 * Function to "write" a block that contains only zeros. 1414 */ 1415 static 1416 void 1417 zero_write(struct buf *bp, hammer2_trans_t *trans, 1418 hammer2_inode_t *ip, const hammer2_inode_data_t *ipdata, 1419 hammer2_cluster_t *cparent, 1420 hammer2_key_t lbase, int *errorp __unused) 1421 { 1422 hammer2_cluster_t *cluster; 1423 hammer2_media_data_t *data; 1424 hammer2_key_t key_dummy; 1425 int ddflag; 1426 1427 cparent = hammer2_cluster_lookup_init(cparent, 0); 1428 cluster = hammer2_cluster_lookup(cparent, &key_dummy, lbase, lbase, 1429 HAMMER2_LOOKUP_NODATA, &ddflag); 1430 if (cluster) { 1431 data = hammer2_cluster_wdata(cluster); 1432 1433 if (ddflag) { 1434 KKASSERT(cluster->focus->flags & 1435 HAMMER2_CHAIN_MODIFIED); 1436 bzero(data->ipdata.u.data, HAMMER2_EMBEDDED_BYTES); 1437 hammer2_cluster_modsync(cluster); 1438 } else { 1439 hammer2_cluster_delete(trans, cluster, 0); 1440 } 1441 hammer2_cluster_unlock(cluster); 1442 } 1443 hammer2_cluster_lookup_done(cparent); 1444 } 1445 1446 /* 1447 * Function to write the data as it is, without performing any sort of 1448 * compression. This function is used in path without compression and 1449 * default zero-checking path. 1450 */ 1451 static 1452 void 1453 hammer2_write_bp(hammer2_cluster_t *cluster, struct buf *bp, int ioflag, 1454 int pblksize, int *errorp) 1455 { 1456 hammer2_chain_t *chain; 1457 hammer2_io_t *dio; 1458 char *bdata; 1459 int error; 1460 int i; 1461 int temp_check; 1462 1463 error = 0; /* XXX TODO below */ 1464 1465 for (i = 0; i < cluster->nchains; ++i) { 1466 chain = cluster->array[i]; 1467 1468 temp_check = HAMMER2_DEC_CHECK(chain->bref.methods); 1469 1470 KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED); 1471 1472 switch(chain->bref.type) { 1473 case HAMMER2_BREF_TYPE_INODE: 1474 KKASSERT(chain->data->ipdata.op_flags & 1475 HAMMER2_OPFLAG_DIRECTDATA); 1476 KKASSERT(bp->b_loffset == 0); 1477 bcopy(bp->b_data, chain->data->ipdata.u.data, 1478 HAMMER2_EMBEDDED_BYTES); 1479 error = 0; 1480 break; 1481 case HAMMER2_BREF_TYPE_DATA: 1482 error = hammer2_io_newnz(chain->hmp, 1483 chain->bref.data_off, 1484 chain->bytes, &dio); 1485 if (error) { 1486 hammer2_io_bqrelse(&dio); 1487 kprintf("hammer2: WRITE PATH: " 1488 "dbp bread error\n"); 1489 break; 1490 } 1491 bdata = hammer2_io_data(dio, chain->bref.data_off); 1492 1493 chain->bref.methods = HAMMER2_ENC_COMP( 1494 HAMMER2_COMP_NONE) + 1495 HAMMER2_ENC_CHECK(temp_check); 1496 bcopy(bp->b_data, bdata, chain->bytes); 1497 1498 /* 1499 * Device buffer is now valid, chain is no 1500 * longer in the initial state. 1501 */ 1502 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL); 1503 1504 if (ioflag & IO_SYNC) { 1505 /* 1506 * Synchronous I/O requested. 1507 */ 1508 hammer2_io_bwrite(&dio); 1509 /* 1510 } else if ((ioflag & IO_DIRECT) && 1511 loff + n == pblksize) { 1512 hammer2_io_bdwrite(&dio); 1513 */ 1514 } else if (ioflag & IO_ASYNC) { 1515 hammer2_io_bawrite(&dio); 1516 } else { 1517 hammer2_io_bdwrite(&dio); 1518 } 1519 break; 1520 default: 1521 panic("hammer2_write_bp: bad chain type %d\n", 1522 chain->bref.type); 1523 /* NOT REACHED */ 1524 error = 0; 1525 break; 1526 } 1527 KKASSERT(error == 0); /* XXX TODO */ 1528 } 1529 *errorp = error; 1530 } 1531 1532 static 1533 int 1534 hammer2_remount(hammer2_mount_t *hmp, struct mount *mp, char *path, 1535 struct vnode *devvp, struct ucred *cred) 1536 { 1537 int error; 1538 1539 if (hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) { 1540 error = hammer2_recovery(hmp); 1541 } else { 1542 error = 0; 1543 } 1544 return error; 1545 } 1546 1547 static 1548 int 1549 hammer2_vfs_unmount(struct mount *mp, int mntflags) 1550 { 1551 hammer2_pfsmount_t *pmp; 1552 hammer2_mount_t *hmp; 1553 hammer2_chain_t *rchain; 1554 hammer2_cluster_t *cluster; 1555 int flags; 1556 int error = 0; 1557 int i; 1558 1559 pmp = MPTOPMP(mp); 1560 1561 if (pmp == NULL) 1562 return(0); 1563 1564 lockmgr(&hammer2_mntlk, LK_EXCLUSIVE); 1565 TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry); 1566 1567 /* 1568 * If mount initialization proceeded far enough we must flush 1569 * its vnodes. 1570 */ 1571 if (mntflags & MNT_FORCE) 1572 flags = FORCECLOSE; 1573 else 1574 flags = 0; 1575 if (pmp->iroot) { 1576 error = vflush(mp, 0, flags); 1577 if (error) 1578 goto failed; 1579 } 1580 1581 ccms_domain_uninit(&pmp->ccms_dom); 1582 1583 if (pmp->wthread_td) { 1584 mtx_lock(&pmp->wthread_mtx); 1585 pmp->wthread_destroy = 1; 1586 wakeup(&pmp->wthread_bioq); 1587 while (pmp->wthread_destroy != -1) { 1588 mtxsleep(&pmp->wthread_destroy, 1589 &pmp->wthread_mtx, 0, 1590 "umount-sleep", 0); 1591 } 1592 mtx_unlock(&pmp->wthread_mtx); 1593 pmp->wthread_td = NULL; 1594 } 1595 1596 /* 1597 * Cleanup our reference on ihidden. 1598 */ 1599 if (pmp->ihidden) { 1600 hammer2_inode_drop(pmp->ihidden); 1601 pmp->ihidden = NULL; 1602 } 1603 1604 /* 1605 * Cleanup our reference on iroot. iroot is (should) not be needed 1606 * by the flush code. 1607 */ 1608 if (pmp->iroot) { 1609 cluster = &pmp->iroot->cluster; 1610 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) { 1611 rchain = pmp->iroot->cluster.array[i]; 1612 if (rchain == NULL) 1613 continue; 1614 hmp = rchain->hmp; 1615 hammer2_vfs_unmount_hmp1(mp, hmp); 1616 1617 atomic_clear_int(&rchain->flags, HAMMER2_CHAIN_MOUNTED); 1618 #if REPORT_REFS_ERRORS 1619 if (rchain->refs != 1) 1620 kprintf("PMP->RCHAIN %p REFS WRONG %d\n", 1621 rchain, rchain->refs); 1622 #else 1623 KKASSERT(rchain->refs == 1); 1624 #endif 1625 hammer2_chain_drop(rchain); 1626 cluster->array[i] = NULL; 1627 hammer2_vfs_unmount_hmp2(mp, hmp); 1628 } 1629 cluster->focus = NULL; 1630 1631 #if REPORT_REFS_ERRORS 1632 if (pmp->iroot->refs != 1) 1633 