xref: /dflybsd-src/sys/vfs/hammer2/hammer2_chain.c (revision 2b7dbe2084a76005b48edbb66f1a7ac6c351ebfb)
1  /*
2   * Copyright (c) 2011-2020 The DragonFly Project.  All rights reserved.
3   *
4   * This code is derived from software contributed to The DragonFly Project
5   * by Matthew Dillon <dillon@dragonflybsd.org>
6   * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7   *
8   * Redistribution and use in source and binary forms, with or without
9   * modification, are permitted provided that the following conditions
10   * are met:
11   *
12   * 1. Redistributions of source code must retain the above copyright
13   *    notice, this list of conditions and the following disclaimer.
14   * 2. Redistributions in binary form must reproduce the above copyright
15   *    notice, this list of conditions and the following disclaimer in
16   *    the documentation and/or other materials provided with the
17   *    distribution.
18   * 3. Neither the name of The DragonFly Project nor the names of its
19   *    contributors may be used to endorse or promote products derived
20   *    from this software without specific, prior written permission.
21   *
22   * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23   * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24   * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25   * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26   * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27   * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28   * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29   * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30   * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31   * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32   * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33   * SUCH DAMAGE.
34   */
35  /*
36   * This subsystem implements most of the core support functions for
37   * the hammer2_chain structure.
38   *
39   * Chains are the in-memory version on media objects (volume header, inodes,
40   * indirect blocks, data blocks, etc).  Chains represent a portion of the
41   * HAMMER2 topology.
42   *
43   * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44   * chain will be moved along with its block reference (e.g. for things like
45   * renames, hardlink operations, modifications, etc), and will be indexed
46   * on a secondary list for flush handling instead of propagating a flag
47   * upward to the root.
48   *
49   * Concurrent front-end operations can still run against backend flushes
50   * as long as they do not cross the current flush boundary.  An operation
51   * running above the current flush (in areas not yet flushed) can become
52   * part of the current flush while ano peration running below the current
53   * flush can become part of the next flush.
54   */
55  #include <sys/cdefs.h>
56  #include <sys/param.h>
57  #include <sys/systm.h>
58  #include <sys/types.h>
59  #include <sys/lock.h>
60  #include <sys/kern_syscall.h>
61  #include <sys/uuid.h>
62  
63  #include <crypto/sha2/sha2.h>
64  
65  #include "hammer2.h"
66  
67  static hammer2_chain_t *hammer2_chain_create_indirect(
68  		hammer2_chain_t *parent,
69  		hammer2_key_t key, int keybits,
70  		hammer2_tid_t mtid, int for_type, int *errorp);
71  static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
72  		hammer2_chain_t *chain,
73  		hammer2_tid_t mtid, int flags,
74  		hammer2_blockref_t *obref);
75  static hammer2_chain_t *hammer2_combined_find(
76  		hammer2_chain_t *parent,
77  		hammer2_blockref_t *base, int count,
78  		hammer2_key_t *key_nextp,
79  		hammer2_key_t key_beg, hammer2_key_t key_end,
80  		hammer2_blockref_t **bresp);
81  static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
82  				int depth);
83  static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
84  
85  /*
86   * There are many degenerate situations where an extreme rate of console
87   * output can occur from warnings and errors.  Make sure this output does
88   * not impede operations.
89   */
90  static struct krate krate_h2chk = { .freq = 5 };
91  static struct krate krate_h2me = { .freq = 1 };
92  static struct krate krate_h2em = { .freq = 1 };
93  
94  /*
95   * Basic RBTree for chains (core.rbtree).
96   */
97  RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
98  
99  int
100  hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
101  {
102  	hammer2_key_t c1_beg;
103  	hammer2_key_t c1_end;
104  	hammer2_key_t c2_beg;
105  	hammer2_key_t c2_end;
106  
107  	/*
108  	 * Compare chains.  Overlaps are not supposed to happen and catch
109  	 * any software issues early we count overlaps as a match.
110  	 */
111  	c1_beg = chain1->bref.key;
112  	c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
113  	c2_beg = chain2->bref.key;
114  	c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
115  
116  	if (c1_end < c2_beg)	/* fully to the left */
117  		return(-1);
118  	if (c1_beg > c2_end)	/* fully to the right */
119  		return(1);
120  	return(0);		/* overlap (must not cross edge boundary) */
121  }
122  
123  /*
124   * Assert that a chain has no media data associated with it.
125   */
126  static __inline void
127  hammer2_chain_assert_no_data(hammer2_chain_t *chain)
128  {
129  	KKASSERT(chain->dio == NULL);
130  	if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
131  	    chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
132  	    chain->data) {
133  		panic("hammer2_chain_assert_no_data: chain %p still has data",
134  		    chain);
135  	}
136  }
137  
138  /*
139   * Make a chain visible to the flusher.  The flusher operates using a top-down
140   * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
141   * flushes them, and updates blocks back to the volume root.
142   *
143   * This routine sets the ONFLUSH flag upward from the triggering chain until
144   * it hits an inode root or the volume root.  Inode chains serve as inflection
145   * points, requiring the flusher to bridge across trees.  Inodes include
146   * regular inodes, PFS roots (pmp->iroot), and the media super root
147   * (spmp->iroot).
148   */
149  void
150  hammer2_chain_setflush(hammer2_chain_t *chain)
151  {
152  	hammer2_chain_t *parent;
153  
154  	if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
155  		hammer2_spin_sh(&chain->core.spin);
156  		while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
157  			atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
158  			if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
159  				break;
160  			if ((parent = chain->parent) == NULL)
161  				break;
162  			hammer2_spin_sh(&parent->core.spin);
163  			hammer2_spin_unsh(&chain->core.spin);
164  			chain = parent;
165  		}
166  		hammer2_spin_unsh(&chain->core.spin);
167  	}
168  }
169  
170  /*
171   * Allocate a new disconnected chain element representing the specified
172   * bref.  chain->refs is set to 1 and the passed bref is copied to
173   * chain->bref.  chain->bytes is derived from the bref.
174   *
175   * chain->pmp inherits pmp unless the chain is an inode (other than the
176   * super-root inode).
177   *
178   * NOTE: Returns a referenced but unlocked (because there is no core) chain.
179   */
180  hammer2_chain_t *
181  hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
182  		    hammer2_blockref_t *bref)
183  {
184  	hammer2_chain_t *chain;
185  	u_int bytes;
186  
187  	/*
188  	 * Special case - radix of 0 indicates a chain that does not
189  	 * need a data reference (context is completely embedded in the
190  	 * bref).
