1 /* 2 * Copyright (c) 2011-2019 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@dragonflybsd.org> 6 * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * 3. Neither the name of The DragonFly Project nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific, prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 25 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 26 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 28 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 29 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 30 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 31 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 32 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #ifndef _VFS_HAMMER2_DISK_H_ 37 #define _VFS_HAMMER2_DISK_H_ 38 39 #ifndef _SYS_UUID_H_ 40 #include <sys/uuid.h> 41 #endif 42 #ifndef _SYS_DMSG_H_ 43 #include <sys/dmsg.h> 44 #endif 45 46 /* 47 * The structures below represent the on-disk media structures for the HAMMER2 48 * filesystem. Note that all fields for on-disk structures are naturally 49 * aligned. The host endian format is typically used - compatibility is 50 * possible if the implementation detects reversed endian and adjusts accesses 51 * accordingly. 52 * 53 * HAMMER2 primarily revolves around the directory topology: inodes, 54 * directory entries, and block tables. Block device buffer cache buffers 55 * are always 64KB. Logical file buffers are typically 16KB. All data 56 * references utilize 64-bit byte offsets. 57 * 58 * Free block management is handled independently using blocks reserved by 59 * the media topology. 60 */ 61 62 /* 63 * The data at the end of a file or directory may be a fragment in order 64 * to optimize storage efficiency. The minimum fragment size is 1KB. 65 * Since allocations are in powers of 2 fragments must also be sized in 66 * powers of 2 (1024, 2048, ... 65536). 67 * 68 * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K), 69 * which is 2^16. Larger extents may be supported in the future. Smaller 70 * fragments might be supported in the future (down to 64 bytes is possible), 71 * but probably will not be. 72 * 73 * A full indirect block use supports 512 x 128-byte blockrefs in a 64KB 74 * buffer. Indirect blocks down to 1KB are supported to keep small 75 * directories small. 76 * 77 * A maximally sized file (2^64-1 bytes) requires ~6 indirect block levels 78 * using 64KB indirect blocks (128 byte refs, 512 or radix 9 per indblk). 79 * 80 * 16(datablk) + 9 + 9 + 9 + 9 + 9 + 9 = ~70. 81 * 16(datablk) + 7 + 9 + 9 + 9 + 9 + 9 = ~68. (smaller top level indblk) 82 * 83 * The actual depth depends on copies redundancy and whether the filesystem 84 * has chosen to use a smaller indirect block size at the top level or not. 85 */ 86 #define HAMMER2_ALLOC_MIN 1024 /* minimum allocation size */ 87 #define HAMMER2_RADIX_MIN 10 /* minimum allocation size 2^N */ 88 #define HAMMER2_ALLOC_MAX 65536 /* maximum allocation size */ 89 #define HAMMER2_RADIX_MAX 16 /* maximum allocation size 2^N */ 90 #define HAMMER2_RADIX_KEY 64 /* number of bits in key */ 91 92 /* 93 * HAMMER2_LBUFSIZE - Nominal buffer size for I/O rollups. 94 * 95 * HAMMER2_PBUFSIZE - Topological block size used by files for all 96 * blocks except the block straddling EOF. 97 * 98 * HAMMER2_SEGSIZE - Allocation map segment size, typically 4MB 99 * (space represented by a level0 bitmap). 100 */ 101 102 #define HAMMER2_SEGSIZE (1 << HAMMER2_FREEMAP_LEVEL0_RADIX) 103 #define HAMMER2_SEGRADIX HAMMER2_FREEMAP_LEVEL0_RADIX 104 105 #define HAMMER2_PBUFRADIX 16 /* physical buf (1<<16) bytes */ 106 #define HAMMER2_PBUFSIZE 65536 107 #define HAMMER2_LBUFRADIX 14 /* logical buf (1<<14) bytes */ 108 #define HAMMER2_LBUFSIZE 16384 109 110 #define HAMMER2_IND_BYTES_MIN 4096 111 #define HAMMER2_IND_BYTES_NOM HAMMER2_LBUFSIZE 112 #define HAMMER2_IND_BYTES_MAX HAMMER2_PBUFSIZE 113 #define HAMMER2_IND_RADIX_MIN 12 114 #define HAMMER2_IND_RADIX_NOM HAMMER2_LBUFRADIX 115 #define HAMMER2_IND_RADIX_MAX HAMMER2_PBUFRADIX 116 #define HAMMER2_IND_COUNT_MIN (HAMMER2_IND_BYTES_MIN / \ 117 sizeof(hammer2_blockref_t)) 118 #define HAMMER2_IND_COUNT_MAX (HAMMER2_IND_BYTES_MAX / \ 119 sizeof(hammer2_blockref_t)) 120 121 /* 122 * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that 123 * any element can occur at any index and holes can be anywhere. As a 124 * future optimization we will be able to flag that such arrays are sorted 125 * and thus optimize lookups, but for now we don't. 126 * 127 * Inodes embed either 512 bytes of direct data or an array of 4 blockrefs, 128 * resulting in highly efficient storage for files <= 512 bytes and for files 129 * <= 512KB. Up to 4 directory entries can be referenced from a directory 130 * without requiring an indirect block. 131 */ 132 #define HAMMER2_SET_RADIX 2 /* radix 2 = 4 entries */ 133 #define HAMMER2_SET_COUNT (1 << HAMMER2_SET_RADIX) 134 #define HAMMER2_EMBEDDED_BYTES 512 /* inode blockset/dd size */ 135 #define HAMMER2_EMBEDDED_RADIX 9 136 137 #define HAMMER2_PBUFMASK (HAMMER2_PBUFSIZE - 1) 138 #define HAMMER2_LBUFMASK (HAMMER2_LBUFSIZE - 1) 139 #define HAMMER2_SEGMASK (HAMMER2_SEGSIZE - 1) 140 141 #define HAMMER2_LBUFMASK64 ((hammer2_off_t)HAMMER2_LBUFMASK) 142 #define HAMMER2_PBUFSIZE64 ((hammer2_off_t)HAMMER2_PBUFSIZE) 143 #define HAMMER2_PBUFMASK64 ((hammer2_off_t)HAMMER2_PBUFMASK) 144 #define HAMMER2_SEGSIZE64 ((hammer2_off_t)HAMMER2_SEGSIZE) 145 #define HAMMER2_SEGMASK64 ((hammer2_off_t)HAMMER2_SEGMASK) 146 147 #define HAMMER2_UUID_STRING "5cbb9ad1-862d-11dc-a94d-01301bb8a9f5" 148 149 /* 150 * A 4MB segment is reserved at the beginning of each 2GB zone. This segment 151 * contains the volume header (or backup volume header), the free block 152 * table, and possibly other information in the future. A 4MB segment for 153 * freemap is reserved at the beginning of every 1GB. 154 * 155 * 4MB = 64 x 64K blocks. Each 4MB segment is broken down as follows: 156 * 157 * ========== 158 * 0 volume header (for the first four 2GB zones) 159 * 1 freemap00 level1 FREEMAP_LEAF (256 x 128B bitmap data per 1GB) 160 * 2 level2 FREEMAP_NODE (256 x 128B indirect block per 256GB) 161 * 3 level3 FREEMAP_NODE (256 x 128B indirect block per 64TB) 162 * 4 level4 FREEMAP_NODE (256 x 128B indirect block per 16PB) 163 * 5 level5 FREEMAP_NODE (256 x 128B indirect block per 4EB) 164 * 6 freemap01 level1 (rotation) 165 * 7 level2 166 * 8 level3 167 * 9 level4 168 * 10 level5 169 * 11 freemap02 level1 (rotation) 170 * 12 level2 171 * 13 level3 172 * 14 level4 173 * 15 level5 174 * 16 freemap03 level1 (rotation) 175 * 17 level2 176 * 18 level3 177 * 19 level4 178 * 20 level5 179 * 21 freemap04 level1 (rotation) 180 * 22 level2 181 * 23 level3 182 * 24 level4 183 * 25 level5 184 * 26 freemap05 level1 (rotation) 185 * 27 level2 186 * 28 level3 187 * 29 level4 188 * 30 level5 189 * 31 freemap06 level1 (rotation) 190 * 32 level2 191 * 33 level3 192 * 34 level4 193 * 35 level5 194 * 36 freemap07 level1 (rotation) 195 * 37 level2 196 * 38 level3 197 * 39 level4 198 * 40 level5 199 * 41 unused 200 * .. unused 201 * 63 unused 202 * ========== 203 * 204 * The first four 2GB zones contain volume headers and volume header backups. 