xref: /dflybsd-src/sys/vfs/hammer2/hammer2_disk.h (revision 7a27faded6bccbda68815bb82b3be97f731409b9)
1 /*
2  * Copyright (c) 2011-2012 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #ifndef VFS_HAMMER2_DISK_H_
36 #define VFS_HAMMER2_DISK_H_
37 
38 #ifndef _SYS_UUID_H_
39 #include <sys/uuid.h>
40 #endif
41 #ifndef _SYS_DMSG_H_
42 #include <sys/dmsg.h>
43 #endif
44 
45 /*
46  * The structures below represent the on-disk media structures for the HAMMER2
47  * filesystem.  Note that all fields for on-disk structures are naturally
48  * aligned.  The host endian format is typically used - compatibility is
49  * possible if the implementation detects reversed endian and adjusts accesses
50  * accordingly.
51  *
52  * HAMMER2 primarily revolves around the directory topology:  inodes,
53  * directory entries, and block tables.  Block device buffer cache buffers
54  * are always 64KB.  Logical file buffers are typically 16KB.  All data
55  * references utilize 64-bit byte offsets.
56  *
57  * Free block management is handled independently using blocks reserved by
58  * the media topology.
59  */
60 
61 /*
62  * The data at the end of a file or directory may be a fragment in order
63  * to optimize storage efficiency.  The minimum fragment size is 1KB.
64  * Since allocations are in powers of 2 fragments must also be sized in
65  * powers of 2 (1024, 2048, ... 65536).
66  *
67  * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K),
68  * which is 2^16.  Larger extents may be supported in the future.  Smaller
69  * fragments might be supported in the future (down to 64 bytes is possible),
70  * but probably will not be.
71  *
72  * A full indirect block use supports 1024 x 64-byte blockrefs in a 64KB
73  * buffer.  Indirect blocks down to 1KB are supported to keep small
74  * directories small.
75  *
76  * A maximally sized file (2^64-1 bytes) requires 5 indirect block levels.
77  * The hammer2_blockset in the volume header or file inode has another 8
78  * entries, giving us 66+3 = 69 bits of address space.  However, some bits
79  * are taken up by (potentially) requests for redundant copies.  HAMMER2
80  * currently supports up to 8 copies, which brings the address space down
81  * to 66 bits and gives us 2 bits of leeway.
82  */
83 #define HAMMER2_MIN_ALLOC	1024	/* minimum allocation size */
84 #define HAMMER2_MIN_RADIX	10	/* minimum allocation size 2^N */
85 #define HAMMER2_MAX_ALLOC	65536	/* maximum allocation size */
86 #define HAMMER2_MAX_RADIX	16	/* maximum allocation size 2^N */
87 #define HAMMER2_KEY_RADIX	64	/* number of bits in key */
88 
89 /*
90  * MINALLOCSIZE		- The minimum allocation size.  This can be smaller
91  *		  	  or larger than the minimum physical IO size.
92  *
93  *			  NOTE: Should not be larger than 1K since inodes
94  *				are 1K.
95  *
96  * MINIOSIZE		- The minimum IO size.  This must be less than
97  *			  or equal to HAMMER2_LBUFSIZE.
98  *
99  * HAMMER2_LBUFSIZE	- Nominal buffer size for I/O rollups.
100  *
101  * HAMMER2_PBUFSIZE	- Topological block size used by files for all
102  *			  blocks except the block straddling EOF.
103  *
104  * HAMMER2_SEGSIZE	- Allocation map segment size, typically 2MB
105  *			  (space represented by a level0 bitmap).
106  */
107 
108 #define HAMMER2_SEGSIZE		(1 << HAMMER2_FREEMAP_LEVEL0_RADIX)
109 #define HAMMER2_SEGRADIX	HAMMER2_FREEMAP_LEVEL0_RADIX
110 
111 #define HAMMER2_PBUFRADIX	16	/* physical buf (1<<16) bytes */
112 #define HAMMER2_PBUFSIZE	65536
113 #define HAMMER2_LBUFRADIX	14	/* logical buf (1<<14) bytes */
114 #define HAMMER2_LBUFSIZE	16384
115 
116 /*
117  * Generally speaking we want to use 16K and 64K I/Os
118  */
119 #define HAMMER2_MINIORADIX	HAMMER2_LBUFRADIX
120 #define HAMMER2_MINIOSIZE	HAMMER2_LBUFSIZE
121 
122 #define HAMMER2_IND_BYTES_MIN	HAMMER2_LBUFSIZE
123 #define HAMMER2_IND_BYTES_MAX	HAMMER2_PBUFSIZE
124 #define HAMMER2_IND_COUNT_MIN	(HAMMER2_IND_BYTES_MIN / \
125 				 sizeof(hammer2_blockref_t))
126 #define HAMMER2_IND_COUNT_MAX	(HAMMER2_IND_BYTES_MAX / \
127 				 sizeof(hammer2_blockref_t))
128 
129 /*
130  * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that
131  * any element can occur at any index and holes can be anywhere.  As a
132  * future optimization we will be able to flag that such arrays are sorted
133  * and thus optimize lookups, but for now we don't.
134  *
135  * Inodes embed either 512 bytes of direct data or an array of 8 blockrefs,
136  * resulting in highly efficient storage for files <= 512 bytes and for files
137  * <= 512KB.  Up to 8 directory entries can be referenced from a directory
138  * without requiring an indirect block.
139  *
140  * Indirect blocks are typically either 4KB (64 blockrefs / ~4MB represented),
141  * or 64KB (1024 blockrefs / ~64MB represented).