191  	 */
192  	if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
193  		bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
194  	else
195  		bytes = 0;
196  
197  	switch(bref->type) {
198  	case HAMMER2_BREF_TYPE_INODE:
199  	case HAMMER2_BREF_TYPE_INDIRECT:
200  	case HAMMER2_BREF_TYPE_DATA:
201  	case HAMMER2_BREF_TYPE_DIRENT:
202  	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
203  	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
204  	case HAMMER2_BREF_TYPE_FREEMAP:
205  	case HAMMER2_BREF_TYPE_VOLUME:
206  		chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
207  		atomic_add_long(&hammer2_chain_allocs, 1);
208  		break;
209  	case HAMMER2_BREF_TYPE_EMPTY:
210  	default:
211  		panic("hammer2_chain_alloc: unrecognized blockref type: %d",
212  		      bref->type);
213  		break;
214  	}
215  
216  	/*
217  	 * Initialize the new chain structure.  pmp must be set to NULL for
218  	 * chains belonging to the super-root topology of a device mount.
219  	 */
220  	if (pmp == hmp->spmp)
221  		chain->pmp = NULL;
222  	else
223  		chain->pmp = pmp;
224  
225  	chain->hmp = hmp;
226  	chain->bref = *bref;
227  	chain->bytes = bytes;
228  	chain->refs = 1;
229  	chain->flags = HAMMER2_CHAIN_ALLOCATED;
230  	lockinit(&chain->diolk, "chdio", 0, 0);
231  
232  	/*
233  	 * Set the PFS boundary flag if this chain represents a PFS root.
234  	 */
235  	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
236  		atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
237  	hammer2_chain_core_init(chain);
238  
239  	return (chain);
240  }
241  
242  /*
243   * Initialize a chain's core structure.  This structure used to be allocated
244   * but is now embedded.
245   *
246   * The core is not locked.  No additional refs on the chain are made.
247   * (trans) must not be NULL if (core) is not NULL.
248   */
249  void
250  hammer2_chain_core_init(hammer2_chain_t *chain)
251  {
252  	/*
253  	 * Fresh core under nchain (no multi-homing of ochain's
254  	 * sub-tree).
255  	 */
256  	RB_INIT(&chain->core.rbtree);	/* live chains */
257  	hammer2_mtx_init(&chain->lock, "h2chain");
258  }
259  
260  /*
261   * Add a reference to a chain element, preventing its destruction.
262   *
263   * (can be called with spinlock held)
264   */
265  void
266  hammer2_chain_ref(hammer2_chain_t *chain)
267  {
268  	if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
269  		/*
270  		 * Just flag that the chain was used and should be recycled
271  		 * on the LRU if it encounters it later.
272  		 */
273  		if (chain->flags & HAMMER2_CHAIN_ONLRU)
274  			atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
275  
276  #if 0
277  		/*
278  		 * REMOVED - reduces contention, lru_list is more heuristical
279  		 * now.
280  		 *
281  		 * 0->non-zero transition must ensure that chain is removed
282  		 * from the LRU list.
283  		 *
284  		 * NOTE: Already holding lru_spin here so we cannot call
285  		 *	 hammer2_chain_ref() to get it off lru_list, do
286  		 *	 it manually.
287  		 */
288  		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
289  			hammer2_pfs_t *pmp = chain->pmp;
290  			hammer2_spin_ex(&pmp->lru_spin);
291  			if (chain->flags & HAMMER2_CHAIN_ONLRU) {
292  				atomic_add_int(&pmp->lru_count, -1);
293  				atomic_clear_int(&chain->flags,
294  						 HAMMER2_CHAIN_ONLRU);
295  				TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
296  			}
297  			hammer2_spin_unex(&pmp->lru_spin);
298  		}
299  #endif
300  	}
301  }
302  
303  /*
304   * Ref a locked chain and force the data to be held across an unlock.
305   * Chain must be currently locked.  The user of the chain who desires
306   * to release the hold must call hammer2_chain_lock_unhold() to relock
307   * and unhold the chain, then unlock normally, or may simply call
308   * hammer2_chain_drop_unhold() (which is safer against deadlocks).
309   */
310  void
311  hammer2_chain_ref_hold(hammer2_chain_t *chain)
312  {
313  	atomic_add_int(&chain->lockcnt, 1);
314  	hammer2_chain_ref(chain);
315  }
316  
317  /*
318   * Insert the chain in the core rbtree.
319   *
320   * Normal insertions are placed in the live rbtree.  Insertion of a deleted
321   * chain is a special case used by the flush code that is placed on the
322   * unstaged deleted list to avoid confusing the live view.
323   */
324  #define HAMMER2_CHAIN_INSERT_SPIN	0x0001
325  #define HAMMER2_CHAIN_INSERT_LIVE	0x0002
326  #define HAMMER2_CHAIN_INSERT_RACE	0x0004
327  
328  static
329  int
330  hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
331  		     int flags, int generation)
332  {
333  	hammer2_chain_t *xchain;
334  	int error = 0;
335  
336  	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
337  		hammer2_spin_ex(&parent->core.spin);
338  
339  	/*
340  	 * Interlocked by spinlock, check for race
341  	 */
342  	if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
343  	    parent->core.generation != generation) {
344  		error = HAMMER2_ERROR_EAGAIN;
345  		goto failed;
346  	}
347  
348  	/*
349  	 * Insert chain
350  	 */
351  	xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
352  	KASSERT(xchain == NULL,
353  		("hammer2_chain_insert: collision %p %p (key=%016jx)",
354  		chain, xchain, chain->bref.key));
355  	atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
356  	chain->parent = parent;
357  	++parent->core.chain_count;
358  	++parent->core.generation;	/* XXX incs for _get() too, XXX */
359  
360  	/*
361  	 * We have to keep track of the effective live-view blockref count
362  	 * so the create code knows when to push an indirect block.
363  	 */
364  	if (flags & HAMMER2_CHAIN_INSERT_LIVE)
365  		atomic_add_int(&parent->core.live_count, 1);
366  failed:
367  	if (flags & HAMMER2_CHAIN_INSERT_SPIN)
368  		hammer2_spin_unex(&parent->core.spin);
369  	return error;
370  }
371  
372  /*
373   * Drop the caller's reference to the chain.  When the ref count drops to
374   * zero this function will try to disassociate the chain from its parent and
375   * deallocate it, then recursely drop the parent using the implied ref
376   * from the chain's chain->parent.
377   *
378   * Nobody should own chain's mutex on the 1->0 transition, unless this drop
379   * races an acquisition by another cpu.  Therefore we can loop if we are
380   * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
381   * race against another drop.
