1 /* 2 * Copyright (c) 2011-2018 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression) 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * 3. Neither the name of The DragonFly Project nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific, prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/nlookup.h> 39 #include <sys/vnode.h> 40 #include <sys/mount.h> 41 #include <sys/fcntl.h> 42 #include <sys/buf.h> 43 #include <sys/uuid.h> 44 #include <sys/vfsops.h> 45 #include <sys/sysctl.h> 46 #include <sys/socket.h> 47 #include <sys/objcache.h> 48 49 #include <sys/proc.h> 50 #include <sys/namei.h> 51 #include <sys/mountctl.h> 52 #include <sys/dirent.h> 53 #include <sys/uio.h> 54 55 #include <sys/mutex.h> 56 #include <sys/mutex2.h> 57 58 #include "hammer2.h" 59 #include "hammer2_disk.h" 60 #include "hammer2_mount.h" 61 #include "hammer2_lz4.h" 62 63 #include "zlib/hammer2_zlib.h" 64 65 #define REPORT_REFS_ERRORS 1 /* XXX remove me */ 66 67 MALLOC_DEFINE(M_OBJCACHE, "objcache", "Object Cache"); 68 69 struct hammer2_sync_info { 70 int error; 71 int waitfor; 72 int pass; 73 }; 74 75 TAILQ_HEAD(hammer2_mntlist, hammer2_dev); 76 static struct hammer2_mntlist hammer2_mntlist; 77 78 struct hammer2_pfslist hammer2_pfslist; 79 struct hammer2_pfslist hammer2_spmplist; 80 struct lock hammer2_mntlk; 81 82 int hammer2_supported_version = HAMMER2_VOL_VERSION_DEFAULT; 83 int hammer2_debug; 84 int hammer2_cluster_meta_read = 1; /* physical read-ahead */ 85 int hammer2_cluster_data_read = 4; /* physical read-ahead */ 86 int hammer2_dedup_enable = 1; 87 int hammer2_always_compress = 0; /* always try to compress */ 88 int hammer2_inval_enable = 0; 89 int hammer2_flush_pipe = 100; 90 int hammer2_dio_count; 91 int hammer2_dio_limit = 256; 92 int hammer2_bulkfree_tps = 5000; 93 long hammer2_chain_allocs; 94 long hammer2_chain_frees; 95 long hammer2_limit_dirty_chains; 96 long hammer2_count_modified_chains; 97 long hammer2_iod_invals; 98 long hammer2_iod_file_read; 99 long hammer2_iod_meta_read; 100 long hammer2_iod_indr_read; 101 long hammer2_iod_fmap_read; 102 long hammer2_iod_volu_read; 103 long hammer2_iod_file_write; 104 long hammer2_iod_file_wembed; 105 long hammer2_iod_file_wzero; 106 long hammer2_iod_file_wdedup; 107 long hammer2_iod_meta_write; 108 long hammer2_iod_indr_write; 109 long hammer2_iod_fmap_write; 110 long hammer2_iod_volu_write; 111 112 MALLOC_DECLARE(M_HAMMER2_CBUFFER); 113 MALLOC_DEFINE(M_HAMMER2_CBUFFER, "HAMMER2-compbuffer", 114 "Buffer used for compression."); 115 116 MALLOC_DECLARE(M_HAMMER2_DEBUFFER); 117 MALLOC_DEFINE(M_HAMMER2_DEBUFFER, "HAMMER2-decompbuffer", 118 "Buffer used for decompression."); 119 120 SYSCTL_NODE(_vfs, OID_AUTO, hammer2, CTLFLAG_RW, 0, "HAMMER2 filesystem"); 121 122 SYSCTL_INT(_vfs_hammer2, OID_AUTO, supported_version, CTLFLAG_RD, 123 &hammer2_supported_version, 0, ""); 124 SYSCTL_INT(_vfs_hammer2, OID_AUTO, debug, CTLFLAG_RW, 125 &hammer2_debug, 0, ""); 126 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_meta_read, CTLFLAG_RW, 127 &hammer2_cluster_meta_read, 0, ""); 128 SYSCTL_INT(_vfs_hammer2, OID_AUTO, cluster_data_read, CTLFLAG_RW, 129 &hammer2_cluster_data_read, 0, ""); 130 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dedup_enable, CTLFLAG_RW, 131 &hammer2_dedup_enable, 0, ""); 132 SYSCTL_INT(_vfs_hammer2, OID_AUTO, always_compress, CTLFLAG_RW, 133 &hammer2_always_compress, 0, ""); 134 SYSCTL_INT(_vfs_hammer2, OID_AUTO, inval_enable, CTLFLAG_RW, 135 &hammer2_inval_enable, 0, ""); 136 SYSCTL_INT(_vfs_hammer2, OID_AUTO, flush_pipe, CTLFLAG_RW, 137 &hammer2_flush_pipe, 0, ""); 138 SYSCTL_INT(_vfs_hammer2, OID_AUTO, bulkfree_tps, CTLFLAG_RW, 139 &hammer2_bulkfree_tps, 0, ""); 140 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_allocs, CTLFLAG_RW, 141 &hammer2_chain_allocs, 0, ""); 142 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, chain_frees, CTLFLAG_RW, 143 &hammer2_chain_frees, 0, ""); 144 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, limit_dirty_chains, CTLFLAG_RW, 145 &hammer2_limit_dirty_chains, 0, ""); 146 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, count_modified_chains, CTLFLAG_RW, 147 &hammer2_count_modified_chains, 0, ""); 148 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_count, CTLFLAG_RD, 149 &hammer2_dio_count, 0, ""); 150 SYSCTL_INT(_vfs_hammer2, OID_AUTO, dio_limit, CTLFLAG_RW, 151 &hammer2_dio_limit, 0, ""); 152 153 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_invals, CTLFLAG_RW, 154 &hammer2_iod_invals, 0, ""); 155 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_read, CTLFLAG_RW, 156 &hammer2_iod_file_read, 0, ""); 157 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_read, CTLFLAG_RW, 158 &hammer2_iod_meta_read, 0, ""); 159 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_read, CTLFLAG_RW, 160 &hammer2_iod_indr_read, 0, ""); 161 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_read, CTLFLAG_RW, 162 &hammer2_iod_fmap_read, 0, ""); 163 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_read, CTLFLAG_RW, 164 &hammer2_iod_volu_read, 0, ""); 165 166 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_write, CTLFLAG_RW, 167 &hammer2_iod_file_write, 0, ""); 168 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wembed, CTLFLAG_RW, 169 &hammer2_iod_file_wembed, 0, ""); 170 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wzero, CTLFLAG_RW, 171 &hammer2_iod_file_wzero, 0, ""); 172 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_file_wdedup, CTLFLAG_RW, 173 &hammer2_iod_file_wdedup, 0, ""); 174 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_meta_write, CTLFLAG_RW, 175 &hammer2_iod_meta_write, 0, ""); 176 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_indr_write, CTLFLAG_RW, 177 &hammer2_iod_indr_write, 0, ""); 178 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_fmap_write, CTLFLAG_RW, 179 &hammer2_iod_fmap_write, 0, ""); 180 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, iod_volu_write, CTLFLAG_RW, 181 &hammer2_iod_volu_write, 0, ""); 182 183 long hammer2_process_icrc32; 184 long hammer2_process_xxhash64; 185 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_icrc32, CTLFLAG_RW, 186 &hammer2_process_icrc32, 0, ""); 187 SYSCTL_LONG(_vfs_hammer2, OID_AUTO, process_xxhash64, CTLFLAG_RW, 188 &hammer2_process_xxhash64, 0, ""); 189 190 static int hammer2_vfs_init(struct vfsconf *conf); 191 static int hammer2_vfs_uninit(struct vfsconf *vfsp); 192 static int hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data, 193 struct ucred *cred); 194 static int hammer2_remount(hammer2_dev_t *, struct mount *, char *, 195 struct vnode *, struct ucred *); 196 static int hammer2_recovery(hammer2_dev_t *hmp); 197 static int hammer2_vfs_unmount(struct mount *mp, int mntflags); 198 static int hammer2_vfs_root(struct mount *mp, struct vnode **vpp); 199 static int hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, 200 struct ucred *cred); 201 static int hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, 202 struct ucred *cred); 203 static int hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp, 204 struct fid *fhp, struct vnode **vpp); 205 static int hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp); 206 static int hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam, 207 int *exflagsp, struct ucred **credanonp); 208 209 static int hammer2_install_volume_header(hammer2_dev_t *hmp); 210 static int hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data); 211 212 static void hammer2_update_pmps(hammer2_dev_t *hmp); 213 214 static void hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp); 215 static void hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp, 216 hammer2_dev_t *hmp); 217 static int hammer2_fixup_pfses(hammer2_dev_t *hmp); 218 219 /* 220 * HAMMER2 vfs operations. 221 */ 222 static struct vfsops hammer2_vfsops = { 223 .vfs_init = hammer2_vfs_init, 224 .vfs_uninit = hammer2_vfs_uninit, 225 .vfs_sync = hammer2_vfs_sync, 226 .vfs_mount = hammer2_vfs_mount, 227 .vfs_unmount = hammer2_vfs_unmount, 228 .vfs_root = hammer2_vfs_root, 229 .vfs_statfs = hammer2_vfs_statfs, 230 .vfs_statvfs = hammer2_vfs_statvfs, 231 .vfs_vget = hammer2_vfs_vget, 232 .vfs_vptofh = hammer2_vfs_vptofh, 233 .vfs_fhtovp = hammer2_vfs_fhtovp, 234 .vfs_checkexp = hammer2_vfs_checkexp 235 }; 236 237 MALLOC_DEFINE(M_HAMMER2, "HAMMER2-mount", ""); 238 239 VFS_SET(hammer2_vfsops, hammer2, VFCF_MPSAFE); 240 MODULE_VERSION(hammer2, 1); 241 242 static 243 int 244 hammer2_vfs_init(struct vfsconf *conf) 245 { 246 static struct objcache_malloc_args margs_read; 247 static struct objcache_malloc_args margs_write; 248 static struct objcache_malloc_args margs_vop; 249 250 int error; 251 252 error = 0; 253 254 /* 255 * A large DIO cache is needed to retain dedup enablement masks. 256 * The bulkfree code clears related masks as part of the disk block 257 * recycling algorithm, preventing it from being used for a later 258 * dedup. 259 * 260 * NOTE: A large buffer cache can actually interfere with dedup 261 * operation because we dedup based on media physical buffers 262 * and not logical buffers. Try to make the DIO case large 263 * enough to avoid this problem, but also cap it. 264 */ 265 hammer2_dio_limit = nbuf * 2; 266 if (hammer2_dio_limit > 100000) 267 hammer2_dio_limit = 100000; 268 269 if (HAMMER2_BLOCKREF_BYTES != sizeof(struct hammer2_blockref)) 270 error = EINVAL; 271 if (HAMMER2_INODE_BYTES != sizeof(struct hammer2_inode_data)) 272 error = EINVAL; 273 if (HAMMER2_VOLUME_BYTES != sizeof(struct hammer2_volume_data)) 274 error = EINVAL; 275 276 if (error) 277 kprintf("HAMMER2 structure size mismatch; cannot continue.\n"); 278 279 margs_read.objsize = 65536; 280 margs_read.mtype = M_HAMMER2_DEBUFFER; 281 282 margs_write.objsize = 32768; 283 margs_write.mtype = M_HAMMER2_CBUFFER; 284 285 margs_vop.objsize = sizeof(hammer2_xop_t); 286 margs_vop.mtype = M_HAMMER2; 287 288 /* 289 * Note thaht for the XOPS cache we want backing store allocations 290 * to use M_ZERO. This is not allowed in objcache_get() (to avoid 291 * confusion), so use the backing store function that does it. This 292 * means that initial XOPS objects are zerod but REUSED objects are 293 * not. So we are responsible for cleaning the object up sufficiently 294 * for our needs before objcache_put()ing it back (typically just the 295 * FIFO indices). 