142  */
143 #define HAMMER2_SET_COUNT		8	/* direct entries */
144 #define HAMMER2_SET_RADIX		3
145 #define HAMMER2_EMBEDDED_BYTES		512	/* inode blockset/dd size */
146 #define HAMMER2_EMBEDDED_RADIX		9
147 
148 #define HAMMER2_PBUFMASK	(HAMMER2_PBUFSIZE - 1)
149 #define HAMMER2_LBUFMASK	(HAMMER2_LBUFSIZE - 1)
150 #define HAMMER2_SEGMASK		(HAMMER2_SEGSIZE - 1)
151 
152 #define HAMMER2_LBUFMASK64	((hammer2_off_t)HAMMER2_LBUFMASK)
153 #define HAMMER2_PBUFSIZE64	((hammer2_off_t)HAMMER2_PBUFSIZE)
154 #define HAMMER2_PBUFMASK64	((hammer2_off_t)HAMMER2_PBUFMASK)
155 #define HAMMER2_SEGSIZE64	((hammer2_off_t)HAMMER2_SEGSIZE)
156 #define HAMMER2_SEGMASK64	((hammer2_off_t)HAMMER2_SEGMASK)
157 
158 #define HAMMER2_UUID_STRING	"5cbb9ad1-862d-11dc-a94d-01301bb8a9f5"
159 
160 /*
161  * A HAMMER2 filesystem is always sized in multiples of 8MB.
162  *
163  * A 4MB segment is reserved at the beginning of each 2GB zone.  This segment
164  * contains the volume header (or backup volume header), the free block
165  * table, and possibly other information in the future.
166  *
167  * 4MB = 64 x 64K blocks.  Each 4MB segment is broken down as follows:
168  *
169  *	+-----------------------+
170  *      |	Volume Hdr	| block 0	volume header & alternates
171  *	+-----------------------+		(first four zones only)
172  *	|   FreeBlk Section A   | block 1-4
173  *	+-----------------------+
174  *	|   FreeBlk Section B   | block 5-8
175  *	+-----------------------+
176  *	|   FreeBlk Section C   | block 9-12
177  *	+-----------------------+
178  *	|   FreeBlk Section D   | block 13-16
179  *	+-----------------------+
180  *      |			| block 17...63
181  *      |	reserved	|
182  *      |			|
183  *	+-----------------------+
184  *
185  * The first few 2GB zones contain volume headers and volume header backups.
186  * After that the volume header block# is reserved.
187  *
188  *			Freemap (see the FREEMAP document)
189  *
190  * The freemap utilizes blocks #1-16 for now, see the FREEMAP document.
191  * The filesystems rotations through the sections to avoid disturbing the
192  * 'previous' version of the freemap during a flush.
193  *
194  * Each freemap section is 4 x 64K blocks and represents 2GB, 2TB, 2PB,
195  * and 2EB indirect map, plus the volume header has a set of 8 blockrefs
196  * for another 3 bits for a total of 64 bits of address space.  The Level 0
197  * 64KB block representing 2GB of storage is a hammer2_bmap_data[1024].
198  * Each element contains a 128x2 bit bitmap representing 16KB per chunk for
199  * 2MB of storage (x1024 elements = 2GB).  2 bits per chunk:
200  *
201  *	00	Free
202  *	01	Possibly fragmented
203  *	10	Possibly free
204  *	11	Allocated
205  *
206  * One important thing to note here is that the freemap resolution is 16KB,
207  * but the minimuim storage allocation size is 1KB.  The hammer2 vfs keeps
208  * track of sub-allocations in memory (on umount or reboot obvious the whole
209  * 16KB will be considered allocated even if only 1KB is allocated).  It is
210  * possible for fragmentation to build up over time.
211  *
212  * The Second thing to note is that due to the way snapshots and inode
213  * replication works, deleting a file cannot immediately free the related
214  * space.  Instead, the freemap elements transition from 11->10.  The bulk
215  * freeing code which does a complete scan is then responsible for
216  * transitioning the elements to 00 or back to 11 or to 01 for that matter.
217  *
218  * WARNING!  ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX
219  *	     (i.e. a multiple of 2MB).  VOLUME_ALIGN must be >= ZONE_SEG.
220  */
221 #define HAMMER2_VOLUME_ALIGN		(8 * 1024 * 1024)
222 #define HAMMER2_VOLUME_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
223 #define HAMMER2_VOLUME_ALIGNMASK	(HAMMER2_VOLUME_ALIGN - 1)
224 #define HAMMER2_VOLUME_ALIGNMASK64     ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK)
225 
226 #define HAMMER2_NEWFS_ALIGN		(HAMMER2_VOLUME_ALIGN)
227 #define HAMMER2_NEWFS_ALIGN64		((hammer2_off_t)HAMMER2_VOLUME_ALIGN)
228 #define HAMMER2_NEWFS_ALIGNMASK		(HAMMER2_VOLUME_ALIGN - 1)
229 #define HAMMER2_NEWFS_ALIGNMASK64	((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK)
230 
231 #define HAMMER2_ZONE_BYTES64		(2LLU * 1024 * 1024 * 1024)
232 #define HAMMER2_ZONE_MASK64		(HAMMER2_ZONE_BYTES64 - 1)
233 #define HAMMER2_ZONE_SEG		(4 * 1024 * 1024)
234 #define HAMMER2_ZONE_SEG64		((hammer2_off_t)HAMMER2_ZONE_SEG)
235 #define HAMMER2_ZONE_BLOCKS_SEG		(HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE)
236 
237 /*
238  * 64 x 64KB blocks are reserved at the base of each 2GB zone.  These blocks
239  * are used to store the volume header or volume header backups, allocation
240  * tree, and other information in the future.
241  *
242  * All specified blocks are not necessarily used in all 2GB zones.  However,
243  * dead areas are reserved for future use and MUST NOT BE USED for other
244  * purposes.
245  *
246  * The freemap is arranged into four groups.  Modifications rotate through
247  * the groups on a block by block basis (so all the blocks are not necessarily
248  * synchronized to the same group).  Because the freemap is flushed
249  * independent of the main filesystem, the freemap only really needs two
250  * groups to operate efficiently.
