1 /* 2 * Copyright (c) 2011-2014 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@dragonflybsd.org> 6 * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * 3. Neither the name of The DragonFly Project nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific, prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #ifndef _VFS_HAMMER2_DISK_H_ 37 #define _VFS_HAMMER2_DISK_H_ 38 39 #ifndef _SYS_UUID_H_ 40 #include <sys/uuid.h> 41 #endif 42 #ifndef _SYS_DMSG_H_ 43 #include <sys/dmsg.h> 44 #endif 45 46 /* 47 * The structures below represent the on-disk media structures for the HAMMER2 48 * filesystem. Note that all fields for on-disk structures are naturally 49 * aligned. The host endian format is typically used - compatibility is 50 * possible if the implementation detects reversed endian and adjusts accesses 51 * accordingly. 52 * 53 * HAMMER2 primarily revolves around the directory topology: inodes, 54 * directory entries, and block tables. Block device buffer cache buffers 55 * are always 64KB. Logical file buffers are typically 16KB. All data 56 * references utilize 64-bit byte offsets. 57 * 58 * Free block management is handled independently using blocks reserved by 59 * the media topology. 60 */ 61 62 /* 63 * The data at the end of a file or directory may be a fragment in order 64 * to optimize storage efficiency. The minimum fragment size is 1KB. 65 * Since allocations are in powers of 2 fragments must also be sized in 66 * powers of 2 (1024, 2048, ... 65536). 67 * 68 * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K), 69 * which is 2^16. Larger extents may be supported in the future. Smaller 70 * fragments might be supported in the future (down to 64 bytes is possible), 71 * but probably will not be. 72 * 73 * A full indirect block use supports 1024 x 64-byte blockrefs in a 64KB 74 * buffer. Indirect blocks down to 1KB are supported to keep small 75 * directories small. 76 * 77 * A maximally sized file (2^64-1 bytes) requires 5 indirect block levels. 78 * The hammer2_blockset in the volume header or file inode has another 8 79 * entries, giving us 66+3 = 69 bits of address space. However, some bits 80 * are taken up by (potentially) requests for redundant copies. HAMMER2 81 * currently supports up to 8 copies, which brings the address space down 82 * to 66 bits and gives us 2 bits of leeway. 83 */ 84 #define HAMMER2_ALLOC_MIN 1024 /* minimum allocation size */ 85 #define HAMMER2_RADIX_MIN 10 /* minimum allocation size 2^N */ 86 #define HAMMER2_ALLOC_MAX 65536 /* maximum allocation size */ 87 #define HAMMER2_RADIX_MAX 16 /* maximum allocation size 2^N */ 88 #define HAMMER2_RADIX_KEY 64 /* number of bits in key */ 89 90 /* 91 * MINALLOCSIZE - The minimum allocation size. This can be smaller 92 * or larger than the minimum physical IO size. 93 * 94 * NOTE: Should not be larger than 1K since inodes 95 * are 1K. 96 * 97 * MINIOSIZE - The minimum IO size. This must be less than 98 * or equal to HAMMER2_LBUFSIZE. 99 * 100 * HAMMER2_LBUFSIZE - Nominal buffer size for I/O rollups. 101 * 102 * HAMMER2_PBUFSIZE - Topological block size used by files for all 103 * blocks except the block straddling EOF. 104 * 105 * HAMMER2_SEGSIZE - Allocation map segment size, typically 2MB 106 * (space represented by a level0 bitmap). 107 */ 108 109 #define HAMMER2_SEGSIZE (1 << HAMMER2_FREEMAP_LEVEL0_RADIX) 110 #define HAMMER2_SEGRADIX HAMMER2_FREEMAP_LEVEL0_RADIX 111 112 #define HAMMER2_PBUFRADIX 16 /* physical buf (1<<16) bytes */ 113 #define HAMMER2_PBUFSIZE 65536 114 #define HAMMER2_LBUFRADIX 14 /* logical buf (1<<14) bytes */ 115 #define HAMMER2_LBUFSIZE 16384 116 117 /* 118 * Generally speaking we want to use 16K and 64K I/Os 119 */ 120 #define HAMMER2_MINIORADIX HAMMER2_LBUFRADIX 121 #define HAMMER2_MINIOSIZE HAMMER2_LBUFSIZE 122 123 #define HAMMER2_IND_BYTES_MIN HAMMER2_LBUFSIZE 124 #define HAMMER2_IND_BYTES_MAX HAMMER2_PBUFSIZE 125 #define HAMMER2_IND_COUNT_MIN (HAMMER2_IND_BYTES_MIN / \ 126 sizeof(hammer2_blockref_t)) 127 #define HAMMER2_IND_COUNT_MAX (HAMMER2_IND_BYTES_MAX / \ 128 sizeof(hammer2_blockref_t)) 129 130 /* 131 * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that 132 * any element can occur at any index and holes can be anywhere. As a 133 * future optimization we will be able to flag that such arrays are sorted 134 * and thus optimize lookups, but for now we don't. 135 * 136 * Inodes embed either 512 bytes of direct data or an array of 8 blockrefs, 137 * resulting in highly efficient storage for files <= 512 bytes and for files 138 * <= 512KB. Up to 8 directory entries can be referenced from a directory 139 * without requiring an indirect block. 140 * 141 * Indirect blocks are typically either 4KB (64 blockrefs / ~4MB represented), 142 * or 64KB (1024 blockrefs / ~64MB represented). 143 */ 144 #define HAMMER2_SET_COUNT 8 /* direct entries */ 145 #define HAMMER2_SET_RADIX 3 146 #define HAMMER2_EMBEDDED_BYTES 512 /* inode blockset/dd size */ 147 #define HAMMER2_EMBEDDED_RADIX 9 148 149 #define HAMMER2_PBUFMASK (HAMMER2_PBUFSIZE - 1) 150 #define HAMMER2_LBUFMASK (HAMMER2_LBUFSIZE - 1) 151 #define HAMMER2_SEGMASK (HAMMER2_SEGSIZE - 1) 152 153 #define HAMMER2_LBUFMASK64 ((hammer2_off_t)HAMMER2_LBUFMASK) 154 #define HAMMER2_PBUFSIZE64 ((hammer2_off_t)HAMMER2_PBUFSIZE) 155 #define HAMMER2_PBUFMASK64 ((hammer2_off_t)HAMMER2_PBUFMASK) 156 #define HAMMER2_SEGSIZE64 ((hammer2_off_t)HAMMER2_SEGSIZE) 157 #define HAMMER2_SEGMASK64 ((hammer2_off_t)HAMMER2_SEGMASK) 158 159 #define HAMMER2_UUID_STRING "5cbb9ad1-862d-11dc-a94d-01301bb8a9f5" 160 161 /* 162 * A HAMMER2 filesystem is always sized in multiples of 8MB. 163 * 164 * A 4MB segment is reserved at the beginning of each 2GB zone. This segment 165 * contains the volume header (or backup volume header), the free block 166 * table, and possibly other information in the future. 