xref: /dflybsd-src/sys/vfs/hammer2/hammer2_strategy.c (revision d89a0e31a842d13f34830f543170e9d31a70afd9)
1 /*
2  * Copyright (c) 2011-2018 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  * by Daniel Flores (GSOC 2013 - mentored by Matthew Dillon, compression)
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 /*
37  * This module handles low level logical file I/O (strategy) which backs
38  * the logical buffer cache.
39  *
40  * [De]compression, zero-block, check codes, and buffer cache operations
41  * for file data is handled here.
42  *
43  * Live dedup makes its home here as well.
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/kernel.h>
49 #include <sys/fcntl.h>
50 #include <sys/buf.h>
51 #include <sys/proc.h>
52 #include <sys/namei.h>
53 #include <sys/mount.h>
54 #include <sys/vnode.h>
55 #include <sys/mountctl.h>
56 #include <sys/dirent.h>
57 #include <sys/uio.h>
58 #include <sys/objcache.h>
59 #include <sys/event.h>
60 #include <sys/file.h>
61 #include <vfs/fifofs/fifo.h>
62 
63 #include "hammer2.h"
64 #include "hammer2_lz4.h"
65 
66 #include "zlib/hammer2_zlib.h"
67 
68 struct objcache *cache_buffer_read;
69 struct objcache *cache_buffer_write;
70 
71 /*
72  * Strategy code (async logical file buffer I/O from system)
73  *
74  * Except for the transaction init (which should normally not block),
75  * we essentially run the strategy operation asynchronously via a XOP.
76  *
77  * WARNING! The XOP deals with buffer synchronization.  It is not synchronized
78  *	    to the current cpu.
79  *
80  * XXX This isn't supposed to be able to deadlock against vfs_sync vfsync()
81  *     calls but it has in the past when multiple flushes are queued.
82  *
83  * XXX We currently terminate the transaction once we get a quorum, otherwise
84  *     the frontend can stall, but this can leave the remaining nodes with
85  *     a potential flush conflict.  We need to delay flushes on those nodes
86  *     until running transactions complete separately from the normal
87  *     transaction sequencing.  FIXME TODO.
88  */
89 static int hammer2_strategy_read(struct vop_strategy_args *ap);
90 static int hammer2_strategy_write(struct vop_strategy_args *ap);
91 static void hammer2_strategy_read_completion(hammer2_chain_t *focus,
92 				const char *data, struct bio *bio);
93 
94 static hammer2_off_t hammer2_dedup_lookup(hammer2_dev_t *hmp,
95 			char **datap, int pblksize);
96 
97 int
98 hammer2_vop_strategy(struct vop_strategy_args *ap)
99 {
100 	struct bio *biop;
101 	struct buf *bp;
102 	int error;
103 
104 	biop = ap->a_bio;
105 	bp = biop->bio_buf;
106 
107 	switch(bp->b_cmd) {
108 	case BUF_CMD_READ:
109 		error = hammer2_strategy_read(ap);
110 		++hammer2_iod_file_read;
111 		break;
112 	case BUF_CMD_WRITE:
113 		error = hammer2_strategy_write(ap);
114 		++hammer2_iod_file_write;
115 		break;
116 	default:
117 		bp->b_error = error = EINVAL;
118 		bp->b_flags |= B_ERROR;
119 		biodone(biop);
120 		break;
121 	}
122 	return (error);
123 }
124 
125 /*
126  * Return the largest contiguous physical disk range for the logical
127  * request, in bytes.
128  *
129  * (struct vnode *vp, off_t loffset, off_t *doffsetp, int *runp, int *runb)
130  *
131  * Basically disabled, the logical buffer write thread has to deal with
132  * buffers one-at-a-time.  Note that this should not prevent cluster_read()
133  * from reading-ahead, it simply prevents it from trying form a single
134  * cluster buffer for the logical request.  H2 already uses 64KB buffers!
135  */
136 int
137 hammer2_vop_bmap(struct vop_bmap_args *ap)
138 {
139 	*ap->a_doffsetp = NOOFFSET;
140 	if (ap->a_runp)
141 		*ap->a_runp = 0;
142 	if (ap->a_runb)
143 		*ap->a_runb = 0;
144 	return (EOPNOTSUPP);
145 }
146 
147 /****************************************************************************
148  *				READ SUPPORT				    *
149  ****************************************************************************/
150 /*
151  * Callback used in read path in case that a block is compressed with LZ4.
152  */
153 static
154 void
155 hammer2_decompress_LZ4_callback(const char *data, u_int bytes, struct bio *bio)
156 {
157 	struct buf *bp;
158 	char *compressed_buffer;
159 	int compressed_size;
160 	int result;
161 
162 	bp = bio->bio_buf;
163 
164 #if 0
165 	if bio->bio_caller_info2.index &&
166 	      bio->bio_caller_info1.uvalue32 !=
167 	      crc32(bp->b_data, bp->b_bufsize) --- return error
168 #endif
169 
170 	KKASSERT(bp->b_bufsize <= HAMMER2_PBUFSIZE);
171 	compressed_size = *(const int *)data;
172 	KKASSERT((uint32_t)compressed_size <= bytes - sizeof(int));
173 
174 	compressed_buffer = objcache_get(cache_buffer_read, M_INTWAIT);
175 	result = LZ4_decompress_safe(__DECONST(char *, &data[sizeof(int)]),
176 				     compressed_buffer,
177 				     compressed_size,
178 				     bp->b_bufsize);
179 	if (result < 0) {
180 		kprintf("READ PATH: Error during decompression."
181 			"bio %016jx/%d\n",
182 			(intmax_t)bio->bio_offset, bytes);
183 		/* make sure it isn't random garbage */
184 		bzero(compressed_buffer, bp->b_bufsize);
185 	}
186 	KKASSERT(result <= bp->b_bufsize);
187 	bcopy(compressed_buffer, bp->b_data, bp->b_bufsize);
188 	if (result < bp->b_bufsize)
189 		bzero(bp->b_data + result, bp->b_bufsize - result);
190 	objcache_put(cache_buffer_read, compressed_buffer);
191 	bp->b_resid = 0;
192 	bp->b_flags |= B_AGE;
193 }
194 
195 /*
196  * Callback used in read path in case that a block is compressed with ZLIB.
197  * It is almost identical to LZ4 callback, so in theory they can be unified,
198  * but we didn't want to make changes in bio structure for that.
199  */
200 static
201 void
202 hammer2_decompress_ZLIB_callback(const char *data, u_int bytes, struct bio *bio)
203 {
204 	struct buf *bp;
205 	char *compressed_buffer;
206 	z_stream strm_decompress;
207 	int result;
208 	int ret;
209 
210 	bp = bio->bio_buf;
211 
212 	KKASSERT(bp->b_bufsize <= HAMMER2_PBUFSIZE);
213 	strm_decompress.avail_in = 0;
214 	strm_decompress.next_in = Z_NULL;
215 
216 	ret = inflateInit(&strm_decompress);
217 
218 	if (ret != Z_OK)
219 		kprintf("HAMMER2 ZLIB: Fatal error in inflateInit.\n");
220 
221 	compressed_buffer = objcache_get(cache_buffer_read, M_INTWAIT);
222 	strm_decompress.next_in = __DECONST(char *, data);
223 
224 	/* XXX supply proper size, subset of device bp */
225 	strm_decompress.avail_in = bytes;
226 	strm_decompress.next_out = compressed_buffer;
227 	strm_decompress.avail_out = bp->b_bufsize;
228 
229 	ret = inflate(&strm_decompress, Z_FINISH);
230 	if (ret != Z_STREAM_END) {
231 		kprintf("HAMMER2 ZLIB: Fatar error during decompression.\n");
232 		bzero(compressed_buffer, bp->b_bufsize);
233 	}
234 	bcopy(compressed_buffer, bp->b_data, bp->b_bufsize);
235 	result = bp->b_bufsize - strm_decompress.avail_out;
236 	if (result < bp->b_bufsize)
237 		bzero(bp->b_data + result, strm_decompress.avail_out);
238 	objcache_put(cache_buffer_read, compressed_buffer);
239 	ret = inflateEnd(&strm_decompress);
240 
241 	bp->b_resid = 0;
242 	bp->b_flags |= B_AGE;
243 }
244 
245 /*
246  * Logical buffer I/O, async read.