kprintf("PMP->IROOT %p REFS WRONG %d\n", 1634 pmp->iroot, pmp->iroot->refs); 1635 #else 1636 KKASSERT(pmp->iroot->refs == 1); 1637 #endif 1638 /* ref for pmp->iroot */ 1639 hammer2_inode_drop(pmp->iroot); 1640 pmp->iroot = NULL; 1641 } 1642 1643 pmp->mp = NULL; 1644 mp->mnt_data = NULL; 1645 1646 kmalloc_destroy(&pmp->mmsg); 1647 kmalloc_destroy(&pmp->minode); 1648 1649 kfree(pmp, M_HAMMER2); 1650 error = 0; 1651 1652 failed: 1653 lockmgr(&hammer2_mntlk, LK_RELEASE); 1654 1655 return (error); 1656 } 1657 1658 static 1659 void 1660 hammer2_vfs_unmount_hmp1(struct mount *mp, hammer2_mount_t *hmp) 1661 { 1662 hammer2_mount_exlock(hmp); 1663 --hmp->pmp_count; 1664 1665 kprintf("hammer2_unmount hmp=%p pmpcnt=%d\n", hmp, hmp->pmp_count); 1666 1667 kdmsg_iocom_uninit(&hmp->iocom); /* XXX chain depend deadlck? */ 1668 1669 /* 1670 * Flush any left over chains. The voldata lock is only used 1671 * to synchronize against HAMMER2_CHAIN_MODIFIED_AUX. 1672 * 1673 * Flush twice to ensure that the freemap is completely 1674 * synchronized. If we only do it once the next mount's 1675 * recovery scan will have to do some fixups (which isn't 1676 * bad, but we don't want it to have to do it except when 1677 * recovering from a crash). 1678 */ 1679 hammer2_voldata_lock(hmp); 1680 if (((hmp->vchain.flags | hmp->fchain.flags) & 1681 HAMMER2_CHAIN_MODIFIED) || 1682 hmp->vchain.update_xhi > hmp->vchain.update_xlo || 1683 hmp->fchain.update_xhi > hmp->fchain.update_xlo) { 1684 hammer2_voldata_unlock(hmp); 1685 hammer2_vfs_sync(mp, MNT_WAIT); 1686 /*hammer2_vfs_sync(mp, MNT_WAIT);*/ 1687 } else { 1688 hammer2_voldata_unlock(hmp); 1689 } 1690 if (hmp->pmp_count == 0) { 1691 if (((hmp->vchain.flags | hmp->fchain.flags) & 1692 HAMMER2_CHAIN_MODIFIED) || 1693 hmp->vchain.update_xhi > hmp->vchain.update_xlo || 1694 hmp->fchain.update_xhi > hmp->fchain.update_xlo) { 1695 kprintf("hammer2_unmount: chains left over " 1696 "after final sync\n"); 1697 kprintf(" vchain %08x update_xlo/hi %08x/%08x\n", 1698 hmp->vchain.flags, 1699 hmp->vchain.update_xlo, 1700 hmp->vchain.update_xhi); 1701 kprintf(" fchain %08x update_xhi/hi %08x/%08x\n", 1702 hmp->fchain.flags, 1703 hmp->fchain.update_xlo, 1704 hmp->fchain.update_xhi); 1705 1706 if (hammer2_debug & 0x0010) 1707 Debugger("entered debugger"); 1708 } 1709 } 1710 } 1711 1712 static 1713 void 1714 hammer2_vfs_unmount_hmp2(struct mount *mp, hammer2_mount_t *hmp) 1715 { 1716 hammer2_pfsmount_t *spmp; 1717 struct vnode *devvp; 1718 int dumpcnt; 1719 int ronly = ((mp->mnt_flag & MNT_RDONLY) != 0); 1720 1721 /* 1722 * If no PFS's left drop the master hammer2_mount for the 1723 * device. 1724 */ 1725 if (hmp->pmp_count == 0) { 1726 /* 1727 * Clean up SPMP and the super-root inode 1728 */ 1729 spmp = hmp->spmp; 1730 if (spmp) { 1731 if (spmp->iroot) { 1732 hammer2_inode_drop(spmp->iroot); 1733 spmp->iroot = NULL; 1734 } 1735 hmp->spmp = NULL; 1736 kmalloc_destroy(&spmp->mmsg); 1737 kmalloc_destroy(&spmp->minode); 1738 kfree(spmp, M_HAMMER2); 1739 } 1740 1741 /* 1742 * Finish up with the device vnode 1743 */ 1744 if ((devvp = hmp->devvp) != NULL) { 1745 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1746 vinvalbuf(devvp, (ronly ? 0 : V_SAVE), 0, 0); 1747 hmp->devvp = NULL; 1748 VOP_CLOSE(devvp, (ronly ? FREAD : FREAD|FWRITE), NULL); 1749 vn_unlock(devvp); 1750 vrele(devvp); 1751 devvp = NULL; 1752 } 1753 1754 /* 1755 * Clear vchain/fchain flags that might prevent final cleanup 1756 * of these chains. 1757 */ 1758 if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) { 1759 atomic_clear_int(&hmp->vchain.flags, 1760 HAMMER2_CHAIN_MODIFIED); 1761 hammer2_chain_drop(&hmp->vchain); 1762 } 1763 if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_CREATE) { 1764 atomic_clear_int(&hmp->vchain.flags, 1765 HAMMER2_CHAIN_FLUSH_CREATE); 1766 hammer2_chain_drop(&hmp->vchain); 1767 } 1768 if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_DELETE) { 1769 atomic_clear_int(&hmp->vchain.flags, 1770 HAMMER2_CHAIN_FLUSH_DELETE); 1771 hammer2_chain_drop(&hmp->vchain); 1772 } 1773 1774 if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) { 1775 atomic_clear_int(&hmp->fchain.flags, 1776 HAMMER2_CHAIN_MODIFIED); 1777 hammer2_chain_drop(&hmp->fchain); 1778 } 1779 if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_CREATE) { 1780 atomic_clear_int(&hmp->fchain.flags, 1781 HAMMER2_CHAIN_FLUSH_CREATE); 1782 hammer2_chain_drop(&hmp->fchain); 1783 } 1784 if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_DELETE) { 1785 atomic_clear_int(&hmp->fchain.flags, 1786 HAMMER2_CHAIN_FLUSH_DELETE); 1787 hammer2_chain_drop(&hmp->fchain); 1788 } 1789 1790 /* 1791 * Final drop of embedded freemap root chain to 1792 * clean up fchain.core (fchain structure is not 1793 * flagged ALLOCATED so it is cleaned out and then 1794 * left to rot). 1795 */ 1796 hammer2_chain_drop(&hmp->fchain); 1797 1798 /* 1799 * Final drop of embedded volume root chain to clean 1800 * up vchain.core (vchain structure is not flagged 1801 * ALLOCATED so it is cleaned out and then left to 1802 * rot). 