167 * 168 * 4MB = 64 x 64K blocks. Each 4MB segment is broken down as follows: 169 * 170 * +-----------------------+ 171 * | Volume Hdr | block 0 volume header & alternates 172 * +-----------------------+ (first four zones only) 173 * | FreeBlk Section A | block 1-4 174 * +-----------------------+ 175 * | FreeBlk Section B | block 5-8 176 * +-----------------------+ 177 * | FreeBlk Section C | block 9-12 178 * +-----------------------+ 179 * | FreeBlk Section D | block 13-16 180 * +-----------------------+ 181 * | | block 17...63 182 * | reserved | 183 * | | 184 * +-----------------------+ 185 * 186 * The first few 2GB zones contain volume headers and volume header backups. 187 * After that the volume header block# is reserved. 188 * 189 * Freemap (see the FREEMAP document) 190 * 191 * The freemap utilizes blocks #1-16 for now, see the FREEMAP document. 192 * The filesystems rotations through the sections to avoid disturbing the 193 * 'previous' version of the freemap during a flush. 194 * 195 * Each freemap section is 4 x 64K blocks and represents 2GB, 2TB, 2PB, 196 * and 2EB indirect map, plus the volume header has a set of 8 blockrefs 197 * for another 3 bits for a total of 64 bits of address space. The Level 0 198 * 64KB block representing 2GB of storage is a hammer2_bmap_data[1024]. 199 * Each element contains a 128x2 bit bitmap representing 16KB per chunk for 200 * 2MB of storage (x1024 elements = 2GB). 2 bits per chunk: 201 * 202 * 00 Free 203 * 01 (reserved) 204 * 10 Possibly free 205 * 11 Allocated 206 * 207 * One important thing to note here is that the freemap resolution is 16KB, 208 * but the minimuim storage allocation size is 1KB. The hammer2 vfs keeps 209 * track of sub-allocations in memory (on umount or reboot obvious the whole 210 * 16KB will be considered allocated even if only 1KB is allocated). It is 211 * possible for fragmentation to build up over time. 212 * 213 * The Second thing to note is that due to the way snapshots and inode 214 * replication works, deleting a file cannot immediately free the related 215 * space. Instead, the freemap elements transition from 11->10. The bulk 216 * freeing code which does a complete scan is then responsible for 217 * transitioning the elements to 00 or back to 11 or to 01 for that matter. 218 * 219 * WARNING! ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX 220 * (i.e. a multiple of 2MB). VOLUME_ALIGN must be >= ZONE_SEG. 221 */ 222 #define HAMMER2_VOLUME_ALIGN (8 * 1024 * 1024) 223 #define HAMMER2_VOLUME_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN) 224 #define HAMMER2_VOLUME_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1) 225 #define HAMMER2_VOLUME_ALIGNMASK64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK) 226 227 #define HAMMER2_NEWFS_ALIGN (HAMMER2_VOLUME_ALIGN) 228 #define HAMMER2_NEWFS_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN) 229 #define HAMMER2_NEWFS_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1) 230 #define HAMMER2_NEWFS_ALIGNMASK64 ((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK) 231 232 #define HAMMER2_ZONE_BYTES64 (2LLU * 1024 * 1024 * 1024) 233 #define HAMMER2_ZONE_MASK64 (HAMMER2_ZONE_BYTES64 - 1) 234 #define HAMMER2_ZONE_SEG (4 * 1024 * 1024) 235 #define HAMMER2_ZONE_SEG64 ((hammer2_off_t)HAMMER2_ZONE_SEG) 236 #define HAMMER2_ZONE_BLOCKS_SEG (HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE) 237 238 /* 239 * 64 x 64KB blocks are reserved at the base of each 2GB zone. These blocks 240 * are used to store the volume header or volume header backups, allocation 241 * tree, and other information in the future. 242 * 243 * All specified blocks are not necessarily used in all 2GB zones. However, 244 * dead areas are reserved for future use and MUST NOT BE USED for other 245 * purposes. 246 * 247 * The freemap is arranged into 15 groups of 4x64KB each. The 4 sub-groups 248 * are labeled ZONEFM1..4 and representing HAMMER2_FREEMAP_LEVEL{1-4}_RADIX, 249 * for the up to 4 levels of radix tree representing the freemap. For 250 * simplicity we are reserving all four radix tree layers even though the 251 * higher layers do not require teh reservation at each 2GB mark. That 252 * space is reserved for future use. 253 * 254 * Freemap blocks are not allocated dynamically but instead rotate through 255 * one of 15 possible copies. We require 15 copies for several reasons: 256 * 257 * (1) For distinguishing freemap 'allocations' made by the current flush 258 * verses the concurrently running front-end (at flush_tid + 1). This 259 * theoretically requires two copies but the algorithm is greatly 260 * simplified if we use three. 261 * 262 * (2) There are up to 4 copies of the volume header (iterated on each flush), 263 * and if the mount code is forced to use an older copy due to corruption 264 * we must be sure that the state of the freemap AS-OF the earlier copy 265 * remains valid. 266 * 267 * This means 3 copies x 4 flushes = 12 copies to be able to mount any 268 * of the four volume header backups after on boot or after a crash. 269 * 270 * (3) Freemap recovery on-mount eats a copy. We don't want freemap recovery 271 * to blow away the copy used by some other volume header in case H2 272 * crashes during the recovery. Total is now 13. 