296 */ 297 cache_buffer_read = objcache_create(margs_read.mtype->ks_shortdesc, 298 0, 1, NULL, NULL, NULL, 299 objcache_malloc_alloc, 300 objcache_malloc_free, 301 &margs_read); 302 cache_buffer_write = objcache_create(margs_write.mtype->ks_shortdesc, 303 0, 1, NULL, NULL, NULL, 304 objcache_malloc_alloc, 305 objcache_malloc_free, 306 &margs_write); 307 cache_xops = objcache_create(margs_vop.mtype->ks_shortdesc, 308 0, 1, NULL, NULL, NULL, 309 objcache_malloc_alloc_zero, 310 objcache_malloc_free, 311 &margs_vop); 312 313 314 lockinit(&hammer2_mntlk, "mntlk", 0, 0); 315 TAILQ_INIT(&hammer2_mntlist); 316 TAILQ_INIT(&hammer2_pfslist); 317 TAILQ_INIT(&hammer2_spmplist); 318 319 hammer2_limit_dirty_chains = maxvnodes / 10; 320 if (hammer2_limit_dirty_chains > HAMMER2_LIMIT_DIRTY_CHAINS) 321 hammer2_limit_dirty_chains = HAMMER2_LIMIT_DIRTY_CHAINS; 322 323 return (error); 324 } 325 326 static 327 int 328 hammer2_vfs_uninit(struct vfsconf *vfsp __unused) 329 { 330 objcache_destroy(cache_buffer_read); 331 objcache_destroy(cache_buffer_write); 332 objcache_destroy(cache_xops); 333 return 0; 334 } 335 336 /* 337 * Core PFS allocator. Used to allocate or reference the pmp structure 338 * for PFS cluster mounts and the spmp structure for media (hmp) structures. 339 * The pmp can be passed in or loaded by this function using the chain and 340 * inode data. 341 * 342 * pmp->modify_tid tracks new modify_tid transaction ids for front-end 343 * transactions. Note that synchronization does not use this field. 344 * (typically frontend operations and synchronization cannot run on the 345 * same PFS node at the same time). 346 * 347 * XXX check locking 348 */ 349 hammer2_pfs_t * 350 hammer2_pfsalloc(hammer2_chain_t *chain, 351 const hammer2_inode_data_t *ripdata, 352 hammer2_tid_t modify_tid, hammer2_dev_t *force_local) 353 { 354 hammer2_pfs_t *pmp; 355 hammer2_inode_t *iroot; 356 int count; 357 int i; 358 int j; 359 360 pmp = NULL; 361 362 /* 363 * Locate or create the PFS based on the cluster id. If ripdata 364 * is NULL this is a spmp which is unique and is always allocated. 365 * 366 * If the device is mounted in local mode all PFSs are considered 367 * independent and not part of any cluster (for debugging only). 368 */ 369 if (ripdata) { 370 TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) { 371 if (force_local != pmp->force_local) 372 continue; 373 if (force_local == NULL && 374 bcmp(&pmp->pfs_clid, &ripdata->meta.pfs_clid, 375 sizeof(pmp->pfs_clid)) == 0) { 376 break; 377 } else if (force_local && pmp->pfs_names[0] && 378 strcmp(pmp->pfs_names[0], ripdata->filename) == 0) { 379 break; 380 } 381 } 382 } 383 384 if (pmp == NULL) { 385 pmp = kmalloc(sizeof(*pmp), M_HAMMER2, M_WAITOK | M_ZERO); 386 pmp->force_local = force_local; 387 hammer2_trans_manage_init(pmp); 388 kmalloc_create(&pmp->minode, "HAMMER2-inodes"); 389 kmalloc_create(&pmp->mmsg, "HAMMER2-pfsmsg"); 390 lockinit(&pmp->lock, "pfslk", 0, 0); 391 lockinit(&pmp->lock_nlink, "h2nlink", 0, 0); 392 spin_init(&pmp->inum_spin, "hm2pfsalloc_inum"); 393 spin_init(&pmp->xop_spin, "h2xop"); 394 spin_init(&pmp->lru_spin, "h2lru"); 395 RB_INIT(&pmp->inum_tree); 396 TAILQ_INIT(&pmp->sideq); 397 TAILQ_INIT(&pmp->lru_list); 398 spin_init(&pmp->list_spin, "hm2pfsalloc_list"); 399 400 /* 401 * Distribute backend operations to threads 402 */ 403 for (i = 0; i < HAMMER2_XOPGROUPS; ++i) 404 hammer2_xop_group_init(pmp, &pmp->xop_groups[i]); 405 406 /* 407 * Save the last media transaction id for the flusher. Set 408 * initial 409 */ 410 if (ripdata) { 411 pmp->pfs_clid = ripdata->meta.pfs_clid; 412 TAILQ_INSERT_TAIL(&hammer2_pfslist, pmp, mntentry); 413 } else { 414 pmp->flags |= HAMMER2_PMPF_SPMP; 415 TAILQ_INSERT_TAIL(&hammer2_spmplist, pmp, mntentry); 416 } 417 418 /* 419 * The synchronization thread may start too early, make 420 * sure it stays frozen until we are ready to let it go. 421 * XXX 422 */ 423 /* 424 pmp->primary_thr.flags = HAMMER2_THREAD_FROZEN | 425 HAMMER2_THREAD_REMASTER; 426 */ 427 } 428 429 /* 430 * Create the PFS's root inode and any missing XOP helper threads. 431 */ 432 if ((iroot = pmp->iroot) == NULL) { 433 iroot = hammer2_inode_get(pmp, NULL, NULL, -1); 434 if (ripdata) 435 iroot->meta = ripdata->meta; 436 pmp->iroot = iroot; 437 hammer2_inode_ref(iroot); 438 hammer2_inode_unlock(iroot); 439 } 440 441 /* 442 * Stop here if no chain is passed in. 443 */ 444 if (chain == NULL) 445 goto done; 446 447 /* 448 * When a chain is passed in we must add it to the PFS's root 449 * inode, update pmp->pfs_types[], and update the syncronization 450 * threads. 451 * 452 * When forcing local mode, mark the PFS as a MASTER regardless. 453 * 454 * At the moment empty spots can develop due to removals or failures. 455 * Ultimately we want to re-fill these spots but doing so might 456 * confused running code. XXX 457 */ 458 hammer2_inode_ref(iroot); 459 hammer2_mtx_ex(&iroot->lock); 460 j = iroot->cluster.nchains; 461 462 if (j == HAMMER2_MAXCLUSTER) { 463 kprintf("hammer2_mount: cluster full!\n"); 464 /* XXX fatal error? */ 465 } else { 466 KKASSERT(chain->pmp == NULL); 467 chain->pmp = pmp; 468 hammer2_chain_ref(chain); 469 iroot->cluster.array[j].chain = chain; 470 if (force_local) 471 pmp->pfs_types[j] = HAMMER2_PFSTYPE_MASTER; 472 else 473 pmp->pfs_types[j] = ripdata->meta.pfs_type; 474 pmp->pfs_names[j] = kstrdup(ripdata->filename, M_HAMMER2); 475 pmp->pfs_hmps[j] = chain->hmp; 476 477 /* 478 * If the PFS is already mounted we must account 479 * for the mount_count here. 480 */ 481 if (pmp->mp) 482 ++chain->hmp->mount_count; 483 484 /* 485 * May have to fixup dirty chain tracking. Previous 486 * pmp was NULL so nothing to undo. 487 */ 488 if (chain->flags & HAMMER2_CHAIN_MODIFIED) 489 hammer2_pfs_memory_inc(pmp); 490 ++j; 491 } 492 iroot->cluster.nchains = j; 493 494 /* 495 * Update nmasters from any PFS inode which is part of the cluster. 496 * It is possible that this will result in a value which is too 497 * high. MASTER PFSs are authoritative for pfs_nmasters and will 498 * override this value later on. 499 * 500 * (This informs us of masters that might not currently be 501 * discoverable by this mount). 502 */ 503 if (ripdata && pmp->pfs_nmasters < ripdata->meta.pfs_nmasters) { 504 pmp->pfs_nmasters = ripdata->meta.pfs_nmasters; 505 } 506 507 /* 508 * Count visible masters. Masters are usually added with 509 * ripdata->meta.pfs_nmasters set to 1. This detects when there 510 * are more (XXX and must update the master inodes). 511 */ 512 count = 0; 513 for (i = 0; i < iroot->cluster.nchains; ++i) { 514 if (pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER) 515 ++count; 516 } 517 if (pmp->pfs_nmasters < count) 518 pmp->pfs_nmasters = count; 519 520 /* 521 * Create missing synchronization and support threads. 522 * 523 * Single-node masters (including snapshots) have nothing to 524 * synchronize and do not require this thread. 525 * 526 * Multi-node masters or any number of soft masters, slaves, copy, 527 * or other PFS types need the thread. 528 * 529 * Each thread is responsible for its particular cluster index. 530 * We use independent threads so stalls or mismatches related to 531 * any given target do not affect other targets. 532 */ 533 for (i = 0; i < iroot->cluster.nchains; ++i) { 534 /* 535 * Single-node masters (including snapshots) have nothing 536 * to synchronize and will make direct xops support calls, 537 * thus they do not require this thread. 538 * 539 * Note that there can be thousands of snapshots. We do not 540 * want to create thousands of threads. 541 */ 542 if (pmp->pfs_nmasters <= 1 && 543 pmp->pfs_types[i] == HAMMER2_PFSTYPE_MASTER) { 544 continue; 545 } 546 547 /* 548 * Sync support thread 549 */ 550 if (pmp->sync_thrs[i].td == NULL) { 551 hammer2_thr_create(&pmp->sync_thrs[i], pmp, NULL, 552 "h2nod", i, -1, 553 hammer2_primary_sync_thread); 554 } 555 } 556 557 /* 558 * Create missing Xop threads 559 * 560 * NOTE: We create helper threads for all mounted PFSs or any 561 * PFSs with 2+ nodes (so the sync thread can update them, 562 * even if not mounted). 563 */ 564 if (pmp->mp || iroot->cluster.nchains >= 2) 565 hammer2_xop_helper_create(pmp); 566 567 hammer2_mtx_unlock(&iroot->lock); 568 hammer2_inode_drop(iroot); 569 done: 570 return pmp; 571 } 572 573 /* 574 * Deallocate an element of a probed PFS. If destroying and this is a 575 * MASTER, adjust nmasters. 576 * 577 * This function does not physically destroy the PFS element in its device 578 * under the super-root (see hammer2_ioctl_pfs_delete()). 579 */ 580 void 581 hammer2_pfsdealloc(hammer2_pfs_t *pmp, int clindex, int destroying) 582 { 583 hammer2_inode_t *iroot; 584 hammer2_chain_t *chain; 585 int j; 586 587 /* 588 * Cleanup our reference on iroot. iroot is (should) not be needed 589 * by the flush code. 590 */ 591 iroot = pmp->iroot; 592 if (iroot) { 593 /* 594 * Stop synchronizing 595 * 596 * XXX flush after acquiring the iroot lock. 597 * XXX clean out the cluster index from all inode structures. 598 */ 599 hammer2_thr_delete(&pmp->sync_thrs[clindex]); 600 601 /* 602 * Remove the cluster index from the group. If destroying 603 * the PFS and this is a master, adjust pfs_nmasters. 604 */ 605 hammer2_mtx_ex(&iroot->lock); 606 chain = iroot->cluster.array[clindex].chain; 607 iroot->cluster.array[clindex].chain = NULL; 608 609 switch(pmp->pfs_types[clindex]) { 610 case HAMMER2_PFSTYPE_MASTER: 611 if (destroying && pmp->pfs_nmasters > 0) 612 --pmp->pfs_nmasters; 613 /* XXX adjust ripdata->meta.pfs_nmasters */ 614 break; 615 default: 616 break; 617 } 618 pmp->pfs_types[clindex] = HAMMER2_PFSTYPE_NONE; 619 620 hammer2_mtx_unlock(&iroot->lock); 621 622 /* 623 * Release the chain. 624 */ 625 if (chain) { 626 atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE); 627 hammer2_chain_drop(chain); 628 } 629 630 /* 631 * Terminate all XOP threads for the cluster index. 632 */ 633 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) 634 hammer2_thr_delete(&pmp->xop_groups[j].thrs[clindex]); 635 } 636 } 637 638 /* 639 * Destroy a PFS, typically only occurs after the last mount on a device 640 * has gone away. 641 */ 642 static void 643 hammer2_pfsfree(hammer2_pfs_t *pmp) 644 { 645 hammer2_inode_t *iroot; 646 hammer2_chain_t *chain; 647 int i; 648 int j; 649 650 /* 651 * Cleanup our reference on iroot. iroot is (should) not be needed 652 * by the flush code. 653 */ 654 if (pmp->flags & HAMMER2_PMPF_SPMP) 655 TAILQ_REMOVE(&hammer2_spmplist, pmp, mntentry); 656 else 657 TAILQ_REMOVE(&hammer2_pfslist, pmp, mntentry); 658 659 iroot = pmp->iroot; 660 if (iroot) { 661 for (i = 0; i < iroot->cluster.nchains; ++i) { 662 hammer2_thr_delete(&pmp->sync_thrs[i]); 663 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) 664 hammer2_thr_delete(&pmp->xop_groups[j].thrs[i]); 665 } 666 #if REPORT_REFS_ERRORS 667 if (pmp->iroot->refs != 1) 668 kprintf("PMP->IROOT %p REFS WRONG %d\n", 669 pmp->iroot, pmp->iroot->refs); 670 #else 671 KKASSERT(pmp->iroot->refs == 1); 672 #endif 673 /* ref for pmp->iroot */ 674 hammer2_inode_drop(pmp->iroot); 675 pmp->iroot = NULL; 676 } 677 678 /* 679 * Cleanup chains remaining on LRU list. 680 */ 681 hammer2_spin_ex(&pmp->lru_spin); 682 while ((chain = TAILQ_FIRST(&pmp->lru_list)) != NULL) { 683 KKASSERT(chain->flags & HAMMER2_CHAIN_ONLRU); 684 atomic_add_int(&pmp->lru_count, -1); 685 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU); 686 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node); 687 hammer2_chain_ref(chain); 688 hammer2_spin_unex(&pmp->lru_spin); 689 atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE); 690 hammer2_chain_drop(chain); 691 hammer2_spin_ex(&pmp->lru_spin); 692 } 693 hammer2_spin_unex(&pmp->lru_spin); 694 695 /* 696 * Free remaining pmp resources 697 */ 698 kmalloc_destroy(&pmp->mmsg); 699 kmalloc_destroy(&pmp->minode); 700 701 kfree(pmp, M_HAMMER2); 702 } 703 704 /* 705 * Remove all references to hmp from the pfs list. Any PFS which becomes 706 * empty is terminated and freed. 