251  *
252  *
253  *
254  */
255 #define HAMMER2_ZONE_VOLHDR		0	/* volume header or backup */
256 #define HAMMER2_ZONE_FREEMAP_A		1	/* freemap layer group A */
257 #define HAMMER2_ZONE_FREEMAP_B		5	/* freemap layer group B */
258 #define HAMMER2_ZONE_FREEMAP_C		9	/* freemap layer group C */
259 #define HAMMER2_ZONE_FREEMAP_D		13	/* freemap layer group D */
260 
261 						/* relative to FREEMAP_x */
262 #define HAMMER2_ZONEFM_LEVEL1		0	/* 2GB leafmap */
263 #define HAMMER2_ZONEFM_LEVEL2		1	/* 2TB indmap */
264 #define HAMMER2_ZONEFM_LEVEL3		2	/* 2PB indmap */
265 #define HAMMER2_ZONEFM_LEVEL4		3	/* 2EB indmap */
266 /* LEVEL5 is a set of 8 blockrefs in the volume header 16EB */
267 
268 
269 /*
270  * Freemap radii.  Please note that LEVEL 1 blockref array entries
271  * point to 256-byte sections of the bitmap representing 2MB of storage.
272  * Even though the chain structures represent only 256 bytes, they are
273  * mapped using larger 16K or 64K buffer cache buffers.
274  */
275 #define HAMMER2_FREEMAP_LEVEL5_RADIX	64	/* 16EB */
276 #define HAMMER2_FREEMAP_LEVEL4_RADIX	61	/* 2EB */
277 #define HAMMER2_FREEMAP_LEVEL3_RADIX	51	/* 2PB */
278 #define HAMMER2_FREEMAP_LEVEL2_RADIX	41	/* 2TB */
279 #define HAMMER2_FREEMAP_LEVEL1_RADIX	31	/* 2GB */
280 #define HAMMER2_FREEMAP_LEVEL0_RADIX	21	/* 2MB (entry in l-1 leaf) */
281 
282 #define HAMMER2_FREEMAP_LEVELN_PSIZE	65536	/* physical bytes */
283 
284 #define HAMMER2_FREEMAP_COUNT		(int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \
285 					 sizeof(hammer2_bmap_data_t))
286 #define HAMMER2_FREEMAP_BLOCK_RADIX	14
287 #define HAMMER2_FREEMAP_BLOCK_SIZE	(1 << HAMMER2_FREEMAP_BLOCK_RADIX)
288 #define HAMMER2_FREEMAP_BLOCK_MASK	(HAMMER2_FREEMAP_BLOCK_SIZE - 1)
289 
290 /*
291  * Two linear areas can be reserved after the initial 2MB segment in the base
292  * zone (the one starting at offset 0).  These areas are NOT managed by the
293  * block allocator and do not fall under HAMMER2 crc checking rules based
294  * at the volume header (but can be self-CRCd internally, depending).
295  */
296 #define HAMMER2_BOOT_MIN_BYTES		HAMMER2_VOLUME_ALIGN
297 #define HAMMER2_BOOT_NOM_BYTES		(64*1024*1024)
298 #define HAMMER2_BOOT_MAX_BYTES		(256*1024*1024)
299 
300 #define HAMMER2_REDO_MIN_BYTES		HAMMER2_VOLUME_ALIGN
301 #define HAMMER2_REDO_NOM_BYTES		(256*1024*1024)
302 #define HAMMER2_REDO_MAX_BYTES		(1024*1024*1024)
303 
304 /*
305  * Most HAMMER2 types are implemented as unsigned 64-bit integers.
306  * Transaction ids are monotonic.
307  *
308  * We utilize 32-bit iSCSI CRCs.
309  */
310 typedef uint64_t hammer2_tid_t;
311 typedef uint64_t hammer2_off_t;
312 typedef uint64_t hammer2_key_t;
313 typedef uint32_t hammer2_crc32_t;
314 
315 /*
316  * Miscellanious ranges (all are unsigned).
317  */
318 #define HAMMER2_MIN_TID		1ULL
319 #define HAMMER2_MAX_TID		0xFFFFFFFFFFFFFFFFULL
320 #define HAMMER2_MIN_KEY		0ULL
321 #define HAMMER2_MAX_KEY		0xFFFFFFFFFFFFFFFFULL
322 #define HAMMER2_MIN_OFFSET	0ULL
323 #define HAMMER2_MAX_OFFSET	0xFFFFFFFFFFFFFFFFULL
324 
325 /*
326  * HAMMER2 data offset special cases and masking.
327  *
328  * All HAMMER2 data offsets have to be broken down into a 64K buffer base
329  * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO).
330  *
331  * Indexes into physical buffers are always 64-byte aligned.  The low 6 bits
332  * of the data offset field specifies how large the data chunk being pointed
333  * to as a power of 2.  The theoretical minimum radix is thus 6 (The space
334  * needed in the low bits of the data offset field).  However, the practical
335  * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets
336  * HAMMER2_MIN_RADIX to 10.  The maximum radix is currently 16 (64KB), but
337  * we fully intend to support larger extents in the future.
338  */
339 #define HAMMER2_OFF_BAD		((hammer2_off_t)-1)
340 #define HAMMER2_OFF_MASK	0xFFFFFFFFFFFFFFC0ULL
341 #define HAMMER2_OFF_MASK_LO	(HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64)
342 #define HAMMER2_OFF_MASK_HI	(~HAMMER2_PBUFMASK64)
343 #define HAMMER2_OFF_MASK_RADIX	0x000000000000003FULL
344 #define HAMMER2_MAX_COPIES	6
345 
346 /*
347  * HAMMER2 directory support and pre-defined keys
348  */
349 #define HAMMER2_DIRHASH_VISIBLE	0x8000000000000000ULL
350 #define HAMMER2_DIRHASH_USERMSK	0x7FFFFFFFFFFFFFFFULL
351 #define HAMMER2_DIRHASH_LOMASK	0x0000000000007FFFULL
352 #define HAMMER2_DIRHASH_HIMASK	0xFFFFFFFFFFFF0000ULL
353 #define HAMMER2_DIRHASH_FORCED	0x0000000000008000ULL	/* bit forced on */
354 
355 #define HAMMER2_SROOT_KEY	0x0000000000000000ULL	/* volume to sroot */
356 
357 /*
358  * The media block reference structure.  This forms the core of the HAMMER2
359  * media topology recursion.  This 64-byte data structure is embedded in the
360  * volume header, in inodes (which are also directory entries), and in
361  * indirect blocks.