273 * 274 * (4) And I want some breathing room to ensure that complex flushes do not 275 * cause problems. Also note that bulk block freeing itself must be 276 * careful so even on a live system, post-mount, the four volume header 277 * backups effectively represent short-lived snapshots. And I only 278 * have room for 15 copies so it works out. 279 * 280 * Preferably I would like to improve the algorithm to only use 2 copies per 281 * volume header (which would be a total of 2 x 4 = 8 + 1 for freemap recovery 282 * + 1 for breathing room = 10 total instead of 15). For now we use 15. 283 */ 284 #define HAMMER2_ZONE_VOLHDR 0 /* volume header or backup */ 285 #define HAMMER2_ZONE_FREEMAP_00 1 286 #define HAMMER2_ZONE_FREEMAP_01 5 287 #define HAMMER2_ZONE_FREEMAP_02 9 288 #define HAMMER2_ZONE_FREEMAP_03 13 289 #define HAMMER2_ZONE_FREEMAP_04 17 290 #define HAMMER2_ZONE_FREEMAP_05 21 291 #define HAMMER2_ZONE_FREEMAP_06 25 292 #define HAMMER2_ZONE_FREEMAP_07 29 293 #define HAMMER2_ZONE_FREEMAP_08 33 294 #define HAMMER2_ZONE_FREEMAP_09 37 295 #define HAMMER2_ZONE_FREEMAP_10 41 296 #define HAMMER2_ZONE_FREEMAP_11 45 297 #define HAMMER2_ZONE_FREEMAP_12 49 298 #define HAMMER2_ZONE_FREEMAP_13 53 299 #define HAMMER2_ZONE_FREEMAP_14 57 300 #define HAMMER2_ZONE_FREEMAP_END 61 /* (non-inclusive) */ 301 #define HAMMER2_ZONE_UNUSED62 62 302 #define HAMMER2_ZONE_UNUSED63 63 303 304 #define HAMMER2_ZONE_FREEMAP_COPIES 15 305 /* relative to FREEMAP_x */ 306 #define HAMMER2_ZONEFM_LEVEL1 0 /* 2GB leafmap */ 307 #define HAMMER2_ZONEFM_LEVEL2 1 /* 2TB indmap */ 308 #define HAMMER2_ZONEFM_LEVEL3 2 /* 2PB indmap */ 309 #define HAMMER2_ZONEFM_LEVEL4 3 /* 2EB indmap */ 310 /* LEVEL5 is a set of 8 blockrefs in the volume header 16EB */ 311 312 313 /* 314 * Freemap radii. Please note that LEVEL 1 blockref array entries 315 * point to 256-byte sections of the bitmap representing 2MB of storage. 316 * Even though the chain structures represent only 256 bytes, they are 317 * mapped using larger 16K or 64K buffer cache buffers. 318 */ 319 #define HAMMER2_FREEMAP_LEVEL5_RADIX 64 /* 16EB */ 320 #define HAMMER2_FREEMAP_LEVEL4_RADIX 61 /* 2EB */ 321 #define HAMMER2_FREEMAP_LEVEL3_RADIX 51 /* 2PB */ 322 #define HAMMER2_FREEMAP_LEVEL2_RADIX 41 /* 2TB */ 323 #define HAMMER2_FREEMAP_LEVEL1_RADIX 31 /* 2GB */ 324 #define HAMMER2_FREEMAP_LEVEL0_RADIX 21 /* 2MB (entry in l-1 leaf) */ 325 326 #define HAMMER2_FREEMAP_LEVELN_PSIZE 65536 /* physical bytes */ 327 328 #define HAMMER2_FREEMAP_COUNT (int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \ 329 sizeof(hammer2_bmap_data_t)) 330 #define HAMMER2_FREEMAP_BLOCK_RADIX 14 331 #define HAMMER2_FREEMAP_BLOCK_SIZE (1 << HAMMER2_FREEMAP_BLOCK_RADIX) 332 #define HAMMER2_FREEMAP_BLOCK_MASK (HAMMER2_FREEMAP_BLOCK_SIZE - 1) 333 334 /* 335 * Two linear areas can be reserved after the initial 2MB segment in the base 336 * zone (the one starting at offset 0). These areas are NOT managed by the 337 * block allocator and do not fall under HAMMER2 crc checking rules based 338 * at the volume header (but can be self-CRCd internally, depending). 339 */ 340 #define HAMMER2_BOOT_MIN_BYTES HAMMER2_VOLUME_ALIGN 341 #define HAMMER2_BOOT_NOM_BYTES (64*1024*1024) 342 #define HAMMER2_BOOT_MAX_BYTES (256*1024*1024) 343 344 #define HAMMER2_REDO_MIN_BYTES HAMMER2_VOLUME_ALIGN 345 #define HAMMER2_REDO_NOM_BYTES (256*1024*1024) 346 #define HAMMER2_REDO_MAX_BYTES (1024*1024*1024) 347 348 /* 349 * Most HAMMER2 types are implemented as unsigned 64-bit integers. 350 * Transaction ids are monotonic. 351 * 352 * We utilize 32-bit iSCSI CRCs. 353 */ 354 typedef uint64_t hammer2_tid_t; 355 typedef uint64_t hammer2_off_t; 356 typedef uint64_t hammer2_key_t; 357 typedef uint32_t hammer2_crc32_t; 358 359 /* 360 * Miscellanious ranges (all are unsigned). 361 */ 362 #define HAMMER2_TID_MIN 1ULL 363 #define HAMMER2_TID_MAX 0xFFFFFFFFFFFFFFFFULL 364 #define HAMMER2_KEY_MIN 0ULL 365 #define HAMMER2_KEY_MAX 0xFFFFFFFFFFFFFFFFULL 366 #define HAMMER2_OFFSET_MIN 0ULL 367 #define HAMMER2_OFFSET_MAX 0xFFFFFFFFFFFFFFFFULL 368 369 /* 370 * HAMMER2 data offset special cases and masking. 371 * 372 * All HAMMER2 data offsets have to be broken down into a 64K buffer base 373 * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO). 374 * 375 * Indexes into physical buffers are always 64-byte aligned. The low 6 bits 376 * of the data offset field specifies how large the data chunk being pointed 377 * to as a power of 2. The theoretical minimum radix is thus 6 (The space 378 * needed in the low bits of the data offset field). However, the practical 379 * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets 380 * HAMMER2_RADIX_MIN to 10. The maximum radix is currently 16 (64KB), but 381 * we fully intend to support larger extents in the future. 382 */ 383 #define HAMMER2_OFF_BAD ((hammer2_off_t)-1) 384 #define HAMMER2_OFF_MASK 0xFFFFFFFFFFFFFFC0ULL 385 #define HAMMER2_OFF_MASK_LO (HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64) 386 #define HAMMER2_OFF_MASK_HI (~HAMMER2_PBUFMASK64) 387 #define HAMMER2_OFF_MASK_RADIX 0x000000000000003FULL 388 #define HAMMER2_MAX_COPIES 6 389 390 /* 391 * HAMMER2 directory support and pre-defined keys 392 */ 393 #define HAMMER2_DIRHASH_VISIBLE 0x8000000000000000ULL 394 #define HAMMER2_DIRHASH_USERMSK 0x7FFFFFFFFFFFFFFFULL 395 #define HAMMER2_DIRHASH_LOMASK 0x0000000000007FFFULL 396 #define HAMMER2_DIRHASH_HIMASK 0xFFFFFFFFFFFF0000ULL 397 #define HAMMER2_DIRHASH_FORCED 0x0000000000008000ULL /* bit forced on */ 398 399 #define HAMMER2_SROOT_KEY 0x0000000000000000ULL /* volume to sroot */ 400 401 /************************************************************************ 402 * DMSG SUPPORT * 403 ************************************************************************ 404 * LNK_VOLCONF 405 * 406 * All HAMMER2 directories directly under the super-root on your local 407 * media can be mounted separately, even if they share the same physical 408 * device. 