205 * After that the volume header block# is reserved for future use. Similarly, 206 * there are many blocks related to various Freemap levels which are not 207 * used in every segment and those are also reserved for future use. 208 * Note that each FREEMAP_LEAF or FREEMAP_NODE uses 32KB out of 64KB slot. 209 * 210 * Freemap (see the FREEMAP document) 211 * 212 * The freemap utilizes blocks #1-40 in 8 sets of 5 blocks. Each block in 213 * a set represents a level of depth in the freemap topology. Eight sets 214 * exist to prevent live updates from disturbing the state of the freemap 215 * were a crash/reboot to occur. That is, a live update is not committed 216 * until the update's flush reaches the volume root. There are FOUR volume 217 * roots representing the last four synchronization points, so the freemap 218 * must be consistent no matter which volume root is chosen by the mount 219 * code. 220 * 221 * Each freemap set is 5 x 64K blocks and represents the 1GB, 256GB, 64TB, 222 * 16PB and 4EB indirect map. The volume header itself has a set of 4 freemap 223 * blockrefs representing another 2 bits, giving us a total 64 bits of 224 * representable address space. 225 * 226 * The Level 0 64KB block represents 1GB of storage represented by 32KB 227 * (256 x struct hammer2_bmap_data). Each structure represents 4MB of storage 228 * and has a 512 bit bitmap, using 2 bits to represent a 16KB chunk of 229 * storage. These 2 bits represent the following states: 230 * 231 * 00 Free 232 * 01 (reserved) (Possibly partially allocated) 233 * 10 Possibly free 234 * 11 Allocated 235 * 236 * One important thing to note here is that the freemap resolution is 16KB, 237 * but the minimum storage allocation size is 1KB. The hammer2 vfs keeps 238 * track of sub-allocations in memory, which means that on a unmount or reboot 239 * the entire 16KB of a partially allocated block will be considered fully 240 * allocated. It is possible for fragmentation to build up over time, but 241 * defragmentation is fairly easy to accomplish since all modifications 242 * allocate a new block. 243 * 244 * The Second thing to note is that due to the way snapshots and inode 245 * replication works, deleting a file cannot immediately free the related 246 * space. Furthermore, deletions often do not bother to traverse the 247 * block subhierarchy being deleted. And to go even further, whole 248 * sub-directory trees can be deleted simply by deleting the directory inode 249 * at the top. So even though we have a symbol to represent a 'possibly free' 250 * block (binary 10), only the bulk free scanning code can actually use it. 251 * Normal 'rm's or other deletions do not. 252 * 253 * WARNING! ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX 254 * (i.e. a multiple of 4MB). VOLUME_ALIGN must be >= ZONE_SEG. 255 * 256 * In Summary: 257 * 258 * (1) Modifications to freemap blocks 'allocate' a new copy (aka use a block 259 * from the next set). The new copy is reused until a flush occurs at 260 * which point the next modification will then rotate to the next set. 261 */ 262 #define HAMMER2_VOLUME_ALIGN (8 * 1024 * 1024) 263 #define HAMMER2_VOLUME_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN) 264 #define HAMMER2_VOLUME_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1) 265 #define HAMMER2_VOLUME_ALIGNMASK64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK) 266 267 #define HAMMER2_NEWFS_ALIGN (HAMMER2_VOLUME_ALIGN) 268 #define HAMMER2_NEWFS_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN) 269 #define HAMMER2_NEWFS_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1) 270 #define HAMMER2_NEWFS_ALIGNMASK64 ((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK) 271 272 #define HAMMER2_ZONE_BYTES64 (2LLU * 1024 * 1024 * 1024) 273 #define HAMMER2_ZONE_MASK64 (HAMMER2_ZONE_BYTES64 - 1) 274 #define HAMMER2_ZONE_SEG (4 * 1024 * 1024) 275 #define HAMMER2_ZONE_SEG64 ((hammer2_off_t)HAMMER2_ZONE_SEG) 276 #define HAMMER2_ZONE_BLOCKS_SEG (HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE) 277 278 #define HAMMER2_ZONE_FREEMAP_INC 5 /* 5 deep */ 279 280 #define HAMMER2_ZONE_VOLHDR 0 /* volume header or backup */ 281 #define HAMMER2_ZONE_FREEMAP_00 1 /* normal freemap rotation */ 282 #define HAMMER2_ZONE_FREEMAP_01 6 /* normal freemap rotation */ 283 #define HAMMER2_ZONE_FREEMAP_02 11 /* normal freemap rotation */ 284 #define HAMMER2_ZONE_FREEMAP_03 16 /* normal freemap rotation */ 285 #define HAMMER2_ZONE_FREEMAP_04 21 /* normal freemap rotation */ 286 #define HAMMER2_ZONE_FREEMAP_05 26 /* normal freemap rotation */ 287 #define HAMMER2_ZONE_FREEMAP_06 31 /* normal freemap rotation */ 288 #define HAMMER2_ZONE_FREEMAP_07 36 /* normal freemap rotation */ 289 #define HAMMER2_ZONE_FREEMAP_END 41 /* (non-inclusive) */ 290 291 #define HAMMER2_ZONE_UNUSED41 41 292 #define HAMMER2_ZONE_UNUSED42 42 293 #define HAMMER2_ZONE_UNUSED43 43 294 #define HAMMER2_ZONE_UNUSED44 44 295 #define HAMMER2_ZONE_UNUSED45 45 296 #define HAMMER2_ZONE_UNUSED46 46 297 #define HAMMER2_ZONE_UNUSED47 47 298 #define HAMMER2_ZONE_UNUSED48 48 299 #define HAMMER2_ZONE_UNUSED49 49 300 #define HAMMER2_ZONE_UNUSED50 50 301 #define HAMMER2_ZONE_UNUSED51 51 302 #define HAMMER2_ZONE_UNUSED52 52 303 #define HAMMER2_ZONE_UNUSED53 53 304 #define HAMMER2_ZONE_UNUSED54 54 305 #define HAMMER2_ZONE_UNUSED55 55 306 #define HAMMER2_ZONE_UNUSED56 56 307 #define HAMMER2_ZONE_UNUSED57 57 308 #define HAMMER2_ZONE_UNUSED58 58 309 #define HAMMER2_ZONE_UNUSED59 59 310 #define HAMMER2_ZONE_UNUSED60 60 311 #define HAMMER2_ZONE_UNUSED61 61 312 #define HAMMER2_ZONE_UNUSED62 62 313 #define HAMMER2_ZONE_UNUSED63 63 314 #define HAMMER2_ZONE_END 64 /* non-inclusive */ 315 316 #define HAMMER2_NFREEMAPS 8 /* FREEMAP_00 - FREEMAP_07 */ 317 318 /* relative to FREEMAP_x */ 319 #define HAMMER2_ZONEFM_LEVEL1 0 /* 1GB leafmap */ 320 #define HAMMER2_ZONEFM_LEVEL2 1 /* 256GB indmap */ 321 #define HAMMER2_ZONEFM_LEVEL3 2 /* 64TB indmap */ 322 #define HAMMER2_ZONEFM_LEVEL4 3 /* 16PB indmap */ 323 #define HAMMER2_ZONEFM_LEVEL5 4 /* 4EB indmap */ 324 /* LEVEL6 is a set of 4 blockrefs in the volume header 16EB */ 325 326 /* 327 * Freemap radix. Assumes a set-count of 4, 128-byte blockrefs, 328 * 32KB indirect block for freemap (LEVELN_PSIZE below). 