382   */
383  void
384  hammer2_chain_drop(hammer2_chain_t *chain)
385  {
386  	u_int refs;
387  
388  	KKASSERT(chain->refs > 0);
389  
390  	while (chain) {
391  		refs = chain->refs;
392  		cpu_ccfence();
393  		KKASSERT(refs > 0);
394  
395  		if (refs == 1) {
396  			if (hammer2_mtx_ex_try(&chain->lock) == 0)
397  				chain = hammer2_chain_lastdrop(chain, 0);
398  			/* retry the same chain, or chain from lastdrop */
399  		} else {
400  			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
401  				break;
402  			/* retry the same chain */
403  		}
404  		cpu_pause();
405  	}
406  }
407  
408  /*
409   * Unhold a held and probably not-locked chain, ensure that the data is
410   * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
411   * lock and then simply unlocking the chain.
412   */
413  void
414  hammer2_chain_unhold(hammer2_chain_t *chain)
415  {
416  	u_int lockcnt;
417  	int iter = 0;
418  
419  	for (;;) {
420  		lockcnt = chain->lockcnt;
421  		cpu_ccfence();
422  		if (lockcnt > 1) {
423  			if (atomic_cmpset_int(&chain->lockcnt,
424  					      lockcnt, lockcnt - 1)) {
425  				break;
426  			}
427  		} else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
428  			hammer2_chain_unlock(chain);
429  			break;
430  		} else {
431  			/*
432  			 * This situation can easily occur on SMP due to
433  			 * the gap inbetween the 1->0 transition and the
434  			 * final unlock.  We cannot safely block on the
435  			 * mutex because lockcnt might go above 1.
436  			 *
437  			 * XXX Sleep for one tick if it takes too long.
438  			 */
439  			if (++iter > 1000) {
440  				if (iter > 1000 + hz) {
441  					kprintf("hammer2: h2race1 %p\n", chain);
442  					iter = 1000;
443  				}
444  				tsleep(&iter, 0, "h2race1", 1);
445  			}
446  			cpu_pause();
447  		}
448  	}
449  }
450  
451  void
452  hammer2_chain_drop_unhold(hammer2_chain_t *chain)
453  {
454  	hammer2_chain_unhold(chain);
455  	hammer2_chain_drop(chain);
456  }
457  
458  void
459  hammer2_chain_rehold(hammer2_chain_t *chain)
460  {
461  	hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
462  	atomic_add_int(&chain->lockcnt, 1);
463  	hammer2_chain_unlock(chain);
464  }
465  
466  /*
467   * Handles the (potential) last drop of chain->refs from 1->0.  Called with
468   * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
469   * possible against refs and lockcnt.  We must dispose of the mutex on chain.
470   *
471   * This function returns an unlocked chain for recursive drop or NULL.  It
472   * can return the same chain if it determines it has raced another ref.
473   *
474   * --
475   *
476   * When two chains need to be recursively dropped we use the chain we
477   * would otherwise free to placehold the additional chain.  It's a bit
478   * convoluted but we can't just recurse without potentially blowing out
479   * the kernel stack.
480   *
481   * The chain cannot be freed if it has any children.
482   * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
483   * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
484   * Any dedup registration can remain intact.
485   *
486   * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
487   */
488  static
489  hammer2_chain_t *
490  hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
491  {
492  	hammer2_pfs_t *pmp;
493  	hammer2_dev_t *hmp;
494  	hammer2_chain_t *parent;
495  	hammer2_chain_t *rdrop;
496  
497  	/*
498  	 * We need chain's spinlock to interlock the sub-tree test.
499  	 * We already have chain's mutex, protecting chain->parent.
500  	 *
501  	 * Remember that chain->refs can be in flux.
502  	 */
503  	hammer2_spin_ex(&chain->core.spin);
504  
505  	if (chain->parent != NULL) {
506  		/*
507  		 * If the chain has a parent the UPDATE bit prevents scrapping
508  		 * as the chain is needed to properly flush the parent.  Try
509  		 * to complete the 1->0 transition and return NULL.  Retry
510  		 * (return chain) if we are unable to complete the 1->0
511  		 * transition, else return NULL (nothing more to do).
512  		 *
513  		 * If the chain has a parent the MODIFIED bit prevents
514  		 * scrapping.
515  		 *
516  		 * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
517  		 */
518  		if (chain->flags & (HAMMER2_CHAIN_UPDATE |
519  				    HAMMER2_CHAIN_MODIFIED)) {
520  			if (atomic_cmpset_int(&chain->refs, 1, 0)) {
521  				hammer2_spin_unex(&chain->core.spin);
522  				hammer2_chain_assert_no_data(chain);
523  				hammer2_mtx_unlock(&chain->lock);
524  				chain = NULL;
525  			} else {
526  				hammer2_spin_unex(&chain->core.spin);
527  				hammer2_mtx_unlock(&chain->lock);
528  			}
529  			return (chain);
530  		}
531  		/* spinlock still held */
532  	} else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
533  		   chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
534  		/*
535  		 * Retain the static vchain and fchain.  Clear bits that
536  		 * are not relevant.  Do not clear the MODIFIED bit,
537  		 * and certainly do not put it on the delayed-flush queue.
538  		 */
539  		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
540  	} else {
541  		/*
542  		 * The chain has no parent and can be flagged for destruction.
543  		 * Since it has no parent, UPDATE can also be cleared.
544  		 */
545  		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
546  		if (chain->flags & HAMMER2_CHAIN_UPDATE)
547  			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
548  
549  		/*
550  		 * If the chain has children we must propagate the DESTROY
551  		 * flag downward and rip the disconnected topology apart.
552  		 * This is accomplished by calling hammer2_flush() on the
553  		 * chain.
554  		 *
555  		 * Any dedup is already handled by the underlying DIO, so
556  		 * we do not have to specifically flush it here.
557  		 */
558  		if (chain->core.chain_count) {
559  			hammer2_spin_unex(&chain->core.spin);
560  			hammer2_flush(chain, HAMMER2_FLUSH_TOP |
561  					     HAMMER2_FLUSH_ALL);
562  			hammer2_mtx_unlock(&chain->lock);
563  
564  			return(chain);	/* retry drop */
565  		}
566  
567  		/*
568  		 * Otherwise we can scrap the MODIFIED bit if it is set,
569  		 * and continue along the freeing path.
570  		 *
571  		 * Be sure to clean-out any dedup bits.  Without a parent
572  		 * this chain will no longer be visible to the flush code.
573  		 * Easy check data_off to avoid the volume root.
574  		 */
575  		if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
576  			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
577  			atomic_add_long(&hammer2_count_modified_chains, -1);
578  			if (chain->pmp)
579  				hammer2_pfs_memory_wakeup(chain->pmp, -1);
580  		}
581  		/* spinlock still held */
582  	}
583  
584  	/* spinlock still held */
585  
586  	/*
587  	 * If any children exist we must leave the chain intact with refs == 0.