247  */
248 static
249 int
250 hammer2_strategy_read(struct vop_strategy_args *ap)
251 {
252 	hammer2_xop_strategy_t *xop;
253 	struct buf *bp;
254 	struct bio *bio;
255 	struct bio *nbio;
256 	hammer2_inode_t *ip;
257 	hammer2_key_t lbase;
258 
259 	bio = ap->a_bio;
260 	bp = bio->bio_buf;
261 	ip = VTOI(ap->a_vp);
262 	nbio = push_bio(bio);
263 
264 	lbase = bio->bio_offset;
265 	KKASSERT(((int)lbase & HAMMER2_PBUFMASK) == 0);
266 
267 	xop = hammer2_xop_alloc(ip, HAMMER2_XOP_STRATEGY);
268 	xop->finished = 0;
269 	xop->bio = bio;
270 	xop->lbase = lbase;
271 	hammer2_mtx_init(&xop->lock, "h2bior");
272 	hammer2_xop_start(&xop->head, &hammer2_strategy_read_desc);
273 	/* asynchronous completion */
274 
275 	return(0);
276 }
277 
278 /*
279  * Per-node XOP (threaded), do a synchronous lookup of the chain and
280  * its data.  The frontend is asynchronous, so we are also responsible
281  * for racing to terminate the frontend.
282  */
283 void
284 hammer2_xop_strategy_read(hammer2_xop_t *arg, void *scratch, int clindex)
285 {
286 	hammer2_xop_strategy_t *xop = &arg->xop_strategy;
287 	hammer2_chain_t *parent;
288 	hammer2_chain_t *chain;
289 	hammer2_chain_t *focus;
290 	hammer2_key_t key_dummy;
291 	hammer2_key_t lbase;
292 	struct bio *bio;
293 	struct buf *bp;
294 	const char *data;
295 	int error;
296 
297 	/*
298 	 * Note that we can race completion of the bio supplied by
299 	 * the front-end so we cannot access it until we determine
300 	 * that we are the ones finishing it up.
301 	 */
302 	lbase = xop->lbase;
303 
304 	/*
305 	 * This is difficult to optimize.  The logical buffer might be
306 	 * partially dirty (contain dummy zero-fill pages), which would
307 	 * mess up our crc calculation if we were to try a direct read.
308 	 * So for now we always double-buffer through the underlying
309 	 * storage.
310 	 *
311 	 * If not for the above problem we could conditionalize on
312 	 * (1) 64KB buffer, (2) one chain (not multi-master) and
313 	 * (3) !hammer2_double_buffer, and issue a direct read into the
314 	 * logical buffer.
315 	 */
316 	parent = hammer2_inode_chain(xop->head.ip1, clindex,
317 				     HAMMER2_RESOLVE_ALWAYS |
318 				     HAMMER2_RESOLVE_SHARED);
319 	if (parent) {
320 		chain = hammer2_chain_lookup(&parent, &key_dummy,
321 					     lbase, lbase,
322 					     &error,
323 					     HAMMER2_LOOKUP_ALWAYS |
324 					     HAMMER2_LOOKUP_SHARED);
325 		if (chain)
326 			error = chain->error;
327 	} else {
328 		error = HAMMER2_ERROR_EIO;
329 		chain = NULL;
330 	}
331 	error = hammer2_xop_feed(&xop->head, chain, clindex, error);
332 	if (chain) {
333 		hammer2_chain_unlock(chain);
334 		hammer2_chain_drop(chain);
335 	}
336 	if (parent) {
337 		hammer2_chain_unlock(parent);
338 		hammer2_chain_drop(parent);
339 	}
340 	chain = NULL;	/* safety */
341 	parent = NULL;	/* safety */
342 
343 	/*
344 	 * Race to finish the frontend.  First-to-complete.  bio is only
345 	 * valid if we are determined to be the ones able to complete
346 	 * the operation.
347 	 */
348 	if (xop->finished)
349 		return;
350 	hammer2_mtx_ex(&xop->lock);
351 	if (xop->finished) {
352 		hammer2_mtx_unlock(&xop->lock);
353 		return;
354 	}
355 	bio = xop->bio;
356 	bp = bio->bio_buf;
357 	bkvasync(bp);
358 
359 	/*
360 	 * Async operation has not completed and we now own the lock.
361 	 * Determine if we can complete the operation by issuing the
362 	 * frontend collection non-blocking.
363 	 *
364 	 * H2 double-buffers the data, setting B_NOTMETA on the logical
365 	 * buffer hints to the OS that the logical buffer should not be
366 	 * swapcached (since the device buffer can be).
367 	 *
368 	 * Also note that even for compressed data we would rather the
369 	 * kernel cache/swapcache device buffers more and (decompressed)
370 	 * logical buffers less, since that will significantly improve
371 	 * the amount of end-user data that can be cached.
372 	 *
373 	 * NOTE: The chain->data for xop->head.cluster.focus will be
374 	 *	 synchronized to the current cpu by xop_collect(),
375 	 *	 but other chains in the cluster might not be.
376 	 */
377 	error = hammer2_xop_collect(&xop->head, HAMMER2_XOP_COLLECT_NOWAIT);
378 
379 	switch(error) {
380 	case 0:
381 		xop->finished = 1;
382 		hammer2_mtx_unlock(&xop->lock);
383 		bp->b_flags |= B_NOTMETA;
384 		focus = xop->head.cluster.focus;
385 		data = hammer2_xop_gdata(&xop->head)->buf;
386 		hammer2_strategy_read_completion(focus, data, xop->bio);
387 		hammer2_xop_pdata(&xop->head);
388 		biodone(bio);
389 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
390 		break;
391 	case HAMMER2_ERROR_ENOENT:
392 		xop->finished = 1;
393 		hammer2_mtx_unlock(&xop->lock);
394 		bp->b_flags |= B_NOTMETA;
395 		bp->b_resid = 0;
396 		bp->b_error = 0;
397 		bzero(bp->b_data, bp->b_bcount);
398 		biodone(bio);
399 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
400 		break;
401 	case HAMMER2_ERROR_EINPROGRESS:
402 		hammer2_mtx_unlock(&xop->lock);
403 		break;
404 	default:
405 		kprintf("xop_strategy_read: error %08x loff=%016jx\n",
406 			error, bp->b_loffset);
407 		xop->finished = 1;
408 		hammer2_mtx_unlock(&xop->lock);
409 		bp->b_flags |= B_ERROR;
410 		bp->b_error = EIO;
411 		biodone(bio);
412 		hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
413 		break;
414 	}
415 }
416 
417 static
418 void
419 hammer2_strategy_read_completion(hammer2_chain_t *focus, const char *data,
420 				 struct bio *bio)
421 {
422 	struct buf *bp = bio->bio_buf;
423 
424 	if (focus->bref.type == HAMMER2_BREF_TYPE_INODE) {
425 		/*
426 		 * Copy from in-memory inode structure.