329 * 330 * Leaf entry represents 4MB of storage broken down into a 512-bit 331 * bitmap, 2-bits per entry. So course bitmap item represents 16KB. 332 */ 333 #if HAMMER2_SET_COUNT != 4 334 #error "hammer2_disk.h - freemap assumes SET_COUNT is 4" 335 #endif 336 #define HAMMER2_FREEMAP_LEVEL6_RADIX 64 /* 16EB (end) */ 337 #define HAMMER2_FREEMAP_LEVEL5_RADIX 62 /* 4EB */ 338 #define HAMMER2_FREEMAP_LEVEL4_RADIX 54 /* 16PB */ 339 #define HAMMER2_FREEMAP_LEVEL3_RADIX 46 /* 64TB */ 340 #define HAMMER2_FREEMAP_LEVEL2_RADIX 38 /* 256GB */ 341 #define HAMMER2_FREEMAP_LEVEL1_RADIX 30 /* 1GB */ 342 #define HAMMER2_FREEMAP_LEVEL0_RADIX 22 /* 4MB (128by in l-1 leaf) */ 343 344 #define HAMMER2_FREEMAP_LEVELN_PSIZE 32768 /* physical bytes */ 345 346 #define HAMMER2_FREEMAP_LEVEL5_SIZE ((hammer2_off_t)1 << \ 347 HAMMER2_FREEMAP_LEVEL5_RADIX) 348 #define HAMMER2_FREEMAP_LEVEL4_SIZE ((hammer2_off_t)1 << \ 349 HAMMER2_FREEMAP_LEVEL4_RADIX) 350 #define HAMMER2_FREEMAP_LEVEL3_SIZE ((hammer2_off_t)1 << \ 351 HAMMER2_FREEMAP_LEVEL3_RADIX) 352 #define HAMMER2_FREEMAP_LEVEL2_SIZE ((hammer2_off_t)1 << \ 353 HAMMER2_FREEMAP_LEVEL2_RADIX) 354 #define HAMMER2_FREEMAP_LEVEL1_SIZE ((hammer2_off_t)1 << \ 355 HAMMER2_FREEMAP_LEVEL1_RADIX) 356 #define HAMMER2_FREEMAP_LEVEL0_SIZE ((hammer2_off_t)1 << \ 357 HAMMER2_FREEMAP_LEVEL0_RADIX) 358 359 #define HAMMER2_FREEMAP_LEVEL5_MASK (HAMMER2_FREEMAP_LEVEL5_SIZE - 1) 360 #define HAMMER2_FREEMAP_LEVEL4_MASK (HAMMER2_FREEMAP_LEVEL4_SIZE - 1) 361 #define HAMMER2_FREEMAP_LEVEL3_MASK (HAMMER2_FREEMAP_LEVEL3_SIZE - 1) 362 #define HAMMER2_FREEMAP_LEVEL2_MASK (HAMMER2_FREEMAP_LEVEL2_SIZE - 1) 363 #define HAMMER2_FREEMAP_LEVEL1_MASK (HAMMER2_FREEMAP_LEVEL1_SIZE - 1) 364 #define HAMMER2_FREEMAP_LEVEL0_MASK (HAMMER2_FREEMAP_LEVEL0_SIZE - 1) 365 366 #define HAMMER2_FREEMAP_COUNT (int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \ 367 sizeof(hammer2_bmap_data_t)) 368 369 /* 370 * XXX I made a mistake and made the reserved area begin at each LEVEL1 zone, 371 * which is on a 1GB demark. This will eat a little more space but for 372 * now we retain compatibility and make FMZONEBASE every 1GB 373 */ 374 #define H2FMZONEBASE(key) ((key) & ~HAMMER2_FREEMAP_LEVEL1_MASK) 375 #define H2FMBASE(key, radix) rounddown2(key, (hammer2_off_t)1 << (radix)) 376 377 /* 378 * 16KB bitmap granularity (x2 bits per entry). 379 */ 380 #define HAMMER2_FREEMAP_BLOCK_RADIX 14 381 #define HAMMER2_FREEMAP_BLOCK_SIZE (1 << HAMMER2_FREEMAP_BLOCK_RADIX) 382 #define HAMMER2_FREEMAP_BLOCK_MASK (HAMMER2_FREEMAP_BLOCK_SIZE - 1) 383 384 /* 385 * bitmap[] structure. 2 bits per HAMMER2_FREEMAP_BLOCK_SIZE. 386 * 387 * 8 x 64-bit elements, 2 bits per block. 388 * 32 blocks (radix 5) per element. 389 * representing INDEX_SIZE bytes worth of storage per element. 390 */ 391 392 typedef uint64_t hammer2_bitmap_t; 393 394 #define HAMMER2_BMAP_ALLONES ((hammer2_bitmap_t)-1) 395 #define HAMMER2_BMAP_ELEMENTS 8 396 #define HAMMER2_BMAP_BITS_PER_ELEMENT 64 397 #define HAMMER2_BMAP_INDEX_RADIX 5 /* 32 blocks per element */ 398 #define HAMMER2_BMAP_BLOCKS_PER_ELEMENT (1 << HAMMER2_BMAP_INDEX_RADIX) 399 400 #define HAMMER2_BMAP_INDEX_SIZE (HAMMER2_FREEMAP_BLOCK_SIZE * \ 401 HAMMER2_BMAP_BLOCKS_PER_ELEMENT) 402 #define HAMMER2_BMAP_INDEX_MASK (HAMMER2_BMAP_INDEX_SIZE - 1) 403 404 #define HAMMER2_BMAP_SIZE (HAMMER2_BMAP_INDEX_SIZE * \ 405 HAMMER2_BMAP_ELEMENTS) 406 #define HAMMER2_BMAP_MASK (HAMMER2_BMAP_SIZE - 1) 407 408 /* 409 * Two linear areas can be reserved after the initial 4MB segment in the base 410 * zone (the one starting at offset 0). These areas are NOT managed by the 411 * block allocator and do not fall under HAMMER2 crc checking rules based 412 * at the volume header (but can be self-CRCd internally, depending). 413 */ 414 #define HAMMER2_BOOT_MIN_BYTES HAMMER2_VOLUME_ALIGN 415 #define HAMMER2_BOOT_NOM_BYTES (64*1024*1024) 416 #define HAMMER2_BOOT_MAX_BYTES (256*1024*1024) 417 418 #define HAMMER2_REDO_MIN_BYTES HAMMER2_VOLUME_ALIGN 419 #define HAMMER2_REDO_NOM_BYTES (256*1024*1024) 420 #define HAMMER2_REDO_MAX_BYTES (1024*1024*1024) 421 422 /* 423 * Most HAMMER2 types are implemented as unsigned 64-bit integers. 424 * Transaction ids are monotonic. 425 * 426 * We utilize 32-bit iSCSI CRCs. 427 */ 428 typedef uint64_t hammer2_tid_t; 429 typedef uint64_t hammer2_off_t; 430 typedef uint64_t hammer2_key_t; 431 typedef uint32_t hammer2_crc32_t; 432 433 /* 434 * Miscellanious ranges (all are unsigned). 435 */ 436 #define HAMMER2_TID_MIN 1ULL 437 #define HAMMER2_TID_MAX 0xFFFFFFFFFFFFFFFFULL 438 #define HAMMER2_KEY_MIN 0ULL 439 #define HAMMER2_KEY_MAX 0xFFFFFFFFFFFFFFFFULL 440 #define HAMMER2_OFFSET_MIN 0ULL 441 #define HAMMER2_OFFSET_MAX 0xFFFFFFFFFFFFFFFFULL 442 443 /* 444 * HAMMER2 data offset special cases and masking. 445 * 446 * All HAMMER2 data offsets have to be broken down into a 64K buffer base 447 * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO). 448 * 449 * Indexes into physical buffers are always 64-byte aligned. The low 6 bits 450 * of the data offset field specifies how large the data chunk being pointed 451 * to as a power of 2. The theoretical minimum radix is thus 6 (The space 452 * needed in the low bits of the data offset field). However, the practical 453 * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets 454 * HAMMER2_RADIX_MIN to 10. The maximum radix is currently 16 (64KB), but 455 * we fully intend to support larger extents in the future. 456 * 457 * WARNING! A radix of 0 (such as when data_off is all 0's) is a special 458 * case which means no data associated with the blockref, and 459 * not the '1 byte' it would otherwise calculate to. 460 */ 461 #define HAMMER2_OFF_MASK 0xFFFFFFFFFFFFFFC0ULL 462 #define HAMMER2_OFF_MASK_LO (HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64) 463 #define HAMMER2_OFF_MASK_HI (~HAMMER2_PBUFMASK64) 464 #define HAMMER2_OFF_MASK_RADIX 0x000000000000003FULL 465 466 /* 467 * HAMMER2 directory support and pre-defined keys 468 */ 469 #define HAMMER2_DIRHASH_VISIBLE 0x8000000000000000ULL 470 #define HAMMER2_DIRHASH_USERMSK 0x7FFFFFFFFFFFFFFFULL 471 #define HAMMER2_DIRHASH_LOMASK 0x0000000000007FFFULL 472 #define HAMMER2_DIRHASH_HIMASK 0xFFFFFFFFFFFF0000ULL 473 #define HAMMER2_DIRHASH_FORCED 0x0000000000008000ULL /* bit forced on */ 474 475 #define HAMMER2_SROOT_KEY 0x0000000000000000ULL /* volume to sroot */ 476 #define HAMMER2_BOOT_KEY 0xd9b36ce135528000ULL /* sroot to BOOT PFS */ 477 478 /************************************************************************ 479 * DMSG SUPPORT * 480 ************************************************************************ 481 * LNK_VOLCONF 482 * 483 * All HAMMER2 directories directly under the super-root on your local 484 * media can be mounted separately, even if they share the same physical 485 * device. 