707 * 708 * XXX inefficient. 709 */ 710 static void 711 hammer2_pfsfree_scan(hammer2_dev_t *hmp, int which) 712 { 713 hammer2_pfs_t *pmp; 714 hammer2_inode_t *iroot; 715 hammer2_chain_t *rchain; 716 int didfreeze; 717 int i; 718 int j; 719 struct hammer2_pfslist *wlist; 720 721 if (which == 0) 722 wlist = &hammer2_pfslist; 723 else 724 wlist = &hammer2_spmplist; 725 again: 726 TAILQ_FOREACH(pmp, wlist, mntentry) { 727 if ((iroot = pmp->iroot) == NULL) 728 continue; 729 hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH); 730 hammer2_inode_run_sideq(pmp, 1); 731 hammer2_bioq_sync(pmp); 732 hammer2_trans_done(pmp); 733 734 /* 735 * Determine if this PFS is affected. If it is we must 736 * freeze all management threads and lock its iroot. 737 * 738 * Freezing a management thread forces it idle, operations 739 * in-progress will be aborted and it will have to start 740 * over again when unfrozen, or exit if told to exit. 741 */ 742 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) { 743 if (pmp->pfs_hmps[i] == hmp) 744 break; 745 } 746 if (i != HAMMER2_MAXCLUSTER) { 747 /* 748 * Make sure all synchronization threads are locked 749 * down. 750 */ 751 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) { 752 if (pmp->pfs_hmps[i] == NULL) 753 continue; 754 hammer2_thr_freeze_async(&pmp->sync_thrs[i]); 755 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) { 756 hammer2_thr_freeze_async( 757 &pmp->xop_groups[j].thrs[i]); 758 } 759 } 760 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) { 761 if (pmp->pfs_hmps[i] == NULL) 762 continue; 763 hammer2_thr_freeze(&pmp->sync_thrs[i]); 764 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) { 765 hammer2_thr_freeze( 766 &pmp->xop_groups[j].thrs[i]); 767 } 768 } 769 770 /* 771 * Lock the inode and clean out matching chains. 772 * Note that we cannot use hammer2_inode_lock_*() 773 * here because that would attempt to validate the 774 * cluster that we are in the middle of ripping 775 * apart. 776 * 777 * WARNING! We are working directly on the inodes 778 * embedded cluster. 779 */ 780 hammer2_mtx_ex(&iroot->lock); 781 782 /* 783 * Remove the chain from matching elements of the PFS. 784 */ 785 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) { 786 if (pmp->pfs_hmps[i] != hmp) 787 continue; 788 hammer2_thr_delete(&pmp->sync_thrs[i]); 789 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) { 790 hammer2_thr_delete( 791 &pmp->xop_groups[j].thrs[i]); 792 } 793 rchain = iroot->cluster.array[i].chain; 794 iroot->cluster.array[i].chain = NULL; 795 pmp->pfs_types[i] = 0; 796 if (pmp->pfs_names[i]) { 797 kfree(pmp->pfs_names[i], M_HAMMER2); 798 pmp->pfs_names[i] = NULL; 799 } 800 if (rchain) { 801 hammer2_chain_drop(rchain); 802 /* focus hint */ 803 if (iroot->cluster.focus == rchain) 804 iroot->cluster.focus = NULL; 805 } 806 pmp->pfs_hmps[i] = NULL; 807 } 808 hammer2_mtx_unlock(&iroot->lock); 809 didfreeze = 1; /* remaster, unfreeze down below */ 810 } else { 811 didfreeze = 0; 812 } 813 814 /* 815 * Cleanup trailing chains. Gaps may remain. 816 */ 817 for (i = HAMMER2_MAXCLUSTER - 1; i >= 0; --i) { 818 if (pmp->pfs_hmps[i]) 819 break; 820 } 821 iroot->cluster.nchains = i + 1; 822 823 /* 824 * If the PMP has no elements remaining we can destroy it. 825 * (this will transition management threads from frozen->exit). 826 */ 827 if (iroot->cluster.nchains == 0) { 828 /* 829 * If this was the hmp's spmp, we need to clean 830 * a little more stuff out. 831 */ 832 if (hmp->spmp == pmp) { 833 hmp->spmp = NULL; 834 hmp->vchain.pmp = NULL; 835 hmp->fchain.pmp = NULL; 836 } 837 838 /* 839 * Free the pmp and restart the loop 840 */ 841 hammer2_pfsfree(pmp); 842 goto again; 843 } 844 845 /* 846 * If elements still remain we need to set the REMASTER 847 * flag and unfreeze it. 848 */ 849 if (didfreeze) { 850 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) { 851 if (pmp->pfs_hmps[i] == NULL) 852 continue; 853 hammer2_thr_remaster(&pmp->sync_thrs[i]); 854 hammer2_thr_unfreeze(&pmp->sync_thrs[i]); 855 for (j = 0; j < HAMMER2_XOPGROUPS; ++j) { 856 hammer2_thr_remaster( 857 &pmp->xop_groups[j].thrs[i]); 858 hammer2_thr_unfreeze( 859 &pmp->xop_groups[j].thrs[i]); 860 } 861 } 862 } 863 } 864 } 865 866 /* 867 * Mount or remount HAMMER2 fileystem from physical media 868 * 869 * mountroot 870 * mp mount point structure 871 * path NULL 872 * data <unused> 873 * cred <unused> 874 * 875 * mount 876 * mp mount point structure 877 * path path to mount point 878 * data pointer to argument structure in user space 879 * volume volume path (device@LABEL form) 880 * hflags user mount flags 881 * cred user credentials 882 * 883 * RETURNS: 0 Success 884 * !0 error number 885 */ 886 static 887 int 888 hammer2_vfs_mount(struct mount *mp, char *path, caddr_t data, 889 struct ucred *cred) 890 { 891 struct hammer2_mount_info info; 892 hammer2_pfs_t *pmp; 893 hammer2_pfs_t *spmp; 894 hammer2_dev_t *hmp; 895 hammer2_dev_t *force_local; 896 hammer2_key_t key_next; 897 hammer2_key_t key_dummy; 898 hammer2_key_t lhc; 899 struct vnode *devvp; 900 struct nlookupdata nd; 901 hammer2_chain_t *parent; 902 hammer2_chain_t *chain; 903 hammer2_cluster_t *cluster; 904 const hammer2_inode_data_t *ripdata; 905 hammer2_blockref_t bref; 906 struct file *fp; 907 char devstr[MNAMELEN]; 908 size_t size; 909 size_t done; 910 char *dev; 911 char *label; 912 int ronly = 1; 913 int error; 914 int i; 915 916 hmp = NULL; 917 pmp = NULL; 918 dev = NULL; 919 label = NULL; 920 devvp = NULL; 921 922 kprintf("hammer2_mount\n"); 923 924 if (path == NULL) { 925 /* 926 * Root mount 927 */ 928 bzero(&info, sizeof(info)); 929 info.cluster_fd = -1; 930 ksnprintf(devstr, sizeof(devstr), "%s", 931 mp->mnt_stat.f_mntfromname); 932 kprintf("hammer2_mount: root '%s'\n", devstr); 933 } else { 934 /* 935 * Non-root mount or updating a mount 936 */ 937 error = copyin(data, &info, sizeof(info)); 938 if (error) 939 return (error); 940 941 error = copyinstr(info.volume, devstr, MNAMELEN - 1, &done); 942 if (error) 943 return (error); 944 } 945 946 /* 947 * Extract device and label, automatically mount @BOOT, @ROOT, or @DATA 948 * if no label specified, based on the partition id. Error out if no 949 * label or device (with partition id) is specified. This is strictly 950 * a convenience to match the default label created by newfs_hammer2, 951 * our preference is that a label always be specified. 952 * 953 * NOTE: We allow 'mount @LABEL <blah>'... that is, a mount command 954 * that does not specify a device, as long as some H2 label 955 * has already been mounted from that device. This makes 956 * mounting snapshots a lot easier. 957 */ 958 dev = devstr; 959 label = strchr(devstr, '@'); 960 if (label && ((label + 1) - dev) > done) 961 return (EINVAL); 962 if (label == NULL || label[1] == 0) { 963 char slice; 964 965 if (label == NULL) 966 label = devstr + strlen(devstr); 967 slice = label[-1]; 968 switch(slice) { 969 case 'a': 970 label = "BOOT"; 971 break; 972 case 'd': 973 label = "ROOT"; 974 break; 975 default: 976 label = "DATA"; 977 break; 978 } 979 } else { 980 *label = '\0'; 981 label++; 982 } 983 984 kprintf("hammer2_mount: dev=\"%s\" label=\"%s\" rdonly=%d\n", 985 dev, label, (mp->mnt_flag & MNT_RDONLY)); 986 987 if (mp->mnt_flag & MNT_UPDATE) { 988 /* 989 * Update mount. Note that pmp->iroot->cluster is 990 * an inode-embedded cluster and thus cannot be 991 * directly locked. 992 * 993 * XXX HAMMER2 needs to implement NFS export via 994 * mountctl. 995 */ 996 pmp = MPTOPMP(mp); 997 pmp->hflags = info.hflags; 998 cluster = &pmp->iroot->cluster; 999 for (i = 0; i < cluster->nchains; ++i) { 1000 if (cluster->array[i].chain == NULL) 1001 continue; 1002 hmp = cluster->array[i].chain->hmp; 1003 devvp = hmp->devvp; 1004 error = hammer2_remount(hmp, mp, path, 1005 devvp, cred); 1006 if (error) 1007 break; 1008 } 1009 1010 return error; 1011 } 1012 1013 /* 1014 * HMP device mount 1015 * 1016 * If a path is specified and dev is not an empty string, lookup the 1017 * name and verify that it referes to a block device. 1018 * 1019 * If a path is specified and dev is an empty string we fall through 1020 * and locate the label in the hmp search. 1021 */ 1022 if (path && *dev != 0) { 1023 error = nlookup_init(&nd, dev, UIO_SYSSPACE, NLC_FOLLOW); 1024 if (error == 0) 1025 error = nlookup(&nd); 1026 if (error == 0) 1027 error = cache_vref(&nd.nl_nch, nd.nl_cred, &devvp); 1028 nlookup_done(&nd); 1029 } else if (path == NULL) { 1030 /* root mount */ 1031 cdev_t cdev = kgetdiskbyname(dev); 1032 error = bdevvp(cdev, &devvp); 1033 if (error) 1034 kprintf("hammer2: cannot find '%s'\n", dev); 1035 } else { 1036 /* 1037 * We will locate the hmp using the label in the hmp loop. 1038 */ 1039 error = 0; 1040 } 1041 1042 /* 1043 * Make sure its a block device. Do not check to see if it is 1044 * already mounted until we determine that its a fresh H2 device. 1045 */ 1046 if (error == 0 && devvp) { 1047 vn_isdisk(devvp, &error); 1048 } 1049 1050 /* 1051 * Determine if the device has already been mounted. After this 1052 * check hmp will be non-NULL if we are doing the second or more 1053 * hammer2 mounts from the same device. 1054 */ 1055 lockmgr(&hammer2_mntlk, LK_EXCLUSIVE); 1056 if (devvp) { 1057 /* 1058 * Match the device. Due to the way devfs works, 1059 * we may not be able to directly match the vnode pointer, 1060 * so also check to see if the underlying device matches. 1061 */ 1062 TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) { 1063 if (hmp->devvp == devvp) 1064 break; 1065 if (devvp->v_rdev && 1066 hmp->devvp->v_rdev == devvp->v_rdev) { 1067 break; 1068 } 1069 } 1070 1071 /* 1072 * If no match this may be a fresh H2 mount, make sure 1073 * the device is not mounted on anything else. 1074 */ 1075 if (hmp == NULL) 1076 error = vfs_mountedon(devvp); 1077 } else if (error == 0) { 1078 /* 1079 * Match the label to a pmp already probed. 1080 */ 1081 TAILQ_FOREACH(pmp, &hammer2_pfslist, mntentry) { 1082 for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) { 1083 if (pmp->pfs_names[i] && 1084 strcmp(pmp->pfs_names[i], label) == 0) { 1085 hmp = pmp->pfs_hmps[i]; 1086 break; 1087 } 1088 } 1089 if (hmp) 1090 break; 1091 } 1092 if (hmp == NULL) 1093 error = ENOENT; 1094 } 1095 1096 /* 1097 * Open the device if this isn't a secondary mount and construct 1098 * the H2 device mount (hmp). 