409 * 410 * When you do a HAMMER2 mount you are effectively tying into a HAMMER2 411 * cluster via local media. The local media does not have to participate 412 * in the cluster, other than to provide the hammer2_volconf[] array and 413 * root inode for the mount. 414 * 415 * This is important: The mount device path you specify serves to bootstrap 416 * your entry into the cluster, but your mount will make active connections 417 * to ALL copy elements in the hammer2_volconf[] array which match the 418 * PFSID of the directory in the super-root that you specified. The local 419 * media path does not have to be mentioned in this array but becomes part 420 * of the cluster based on its type and access rights. ALL ELEMENTS ARE 421 * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM. 422 * 423 * The actual cluster may be far larger than the elements you list in the 424 * hammer2_volconf[] array. You list only the elements you wish to 425 * directly connect to and you are able to access the rest of the cluster 426 * indirectly through those connections. 427 * 428 * WARNING! This structure must be exactly 128 bytes long for its config 429 * array to fit in the volume header. 430 */ 431 struct hammer2_volconf { 432 uint8_t copyid; /* 00 copyid 0-255 (must match slot) */ 433 uint8_t inprog; /* 01 operation in progress, or 0 */ 434 uint8_t chain_to; /* 02 operation chaining to, or 0 */ 435 uint8_t chain_from; /* 03 operation chaining from, or 0 */ 436 uint16_t flags; /* 04-05 flags field */ 437 uint8_t error; /* 06 last operational error */ 438 uint8_t priority; /* 07 priority and round-robin flag */ 439 uint8_t remote_pfs_type;/* 08 probed direct remote PFS type */ 440 uint8_t reserved08[23]; /* 09-1F */ 441 uuid_t pfs_clid; /* 20-2F copy target must match this uuid */ 442 uint8_t label[16]; /* 30-3F import/export label */ 443 uint8_t path[64]; /* 40-7F target specification string or key */ 444 }; 445 446 typedef struct hammer2_volconf hammer2_volconf_t; 447 448 #define DMSG_VOLF_ENABLED 0x0001 449 #define DMSG_VOLF_INPROG 0x0002 450 #define DMSG_VOLF_CONN_RR 0x80 /* round-robin at same priority */ 451 #define DMSG_VOLF_CONN_EF 0x40 /* media errors flagged */ 452 #define DMSG_VOLF_CONN_PRI 0x0F /* select priority 0-15 (15=best) */ 453 454 struct dmsg_lnk_hammer2_volconf { 455 dmsg_hdr_t head; 456 hammer2_volconf_t copy; /* copy spec */ 457 int32_t index; 458 int32_t unused01; 459 uuid_t mediaid; 460 int64_t reserved02[32]; 461 }; 462 463 typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t; 464 465 #define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \ 466 dmsg_lnk_hammer2_volconf) 467 468 #define H2_LNK_VOLCONF(msg) ((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf) 469 470 /* 471 * The media block reference structure. This forms the core of the HAMMER2 472 * media topology recursion. This 64-byte data structure is embedded in the 473 * volume header, in inodes (which are also directory entries), and in 474 * indirect blocks. 475 * 476 * A blockref references a single media item, which typically can be a 477 * directory entry (aka inode), indirect block, or data block. 478 * 479 * The primary feature a blockref represents is the ability to validate 480 * the entire tree underneath it via its check code. Any modification to 481 * anything propagates up the blockref tree all the way to the root, replacing 482 * the related blocks. Propagations can shortcut to the volume root to 483 * implement the 'fast syncing' feature but this only delays the eventual 484 * propagation. 485 * 486 * The check code can be a simple 32-bit iscsi code, a 64-bit crc, 487 * or as complex as a 192 bit cryptographic hash. 192 bits is the maximum 488 * supported check code size, which is not sufficient for unverified dedup 489 * UNLESS one doesn't mind once-in-a-blue-moon data corruption (such as when 490 * farming web data). HAMMER2 has an unverified dedup feature for just this 491 * purpose. 492 * 493 * -- 494 * 495 * NOTE: The range of keys represented by the blockref is (key) to 496 * ((key) + (1LL << keybits) - 1). HAMMER2 usually populates 497 * blocks bottom-up, inserting a new root when radix expansion 498 * is required. 499 */ 500 struct hammer2_blockref { /* MUST BE EXACTLY 64 BYTES */ 501 uint8_t type; /* type of underlying item */ 502 uint8_t methods; /* check method & compression method */ 503 uint8_t copyid; /* specify which copy this is */ 504 uint8_t keybits; /* #of keybits masked off 0=leaf */ 505 uint8_t vradix; /* virtual data/meta-data size */ 506 uint8_t flags; /* blockref flags */ 507 uint8_t reserved06; 508 uint8_t reserved07; 509 hammer2_key_t key; /* key specification */ 510 hammer2_tid_t mirror_tid; /* propagate for mirror scan */ 511 hammer2_tid_t modify_tid; /* modifications sans propagation */ 512 hammer2_off_t data_off; /* low 6 bits is phys size (radix)*/ 513 union { /* check info */ 514 char buf[24]; 515 struct { 516 uint32_t value; 517 uint32_t unused[5]; 518 } iscsi32; 519 struct { 520 uint64_t value; 521 uint64_t unused[2]; 522 } crc64; 523 struct { 524 char data[24]; 525 } sha192; 526 527 /* 528 * Freemap hints are embedded in addition to the icrc32. 529 * 530 * bigmask - Radixes available for allocation (0-31). 531 * Heuristical (may be permissive but not 532 * restrictive). Typically only radix values 533 * 10-16 are used (i.e. (1<<10) through (1<<16)). 