486 * 487 * When you do a HAMMER2 mount you are effectively tying into a HAMMER2 488 * cluster via local media. The local media does not have to participate 489 * in the cluster, other than to provide the hammer2_volconf[] array and 490 * root inode for the mount. 491 * 492 * This is important: The mount device path you specify serves to bootstrap 493 * your entry into the cluster, but your mount will make active connections 494 * to ALL copy elements in the hammer2_volconf[] array which match the 495 * PFSID of the directory in the super-root that you specified. The local 496 * media path does not have to be mentioned in this array but becomes part 497 * of the cluster based on its type and access rights. ALL ELEMENTS ARE 498 * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM. 499 * 500 * The actual cluster may be far larger than the elements you list in the 501 * hammer2_volconf[] array. You list only the elements you wish to 502 * directly connect to and you are able to access the rest of the cluster 503 * indirectly through those connections. 504 * 505 * WARNING! This structure must be exactly 128 bytes long for its config 506 * array to fit in the volume header. 507 */ 508 struct hammer2_volconf { 509 uint8_t copyid; /* 00 copyid 0-255 (must match slot) */ 510 uint8_t inprog; /* 01 operation in progress, or 0 */ 511 uint8_t chain_to; /* 02 operation chaining to, or 0 */ 512 uint8_t chain_from; /* 03 operation chaining from, or 0 */ 513 uint16_t flags; /* 04-05 flags field */ 514 uint8_t error; /* 06 last operational error */ 515 uint8_t priority; /* 07 priority and round-robin flag */ 516 uint8_t remote_pfs_type;/* 08 probed direct remote PFS type */ 517 uint8_t reserved08[23]; /* 09-1F */ 518 uuid_t pfs_clid; /* 20-2F copy target must match this uuid */ 519 uint8_t label[16]; /* 30-3F import/export label */ 520 uint8_t path[64]; /* 40-7F target specification string or key */ 521 } __packed; 522 523 typedef struct hammer2_volconf hammer2_volconf_t; 524 525 #define DMSG_VOLF_ENABLED 0x0001 526 #define DMSG_VOLF_INPROG 0x0002 527 #define DMSG_VOLF_CONN_RR 0x80 /* round-robin at same priority */ 528 #define DMSG_VOLF_CONN_EF 0x40 /* media errors flagged */ 529 #define DMSG_VOLF_CONN_PRI 0x0F /* select priority 0-15 (15=best) */ 530 531 struct dmsg_lnk_hammer2_volconf { 532 dmsg_hdr_t head; 533 hammer2_volconf_t copy; /* copy spec */ 534 int32_t index; 535 int32_t unused01; 536 uuid_t mediaid; 537 int64_t reserved02[32]; 538 } __packed; 539 540 typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t; 541 542 #define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \ 543 dmsg_lnk_hammer2_volconf) 544 545 #define H2_LNK_VOLCONF(msg) ((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf) 546 547 /* 548 * HAMMER2 directory entry header (embedded in blockref) exactly 16 bytes 549 */ 550 struct hammer2_dirent_head { 551 hammer2_tid_t inum; /* inode number */ 552 uint16_t namlen; /* name length */ 553 uint8_t type; /* OBJTYPE_* */ 554 uint8_t unused0B; 555 uint8_t unused0C[4]; 556 } __packed; 557 558 typedef struct hammer2_dirent_head hammer2_dirent_head_t; 559 560 /* 561 * The media block reference structure. This forms the core of the HAMMER2 562 * media topology recursion. This 128-byte data structure is embedded in the 563 * volume header, in inodes (which are also directory entries), and in 564 * indirect blocks. 565 * 566 * A blockref references a single media item, which typically can be a 567 * directory entry (aka inode), indirect block, or data block. 568 * 569 * The primary feature a blockref represents is the ability to validate 570 * the entire tree underneath it via its check code. Any modification to 571 * anything propagates up the blockref tree all the way to the root, replacing 572 * the related blocks and compounding the generated check code. 573 * 574 * The check code can be a simple 32-bit iscsi code, a 64-bit crc, or as 575 * complex as a 512 bit cryptographic hash. I originally used a 64-byte 576 * blockref but later expanded it to 128 bytes to be able to support the 577 * larger check code as well as to embed statistics for quota operation. 578 * 579 * Simple check codes are not sufficient for unverified dedup. Even with 580 * a maximally-sized check code unverified dedup should only be used in 581 * in subdirectory trees where you do not need 100% data integrity. 582 * 583 * Unverified dedup is deduping based on meta-data only without verifying 584 * that the data blocks are actually identical. Verified dedup guarantees 585 * integrity but is a far more I/O-expensive operation. 586 * 587 * -- 588 * 589 * mirror_tid - per cluster node modified (propagated upward by flush) 590 * modify_tid - clc record modified (not propagated). 591 * update_tid - clc record updated (propagated upward on verification) 592 * 593 * CLC - Stands for 'Cluster Level Change', identifiers which are identical 594 * within the topology across all cluster nodes (when fully 595 * synchronized). 596 * 597 * NOTE: The range of keys represented by the blockref is (key) to 598 * ((key) + (1LL << keybits) - 1). HAMMER2 usually populates 599 * blocks bottom-up, inserting a new root when radix expansion 600 * is required. 601 * 602 * leaf_count - Helps manage leaf collapse calculations when indirect 603 * blocks become mostly empty. This value caps out at 604 * HAMMER2_BLOCKREF_LEAF_MAX (65535). 605 * 606 * Used by the chain code to determine when to pull leafs up 607 * from nearly empty indirect blocks. For the purposes of this 608 * calculation, BREF_TYPE_INODE is considered a leaf, along 609 * with DIRENT and DATA. 610 * 611 * RESERVED FIELDS 612 * 613 * A number of blockref fields are reserved and should generally be set to 614 * 0 for future compatibility. 615 * 616 * FUTURE BLOCKREF EXPANSION 617 * 618 * CONTENT ADDRESSABLE INDEXING (future) - Using a 256 or 512-bit check code. 619 */ 620 struct hammer2_blockref { /* MUST BE EXACTLY 64 BYTES */ 621 uint8_t type; /* type of underlying item */ 622 uint8_t methods; /* check method & compression method */ 623 uint8_t copyid; /* specify which copy this is */ 624 uint8_t keybits; /* #of keybits masked off 0=leaf */ 625 uint8_t vradix; /* virtual data/meta-data size */ 626 uint8_t flags; /* blockref flags */ 627 uint16_t leaf_count; /* leaf aggregation count */ 628 hammer2_key_t key; /* key specification */ 629 hammer2_tid_t mirror_tid; /* media flush topology & freemap */ 630 hammer2_tid_t modify_tid; /* clc modify (not propagated) */ 631 hammer2_off_t data_off; /* low 6 bits is phys size (radix)*/ 632 hammer2_tid_t update_tid; /* clc modify (propagated upward) */ 633 union { 634 char buf[16]; 635 636 /* 637 * Directory entry header (BREF_TYPE_DIRENT) 638 * 639 * NOTE: check.buf contains filename if <= 64 bytes. Longer 640 * filenames are stored in a data reference of size 641 * HAMMER2_ALLOC_MIN (at least 256, typically 1024). 