1099 */ 1100 if (hmp == NULL) { 1101 hammer2_chain_t *schain; 1102 hammer2_xid_t xid; 1103 1104 if (error == 0 && vcount(devvp) > 0) { 1105 kprintf("Primary device already has references\n"); 1106 error = EBUSY; 1107 } 1108 1109 /* 1110 * Now open the device 1111 */ 1112 if (error == 0) { 1113 ronly = ((mp->mnt_flag & MNT_RDONLY) != 0); 1114 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1115 error = vinvalbuf(devvp, V_SAVE, 0, 0); 1116 if (error == 0) { 1117 error = VOP_OPEN(devvp, 1118 (ronly ? FREAD : FREAD | FWRITE), 1119 FSCRED, NULL); 1120 } 1121 vn_unlock(devvp); 1122 } 1123 if (error && devvp) { 1124 vrele(devvp); 1125 devvp = NULL; 1126 } 1127 if (error) { 1128 lockmgr(&hammer2_mntlk, LK_RELEASE); 1129 return error; 1130 } 1131 hmp = kmalloc(sizeof(*hmp), M_HAMMER2, M_WAITOK | M_ZERO); 1132 ksnprintf(hmp->devrepname, sizeof(hmp->devrepname), "%s", dev); 1133 hmp->ronly = ronly; 1134 hmp->devvp = devvp; 1135 hmp->hflags = info.hflags & HMNT2_DEVFLAGS; 1136 kmalloc_create(&hmp->mchain, "HAMMER2-chains"); 1137 TAILQ_INSERT_TAIL(&hammer2_mntlist, hmp, mntentry); 1138 RB_INIT(&hmp->iotree); 1139 spin_init(&hmp->io_spin, "hm2mount_io"); 1140 spin_init(&hmp->list_spin, "hm2mount_list"); 1141 TAILQ_INIT(&hmp->flushq); 1142 1143 lockinit(&hmp->vollk, "h2vol", 0, 0); 1144 lockinit(&hmp->bulklk, "h2bulk", 0, 0); 1145 lockinit(&hmp->bflock, "h2bflk", 0, 0); 1146 1147 /* 1148 * vchain setup. vchain.data is embedded. 1149 * vchain.refs is initialized and will never drop to 0. 1150 * 1151 * NOTE! voldata is not yet loaded. 1152 */ 1153 hmp->vchain.hmp = hmp; 1154 hmp->vchain.refs = 1; 1155 hmp->vchain.data = (void *)&hmp->voldata; 1156 hmp->vchain.bref.type = HAMMER2_BREF_TYPE_VOLUME; 1157 hmp->vchain.bref.data_off = 0 | HAMMER2_PBUFRADIX; 1158 hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid; 1159 1160 hammer2_chain_core_init(&hmp->vchain); 1161 /* hmp->vchain.u.xxx is left NULL */ 1162 1163 /* 1164 * fchain setup. fchain.data is embedded. 1165 * fchain.refs is initialized and will never drop to 0. 1166 * 1167 * The data is not used but needs to be initialized to 1168 * pass assertion muster. We use this chain primarily 1169 * as a placeholder for the freemap's top-level RBTREE 1170 * so it does not interfere with the volume's topology 1171 * RBTREE. 1172 */ 1173 hmp->fchain.hmp = hmp; 1174 hmp->fchain.refs = 1; 1175 hmp->fchain.data = (void *)&hmp->voldata.freemap_blockset; 1176 hmp->fchain.bref.type = HAMMER2_BREF_TYPE_FREEMAP; 1177 hmp->fchain.bref.data_off = 0 | HAMMER2_PBUFRADIX; 1178 hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid; 1179 hmp->fchain.bref.methods = 1180 HAMMER2_ENC_CHECK(HAMMER2_CHECK_FREEMAP) | 1181 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE); 1182 1183 hammer2_chain_core_init(&hmp->fchain); 1184 /* hmp->fchain.u.xxx is left NULL */ 1185 1186 /* 1187 * Install the volume header and initialize fields from 1188 * voldata. 1189 */ 1190 error = hammer2_install_volume_header(hmp); 1191 if (error) { 1192 hammer2_unmount_helper(mp, NULL, hmp); 1193 lockmgr(&hammer2_mntlk, LK_RELEASE); 1194 hammer2_vfs_unmount(mp, MNT_FORCE); 1195 return error; 1196 } 1197 1198 /* 1199 * Really important to get these right or flush will get 1200 * confused. 1201 */ 1202 hmp->spmp = hammer2_pfsalloc(NULL, NULL, 0, NULL); 1203 spmp = hmp->spmp; 1204 1205 /* 1206 * Dummy-up vchain and fchain's modify_tid. mirror_tid 1207 * is inherited from the volume header. 1208 */ 1209 xid = 0; 1210 hmp->vchain.bref.mirror_tid = hmp->voldata.mirror_tid; 1211 hmp->vchain.bref.modify_tid = hmp->vchain.bref.mirror_tid; 1212 hmp->vchain.pmp = spmp; 1213 hmp->fchain.bref.mirror_tid = hmp->voldata.freemap_tid; 1214 hmp->fchain.bref.modify_tid = hmp->fchain.bref.mirror_tid; 1215 hmp->fchain.pmp = spmp; 1216 1217 /* 1218 * First locate the super-root inode, which is key 0 1219 * relative to the volume header's blockset. 1220 * 1221 * Then locate the root inode by scanning the directory keyspace 1222 * represented by the label. 1223 */ 1224 parent = hammer2_chain_lookup_init(&hmp->vchain, 0); 1225 schain = hammer2_chain_lookup(&parent, &key_dummy, 1226 HAMMER2_SROOT_KEY, HAMMER2_SROOT_KEY, 1227 &error, 0); 1228 hammer2_chain_lookup_done(parent); 1229 if (schain == NULL) { 1230 kprintf("hammer2_mount: invalid super-root\n"); 1231 hammer2_unmount_helper(mp, NULL, hmp); 1232 lockmgr(&hammer2_mntlk, LK_RELEASE); 1233 hammer2_vfs_unmount(mp, MNT_FORCE); 1234 return EINVAL; 1235 } 1236 if (schain->error) { 1237 kprintf("hammer2_mount: error %s reading super-root\n", 1238 hammer2_error_str(schain->error)); 1239 hammer2_chain_unlock(schain); 1240 hammer2_chain_drop(schain); 1241 schain = NULL; 1242 hammer2_unmount_helper(mp, NULL, hmp); 1243 lockmgr(&hammer2_mntlk, LK_RELEASE); 1244 hammer2_vfs_unmount(mp, MNT_FORCE); 1245 return EINVAL; 1246 } 1247 1248 /* 1249 * The super-root always uses an inode_tid of 1 when 1250 * creating PFSs. 1251 */ 1252 spmp->inode_tid = 1; 1253 spmp->modify_tid = schain->bref.modify_tid + 1; 1254 1255 /* 1256 * Sanity-check schain's pmp and finish initialization. 1257 * Any chain belonging to the super-root topology should 1258 * have a NULL pmp (not even set to spmp). 1259 */ 1260 ripdata = &hammer2_chain_rdata(schain)->ipdata; 1261 KKASSERT(schain->pmp == NULL); 1262 spmp->pfs_clid = ripdata->meta.pfs_clid; 1263 1264 /* 1265 * Replace the dummy spmp->iroot with a real one. It's 1266 * easier to just do a wholesale replacement than to try 1267 * to update the chain and fixup the iroot fields. 1268 * 1269 * The returned inode is locked with the supplied cluster. 1270 */ 1271 cluster = hammer2_cluster_from_chain(schain); 1272 hammer2_inode_drop(spmp->iroot); 1273 spmp->iroot = NULL; 1274 spmp->iroot = hammer2_inode_get(spmp, NULL, cluster, -1); 1275 spmp->spmp_hmp = hmp; 1276 spmp->pfs_types[0] = ripdata->meta.pfs_type; 1277 spmp->pfs_hmps[0] = hmp; 1278 hammer2_inode_ref(spmp->iroot); 1279 hammer2_inode_unlock(spmp->iroot); 1280 hammer2_cluster_unlock(cluster); 1281 hammer2_cluster_drop(cluster); 1282 schain = NULL; 1283 /* leave spmp->iroot with one ref */ 1284 1285 if ((mp->mnt_flag & MNT_RDONLY) == 0) { 1286 error = hammer2_recovery(hmp); 1287 if (error == 0) 1288 error |= hammer2_fixup_pfses(hmp); 1289 /* XXX do something with error */ 1290 } 1291 hammer2_update_pmps(hmp); 1292 hammer2_iocom_init(hmp); 1293 hammer2_bulkfree_init(hmp); 1294 1295 /* 1296 * Ref the cluster management messaging descriptor. The mount 1297 * program deals with the other end of the communications pipe. 1298 * 1299 * Root mounts typically do not supply one. 1300 */ 1301 if (info.cluster_fd >= 0) { 1302 fp = holdfp(curproc->p_fd, info.cluster_fd, -1); 1303 if (fp) { 1304 hammer2_cluster_reconnect(hmp, fp); 1305 } else { 1306 kprintf("hammer2_mount: bad cluster_fd!\n"); 1307 } 1308 } 1309 } else { 1310 spmp = hmp->spmp; 1311 if (info.hflags & HMNT2_DEVFLAGS) { 1312 kprintf("hammer2: Warning: mount flags pertaining " 1313 "to the whole device may only be specified " 1314 "on the first mount of the device: %08x\n", 1315 info.hflags & HMNT2_DEVFLAGS); 1316 } 1317 } 1318 1319 /* 1320 * Force local mount (disassociate all PFSs from their clusters). 1321 * Used primarily for debugging. 1322 */ 1323 force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL; 1324 1325 /* 1326 * Lookup the mount point under the media-localized super-root. 1327 * Scanning hammer2_pfslist doesn't help us because it represents 1328 * PFS cluster ids which can aggregate several named PFSs together. 1329 * 1330 * cluster->pmp will incorrectly point to spmp and must be fixed 1331 * up later on. 1332 */ 1333 hammer2_inode_lock(spmp->iroot, 0); 1334 parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS); 1335 lhc = hammer2_dirhash(label, strlen(label)); 1336 chain = hammer2_chain_lookup(&parent, &key_next, 1337 lhc, lhc + HAMMER2_DIRHASH_LOMASK, 1338 &error, 0); 1339 while (chain) { 1340 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && 1341 strcmp(label, chain->data->ipdata.filename) == 0) { 1342 break; 1343 } 1344 chain = hammer2_chain_next(&parent, chain, &key_next, 1345 key_next, 1346 lhc + HAMMER2_DIRHASH_LOMASK, 1347 &error, 0); 1348 } 1349 if (parent) { 1350 hammer2_chain_unlock(parent); 1351 hammer2_chain_drop(parent); 1352 } 1353 hammer2_inode_unlock(spmp->iroot); 1354 1355 /* 1356 * PFS could not be found? 1357 */ 1358 if (chain == NULL) { 1359 if (error) 1360 kprintf("hammer2_mount: PFS label I/O error\n"); 1361 else 1362 kprintf("hammer2_mount: PFS label not found\n"); 1363 hammer2_unmount_helper(mp, NULL, hmp); 1364 lockmgr(&hammer2_mntlk, LK_RELEASE); 1365 hammer2_vfs_unmount(mp, MNT_FORCE); 1366 1367 return EINVAL; 1368 } 1369 1370 /* 1371 * Acquire the pmp structure (it should have already been allocated 1372 * via hammer2_update_pmps() so do not pass cluster in to add to 1373 * available chains). 1374 * 1375 * Check if the cluster has already been mounted. A cluster can 1376 * only be mounted once, use null mounts to mount additional copies. 1377 */ 1378 if (chain->error) { 1379 kprintf("hammer2_mount: PFS label I/O error\n"); 1380 } else { 1381 ripdata = &chain->data->ipdata; 1382 bref = chain->bref; 1383 pmp = hammer2_pfsalloc(NULL, ripdata, 1384 bref.modify_tid, force_local); 1385 } 1386 hammer2_chain_unlock(chain); 1387 hammer2_chain_drop(chain); 1388 1389 /* 1390 * Finish the mount 1391 */ 1392 kprintf("hammer2_mount hmp=%p pmp=%p\n", hmp, pmp); 1393 1394 if (pmp->mp) { 1395 kprintf("hammer2_mount: PFS already mounted!\n"); 1396 hammer2_unmount_helper(mp, NULL, hmp); 1397 lockmgr(&hammer2_mntlk, LK_RELEASE); 1398 hammer2_vfs_unmount(mp, MNT_FORCE); 1399 1400 return EBUSY; 1401 } 1402 1403 pmp->hflags = info.hflags; 1404 mp->mnt_flag |= MNT_LOCAL; 1405 mp->mnt_kern_flag |= MNTK_ALL_MPSAFE; /* all entry pts are SMP */ 1406 mp->mnt_kern_flag |= MNTK_THR_SYNC; /* new vsyncscan semantics */ 1407 1408 /* 1409 * required mount structure initializations 1410 */ 1411 mp->mnt_stat.f_iosize = HAMMER2_PBUFSIZE; 1412 mp->mnt_stat.f_bsize = HAMMER2_PBUFSIZE; 1413 1414 mp->mnt_vstat.f_frsize = HAMMER2_PBUFSIZE; 1415 mp->mnt_vstat.f_bsize = HAMMER2_PBUFSIZE; 1416 1417 /* 1418 * Optional fields 1419 */ 1420 mp->mnt_iosize_max = MAXPHYS; 1421 1422 /* 1423 * Connect up mount pointers. 1424 */ 1425 hammer2_mount_helper(mp, pmp); 1426 1427 lockmgr(&hammer2_mntlk, LK_RELEASE); 1428 1429 /* 1430 * Finish setup 1431 */ 1432 vfs_getnewfsid(mp); 1433 vfs_add_vnodeops(mp, &hammer2_vnode_vops, &mp->mnt_vn_norm_ops); 1434 vfs_add_vnodeops(mp, &hammer2_spec_vops, &mp->mnt_vn_spec_ops); 1435 vfs_add_vnodeops(mp, &hammer2_fifo_vops, &mp->mnt_vn_fifo_ops); 1436 1437 if (path) { 1438 copyinstr(info.volume, mp->mnt_stat.f_mntfromname, 1439 MNAMELEN - 1, &size); 1440 bzero(mp->mnt_stat.f_mntfromname + size, MNAMELEN - size); 1441 } /* else root mount, already in there */ 1442 1443 bzero(mp->mnt_stat.f_mntonname, sizeof(mp->mnt_stat.f_mntonname)); 1444 if (path) { 1445 copyinstr(path, mp->mnt_stat.f_mntonname, 1446 sizeof(mp->mnt_stat.f_mntonname) - 1, 1447 &size); 1448 } else { 1449 /* root mount */ 1450 mp->mnt_stat.f_mntonname[0] = '/'; 1451 } 1452 1453 /* 1454 * Initial statfs to prime mnt_stat. 1455 */ 1456 hammer2_vfs_statfs(mp, &mp->mnt_stat, cred); 1457 1458 return 0; 1459 } 1460 1461 /* 1462 * Scan PFSs under the super-root and create hammer2_pfs structures. 