1803 */ 1804 dumpcnt = 50; 1805 hammer2_dump_chain(&hmp->vchain, 0, &dumpcnt, 'v'); 1806 dumpcnt = 50; 1807 hammer2_dump_chain(&hmp->fchain, 0, &dumpcnt, 'f'); 1808 hammer2_mount_unlock(hmp); 1809 hammer2_chain_drop(&hmp->vchain); 1810 1811 hammer2_io_cleanup(hmp, &hmp->iotree); 1812 if (hmp->iofree_count) { 1813 kprintf("io_cleanup: %d I/O's left hanging\n", 1814 hmp->iofree_count); 1815 } 1816 1817 TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry); 1818 kmalloc_destroy(&hmp->mchain); 1819 kfree(hmp, M_HAMMER2); 1820 } else { 1821 hammer2_mount_unlock(hmp); 1822 } 1823 } 1824 1825 static 1826 int 1827 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp, 1828 ino_t ino, struct vnode **vpp) 1829 { 1830 kprintf("hammer2_vget\n"); 1831 return (EOPNOTSUPP); 1832 } 1833 1834 static 1835 int 1836 hammer2_vfs_root(struct mount *mp, struct vnode **vpp) 1837 { 1838 hammer2_pfsmount_t *pmp; 1839 hammer2_cluster_t *cparent; 1840 int error; 1841 struct vnode *vp; 1842 1843 pmp = MPTOPMP(mp); 1844 if (pmp->iroot == NULL) { 1845 *vpp = NULL; 1846 error = EINVAL; 1847 } else { 1848 cparent = hammer2_inode_lock_sh(pmp->iroot); 1849 vp = hammer2_igetv(pmp->iroot, cparent, &error); 1850 hammer2_inode_unlock_sh(pmp->iroot, cparent); 1851 *vpp = vp; 1852 if (vp == NULL) 1853 kprintf("vnodefail\n"); 1854 } 1855 1856 return (error); 1857 } 1858 1859 /* 1860 * Filesystem status 1861 * 1862 * XXX incorporate ipdata->inode_quota and data_quota 1863 */ 1864 static 1865 int 1866 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred) 1867 { 1868 hammer2_pfsmount_t *pmp; 1869 hammer2_mount_t *hmp; 1870 1871 pmp = MPTOPMP(mp); 1872 KKASSERT(pmp->iroot->cluster.nchains >= 1); 1873 hmp = pmp->iroot->cluster.focus->hmp; /* XXX */ 1874 1875 mp->mnt_stat.f_files = pmp->inode_count; 1876 mp->mnt_stat.f_ffree = 0; 1877 mp->mnt_stat.f_blocks = hmp->voldata.allocator_size / HAMMER2_PBUFSIZE; 1878 mp->mnt_stat.f_bfree = hmp->voldata.allocator_free / HAMMER2_PBUFSIZE; 1879 mp->mnt_stat.f_bavail = mp->mnt_stat.f_bfree; 1880 1881 *sbp = mp->mnt_stat; 1882 return (0); 1883 } 1884 1885 static 1886 int 1887 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred) 1888 { 1889 hammer2_pfsmount_t *pmp; 1890 hammer2_mount_t *hmp; 1891 1892 pmp = MPTOPMP(mp); 1893 KKASSERT(pmp->iroot->cluster.nchains >= 1); 1894 hmp = pmp->iroot->cluster.focus->hmp; /* XXX */ 1895 1896 mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE; 1897 mp->mnt_vstat.f_files = pmp->inode_count; 1898 mp->mnt_vstat.f_ffree = 0; 1899 mp->mnt_vstat.f_blocks = hmp->voldata.allocator_size / HAMMER2_PBUFSIZE; 1900 mp->mnt_vstat.f_bfree = hmp->voldata.allocator_free / HAMMER2_PBUFSIZE; 1901 mp->mnt_vstat.f_bavail = mp->mnt_vstat.f_bfree; 1902 1903 *sbp = mp->mnt_vstat; 1904 return (0); 1905 } 1906 1907 /* 1908 * Mount-time recovery (RW mounts) 1909 * 1910 * Updates to the free block table are allowed to lag flushes by one 1911 * transaction. In case of a crash, then on a fresh mount we must do an 1912 * incremental scan of the last committed transaction id and make sure that 1913 * all related blocks have been marked allocated. 1914 * 1915 * The super-root topology and each PFS has its own transaction id domain, 1916 * so we must track PFS boundary transitions. 1917 */ 1918 struct hammer2_recovery_elm { 1919 TAILQ_ENTRY(hammer2_recovery_elm) entry; 1920 hammer2_chain_t *chain; 1921 hammer2_tid_t sync_tid; 1922 }; 1923 1924 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm); 1925 1926 struct hammer2_recovery_info { 1927 struct hammer2_recovery_list list; 1928 int depth; 1929 }; 1930 1931 static int hammer2_recovery_scan(hammer2_trans_t *trans, hammer2_mount_t *hmp, 1932 hammer2_chain_t *parent, 1933 struct hammer2_recovery_info *info, 1934 hammer2_tid_t sync_tid); 1935 1936 #define HAMMER2_RECOVERY_MAXDEPTH 10 1937 1938 static 1939 int 1940 hammer2_recovery(hammer2_mount_t *hmp) 1941 { 1942 hammer2_trans_t trans; 1943 struct hammer2_recovery_info info; 1944 struct hammer2_recovery_elm *elm; 1945 hammer2_chain_t *parent; 1946 hammer2_tid_t sync_tid; 1947 int error; 1948 int cumulative_error = 0; 1949 1950 hammer2_trans_init(&trans, hmp->spmp, 0); 1951 1952 sync_tid = 0; 1953 TAILQ_INIT(&info.list); 1954 info.depth = 0; 1955 parent = hammer2_chain_lookup_init(&hmp->vchain, 0); 1956 cumulative_error = hammer2_recovery_scan(&trans, hmp, parent, 1957 &info, sync_tid); 1958 hammer2_chain_lookup_done(parent); 1959 1960 while ((elm = TAILQ_FIRST(&info.list)) != NULL) { 1961 TAILQ_REMOVE(&info.list, elm, entry); 1962 parent = elm->chain; 1963 sync_tid = elm->sync_tid; 1964 kfree(elm, M_HAMMER2); 1965 1966 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS | 1967 HAMMER2_RESOLVE_NOREF); 1968 error = hammer2_recovery_scan(&trans, hmp, parent, 1969 &info, sync_tid); 1970 hammer2_chain_unlock(parent); 1971 if (error) 1972 cumulative_error = error; 1973 } 1974 hammer2_trans_done(&trans); 1975 1976 return cumulative_error; 1977 } 1978 1979 static 1980 int 1981 hammer2_recovery_scan(hammer2_trans_t *trans, hammer2_mount_t *hmp, 1982 hammer2_chain_t *parent, 1983 struct hammer2_recovery_info *info, 1984 hammer2_tid_t sync_tid) 1985 { 1986 hammer2_chain_t *chain; 1987 int cache_index; 1988 int cumulative_error = 0; 1989 int pfs_boundary = 0; 1990 int error; 1991 1992 /* 1993 * Adjust freemap to ensure that the block(s) are marked allocated. 1994 */ 1995 if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) { 1996 hammer2_freemap_adjust(trans, hmp, &parent->bref, 1997 HAMMER2_FREEMAP_DORECOVER); 1998 } 1999 2000 /* 2001 * Check type for recursive scan 2002 */ 2003 switch(parent->bref.type) { 2004 case HAMMER2_BREF_TYPE_VOLUME: 2005 /* data already instantiated */ 2006 break; 2007 case HAMMER2_BREF_TYPE_INODE: 2008 /* 2009 * Must instantiate data for DIRECTDATA test and also 2010 * for recursion. 2011 */ 2012 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS); 2013 if (parent->data->ipdata.op_flags & HAMMER2_OPFLAG_DIRECTDATA) { 2014 /* not applicable to recovery scan */ 2015 hammer2_chain_unlock(parent); 2016 return 0; 2017 } 2018 if ((parent->data->ipdata.op_flags & HAMMER2_OPFLAG_PFSROOT) && 2019 info->depth != 0) { 2020 pfs_boundary = 1; 2021 sync_tid = parent->bref.mirror_tid - 1; 2022 } 2023 hammer2_chain_unlock(parent); 2024 break; 2025 case HAMMER2_BREF_TYPE_INDIRECT: 2026 /* 2027 * Must instantiate data for recursion 2028 */ 2029 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS); 2030 hammer2_chain_unlock(parent); 2031 break; 2032 case HAMMER2_BREF_TYPE_DATA: 2033 case HAMMER2_BREF_TYPE_FREEMAP: 2034 case HAMMER2_BREF_TYPE_FREEMAP_NODE: 2035 case HAMMER2_BREF_TYPE_FREEMAP_LEAF: 2036 /* not applicable to recovery scan */ 2037 return 0; 2038 break; 2039 default: 2040 return EDOM; 2041 } 2042 2043 /* 2044 * Defer operation if depth limit reached or if we are crossing a 2045 * PFS boundary. 