534 * 535 * avail - Total available space remaining, in bytes 536 */ 537 struct { 538 uint32_t icrc32; 539 uint32_t bigmask; /* available radixes */ 540 uint64_t avail; /* total available bytes */ 541 uint64_t unused; /* unused must be 0 */ 542 } freemap; 543 544 /* 545 * Debugging 546 */ 547 struct { 548 hammer2_tid_t sync_tid; 549 } debug; 550 } check; 551 }; 552 553 typedef struct hammer2_blockref hammer2_blockref_t; 554 555 #define HAMMER2_BLOCKREF_BYTES 64 /* blockref struct in bytes */ 556 557 /* 558 * On-media and off-media blockref types. 559 */ 560 #define HAMMER2_BREF_TYPE_EMPTY 0 561 #define HAMMER2_BREF_TYPE_INODE 1 562 #define HAMMER2_BREF_TYPE_INDIRECT 2 563 #define HAMMER2_BREF_TYPE_DATA 3 564 #define HAMMER2_BREF_TYPE_UNUSED04 4 565 #define HAMMER2_BREF_TYPE_FREEMAP_NODE 5 566 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF 6 567 #define HAMMER2_BREF_TYPE_FREEMAP 254 /* pseudo-type */ 568 #define HAMMER2_BREF_TYPE_VOLUME 255 /* pseudo-type */ 569 570 #define HAMMER2_BREF_FLAG_PFSROOT 0x01 /* see also related opflag */ 571 572 #define HAMMER2_ENC_CHECK(n) ((n) << 4) 573 #define HAMMER2_DEC_CHECK(n) (((n) >> 4) & 15) 574 575 #define HAMMER2_CHECK_NONE 0 576 #define HAMMER2_CHECK_ISCSI32 1 577 #define HAMMER2_CHECK_CRC64 2 578 #define HAMMER2_CHECK_SHA192 3 579 #define HAMMER2_CHECK_FREEMAP 4 580 581 #define HAMMER2_ENC_COMP(n) (n) 582 #define HAMMER2_ENC_LEVEL(n) ((n) << 4) 583 #define HAMMER2_DEC_COMP(n) ((n) & 15) 584 #define HAMMER2_DEC_LEVEL(n) (((n) >> 4) & 15) 585 586 #define HAMMER2_COMP_NONE 0 587 #define HAMMER2_COMP_AUTOZERO 1 588 #define HAMMER2_COMP_LZ4 2 589 #define HAMMER2_COMP_ZLIB 3 590 591 #define HAMMER2_COMP_NEWFS_DEFAULT HAMMER2_COMP_LZ4 592 #define HAMMER2_COMP_STRINGS { "none", "autozero", "lz4", "zlib" } 593 #define HAMMER2_COMP_STRINGS_COUNT 4 594 595 596 /* 597 * HAMMER2 block references are collected into sets of 8 blockrefs. These 598 * sets are fully associative, meaning the elements making up a set are 599 * not sorted in any way and may contain duplicate entries, holes, or 600 * entries which shortcut multiple levels of indirection. Sets are used 601 * in various ways: 602 * 603 * (1) When redundancy is desired a set may contain several duplicate 604 * entries pointing to different copies of the same data. Up to 8 copies 605 * are supported but the set structure becomes a bit inefficient once 606 * you go over 4. 607 * 608 * (2) The blockrefs in a set can shortcut multiple levels of indirections 609 * within the bounds imposed by the parent of set. 610 * 611 * When a set fills up another level of indirection is inserted, moving 612 * some or all of the set's contents into indirect blocks placed under the 613 * set. This is a top-down approach in that indirect blocks are not created 614 * until the set actually becomes full (that is, the entries in the set can 615 * shortcut the indirect blocks when the set is not full). Depending on how 616 * things are filled multiple indirect blocks will eventually be created. 617 * 618 * Indirect blocks are typically 4KB (64 entres) or 64KB (1024 entries) and 619 * are also treated as fully set-associative. 620 */ 621 struct hammer2_blockset { 622 hammer2_blockref_t blockref[HAMMER2_SET_COUNT]; 623 }; 624 625 typedef struct hammer2_blockset hammer2_blockset_t; 626 627 /* 628 * Catch programmer snafus 629 */ 630 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT 631 #error "hammer2 direct radix is incorrect" 632 #endif 633 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE 634 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent" 635 #endif 636 #if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN 637 #error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent" 638 #endif 639 640 /* 641 * hammer2_bmap_data - A freemap entry in the LEVEL1 block. 642 * 643 * Each 64-byte entry contains the bitmap and meta-data required to manage 644 * a LEVEL0 (2MB) block of storage. The storage is managed in 128 x 16KB 645 * chunks. Smaller allocation granularity is supported via a linear iterator 646 * and/or must otherwise be tracked in ram. 647 * 648 * (data structure must be 64 bytes exactly) 649 * 650 * linear - A BYTE linear allocation offset used for sub-16KB allocations 651 * only. May contain values between 0 and 2MB. Must be ignored 652 * if 16KB-aligned (i.e. force bitmap scan), otherwise may be 653 * used to sub-allocate within the 16KB block (which is already 654 * marked as allocated in the bitmap). 655 * 656 * Sub-allocations need only be 1KB-aligned and do not have to be 657 * size-aligned, and 16KB or larger allocations do not update this 658 * field, resulting in pretty good packing. 659 * 660 * Please note that file data granularity may be limited by 661 * other issues such as buffer cache direct-mapping and the 662 * desire to support sector sizes up to 16KB (so H2 only issues 663 * I/O's in multiples of 16KB anyway). 664 * 665 * class - Clustering class. Cleared to 0 only if the entire leaf becomes 666 * free. Used to cluster device buffers so all elements must have 667 * the same device block size, but may mix logical sizes. 668 * 669 * Typically integrated with the blockref type in the upper 8 bits 670 * to localize inodes and indrect blocks, improving bulk free scans 671 * and directory scans. 672 * 673 * bitmap - Two bits per 16KB allocation block arranged in arrays of 674 * 32-bit elements, 128x2 bits representing ~2MB worth of media 675 * storage. Bit patterns are as follows: 676 * 677 * 00 Unallocated 678 * 01 (reserved) 679 * 10 Possibly free 680 * 11 Allocated 681 */ 682 struct hammer2_bmap_data { 683 int32_t linear; /* 00 linear sub-granular allocation offset */ 684 uint16_t class; /* 04-05 clustering class ((type<<8)|radix) */ 685 uint8_t reserved06; /* 06 */ 686 uint8_t reserved07; /* 07 */ 687 uint32_t reserved08; /* 08 */ 688 uint32_t reserved0C; /* 0C */ 689 uint32_t reserved10; /* 10 */ 690 uint32_t reserved14; /* 14 */ 691 uint32_t reserved18; /* 18 */ 692 uint32_t avail; /* 1C */ 693 uint32_t bitmap[8]; /* 20-3F 256 bits manages 2MB/16KB/2-bits */ 694 }; 695 696 typedef struct hammer2_bmap_data hammer2_bmap_data_t; 697 698 /* 699 * In HAMMER2 inodes ARE directory entries, with a special exception for 700 * hardlinks. The inode number is stored in the inode rather than being 701 * based on the location of the inode (since the location moves every time 702 * the inode or anything underneath the inode is modified). 