588  	 * They exist because chains are retained below us which have refs or
589  	 * may require flushing.
590  	 *
591  	 * Retry (return chain) if we fail to transition the refs to 0, else
592  	 * return NULL indication nothing more to do.
593  	 *
594  	 * Chains with children are NOT put on the LRU list.
595  	 */
596  	if (chain->core.chain_count) {
597  		if (atomic_cmpset_int(&chain->refs, 1, 0)) {
598  			hammer2_spin_unex(&chain->core.spin);
599  			hammer2_chain_assert_no_data(chain);
600  			hammer2_mtx_unlock(&chain->lock);
601  			chain = NULL;
602  		} else {
603  			hammer2_spin_unex(&chain->core.spin);
604  			hammer2_mtx_unlock(&chain->lock);
605  		}
606  		return (chain);
607  	}
608  	/* spinlock still held */
609  	/* no chains left under us */
610  
611  	/*
612  	 * chain->core has no children left so no accessors can get to our
613  	 * chain from there.  Now we have to lock the parent core to interlock
614  	 * remaining possible accessors that might bump chain's refs before
615  	 * we can safely drop chain's refs with intent to free the chain.
616  	 */
617  	hmp = chain->hmp;
618  	pmp = chain->pmp;	/* can be NULL */
619  	rdrop = NULL;
620  
621  	parent = chain->parent;
622  
623  	/*
624  	 * WARNING! chain's spin lock is still held here, and other spinlocks
625  	 *	    will be acquired and released in the code below.  We
626  	 *	    cannot be making fancy procedure calls!
627  	 */
628  
629  	/*
630  	 * We can cache the chain if it is associated with a pmp
631  	 * and not flagged as being destroyed or requesting a full
632  	 * release.  In this situation the chain is not removed
633  	 * from its parent, i.e. it can still be looked up.
634  	 *
635  	 * We intentionally do not cache DATA chains because these
636  	 * were likely used to load data into the logical buffer cache
637  	 * and will not be accessed again for some time.
638  	 */
639  	if ((chain->flags &
640  	     (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
641  	    chain->pmp &&
642  	    chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
643  		if (parent)
644  			hammer2_spin_ex(&parent->core.spin);
645  		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
646  			/*
647  			 * 1->0 transition failed, retry.  Do not drop
648  			 * the chain's data yet!
649  			 */
650  			if (parent)
651  				hammer2_spin_unex(&parent->core.spin);
652  			hammer2_spin_unex(&chain->core.spin);
653  			hammer2_mtx_unlock(&chain->lock);
654  
655  			return(chain);
656  		}
657  
658  		/*
659  		 * Success
660  		 */
661  		hammer2_chain_assert_no_data(chain);
662  
663  		/*
664  		 * Make sure we are on the LRU list, clean up excessive
665  		 * LRU entries.  We can only really drop one but there might
666  		 * be other entries that we can remove from the lru_list
667  		 * without dropping.
668  		 *
669  		 * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
670  		 *	 chain->core.spin AND pmp->lru_spin are held, but
671  		 *	 can be safely cleared only holding pmp->lru_spin.
672  		 */
673  		if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
674  			hammer2_spin_ex(&pmp->lru_spin);
675  			if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
676  				atomic_set_int(&chain->flags,
677  					       HAMMER2_CHAIN_ONLRU);
678  				TAILQ_INSERT_TAIL(&pmp->lru_list,
679  						  chain, lru_node);
680  				atomic_add_int(&pmp->lru_count, 1);
681  			}
682  			if (pmp->lru_count < HAMMER2_LRU_LIMIT)
683  				depth = 1;	/* disable lru_list flush */
684  			hammer2_spin_unex(&pmp->lru_spin);
685  		} else {
686  			/* disable lru flush */
687  			depth = 1;
688  		}
689  
690  		if (parent) {
691  			hammer2_spin_unex(&parent->core.spin);
692  			parent = NULL;	/* safety */
693  		}
694  		hammer2_spin_unex(&chain->core.spin);
695  		hammer2_mtx_unlock(&chain->lock);
696  
697  		/*
698  		 * lru_list hysteresis (see above for depth overrides).
699  		 * Note that depth also prevents excessive lastdrop recursion.
700  		 */
701  		if (depth == 0)
702  			hammer2_chain_lru_flush(pmp);
703  
704  		return NULL;
705  		/* NOT REACHED */
706  	}
707  
708  	/*
709  	 * Make sure we are not on the LRU list.
710  	 */
711  	if (chain->flags & HAMMER2_CHAIN_ONLRU) {
712  		hammer2_spin_ex(&pmp->lru_spin);
713  		if (chain->flags & HAMMER2_CHAIN_ONLRU) {
714  			atomic_add_int(&pmp->lru_count, -1);
715  			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
716  			TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
717  		}
718  		hammer2_spin_unex(&pmp->lru_spin);
719  	}
720  
721  	/*
722  	 * Spinlock the parent and try to drop the last ref on chain.
723  	 * On success determine if we should dispose of the chain
724  	 * (remove the chain from its parent, etc).
725  	 *
726  	 * (normal core locks are top-down recursive but we define
727  	 * core spinlocks as bottom-up recursive, so this is safe).
728  	 */
729  	if (parent) {
730  		hammer2_spin_ex(&parent->core.spin);
731  		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
732  			/*
733  			 * 1->0 transition failed, retry.
734  			 */
735  			hammer2_spin_unex(&parent->core.spin);
736  			hammer2_spin_unex(&chain->core.spin);
737  			hammer2_mtx_unlock(&chain->lock);
738  
739  			return(chain);
740  		}
741  
742  		/*
743  		 * 1->0 transition successful, parent spin held to prevent
744  		 * new lookups, chain spinlock held to protect parent field.
745  		 * Remove chain from the parent.
746  		 *
747  		 * If the chain is being removed from the parent's btree but
748  		 * is not bmapped, we have to adjust live_count downward.  If
749  		 * it is bmapped then the blockref is retained in the parent
750  		 * as is its associated live_count.  This case can occur when
751  		 * a chain added to the topology is unable to flush and is
752  		 * then later deleted.
753  		 */
754  		if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
755  			if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
756  			    (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
757  				atomic_add_int(&parent->core.live_count, -1);
758  			}
759  			RB_REMOVE(hammer2_chain_tree,
760  				  &parent->core.rbtree, chain);
761  			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
762  			--parent->core.chain_count;
763  			chain->parent = NULL;
764  		}
765  
766  		/*
767  		 * If our chain was the last chain in the parent's core the
768  		 * core is now empty and its parent might have to be
769  		 * re-dropped if it has 0 refs.