642 * 643 * NOTE: inode structure may contain a copy of a recently 644 * associated filename, for recovery purposes. 645 * 646 * NOTE: Superroot entries are INODEs, not DIRENTs. Code 647 * allows both cases. 648 */ 649 hammer2_dirent_head_t dirent; 650 651 /* 652 * Statistics aggregation (BREF_TYPE_INODE, BREF_TYPE_INDIRECT) 653 */ 654 struct { 655 hammer2_key_t data_count; 656 hammer2_key_t inode_count; 657 } stats; 658 } embed; 659 union { /* check info */ 660 char buf[64]; 661 struct { 662 uint32_t value; 663 uint32_t reserved[15]; 664 } iscsi32; 665 struct { 666 uint64_t value; 667 uint64_t reserved[7]; 668 } xxhash64; 669 struct { 670 char data[24]; 671 char reserved[40]; 672 } sha192; 673 struct { 674 char data[32]; 675 char reserved[32]; 676 } sha256; 677 struct { 678 char data[64]; 679 } sha512; 680 681 /* 682 * Freemap hints are embedded in addition to the icrc32. 683 * 684 * bigmask - Radixes available for allocation (0-31). 685 * Heuristical (may be permissive but not 686 * restrictive). Typically only radix values 687 * 10-16 are used (i.e. (1<<10) through (1<<16)). 688 * 689 * avail - Total available space remaining, in bytes 690 */ 691 struct { 692 uint32_t icrc32; 693 uint32_t bigmask; /* available radixes */ 694 uint64_t avail; /* total available bytes */ 695 char reserved[48]; 696 } freemap; 697 } check; 698 } __packed; 699 700 typedef struct hammer2_blockref hammer2_blockref_t; 701 702 #define HAMMER2_BLOCKREF_BYTES 128 /* blockref struct in bytes */ 703 #define HAMMER2_BLOCKREF_RADIX 7 704 705 #define HAMMER2_BLOCKREF_LEAF_MAX 65535 706 707 /* 708 * On-media and off-media blockref types. 709 * 710 * types >= 128 are pseudo values that should never be present on-media. 711 */ 712 #define HAMMER2_BREF_TYPE_EMPTY 0 713 #define HAMMER2_BREF_TYPE_INODE 1 714 #define HAMMER2_BREF_TYPE_INDIRECT 2 715 #define HAMMER2_BREF_TYPE_DATA 3 716 #define HAMMER2_BREF_TYPE_DIRENT 4 717 #define HAMMER2_BREF_TYPE_FREEMAP_NODE 5 718 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF 6 719 #define HAMMER2_BREF_TYPE_FREEMAP 254 /* pseudo-type */ 720 #define HAMMER2_BREF_TYPE_VOLUME 255 /* pseudo-type */ 721 722 #define HAMMER2_BREF_FLAG_PFSROOT 0x01 /* see also related opflag */ 723 #define HAMMER2_BREF_FLAG_ZERO 0x02 /* NO LONGER USED */ 724 #define HAMMER2_BREF_FLAG_EMERG_MIP 0x04 /* emerg modified-in-place */ 725 726 /* 727 * Encode/decode check mode and compression mode for 728 * bref.methods. The compression level is not encoded in 729 * bref.methods. 730 */ 731 #define HAMMER2_ENC_CHECK(n) (((n) & 15) << 4) 732 #define HAMMER2_DEC_CHECK(n) (((n) >> 4) & 15) 733 #define HAMMER2_ENC_COMP(n) ((n) & 15) 734 #define HAMMER2_DEC_COMP(n) ((n) & 15) 735 736 #define HAMMER2_CHECK_NONE 0 737 #define HAMMER2_CHECK_DISABLED 1 738 #define HAMMER2_CHECK_ISCSI32 2 739 #define HAMMER2_CHECK_XXHASH64 3 740 #define HAMMER2_CHECK_SHA192 4 741 #define HAMMER2_CHECK_FREEMAP 5 742 743 #define HAMMER2_CHECK_DEFAULT HAMMER2_CHECK_XXHASH64 744 745 /* user-specifiable check modes only */ 746 #define HAMMER2_CHECK_STRINGS { "none", "disabled", "crc32", \ 747 "xxhash64", "sha192" } 748 #define HAMMER2_CHECK_STRINGS_COUNT 5 749 750 /* 751 * Encode/decode check or compression algorithm request in 752 * ipdata->meta.check_algo and ipdata->meta.comp_algo. 753 */ 754 #define HAMMER2_ENC_ALGO(n) (n) 755 #define HAMMER2_DEC_ALGO(n) ((n) & 15) 756 #define HAMMER2_ENC_LEVEL(n) ((n) << 4) 757 #define HAMMER2_DEC_LEVEL(n) (((n) >> 4) & 15) 758 759 #define HAMMER2_COMP_NONE 0 760 #define HAMMER2_COMP_AUTOZERO 1 761 #define HAMMER2_COMP_LZ4 2 762 #define HAMMER2_COMP_ZLIB 3 763 764 #define HAMMER2_COMP_NEWFS_DEFAULT HAMMER2_COMP_LZ4 765 #define HAMMER2_COMP_STRINGS { "none", "autozero", "lz4", "zlib" } 766 #define HAMMER2_COMP_STRINGS_COUNT 4 767 768 /* 769 * Passed to hammer2_chain_create(), causes methods to be inherited from 770 * parent. 771 */ 772 #define HAMMER2_METH_DEFAULT -1 773 774 /* 775 * HAMMER2 block references are collected into sets of 4 blockrefs. These 776 * sets are fully associative, meaning the elements making up a set are 777 * not sorted in any way and may contain duplicate entries, holes, or 778 * entries which shortcut multiple levels of indirection. Sets are used 779 * in various ways: 780 * 781 * (1) When redundancy is desired a set may contain several duplicate 782 * entries pointing to different copies of the same data. Up to 4 copies 783 * are supported. 784 * 785 * (2) The blockrefs in a set can shortcut multiple levels of indirections 786 * within the bounds imposed by the parent of set. 787 * 788 * When a set fills up another level of indirection is inserted, moving 789 * some or all of the set's contents into indirect blocks placed under the 790 * set. This is a top-down approach in that indirect blocks are not created 791 * until the set actually becomes full (that is, the entries in the set can 792 * shortcut the indirect blocks when the set is not full). Depending on how 793 * things are filled multiple indirect blocks will eventually be created. 794 */ 795 struct hammer2_blockset { 796 hammer2_blockref_t blockref[HAMMER2_SET_COUNT]; 797 }; 798 799 typedef struct hammer2_blockset hammer2_blockset_t; 800 801 /* 802 * Catch programmer snafus 803 */ 804 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT 805 #error "hammer2 direct radix is incorrect" 806 #endif 807 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE 808 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent" 809 #endif 810 #if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN 811 #error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent" 812 #endif 813 814 /* 815 * hammer2_bmap_data - A freemap entry in the LEVEL1 block. 816 * 817 * Each 128-byte entry contains the bitmap and meta-data required to manage 818 * a LEVEL0 (4MB) block of storage. The storage is managed in 256 x 16KB 819 * chunks. 820 * 821 * A smaller allocation granularity is supported via a linear iterator and/or 822 * must otherwise be tracked in ram. 823 * 824 * (data structure must be 128 bytes exactly) 825 * 826 * linear - A BYTE linear allocation offset used for sub-16KB allocations 827 * only. May contain values between 0 and 4MB. Must be ignored 828 * if 16KB-aligned (i.e. force bitmap scan), otherwise may be 829 * used to sub-allocate within the 16KB block (which is already 830 * marked as allocated in the bitmap). 831 * 832 * Sub-allocations need only be 1KB-aligned and do not have to be 833 * size-aligned, and 16KB or larger allocations do not update this 834 * field, resulting in pretty good packing. 835 * 836 * Please note that file data granularity may be limited by 837 * other issues such as buffer cache direct-mapping and the 838 * desire to support sector sizes up to 16KB (so H2 only issues 839 * I/O's in multiples of 16KB anyway). 