703 * 704 * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes 705 * for the filename, and 512 bytes worth of direct file data OR an embedded 706 * blockset. 707 * 708 * Directories represent one inode per blockref. Inodes are not laid out 709 * as a file but instead are represented by the related blockrefs. The 710 * blockrefs, in turn, are indexed by the 64-bit directory hash key. Remember 711 * that blocksets are fully associative, so a certain degree efficiency is 712 * achieved just from that. 713 * 714 * Up to 512 bytes of direct data can be embedded in an inode, and since 715 * inodes are essentially directory entries this also means that small data 716 * files end up simply being laid out linearly in the directory, resulting 717 * in fewer seeks and highly optimal access. 718 * 719 * The compression mode can be changed at any time in the inode and is 720 * recorded on a blockref-by-blockref basis. 721 * 722 * Hardlinks are supported via the inode map. Essentially the way a hardlink 723 * works is that all individual directory entries representing the same file 724 * are special cased and specify the same inode number. The actual file 725 * is placed in the nearest parent directory that is parent to all instances 726 * of the hardlink. If all hardlinks to a file are in the same directory 727 * the actual file will also be placed in that directory. This file uses 728 * the inode number as the directory entry key and is invisible to normal 729 * directory scans. Real directory entry keys are differentiated from the 730 * inode number key via bit 63. Access to the hardlink silently looks up 731 * the real file and forwards all operations to that file. Removal of the 732 * last hardlink also removes the real file. 733 * 734 * (attr_tid) is only updated when the inode's specific attributes or regular 735 * file size has changed, and affects path lookups and stat. (attr_tid) 736 * represents a special cache coherency lock under the inode. The inode 737 * blockref's modify_tid will always cover it. 738 * 739 * (dirent_tid) is only updated when an entry under a directory inode has 740 * been created, deleted, renamed, or had its attributes change, and affects 741 * directory lookups and scans. (dirent_tid) represents another special cache 742 * coherency lock under the inode. The inode blockref's modify_tid will 743 * always cover it. 744 */ 745 #define HAMMER2_INODE_BYTES 1024 /* (asserted by code) */ 746 #define HAMMER2_INODE_MAXNAME 256 /* maximum name in bytes */ 747 #define HAMMER2_INODE_VERSION_ONE 1 748 749 #define HAMMER2_INODE_HIDDENDIR 16 /* special inode */ 750 #define HAMMER2_INODE_START 1024 /* dynamically allocated */ 751 752 struct hammer2_inode_data { 753 uint16_t version; /* 0000 inode data version */ 754 uint16_t reserved02; /* 0002 */ 755 756 /* 757 * core inode attributes, inode type, misc flags 758 */ 759 uint32_t uflags; /* 0004 chflags */ 760 uint32_t rmajor; /* 0008 available for device nodes */ 761 uint32_t rminor; /* 000C available for device nodes */ 762 uint64_t ctime; /* 0010 inode change time */ 763 uint64_t mtime; /* 0018 modified time */ 764 uint64_t atime; /* 0020 access time (unsupported) */ 765 uint64_t btime; /* 0028 birth time */ 766 uuid_t uid; /* 0030 uid / degenerate unix uid */ 767 uuid_t gid; /* 0040 gid / degenerate unix gid */ 768 769 uint8_t type; /* 0050 object type */ 770 uint8_t op_flags; /* 0051 operational flags */ 771 uint16_t cap_flags; /* 0052 capability flags */ 772 uint32_t mode; /* 0054 unix modes (typ low 16 bits) */ 773 774 /* 775 * inode size, identification, localized recursive configuration 776 * for compression and backup copies. 777 */ 778 hammer2_tid_t inum; /* 0058 inode number */ 779 hammer2_off_t size; /* 0060 size of file */ 780 uint64_t nlinks; /* 0068 hard links (typ only dirs) */ 781 hammer2_tid_t iparent; /* 0070 parent inum (recovery only) */ 782 hammer2_key_t name_key; /* 0078 full filename key */ 783 uint16_t name_len; /* 0080 filename length */ 784 uint8_t ncopies; /* 0082 ncopies to local media */ 785 uint8_t comp_algo; /* 0083 compression request & algo */ 786 787 /* 788 * These fields are currently only applicable to PFSROOTs. 789 * 790 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely 791 * identify an instance of a PFS in the cluster because 792 * a mount may contain more than one copy of the PFS as 793 * a separate node. {pfs_clid, pfs_fsid} must be used for 794 * registration in the cluster. 795 */ 796 uint8_t target_type; /* 0084 hardlink target type */ 797 uint8_t reserved85; /* 0085 */ 798 uint8_t pfs_nmasters; /* 0086 (if PFSROOT) if multi-master */ 799 uint8_t pfs_type; /* 0087 (if PFSROOT) node type */ 800 uint64_t pfs_inum; /* 0088 (if PFSROOT) inum allocator */ 801 uuid_t pfs_clid; /* 0090 (if PFSROOT) cluster uuid */ 802 uuid_t pfs_fsid; /* 00A0 (if PFSROOT) unique uuid */ 803 804 /* 805 * Quotas and cumulative sub-tree counters. 