362  *
363  * A blockref references a single media item, which typically can be a
364  * directory entry (aka inode), indirect block, or data block.
365  *
366  * The primary feature a blockref represents is the ability to validate
367  * the entire tree underneath it via its check code.  Any modification to
368  * anything propagates up the blockref tree all the way to the root, replacing
369  * the related blocks.  Propagations can shortcut to the volume root to
370  * implement the 'fast syncing' feature but this only delays the eventual
371  * propagation.
372  *
373  * The check code can be a simple 32-bit iscsi code, a 64-bit crc,
374  * or as complex as a 192 bit cryptographic hash.  192 bits is the maximum
375  * supported check code size, which is not sufficient for unverified dedup
376  * UNLESS one doesn't mind once-in-a-blue-moon data corruption (such as when
377  * farming web data).  HAMMER2 has an unverified dedup feature for just this
378  * purpose.
379  *
380  * --
381  *
382  * NOTE: The range of keys represented by the blockref is (key) to
383  *	 ((key) + (1LL << keybits) - 1).  HAMMER2 usually populates
384  *	 blocks bottom-up, inserting a new root when radix expansion
385  *	 is required.
386  */
387 struct hammer2_blockref {		/* MUST BE EXACTLY 64 BYTES */
388 	uint8_t		type;		/* type of underlying item */
389 	uint8_t		methods;	/* check method & compression method */
390 	uint8_t		copyid;		/* specify which copy this is */
391 	uint8_t		keybits;	/* #of keybits masked off 0=leaf */
392 	uint8_t		vradix;		/* virtual data/meta-data size */
393 	uint8_t		flags;		/* blockref flags */
394 	uint8_t		reserved06;
395 	uint8_t		reserved07;
396 	hammer2_key_t	key;		/* key specification */
397 	hammer2_tid_t	mirror_tid;	/* propagate for mirror scan */
398 	hammer2_tid_t	modify_tid;	/* modifications sans propagation */
399 	hammer2_off_t	data_off;	/* low 6 bits is phys size (radix)*/
400 	union {				/* check info */
401 		char	buf[24];
402 		struct {
403 			uint32_t value;
404 			uint32_t unused[5];
405 		} iscsi32;
406 		struct {
407 			uint64_t value;
408 			uint64_t unused[2];
409 		} crc64;
410 		struct {
411 			char data[24];
412 		} sha192;
413 
414 		/*
415 		 * Freemap hints are embedded in addition to the icrc32.
416 		 *
417 		 * bigmask - Radixes available for allocation (0-31).
418 		 *	     Heuristical (may be permissive but not
419 		 *	     restrictive).  Typically only radix values
420 		 *	     10-16 are used (i.e. (1<<10) through (1<<16)).
421 		 *
422 		 * avail   - Total available space remaining, in bytes
423 		 */
424 		struct {
425 			uint32_t icrc32;
426 			uint32_t bigmask;	/* available radixes */
427 			uint64_t avail;		/* total available bytes */
428 			uint64_t unused;	/* unused must be 0 */
429 		} freemap;
430 	} check;
431 };
432 
433 typedef struct hammer2_blockref hammer2_blockref_t;
434 
435 #if 0
436 #define HAMMER2_BREF_SYNC1		0x01	/* modification synchronized */
437 #define HAMMER2_BREF_SYNC2		0x02	/* modification committed */
438 #define HAMMER2_BREF_DESYNCCHLD		0x04	/* desynchronize children */
439 #define HAMMER2_BREF_DELETED		0x80	/* indicates a deletion */
440 #endif
441 
442 #define HAMMER2_BLOCKREF_BYTES		64	/* blockref struct in bytes */
443 
444 /*
445  * On-media and off-media blockref types.
446  */
447 #define HAMMER2_BREF_TYPE_EMPTY		0
448 #define HAMMER2_BREF_TYPE_INODE		1
449 #define HAMMER2_BREF_TYPE_INDIRECT	2
450 #define HAMMER2_BREF_TYPE_DATA		3
451 #define HAMMER2_BREF_TYPE_UNUSED04	4
452 #define HAMMER2_BREF_TYPE_FREEMAP_NODE	5
453 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF	6
454 #define HAMMER2_BREF_TYPE_FREEMAP	254	/* pseudo-type */
455 #define HAMMER2_BREF_TYPE_VOLUME	255	/* pseudo-type */
456 
457 #define HAMMER2_ENC_CHECK(n)		((n) << 4)
458 #define HAMMER2_DEC_CHECK(n)		(((n) >> 4) & 15)
459 
460 #define HAMMER2_CHECK_NONE		0
461 #define HAMMER2_CHECK_ISCSI32		1
462 #define HAMMER2_CHECK_CRC64		2
463 #define HAMMER2_CHECK_SHA192		3
464 #define HAMMER2_CHECK_FREEMAP		4
465 
466 #define HAMMER2_ENC_COMP(n)		(n)
467 #define HAMMER2_DEC_COMP(n)		((n) & 15)
468 
469 #define HAMMER2_COMP_NONE		0
470 #define HAMMER2_COMP_AUTOZERO		1
471 
472 
473 /*
474  * HAMMER2 block references are collected into sets of 8 blockrefs.  These
475  * sets are fully associative, meaning the elements making up a set are
476  * not sorted in any way and may contain duplicate entries, holes, or
477  * entries which shortcut multiple levels of indirection.  Sets are used
478  * in various ways:
479  *
480  * (1) When redundancy is desired a set may contain several duplicate
481  *     entries pointing to different copies of the same data.  Up to 8 copies
482  *     are supported but the set structure becomes a bit inefficient once
483  *     you go over 4.
484  *
485  * (2) The blockrefs in a set can shortcut multiple levels of indirections
486  *     within the bounds imposed by the parent of set.
487  *
488  * When a set fills up another level of indirection is inserted, moving
489  * some or all of the set's contents into indirect blocks placed under the
490  * set.  This is a top-down approach in that indirect blocks are not created
491  * until the set actually becomes full (that is, the entries in the set can
492  * shortcut the indirect blocks when the set is not full).  Depending on how
493  * things are filled multiple indirect blocks will eventually be created.