840 * 841 * class - Clustering class. Cleared to 0 only if the entire leaf becomes 842 * free. Used to cluster device buffers so all elements must have 843 * the same device block size, but may mix logical sizes. 844 * 845 * Typically integrated with the blockref type in the upper 8 bits 846 * to localize inodes and indrect blocks, improving bulk free scans 847 * and directory scans. 848 * 849 * bitmap - Two bits per 16KB allocation block arranged in arrays of 850 * 64-bit elements, 256x2 bits representing ~4MB worth of media 851 * storage. Bit patterns are as follows: 852 * 853 * 00 Unallocated 854 * 01 (reserved) 855 * 10 Possibly free 856 * 11 Allocated 857 */ 858 struct hammer2_bmap_data { 859 int32_t linear; /* 00 linear sub-granular allocation offset */ 860 uint16_t class; /* 04-05 clustering class ((type<<8)|radix) */ 861 uint8_t reserved06; /* 06 */ 862 uint8_t reserved07; /* 07 */ 863 uint32_t reserved08; /* 08 */ 864 uint32_t reserved0C; /* 0C */ 865 uint32_t reserved10; /* 10 */ 866 uint32_t reserved14; /* 14 */ 867 uint32_t reserved18; /* 18 */ 868 uint32_t avail; /* 1C */ 869 uint32_t reserved20[8]; /* 20-3F 256 bits manages 128K/1KB/2-bits */ 870 /* 40-7F 512 bits manages 4MB of storage */ 871 hammer2_bitmap_t bitmapq[HAMMER2_BMAP_ELEMENTS]; 872 } __packed; 873 874 typedef struct hammer2_bmap_data hammer2_bmap_data_t; 875 876 /* 877 * XXX "Inodes ARE directory entries" is no longer the case. Hardlinks are 878 * dirents which refer to the same inode#, which is how filesystems usually 879 * implement hardlink. The following comments need to be updated. 880 * 881 * In HAMMER2 inodes ARE directory entries, with a special exception for 882 * hardlinks. The inode number is stored in the inode rather than being 883 * based on the location of the inode (since the location moves every time 884 * the inode or anything underneath the inode is modified). 885 * 886 * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes 887 * for the filename, and 512 bytes worth of direct file data OR an embedded 888 * blockset. The in-memory hammer2_inode structure contains only the mostly- 889 * node-independent meta-data portion (some flags are node-specific and will 890 * not be synchronized). The rest of the inode is node-specific and chain I/O 891 * is required to obtain it. 892 * 893 * Directories represent one inode per blockref. Inodes are not laid out 894 * as a file but instead are represented by the related blockrefs. The 895 * blockrefs, in turn, are indexed by the 64-bit directory hash key. Remember 896 * that blocksets are fully associative, so a certain degree efficiency is 897 * achieved just from that. 898 * 899 * Up to 512 bytes of direct data can be embedded in an inode, and since 900 * inodes are essentially directory entries this also means that small data 901 * files end up simply being laid out linearly in the directory, resulting 902 * in fewer seeks and highly optimal access. 903 * 904 * The compression mode can be changed at any time in the inode and is 905 * recorded on a blockref-by-blockref basis. 906 * 907 * Hardlinks are supported via the inode map. Essentially the way a hardlink 908 * works is that all individual directory entries representing the same file 909 * are special cased and specify the same inode number. The actual file 910 * is placed in the nearest parent directory that is parent to all instances 911 * of the hardlink. If all hardlinks to a file are in the same directory 912 * the actual file will also be placed in that directory. This file uses 913 * the inode number as the directory entry key and is invisible to normal 914 * directory scans. Real directory entry keys are differentiated from the 915 * inode number key via bit 63. Access to the hardlink silently looks up 916 * the real file and forwards all operations to that file. Removal of the 917 * last hardlink also removes the real file. 918 */ 919 #define HAMMER2_INODE_BYTES 1024 /* (asserted by code) */ 920 #define HAMMER2_INODE_MAXNAME 256 /* maximum name in bytes */ 921 #define HAMMER2_INODE_VERSION_ONE 1 922 923 #define HAMMER2_INODE_START 1024 /* dynamically allocated */ 924 925 struct hammer2_inode_meta { 926 uint16_t version; /* 0000 inode data version */ 927 uint8_t reserved02; /* 0002 */ 928 uint8_t pfs_subtype; /* 0003 pfs sub-type */ 929 930 /* 931 * core inode attributes, inode type, misc flags 932 */ 933 uint32_t uflags; /* 0004 chflags */ 934 uint32_t rmajor; /* 0008 available for device nodes */ 935 uint32_t rminor; /* 000C available for device nodes */ 936 uint64_t ctime; /* 0010 inode change time */ 937 uint64_t mtime; /* 0018 modified time */ 938 uint64_t atime; /* 0020 access time (unsupported) */ 939 uint64_t btime; /* 0028 birth time */ 940 uuid_t uid; /* 0030 uid / degenerate unix uid */ 941 uuid_t gid; /* 0040 gid / degenerate unix gid */ 942 943 uint8_t type; /* 0050 object type */ 944 uint8_t op_flags; /* 0051 operational flags */ 945 uint16_t cap_flags; /* 0052 capability flags */ 946 uint32_t mode; /* 0054 unix modes (typ low 16 bits) */ 947 948 /* 949 * inode size, identification, localized recursive configuration 950 * for compression and backup copies. 951 * 952 * NOTE: Nominal parent inode number (iparent) is only applicable 953 * for directories but can also help for files during 954 * catastrophic recovery. 955 */ 956 hammer2_tid_t inum; /* 0058 inode number */ 957 hammer2_off_t size; /* 0060 size of file */ 958 uint64_t nlinks; /* 0068 hard links (typ only dirs) */ 959 hammer2_tid_t iparent; /* 0070 nominal parent inum */ 960 hammer2_key_t name_key; /* 0078 full filename key */ 961 uint16_t name_len; /* 0080 filename length */ 962 uint8_t ncopies; /* 0082 ncopies to local media */ 963 uint8_t comp_algo; /* 0083 compression request & algo */ 964 965 /* 966 * These fields are currently only applicable to PFSROOTs. 967 * 968 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely 969 * identify an instance of a PFS in the cluster because 970 * a mount may contain more than one copy of the PFS as 971 * a separate node. {pfs_clid, pfs_fsid} must be used for 972 * registration in the cluster. 973 */ 974 uint8_t target_type; /* 0084 hardlink target type */ 975 uint8_t check_algo; /* 0085 check code request & algo */ 976 uint8_t pfs_nmasters; /* 0086 (if PFSROOT) if multi-master */ 977 uint8_t pfs_type; /* 0087 (if PFSROOT) node type */ 978 hammer2_tid_t pfs_inum; /* 0088 (if PFSROOT) inum allocator */ 979 uuid_t pfs_clid; /* 0090 (if PFSROOT) cluster uuid */ 980 uuid_t pfs_fsid; /* 00A0 (if PFSROOT) unique uuid */ 981 982 /* 983 * Quotas and aggregate sub-tree inode and data counters. Note that 984 * quotas are not replicated downward, they are explicitly set by 985 * the sysop and in-memory structures keep track of inheritance. 