427 		 */
428 		bcopy(((const hammer2_inode_data_t *)data)->u.data,
429 		      bp->b_data, HAMMER2_EMBEDDED_BYTES);
430 		bzero(bp->b_data + HAMMER2_EMBEDDED_BYTES,
431 		      bp->b_bcount - HAMMER2_EMBEDDED_BYTES);
432 		bp->b_resid = 0;
433 		bp->b_error = 0;
434 	} else if (focus->bref.type == HAMMER2_BREF_TYPE_DATA) {
435 		/*
436 		 * Data is on-media, record for live dedup.  Release the
437 		 * chain (try to free it) when done.  The data is still
438 		 * cached by both the buffer cache in front and the
439 		 * block device behind us.  This leaves more room in the
440 		 * LRU chain cache for meta-data chains which we really
441 		 * want to retain.
442 		 *
443 		 * NOTE: Deduplication cannot be safely recorded for
444 		 *	 records without a check code.
445 		 */
446 		hammer2_dedup_record(focus, NULL, data);
447 		atomic_set_int(&focus->flags, HAMMER2_CHAIN_RELEASE);
448 
449 		/*
450 		 * Decompression and copy.
451 		 */
452 		switch (HAMMER2_DEC_COMP(focus->bref.methods)) {
453 		case HAMMER2_COMP_LZ4:
454 			hammer2_decompress_LZ4_callback(data, focus->bytes,
455 							bio);
456 			/* b_resid set by call */
457 			break;
458 		case HAMMER2_COMP_ZLIB:
459 			hammer2_decompress_ZLIB_callback(data, focus->bytes,
460 							 bio);
461 			/* b_resid set by call */
462 			break;
463 		case HAMMER2_COMP_NONE:
464 			KKASSERT(focus->bytes <= bp->b_bcount);
465 			bcopy(data, bp->b_data, focus->bytes);
466 			if (focus->bytes < bp->b_bcount) {
467 				bzero(bp->b_data + focus->bytes,
468 				      bp->b_bcount - focus->bytes);
469 			}
470 			bp->b_resid = 0;
471 			bp->b_error = 0;
472 			break;
473 		default:
474 			panic("hammer2_strategy_read: "
475 			      "unknown compression type");
476 		}
477 	} else {
478 		panic("hammer2_strategy_read: unknown bref type");
479 	}
480 }
481 
482 /****************************************************************************
483  *				WRITE SUPPORT				    *
484  ****************************************************************************/
485 
486 /*
487  * Functions for compression in threads,
488  * from hammer2_vnops.c
489  */
490 static void hammer2_write_file_core(char *data, hammer2_inode_t *ip,
491 				hammer2_chain_t **parentp,
492 				hammer2_key_t lbase, int ioflag, int pblksize,
493 				hammer2_tid_t mtid, int *errorp);
494 static void hammer2_compress_and_write(char *data, hammer2_inode_t *ip,
495 				hammer2_chain_t **parentp,
496 				hammer2_key_t lbase, int ioflag, int pblksize,
497 				hammer2_tid_t mtid, int *errorp,
498 				int comp_algo, int check_algo);
499 static void hammer2_zero_check_and_write(char *data, hammer2_inode_t *ip,
500 				hammer2_chain_t **parentp,
501 				hammer2_key_t lbase, int ioflag, int pblksize,
502 				hammer2_tid_t mtid, int *errorp,
503 				int check_algo);
504 static int test_block_zeros(const char *buf, size_t bytes);
505 static void zero_write(char *data, hammer2_inode_t *ip,
506 				hammer2_chain_t **parentp,
507 				hammer2_key_t lbase,
508 				hammer2_tid_t mtid, int *errorp);
509 static void hammer2_write_bp(hammer2_chain_t *chain, char *data,
510 				int ioflag, int pblksize,
511 				hammer2_tid_t mtid, int *errorp,
512 				int check_algo);
513 
514 int
515 hammer2_strategy_write(struct vop_strategy_args *ap)
516 {
517 	hammer2_xop_strategy_t *xop;
518 	hammer2_pfs_t *pmp;
519 	struct bio *bio;
520 	struct buf *bp;
521 	hammer2_inode_t *ip;
522 
523 	bio = ap->a_bio;
524 	bp = bio->bio_buf;
525 	ip = VTOI(ap->a_vp);
526 	pmp = ip->pmp;
527 
528 	atomic_set_int(&ip->flags, HAMMER2_INODE_DIRTYDATA);
529 	hammer2_lwinprog_ref(pmp);
530 	hammer2_trans_assert_strategy(pmp);
531 	hammer2_trans_init(pmp, HAMMER2_TRANS_BUFCACHE);
532 
533 	xop = hammer2_xop_alloc(ip, HAMMER2_XOP_MODIFYING |
534 				    HAMMER2_XOP_STRATEGY);
535 	xop->finished = 0;
536 	xop->bio = bio;
537 	xop->lbase = bio->bio_offset;
538 	hammer2_mtx_init(&xop->lock, "h2biow");
539 	hammer2_xop_start(&xop->head, &hammer2_strategy_write_desc);
540 	/* asynchronous completion */
541 
542 	hammer2_lwinprog_wait(pmp, hammer2_flush_pipe);
543 
544 	return(0);
545 }
546 
547 /*
548  * Per-node XOP (threaded).  Write the logical buffer to the media.
549  *
550  * This is a bit problematic because there may be multiple target and
551  * any of them may be able to release the bp.  In addition, if our
552  * particulr target is offline we don't want to block the bp (and thus
553  * the frontend).  To accomplish this we copy the data to the per-thr
554  * scratch buffer.
555  */
556 void
557 hammer2_xop_strategy_write(hammer2_xop_t *arg, void *scratch, int clindex)
558 {
559 	hammer2_xop_strategy_t *xop = &arg->xop_strategy;
560 	hammer2_chain_t *parent;
561 	hammer2_key_t lbase;
562 	hammer2_inode_t *ip;
563 	struct bio *bio;
564 	struct buf *bp;
565 	int error;
566 	int lblksize;
567 	int pblksize;
568 	hammer2_off_t bio_offset;
569 	char *bio_data;
570 
571 	/*
572 	 * We can only access the bp/bio if the frontend has not yet
573 	 * completed.
574 	 */
575 	if (xop->finished)
576 		return;
577 	hammer2_mtx_sh(&xop->lock);
578 	if (xop->finished) {
579 		hammer2_mtx_unlock(&xop->lock);
580 		return;
581 	}
582 
583 	lbase = xop->lbase;
584 	bio = xop->bio;			/* ephermal */
585 	bp = bio->bio_buf;		/* ephermal */
586 	ip = xop->head.ip1;		/* retained by ref */
587 	bio_offset = bio->bio_offset;
588 	bio_data = scratch;
589 
590 	/* hammer2_trans_init(parent->hmp->spmp, HAMMER2_TRANS_BUFCACHE); */
591 
592 	lblksize = hammer2_calc_logical(ip, bio->bio_offset, &lbase, NULL);
593 	pblksize = hammer2_calc_physical(ip, lbase);
594 	bkvasync(bp);
595 	KKASSERT(lblksize <= MAXPHYS);
596 	bcopy(bp->b_data, bio_data, lblksize);
597 
598 	hammer2_mtx_unlock(&xop->lock);
599 	bp = NULL;	/* safety, illegal to access after unlock */
600 	bio = NULL;	/* safety, illegal to access after unlock */
601 
602 	/*
603 	 * Actual operation
604 	 */
605 	parent = hammer2_inode_chain(ip, clindex, HAMMER2_RESOLVE_ALWAYS);
606 	hammer2_write_file_core(bio_data, ip, &parent,
607 				lbase, IO_ASYNC, pblksize,
608 				xop->head.mtid, &error);
609 	if (parent) {
610 		hammer2_chain_unlock(parent);
611 		hammer2_chain_drop(parent);
612 		parent = NULL;	/* safety */
613 	}
614 	hammer2_xop_feed(&xop->head, NULL, clindex, error);
615 
616 	/*
617 	 * Try to complete the operation on behalf of the front-end.