2046 */ 2047 if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH || pfs_boundary) { 2048 struct hammer2_recovery_elm *elm; 2049 2050 elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK); 2051 elm->chain = parent; 2052 elm->sync_tid = sync_tid; 2053 hammer2_chain_ref(parent); 2054 TAILQ_INSERT_TAIL(&info->list, elm, entry); 2055 /* unlocked by caller */ 2056 2057 return(0); 2058 } 2059 2060 2061 /* 2062 * Recursive scan of the last flushed transaction only. We are 2063 * doing this without pmp assignments so don't leave the chains 2064 * hanging around after we are done with them. 2065 */ 2066 cache_index = 0; 2067 chain = hammer2_chain_scan(parent, NULL, &cache_index, 2068 HAMMER2_LOOKUP_NODATA); 2069 while (chain) { 2070 atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE); 2071 if (chain->bref.mirror_tid >= sync_tid) { 2072 ++info->depth; 2073 error = hammer2_recovery_scan(trans, hmp, chain, 2074 info, sync_tid); 2075 --info->depth; 2076 if (error) 2077 cumulative_error = error; 2078 } 2079 chain = hammer2_chain_scan(parent, chain, &cache_index, 2080 HAMMER2_LOOKUP_NODATA); 2081 } 2082 2083 return cumulative_error; 2084 } 2085 2086 /* 2087 * Sync the entire filesystem; this is called from the filesystem syncer 2088 * process periodically and whenever a user calls sync(1) on the hammer 2089 * mountpoint. 2090 * 2091 * Currently is actually called from the syncer! \o/ 2092 * 2093 * This task will have to snapshot the state of the dirty inode chain. 2094 * From that, it will have to make sure all of the inodes on the dirty 2095 * chain have IO initiated. We make sure that io is initiated for the root 2096 * block. 2097 * 2098 * If waitfor is set, we wait for media to acknowledge the new rootblock. 2099 * 2100 * THINKS: side A vs side B, to have sync not stall all I/O? 2101 */ 2102 int 2103 hammer2_vfs_sync(struct mount *mp, int waitfor) 2104 { 2105 struct hammer2_sync_info info; 2106 hammer2_inode_t *iroot; 2107 hammer2_chain_t *chain; 2108 hammer2_chain_t *parent; 2109 hammer2_pfsmount_t *pmp; 2110 hammer2_mount_t *hmp; 2111 int flags; 2112 int error; 2113 int total_error; 2114 int force_fchain; 2115 int i; 2116 int j; 2117 2118 pmp = MPTOPMP(mp); 2119 iroot = pmp->iroot; 2120 KKASSERT(iroot); 2121 KKASSERT(iroot->pmp == pmp); 2122 2123 /* 2124 * We can't acquire locks on existing vnodes while in a transaction 2125 * without risking a deadlock. This assumes that vfsync() can be 2126 * called without the vnode locked (which it can in DragonFly). 2127 * Otherwise we'd have to implement a multi-pass or flag the lock 2128 * failures and retry. 2129 * 2130 * The reclamation code interlocks with the sync list's token 2131 * (by removing the vnode from the scan list) before unlocking 2132 * the inode, giving us time to ref the inode. 2133 */ 2134 /*flags = VMSC_GETVP;*/ 2135 flags = 0; 2136 if (waitfor & MNT_LAZY) 2137 flags |= VMSC_ONEPASS; 2138 2139 /* 2140 * Start our flush transaction. This does not return until all 2141 * concurrent transactions have completed and will prevent any 2142 * new transactions from running concurrently, except for the 2143 * buffer cache transactions. 2144 * 2145 * For efficiency do an async pass before making sure with a 2146 * synchronous pass on all related buffer cache buffers. It 2147 * should theoretically not be possible for any new file buffers 2148 * to be instantiated during this sequence. 2149 */ 2150 hammer2_trans_init(&info.trans, pmp, HAMMER2_TRANS_ISFLUSH | 2151 HAMMER2_TRANS_PREFLUSH); 2152 hammer2_run_unlinkq(&info.trans, pmp); 2153 2154 info.error = 0; 2155 info.waitfor = MNT_NOWAIT; 2156 vsyncscan(mp, flags | VMSC_NOWAIT, hammer2_sync_scan2, &info); 2157 info.waitfor = MNT_WAIT; 2158 vsyncscan(mp, flags, hammer2_sync_scan2, &info); 2159 2160 /* 2161 * Clear PREFLUSH. This prevents (or asserts on) any new logical 2162 * buffer cache flushes which occur during the flush. Device buffers 2163 * are not affected. 2164 */ 2165 2166 #if 0 2167 if (info.error == 0 && (waitfor & MNT_WAIT)) { 2168 info.waitfor = waitfor; 2169 vsyncscan(mp, flags, hammer2_sync_scan2, &info); 2170 2171 } 2172 #endif 2173 hammer2_bioq_sync(info.trans.pmp); 2174 atomic_clear_int(&info.trans.flags, HAMMER2_TRANS_PREFLUSH); 2175 2176 total_error = 0; 2177 2178 /* 2179 * Flush all storage elements making up the cluster 2180 * 2181 * We must also flush any deleted siblings because the super-root 2182 * flush won't do it for us. They all must be staged or the 2183 * super-root flush will not be able to update its block table 2184 * properly. 2185 * 2186 * XXX currently done serially instead of concurrently 2187 */ 2188 for (i = 0; iroot && i < iroot->cluster.nchains; ++i) { 2189 chain = iroot->cluster.array[i]; 2190 if (chain) { 2191 hammer2_chain_lock(chain, HAMMER2_RESOLVE_ALWAYS); 2192 hammer2_flush(&info.trans, &chain); 2193 hammer2_chain_unlock(chain); 2194 } 2195 if (chain) { 2196 hammer2_chain_t *nchain; 2197 chain = TAILQ_FIRST(&chain->core->ownerq); 2198 hammer2_chain_ref(chain); 2199 while (chain) { 2200 hammer2_chain_lock(chain, 2201 HAMMER2_RESOLVE_ALWAYS); 2202 hammer2_flush(&info.trans, &chain); 2203 hammer2_chain_unlock(chain); 2204 nchain = TAILQ_NEXT(chain, core_entry); 2205 if (nchain) 2206 hammer2_chain_ref(nchain); 2207 hammer2_chain_drop(chain); 2208 chain = nchain; 2209 } 2210 } 2211 } 2212 #if 0 2213 hammer2_trans_done(&info.trans); 2214 #endif 2215 2216 /* 2217 * Flush all volume roots to synchronize PFS flushes with the 2218 * storage media. Use a super-root transaction for each one. 2219 * 2220 * The flush code will detect super-root -> pfs-root chain 2221 * transitions using the last pfs-root flush. 