806 */ 807 hammer2_key_t data_quota; /* 00B0 subtree quota in bytes */ 808 hammer2_key_t data_count; /* 00B8 subtree byte count */ 809 hammer2_key_t inode_quota; /* 00C0 subtree quota inode count */ 810 hammer2_key_t inode_count; /* 00C8 subtree inode count */ 811 hammer2_tid_t attr_tid; /* 00D0 attributes changed */ 812 hammer2_tid_t dirent_tid; /* 00D8 directory/attr changed */ 813 814 /* 815 * Tracks (possibly degenerate) free areas covering all sub-tree 816 * allocations under inode, not counting the inode itself. 817 * 0/0 indicates empty entry. fully set-associative. 818 */ 819 hammer2_off_t reservedE0[4]; /* 00E0/E8/F0/F8 */ 820 821 unsigned char filename[HAMMER2_INODE_MAXNAME]; 822 /* 0100-01FF (256 char, unterminated) */ 823 union { /* 0200-03FF (64x8 = 512 bytes) */ 824 struct hammer2_blockset blockset; 825 char data[HAMMER2_EMBEDDED_BYTES]; 826 } u; 827 }; 828 829 typedef struct hammer2_inode_data hammer2_inode_data_t; 830 831 #define HAMMER2_OPFLAG_DIRECTDATA 0x01 832 #define HAMMER2_OPFLAG_PFSROOT 0x02 /* (see also bref flag) */ 833 #define HAMMER2_OPFLAG_COPYIDS 0x04 /* copyids override parent */ 834 835 #define HAMMER2_OBJTYPE_UNKNOWN 0 836 #define HAMMER2_OBJTYPE_DIRECTORY 1 837 #define HAMMER2_OBJTYPE_REGFILE 2 838 #define HAMMER2_OBJTYPE_FIFO 4 839 #define HAMMER2_OBJTYPE_CDEV 5 840 #define HAMMER2_OBJTYPE_BDEV 6 841 #define HAMMER2_OBJTYPE_SOFTLINK 7 842 #define HAMMER2_OBJTYPE_HARDLINK 8 /* dummy entry for hardlink */ 843 #define HAMMER2_OBJTYPE_SOCKET 9 844 #define HAMMER2_OBJTYPE_WHITEOUT 10 845 846 #define HAMMER2_COPYID_NONE 0 847 #define HAMMER2_COPYID_LOCAL ((uint8_t)-1) 848 849 #define HAMMER2_COPYID_COUNT 256 850 851 /* 852 * PFS types identify a PFS on media and in LNK_SPAN messages. 853 * 854 * PFS types >= 16 belong to HAMMER, 0-15 are defined in sys/dmsg.h 855 */ 856 /* 0-15 reserved by sys/dmsg.h */ 857 #define HAMMER2_PFSTYPE_CACHE 16 858 #define HAMMER2_PFSTYPE_COPY 17 859 #define HAMMER2_PFSTYPE_SLAVE 18 860 #define HAMMER2_PFSTYPE_SOFT_SLAVE 19 861 #define HAMMER2_PFSTYPE_SOFT_MASTER 20 862 #define HAMMER2_PFSTYPE_MASTER 21 863 #define HAMMER2_PFSTYPE_SNAPSHOT 22 864 #define HAMMER2_PFSTYPE_SUPROOT 23 865 #define HAMMER2_PFSTYPE_MAX 32 866 867 /* 868 * Allocation Table 869 * 870 */ 871 872 873 /* 874 * Flags (8 bits) - blockref, for freemap only 875 * 876 * Note that the minimum chunk size is 1KB so we could theoretically have 877 * 10 bits here, but we might have some future extension that allows a 878 * chunk size down to 256 bytes and if so we will need bits 8 and 9. 879 */ 880 #define HAMMER2_AVF_SELMASK 0x03 /* select group */ 881 #define HAMMER2_AVF_ALL_ALLOC 0x04 /* indicate all allocated */ 882 #define HAMMER2_AVF_ALL_FREE 0x08 /* indicate all free */ 883 #define HAMMER2_AVF_RESERVED10 0x10 884 #define HAMMER2_AVF_RESERVED20 0x20 885 #define HAMMER2_AVF_RESERVED40 0x40 886 #define HAMMER2_AVF_RESERVED80 0x80 887 #define HAMMER2_AVF_AVMASK32 ((uint32_t)0xFFFFFF00LU) 888 #define HAMMER2_AVF_AVMASK64 ((uint64_t)0xFFFFFFFFFFFFFF00LLU) 889 890 #define HAMMER2_AV_SELECT_A 0x00 891 #define HAMMER2_AV_SELECT_B 0x01 892 #define HAMMER2_AV_SELECT_C 0x02 893 #define HAMMER2_AV_SELECT_D 0x03 894 895 /* 896 * The volume header eats a 64K block. There is currently an issue where 897 * we want to try to fit all nominal filesystem updates in a 512-byte section 898 * but it may be a lost cause due to the need for a blockset. 899 * 900 * All information is stored in host byte order. The volume header's magic 901 * number may be checked to determine the byte order. If you wish to mount 902 * between machines w/ different endian modes you'll need filesystem code 903 * which acts on the media data consistently (either all one way or all the 904 * other). Our code currently does not do that. 905 * 906 * A read-write mount may have to recover missing allocations by doing an 907 * incremental mirror scan looking for modifications made after alloc_tid. 908 * If alloc_tid == last_tid then no recovery operation is needed. Recovery 909 * operations are usually very, very fast. 910 * 911 * Read-only mounts do not need to do any recovery, access to the filesystem 912 * topology is always consistent after a crash (is always consistent, period). 913 * However, there may be shortcutted blockref updates present from deep in 914 * the tree which are stored in the volumeh eader and must be tracked on 915 * the fly. 916 * 917 * NOTE: The copyinfo[] array contains the configuration for both the 918 * cluster connections and any local media copies. The volume 919 * header will be replicated for each local media copy. 920 * 921 * The mount command may specify multiple medias or just one and 922 * allow HAMMER2 to pick up the others when it checks the copyinfo[] 923 * array on mount. 924 * 925 * NOTE: root_blockref points to the super-root directory, not the root 926 * directory. The root directory will be a subdirectory under the 927 * super-root. 928 * 929 * The super-root directory contains all root directories and all 930 * snapshots (readonly or writable). It is possible to do a 931 * null-mount of the super-root using special path constructions 932 * relative to your mounted root. 933 * 934 * NOTE: HAMMER2 allows any subdirectory tree to be managed as if it were 935 * a PFS, including mirroring and storage quota operations, and this is 936 * prefered over creating discrete PFSs in the super-root. Instead 937 * the super-root is most typically used to create writable snapshots, 938 * alternative roots, and so forth. The super-root is also used by 939 * the automatic snapshotting mechanism. 