1463 */ 1464 static 1465 void 1466 hammer2_update_pmps(hammer2_dev_t *hmp) 1467 { 1468 const hammer2_inode_data_t *ripdata; 1469 hammer2_chain_t *parent; 1470 hammer2_chain_t *chain; 1471 hammer2_blockref_t bref; 1472 hammer2_dev_t *force_local; 1473 hammer2_pfs_t *spmp; 1474 hammer2_pfs_t *pmp; 1475 hammer2_key_t key_next; 1476 int error; 1477 1478 /* 1479 * Force local mount (disassociate all PFSs from their clusters). 1480 * Used primarily for debugging. 1481 */ 1482 force_local = (hmp->hflags & HMNT2_LOCAL) ? hmp : NULL; 1483 1484 /* 1485 * Lookup mount point under the media-localized super-root. 1486 * 1487 * cluster->pmp will incorrectly point to spmp and must be fixed 1488 * up later on. 1489 */ 1490 spmp = hmp->spmp; 1491 hammer2_inode_lock(spmp->iroot, 0); 1492 parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS); 1493 chain = hammer2_chain_lookup(&parent, &key_next, 1494 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX, 1495 &error, 0); 1496 while (chain) { 1497 if (chain->bref.type != HAMMER2_BREF_TYPE_INODE) 1498 continue; 1499 if (chain->error) { 1500 kprintf("I/O error scanning PFS labels\n"); 1501 } else { 1502 ripdata = &chain->data->ipdata; 1503 bref = chain->bref; 1504 1505 pmp = hammer2_pfsalloc(chain, ripdata, 1506 bref.modify_tid, force_local); 1507 } 1508 chain = hammer2_chain_next(&parent, chain, &key_next, 1509 key_next, HAMMER2_KEY_MAX, 1510 &error, 0); 1511 } 1512 if (parent) { 1513 hammer2_chain_unlock(parent); 1514 hammer2_chain_drop(parent); 1515 } 1516 hammer2_inode_unlock(spmp->iroot); 1517 } 1518 1519 static 1520 int 1521 hammer2_remount(hammer2_dev_t *hmp, struct mount *mp, char *path __unused, 1522 struct vnode *devvp, struct ucred *cred) 1523 { 1524 int error; 1525 1526 if (hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) { 1527 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1528 VOP_OPEN(devvp, FREAD | FWRITE, FSCRED, NULL); 1529 vn_unlock(devvp); 1530 error = hammer2_recovery(hmp); 1531 if (error == 0) 1532 error |= hammer2_fixup_pfses(hmp); 1533 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1534 if (error == 0) { 1535 VOP_CLOSE(devvp, FREAD, NULL); 1536 hmp->ronly = 0; 1537 } else { 1538 VOP_CLOSE(devvp, FREAD | FWRITE, NULL); 1539 } 1540 vn_unlock(devvp); 1541 } else { 1542 error = 0; 1543 } 1544 return error; 1545 } 1546 1547 static 1548 int 1549 hammer2_vfs_unmount(struct mount *mp, int mntflags) 1550 { 1551 hammer2_pfs_t *pmp; 1552 int flags; 1553 int error = 0; 1554 1555 pmp = MPTOPMP(mp); 1556 1557 if (pmp == NULL) 1558 return(0); 1559 1560 lockmgr(&hammer2_mntlk, LK_EXCLUSIVE); 1561 1562 /* 1563 * If mount initialization proceeded far enough we must flush 1564 * its vnodes and sync the underlying mount points. Three syncs 1565 * are required to fully flush the filesystem (freemap updates lag 1566 * by one flush, and one extra for safety). 1567 */ 1568 if (mntflags & MNT_FORCE) 1569 flags = FORCECLOSE; 1570 else 1571 flags = 0; 1572 if (pmp->iroot) { 1573 error = vflush(mp, 0, flags); 1574 if (error) 1575 goto failed; 1576 hammer2_vfs_sync(mp, MNT_WAIT); 1577 hammer2_vfs_sync(mp, MNT_WAIT); 1578 hammer2_vfs_sync(mp, MNT_WAIT); 1579 } 1580 1581 /* 1582 * Cleanup the frontend support XOPS threads 1583 */ 1584 hammer2_xop_helper_cleanup(pmp); 1585 1586 if (pmp->mp) 1587 hammer2_unmount_helper(mp, pmp, NULL); 1588 1589 error = 0; 1590 failed: 1591 lockmgr(&hammer2_mntlk, LK_RELEASE); 1592 1593 return (error); 1594 } 1595 1596 /* 1597 * Mount helper, hook the system mount into our PFS. 1598 * The mount lock is held. 1599 * 1600 * We must bump the mount_count on related devices for any 1601 * mounted PFSs. 1602 */ 1603 static 1604 void 1605 hammer2_mount_helper(struct mount *mp, hammer2_pfs_t *pmp) 1606 { 1607 hammer2_cluster_t *cluster; 1608 hammer2_chain_t *rchain; 1609 int i; 1610 1611 mp->mnt_data = (qaddr_t)pmp; 1612 pmp->mp = mp; 1613 1614 /* 1615 * After pmp->mp is set we have to adjust hmp->mount_count. 1616 */ 1617 cluster = &pmp->iroot->cluster; 1618 for (i = 0; i < cluster->nchains; ++i) { 1619 rchain = cluster->array[i].chain; 1620 if (rchain == NULL) 1621 continue; 1622 ++rchain->hmp->mount_count; 1623 } 1624 1625 /* 1626 * Create missing Xop threads 1627 */ 1628 hammer2_xop_helper_create(pmp); 1629 } 1630 1631 /* 1632 * Mount helper, unhook the system mount from our PFS. 1633 * The mount lock is held. 1634 * 1635 * If hmp is supplied a mount responsible for being the first to open 1636 * the block device failed and the block device and all PFSs using the 1637 * block device must be cleaned up. 1638 * 1639 * If pmp is supplied multiple devices might be backing the PFS and each 1640 * must be disconnected. This might not be the last PFS using some of the 1641 * underlying devices. Also, we have to adjust our hmp->mount_count 1642 * accounting for the devices backing the pmp which is now undergoing an 1643 * unmount. 1644 */ 1645 static 1646 void 1647 hammer2_unmount_helper(struct mount *mp, hammer2_pfs_t *pmp, hammer2_dev_t *hmp) 1648 { 1649 hammer2_cluster_t *cluster; 1650 hammer2_chain_t *rchain; 1651 struct vnode *devvp; 1652 int dumpcnt; 1653 int ronly; 1654 int i; 1655 1656 /* 1657 * If no device supplied this is a high-level unmount and we have to 1658 * to disconnect the mount, adjust mount_count, and locate devices 1659 * that might now have no mounts. 1660 */ 1661 if (pmp) { 1662 KKASSERT(hmp == NULL); 1663 KKASSERT((void *)(intptr_t)mp->mnt_data == pmp); 1664 pmp->mp = NULL; 1665 mp->mnt_data = NULL; 1666 1667 /* 1668 * After pmp->mp is cleared we have to account for 1669 * mount_count. 1670 */ 1671 cluster = &pmp->iroot->cluster; 1672 for (i = 0; i < cluster->nchains; ++i) { 1673 rchain = cluster->array[i].chain; 1674 if (rchain == NULL) 1675 continue; 1676 --rchain->hmp->mount_count; 1677 /* scrapping hmp now may invalidate the pmp */ 1678 } 1679 again: 1680 TAILQ_FOREACH(hmp, &hammer2_mntlist, mntentry) { 1681 if (hmp->mount_count == 0) { 1682 hammer2_unmount_helper(NULL, NULL, hmp); 1683 goto again; 1684 } 1685 } 1686 return; 1687 } 1688 1689 /* 1690 * Try to terminate the block device. We can't terminate it if 1691 * there are still PFSs referencing it. 1692 */ 1693 if (hmp->mount_count) 1694 return; 1695 1696 /* 1697 * Decomission the network before we start messing with the 1698 * device and PFS. 1699 */ 1700 hammer2_iocom_uninit(hmp); 1701 1702 hammer2_bulkfree_uninit(hmp); 1703 hammer2_pfsfree_scan(hmp, 0); 1704 hammer2_dev_exlock(hmp); /* XXX order */ 1705 1706 /* 1707 * Cycle the volume data lock as a safety (probably not needed any 1708 * more). To ensure everything is out we need to flush at least 1709 * three times. (1) The running of the sideq can dirty the 1710 * filesystem, (2) A normal flush can dirty the freemap, and 1711 * (3) ensure that the freemap is fully synchronized. 1712 * 1713 * The next mount's recovery scan can clean everything up but we want 1714 * to leave the filesystem in a 100% clean state on a normal unmount. 1715 */ 1716 #if 0 1717 hammer2_voldata_lock(hmp); 1718 hammer2_voldata_unlock(hmp); 1719 #endif 1720 1721 /* 1722 * Flush whatever is left. Unmounted but modified PFS's might still 1723 * have some dirty chains on them. 1724 */ 1725 hammer2_chain_lock(&hmp->vchain, HAMMER2_RESOLVE_ALWAYS); 1726 hammer2_chain_lock(&hmp->fchain, HAMMER2_RESOLVE_ALWAYS); 1727 1728 if (hmp->fchain.flags & HAMMER2_CHAIN_FLUSH_MASK) { 1729 hammer2_voldata_modify(hmp); 1730 hammer2_flush(&hmp->fchain, HAMMER2_FLUSH_TOP | 1731 HAMMER2_FLUSH_ALL); 1732 } 1733 hammer2_chain_unlock(&hmp->fchain); 1734 1735 if (hmp->vchain.flags & HAMMER2_CHAIN_FLUSH_MASK) { 1736 hammer2_flush(&hmp->vchain, HAMMER2_FLUSH_TOP | 1737 HAMMER2_FLUSH_ALL); 1738 } 1739 hammer2_chain_unlock(&hmp->vchain); 1740 1741 if ((hmp->vchain.flags | hmp->fchain.flags) & 1742 HAMMER2_CHAIN_FLUSH_MASK) { 1743 kprintf("hammer2_unmount: chains left over " 1744 "after final sync\n"); 1745 kprintf(" vchain %08x\n", hmp->vchain.flags); 1746 kprintf(" fchain %08x\n", hmp->fchain.flags); 1747 1748 if (hammer2_debug & 0x0010) 1749 Debugger("entered debugger"); 1750 } 1751 1752 hammer2_pfsfree_scan(hmp, 1); 1753 1754 KKASSERT(hmp->spmp == NULL); 1755 1756 /* 1757 * Finish up with the device vnode 1758 */ 1759 if ((devvp = hmp->devvp) != NULL) { 1760 ronly = hmp->ronly; 1761 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1762 kprintf("hammer2_unmount(A): devvp %s rbdirty %p ronly=%d\n", 1763 hmp->devrepname, RB_ROOT(&devvp->v_rbdirty_tree), 1764 ronly); 1765 vinvalbuf(devvp, (ronly ? 0 : V_SAVE), 0, 0); 1766 kprintf("hammer2_unmount(B): devvp %s rbdirty %p\n", 1767 hmp->devrepname, RB_ROOT(&devvp->v_rbdirty_tree)); 1768 hmp->devvp = NULL; 1769 VOP_CLOSE(devvp, (ronly ? FREAD : FREAD|FWRITE), NULL); 1770 vn_unlock(devvp); 1771 vrele(devvp); 1772 devvp = NULL; 1773 } 1774 1775 /* 1776 * Clear vchain/fchain flags that might prevent final cleanup 1777 * of these chains. 1778 */ 1779 if (hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) { 1780 atomic_add_long(&hammer2_count_modified_chains, -1); 1781 atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED); 1782 hammer2_pfs_memory_wakeup(hmp->vchain.pmp); 1783 } 1784 if (hmp->vchain.flags & HAMMER2_CHAIN_UPDATE) { 1785 atomic_clear_int(&hmp->vchain.flags, HAMMER2_CHAIN_UPDATE); 1786 } 1787 1788 if (hmp->fchain.flags & HAMMER2_CHAIN_MODIFIED) { 1789 atomic_add_long(&hammer2_count_modified_chains, -1); 1790 atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_MODIFIED); 1791 hammer2_pfs_memory_wakeup(hmp->fchain.pmp); 1792 } 1793 if (hmp->fchain.flags & HAMMER2_CHAIN_UPDATE) { 1794 atomic_clear_int(&hmp->fchain.flags, HAMMER2_CHAIN_UPDATE); 1795 } 1796 1797 /* 1798 * Final drop of embedded freemap root chain to 1799 * clean up fchain.core (fchain structure is not 1800 * flagged ALLOCATED so it is cleaned out and then 1801 * left to rot). 1802 */ 1803 hammer2_chain_drop(&hmp->fchain); 1804 1805 /* 1806 * Final drop of embedded volume root chain to clean 1807 * up vchain.core (vchain structure is not flagged 1808 * ALLOCATED so it is cleaned out and then left to 1809 * rot). 