2222 */ 2223 for (i = 0; iroot && i < iroot->cluster.nchains; ++i) { 2224 chain = iroot->cluster.array[i]; 2225 if (chain == NULL) 2226 continue; 2227 2228 hmp = chain->hmp; 2229 2230 /* 2231 * We only have to flush each hmp once 2232 */ 2233 for (j = i - 1; j >= 0; --j) { 2234 if (iroot->cluster.array[j] && 2235 iroot->cluster.array[j]->hmp == hmp) 2236 break; 2237 } 2238 if (j >= 0) 2239 continue; 2240 hammer2_trans_spmp(&info.trans, hmp->spmp); 2241 2242 /* 2243 * Force an update of the XID from the PFS root to the 2244 * topology root. We couldn't do this from the PFS 2245 * transaction because a SPMP transaction is needed. 2246 * This does not modify blocks, instead what it does is 2247 * allow the flush code to find the transition point and 2248 * then update on the way back up. 2249 */ 2250 parent = TAILQ_LAST(&chain->above->ownerq, h2_core_list); 2251 KKASSERT(chain->pmp != parent->pmp); 2252 hammer2_chain_setsubmod(&info.trans, parent); 2253 2254 /* 2255 * Media mounts have two 'roots', vchain for the topology 2256 * and fchain for the free block table. Flush both. 2257 * 2258 * Note that the topology and free block table are handled 2259 * independently, so the free block table can wind up being 2260 * ahead of the topology. We depend on the bulk free scan 2261 * code to deal with any loose ends. 2262 */ 2263 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS); 2264 hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS); 2265 if ((hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) || 2266 hmp->fchain.update_xhi > hmp->fchain.update_xlo) { 2267 /* 2268 * This will also modify vchain as a side effect, 2269 * mark vchain as modified now. 2270 */ 2271 hammer2_voldata_modify(hmp); 2272 chain = &hmp->fchain; 2273 hammer2_flush(&info.trans, &chain); 2274 KKASSERT(chain == &hmp->fchain); 2275 } 2276 hammer2_chain_unlock(&hmp->fchain); 2277 hammer2_chain_unlock(&hmp->vchain); 2278 2279 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS); 2280 if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) || 2281 hmp->vchain.update_xhi > hmp->vchain.update_xlo) { 2282 chain = &hmp->vchain; 2283 hammer2_flush(&info.trans, &chain); 2284 KKASSERT(chain == &hmp->vchain); 2285 force_fchain = 1; 2286 } else { 2287 force_fchain = 0; 2288 } 2289 hammer2_chain_unlock(&hmp->vchain); 2290 2291 #if 0 2292 hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS); 2293 if ((hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) || 2294 hmp->fchain.update_xhi > hmp->fchain.update_xlo || 2295 force_fchain) { 2296 /* this will also modify vchain as a side effect */ 2297 chain = &hmp->fchain; 2298 hammer2_flush(&info.trans, &chain); 2299 KKASSERT(chain == &hmp->fchain); 2300 } 2301 hammer2_chain_unlock(&hmp->fchain); 2302 #endif 2303 2304 error = 0; 2305 2306 /* 2307 * We can't safely flush the volume header until we have 2308 * flushed any device buffers which have built up. 2309 * 2310 * XXX this isn't being incremental 2311 */ 2312 vn_lock(hmp->devvp, LK_EXCLUSIVE | LK_RETRY); 2313 error = VOP_FSYNC(hmp->devvp, MNT_WAIT, 0); 2314 vn_unlock(hmp->devvp); 2315 2316 /* 2317 * The flush code sets CHAIN_VOLUMESYNC to indicate that the 2318 * volume header needs synchronization via hmp->volsync. 2319 * 2320 * XXX synchronize the flag & data with only this flush XXX 2321 */ 2322 if (error == 0 && 2323 (hmp->vchain.flags & HAMMER2_CHAIN_VOLUMESYNC)) { 2324 struct buf *bp; 2325 2326 /* 2327 * Synchronize the disk before flushing the volume 2328 * header. 2329 */ 2330 bp = getpbuf(NULL); 2331 bp->b_bio1.bio_offset = 0; 2332 bp->b_bufsize = 0; 2333 bp->b_bcount = 0; 2334 bp->b_cmd = BUF_CMD_FLUSH; 2335 bp->b_bio1.bio_done = biodone_sync; 2336 bp->b_bio1.bio_flags |= BIO_SYNC; 2337 vn_strategy(hmp->devvp, &bp->b_bio1); 2338 biowait(&bp->b_bio1, "h2vol"); 2339 relpbuf(bp, NULL); 2340 2341 /* 2342 * Then we can safely flush the version of the 2343 * volume header synchronized by the flush code. 2344 */ 2345 i = hmp->volhdrno + 1; 2346 if (i >= HAMMER2_NUM_VOLHDRS) 2347 i = 0; 2348 if (i * HAMMER2_ZONE_BYTES64 + HAMMER2_SEGSIZE > 2349 hmp->volsync.volu_size) { 2350 i = 0; 2351 } 2352 kprintf("sync volhdr %d %jd\n", 2353 i, (intmax_t)hmp->volsync.volu_size); 2354 bp = getblk(hmp->devvp, i * HAMMER2_ZONE_BYTES64, 2355 HAMMER2_PBUFSIZE, 0, 0); 2356 atomic_clear_int(&hmp->vchain.flags, 2357 HAMMER2_CHAIN_VOLUMESYNC); 2358 bcopy(&hmp->volsync, bp->b_data, HAMMER2_PBUFSIZE); 2359 bawrite(bp); 2360 hmp->volhdrno = i; 2361 } 2362 if (error) 2363 total_error = error; 2364 2365 #if 0 2366 hammer2_trans_done(&info.trans); 2367 #endif 2368 } 2369 hammer2_trans_done(&info.trans); 2370 2371 return (total_error); 2372 } 2373 2374 /* 2375 * Sync passes. 2376 */ 2377 static int 2378 hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data) 2379 { 2380 struct hammer2_sync_info *info = data; 2381 hammer2_inode_t *ip; 2382 int error; 2383 2384 /* 2385 * 2386 */ 2387 ip = VTOI(vp); 2388 if (ip == NULL) 2389 return(0); 2390 if (vp->v_type == VNON || vp->v_type == VBAD) { 2391 vclrisdirty(vp); 2392 return(0); 2393 } 2394 if ((ip->flags & HAMMER2_INODE_MODIFIED) == 0 && 2395 RB_EMPTY(&vp->v_rbdirty_tree)) { 2396 vclrisdirty(vp); 2397 return(0); 2398 } 2399 2400 /* 2401 * VOP_FSYNC will start a new transaction so replicate some code 2402 * here to do it inline (see hammer2_vop_fsync()). 