618 	 */
619 	if (xop->finished)
620 		return;
621 	hammer2_mtx_ex(&xop->lock);
622 	if (xop->finished) {
623 		hammer2_mtx_unlock(&xop->lock);
624 		return;
625 	}
626 
627 	/*
628 	 * Async operation has not completed and we now own the lock.
629 	 * Determine if we can complete the operation by issuing the
630 	 * frontend collection non-blocking.
631 	 *
632 	 * H2 double-buffers the data, setting B_NOTMETA on the logical
633 	 * buffer hints to the OS that the logical buffer should not be
634 	 * swapcached (since the device buffer can be).
635 	 */
636 	error = hammer2_xop_collect(&xop->head, HAMMER2_XOP_COLLECT_NOWAIT);
637 
638 	if (error == HAMMER2_ERROR_EINPROGRESS) {
639 		hammer2_mtx_unlock(&xop->lock);
640 		return;
641 	}
642 
643 	/*
644 	 * Async operation has completed.
645 	 */
646 	xop->finished = 1;
647 	hammer2_mtx_unlock(&xop->lock);
648 
649 	bio = xop->bio;		/* now owned by us */
650 	bp = bio->bio_buf;	/* now owned by us */
651 
652 	if (error == HAMMER2_ERROR_ENOENT || error == 0) {
653 		bp->b_flags |= B_NOTMETA;
654 		bp->b_resid = 0;
655 		bp->b_error = 0;
656 		biodone(bio);
657 	} else {
658 		kprintf("xop_strategy_write: error %d loff=%016jx\n",
659 			error, bp->b_loffset);
660 		bp->b_flags |= B_ERROR;
661 		bp->b_error = EIO;
662 		biodone(bio);
663 	}
664 	hammer2_xop_retire(&xop->head, HAMMER2_XOPMASK_VOP);
665 	hammer2_trans_assert_strategy(ip->pmp);
666 	hammer2_lwinprog_drop(ip->pmp);
667 	hammer2_trans_done(ip->pmp, 0);
668 }
669 
670 /*
671  * Wait for pending I/O to complete
672  */
673 void
674 hammer2_bioq_sync(hammer2_pfs_t *pmp)
675 {
676 	hammer2_lwinprog_wait(pmp, 0);
677 }
678 
679 /*
680  * Assign physical storage at (cparent, lbase), returning a suitable chain
681  * and setting *errorp appropriately.
682  *
683  * If no error occurs, the returned chain will be in a modified state.
684  *
685  * If an error occurs, the returned chain may or may not be NULL.  If
686  * not-null any chain->error (if not 0) will also be rolled up into *errorp.
687  * So the caller only needs to test *errorp.
688  *
689  * cparent can wind up being anything.
690  *
691  * If datap is not NULL, *datap points to the real data we intend to write.
692  * If we can dedup the storage location we set *datap to NULL to indicate
693  * to the caller that a dedup occurred.
694  *
695  * NOTE: Special case for data embedded in inode.
696  */
697 static
698 hammer2_chain_t *
699 hammer2_assign_physical(hammer2_inode_t *ip, hammer2_chain_t **parentp,
700 			hammer2_key_t lbase, int pblksize,
701 			hammer2_tid_t mtid, char **datap, int *errorp)
702 {
703 	hammer2_chain_t *chain;
704 	hammer2_key_t key_dummy;
705 	hammer2_off_t dedup_off;
706 	int pradix = hammer2_getradix(pblksize);
707 
708 	/*
709 	 * Locate the chain associated with lbase, return a locked chain.
710 	 * However, do not instantiate any data reference (which utilizes a
711 	 * device buffer) because we will be using direct IO via the
712 	 * logical buffer cache buffer.
713 	 */
714 	KKASSERT(pblksize >= HAMMER2_ALLOC_MIN);
715 
716 	chain = hammer2_chain_lookup(parentp, &key_dummy,
717 				     lbase, lbase,
718 				     errorp,
719 				     HAMMER2_LOOKUP_NODATA);
720 
721 	/*
722 	 * The lookup code should not return a DELETED chain to us, unless
723 	 * its a short-file embedded in the inode.  Then it is possible for
724 	 * the lookup to return a deleted inode.
725 	 */
726 	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED) &&
727 	    chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
728 		kprintf("assign physical deleted chain @ "
729 			"%016jx (%016jx.%02x) ip %016jx\n",
730 			lbase, chain->bref.data_off, chain->bref.type,
731 			ip->meta.inum);
732 		Debugger("bleh");
733 	}
734 
735 	if (chain == NULL) {
736 		/*
737 		 * We found a hole, create a new chain entry.
738 		 *
739 		 * NOTE: DATA chains are created without device backing
740 		 *	 store (nor do we want any).
741 		 */
742 		dedup_off = hammer2_dedup_lookup((*parentp)->hmp, datap,
743 						 pblksize);
744 		*errorp |= hammer2_chain_create(parentp, &chain,
745 					        ip->pmp,
746 				       HAMMER2_ENC_CHECK(ip->meta.check_algo) |
747 				       HAMMER2_ENC_COMP(HAMMER2_COMP_NONE),
748 					        lbase, HAMMER2_PBUFRADIX,
749 					        HAMMER2_BREF_TYPE_DATA,
750 					        pblksize, mtid,
751 					        dedup_off, 0);
752 		if (chain == NULL)
753 			goto failed;
754 		/*ip->delta_dcount += pblksize;*/
755 	} else if (chain->error == 0) {
756 		switch (chain->bref.type) {
757 		case HAMMER2_BREF_TYPE_INODE:
758 			/*
759 			 * The data is embedded in the inode, which requires
760 			 * a bit more finess.
761 			 */
762 			*errorp |= hammer2_chain_modify_ip(ip, chain, mtid, 0);
763 			break;
764 		case HAMMER2_BREF_TYPE_DATA:
765 			dedup_off = hammer2_dedup_lookup(chain->hmp, datap,
766 							 pblksize);
767 			if (chain->bytes != pblksize) {
768 				*errorp |= hammer2_chain_resize(chain,
769 						     mtid, dedup_off,
770 						     pradix,
771 						     HAMMER2_MODIFY_OPTDATA);
772 				if (*errorp)
773 					break;
774 			}
775 
776 			/*
777 			 * DATA buffers must be marked modified whether the
778 			 * data is in a logical buffer or not.  We also have
779 			 * to make this call to fixup the chain data pointers
780 			 * after resizing in case this is an encrypted or
781 			 * compressed buffer.
782 			 */
783 			*errorp |= hammer2_chain_modify(chain, mtid, dedup_off,
784 						        HAMMER2_MODIFY_OPTDATA);
785 			break;
786 		default:
787 			panic("hammer2_assign_physical: bad type");
788 			/* NOT REACHED */
789 			break;
790 		}
791 	} else {
792 		*errorp = chain->error;
793 	}
794 	atomic_set_int(&ip->flags, HAMMER2_INODE_DIRTYDATA);
795 failed:
796 	return (chain);
797 }
798 
799 /*
800  * hammer2_write_file_core() - hammer2_write_thread() helper
801  *
802  * The core write function which determines which path to take
803  * depending on compression settings.  We also have to locate the
804  * related chains so we can calculate and set the check data for
805  * the blockref.