986 */ 987 hammer2_key_t data_quota; /* 00B0 subtree quota in bytes */ 988 hammer2_key_t unusedB8; /* 00B8 subtree byte count */ 989 hammer2_key_t inode_quota; /* 00C0 subtree quota inode count */ 990 hammer2_key_t unusedC8; /* 00C8 subtree inode count */ 991 992 /* 993 * The last snapshot tid is tested against modify_tid to determine 994 * when a copy must be made of a data block whos check mode has been 995 * disabled (a disabled check mode allows data blocks to be updated 996 * in place instead of copy-on-write). 997 */ 998 hammer2_tid_t pfs_lsnap_tid; /* 00D0 last snapshot tid */ 999 hammer2_tid_t reservedD8; /* 00D8 (avail) */ 1000 1001 /* 1002 * Tracks (possibly degenerate) free areas covering all sub-tree 1003 * allocations under inode, not counting the inode itself. 1004 * 0/0 indicates empty entry. fully set-associative. 1005 * 1006 * (not yet implemented) 1007 */ 1008 uint64_t decrypt_check; /* 00E0 decryption validator */ 1009 hammer2_off_t reservedE0[3]; /* 00E8/F0/F8 */ 1010 } __packed; 1011 1012 typedef struct hammer2_inode_meta hammer2_inode_meta_t; 1013 1014 struct hammer2_inode_data { 1015 hammer2_inode_meta_t meta; /* 0000-00FF */ 1016 unsigned char filename[HAMMER2_INODE_MAXNAME]; 1017 /* 0100-01FF (256 char, unterminated) */ 1018 union { /* 0200-03FF (64x8 = 512 bytes) */ 1019 hammer2_blockset_t blockset; 1020 char data[HAMMER2_EMBEDDED_BYTES]; 1021 } u; 1022 } __packed; 1023 1024 typedef struct hammer2_inode_data hammer2_inode_data_t; 1025 1026 #define HAMMER2_OPFLAG_DIRECTDATA 0x01 1027 #define HAMMER2_OPFLAG_PFSROOT 0x02 /* (see also bref flag) */ 1028 #define HAMMER2_OPFLAG_COPYIDS 0x04 /* copyids override parent */ 1029 1030 #define HAMMER2_OBJTYPE_UNKNOWN 0 1031 #define HAMMER2_OBJTYPE_DIRECTORY 1 1032 #define HAMMER2_OBJTYPE_REGFILE 2 1033 #define HAMMER2_OBJTYPE_FIFO 4 1034 #define HAMMER2_OBJTYPE_CDEV 5 1035 #define HAMMER2_OBJTYPE_BDEV 6 1036 #define HAMMER2_OBJTYPE_SOFTLINK 7 1037 #define HAMMER2_OBJTYPE_UNUSED08 8 1038 #define HAMMER2_OBJTYPE_SOCKET 9 1039 #define HAMMER2_OBJTYPE_WHITEOUT 10 1040 1041 #define HAMMER2_COPYID_NONE 0 1042 #define HAMMER2_COPYID_LOCAL ((uint8_t)-1) 1043 1044 #define HAMMER2_COPYID_COUNT 256 1045 1046 /* 1047 * PFS types identify the role of a PFS within a cluster. The PFS types 1048 * is stored on media and in LNK_SPAN messages and used in other places. 1049 * 1050 * The low 4 bits specify the current active type while the high 4 bits 1051 * specify the transition target if the PFS is being upgraded or downgraded, 1052 * If the upper 4 bits are not zero it may effect how a PFS is used during 1053 * the transition. 1054 * 1055 * Generally speaking, downgrading a MASTER to a SLAVE cannot complete until 1056 * at least all MASTERs have updated their pfs_nmasters field. And upgrading 1057 * a SLAVE to a MASTER cannot complete until the new prospective master has 1058 * been fully synchronized (though theoretically full synchronization is 1059 * not required if a (new) quorum of other masters are fully synchronized). 1060 * 1061 * It generally does not matter which PFS element you actually mount, you 1062 * are mounting 'the cluster'. So, for example, a network mount will mount 1063 * a DUMMY PFS type on a memory filesystem. However, there are two exceptions. 1064 * In order to gain the benefits of a SOFT_MASTER or SOFT_SLAVE, those PFSs 1065 * must be directly mounted. 1066 */ 1067 #define HAMMER2_PFSTYPE_NONE 0x00 1068 #define HAMMER2_PFSTYPE_CACHE 0x01 1069 #define HAMMER2_PFSTYPE_UNUSED02 0x02 1070 #define HAMMER2_PFSTYPE_SLAVE 0x03 1071 #define HAMMER2_PFSTYPE_SOFT_SLAVE 0x04 1072 #define HAMMER2_PFSTYPE_SOFT_MASTER 0x05 1073 #define HAMMER2_PFSTYPE_MASTER 0x06 1074 #define HAMMER2_PFSTYPE_UNUSED07 0x07 1075 #define HAMMER2_PFSTYPE_SUPROOT 0x08 1076 #define HAMMER2_PFSTYPE_DUMMY 0x09 1077 #define HAMMER2_PFSTYPE_MAX 16 1078 1079 #define HAMMER2_PFSTRAN_NONE 0x00 /* no transition in progress */ 1080 #define HAMMER2_PFSTRAN_CACHE 0x10 1081 #define HAMMER2_PFSTRAN_UNMUSED20 0x20 1082 #define HAMMER2_PFSTRAN_SLAVE 0x30 1083 #define HAMMER2_PFSTRAN_SOFT_SLAVE 0x40 1084 #define HAMMER2_PFSTRAN_SOFT_MASTER 0x50 1085 #define HAMMER2_PFSTRAN_MASTER 0x60 1086 #define HAMMER2_PFSTRAN_UNUSED70 0x70 1087 #define HAMMER2_PFSTRAN_SUPROOT 0x80 1088 #define HAMMER2_PFSTRAN_DUMMY 0x90 1089 1090 #define HAMMER2_PFS_DEC(n) ((n) & 0x0F) 1091 #define HAMMER2_PFS_DEC_TRANSITION(n) (((n) >> 4) & 0x0F) 1092 #define HAMMER2_PFS_ENC_TRANSITION(n) (((n) & 0x0F) << 4) 1093 1094 #define HAMMER2_PFSSUBTYPE_NONE 0 1095 #define HAMMER2_PFSSUBTYPE_SNAPSHOT 1 /* manual/managed snapshot */ 1096 #define HAMMER2_PFSSUBTYPE_AUTOSNAP 2 /* automatic snapshot */ 1097 1098 /* 1099 * PFS mode of operation is a bitmask. This is typically not stored 1100 * on-media, but defined here because the field may be used in dmsgs. 1101 */ 1102 #define HAMMER2_PFSMODE_QUORUM 0x01 1103 #define HAMMER2_PFSMODE_RW 0x02 1104 1105 /* 1106 * The volume header eats a 64K block. There is currently an issue where 1107 * we want to try to fit all nominal filesystem updates in a 512-byte section 1108 * but it may be a lost cause due to the need for a blockset. 1109 * 1110 * All information is stored in host byte order. The volume header's magic 1111 * number may be checked to determine the byte order. If you wish to mount 1112 * between machines w/ different endian modes you'll need filesystem code 1113 * which acts on the media data consistently (either all one way or all the 1114 * other). Our code currently does not do that. 1115 * 1116 * A read-write mount may have to recover missing allocations by doing an 1117 * incremental mirror scan looking for modifications made after alloc_tid. 1118 * If alloc_tid == last_tid then no recovery operation is needed. Recovery 1119 * operations are usually very, very fast. 1120 * 1121 * Read-only mounts do not need to do any recovery, access to the filesystem 1122 * topology is always consistent after a crash (is always consistent, period). 1123 * However, there may be shortcutted blockref updates present from deep in 1124 * the tree which are stored in the volumeh eader and must be tracked on 1125 * the fly. 1126 * 1127 * NOTE: The copyinfo[] array contains the configuration for both the 1128 * cluster connections and any local media copies. The volume 1129 * header will be replicated for each local media copy. 1130 * 1131 * The mount command may specify multiple medias or just one and 1132 * allow HAMMER2 to pick up the others when it checks the copyinfo[] 1133 * array on mount. 