1810 */ 1811 dumpcnt = 50; 1812 hammer2_dump_chain(&hmp->vchain, 0, &dumpcnt, 'v', (u_int)-1); 1813 dumpcnt = 50; 1814 hammer2_dump_chain(&hmp->fchain, 0, &dumpcnt, 'f', (u_int)-1); 1815 hammer2_dev_unlock(hmp); 1816 hammer2_chain_drop(&hmp->vchain); 1817 1818 hammer2_io_cleanup(hmp, &hmp->iotree); 1819 if (hmp->iofree_count) { 1820 kprintf("io_cleanup: %d I/O's left hanging\n", 1821 hmp->iofree_count); 1822 } 1823 1824 TAILQ_REMOVE(&hammer2_mntlist, hmp, mntentry); 1825 kmalloc_destroy(&hmp->mchain); 1826 kfree(hmp, M_HAMMER2); 1827 } 1828 1829 int 1830 hammer2_vfs_vget(struct mount *mp, struct vnode *dvp, 1831 ino_t ino, struct vnode **vpp) 1832 { 1833 hammer2_xop_lookup_t *xop; 1834 hammer2_pfs_t *pmp; 1835 hammer2_inode_t *ip; 1836 hammer2_tid_t inum; 1837 int error; 1838 1839 inum = (hammer2_tid_t)ino & HAMMER2_DIRHASH_USERMSK; 1840 1841 error = 0; 1842 pmp = MPTOPMP(mp); 1843 1844 /* 1845 * Easy if we already have it cached 1846 */ 1847 ip = hammer2_inode_lookup(pmp, inum); 1848 if (ip) { 1849 hammer2_inode_lock(ip, HAMMER2_RESOLVE_SHARED); 1850 *vpp = hammer2_igetv(ip, &error); 1851 hammer2_inode_unlock(ip); 1852 hammer2_inode_drop(ip); /* from lookup */ 1853 1854 return error; 1855 } 1856 1857 /* 1858 * Otherwise we have to find the inode 1859 */ 1860 xop = hammer2_xop_alloc(pmp->iroot, 0); 1861 xop->lhc = inum; 1862 hammer2_xop_start(&xop->head, hammer2_xop_lookup); 1863 error = hammer2_xop_collect(&xop->head, 0); 1864 1865 if (error == 0) { 1866 if (hammer2_cluster_rdata(&xop->head.cluster) == NULL) { 1867 kprintf("vget: no collect error but also no rdata\n"); 1868 kprintf("xop %p\n", xop); 1869 while ((hammer2_debug & 0x80000) == 0) { 1870 tsleep(xop, PCATCH, "wait", hz * 10); 1871 } 1872 ip = NULL; 1873 } else { 1874 ip = hammer2_inode_get(pmp, NULL, &xop->head.cluster, -1); 1875 } 1876 } 1877 hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP); 1878 1879 if (ip) { 1880 *vpp = hammer2_igetv(ip, &error); 1881 hammer2_inode_unlock(ip); 1882 } else { 1883 *vpp = NULL; 1884 error = ENOENT; 1885 } 1886 return (error); 1887 } 1888 1889 static 1890 int 1891 hammer2_vfs_root(struct mount *mp, struct vnode **vpp) 1892 { 1893 hammer2_pfs_t *pmp; 1894 struct vnode *vp; 1895 int error; 1896 1897 pmp = MPTOPMP(mp); 1898 if (pmp->iroot == NULL) { 1899 *vpp = NULL; 1900 return EINVAL; 1901 } 1902 1903 error = 0; 1904 hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED); 1905 1906 while (pmp->inode_tid == 0) { 1907 hammer2_xop_ipcluster_t *xop; 1908 hammer2_inode_meta_t *meta; 1909 1910 xop = hammer2_xop_alloc(pmp->iroot, HAMMER2_XOP_MODIFYING); 1911 hammer2_xop_start(&xop->head, hammer2_xop_ipcluster); 1912 error = hammer2_xop_collect(&xop->head, 0); 1913 1914 if (error == 0) { 1915 meta = &xop->head.cluster.focus->data->ipdata.meta; 1916 pmp->iroot->meta = *meta; 1917 pmp->inode_tid = meta->pfs_inum + 1; 1918 if (pmp->inode_tid < HAMMER2_INODE_START) 1919 pmp->inode_tid = HAMMER2_INODE_START; 1920 pmp->modify_tid = 1921 xop->head.cluster.focus->bref.modify_tid + 1; 1922 #if 0 1923 kprintf("PFS: Starting inode %jd\n", 1924 (intmax_t)pmp->inode_tid); 1925 kprintf("PMP focus good set nextino=%ld mod=%016jx\n", 1926 pmp->inode_tid, pmp->modify_tid); 1927 #endif 1928 wakeup(&pmp->iroot); 1929 1930 hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP); 1931 1932 /* 1933 * Prime the mount info. 1934 */ 1935 hammer2_vfs_statfs(mp, &mp->mnt_stat, NULL); 1936 break; 1937 } 1938 1939 /* 1940 * Loop, try again 1941 */ 1942 hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP); 1943 hammer2_inode_unlock(pmp->iroot); 1944 error = tsleep(&pmp->iroot, PCATCH, "h2root", hz); 1945 hammer2_inode_lock(pmp->iroot, HAMMER2_RESOLVE_SHARED); 1946 if (error == EINTR) 1947 break; 1948 } 1949 1950 if (error) { 1951 hammer2_inode_unlock(pmp->iroot); 1952 *vpp = NULL; 1953 } else { 1954 vp = hammer2_igetv(pmp->iroot, &error); 1955 hammer2_inode_unlock(pmp->iroot); 1956 *vpp = vp; 1957 } 1958 1959 return (error); 1960 } 1961 1962 /* 1963 * Filesystem status 1964 * 1965 * XXX incorporate ipdata->meta.inode_quota and data_quota 1966 */ 1967 static 1968 int 1969 hammer2_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred) 1970 { 1971 hammer2_pfs_t *pmp; 1972 hammer2_dev_t *hmp; 1973 hammer2_blockref_t bref; 1974 struct statfs tmp; 1975 int i; 1976 1977 /* 1978 * NOTE: iroot might not have validated the cluster yet. 1979 */ 1980 pmp = MPTOPMP(mp); 1981 1982 bzero(&tmp, sizeof(tmp)); 1983 1984 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) { 1985 hmp = pmp->pfs_hmps[i]; 1986 if (hmp == NULL) 1987 continue; 1988 if (pmp->iroot->cluster.array[i].chain) 1989 bref = pmp->iroot->cluster.array[i].chain->bref; 1990 else 1991 bzero(&bref, sizeof(bref)); 1992 1993 tmp.f_files = bref.embed.stats.inode_count; 1994 tmp.f_ffree = 0; 1995 tmp.f_blocks = hmp->voldata.allocator_size / 1996 mp->mnt_vstat.f_bsize; 1997 tmp.f_bfree = hmp->voldata.allocator_free / 1998 mp->mnt_vstat.f_bsize; 1999 tmp.f_bavail = tmp.f_bfree; 2000 2001 if (cred && cred->cr_uid != 0) { 2002 uint64_t adj; 2003 2004 /* 5% */ 2005 adj = hmp->free_reserved / mp->mnt_vstat.f_bsize; 2006 tmp.f_blocks -= adj; 2007 tmp.f_bfree -= adj; 2008 tmp.f_bavail -= adj; 2009 } 2010 2011 mp->mnt_stat.f_blocks = tmp.f_blocks; 2012 mp->mnt_stat.f_bfree = tmp.f_bfree; 2013 mp->mnt_stat.f_bavail = tmp.f_bavail; 2014 mp->mnt_stat.f_files = tmp.f_files; 2015 mp->mnt_stat.f_ffree = tmp.f_ffree; 2016 2017 *sbp = mp->mnt_stat; 2018 } 2019 return (0); 2020 } 2021 2022 static 2023 int 2024 hammer2_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred) 2025 { 2026 hammer2_pfs_t *pmp; 2027 hammer2_dev_t *hmp; 2028 hammer2_blockref_t bref; 2029 struct statvfs tmp; 2030 int i; 2031 2032 /* 2033 * NOTE: iroot might not have validated the cluster yet. 2034 */ 2035 pmp = MPTOPMP(mp); 2036 bzero(&tmp, sizeof(tmp)); 2037 2038 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) { 2039 hmp = pmp->pfs_hmps[i]; 2040 if (hmp == NULL) 2041 continue; 2042 if (pmp->iroot->cluster.array[i].chain) 2043 bref = pmp->iroot->cluster.array[i].chain->bref; 2044 else 2045 bzero(&bref, sizeof(bref)); 2046 2047 tmp.f_files = bref.embed.stats.inode_count; 2048 tmp.f_ffree = 0; 2049 tmp.f_blocks = hmp->voldata.allocator_size / 2050 mp->mnt_vstat.f_bsize; 2051 tmp.f_bfree = hmp->voldata.allocator_free / 2052 mp->mnt_vstat.f_bsize; 2053 tmp.f_bavail = tmp.f_bfree; 2054 2055 if (cred && cred->cr_uid != 0) { 2056 uint64_t adj; 2057 2058 /* 5% */ 2059 adj = hmp->free_reserved / mp->mnt_vstat.f_bsize; 2060 tmp.f_blocks -= adj; 2061 tmp.f_bfree -= adj; 2062 tmp.f_bavail -= adj; 2063 } 2064 2065 mp->mnt_vstat.f_blocks = tmp.f_blocks; 2066 mp->mnt_vstat.f_bfree = tmp.f_bfree; 2067 mp->mnt_vstat.f_bavail = tmp.f_bavail; 2068 mp->mnt_vstat.f_files = tmp.f_files; 2069 mp->mnt_vstat.f_ffree = tmp.f_ffree; 2070 2071 *sbp = mp->mnt_vstat; 2072 } 2073 return (0); 2074 } 2075 2076 /* 2077 * Mount-time recovery (RW mounts) 2078 * 2079 * Updates to the free block table are allowed to lag flushes by one 2080 * transaction. In case of a crash, then on a fresh mount we must do an 2081 * incremental scan of the last committed transaction id and make sure that 2082 * all related blocks have been marked allocated. 2083 * 2084 * The super-root topology and each PFS has its own transaction id domain, 2085 * so we must track PFS boundary transitions. 2086 */ 2087 struct hammer2_recovery_elm { 2088 TAILQ_ENTRY(hammer2_recovery_elm) entry; 2089 hammer2_chain_t *chain; 2090 hammer2_tid_t sync_tid; 2091 }; 2092 2093 TAILQ_HEAD(hammer2_recovery_list, hammer2_recovery_elm); 2094 2095 struct hammer2_recovery_info { 2096 struct hammer2_recovery_list list; 2097 hammer2_tid_t mtid; 2098 int depth; 2099 }; 2100 2101 static int hammer2_recovery_scan(hammer2_dev_t *hmp, 2102 hammer2_chain_t *parent, 2103 struct hammer2_recovery_info *info, 2104 hammer2_tid_t sync_tid); 2105 2106 #define HAMMER2_RECOVERY_MAXDEPTH 10 2107 2108 static 2109 int 2110 hammer2_recovery(hammer2_dev_t *hmp) 2111 { 2112 struct hammer2_recovery_info info; 2113 struct hammer2_recovery_elm *elm; 2114 hammer2_chain_t *parent; 2115 hammer2_tid_t sync_tid; 2116 hammer2_tid_t mirror_tid; 2117 int error; 2118 2119 hammer2_trans_init(hmp->spmp, 0); 2120 2121 sync_tid = hmp->voldata.freemap_tid; 2122 mirror_tid = hmp->voldata.mirror_tid; 2123 2124 kprintf("hammer2 mount \"%s\": ", hmp->devrepname); 2125 if (sync_tid >= mirror_tid) { 2126 kprintf(" no recovery needed\n"); 2127 } else { 2128 kprintf(" freemap recovery %016jx-%016jx\n", 2129 sync_tid + 1, mirror_tid); 2130 } 2131 2132 TAILQ_INIT(&info.list); 2133 info.depth = 0; 2134 parent = hammer2_chain_lookup_init(&hmp->vchain, 0); 2135 error = hammer2_recovery_scan(hmp, parent, &info, sync_tid); 2136 hammer2_chain_lookup_done(parent); 2137 2138 while ((elm = TAILQ_FIRST(&info.list)) != NULL) { 2139 TAILQ_REMOVE(&info.list, elm, entry); 2140 parent = elm->chain; 2141 sync_tid = elm->sync_tid; 2142 kfree(elm, M_HAMMER2); 2143 2144 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS); 2145 error |= hammer2_recovery_scan(hmp, parent, &info, 2146 hmp->voldata.freemap_tid); 2147 hammer2_chain_unlock(parent); 2148 hammer2_chain_drop(parent); /* drop elm->chain ref */ 2149 } 2150 2151 hammer2_trans_done(hmp->spmp); 2152 2153 return error; 2154 } 2155 2156 static 2157 int 2158 hammer2_recovery_scan(hammer2_dev_t *hmp, hammer2_chain_t *parent, 2159 struct hammer2_recovery_info *info, 2160 hammer2_tid_t sync_tid) 2161 { 2162 const hammer2_inode_data_t *ripdata; 2163 hammer2_chain_t *chain; 2164 hammer2_blockref_t bref; 2165 int tmp_error; 2166 int rup_error; 2167 int error; 2168 int first; 2169 2170 /* 2171 * Adjust freemap to ensure that the block(s) are marked allocated. 2172 */ 2173 if (parent->bref.type != HAMMER2_BREF_TYPE_VOLUME) { 2174 hammer2_freemap_adjust(hmp, &parent->bref, 2175 HAMMER2_FREEMAP_DORECOVER); 2176 } 2177 2178 /* 2179 * Check type for recursive scan 2180 */ 2181 switch(parent->bref.type) { 2182 case HAMMER2_BREF_TYPE_VOLUME: 2183 /* data already instantiated */ 2184 break; 2185 case HAMMER2_BREF_TYPE_INODE: 2186 /* 2187 * Must instantiate data for DIRECTDATA test and also 2188 * for recursion. 2189 */ 2190 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS); 2191 ripdata = &hammer2_chain_rdata(parent)->ipdata; 2192 if (ripdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA) { 2193 /* not applicable to recovery scan */ 2194 hammer2_chain_unlock(parent); 2195 return 0; 2196 } 2197 hammer2_chain_unlock(parent); 2198 break; 2199 case HAMMER2_BREF_TYPE_INDIRECT: 2200 /* 2201 * Must instantiate data for recursion 2202 */ 2203 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS); 2204 hammer2_chain_unlock(parent); 2205 break; 2206 case HAMMER2_BREF_TYPE_DIRENT: 2207 case HAMMER2_BREF_TYPE_DATA: 2208 case HAMMER2_BREF_TYPE_FREEMAP: 2209 case HAMMER2_BREF_TYPE_FREEMAP_NODE: 2210 case HAMMER2_BREF_TYPE_FREEMAP_LEAF: 2211 /* not applicable to recovery scan */ 2212 return 0; 2213 break; 2214 default: 2215 return HAMMER2_ERROR_BADBREF; 2216 } 2217 2218 /* 2219 * Defer operation if depth limit reached or if we are crossing a 2220 * PFS boundary. 