806  */
807 static
808 void
809 hammer2_write_file_core(char *data, hammer2_inode_t *ip,
810 			hammer2_chain_t **parentp,
811 			hammer2_key_t lbase, int ioflag, int pblksize,
812 			hammer2_tid_t mtid, int *errorp)
813 {
814 	hammer2_chain_t *chain;
815 	char *bdata;
816 
817 	*errorp = 0;
818 
819 	switch(HAMMER2_DEC_ALGO(ip->meta.comp_algo)) {
820 	case HAMMER2_COMP_NONE:
821 		/*
822 		 * We have to assign physical storage to the buffer
823 		 * we intend to dirty or write now to avoid deadlocks
824 		 * in the strategy code later.
825 		 *
826 		 * This can return NOOFFSET for inode-embedded data.
827 		 * The strategy code will take care of it in that case.
828 		 */
829 		bdata = data;
830 		chain = hammer2_assign_physical(ip, parentp, lbase, pblksize,
831 						mtid, &bdata, errorp);
832 		if (*errorp) {
833 			/* skip modifications */
834 		} else if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
835 			hammer2_inode_data_t *wipdata;
836 
837 			wipdata = &chain->data->ipdata;
838 			KKASSERT(wipdata->meta.op_flags &
839 				 HAMMER2_OPFLAG_DIRECTDATA);
840 			bcopy(data, wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
841 			++hammer2_iod_file_wembed;
842 		} else if (bdata == NULL) {
843 			/*
844 			 * Copy of data already present on-media.
845 			 */
846 			chain->bref.methods =
847 				HAMMER2_ENC_COMP(HAMMER2_COMP_NONE) +
848 				HAMMER2_ENC_CHECK(ip->meta.check_algo);
849 			hammer2_chain_setcheck(chain, data);
850 		} else {
851 			hammer2_write_bp(chain, data, ioflag, pblksize,
852 					 mtid, errorp, ip->meta.check_algo);
853 		}
854 		if (chain) {
855 			hammer2_chain_unlock(chain);
856 			hammer2_chain_drop(chain);
857 		}
858 		break;
859 	case HAMMER2_COMP_AUTOZERO:
860 		/*
861 		 * Check for zero-fill only
862 		 */
863 		hammer2_zero_check_and_write(data, ip, parentp,
864 					     lbase, ioflag, pblksize,
865 					     mtid, errorp,
866 					     ip->meta.check_algo);
867 		break;
868 	case HAMMER2_COMP_LZ4:
869 	case HAMMER2_COMP_ZLIB:
870 	default:
871 		/*
872 		 * Check for zero-fill and attempt compression.
873 		 */
874 		hammer2_compress_and_write(data, ip, parentp,
875 					   lbase, ioflag, pblksize,
876 					   mtid, errorp,
877 					   ip->meta.comp_algo,
878 					   ip->meta.check_algo);
879 		break;
880 	}
881 }
882 
883 /*
884  * Helper
885  *
886  * Generic function that will perform the compression in compression
887  * write path. The compression algorithm is determined by the settings
888  * obtained from inode.
889  */
890 static
891 void
892 hammer2_compress_and_write(char *data, hammer2_inode_t *ip,
893 	hammer2_chain_t **parentp,
894 	hammer2_key_t lbase, int ioflag, int pblksize,
895 	hammer2_tid_t mtid, int *errorp, int comp_algo, int check_algo)
896 {
897 	hammer2_chain_t *chain;
898 	int comp_size;
899 	int comp_block_size;
900 	char *comp_buffer;
901 	char *bdata;
902 
903 	/*
904 	 * An all-zeros write creates a hole unless the check code
905 	 * is disabled.  When the check code is disabled all writes
906 	 * are done in-place, including any all-zeros writes.
907 	 *
908 	 * NOTE: A snapshot will still force a copy-on-write
909 	 *	 (see the HAMMER2_CHECK_NONE in hammer2_chain.c).
910 	 */
911 	if (check_algo != HAMMER2_CHECK_NONE &&
912 	    test_block_zeros(data, pblksize)) {
913 		zero_write(data, ip, parentp, lbase, mtid, errorp);
914 		return;
915 	}
916 
917 	/*
918 	 * Compression requested.  Try to compress the block.  We store
919 	 * the data normally if we cannot sufficiently compress it.
920 	 *
921 	 * We have a heuristic to detect files which are mostly
922 	 * uncompressable and avoid the compression attempt in that
923 	 * case.  If the compression heuristic is turned off, we always
924 	 * try to compress.
925 	 */
926 	comp_size = 0;
927 	comp_buffer = NULL;
928 
929 	KKASSERT(pblksize / 2 <= 32768);
930 
931 	if (ip->comp_heuristic < 8 || (ip->comp_heuristic & 7) == 0 ||
932 	    hammer2_always_compress) {
933 		z_stream strm_compress;
934 		int comp_level;
935 		int ret;
936 
937 		switch(HAMMER2_DEC_ALGO(comp_algo)) {
938 		case HAMMER2_COMP_LZ4:
939 			/*
940 			 * We need to prefix with the size, LZ4
941 			 * doesn't do it for us.  Add the related
942 			 * overhead.
943 			 *
944 			 * NOTE: The LZ4 code seems to assume at least an
945 			 *	 8-byte buffer size granularity and may
946 			 *	 overrun the buffer if given a 4-byte
947 			 *	 granularity.
948 			 */
949 			comp_buffer = objcache_get(cache_buffer_write,
950 						   M_INTWAIT);
951 			comp_size = LZ4_compress_limitedOutput(
952 					data,
953 					&comp_buffer[sizeof(int)],
954 					pblksize,
955 					pblksize / 2 - sizeof(int64_t));
956 			*(int *)comp_buffer = comp_size;
957 			if (comp_size)
958 				comp_size += sizeof(int);
959 			break;
960 		case HAMMER2_COMP_ZLIB:
961 			comp_level = HAMMER2_DEC_LEVEL(comp_algo);
962 			if (comp_level == 0)
963 				comp_level = 6;	/* default zlib compression */
964 			else if (comp_level < 6)
965 				comp_level = 6;
966 			else if (comp_level > 9)
967 				comp_level = 9;
968 			ret = deflateInit(&strm_compress, comp_level);
969 			if (ret != Z_OK) {
970 				kprintf("HAMMER2 ZLIB: fatal error "
971 					"on deflateInit.\n");
972 			}
973 
974 			comp_buffer = objcache_get(cache_buffer_write,
975 						   M_INTWAIT);
976 			strm_compress.next_in = data;
977 			strm_compress.avail_in = pblksize;
978 			strm_compress.next_out = comp_buffer;
979 			strm_compress.avail_out = pblksize / 2;
980 			ret = deflate(&strm_compress, Z_FINISH);
981 			if (ret == Z_STREAM_END) {
982 				comp_size = pblksize / 2 -
983 					    strm_compress.avail_out;
984 			} else {
985 				comp_size = 0;
986 			}
987 			ret = deflateEnd(&strm_compress);
988 			break;
989 		default:
990 			kprintf("Error: Unknown compression method.\n");
991 			kprintf("Comp_method = %d.\n", comp_algo);
992 			break;
993 		}
994 	}
995 
996 	if (comp_size == 0) {
997 		/*
998 		 * compression failed or turned off
999 		 */
1000 		comp_block_size = pblksize;	/* safety */
1001 		if (++ip->comp_heuristic > 128)
1002 			ip->comp_heuristic = 8;
1003 	} else {
1004 		/*
1005 		 * compression succeeded
1006 		 */
1007 		ip->comp_heuristic = 0;
1008 		if (comp_size <= 1024) {
1009 			comp_block_size = 1024;
1010 		} else if (comp_size <= 2048) {
1011 			comp_block_size = 2048;
1012 		} else if (comp_size <= 4096) {
1013 			comp_block_size = 4096;
1014 		} else if (comp_size <= 8192) {
1015 			comp_block_size = 8192;
1016 		} else if (comp_size <= 16384) {
1017 			comp_block_size = 16384;
1018 		} else if (comp_size <= 32768) {
1019 			comp_block_size = 32768;
1020 		} else {
1021 			panic("hammer2: WRITE PATH: "
1022 			      "Weird comp_size value.");
1023 			/* NOT REACHED */
1024 			comp_block_size = pblksize;
1025 		}
1026 
1027 		/*
1028 		 * Must zero the remainder or dedup (which operates on a
1029 		 * physical block basis) will not find matches.