940 */ 941 #define HAMMER2_VOLUME_ID_HBO 0x48414d3205172011LLU 942 #define HAMMER2_VOLUME_ID_ABO 0x11201705324d4148LLU 943 944 struct hammer2_volume_data { 945 /* 946 * sector #0 - 512 bytes 947 */ 948 uint64_t magic; /* 0000 Signature */ 949 hammer2_off_t boot_beg; /* 0008 Boot area (future) */ 950 hammer2_off_t boot_end; /* 0010 (size = end - beg) */ 951 hammer2_off_t aux_beg; /* 0018 Aux area (future) */ 952 hammer2_off_t aux_end; /* 0020 (size = end - beg) */ 953 hammer2_off_t volu_size; /* 0028 Volume size, bytes */ 954 955 uint32_t version; /* 0030 */ 956 uint32_t flags; /* 0034 */ 957 uint8_t copyid; /* 0038 copyid of phys vol */ 958 uint8_t freemap_version; /* 0039 freemap algorithm */ 959 uint8_t peer_type; /* 003A HAMMER2_PEER_xxx */ 960 uint8_t reserved003B; /* 003B */ 961 uint32_t reserved003C; /* 003C */ 962 963 uuid_t fsid; /* 0040 */ 964 uuid_t fstype; /* 0050 */ 965 966 /* 967 * allocator_size is precalculated at newfs time and does not include 968 * reserved blocks, boot, or redo areas. 969 * 970 * Initial non-reserved-area allocations do not use the freemap 971 * but instead adjust alloc_iterator. Dynamic allocations take 972 * over starting at (allocator_beg). This makes newfs_hammer2's 973 * job a lot easier and can also serve as a testing jig. 974 */ 975 hammer2_off_t allocator_size; /* 0060 Total data space */ 976 hammer2_off_t allocator_free; /* 0068 Free space */ 977 hammer2_off_t allocator_beg; /* 0070 Initial allocations */ 978 979 /* 980 * mirror_tid reflects the highest committed super-root change 981 * freemap_tid reflects the highest committed freemap change 982 * 983 * NOTE: mirror_tid does not track (and should not track) changes 984 * made to or under PFS roots. 985 */ 986 hammer2_tid_t mirror_tid; /* 0078 committed tid (vol) */ 987 hammer2_tid_t reserved0080; /* 0080 */ 988 hammer2_tid_t reserved0088; /* 0088 */ 989 hammer2_tid_t freemap_tid; /* 0090 committed tid (fmap) */ 990 hammer2_tid_t bulkfree_tid; /* 0098 bulkfree incremental */ 991 hammer2_tid_t reserved00A0[5]; /* 00A0-00C7 */ 992 993 /* 994 * Copyids are allocated dynamically from the copyexists bitmap. 995 * An id from the active copies set (up to 8, see copyinfo later on) 996 * may still exist after the copy set has been removed from the 997 * volume header and its bit will remain active in the bitmap and 998 * cannot be reused until it is 100% removed from the hierarchy. 999 */ 1000 uint32_t copyexists[8]; /* 00C8-00E7 copy exists bmap */ 1001 char reserved0140[248]; /* 00E8-01DF */ 1002 1003 /* 1004 * 32 bit CRC array at the end of the first 512 byte sector. 1005 * 1006 * icrc_sects[7] - First 512-4 bytes of volume header (including all 1007 * the other icrc's except this one). 1008 * 1009 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is 1010 * the blockset for the root. 1011 * 1012 * icrc_sects[5] - Sector 2 1013 * icrc_sects[4] - Sector 3 1014 * icrc_sects[3] - Sector 4 (the freemap blockset) 1015 */ 1016 hammer2_crc32_t icrc_sects[8]; /* 01E0-01FF */ 1017 1018 /* 1019 * sector #1 - 512 bytes 1020 * 1021 * The entire sector is used by a blockset. 1022 */ 1023 hammer2_blockset_t sroot_blockset; /* 0200-03FF Superroot dir */ 1024 1025 /* 1026 * sector #2-7 1027 */ 1028 char sector2[512]; /* 0400-05FF reserved */ 1029 char sector3[512]; /* 0600-07FF reserved */ 1030 hammer2_blockset_t freemap_blockset; /* 0800-09FF freemap */ 1031 char sector5[512]; /* 0A00-0BFF reserved */ 1032 char sector6[512]; /* 0C00-0DFF reserved */ 1033 char sector7[512]; /* 0E00-0FFF reserved */ 1034 1035 /* 1036 * sector #8-71 - 32768 bytes 1037 * 1038 * Contains the configuration for up to 256 copyinfo targets. These 1039 * specify local and remote copies operating as masters or slaves. 1040 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255 1041 * indicates the local media). 1042 * 1043 * Each inode contains a set of up to 8 copyids, either inherited 1044 * from its parent or explicitly specified in the inode, which 1045 * indexes into this array. 1046 */ 1047 /* 1000-8FFF copyinfo config */ 1048 hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT]; 1049 1050 /* 1051 * Remaining sections are reserved for future use. 1052 */ 1053 char reserved0400[0x6FFC]; /* 9000-FFFB reserved */ 1054 1055 /* 1056 * icrc on entire volume header 1057 */ 1058 hammer2_crc32_t icrc_volheader; /* FFFC-FFFF full volume icrc*/ 1059 }; 1060 1061 typedef struct hammer2_volume_data hammer2_volume_data_t; 1062 1063 /* 1064 * Various parts of the volume header have their own iCRCs. 1065 * 1066 * The first 512 bytes has its own iCRC stored at the end of the 512 bytes 1067 * and not included the icrc calculation. 1068 * 1069 * The second 512 bytes also has its own iCRC but it is stored in the first 1070 * 512 bytes so it covers the entire second 512 bytes. 1071 * 1072 * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes, 1073 * which is where the iCRC for the whole volume is stored. This is currently 1074 * a catch-all for anything not individually iCRCd. 1075 */ 1076 #define HAMMER2_VOL_ICRC_SECT0 7 1077 #define HAMMER2_VOL_ICRC_SECT1 6 1078 1079 #define HAMMER2_VOLUME_BYTES 65536 1080 1081 #define HAMMER2_VOLUME_ICRC0_OFF 0 1082 #define HAMMER2_VOLUME_ICRC1_OFF 512 1083 #define HAMMER2_VOLUME_ICRCVH_OFF 0 1084 1085 #define HAMMER2_VOLUME_ICRC0_SIZE (512 - 4) 1086 #define HAMMER2_VOLUME_ICRC1_SIZE (512) 1087 #define HAMMER2_VOLUME_ICRCVH_SIZE (65536 - 4) 1088 1089 #define HAMMER2_VOL_VERSION_MIN 1 1090 #define HAMMER2_VOL_VERSION_DEFAULT 1 1091 #define HAMMER2_VOL_VERSION_WIP 2 1092 1093 #define HAMMER2_NUM_VOLHDRS 4 1094 1095 union hammer2_media_data { 1096 hammer2_volume_data_t voldata; 1097 hammer2_inode_data_t ipdata; 1098 hammer2_blockref_t npdata[HAMMER2_IND_COUNT_MAX]; 1099 hammer2_bmap_data_t bmdata[HAMMER2_FREEMAP_COUNT]; 1100 char buf[HAMMER2_PBUFSIZE]; 1101 }; 1102 1103 typedef union hammer2_media_data hammer2_media_data_t; 1104 1105 #endif /* !_VFS_HAMMER2_DISK_H_ */ 1106