2221 */ 2222 if (info->depth >= HAMMER2_RECOVERY_MAXDEPTH) { 2223 struct hammer2_recovery_elm *elm; 2224 2225 elm = kmalloc(sizeof(*elm), M_HAMMER2, M_ZERO | M_WAITOK); 2226 elm->chain = parent; 2227 elm->sync_tid = sync_tid; 2228 hammer2_chain_ref(parent); 2229 TAILQ_INSERT_TAIL(&info->list, elm, entry); 2230 /* unlocked by caller */ 2231 2232 return(0); 2233 } 2234 2235 2236 /* 2237 * Recursive scan of the last flushed transaction only. We are 2238 * doing this without pmp assignments so don't leave the chains 2239 * hanging around after we are done with them. 2240 * 2241 * error Cumulative error this level only 2242 * rup_error Cumulative error for recursion 2243 * tmp_error Specific non-cumulative recursion error 2244 */ 2245 chain = NULL; 2246 first = 1; 2247 rup_error = 0; 2248 error = 0; 2249 2250 for (;;) { 2251 error |= hammer2_chain_scan(parent, &chain, &bref, 2252 &first, 2253 HAMMER2_LOOKUP_NODATA); 2254 2255 /* 2256 * Problem during scan or EOF 2257 */ 2258 if (error) 2259 break; 2260 2261 /* 2262 * If this is a leaf 2263 */ 2264 if (chain == NULL) { 2265 if (bref.mirror_tid > sync_tid) { 2266 hammer2_freemap_adjust(hmp, &bref, 2267 HAMMER2_FREEMAP_DORECOVER); 2268 } 2269 continue; 2270 } 2271 2272 /* 2273 * This may or may not be a recursive node. 2274 */ 2275 atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE); 2276 if (bref.mirror_tid > sync_tid) { 2277 ++info->depth; 2278 tmp_error = hammer2_recovery_scan(hmp, chain, 2279 info, sync_tid); 2280 --info->depth; 2281 } else { 2282 tmp_error = 0; 2283 } 2284 2285 /* 2286 * Flush the recovery at the PFS boundary to stage it for 2287 * the final flush of the super-root topology. 2288 */ 2289 if (tmp_error == 0 && 2290 (bref.flags & HAMMER2_BREF_FLAG_PFSROOT) && 2291 (chain->flags & HAMMER2_CHAIN_ONFLUSH)) { 2292 hammer2_flush(chain, HAMMER2_FLUSH_TOP | 2293 HAMMER2_FLUSH_ALL); 2294 } 2295 rup_error |= tmp_error; 2296 } 2297 return ((error | rup_error) & ~HAMMER2_ERROR_EOF); 2298 } 2299 2300 /* 2301 * This fixes up an error introduced in earlier H2 implementations where 2302 * moving a PFS inode into an indirect block wound up causing the 2303 * HAMMER2_BREF_FLAG_PFSROOT flag in the bref to get cleared. 2304 */ 2305 static 2306 int 2307 hammer2_fixup_pfses(hammer2_dev_t *hmp) 2308 { 2309 const hammer2_inode_data_t *ripdata; 2310 hammer2_chain_t *parent; 2311 hammer2_chain_t *chain; 2312 hammer2_key_t key_next; 2313 hammer2_pfs_t *spmp; 2314 int error; 2315 2316 error = 0; 2317 2318 /* 2319 * Lookup mount point under the media-localized super-root. 2320 * 2321 * cluster->pmp will incorrectly point to spmp and must be fixed 2322 * up later on. 2323 */ 2324 spmp = hmp->spmp; 2325 hammer2_inode_lock(spmp->iroot, 0); 2326 parent = hammer2_inode_chain(spmp->iroot, 0, HAMMER2_RESOLVE_ALWAYS); 2327 chain = hammer2_chain_lookup(&parent, &key_next, 2328 HAMMER2_KEY_MIN, HAMMER2_KEY_MAX, 2329 &error, 0); 2330 while (chain) { 2331 if (chain->bref.type != HAMMER2_BREF_TYPE_INODE) 2332 continue; 2333 if (chain->error) { 2334 kprintf("I/O error scanning PFS labels\n"); 2335 error |= chain->error; 2336 } else if ((chain->bref.flags & 2337 HAMMER2_BREF_FLAG_PFSROOT) == 0) { 2338 int error2; 2339 2340 ripdata = &chain->data->ipdata; 2341 hammer2_trans_init(hmp->spmp, 0); 2342 error2 = hammer2_chain_modify(chain, 2343 chain->bref.modify_tid, 2344 0, 0); 2345 if (error2 == 0) { 2346 kprintf("hammer2: Correct mis-flagged PFS %s\n", 2347 ripdata->filename); 2348 chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT; 2349 } else { 2350 error |= error2; 2351 } 2352 hammer2_flush(chain, HAMMER2_FLUSH_TOP | 2353 HAMMER2_FLUSH_ALL); 2354 hammer2_trans_done(hmp->spmp); 2355 } 2356 chain = hammer2_chain_next(&parent, chain, &key_next, 2357 key_next, HAMMER2_KEY_MAX, 2358 &error, 0); 2359 } 2360 if (parent) { 2361 hammer2_chain_unlock(parent); 2362 hammer2_chain_drop(parent); 2363 } 2364 hammer2_inode_unlock(spmp->iroot); 2365 2366 return error; 2367 } 2368 2369 /* 2370 * Sync a mount point; this is called periodically on a per-mount basis from 2371 * the filesystem syncer, and whenever a user issues a sync. 2372 */ 2373 int 2374 hammer2_vfs_sync(struct mount *mp, int waitfor) 2375 { 2376 hammer2_xop_flush_t *xop; 2377 struct hammer2_sync_info info; 2378 hammer2_inode_t *iroot; 2379 hammer2_pfs_t *pmp; 2380 int flags; 2381 int error; 2382 2383 pmp = MPTOPMP(mp); 2384 iroot = pmp->iroot; 2385 KKASSERT(iroot); 2386 KKASSERT(iroot->pmp == pmp); 2387 2388 /* 2389 * We can't acquire locks on existing vnodes while in a transaction 2390 * without risking a deadlock. This assumes that vfsync() can be 2391 * called without the vnode locked (which it can in DragonFly). 2392 * Otherwise we'd have to implement a multi-pass or flag the lock 2393 * failures and retry. 2394 * 2395 * The reclamation code interlocks with the sync list's token 2396 * (by removing the vnode from the scan list) before unlocking 2397 * the inode, giving us time to ref the inode. 2398 */ 2399 /*flags = VMSC_GETVP;*/ 2400 flags = 0; 2401 if (waitfor & MNT_LAZY) 2402 flags |= VMSC_ONEPASS; 2403 2404 /* 2405 * Flush vnodes individually using a normal transaction to avoid 2406 * stalling any concurrent operations. This will flush the related 2407 * buffer cache buffers and inodes to the media. 2408 * 2409 * For efficiency do an async pass before making sure with a 2410 * synchronous pass on all related buffer cache buffers. 2411 */ 2412 hammer2_trans_init(pmp, 0); 2413 2414 info.error = 0; 2415 2416 info.waitfor = MNT_NOWAIT; 2417 info.pass = 1; 2418 vsyncscan(mp, flags | VMSC_NOWAIT, hammer2_sync_scan2, &info); 2419 2420 /* 2421 * Now do two passes making sure we get everything. The first pass 2422 * vfsync()s dirty vnodes. The second pass waits for their I/O's 2423 * to finish and cleans up the dirty flag on the vnode. 2424 */ 2425 info.pass = 1; 2426 info.waitfor = MNT_WAIT; 2427 vsyncscan(mp, flags, hammer2_sync_scan2, &info); 2428 2429 info.pass = 2; 2430 info.waitfor = MNT_WAIT; 2431 vsyncscan(mp, flags, hammer2_sync_scan2, &info); 2432 2433 /* 2434 * We must also run the sideq to handle any disconnected inodes 2435 * as the vnode scan will not see these. 2436 */ 2437 hammer2_inode_run_sideq(pmp, 1); 2438 hammer2_trans_done(pmp); 2439 2440 /* 2441 * Start our flush transaction and flush the root topology down to 2442 * the inodes, but not the inodes themselves (which we already flushed 2443 * above). Any concurrent activity effecting inode contents will not 2444 * 2445 * The flush sequence will 2446 * 2447 * NOTE! It is still possible for the paging code to push pages 2448 * out via a UIO_NOCOPY hammer2_vop_write() during the main 2449 * flush. 2450 */ 2451 hammer2_trans_init(pmp, HAMMER2_TRANS_ISFLUSH); 2452 2453 /* 2454 * sync dirty vnodes again while in the flush transaction. This is 2455 * currently an expensive shim to makre sure the logical topology is 2456 * completely consistent before we flush the volume header. 2457 */ 2458 info.pass = 1; 2459 info.waitfor = MNT_WAIT; 2460 vsyncscan(mp, flags, hammer2_sync_scan2, &info); 2461 2462 info.pass = 2; 2463 info.waitfor = MNT_WAIT; 2464 vsyncscan(mp, flags, hammer2_sync_scan2, &info); 2465 2466 /* 2467 * Use the XOP interface to concurrently flush all nodes to 2468 * synchronize the PFSROOT subtopology to the media. A standard 2469 * end-of-scan ENOENT error indicates cluster sufficiency. 2470 * 2471 * Note that this flush will not be visible on crash recovery until 2472 * we flush the super-root topology in the next loop. 2473 * 2474 * XXX For now wait for all flushes to complete. 2475 */ 2476 if (iroot) { 2477 /* 2478 * If unmounting try to flush everything including any 2479 * sub-trees under inodes, just in case there is dangling 2480 * modified data, as a safety. Otherwise just flush up to 2481 * the inodes in this stage. 2482 */ 2483 if (mp->mnt_kern_flag & MNTK_UNMOUNT) { 2484 xop = hammer2_xop_alloc(iroot, HAMMER2_XOP_MODIFYING | 2485 HAMMER2_XOP_VOLHDR); 2486 } else { 2487 xop = hammer2_xop_alloc(iroot, HAMMER2_XOP_MODIFYING | 2488 HAMMER2_XOP_INODE_STOP | 2489 HAMMER2_XOP_VOLHDR); 2490 } 2491 hammer2_xop_start(&xop->head, hammer2_inode_xop_flush); 2492 error = hammer2_xop_collect(&xop->head, 2493 HAMMER2_XOP_COLLECT_WAITALL); 2494 hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP); 2495 if (error == HAMMER2_ERROR_ENOENT) 2496 error = 0; 2497 else 2498 error = hammer2_error_to_errno(error); 2499 } else { 2500 error = 0; 2501 } 2502 hammer2_trans_done(pmp); 2503 2504 return (error); 2505 } 2506 2507 /* 2508 * Sync passes. 2509 * 2510 * Note that we ignore the tranasction mtid we got above. Instead, 2511 * each vfsync below will ultimately get its own via TRANS_BUFCACHE 2512 * transactions. 2513 * 2514 * WARNING! The frontend might be waiting on chnmem (limit_dirty_chains) 2515 * while holding a vnode locked. When this situation occurs we cannot 2516 * safely test whether it is ok to clear the dirty bit on the vnode. 2517 * However, we can still flush the inode's topology. 2518 */ 2519 static int 2520 hammer2_sync_scan2(struct mount *mp, struct vnode *vp, void *data) 2521 { 2522 struct hammer2_sync_info *info = data; 2523 hammer2_inode_t *ip; 2524 int error; 2525 2526 /* 2527 * Degenerate cases. Note that ip == NULL typically means the 2528 * syncer vnode itself and we don't want to vclrisdirty() in that 2529 * situation. 2530 */ 2531 ip = VTOI(vp); 2532 if (ip == NULL) { 2533 return(0); 2534 } 2535 if (vp->v_type == VNON || vp->v_type == VBAD) { 2536 vclrisdirty(vp); 2537 return(0); 2538 } 2539 2540 /* 2541 * Synchronize the buffer cche and inode meta-data to the backing 2542 * chain topology. 2543 * 2544 * vfsync is not necessarily synchronous, so it is best NOT to try 2545 * to flush the backing topology to media at this point. 2546 */ 2547 hammer2_inode_ref(ip); 2548 if ((ip->flags & (HAMMER2_INODE_RESIZED|HAMMER2_INODE_MODIFIED)) || 2549 !RB_EMPTY(&vp->v_rbdirty_tree)) { 2550 if (info->pass == 1) 2551 vfsync(vp, info->waitfor, 1, NULL, NULL); 2552 else 2553 bio_track_wait(&vp->v_track_write, 0, 0); 2554 } 2555 if (info->pass == 2 && (vp->v_flag & VISDIRTY)) { 2556 /* 2557 * v_token is needed to interlock v_rbdirty_tree. 2558 */ 2559 lwkt_gettoken(&vp->v_token); 2560 hammer2_inode_lock(ip, 0); 2561 hammer2_inode_chain_sync(ip); 2562 hammer2_inode_chain_flush(ip); 2563 if ((ip->flags & (HAMMER2_INODE_MODIFIED | 2564 HAMMER2_INODE_RESIZED | 2565 HAMMER2_INODE_DIRTYDATA)) == 0 && 2566 RB_EMPTY(&vp->v_rbdirty_tree) && 2567 !bio_track_active(&vp->v_track_write)) { 2568 vclrisdirty(vp); 2569 } 2570 hammer2_inode_unlock(ip); 2571 lwkt_reltoken(&vp->v_token); 2572 } 2573 hammer2_inode_drop(ip); 2574 #if 1 2575 error = 0; 2576 if (error) 2577 info->error = error; 2578 #endif 2579 return(0); 2580 } 2581 2582 static 2583 int 2584 hammer2_vfs_vptofh(struct vnode *vp, struct fid *fhp) 2585 { 2586 hammer2_inode_t *ip; 2587 2588 KKASSERT(MAXFIDSZ >= 16); 2589 ip = VTOI(vp); 2590 fhp->fid_len = offsetof(struct fid, fid_data[16]); 2591 fhp->fid_ext = 0; 2592 ((hammer2_tid_t *)fhp->fid_data)[0] = ip->meta.inum; 2593 ((hammer2_tid_t *)fhp->fid_data)[1] = 0; 2594 2595 return 0; 2596 } 2597 2598 static 2599 int 2600 hammer2_vfs_fhtovp(struct mount *mp, struct vnode *rootvp, 2601 struct fid *fhp, struct vnode **vpp) 2602 { 2603 hammer2_pfs_t *pmp; 2604 hammer2_tid_t inum; 2605 int error; 2606 2607 pmp = MPTOPMP(mp); 2608 inum = ((hammer2_tid_t *)fhp->fid_data)[0] & HAMMER2_DIRHASH_USERMSK; 2609 if (vpp) { 2610 if (inum == 1) 2611 error = hammer2_vfs_root(mp, vpp); 2612 else 2613 error = hammer2_vfs_vget(mp, NULL, inum, vpp); 2614 } else { 2615 error = 0; 2616 } 2617 if (error) 2618 kprintf("fhtovp: %016jx -> %p, %d\n", inum, *vpp, error); 2619 return error; 2620 } 2621 2622 static 2623 int 2624 hammer2_vfs_checkexp(struct mount *mp, struct sockaddr *nam, 2625 int *exflagsp, struct ucred **credanonp) 2626 { 2627 hammer2_pfs_t *pmp; 2628 struct netcred *np; 2629 int error; 2630 2631 pmp = MPTOPMP(mp); 2632 np = vfs_export_lookup(mp, &pmp->export, nam); 2633 if (np) { 2634 *exflagsp = np->netc_exflags; 2635 *credanonp = &np->netc_anon; 2636 error = 0; 2637 } else { 2638 error = EACCES; 2639 } 2640 return error; 2641 } 2642 2643 /* 2644 * Support code for hammer2_vfs_mount(). Read, verify, and install the volume 2645 * header into the HMP 2646 * 2647 * XXX read four volhdrs and use the one with the highest TID whos CRC 2648 * matches. 