1030 		 */
1031 		if (comp_size < comp_block_size) {
1032 			bzero(comp_buffer + comp_size,
1033 			      comp_block_size - comp_size);
1034 		}
1035 	}
1036 
1037 	/*
1038 	 * Assign physical storage, data will be set to NULL if a live-dedup
1039 	 * was successful.
1040 	 */
1041 	bdata = comp_size ? comp_buffer : data;
1042 	chain = hammer2_assign_physical(ip, parentp, lbase, comp_block_size,
1043 					mtid, &bdata, errorp);
1044 
1045 	if (*errorp) {
1046 		goto done;
1047 	}
1048 
1049 	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
1050 		hammer2_inode_data_t *wipdata;
1051 
1052 		*errorp = hammer2_chain_modify_ip(ip, chain, mtid, 0);
1053 		if (*errorp == 0) {
1054 			wipdata = &chain->data->ipdata;
1055 			KKASSERT(wipdata->meta.op_flags &
1056 				 HAMMER2_OPFLAG_DIRECTDATA);
1057 			bcopy(data, wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1058 			++hammer2_iod_file_wembed;
1059 		}
1060 	} else if (bdata == NULL) {
1061 		/*
1062 		 * Live deduplication, a copy of the data is already present
1063 		 * on the media.
1064 		 */
1065 		if (comp_size) {
1066 			chain->bref.methods =
1067 				HAMMER2_ENC_COMP(comp_algo) +
1068 				HAMMER2_ENC_CHECK(check_algo);
1069 		} else {
1070 			chain->bref.methods =
1071 				HAMMER2_ENC_COMP(
1072 					HAMMER2_COMP_NONE) +
1073 				HAMMER2_ENC_CHECK(check_algo);
1074 		}
1075 		bdata = comp_size ? comp_buffer : data;
1076 		hammer2_chain_setcheck(chain, bdata);
1077 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1078 	} else {
1079 		hammer2_io_t *dio;
1080 
1081 		KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1082 
1083 		switch(chain->bref.type) {
1084 		case HAMMER2_BREF_TYPE_INODE:
1085 			panic("hammer2_write_bp: unexpected inode\n");
1086 			break;
1087 		case HAMMER2_BREF_TYPE_DATA:
1088 			/*
1089 			 * Optimize out the read-before-write
1090 			 * if possible.
1091 			 */
1092 			*errorp = hammer2_io_newnz(chain->hmp,
1093 						   chain->bref.type,
1094 						   chain->bref.data_off,
1095 						   chain->bytes,
1096 						   &dio);
1097 			if (*errorp) {
1098 				hammer2_io_brelse(&dio);
1099 				kprintf("hammer2: WRITE PATH: "
1100 					"dbp bread error\n");
1101 				break;
1102 			}
1103 			bdata = hammer2_io_data(dio, chain->bref.data_off);
1104 
1105 			/*
1106 			 * When loading the block make sure we don't
1107 			 * leave garbage after the compressed data.
1108 			 */
1109 			if (comp_size) {
1110 				chain->bref.methods =
1111 					HAMMER2_ENC_COMP(comp_algo) +
1112 					HAMMER2_ENC_CHECK(check_algo);
1113 				bcopy(comp_buffer, bdata, comp_size);
1114 			} else {
1115 				chain->bref.methods =
1116 					HAMMER2_ENC_COMP(
1117 						HAMMER2_COMP_NONE) +
1118 					HAMMER2_ENC_CHECK(check_algo);
1119 				bcopy(data, bdata, pblksize);
1120 			}
1121 
1122 			/*
1123 			 * The flush code doesn't calculate check codes for
1124 			 * file data (doing so can result in excessive I/O),
1125 			 * so we do it here.
1126 			 */
1127 			hammer2_chain_setcheck(chain, bdata);
1128 
1129 			/*
1130 			 * Device buffer is now valid, chain is no longer in
1131 			 * the initial state.
1132 			 *
1133 			 * (No blockref table worries with file data)
1134 			 */
1135 			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1136 			hammer2_dedup_record(chain, dio, bdata);
1137 
1138 			/* Now write the related bdp. */
1139 			if (ioflag & IO_SYNC) {
1140 				/*
1141 				 * Synchronous I/O requested.
1142 				 */
1143 				hammer2_io_bwrite(&dio);
1144 			/*
1145 			} else if ((ioflag & IO_DIRECT) &&
1146 				   loff + n == pblksize) {
1147 				hammer2_io_bdwrite(&dio);
1148 			*/
1149 			} else if (ioflag & IO_ASYNC) {
1150 				hammer2_io_bawrite(&dio);
1151 			} else {
1152 				hammer2_io_bdwrite(&dio);
1153 			}
1154 			break;
1155 		default:
1156 			panic("hammer2_write_bp: bad chain type %d\n",
1157 				chain->bref.type);
1158 			/* NOT REACHED */
1159 			break;
1160 		}
1161 	}
1162 done:
1163 	if (chain) {
1164 		hammer2_chain_unlock(chain);
1165 		hammer2_chain_drop(chain);
1166 	}
1167 	if (comp_buffer)
1168 		objcache_put(cache_buffer_write, comp_buffer);
1169 }
1170 
1171 /*
1172  * Helper
1173  *
1174  * Function that performs zero-checking and writing without compression,
1175  * it corresponds to default zero-checking path.
1176  */
1177 static
1178 void
1179 hammer2_zero_check_and_write(char *data, hammer2_inode_t *ip,
1180 	hammer2_chain_t **parentp,
1181 	hammer2_key_t lbase, int ioflag, int pblksize,
1182 	hammer2_tid_t mtid, int *errorp,
1183 	int check_algo)
1184 {
1185 	hammer2_chain_t *chain;
1186 	char *bdata;
1187 
1188 	if (check_algo != HAMMER2_CHECK_NONE &&
1189 	    test_block_zeros(data, pblksize)) {
1190 		/*
1191 		 * An all-zeros write creates a hole unless the check code
1192 		 * is disabled.  When the check code is disabled all writes
1193 		 * are done in-place, including any all-zeros writes.
1194 		 *
1195 		 * NOTE: A snapshot will still force a copy-on-write
1196 		 *	 (see the HAMMER2_CHECK_NONE in hammer2_chain.c).
1197 		 */
1198 		zero_write(data, ip, parentp, lbase, mtid, errorp);
1199 	} else {
1200 		/*
1201 		 * Normal write
1202 		 */
1203 		bdata = data;
1204 		chain = hammer2_assign_physical(ip, parentp, lbase, pblksize,
1205 						mtid, &bdata, errorp);
1206 		if (*errorp) {
1207 			/* do nothing */
1208 		} else if (bdata) {
1209 			hammer2_write_bp(chain, data, ioflag, pblksize,
1210 					 mtid, errorp, check_algo);
1211 		} else {
1212 			/* dedup occurred */
1213 			chain->bref.methods =
1214 				HAMMER2_ENC_COMP(HAMMER2_COMP_NONE) +
1215 				HAMMER2_ENC_CHECK(check_algo);
1216 			hammer2_chain_setcheck(chain, data);
1217 		}
1218 		if (chain) {
1219 			hammer2_chain_unlock(chain);
1220 			hammer2_chain_drop(chain);
1221 		}
1222 	}
1223 }
1224 
1225 /*
1226  * Helper
1227  *
1228  * A function to test whether a block of data contains only zeros,
1229  * returns TRUE (non-zero) if the block is all zeros.