770  		 */
771  		if (parent->core.chain_count == 0) {
772  			rdrop = parent;
773  			atomic_add_int(&rdrop->refs, 1);
774  			/*
775  			if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
776  				rdrop = NULL;
777  			*/
778  		}
779  		hammer2_spin_unex(&parent->core.spin);
780  		parent = NULL;	/* safety */
781  		/* FALL THROUGH */
782  	} else {
783  		/*
784  		 * No-parent case.
785  		 */
786  		if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
787  			/*
788  			 * 1->0 transition failed, retry.
789  			 */
790  			hammer2_spin_unex(&parent->core.spin);
791  			hammer2_spin_unex(&chain->core.spin);
792  			hammer2_mtx_unlock(&chain->lock);
793  
794  			return(chain);
795  		}
796  	}
797  
798  	/*
799  	 * Successful 1->0 transition, no parent, no children... no way for
800  	 * anyone to ref this chain any more.  We can clean-up and free it.
801  	 *
802  	 * We still have the core spinlock, and core's chain_count is 0.
803  	 * Any parent spinlock is gone.
804  	 */
805  	hammer2_spin_unex(&chain->core.spin);
806  	hammer2_chain_assert_no_data(chain);
807  	hammer2_mtx_unlock(&chain->lock);
808  	KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
809  		 chain->core.chain_count == 0);
810  
811  	/*
812  	 * All locks are gone, no pointers remain to the chain, finish
813  	 * freeing it.
814  	 */
815  	KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
816  				  HAMMER2_CHAIN_MODIFIED)) == 0);
817  
818  	/*
819  	 * Once chain resources are gone we can use the now dead chain
820  	 * structure to placehold what might otherwise require a recursive
821  	 * drop, because we have potentially two things to drop and can only
822  	 * return one directly.
823  	 */
824  	if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
825  		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
826  		chain->hmp = NULL;
827  		kfree(chain, hmp->mchain);
828  	}
829  
830  	/*
831  	 * Possible chaining loop when parent re-drop needed.
832  	 */
833  	return(rdrop);
834  }
835  
836  /*
837   * Heuristical flush of the LRU, try to reduce the number of entries
838   * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
839   * only when lru_count exceeds HAMMER2_LRU_LIMIT.
840   */
841  static
842  void
843  hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
844  {
845  	hammer2_chain_t *chain;
846  
847  again:
848  	chain = NULL;
849  	hammer2_spin_ex(&pmp->lru_spin);
850  	while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
851  		/*
852  		 * Pick a chain off the lru_list, just recycle it quickly
853  		 * if LRUHINT is set (the chain was ref'd but left on
854  		 * the lru_list, so cycle to the end).
855  		 */
856  		chain = TAILQ_FIRST(&pmp->lru_list);
857  		TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
858  
859  		if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
860  			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
861  			TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
862  			chain = NULL;
863  			continue;
864  		}
865  
866  		/*
867  		 * Ok, we are off the LRU.  We must adjust refs before we
868  		 * can safely clear the ONLRU flag.
869  		 */
870  		atomic_add_int(&pmp->lru_count, -1);
871  		if (atomic_cmpset_int(&chain->refs, 0, 1)) {
872  			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
873  			atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
874  			break;
875  		}
876  		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
877  		chain = NULL;
878  	}
879  	hammer2_spin_unex(&pmp->lru_spin);
880  	if (chain == NULL)
881  		return;
882  
883  	/*
884  	 * If we picked a chain off the lru list we may be able to lastdrop
885  	 * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
886  	 */
887  	while (chain) {
888  		u_int refs;
889  
890  		refs = chain->refs;
891  		cpu_ccfence();
892  		KKASSERT(refs > 0);
893  
894  		if (refs == 1) {
895  			if (hammer2_mtx_ex_try(&chain->lock) == 0)
896  				chain = hammer2_chain_lastdrop(chain, 1);
897  			/* retry the same chain, or chain from lastdrop */
898  		} else {
899  			if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
900  				break;
901  			/* retry the same chain */
902  		}
903  		cpu_pause();
904  	}
905  	goto again;
906  }
907  
908  /*
909   * On last lock release.
910   */
911  static hammer2_io_t *
912  hammer2_chain_drop_data(hammer2_chain_t *chain)
913  {
914  	hammer2_io_t *dio;
915  
916  	if ((dio = chain->dio) != NULL) {
917  		chain->dio = NULL;
918  		chain->data = NULL;
919  	} else {
920  		switch(chain->bref.type) {
921  		case HAMMER2_BREF_TYPE_VOLUME:
922  		case HAMMER2_BREF_TYPE_FREEMAP:
923  			break;
924  		default:
925  			if (chain->data != NULL) {
926  				hammer2_spin_unex(&chain->core.spin);
927  				panic("chain data not null: "
928  				      "chain %p bref %016jx.%02x "
929  				      "refs %d parent %p dio %p data %p",
930  				      chain, chain->bref.data_off,
931  				      chain->bref.type, chain->refs,
932  				      chain->parent,
933  				      chain->dio, chain->data);
934  			}
935  			KKASSERT(chain->data == NULL);
936  			break;
937  		}
938  	}
939  	return dio;
940  }
941  
942  /*
943   * Lock a referenced chain element, acquiring its data with I/O if necessary,
944   * and specify how you would like the data to be resolved.
945   *
946   * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
947   *
948   * The lock is allowed to recurse, multiple locking ops will aggregate
949   * the requested resolve types.  Once data is assigned it will not be
950   * removed until the last unlock.
951   *
952   * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
953   *			   (typically used to avoid device/logical buffer
954   *			    aliasing for data)
955   *
956   * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
957   *			   the INITIAL-create state (indirect blocks only).
958   *
959   *			   Do not resolve data elements for DATA chains.
960   *			   (typically used to avoid device/logical buffer
961   *			    aliasing for data)
962   *
963   * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
964   *
965   * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
966   *			   it will be locked exclusive.
967   *
968   * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
969   *			   the lock fails, EAGAIN is returned.
970   *
971   * NOTE: Embedded elements (volume header, inodes) are always resolved
972   *	 regardless.
973   *
974   * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
975   *	 element will instantiate and zero its buffer, and flush it on
976   *	 release.
977   *
978   * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
979   *	 so as not to instantiate a device buffer, which could alias against
980   *	 a logical file buffer.  However, if ALWAYS is specified the
981   *	 device buffer will be instantiated anyway.
982   *
983   * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
984   *	 case it can be either 0 or EAGAIN.