2649 * 2650 * XXX check iCRCs. 2651 * 2652 * XXX For filesystems w/ less than 4 volhdrs, make sure to not write to 2653 * nonexistant locations. 2654 * 2655 * XXX Record selected volhdr and ring updates to each of 4 volhdrs 2656 */ 2657 static 2658 int 2659 hammer2_install_volume_header(hammer2_dev_t *hmp) 2660 { 2661 hammer2_volume_data_t *vd; 2662 struct buf *bp; 2663 hammer2_crc32_t crc0, crc, bcrc0, bcrc; 2664 int error_reported; 2665 int error; 2666 int valid; 2667 int i; 2668 2669 error_reported = 0; 2670 error = 0; 2671 valid = 0; 2672 bp = NULL; 2673 2674 /* 2675 * There are up to 4 copies of the volume header (syncs iterate 2676 * between them so there is no single master). We don't trust the 2677 * volu_size field so we don't know precisely how large the filesystem 2678 * is, so depend on the OS to return an error if we go beyond the 2679 * block device's EOF. 2680 */ 2681 for (i = 0; i < HAMMER2_NUM_VOLHDRS; i++) { 2682 error = bread(hmp->devvp, i * HAMMER2_ZONE_BYTES64, 2683 HAMMER2_VOLUME_BYTES, &bp); 2684 if (error) { 2685 brelse(bp); 2686 bp = NULL; 2687 continue; 2688 } 2689 2690 vd = (struct hammer2_volume_data *) bp->b_data; 2691 if ((vd->magic != HAMMER2_VOLUME_ID_HBO) && 2692 (vd->magic != HAMMER2_VOLUME_ID_ABO)) { 2693 brelse(bp); 2694 bp = NULL; 2695 continue; 2696 } 2697 2698 if (vd->magic == HAMMER2_VOLUME_ID_ABO) { 2699 /* XXX: Reversed-endianness filesystem */ 2700 kprintf("hammer2: reverse-endian filesystem detected"); 2701 brelse(bp); 2702 bp = NULL; 2703 continue; 2704 } 2705 2706 crc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT0]; 2707 crc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC0_OFF, 2708 HAMMER2_VOLUME_ICRC0_SIZE); 2709 bcrc = vd->icrc_sects[HAMMER2_VOL_ICRC_SECT1]; 2710 bcrc0 = hammer2_icrc32(bp->b_data + HAMMER2_VOLUME_ICRC1_OFF, 2711 HAMMER2_VOLUME_ICRC1_SIZE); 2712 if ((crc0 != crc) || (bcrc0 != bcrc)) { 2713 kprintf("hammer2 volume header crc " 2714 "mismatch copy #%d %08x/%08x\n", 2715 i, crc0, crc); 2716 error_reported = 1; 2717 brelse(bp); 2718 bp = NULL; 2719 continue; 2720 } 2721 if (valid == 0 || hmp->voldata.mirror_tid < vd->mirror_tid) { 2722 valid = 1; 2723 hmp->voldata = *vd; 2724 hmp->volhdrno = i; 2725 } 2726 brelse(bp); 2727 bp = NULL; 2728 } 2729 if (valid) { 2730 hmp->volsync = hmp->voldata; 2731 hmp->free_reserved = hmp->voldata.allocator_size / 20; 2732 error = 0; 2733 if (error_reported || bootverbose || 1) { /* 1/DEBUG */ 2734 kprintf("hammer2: using volume header #%d\n", 2735 hmp->volhdrno); 2736 } 2737 } else { 2738 error = EINVAL; 2739 kprintf("hammer2: no valid volume headers found!\n"); 2740 } 2741 return (error); 2742 } 2743 2744 /* 2745 * This handles hysteresis on regular file flushes. Because the BIOs are 2746 * routed to a thread it is possible for an excessive number to build up 2747 * and cause long front-end stalls long before the runningbuffspace limit 2748 * is hit, so we implement hammer2_flush_pipe to control the 2749 * hysteresis. 2750 * 2751 * This is a particular problem when compression is used. 2752 */ 2753 void 2754 hammer2_lwinprog_ref(hammer2_pfs_t *pmp) 2755 { 2756 atomic_add_int(&pmp->count_lwinprog, 1); 2757 } 2758 2759 void 2760 hammer2_lwinprog_drop(hammer2_pfs_t *pmp) 2761 { 2762 int lwinprog; 2763 2764 lwinprog = atomic_fetchadd_int(&pmp->count_lwinprog, -1); 2765 if ((lwinprog & HAMMER2_LWINPROG_WAITING) && 2766 (lwinprog & HAMMER2_LWINPROG_MASK) <= hammer2_flush_pipe * 2 / 3) { 2767 atomic_clear_int(&pmp->count_lwinprog, 2768 HAMMER2_LWINPROG_WAITING); 2769 wakeup(&pmp->count_lwinprog); 2770 } 2771 if ((lwinprog & HAMMER2_LWINPROG_WAITING0) && 2772 (lwinprog & HAMMER2_LWINPROG_MASK) <= 0) { 2773 atomic_clear_int(&pmp->count_lwinprog, 2774 HAMMER2_LWINPROG_WAITING0); 2775 wakeup(&pmp->count_lwinprog); 2776 } 2777 } 2778 2779 void 2780 hammer2_lwinprog_wait(hammer2_pfs_t *pmp, int flush_pipe) 2781 { 2782 int lwinprog; 2783 int lwflag = (flush_pipe) ? HAMMER2_LWINPROG_WAITING : 2784 HAMMER2_LWINPROG_WAITING0; 2785 2786 for (;;) { 2787 lwinprog = pmp->count_lwinprog; 2788 cpu_ccfence(); 2789 if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe) 2790 break; 2791 tsleep_interlock(&pmp->count_lwinprog, 0); 2792 atomic_set_int(&pmp->count_lwinprog, lwflag); 2793 lwinprog = pmp->count_lwinprog; 2794 if ((lwinprog & HAMMER2_LWINPROG_MASK) <= flush_pipe) 2795 break; 2796 tsleep(&pmp->count_lwinprog, PINTERLOCKED, "h2wpipe", hz); 2797 } 2798 } 2799 2800 /* 2801 * Manage excessive memory resource use for chain and related 2802 * structures. 2803 */ 2804 void 2805 hammer2_pfs_memory_wait(hammer2_pfs_t *pmp) 2806 { 2807 uint32_t waiting; 2808 uint32_t count; 2809 uint32_t limit; 2810 #if 0 2811 static int zzticks; 2812 #endif 2813 2814 /* 2815 * Atomic check condition and wait. Also do an early speedup of 2816 * the syncer to try to avoid hitting the wait. 2817 */ 2818 for (;;) { 2819 waiting = pmp->inmem_dirty_chains; 2820 cpu_ccfence(); 2821 count = waiting & HAMMER2_DIRTYCHAIN_MASK; 2822 2823 limit = pmp->mp->mnt_nvnodelistsize / 10; 2824 if (limit < hammer2_limit_dirty_chains) 2825 limit = hammer2_limit_dirty_chains; 2826 if (limit < 1000) 2827 limit = 1000; 2828 2829 #if 0 2830 if ((int)(ticks - zzticks) > hz) { 2831 zzticks = ticks; 2832 kprintf("count %ld %ld\n", count, limit); 2833 } 2834 #endif 2835 2836 /* 2837 * Block if there are too many dirty chains present, wait 2838 * for the flush to clean some out. 2839 */ 2840 if (count > limit) { 2841 tsleep_interlock(&pmp->inmem_dirty_chains, 0); 2842 if (atomic_cmpset_int(&pmp->inmem_dirty_chains, 2843 waiting, 2844 waiting | HAMMER2_DIRTYCHAIN_WAITING)) { 2845 speedup_syncer(pmp->mp); 2846 tsleep(&pmp->inmem_dirty_chains, PINTERLOCKED, 2847 "chnmem", hz); 2848 } 2849 continue; /* loop on success or fail */ 2850 } 2851 2852 /* 2853 * Try to start an early flush before we are forced to block. 2854 */ 2855 if (count > limit * 5 / 10) 2856 speedup_syncer(pmp->mp); 2857 break; 2858 } 2859 } 2860 2861 void 2862 hammer2_pfs_memory_inc(hammer2_pfs_t *pmp) 2863 { 2864 if (pmp) { 2865 atomic_add_int(&pmp->inmem_dirty_chains, 1); 2866 } 2867 } 2868 2869 void 2870 hammer2_pfs_memory_wakeup(hammer2_pfs_t *pmp) 2871 { 2872 uint32_t waiting; 2873 2874 if (pmp) { 2875 waiting = atomic_fetchadd_int(&pmp->inmem_dirty_chains, -1); 2876 /* don't need --waiting to test flag */ 2877 if (waiting & HAMMER2_DIRTYCHAIN_WAITING) { 2878 atomic_clear_int(&pmp->inmem_dirty_chains, 2879 HAMMER2_DIRTYCHAIN_WAITING); 2880 wakeup(&pmp->inmem_dirty_chains); 2881 } 2882 } 2883 } 2884 2885 /* 2886 * Returns 0 if the filesystem has tons of free space 2887 * Returns 1 if the filesystem has less than 10% remaining 2888 * Returns 2 if the filesystem has less than 2%/5% (user/root) remaining. 2889 */ 2890 int 2891 hammer2_vfs_enospace(hammer2_inode_t *ip, off_t bytes, struct ucred *cred) 2892 { 2893 hammer2_pfs_t *pmp; 2894 hammer2_dev_t *hmp; 2895 hammer2_off_t free_reserved; 2896 hammer2_off_t free_nominal; 2897 int i; 2898 2899 pmp = ip->pmp; 2900 2901 if (pmp->free_ticks == 0 || pmp->free_ticks != ticks) { 2902 free_reserved = HAMMER2_SEGSIZE; 2903 free_nominal = 0x7FFFFFFFFFFFFFFFLLU; 2904 for (i = 0; i < pmp->iroot->cluster.nchains; ++i) { 2905 hmp = pmp->pfs_hmps[i]; 2906 if (hmp == NULL) 2907 continue; 2908 if (pmp->pfs_types[i] != HAMMER2_PFSTYPE_MASTER && 2909 pmp->pfs_types[i] != HAMMER2_PFSTYPE_SOFT_MASTER) 2910 continue; 2911 2912 if (free_nominal > hmp->voldata.allocator_free) 2913 free_nominal = hmp->voldata.allocator_free; 2914 if (free_reserved < hmp->free_reserved) 2915 free_reserved = hmp->free_reserved; 2916 } 2917 2918 /* 2919 * SMP races ok 2920 */ 2921 pmp->free_reserved = free_reserved; 2922 pmp->free_nominal = free_nominal; 2923 pmp->free_ticks = ticks; 2924 } else { 2925 free_reserved = pmp->free_reserved; 2926 free_nominal = pmp->free_nominal; 2927 } 2928 if (cred && cred->cr_uid != 0) { 2929 if ((int64_t)(free_nominal - bytes) < 2930 (int64_t)free_reserved) { 2931 return 2; 2932 } 2933 } else { 2934 if ((int64_t)(free_nominal - bytes) < 2935 (int64_t)free_reserved / 2) { 2936 return 2; 2937 } 2938 } 2939 if ((int64_t)(free_nominal - bytes) < (int64_t)free_reserved * 2) 2940 return 1; 2941 return 0; 2942 } 2943 2944 /* 2945 * Debugging 2946 */ 2947 void 2948 hammer2_dump_chain(hammer2_chain_t *chain, int tab, int *countp, char pfx, 2949 u_int flags) 2950 { 2951 hammer2_chain_t *scan; 2952 hammer2_chain_t *parent; 2953 2954 --*countp; 2955 if (*countp == 0) { 2956 kprintf("%*.*s...\n", tab, tab, ""); 2957 return; 2958 } 2959 if (*countp < 0) 2960 return; 2961 kprintf("%*.*s%c-chain %p.%d %016jx/%d mir=%016jx\n", 2962 tab, tab, "", pfx, 2963 chain, chain->bref.type, 2964 chain->bref.key, chain->bref.keybits, 2965 chain->bref.mirror_tid); 2966 2967 kprintf("%*.*s [%08x] (%s) refs=%d", 2968 tab, tab, "", 2969 chain->flags, 2970 ((chain->bref.type == HAMMER2_BREF_TYPE_INODE && 2971 chain->data) ? (char *)chain->data->ipdata.filename : "?"), 2972 chain->refs); 2973 2974 parent = chain->parent; 2975 if (parent) 2976 kprintf("\n%*.*s p=%p [pflags %08x prefs %d", 2977 tab, tab, "", 2978 parent, parent->flags, parent->refs); 2979 if (RB_EMPTY(&chain->core.rbtree)) { 2980 kprintf("\n"); 2981 } else { 2982 kprintf(" {\n"); 2983 RB_FOREACH(scan, hammer2_chain_tree, &chain->core.rbtree) { 2984 if ((scan->flags & flags) || flags == (u_int)-1) { 2985 hammer2_dump_chain(scan, tab + 4, countp, 'a', 2986 flags); 2987 } 2988 } 2989 if (chain->bref.type == HAMMER2_BREF_TYPE_INODE && chain->data) 2990 kprintf("%*.*s}(%s)\n", tab, tab, "", 2991 chain->data->ipdata.filename); 2992 else 2993 kprintf("%*.*s}\n", tab, tab, ""); 2994 } 2995 } 2996