2403 * 2404 * WARNING: The vfsync interacts with the buffer cache and might 2405 * block, we can't hold the inode lock at that time. 2406 * However, we MUST ref ip before blocking to ensure that 2407 * it isn't ripped out from under us (since we do not 2408 * hold a lock on the vnode). 2409 */ 2410 hammer2_inode_ref(ip); 2411 atomic_clear_int(&ip->flags, HAMMER2_INODE_MODIFIED); 2412 if (vp) 2413 vfsync(vp, MNT_NOWAIT, 1, NULL, NULL); 2414 2415 hammer2_inode_drop(ip); 2416 #if 1 2417 error = 0; 2418 if (error) 2419 info->error = error; 2420 #endif 2421 return(0); 2422 } 2423 2424 static 2425 int 2426 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp) 2427 { 2428 return (0); 2429 } 2430 2431 static 2432 int 2433 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp, 2434 struct fid *fhp, struct vnode **vpp) 2435 { 2436 return (0); 2437 } 2438 2439 static 2440 int 2441 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam, 2442 int *exflagsp, struct ucred **credanonp) 2443 { 2444 return (0); 2445 } 2446 2447 /* 2448 * Support code for hammer2_mount(). Read, verify, and install the volume 2449 * header into the HMP 2450 * 2451 * XXX read four volhdrs and use the one with the highest TID whos CRC 2452 * matches. 2453 * 2454 * XXX check iCRCs. 2455 * 2456 * XXX For filesystems w/ less than 4 volhdrs, make sure to not write to 2457 * nonexistant locations. 2458 * 2459 * XXX Record selected volhdr and ring updates to each of 4 volhdrs 2460 */ 2461 static 2462 int 2463 hammer2_install_volume_header(hammer2_mount_t *hmp) 2464 { 2465 hammer2_volume_data_t *vd; 2466 struct buf *bp; 2467 hammer2_crc32_t crc0, crc, bcrc0, bcrc; 2468 int error_reported; 2469 int error; 2470 int valid; 2471 int i; 2472 2473 error_reported = 0; 2474 error = 0; 2475 valid = 0; 2476 bp = NULL; 2477 2478 /* 2479 * There are up to 4 copies of the volume header (syncs iterate 2480 * between them so there is no single master). We don't trust the 2481 * volu_size field so we don't know precisely how large the filesystem 2482 * is, so depend on the OS to return an error if we go beyond the 2483 * block device's EOF. 2484 */ 2485 for (i = 0; i < HAMMER2_NUM_VOLHDRS; i++) { 2486 error = bread(hmp->devvp, i * HAMMER2_ZONE_BYTES64, 2487 HAMMER2_VOLUME_BYTES, &bp); 2488 if (error) { 2489 brelse(bp); 2490 bp = NULL; 2491 continue; 2492 } 2493 2494 vd = (struct hammer2_volume_data *) bp->b_data; 2495 if ((vd->magic != HAMMER2_VOLUME_ID_HBO) && 2496 (vd->magic != HAMMER2_VOLUME_ID_ABO)) { 2497 brelse(bp); 2498 bp = NULL; 2499 continue; 2500 } 2501 2502 if (vd->magic == HAMMER2_VOLUME_ID_ABO) { 2503 /* XXX: Reversed-endianness filesystem */ 2504 kprintf("hammer2: reverse-endian filesystem detected"); 2505 brelse(bp); 2506 bp = NULL; 2507 continue; 2508 } 2509 2510 crc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT0]; 2511 crc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC0_OFF, 2512 HAMMER2_VOLUME_ICRC0_SIZE); 2513 bcrc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT1]; 2514 bcrc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC1_OFF, 2515 HAMMER2_VOLUME_ICRC1_SIZE); 2516 if ((crc0 != crc) || (bcrc0 != bcrc)) { 2517 kprintf("hammer2 volume header crc " 2518 "mismatch copy #%d %08x/%08x\n", 2519 i, crc0, crc); 2520 error_reported = 1; 2521 brelse(bp); 2522 bp = NULL; 2523 continue; 2524 } 2525 if (valid == 0 || hmp->voldata.mirror_tid < vd->mirror_tid) { 2526 valid = 1; 2527 hmp->voldata = *vd; 2528 hmp->volhdrno = i; 2529 } 2530 brelse(bp); 2531 bp = NULL; 2532 } 2533 if (valid) { 2534 hmp->volsync = hmp->voldata; 2535 error = 0; 2536 if (error_reported || bootverbose || 1) { /* 1/DEBUG */ 2537 kprintf("hammer2: using volume header #%d\n", 2538 hmp->volhdrno); 2539 } 2540 } else { 2541 error = EINVAL; 2542 kprintf("hammer2: no valid volume headers found!\n"); 2543 } 2544 return (error); 2545 } 2546 2547 /* 2548 * Reconnect using the passed file pointer. The caller must ref the 2549 * fp for us. 2550 */ 2551 void 2552 hammer2_cluster_reconnect(hammer2_mount_t *hmp, struct file *fp) 2553 { 2554 size_t name_len; 2555 const char *name = "disk-volume"; 2556 2557 /* 2558 * Closes old comm descriptor, kills threads, cleans up 2559 * states, then installs the new descriptor and creates 2560 * new threads. 2561 */ 2562 kdmsg_iocom_reconnect(&hmp->iocom, fp, "hammer2"); 2563 2564 /* 2565 * Setup LNK_CONN fields for autoinitiated state machine. We 2566 * will use SPANs to advertise multiple PFSs so only pass the 2567 * fsid and HAMMER2_PFSTYPE_SUPROOT for the AUTOCONN. 2568 * 2569 * We are not initiating a LNK_SPAN so we do not have to set-up 2570 * iocom.auto_lnk_span. 2571 */ 2572 bzero(&hmp->iocom.auto_lnk_conn.pfs_clid, 2573 sizeof(hmp->iocom.auto_lnk_conn.pfs_clid)); 2574 hmp->iocom.auto_lnk_conn.pfs_fsid = hmp->voldata.fsid; 2575 hmp->iocom.auto_lnk_conn.pfs_type = HAMMER2_PFSTYPE_SUPROOT; 2576 hmp->iocom.auto_lnk_conn.proto_version = DMSG_SPAN_PROTO_1; 2577 #if 0 2578 hmp->iocom.auto_lnk_conn.peer_type = hmp->voldata.peer_type; 2579 #endif 2580 hmp->iocom.auto_lnk_conn.peer_type = DMSG_PEER_HAMMER2; 2581 2582 /* 2583 * Filter adjustment. Clients do not need visibility into other 2584 * clients (otherwise millions of clients would present a serious 2585 * problem). The fs_label also serves to restrict the namespace. 