1134 * 1135 * NOTE: root_blockref points to the super-root directory, not the root 1136 * directory. The root directory will be a subdirectory under the 1137 * super-root. 1138 * 1139 * The super-root directory contains all root directories and all 1140 * snapshots (readonly or writable). It is possible to do a 1141 * null-mount of the super-root using special path constructions 1142 * relative to your mounted root. 1143 * 1144 * NOTE: HAMMER2 allows any subdirectory tree to be managed as if it were 1145 * a PFS, including mirroring and storage quota operations, and this is 1146 * prefered over creating discrete PFSs in the super-root. Instead 1147 * the super-root is most typically used to create writable snapshots, 1148 * alternative roots, and so forth. The super-root is also used by 1149 * the automatic snapshotting mechanism. 1150 */ 1151 #define HAMMER2_VOLUME_ID_HBO 0x48414d3205172011LLU 1152 #define HAMMER2_VOLUME_ID_ABO 0x11201705324d4148LLU 1153 1154 struct hammer2_volume_data { 1155 /* 1156 * sector #0 - 512 bytes 1157 */ 1158 uint64_t magic; /* 0000 Signature */ 1159 hammer2_off_t boot_beg; /* 0008 Boot area (future) */ 1160 hammer2_off_t boot_end; /* 0010 (size = end - beg) */ 1161 hammer2_off_t aux_beg; /* 0018 Aux area (future) */ 1162 hammer2_off_t aux_end; /* 0020 (size = end - beg) */ 1163 hammer2_off_t volu_size; /* 0028 Volume size, bytes */ 1164 1165 uint32_t version; /* 0030 */ 1166 uint32_t flags; /* 0034 */ 1167 uint8_t copyid; /* 0038 copyid of phys vol */ 1168 uint8_t freemap_version; /* 0039 freemap algorithm */ 1169 uint8_t peer_type; /* 003A HAMMER2_PEER_xxx */ 1170 uint8_t reserved003B; /* 003B */ 1171 uint32_t reserved003C; /* 003C */ 1172 1173 uuid_t fsid; /* 0040 */ 1174 uuid_t fstype; /* 0050 */ 1175 1176 /* 1177 * allocator_size is precalculated at newfs time and does not include 1178 * reserved blocks, boot, or redo areas. 1179 * 1180 * Initial non-reserved-area allocations do not use the freemap 1181 * but instead adjust alloc_iterator. Dynamic allocations take 1182 * over starting at (allocator_beg). This makes newfs_hammer2's 1183 * job a lot easier and can also serve as a testing jig. 1184 */ 1185 hammer2_off_t allocator_size; /* 0060 Total data space */ 1186 hammer2_off_t allocator_free; /* 0068 Free space */ 1187 hammer2_off_t allocator_beg; /* 0070 Initial allocations */ 1188 1189 /* 1190 * mirror_tid reflects the highest committed change for this 1191 * block device regardless of whether it is to the super-root 1192 * or to a PFS or whatever. 1193 * 1194 * freemap_tid reflects the highest committed freemap change for 1195 * this block device. 1196 */ 1197 hammer2_tid_t mirror_tid; /* 0078 committed tid (vol) */ 1198 hammer2_tid_t reserved0080; /* 0080 */ 1199 hammer2_tid_t reserved0088; /* 0088 */ 1200 hammer2_tid_t freemap_tid; /* 0090 committed tid (fmap) */ 1201 hammer2_tid_t bulkfree_tid; /* 0098 bulkfree incremental */ 1202 hammer2_tid_t reserved00A0[5]; /* 00A0-00C7 */ 1203 1204 /* 1205 * Copyids are allocated dynamically from the copyexists bitmap. 1206 * An id from the active copies set (up to 8, see copyinfo later on) 1207 * may still exist after the copy set has been removed from the 1208 * volume header and its bit will remain active in the bitmap and 1209 * cannot be reused until it is 100% removed from the hierarchy. 1210 */ 1211 uint32_t copyexists[8]; /* 00C8-00E7 copy exists bmap */ 1212 char reserved0140[248]; /* 00E8-01DF */ 1213 1214 /* 1215 * 32 bit CRC array at the end of the first 512 byte sector. 1216 * 1217 * icrc_sects[7] - First 512-4 bytes of volume header (including all 1218 * the other icrc's except this one). 1219 * 1220 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is 1221 * the blockset for the root. 1222 * 1223 * icrc_sects[5] - Sector 2 1224 * icrc_sects[4] - Sector 3 1225 * icrc_sects[3] - Sector 4 (the freemap blockset) 1226 */ 1227 hammer2_crc32_t icrc_sects[8]; /* 01E0-01FF */ 1228 1229 /* 1230 * sector #1 - 512 bytes 1231 * 1232 * The entire sector is used by a blockset. 1233 */ 1234 hammer2_blockset_t sroot_blockset; /* 0200-03FF Superroot dir */ 1235 1236 /* 1237 * sector #2-7 1238 */ 1239 char sector2[512]; /* 0400-05FF reserved */ 1240 char sector3[512]; /* 0600-07FF reserved */ 1241 hammer2_blockset_t freemap_blockset; /* 0800-09FF freemap */ 1242 char sector5[512]; /* 0A00-0BFF reserved */ 1243 char sector6[512]; /* 0C00-0DFF reserved */ 1244 char sector7[512]; /* 0E00-0FFF reserved */ 1245 1246 /* 1247 * sector #8-71 - 32768 bytes 1248 * 1249 * Contains the configuration for up to 256 copyinfo targets. These 1250 * specify local and remote copies operating as masters or slaves. 1251 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255 1252 * indicates the local media). 1253 * 1254 * Each inode contains a set of up to 8 copyids, either inherited 1255 * from its parent or explicitly specified in the inode, which 1256 * indexes into this array. 1257 */ 1258 /* 1000-8FFF copyinfo config */ 1259 hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT]; 1260 1261 /* 1262 * Remaining sections are reserved for future use. 1263 */ 1264 char reserved0400[0x6FFC]; /* 9000-FFFB reserved */ 1265 1266 /* 1267 * icrc on entire volume header 1268 */ 1269 hammer2_crc32_t icrc_volheader; /* FFFC-FFFF full volume icrc*/ 1270 } __packed; 1271 1272 typedef struct hammer2_volume_data hammer2_volume_data_t; 1273 1274 /* 1275 * Various parts of the volume header have their own iCRCs. 1276 * 1277 * The first 512 bytes has its own iCRC stored at the end of the 512 bytes 1278 * and not included the icrc calculation. 1279 * 1280 * The second 512 bytes also has its own iCRC but it is stored in the first 1281 * 512 bytes so it covers the entire second 512 bytes. 1282 * 1283 * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes, 1284 * which is where the iCRC for the whole volume is stored. This is currently 1285 * a catch-all for anything not individually iCRCd. 1286 */ 1287 #define HAMMER2_VOL_ICRC_SECT0 7 1288 #define HAMMER2_VOL_ICRC_SECT1 6 1289 1290 #define HAMMER2_VOLUME_BYTES 65536 1291 1292 #define HAMMER2_VOLUME_ICRC0_OFF 0 1293 #define HAMMER2_VOLUME_ICRC1_OFF 512 1294 #define HAMMER2_VOLUME_ICRCVH_OFF 0 1295 1296 #define HAMMER2_VOLUME_ICRC0_SIZE (512 - 4) 1297 #define HAMMER2_VOLUME_ICRC1_SIZE (512) 1298 #define HAMMER2_VOLUME_ICRCVH_SIZE (65536 - 4) 1299 1300 #define HAMMER2_VOL_VERSION_MIN 1 1301 #define HAMMER2_VOL_VERSION_DEFAULT 1 1302 #define HAMMER2_VOL_VERSION_WIP 2 1303 1304 #define HAMMER2_NUM_VOLHDRS 4 1305 1306 union hammer2_media_data { 1307 hammer2_volume_data_t voldata; 1308 hammer2_inode_data_t ipdata; 1309 hammer2_blockset_t blkset; 1310 hammer2_blockref_t npdata[HAMMER2_IND_COUNT_MAX]; 1311 hammer2_bmap_data_t bmdata[HAMMER2_FREEMAP_COUNT]; 1312 char buf[HAMMER2_PBUFSIZE]; 1313 } __packed; 1314 1315 typedef union hammer2_media_data hammer2_media_data_t; 1316 1317 #endif /* !_VFS_HAMMER2_DISK_H_ */ 1318