494  *
495  * Indirect blocks are typically 4KB (64 entres) or 64KB (1024 entries) and
496  * are also treated as fully set-associative.
497  */
498 struct hammer2_blockset {
499 	hammer2_blockref_t	blockref[HAMMER2_SET_COUNT];
500 };
501 
502 typedef struct hammer2_blockset hammer2_blockset_t;
503 
504 /*
505  * Catch programmer snafus
506  */
507 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT
508 #error "hammer2 direct radix is incorrect"
509 #endif
510 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE
511 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent"
512 #endif
513 #if (1 << HAMMER2_MIN_RADIX) != HAMMER2_MIN_ALLOC
514 #error "HAMMER2_MIN_RADIX and HAMMER2_MIN_ALLOC are inconsistent"
515 #endif
516 
517 /*
518  * hammer2_bmap_data - A freemap entry in the LEVEL1 block.
519  *
520  * Each 64-byte entry contains the bitmap and meta-data required to manage
521  * a LEVEL0 (2MB) block of storage.  The storage is managed in 128 x 16KB
522  * chunks.  Smaller allocation granularity is supported via a linear iterator
523  * and/or must otherwise be tracked in ram.
524  *
525  * (data structure must be 64 bytes exactly)
526  *
527  * linear  - A BYTE linear allocation offset used for sub-16KB allocations
528  *	     only.  May contain values between 0 and 2MB.  Must be ignored
529  *	     if 16KB-aligned (i.e. force bitmap scan), otherwise may be
530  *	     used to sub-allocate within the 16KB block (which is already
531  *	     marked as allocated in the bitmap).
532  *
533  *	     Sub-allocations need only be 1KB-aligned and do not have to be
534  *	     size-aligned, and 16KB or larger allocations do not update this
535  *	     field, resulting in pretty good packing.
536  *
537  *	     Please note that file data granularity may be limited by
538  *	     other issues such as buffer cache direct-mapping and the
539  *	     desire to support sector sizes up to 16KB (so H2 only issues
540  *	     I/O's in multiples of 16KB anyway).
541  *
542  * class   - Clustering class.  Cleared to 0 only if the entire leaf becomes
543  *	     free.  Used to cluster device buffers so all elements must have
544  *	     the same device block size, but may mix logical sizes.
545  *
546  *	     Typically integrated with the blockref type in the upper 8 bits
547  *	     to localize inodes and indrect blocks, improving bulk free scans
548  *	     and directory scans.
549  *
550  * bitmap  - Two bits per 16KB allocation block arranged in arrays of
551  *	     32-bit elements, 128x2 bits representing ~2MB worth of media
552  *	     storage.  Bit patterns are as follows:
553  *
554  *	     00	Unallocated
555  *	     01 Armed for bulk free scan
556  *	     10 Possibly free
557  *           11 Allocated
558  */
559 struct hammer2_bmap_data {
560 	int32_t linear;		/* 00 linear sub-granular allocation offset */
561 	uint16_t class;		/* 04-05 clustering class ((type<<8)|radix) */
562 	uint8_t reserved06;	/* 06 */
563 	uint8_t reserved07;	/* 07 */
564 	uint32_t reserved08;	/* 08 */
565 	uint32_t reserved0C;	/* 0C */
566 	uint32_t reserved10;	/* 10 */
567 	uint32_t reserved14;	/* 14 */
568 	uint32_t reserved18;	/* 18 */
569 	uint32_t avail;		/* 1C */
570 	uint32_t bitmap[8];	/* 20-3F 256 bits manages 2MB/16KB/2-bits */
571 };
572 
573 typedef struct hammer2_bmap_data hammer2_bmap_data_t;
574 
575 /*
576  * In HAMMER2 inodes ARE directory entries, with a special exception for
577  * hardlinks.  The inode number is stored in the inode rather than being
578  * based on the location of the inode (since the location moves every time
579  * the inode or anything underneath the inode is modified).
580  *
581  * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes
582  * for the filename, and 512 bytes worth of direct file data OR an embedded
583  * blockset.
584  *
585  * Directories represent one inode per blockref.  Inodes are not laid out
586  * as a file but instead are represented by the related blockrefs.  The
587  * blockrefs, in turn, are indexed by the 64-bit directory hash key.  Remember
588  * that blocksets are fully associative, so a certain degree efficiency is
589  * achieved just from that.
590  *
591  * Up to 512 bytes of direct data can be embedded in an inode, and since
592  * inodes are essentially directory entries this also means that small data
593  * files end up simply being laid out linearly in the directory, resulting
594  * in fewer seeks and highly optimal access.
595  *
596  * The compression mode can be changed at any time in the inode and is
597  * recorded on a blockref-by-blockref basis.
598  *
599  * Hardlinks are supported via the inode map.  Essentially the way a hardlink
600  * works is that all individual directory entries representing the same file
601  * are special cased and specify the same inode number.  The actual file
602  * is placed in the nearest parent directory that is parent to all instances
603  * of the hardlink.  If all hardlinks to a file are in the same directory
604  * the actual file will also be placed in that directory.  This file uses
605  * the inode number as the directory entry key and is invisible to normal
606  * directory scans.  Real directory entry keys are differentiated from the
607  * inode number key via bit 63.  Access to the hardlink silently looks up
608  * the real file and forwards all operations to that file.  Removal of the
609  * last hardlink also removes the real file.
610  *
611  * (attr_tid) is only updated when the inode's specific attributes or regular
612  * file size has changed, and affects path lookups and stat.  (attr_tid)
613  * represents a special cache coherency lock under the inode.  The inode
614  * blockref's modify_tid will always cover it.
615  *
616  * (dirent_tid) is only updated when an entry under a directory inode has
617  * been created, deleted, renamed, or had its attributes change, and affects
618  * directory lookups and scans.  (dirent_tid) represents another special cache
619  * coherency lock under the inode.  The inode blockref's modify_tid will
620  * always cover it.