2586 */ 2587 hmp->iocom.auto_lnk_conn.peer_mask = 1LLU << DMSG_PEER_HAMMER2; 2588 hmp->iocom.auto_lnk_conn.pfs_mask = (uint64_t)-1; 2589 2590 #if 0 2591 switch (ipdata->pfs_type) { 2592 case DMSG_PFSTYPE_CLIENT: 2593 hmp->iocom.auto_lnk_conn.peer_mask &= 2594 ~(1LLU << DMSG_PFSTYPE_CLIENT); 2595 break; 2596 default: 2597 break; 2598 } 2599 #endif 2600 2601 name_len = strlen(name); 2602 if (name_len >= sizeof(hmp->iocom.auto_lnk_conn.fs_label)) 2603 name_len = sizeof(hmp->iocom.auto_lnk_conn.fs_label) - 1; 2604 bcopy(name, hmp->iocom.auto_lnk_conn.fs_label, name_len); 2605 hmp->iocom.auto_lnk_conn.fs_label[name_len] = 0; 2606 2607 kdmsg_iocom_autoinitiate(&hmp->iocom, hammer2_autodmsg); 2608 } 2609 2610 static int 2611 hammer2_rcvdmsg(kdmsg_msg_t *msg) 2612 { 2613 kprintf("RCVMSG %08x\n", msg->tcmd); 2614 2615 switch(msg->tcmd) { 2616 case DMSG_DBG_SHELL: 2617 /* 2618 * (non-transaction) 2619 * Execute shell command (not supported atm) 2620 */ 2621 kdmsg_msg_result(msg, DMSG_ERR_NOSUPP); 2622 break; 2623 case DMSG_DBG_SHELL | DMSGF_REPLY: 2624 /* 2625 * (non-transaction) 2626 */ 2627 if (msg->aux_data) { 2628 msg->aux_data[msg->aux_size - 1] = 0; 2629 kprintf("HAMMER2 DBG: %s\n", msg->aux_data); 2630 } 2631 break; 2632 default: 2633 /* 2634 * Unsupported message received. We only need to 2635 * reply if it's a transaction in order to close our end. 2636 * Ignore any one-way messages or any further messages 2637 * associated with the transaction. 2638 * 2639 * NOTE: This case also includes DMSG_LNK_ERROR messages 2640 * which might be one-way, replying to those would 2641 * cause an infinite ping-pong. 2642 */ 2643 if (msg->any.head.cmd & DMSGF_CREATE) 2644 kdmsg_msg_reply(msg, DMSG_ERR_NOSUPP); 2645 break; 2646 } 2647 return(0); 2648 } 2649 2650 /* 2651 * This function is called after KDMSG has automatically handled processing 2652 * of a LNK layer message (typically CONN, SPAN, or CIRC). 2653 * 2654 * We tag off the LNK_CONN to trigger our LNK_VOLCONF messages which 2655 * advertises all available hammer2 super-root volumes. 2656 */ 2657 static void 2658 hammer2_autodmsg(kdmsg_msg_t *msg) 2659 { 2660 hammer2_mount_t *hmp = msg->iocom->handle; 2661 int copyid; 2662 2663 kprintf("RCAMSG %08x\n", msg->tcmd); 2664 2665 switch(msg->tcmd) { 2666 case DMSG_LNK_CONN | DMSGF_CREATE | DMSGF_REPLY: 2667 case DMSG_LNK_CONN | DMSGF_CREATE | DMSGF_DELETE | DMSGF_REPLY: 2668 if (msg->any.head.cmd & DMSGF_CREATE) { 2669 kprintf("HAMMER2: VOLDATA DUMP\n"); 2670 2671 /* 2672 * Dump the configuration stored in the volume header. 2673 * This will typically be import/export access rights, 2674 * master encryption keys (encrypted), etc. 2675 */ 2676 hammer2_voldata_lock(hmp); 2677 copyid = 0; 2678 while (copyid < HAMMER2_COPYID_COUNT) { 2679 if (hmp->voldata.copyinfo[copyid].copyid) 2680 hammer2_volconf_update(hmp, copyid); 2681 ++copyid; 2682 } 2683 hammer2_voldata_unlock(hmp); 2684 2685 kprintf("HAMMER2: INITIATE SPANs\n"); 2686 hammer2_update_spans(hmp); 2687 } 2688 if ((msg->any.head.cmd & DMSGF_DELETE) && 2689 msg->state && (msg->state->txcmd & DMSGF_DELETE) == 0) { 2690 kprintf("HAMMER2: CONN WAS TERMINATED\n"); 2691 } 2692 break; 2693 default: 2694 break; 2695 } 2696 } 2697 2698 /* 2699 * Update LNK_SPAN state 2700 */ 2701 void 2702 hammer2_update_spans(hammer2_mount_t *hmp) 2703 { 2704 const hammer2_inode_data_t *ipdata; 2705 hammer2_cluster_t *cparent; 2706 hammer2_cluster_t *cluster; 2707 hammer2_pfsmount_t *spmp; 2708 hammer2_key_t key_next; 2709 kdmsg_msg_t *rmsg; 2710 size_t name_len; 2711 int ddflag; 2712 2713 /* 2714 * Lookup mount point under the media-localized super-root. 2715 * 2716 * cluster->pmp will incorrectly point to spmp and must be fixed 2717 * up later on. 2718 */ 2719 spmp = hmp->spmp; 2720 cparent = hammer2_inode_lock_ex(spmp->iroot); 2721 cluster = hammer2_cluster_lookup(cparent, &key_next, 2722 HAMMER2_KEY_MIN, 2723 HAMMER2_KEY_MAX, 2724 0, &ddflag); 2725 while (cluster) { 2726 if (hammer2_cluster_type(cluster) != HAMMER2_BREF_TYPE_INODE) 2727 continue; 2728 ipdata = &hammer2_cluster_data(cluster)->ipdata; 2729 kprintf("UPDATE SPANS: %s\n", ipdata->filename); 2730 2731 rmsg = kdmsg_msg_alloc(&hmp->iocom, NULL, 2732 DMSG_LNK_SPAN | DMSGF_CREATE, 2733 hammer2_lnk_span_reply, NULL); 2734 rmsg->any.lnk_span.pfs_clid = ipdata->pfs_clid; 2735 rmsg->any.lnk_span.pfs_fsid = ipdata->pfs_fsid; 2736 rmsg->any.lnk_span.pfs_type = ipdata->pfs_type; 2737 rmsg->any.lnk_span.peer_type = DMSG_PEER_HAMMER2; 2738 rmsg->any.lnk_span.proto_version = DMSG_SPAN_PROTO_1; 2739 name_len = ipdata->name_len; 2740 if (name_len >= sizeof(rmsg->any.lnk_span.fs_label)) 2741 name_len = sizeof(rmsg->any.lnk_span.fs_label) - 1; 2742 bcopy(ipdata->filename, rmsg->any.lnk_span.fs_label, name_len); 2743 2744 kdmsg_msg_write(rmsg); 2745 2746 cluster = hammer2_cluster_next(cparent, cluster, 2747 &key_next, 2748 key_next, 2749 HAMMER2_KEY_MAX, 2750 0); 2751 } 2752 hammer2_inode_unlock_ex(spmp->iroot, cparent); 2753 } 2754 2755 static 2756 int 2757 hammer2_lnk_span_reply(kdmsg_state_t *state, kdmsg_msg_t *msg) 2758 { 2759 if ((state->txcmd & DMSGF_DELETE) == 0 && 2760 (msg->any.head.cmd & DMSGF_DELETE)) { 2761 kdmsg_msg_reply(msg, 0); 2762 } 2763 return 0; 2764 } 2765 2766 /* 2767 * Volume configuration updates are passed onto the userland service 2768 * daemon via the open LNK_CONN transaction. 2769 */ 2770 void 2771 hammer2_volconf_update(hammer2_mount_t *hmp, int index) 2772 { 2773 kdmsg_msg_t *msg; 2774 2775 /* XXX interlock against connection state termination */ 2776 kprintf("volconf update %p\n", hmp->iocom.conn_state); 2777 if (hmp->iocom.conn_state) { 2778 kprintf("TRANSMIT VOLCONF VIA OPEN CONN TRANSACTION\n"); 2779 msg = kdmsg_msg_alloc_state(hmp->iocom.conn_state, 2780 DMSG_LNK_HAMMER2_VOLCONF, 2781 NULL, NULL); 2782 H2_LNK_VOLCONF(msg)->copy = hmp->voldata.copyinfo[index]; 2783 H2_LNK_VOLCONF(msg)->mediaid = hmp->voldata.fsid; 2784 H2_LNK_VOLCONF(msg)->index = index; 2785 kdmsg_msg_write(msg); 2786 } 2787 } 2788 2789 /* 2790 * This handles hysteresis on regular file flushes. Because the BIOs are 2791 * routed to a thread it is possible for an excessive number to build up 2792 * and cause long front-end stalls long before the runningbuffspace limit 2793 * is hit, so we implement hammer2_flush_pipe to control the 2794 * hysteresis. 