985   *
986   * WARNING! This function blocks on I/O if data needs to be fetched.  This
987   *	    blocking can run concurrent with other compatible lock holders
988   *	    who do not need data returning.  The lock is not upgraded to
989   *	    exclusive during a data fetch, a separate bit is used to
990   *	    interlock I/O.  However, an exclusive lock holder can still count
991   *	    on being interlocked against an I/O fetch managed by a shared
992   *	    lock holder.
993   */
994  int
995  hammer2_chain_lock(hammer2_chain_t *chain, int how)
996  {
997  	KKASSERT(chain->refs > 0);
998  
999  	if (how & HAMMER2_RESOLVE_NONBLOCK) {
1000  		/*
1001  		 * We still have to bump lockcnt before acquiring the lock,
1002  		 * even for non-blocking operation, because the unlock code
1003  		 * live-loops on lockcnt == 1 when dropping the last lock.
1004  		 *
1005  		 * If the non-blocking operation fails we have to use an
1006  		 * unhold sequence to undo the mess.
1007  		 *
1008  		 * NOTE: LOCKAGAIN must always succeed without blocking,
1009  		 *	 even if NONBLOCK is specified.
1010  		 */
1011  		atomic_add_int(&chain->lockcnt, 1);
1012  		if (how & HAMMER2_RESOLVE_SHARED) {
1013  			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1014  				hammer2_mtx_sh_again(&chain->lock);
1015  			} else {
1016  				if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1017  					hammer2_chain_unhold(chain);
1018  					return EAGAIN;
1019  				}
1020  			}
1021  		} else {
1022  			if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1023  				hammer2_chain_unhold(chain);
1024  				return EAGAIN;
1025  			}
1026  		}
1027  	} else {
1028  		/*
1029  		 * Get the appropriate lock.  If LOCKAGAIN is flagged with
1030  		 * SHARED the caller expects a shared lock to already be
1031  		 * present and we are giving it another ref.  This case must
1032  		 * importantly not block if there is a pending exclusive lock
1033  		 * request.
1034  		 */
1035  		atomic_add_int(&chain->lockcnt, 1);
1036  		if (how & HAMMER2_RESOLVE_SHARED) {
1037  			if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1038  				hammer2_mtx_sh_again(&chain->lock);
1039  			} else {
1040  				hammer2_mtx_sh(&chain->lock);
1041  			}
1042  		} else {
1043  			hammer2_mtx_ex(&chain->lock);
1044  		}
1045  	}
1046  
1047  	/*
1048  	 * If we already have a valid data pointer make sure the data is
1049  	 * synchronized to the current cpu, and then no further action is
1050  	 * necessary.
1051  	 */
1052  	if (chain->data) {
1053  		if (chain->dio)
1054  			hammer2_io_bkvasync(chain->dio);
1055  		return 0;
1056  	}
1057  
1058  	/*
1059  	 * Do we have to resolve the data?  This is generally only
1060  	 * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1061  	 * Other BREF types expects the data to be there.
1062  	 */
1063  	switch(how & HAMMER2_RESOLVE_MASK) {
1064  	case HAMMER2_RESOLVE_NEVER:
1065  		return 0;
1066  	case HAMMER2_RESOLVE_MAYBE:
1067  		if (chain->flags & HAMMER2_CHAIN_INITIAL)
1068  			return 0;
1069  		if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1070  			return 0;
1071  #if 0
1072  		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1073  			return 0;
1074  		if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1075  			return 0;
1076  #endif
1077  		/* fall through */
1078  	case HAMMER2_RESOLVE_ALWAYS:
1079  	default:
1080  		break;
1081  	}
1082  
1083  	/*
1084  	 * Caller requires data
1085  	 */
1086  	hammer2_chain_load_data(chain);
1087  
1088  	return 0;
1089  }
1090  
1091  /*
1092   * Lock the chain, retain the hold, and drop the data persistence count.
1093   * The data should remain valid because we never transitioned lockcnt
1094   * through 0.
1095   */
1096  void
1097  hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1098  {
1099  	hammer2_chain_lock(chain, how);
1100  	atomic_add_int(&chain->lockcnt, -1);
1101  }
1102  
1103  #if 0
1104  /*
1105   * Downgrade an exclusive chain lock to a shared chain lock.
1106   *
1107   * NOTE: There is no upgrade equivalent due to the ease of
1108   *	 deadlocks in that direction.
1109   */
1110  void
1111  hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1112  {
1113  	hammer2_mtx_downgrade(&chain->lock);
1114  }
1115  #endif
1116  
1117  /*
1118   * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1119   * may be of any type.
1120   *
1121   * Once chain->data is set it cannot be disposed of until all locks are
1122   * released.
1123   *
1124   * Make sure the data is synchronized to the current cpu.
1125   */
1126  void
1127  hammer2_chain_load_data(hammer2_chain_t *chain)
1128  {
1129  	hammer2_blockref_t *bref;
1130  	hammer2_dev_t *hmp;
1131  	hammer2_io_t *dio;
1132  	char *bdata;
1133  	int error;
1134  
1135  	/*
1136  	 * Degenerate case, data already present, or chain has no media
1137  	 * reference to load.
1138  	 */
1139  	KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1140  	if (chain->data) {
1141  		if (chain->dio)
1142  			hammer2_io_bkvasync(chain->dio);
1143  		return;
1144  	}
1145  	if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1146  		return;
1147  
1148  	hmp = chain->hmp;
1149  	KKASSERT(hmp != NULL);
1150  
1151  	/*
1152  	 * Gain the IOINPROG bit, interlocked block.
1153  	 */
1154  	for (;;) {
1155  		u_int oflags;
1156  		u_int nflags;
1157  
1158  		oflags = chain->flags;
1159  		cpu_ccfence();
1160  		if (oflags & HAMMER2_CHAIN_IOINPROG) {
1161  			nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1162  			tsleep_interlock(&chain->flags, 0);
1163  			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1164  				tsleep(&chain->flags, PINTERLOCKED,
1165  					"h2iocw", 0);
1166  			}
1167  			/* retry */
1168  		} else {
1169  			nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1170  			if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1171  				break;
1172  			}
1173  			/* retry */
1174  		}
1175  	}
1176  
1177  	/*
1178  	 * We own CHAIN_IOINPROG
1179  	 *
1180  	 * Degenerate case if we raced another load.
1181  	 */
1182  	if (chain->data) {
1183  		if (chain->dio)
1184  			hammer2_io_bkvasync(chain->dio);
1185  		goto done;
1186  	}
1187  
1188  	/*
1189  	 * We must resolve to a device buffer, either by issuing I/O or
1190  	 * by creating a zero-fill element.  We do not mark the buffer
1191  	 * dirty when creating a zero-fill element (the hammer2_chain_modify()
1192  	 * API must still be used to do that).