621  */
622 #define HAMMER2_INODE_BYTES		1024	/* (asserted by code) */
623 #define HAMMER2_INODE_MAXNAME		256	/* maximum name in bytes */
624 #define HAMMER2_INODE_VERSION_ONE	1
625 
626 struct hammer2_inode_data {
627 	uint16_t	version;	/* 0000 inode data version */
628 	uint16_t	reserved02;	/* 0002 */
629 
630 	/*
631 	 * core inode attributes, inode type, misc flags
632 	 */
633 	uint32_t	uflags;		/* 0004 chflags */
634 	uint32_t	rmajor;		/* 0008 available for device nodes */
635 	uint32_t	rminor;		/* 000C available for device nodes */
636 	uint64_t	ctime;		/* 0010 inode change time */
637 	uint64_t	mtime;		/* 0018 modified time */
638 	uint64_t	atime;		/* 0020 access time (unsupported) */
639 	uint64_t	btime;		/* 0028 birth time */
640 	uuid_t		uid;		/* 0030 uid / degenerate unix uid */
641 	uuid_t		gid;		/* 0040 gid / degenerate unix gid */
642 
643 	uint8_t		type;		/* 0050 object type */
644 	uint8_t		op_flags;	/* 0051 operational flags */
645 	uint16_t	cap_flags;	/* 0052 capability flags */
646 	uint32_t	mode;		/* 0054 unix modes (typ low 16 bits) */
647 
648 	/*
649 	 * inode size, identification, localized recursive configuration
650 	 * for compression and backup copies.
651 	 */
652 	hammer2_tid_t	inum;		/* 0058 inode number */
653 	hammer2_off_t	size;		/* 0060 size of file */
654 	uint64_t	nlinks;		/* 0068 hard links (typ only dirs) */
655 	hammer2_tid_t	iparent;	/* 0070 parent inum (recovery only) */
656 	hammer2_key_t	name_key;	/* 0078 full filename key */
657 	uint16_t	name_len;	/* 0080 filename length */
658 	uint8_t		ncopies;	/* 0082 ncopies to local media */
659 	uint8_t		comp_algo;	/* 0083 compression request & algo */
660 
661 	/*
662 	 * These fields are currently only applicable to PFSROOTs.
663 	 *
664 	 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely
665 	 *	 identify an instance of a PFS in the cluster because
666 	 *	 a mount may contain more than one copy of the PFS as
667 	 *	 a separate node.  {pfs_clid, pfs_fsid} must be used for
668 	 *	 registration in the cluster.
669 	 */
670 	uint8_t		target_type;	/* 0084 hardlink target type */
671 	uint8_t		reserved85;	/* 0085 */
672 	uint8_t		reserved86;	/* 0086 */
673 	uint8_t		pfs_type;	/* 0087 (if PFSROOT) node type */
674 	uint64_t	pfs_inum;	/* 0088 (if PFSROOT) inum allocator */
675 	uuid_t		pfs_clid;	/* 0090 (if PFSROOT) cluster uuid */
676 	uuid_t		pfs_fsid;	/* 00A0 (if PFSROOT) unique uuid */
677 
678 	/*
679 	 * Quotas and cumulative sub-tree counters.
680 	 */
681 	hammer2_key_t	data_quota;	/* 00B0 subtree quota in bytes */
682 	hammer2_key_t	data_count;	/* 00B8 subtree byte count */
683 	hammer2_key_t	inode_quota;	/* 00C0 subtree quota inode count */
684 	hammer2_key_t	inode_count;	/* 00C8 subtree inode count */
685 	hammer2_tid_t	attr_tid;	/* 00D0 attributes changed */
686 	hammer2_tid_t	dirent_tid;	/* 00D8 directory/attr changed */
687 
688 	/*
689 	 * Tracks (possibly degenerate) free areas covering all sub-tree
690 	 * allocations under inode, not counting the inode itself.
691 	 * 0/0 indicates empty entry.  fully set-associative.
692 	 */
693 	hammer2_off_t	freezones[4];	/* 00E0/E8/F0/F8 base|radix */
694 
695 	unsigned char	filename[HAMMER2_INODE_MAXNAME];
696 					/* 0100-01FF (256 char, unterminated) */
697 	union {				/* 0200-03FF (64x8 = 512 bytes) */
698 		struct hammer2_blockset blockset;
699 		char data[HAMMER2_EMBEDDED_BYTES];
700 	} u;
701 };
702 
703 typedef struct hammer2_inode_data hammer2_inode_data_t;
704 
705 #define HAMMER2_OPFLAG_DIRECTDATA	0x01
706 #define HAMMER2_OPFLAG_PFSROOT		0x02
707 #define HAMMER2_OPFLAG_COPYIDS		0x04	/* copyids override parent */
708 
709 #define HAMMER2_OBJTYPE_UNKNOWN		0
710 #define HAMMER2_OBJTYPE_DIRECTORY	1
711 #define HAMMER2_OBJTYPE_REGFILE		2
712 #define HAMMER2_OBJTYPE_FIFO		4
713 #define HAMMER2_OBJTYPE_CDEV		5
714 #define HAMMER2_OBJTYPE_BDEV		6
715 #define HAMMER2_OBJTYPE_SOFTLINK	7
716 #define HAMMER2_OBJTYPE_HARDLINK	8	/* dummy entry for hardlink */
717 #define HAMMER2_OBJTYPE_SOCKET		9
718 #define HAMMER2_OBJTYPE_WHITEOUT	10
719 
720 #define HAMMER2_COPYID_NONE		0
721 #define HAMMER2_COPYID_LOCAL		((uint8_t)-1)
722 
723 /*
724  * PEER types identify connections and help cluster controller filter
725  * out unwanted SPANs.
726  */
727 #define HAMMER2_PEER_NONE		DMSG_PEER_NONE
728 #define HAMMER2_PEER_CLUSTER		DMSG_PEER_CLUSTER
729 #define HAMMER2_PEER_BLOCK		DMSG_PEER_BLOCK
730 #define HAMMER2_PEER_HAMMER2		DMSG_PEER_HAMMER2
731 
732 #define HAMMER2_COPYID_COUNT		DMSG_COPYID_COUNT
733 
734 /*
735  * PFS types identify a PFS on media and in LNK_SPAN messages.