1230  */
1231 static
1232 int
1233 test_block_zeros(const char *buf, size_t bytes)
1234 {
1235 	size_t i;
1236 
1237 	for (i = 0; i < bytes; i += sizeof(long)) {
1238 		if (*(const long *)(buf + i) != 0)
1239 			return (0);
1240 	}
1241 	return (1);
1242 }
1243 
1244 /*
1245  * Helper
1246  *
1247  * Function to "write" a block that contains only zeros.
1248  */
1249 static
1250 void
1251 zero_write(char *data, hammer2_inode_t *ip,
1252 	   hammer2_chain_t **parentp,
1253 	   hammer2_key_t lbase, hammer2_tid_t mtid, int *errorp)
1254 {
1255 	hammer2_chain_t *chain;
1256 	hammer2_key_t key_dummy;
1257 
1258 	chain = hammer2_chain_lookup(parentp, &key_dummy,
1259 				     lbase, lbase,
1260 				     errorp,
1261 				     HAMMER2_LOOKUP_NODATA);
1262 	if (chain) {
1263 		if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
1264 			hammer2_inode_data_t *wipdata;
1265 
1266 			if (*errorp == 0) {
1267 				*errorp = hammer2_chain_modify_ip(ip, chain,
1268 								  mtid, 0);
1269 			}
1270 			if (*errorp == 0) {
1271 				wipdata = &chain->data->ipdata;
1272 				KKASSERT(wipdata->meta.op_flags &
1273 					 HAMMER2_OPFLAG_DIRECTDATA);
1274 				bzero(wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1275 				++hammer2_iod_file_wembed;
1276 			}
1277 		} else {
1278 			/* chain->error ok for deletion */
1279 			hammer2_chain_delete(*parentp, chain,
1280 					     mtid, HAMMER2_DELETE_PERMANENT);
1281 			++hammer2_iod_file_wzero;
1282 		}
1283 		atomic_set_int(&ip->flags, HAMMER2_INODE_DIRTYDATA);
1284 		hammer2_chain_unlock(chain);
1285 		hammer2_chain_drop(chain);
1286 	} else {
1287 		++hammer2_iod_file_wzero;
1288 	}
1289 }
1290 
1291 /*
1292  * Helper
1293  *
1294  * Function to write the data as it is, without performing any sort of
1295  * compression. This function is used in path without compression and
1296  * default zero-checking path.
1297  */
1298 static
1299 void
1300 hammer2_write_bp(hammer2_chain_t *chain, char *data, int ioflag,
1301 		 int pblksize,
1302 		 hammer2_tid_t mtid, int *errorp, int check_algo)
1303 {
1304 	hammer2_inode_data_t *wipdata;
1305 	hammer2_io_t *dio;
1306 	char *bdata;
1307 	int error;
1308 
1309 	error = 0;	/* XXX TODO below */
1310 
1311 	KKASSERT(chain->flags & HAMMER2_CHAIN_MODIFIED);
1312 
1313 	switch(chain->bref.type) {
1314 	case HAMMER2_BREF_TYPE_INODE:
1315 		wipdata = &chain->data->ipdata;
1316 		KKASSERT(wipdata->meta.op_flags & HAMMER2_OPFLAG_DIRECTDATA);
1317 		bcopy(data, wipdata->u.data, HAMMER2_EMBEDDED_BYTES);
1318 		error = 0;
1319 		++hammer2_iod_file_wembed;
1320 		break;
1321 	case HAMMER2_BREF_TYPE_DATA:
1322 		error = hammer2_io_newnz(chain->hmp,
1323 					 chain->bref.type,
1324 					 chain->bref.data_off,
1325 					 chain->bytes, &dio);
1326 		if (error) {
1327 			hammer2_io_bqrelse(&dio);
1328 			kprintf("hammer2: WRITE PATH: "
1329 				"dbp bread error\n");
1330 			break;
1331 		}
1332 		bdata = hammer2_io_data(dio, chain->bref.data_off);
1333 
1334 		chain->bref.methods = HAMMER2_ENC_COMP(HAMMER2_COMP_NONE) +
1335 				      HAMMER2_ENC_CHECK(check_algo);
1336 		bcopy(data, bdata, chain->bytes);
1337 
1338 		/*
1339 		 * The flush code doesn't calculate check codes for
1340 		 * file data (doing so can result in excessive I/O),
1341 		 * so we do it here.
1342 		 */
1343 		hammer2_chain_setcheck(chain, bdata);
1344 
1345 		/*
1346 		 * Device buffer is now valid, chain is no longer in
1347 		 * the initial state.
1348 		 *
1349 		 * (No blockref table worries with file data)
1350 		 */
1351 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1352 		hammer2_dedup_record(chain, dio, bdata);
1353 
1354 		if (ioflag & IO_SYNC) {
1355 			/*
1356 			 * Synchronous I/O requested.
1357 			 */
1358 			hammer2_io_bwrite(&dio);
1359 		/*
1360 		} else if ((ioflag & IO_DIRECT) &&
1361 			   loff + n == pblksize) {
1362 			hammer2_io_bdwrite(&dio);
1363 		*/
1364 		} else if (ioflag & IO_ASYNC) {
1365 			hammer2_io_bawrite(&dio);
1366 		} else {
1367 			hammer2_io_bdwrite(&dio);
1368 		}
1369 		break;
1370 	default:
1371 		panic("hammer2_write_bp: bad chain type %d\n",
1372 		      chain->bref.type);
1373 		/* NOT REACHED */
1374 		error = 0;
1375 		break;
1376 	}
1377 	*errorp = error;
1378 }
1379 
1380 /*
1381  * LIVE DEDUP HEURISTICS
1382  *
1383  * Record media and crc information for possible dedup operation.  Note
1384  * that the dedup mask bits must also be set in the related DIO for a dedup
1385  * to be fully validated (which is handled in the freemap allocation code).
1386  *
1387  * WARNING! This code is SMP safe but the heuristic allows SMP collisions.
1388  *	    All fields must be loaded into locals and validated.
1389  *
1390  * WARNING! Should only be used for file data and directory entries,
1391  *	    hammer2_chain_modify() only checks for the dedup case on data
1392  *	    chains.  Also, dedup data can only be recorded for committed
1393  *	    chains (so NOT strategy writes which can undergo further
1394  *	    modification after the fact!).
1395  */
1396 void
1397 hammer2_dedup_record(hammer2_chain_t *chain, hammer2_io_t *dio,
1398 		     const char *data)
1399 {
1400 	hammer2_dev_t *hmp;
1401 	hammer2_dedup_t *dedup;
1402 	uint64_t crc;
1403 	uint64_t mask;
1404 	int best = 0;
1405 	int i;
1406 	int dticks;
1407 
1408 	/*
1409 	 * We can only record a dedup if we have media data to test against.
1410 	 * If dedup is not enabled, return early, which allows a chain to
1411 	 * remain marked MODIFIED (which might have benefits in special
1412 	 * situations, though typically it does not).