1193  	 *
1194  	 * The device buffer is variable-sized in powers of 2 down
1195  	 * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1196  	 * chunk always contains buffers of the same size. (XXX)
1197  	 *
1198  	 * The minimum physical IO size may be larger than the variable
1199  	 * block size.
1200  	 */
1201  	bref = &chain->bref;
1202  
1203  	/*
1204  	 * The getblk() optimization can only be used on newly created
1205  	 * elements if the physical block size matches the request.
1206  	 */
1207  	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1208  		error = hammer2_io_new(hmp, bref->type,
1209  				       bref->data_off, chain->bytes,
1210  				       &chain->dio);
1211  	} else {
1212  		error = hammer2_io_bread(hmp, bref->type,
1213  					 bref->data_off, chain->bytes,
1214  					 &chain->dio);
1215  		hammer2_adjreadcounter(chain->bref.type, chain->bytes);
1216  	}
1217  	if (error) {
1218  		chain->error = HAMMER2_ERROR_EIO;
1219  		kprintf("hammer2_chain_load_data: I/O error %016jx: %d\n",
1220  			(intmax_t)bref->data_off, error);
1221  		hammer2_io_bqrelse(&chain->dio);
1222  		goto done;
1223  	}
1224  	chain->error = 0;
1225  
1226  	/*
1227  	 * This isn't perfect and can be ignored on OSs which do not have
1228  	 * an indication as to whether a buffer is coming from cache or
1229  	 * if I/O was actually issued for the read.  TESTEDGOOD will work
1230  	 * pretty well without the B_IOISSUED logic because chains are
1231  	 * cached, but in that situation (without B_IOISSUED) it will not
1232  	 * detect whether a re-read via I/O is corrupted verses the original
1233  	 * read.
1234  	 *
1235  	 * We can't re-run the CRC on every fresh lock.  That would be
1236  	 * insanely expensive.
1237  	 *
1238  	 * If the underlying kernel buffer covers the entire chain we can
1239  	 * use the B_IOISSUED indication to determine if we have to re-run
1240  	 * the CRC on chain data for chains that managed to stay cached
1241  	 * across the kernel disposal of the original buffer.
1242  	 */
1243  	if ((dio = chain->dio) != NULL && dio->bp) {
1244  		struct buf *bp = dio->bp;
1245  
1246  		if (dio->psize == chain->bytes &&
1247  		    (bp->b_flags & B_IOISSUED)) {
1248  			atomic_clear_int(&chain->flags,
1249  					 HAMMER2_CHAIN_TESTEDGOOD);
1250  			bp->b_flags &= ~B_IOISSUED;
1251  		}
1252  	}
1253  
1254  	/*
1255  	 * NOTE: A locked chain's data cannot be modified without first
1256  	 *	 calling hammer2_chain_modify().
1257  	 */
1258  
1259  	/*
1260  	 * NOTE: hammer2_io_data() call issues bkvasync()
1261  	 */
1262  	bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1263  
1264  	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1265  		/*
1266  		 * Clear INITIAL.  In this case we used io_new() and the
1267  		 * buffer has been zero'd and marked dirty.
1268  		 *
1269  		 * CHAIN_MODIFIED has not been set yet, and we leave it
1270  		 * that way for now.  Set a temporary CHAIN_NOTTESTED flag
1271  		 * to prevent hammer2_chain_testcheck() from trying to match
1272  		 * a check code that has not yet been generated.  This bit
1273  		 * should NOT end up on the actual media.
1274  		 */
1275  		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1276  		atomic_set_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
1277  	} else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1278  		/*
1279  		 * check data not currently synchronized due to
1280  		 * modification.  XXX assumes data stays in the buffer
1281  		 * cache, which might not be true (need biodep on flush
1282  		 * to calculate crc?  or simple crc?).
1283  		 */
1284  	} else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1285  		if (hammer2_chain_testcheck(chain, bdata) == 0) {
1286  			chain->error = HAMMER2_ERROR_CHECK;
1287  		} else {
1288  			atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1289  		}
1290  	}
1291  
1292  	/*
1293  	 * Setup the data pointer, either pointing it to an embedded data
1294  	 * structure and copying the data from the buffer, or pointing it
1295  	 * into the buffer.
1296  	 *
1297  	 * The buffer is not retained when copying to an embedded data
1298  	 * structure in order to avoid potential deadlocks or recursions
1299  	 * on the same physical buffer.
1300  	 *
1301  	 * WARNING! Other threads can start using the data the instant we
1302  	 *	    set chain->data non-NULL.
1303  	 */
1304  	switch (bref->type) {
1305  	case HAMMER2_BREF_TYPE_VOLUME:
1306  	case HAMMER2_BREF_TYPE_FREEMAP:
1307  		/*
1308  		 * Copy data from bp to embedded buffer
1309  		 */
1310  		panic("hammer2_chain_load_data: unresolved volume header");
1311  		break;
1312  	case HAMMER2_BREF_TYPE_DIRENT:
1313  		KKASSERT(chain->bytes != 0);
1314  		/* fall through */
1315  	case HAMMER2_BREF_TYPE_INODE:
1316  	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1317  	case HAMMER2_BREF_TYPE_INDIRECT:
1318  	case HAMMER2_BREF_TYPE_DATA:
1319  	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1320  	default:
1321  		/*
1322  		 * Point data at the device buffer and leave dio intact.
1323  		 */
1324  		chain->data = (void *)bdata;
1325  		break;
1326  	}
1327  
1328  	/*
1329  	 * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1330  	 */
1331  done:
1332  	for (;;) {
1333  		u_int oflags;
1334  		u_int nflags;
1335  
1336  		oflags = chain->flags;
1337  		nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1338  				    HAMMER2_CHAIN_IOSIGNAL);
1339  		KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1340  		if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1341  			if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1342  				wakeup(&chain->flags);
1343  			break;
1344  		}
1345  	}
1346  }
1347  
1348  /*
1349   * Unlock and deref a chain element.
1350   *
1351   * Remember that the presence of children under chain prevent the chain's
1352   * destruction but do not add additional references, so the dio will still
1353   * be dropped.
1354   */
1355  void
1356  hammer2_chain_unlock(hammer2_chain_t *chain)
1357  {
1358  	hammer2_io_t *dio;
1359  	u_int lockcnt;
1360  	int iter = 0;
1361  
1362  	/*
1363  	 * If multiple locks are present (or being attempted) on this
1364  	 * particular chain we can just unlock, drop refs, and return.
1365  	 *
1366  	 * Otherwise fall-through on the 1->0 transition.