736  */
737 #define HAMMER2_PFSTYPE_NONE		DMSG_PFSTYPE_NONE
738 #define HAMMER2_PFSTYPE_ADMIN		DMSG_PFSTYPE_ADMIN
739 #define HAMMER2_PFSTYPE_CLIENT		DMSG_PFSTYPE_CLIENT
740 #define HAMMER2_PFSTYPE_CACHE		DMSG_PFSTYPE_CACHE
741 #define HAMMER2_PFSTYPE_COPY		DMSG_PFSTYPE_COPY
742 #define HAMMER2_PFSTYPE_SLAVE		DMSG_PFSTYPE_SLAVE
743 #define HAMMER2_PFSTYPE_SOFT_SLAVE	DMSG_PFSTYPE_SOFT_SLAVE
744 #define HAMMER2_PFSTYPE_SOFT_MASTER	DMSG_PFSTYPE_SOFT_MASTER
745 #define HAMMER2_PFSTYPE_MASTER		DMSG_PFSTYPE_MASTER
746 #define HAMMER2_PFSTYPE_SNAPSHOT	DMSG_PFSTYPE_SNAPSHOT
747 #define HAMMER2_PFSTYPE_MAX		DMSG_PFSTYPE_MAX
748 
749 /*
750  *				Allocation Table
751  *
752  */
753 
754 
755 /*
756  * Flags (8 bits) - blockref, for freemap only
757  *
758  * Note that the minimum chunk size is 1KB so we could theoretically have
759  * 10 bits here, but we might have some future extension that allows a
760  * chunk size down to 256 bytes and if so we will need bits 8 and 9.
761  */
762 #define HAMMER2_AVF_SELMASK		0x03	/* select group */
763 #define HAMMER2_AVF_ALL_ALLOC		0x04	/* indicate all allocated */
764 #define HAMMER2_AVF_ALL_FREE		0x08	/* indicate all free */
765 #define HAMMER2_AVF_RESERVED10		0x10
766 #define HAMMER2_AVF_RESERVED20		0x20
767 #define HAMMER2_AVF_RESERVED40		0x40
768 #define HAMMER2_AVF_RESERVED80		0x80
769 #define HAMMER2_AVF_AVMASK32		((uint32_t)0xFFFFFF00LU)
770 #define HAMMER2_AVF_AVMASK64		((uint64_t)0xFFFFFFFFFFFFFF00LLU)
771 
772 #define HAMMER2_AV_SELECT_A		0x00
773 #define HAMMER2_AV_SELECT_B		0x01
774 #define HAMMER2_AV_SELECT_C		0x02
775 #define HAMMER2_AV_SELECT_D		0x03
776 
777 /*
778  * The volume header eats a 64K block.  There is currently an issue where
779  * we want to try to fit all nominal filesystem updates in a 512-byte section
780  * but it may be a lost cause due to the need for a blockset.
781  *
782  * All information is stored in host byte order.  The volume header's magic
783  * number may be checked to determine the byte order.  If you wish to mount
784  * between machines w/ different endian modes you'll need filesystem code
785  * which acts on the media data consistently (either all one way or all the
786  * other).  Our code currently does not do that.
787  *
788  * A read-write mount may have to recover missing allocations by doing an
789  * incremental mirror scan looking for modifications made after alloc_tid.
790  * If alloc_tid == last_tid then no recovery operation is needed.  Recovery
791  * operations are usually very, very fast.
792  *
793  * Read-only mounts do not need to do any recovery, access to the filesystem
794  * topology is always consistent after a crash (is always consistent, period).
795  * However, there may be shortcutted blockref updates present from deep in
796  * the tree which are stored in the volumeh eader and must be tracked on
797  * the fly.
798  *
799  * NOTE: The copyinfo[] array contains the configuration for both the
800  *	 cluster connections and any local media copies.  The volume
801  *	 header will be replicated for each local media copy.
802  *
803  *	 The mount command may specify multiple medias or just one and
804  *	 allow HAMMER2 to pick up the others when it checks the copyinfo[]
805  *	 array on mount.
806  *
807  * NOTE: root_blockref points to the super-root directory, not the root
808  *	 directory.  The root directory will be a subdirectory under the
809  *	 super-root.
810  *
811  *	 The super-root directory contains all root directories and all
812  *	 snapshots (readonly or writable).  It is possible to do a
813  *	 null-mount of the super-root using special path constructions
814  *	 relative to your mounted root.
815  *
816  * NOTE: HAMMER2 allows any subdirectory tree to be managed as if it were
817  *	 a PFS, including mirroring and storage quota operations, and this is
818  *	 prefered over creating discrete PFSs in the super-root.  Instead
819  *	 the super-root is most typically used to create writable snapshots,
820  *	 alternative roots, and so forth.  The super-root is also used by
821  *	 the automatic snapshotting mechanism.
822  */
823 #define HAMMER2_VOLUME_ID_HBO	0x48414d3205172011LLU
824 #define HAMMER2_VOLUME_ID_ABO	0x11201705324d4148LLU
825 
826 struct hammer2_volume_data {
827 	/*
828 	 * sector #0 - 512 bytes
829 	 */
830 	uint64_t	magic;			/* 0000 Signature */
831 	hammer2_off_t	boot_beg;		/* 0008 Boot area (future) */
832 	hammer2_off_t	boot_end;		/* 0010 (size = end - beg) */
833 	hammer2_off_t	aux_beg;		/* 0018 Aux area (future) */
834 	hammer2_off_t	aux_end;		/* 0020 (size = end - beg) */
835 	hammer2_off_t	volu_size;		/* 0028 Volume size, bytes */
836 
837 	uint32_t	version;		/* 0030 */
838 	uint32_t	flags;			/* 0034 */
839 	uint8_t		copyid;			/* 0038 copyid of phys vol */
840 	uint8_t		freemap_version;	/* 0039 freemap algorithm */
841 	uint8_t		peer_type;		/* 003A HAMMER2_PEER_xxx */
842 	uint8_t		reserved003B;		/* 003B */
843 	uint32_t	reserved003C;		/* 003C */
844 
845 	uuid_t		fsid;			/* 0040 */
846 	uuid_t		fstype;			/* 0050 */
847 
848 	/*
849 	 * allocator_size is precalculated at newfs time and does not include
850 	 * reserved blocks, boot, or redo areas.