1413 	 */
1414 	if (hammer2_dedup_enable == 0)
1415 		return;
1416 	if (dio == NULL) {
1417 		dio = chain->dio;
1418 		if (dio == NULL)
1419 			return;
1420 	}
1421 
1422 	hmp = chain->hmp;
1423 
1424 	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
1425 	case HAMMER2_CHECK_ISCSI32:
1426 		/*
1427 		 * XXX use the built-in crc (the dedup lookup sequencing
1428 		 * needs to be fixed so the check code is already present
1429 		 * when dedup_lookup is called)
1430 		 */
1431 #if 0
1432 		crc = (uint64_t)(uint32_t)chain->bref.check.iscsi32.value;
1433 #endif
1434 		crc = XXH64(data, chain->bytes, XXH_HAMMER2_SEED);
1435 		break;
1436 	case HAMMER2_CHECK_XXHASH64:
1437 		crc = chain->bref.check.xxhash64.value;
1438 		break;
1439 	case HAMMER2_CHECK_SHA192:
1440 		/*
1441 		 * XXX use the built-in crc (the dedup lookup sequencing
1442 		 * needs to be fixed so the check code is already present
1443 		 * when dedup_lookup is called)
1444 		 */
1445 #if 0
1446 		crc = ((uint64_t *)chain->bref.check.sha192.data)[0] ^
1447 		      ((uint64_t *)chain->bref.check.sha192.data)[1] ^
1448 		      ((uint64_t *)chain->bref.check.sha192.data)[2];
1449 #endif
1450 		crc = XXH64(data, chain->bytes, XXH_HAMMER2_SEED);
1451 		break;
1452 	default:
1453 		/*
1454 		 * Cannot dedup without a check code
1455 		 *
1456 		 * NOTE: In particular, CHECK_NONE allows a sector to be
1457 		 *	 overwritten without copy-on-write, recording
1458 		 *	 a dedup block for a CHECK_NONE object would be
1459 		 *	 a disaster!
1460 		 */
1461 		return;
1462 	}
1463 
1464 	atomic_set_int(&chain->flags, HAMMER2_CHAIN_DEDUPABLE);
1465 
1466 	dedup = &hmp->heur_dedup[crc & (HAMMER2_DEDUP_HEUR_MASK & ~3)];
1467 	for (i = 0; i < 4; ++i) {
1468 		if (dedup[i].data_crc == crc) {
1469 			best = i;
1470 			break;
1471 		}
1472 		dticks = (int)(dedup[i].ticks - dedup[best].ticks);
1473 		if (dticks < 0 || dticks > hz * 60 * 30)
1474 			best = i;
1475 	}
1476 	dedup += best;
1477 	if (hammer2_debug & 0x40000) {
1478 		kprintf("REC %04x %016jx %016jx\n",
1479 			(int)(dedup - hmp->heur_dedup),
1480 			crc,
1481 			chain->bref.data_off);
1482 	}
1483 	dedup->ticks = ticks;
1484 	dedup->data_off = chain->bref.data_off;
1485 	dedup->data_crc = crc;
1486 
1487 	/*
1488 	 * Set the valid bits for the dedup only after we know the data
1489 	 * buffer has been updated.  The alloc bits were set (and the valid
1490 	 * bits cleared) when the media was allocated.
1491 	 *
1492 	 * This is done in two stages becuase the bulkfree code can race
1493 	 * the gap between allocation and data population.  Both masks must
1494 	 * be set before a bcmp/dedup operation is able to use the block.
1495 	 */
1496 	mask = hammer2_dedup_mask(dio, chain->bref.data_off, chain->bytes);
1497 	atomic_set_64(&dio->dedup_valid, mask);
1498 
1499 #if 0
1500 	/*
1501 	 * XXX removed. MODIFIED is an integral part of the flush code,
1502 	 * lets not just clear it
1503 	 */
1504 	/*
1505 	 * Once we record the dedup the chain must be marked clean to
1506 	 * prevent reuse of the underlying block.   Remember that this
1507 	 * write occurs when the buffer cache is flushed (i.e. on sync(),
1508 	 * fsync(), filesystem periodic sync, or when the kernel needs to
1509 	 * flush a buffer), and not whenever the user write()s.
1510 	 */
1511 	if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1512 		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1513 		atomic_add_long(&hammer2_count_modified_chains, -1);
1514 		if (chain->pmp)
1515 			hammer2_pfs_memory_wakeup(chain->pmp);
1516 	}
1517 #endif
1518 }
1519 
1520 static
1521 hammer2_off_t
1522 hammer2_dedup_lookup(hammer2_dev_t *hmp, char **datap, int pblksize)
1523 {
1524 	hammer2_dedup_t *dedup;
1525 	hammer2_io_t *dio;
1526 	hammer2_off_t off;
1527 	uint64_t crc;
1528 	uint64_t mask;
1529 	char *data;
1530 	char *dtmp;
1531 	int i;
1532 
1533 	if (hammer2_dedup_enable == 0)
1534 		return 0;
1535 	data = *datap;
1536 	if (data == NULL)
1537 		return 0;
1538 
1539 	/*
1540 	 * XXX use the built-in crc (the dedup lookup sequencing
1541 	 * needs to be fixed so the check code is already present
1542 	 * when dedup_lookup is called)
1543 	 */
1544 	crc = XXH64(data, pblksize, XXH_HAMMER2_SEED);
1545 	dedup = &hmp->heur_dedup[crc & (HAMMER2_DEDUP_HEUR_MASK & ~3)];
1546 
1547 	if (hammer2_debug & 0x40000) {
1548 		kprintf("LOC %04x/4 %016jx\n",
1549 			(int)(dedup - hmp->heur_dedup),
1550 			crc);
1551 	}
1552 
1553 	for (i = 0; i < 4; ++i) {
1554 		off = dedup[i].data_off;
1555 		cpu_ccfence();
1556 		if (dedup[i].data_crc != crc)
1557 			continue;
1558 		if ((1 << (int)(off & HAMMER2_OFF_MASK_RADIX)) != pblksize)
1559 			continue;
1560 		dio = hammer2_io_getquick(hmp, off, pblksize);
1561 		if (dio) {
1562 			dtmp = hammer2_io_data(dio, off),
1563 			mask = hammer2_dedup_mask(dio, off, pblksize);
1564 			if ((dio->dedup_alloc & mask) == mask &&
1565 			    (dio->dedup_valid & mask) == mask &&
1566 			    bcmp(data, dtmp, pblksize) == 0) {
1567 				if (hammer2_debug & 0x40000) {
1568 					kprintf("DEDUP SUCCESS %016jx\n",
1569 						(intmax_t)off);
1570 				}
1571 				hammer2_io_putblk(&dio);
1572 				*datap = NULL;
1573 				dedup[i].ticks = ticks;   /* update use */
1574 				atomic_add_long(&hammer2_iod_file_wdedup,
1575 						pblksize);
1576 
1577 				return off;		/* RETURN */
1578 			}
1579 			hammer2_io_putblk(&dio);
1580 		}
1581 	}
1582 	return 0;
1583 }
1584 
1585 /*
1586  * Poof.  Races are ok, if someone gets in and reuses a dedup offset
1587  * before or while we are clearing it they will also recover the freemap
1588  * entry (set it to fully allocated), so a bulkfree race can only set it
1589  * to a possibly-free state.
1590  *
1591  * XXX ok, well, not really sure races are ok but going to run with it
1592  *     for the moment.
1593  */
1594 void
1595 hammer2_dedup_clear(hammer2_dev_t *hmp)
1596 {
1597 	int i;
1598 
1599 	for (i = 0; i < HAMMER2_DEDUP_HEUR_SIZE; ++i) {
1600 		hmp->heur_dedup[i].data_off = 0;
1601 		hmp->heur_dedup[i].ticks = ticks - 1;
1602 	}
1603 }
1604