2795 * 2796 * This is a particular problem when compression is used. 2797 */ 2798 void 2799 hammer2_lwinprog_ref(hammer2_pfsmount_t *pmp) 2800 { 2801 atomic_add_int(&pmp->count_lwinprog, 1); 2802 } 2803 2804 void 2805 hammer2_lwinprog_drop(hammer2_pfsmount_t *pmp) 2806 { 2807 int lwinprog; 2808 2809 lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1); 2810 if ((lwinprog & HAMMER2_LWINPROG_WAITING) && 2811 (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) { 2812 atomic_clear_int(&pmp->count_lwinprog, 2813 HAMMER2_LWINPROG_WAITING); 2814 wakeup(&pmp->count_lwinprog); 2815 } 2816 } 2817 2818 void 2819 hammer2_lwinprog_wait(hammer2_pfsmount_t *pmp) 2820 { 2821 int lwinprog; 2822 2823 for (;;) { 2824 lwinprog = pmp->count_lwinprog; 2825 cpu_ccfence(); 2826 if ((lwinprog & HAMMER2_LWINPROG_MASK) < hammer2_flush_pipe) 2827 break; 2828 tsleep_interlock(&pmp->count_lwinprog, 0); 2829 atomic_set_int(&pmp->count_lwinprog, HAMMER2_LWINPROG_WAITING); 2830 lwinprog = pmp->count_lwinprog; 2831 if ((lwinprog & HAMMER2_LWINPROG_MASK) < hammer2_flush_pipe) 2832 break; 2833 tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz); 2834 } 2835 } 2836 2837 /* 2838 * Manage excessive memory resource use for chain and related 2839 * structures. 2840 */ 2841 void 2842 hammer2_pfs_memory_wait(hammer2_pfsmount_t *pmp) 2843 { 2844 long waiting; 2845 long count; 2846 long limit; 2847 #if 0 2848 static int zzticks; 2849 #endif 2850 2851 /* 2852 * Atomic check condition and wait. Also do an early speedup of 2853 * the syncer to try to avoid hitting the wait. 2854 */ 2855 for (;;) { 2856 waiting = pmp->inmem_dirty_chains; 2857 cpu_ccfence(); 2858 count = waiting & HAMMER2_DIRTYCHAIN_MASK; 2859 2860 limit = pmp->mp->mnt_nvnodelistsize / 10; 2861 if (limit < hammer2_limit_dirty_chains) 2862 limit = hammer2_limit_dirty_chains; 2863 if (limit < 1000) 2864 limit = 1000; 2865 2866 #if 0 2867 if ((int)(ticks - zzticks) > hz) { 2868 zzticks = ticks; 2869 kprintf("count %ld %ld\n", count, limit); 2870 } 2871 #endif 2872 2873 /* 2874 * Block if there are too many dirty chains present, wait 2875 * for the flush to clean some out. 2876 */ 2877 if (count > limit) { 2878 tsleep_interlock(&pmp->inmem_dirty_chains, 0); 2879 if (atomic_cmpset_long(&pmp->inmem_dirty_chains, 2880 waiting, 2881 waiting | HAMMER2_DIRTYCHAIN_WAITING)) { 2882 speedup_syncer(pmp->mp); 2883 tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED, 2884 "chnmem", hz); 2885 } 2886 continue; /* loop on success or fail */ 2887 } 2888 2889 /* 2890 * Try to start an early flush before we are forced to block. 2891 */ 2892 if (count > limit * 7 / 10) 2893 speedup_syncer(pmp->mp); 2894 break; 2895 } 2896 } 2897 2898 void 2899 hammer2_pfs_memory_inc(hammer2_pfsmount_t *pmp) 2900 { 2901 if (pmp) 2902 atomic_add_long(&pmp->inmem_dirty_chains, 1); 2903 } 2904 2905 void 2906 hammer2_pfs_memory_wakeup(hammer2_pfsmount_t *pmp) 2907 { 2908 long waiting; 2909 2910 if (pmp == NULL) 2911 return; 2912 2913 for (;;) { 2914 waiting = pmp->inmem_dirty_chains; 2915 cpu_ccfence(); 2916 if (atomic_cmpset_long(&pmp->inmem_dirty_chains, 2917 waiting, 2918 (waiting - 1) & 2919 ~HAMMER2_DIRTYCHAIN_WAITING)) { 2920 break; 2921 } 2922 } 2923 2924 if (waiting & HAMMER2_DIRTYCHAIN_WAITING) 2925 wakeup(&pmp->inmem_dirty_chains); 2926 } 2927 2928 /* 2929 * Debugging 2930 */ 2931 void 2932 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int *countp, char pfx) 2933 { 2934 hammer2_chain_t *scan; 2935 hammer2_chain_t *first_parent; 2936 2937 --*countp; 2938 if (*countp == 0) { 2939 kprintf("%*.*s...\n", tab, tab, ""); 2940 return; 2941 } 2942 if (*countp < 0) 2943 return; 2944 first_parent = chain->core ? TAILQ_FIRST(&chain->core->ownerq) : NULL; 2945 kprintf("%*.*s%c-chain %p.%d %016jx/%d mir=%016jx\n", 2946 tab, tab, "", pfx, 2947 chain, chain->bref.type, 2948 chain->bref.key, chain->bref.keybits, 2949 chain->bref.mirror_tid); 2950 2951 kprintf("%*.*s [%08x] (%s) mod=%08x del=%08x " 2952 "lo=%08x hi=%08x refs=%d\n", 2953 tab, tab, "", 2954 chain->flags, 2955 ((chain->bref.type == HAMMER2_BREF_TYPE_INODE && 2956 chain->data) ? (char *)chain->data->ipdata.filename : "?"), 2957 chain->modify_xid, 2958 chain->delete_xid, 2959 chain->update_xlo, 2960 chain->update_xhi, 2961 chain->refs); 2962 2963 kprintf("%*.*s core %p [%08x]", 2964 tab, tab, "", 2965 chain->core, (chain->core ? chain->core->flags : 0)); 2966 2967 if (first_parent) 2968 kprintf("\n%*.*s fp=%p np=%p [fpflags %08x fprefs %d", 2969 tab, tab, "", 2970 first_parent, 2971 (first_parent ? TAILQ_NEXT(first_parent, core_entry) : 2972 NULL), 2973 first_parent->flags, 2974 first_parent->refs); 2975 if (chain->core == NULL || RB_EMPTY(&chain->core->rbtree)) 2976 kprintf("\n"); 2977 else 2978 kprintf(" {\n"); 2979 if (chain->core) { 2980 RB_FOREACH(scan, hammer2_chain_tree, &chain->core->rbtree) 2981 hammer2_dump_chain(scan, tab + 4, countp, 'a'); 2982 RB_FOREACH(scan, hammer2_chain_tree, &chain->core->dbtree) 2983 hammer2_dump_chain(scan, tab + 4, countp, 'r'); 2984 TAILQ_FOREACH(scan, &chain->core->dbq, db_entry) 2985 hammer2_dump_chain(scan, tab + 4, countp, 'd'); 2986 } 2987 if (chain->core && !RB_EMPTY(&chain->core->rbtree)) { 2988 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data) 2989 kprintf("%*.*s}(%s)\n", tab, tab, "", 2990 chain->data->ipdata.filename); 2991 else 2992 kprintf("%*.*s}\n", tab, tab, ""); 2993 } 2994 } 2995