851 	 *
852 	 * Initial non-reserved-area allocations do not use the freemap
853 	 * but instead adjust alloc_iterator.  Dynamic allocations take
854 	 * over starting at (allocator_beg).  This makes newfs_hammer2's
855 	 * job a lot easier and can also serve as a testing jig.
856 	 */
857 	hammer2_off_t	allocator_size;		/* 0060 Total data space */
858 	hammer2_off_t   allocator_free;		/* 0068	Free space */
859 	hammer2_off_t	allocator_beg;		/* 0070 Initial allocations */
860 	hammer2_tid_t	mirror_tid;		/* 0078 best committed tid */
861 	hammer2_tid_t	alloc_tid;		/* 0080 Alloctable modify tid */
862 	hammer2_blockref_t reserved0088;	/* 0088-00C7 */
863 
864 	/*
865 	 * Copyids are allocated dynamically from the copyexists bitmap.
866 	 * An id from the active copies set (up to 8, see copyinfo later on)
867 	 * may still exist after the copy set has been removed from the
868 	 * volume header and its bit will remain active in the bitmap and
869 	 * cannot be reused until it is 100% removed from the hierarchy.
870 	 */
871 	uint32_t	copyexists[8];		/* 00C8-00E7 copy exists bmap */
872 	char		reserved0140[248];	/* 00E8-01DF */
873 
874 	/*
875 	 * 32 bit CRC array at the end of the first 512 byte sector.
876 	 *
877 	 * icrc_sects[7] - First 512-4 bytes of volume header (including all
878 	 *		   the other icrc's except this one).
879 	 *
880 	 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is
881 	 *		   the blockset for the root.
882 	 *
883 	 * icrc_sects[5] - Sector 2
884 	 * icrc_sects[4] - Sector 3
885 	 * icrc_sects[3] - Sector 4 (the freemap blockset)
886 	 */
887 	hammer2_crc32_t	icrc_sects[8];		/* 01E0-01FF */
888 
889 	/*
890 	 * sector #1 - 512 bytes
891 	 *
892 	 * The entire sector is used by a blockset.
893 	 */
894 	hammer2_blockset_t sroot_blockset;	/* 0200-03FF Superroot dir */
895 
896 	/*
897 	 * sector #2-7
898 	 */
899 	char	sector2[512];			/* 0400-05FF reserved */
900 	char	sector3[512];			/* 0600-07FF reserved */
901 	hammer2_blockset_t freemap_blockset;	/* 0800-09FF freemap  */
902 	char	sector5[512];			/* 0A00-0BFF reserved */
903 	char	sector6[512];			/* 0C00-0DFF reserved */
904 	char	sector7[512];			/* 0E00-0FFF reserved */
905 
906 	/*
907 	 * sector #8-71	- 32768 bytes
908 	 *
909 	 * Contains the configuration for up to 256 copyinfo targets.  These
910 	 * specify local and remote copies operating as masters or slaves.
911 	 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255
912 	 * indicates the local media).
913 	 *
914 	 * Each inode contains a set of up to 8 copyids, either inherited
915 	 * from its parent or explicitly specified in the inode, which
916 	 * indexes into this array.
917 	 */
918 						/* 1000-8FFF copyinfo config */
919 	dmsg_vol_data_t	copyinfo[HAMMER2_COPYID_COUNT];
920 
921 	/*
922 	 * Remaining sections are reserved for future use.
923 	 */
924 	char		reserved0400[0x6FFC];	/* 9000-FFFB reserved */
925 
926 	/*
927 	 * icrc on entire volume header
928 	 */
929 	hammer2_crc32_t	icrc_volheader;		/* FFFC-FFFF full volume icrc*/
930 };
931 
932 typedef struct hammer2_volume_data hammer2_volume_data_t;
933 
934 /*
935  * Various parts of the volume header have their own iCRCs.
936  *
937  * The first 512 bytes has its own iCRC stored at the end of the 512 bytes
938  * and not included the icrc calculation.
939  *
940  * The second 512 bytes also has its own iCRC but it is stored in the first
941  * 512 bytes so it covers the entire second 512 bytes.
942  *
943  * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes,
944  * which is where the iCRC for the whole volume is stored.  This is currently
945  * a catch-all for anything not individually iCRCd.
946  */
947 #define HAMMER2_VOL_ICRC_SECT0		7
948 #define HAMMER2_VOL_ICRC_SECT1		6
949 
950 #define HAMMER2_VOLUME_BYTES		65536
951 
952 #define HAMMER2_VOLUME_ICRC0_OFF	0
953 #define HAMMER2_VOLUME_ICRC1_OFF	512
954 #define HAMMER2_VOLUME_ICRCVH_OFF	0
955 
956 #define HAMMER2_VOLUME_ICRC0_SIZE	(512 - 4)
957 #define HAMMER2_VOLUME_ICRC1_SIZE	(512)
958 #define HAMMER2_VOLUME_ICRCVH_SIZE	(65536 - 4)
959 
960 #define HAMMER2_VOL_VERSION_MIN		1
961 #define HAMMER2_VOL_VERSION_DEFAULT	1
962 #define HAMMER2_VOL_VERSION_WIP 	2
963 
964 #define HAMMER2_NUM_VOLHDRS		4
965 
966 union hammer2_media_data {
967 	hammer2_volume_data_t	voldata;
968         hammer2_inode_data_t    ipdata;
969 	hammer2_blockref_t	npdata[HAMMER2_IND_COUNT_MAX];
970 	hammer2_bmap_data_t	bmdata[HAMMER2_FREEMAP_COUNT];
971 	char			buf[HAMMER2_PBUFSIZE];
972 };
973 
974 typedef union hammer2_media_data hammer2_media_data_t;
975 
976 #endif
977