1367  	 */
1368  	for (;;) {
1369  		lockcnt = chain->lockcnt;
1370  		KKASSERT(lockcnt > 0);
1371  		cpu_ccfence();
1372  		if (lockcnt > 1) {
1373  			if (atomic_cmpset_int(&chain->lockcnt,
1374  					      lockcnt, lockcnt - 1)) {
1375  				hammer2_mtx_unlock(&chain->lock);
1376  				return;
1377  			}
1378  		} else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1379  			/* while holding the mutex exclusively */
1380  			if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1381  				break;
1382  		} else {
1383  			/*
1384  			 * This situation can easily occur on SMP due to
1385  			 * the gap inbetween the 1->0 transition and the
1386  			 * final unlock.  We cannot safely block on the
1387  			 * mutex because lockcnt might go above 1.
1388  			 *
1389  			 * XXX Sleep for one tick if it takes too long.
1390  			 */
1391  			if (++iter > 1000) {
1392  				if (iter > 1000 + hz) {
1393  					kprintf("hammer2: h2race2 %p\n", chain);
1394  					iter = 1000;
1395  				}
1396  				tsleep(&iter, 0, "h2race2", 1);
1397  			}
1398  			cpu_pause();
1399  		}
1400  		/* retry */
1401  	}
1402  
1403  	/*
1404  	 * Last unlock / mutex upgraded to exclusive.  Drop the data
1405  	 * reference.
1406  	 */
1407  	dio = hammer2_chain_drop_data(chain);
1408  	if (dio)
1409  		hammer2_io_bqrelse(&dio);
1410  	hammer2_mtx_unlock(&chain->lock);
1411  }
1412  
1413  /*
1414   * Unlock and hold chain data intact
1415   */
1416  void
1417  hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1418  {
1419  	atomic_add_int(&chain->lockcnt, 1);
1420  	hammer2_chain_unlock(chain);
1421  }
1422  
1423  /*
1424   * Helper to obtain the blockref[] array base and count for a chain.
1425   *
1426   * XXX Not widely used yet, various use cases need to be validated and
1427   *     converted to use this function.
1428   */
1429  static
1430  hammer2_blockref_t *
1431  hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1432  {
1433  	hammer2_blockref_t *base;
1434  	int count;
1435  
1436  	if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1437  		base = NULL;
1438  
1439  		switch(parent->bref.type) {
1440  		case HAMMER2_BREF_TYPE_INODE:
1441  			count = HAMMER2_SET_COUNT;
1442  			break;
1443  		case HAMMER2_BREF_TYPE_INDIRECT:
1444  		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1445  			count = parent->bytes / sizeof(hammer2_blockref_t);
1446  			break;
1447  		case HAMMER2_BREF_TYPE_VOLUME:
1448  			count = HAMMER2_SET_COUNT;
1449  			break;
1450  		case HAMMER2_BREF_TYPE_FREEMAP:
1451  			count = HAMMER2_SET_COUNT;
1452  			break;
1453  		default:
1454  			panic("hammer2_chain_base_and_count: "
1455  			      "unrecognized blockref type: %d",
1456  			      parent->bref.type);
1457  			count = 0;
1458  			break;
1459  		}
1460  	} else {
1461  		switch(parent->bref.type) {
1462  		case HAMMER2_BREF_TYPE_INODE:
1463  			base = &parent->data->ipdata.u.blockset.blockref[0];
1464  			count = HAMMER2_SET_COUNT;
1465  			break;
1466  		case HAMMER2_BREF_TYPE_INDIRECT:
1467  		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1468  			base = &parent->data->npdata[0];
1469  			count = parent->bytes / sizeof(hammer2_blockref_t);
1470  			break;
1471  		case HAMMER2_BREF_TYPE_VOLUME:
1472  			base = &parent->data->voldata.
1473  					sroot_blockset.blockref[0];
1474  			count = HAMMER2_SET_COUNT;
1475  			break;
1476  		case HAMMER2_BREF_TYPE_FREEMAP:
1477  			base = &parent->data->blkset.blockref[0];
1478  			count = HAMMER2_SET_COUNT;
1479  			break;
1480  		default:
1481  			panic("hammer2_chain_base_and_count: "
1482  			      "unrecognized blockref type: %d",
1483  			      parent->bref.type);
1484  			base = NULL;
1485  			count = 0;
1486  			break;
1487  		}
1488  	}
1489  	*countp = count;
1490  
1491  	return base;
1492  }
1493  
1494  /*
1495   * This counts the number of live blockrefs in a block array and
1496   * also calculates the point at which all remaining blockrefs are empty.
1497   * This routine can only be called on a live chain.
1498   *
1499   * Caller holds the chain locked, but possibly with a shared lock.  We
1500   * must use an exclusive spinlock to prevent corruption.
1501   *
1502   * NOTE: Flag is not set until after the count is complete, allowing
1503   *	 callers to test the flag without holding the spinlock.
1504   *
1505   * NOTE: If base is NULL the related chain is still in the INITIAL
1506   *	 state and there are no blockrefs to count.
1507   *
1508   * NOTE: live_count may already have some counts accumulated due to
1509   *	 creation and deletion and could even be initially negative.
1510   */
1511  void
1512  hammer2_chain_countbrefs(hammer2_chain_t *chain,
1513  			 hammer2_blockref_t *base, int count)
1514  {
1515  	hammer2_spin_ex(&chain->core.spin);
1516          if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1517  		if (base) {
1518  			while (--count >= 0) {
1519  				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1520  					break;
1521  			}
1522  			chain->core.live_zero = count + 1;
1523  			while (count >= 0) {
1524  				if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1525  					atomic_add_int(&chain->core.live_count,
1526  						       1);
1527  				--count;
1528  			}
1529  		} else {
1530  			chain->core.live_zero = 0;
1531  		}
1532  		/* else do not modify live_count */
1533  		atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1534  	}
1535  	hammer2_spin_unex(&chain->core.spin);
1536  }
1537  
1538  /*
1539   * Resize the chain's physical storage allocation in-place.  This function does
1540   * not usually adjust the data pointer and must be followed by (typically) a
1541   * hammer2_chain_modify() call to copy any old data over and adjust the
1542   * data pointer.
1543   *
1544   * Chains can be resized smaller without reallocating the storage.  Resizing
1545   * larger will reallocate the storage.  Excess or prior storage is reclaimed
1546   * asynchronously at a later time.
1547   *
1548   * An nradix value of 0 is special-cased to mean that the storage should
1549   * be disassociated, that is the chain is being resized to 0 bytes (not 1
1550   * byte).
1551   *
1552   * Must be passed an exclusively locked parent and chain.
1553   *
1554   * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1555   * to avoid instantiating a device buffer that conflicts with the vnode data
1556   * buffer.  However, because H2 can compress or encrypt data, the chain may
1557   * have a dio assigned to it in those situations, and they do not conflict.
1558   *
1559   * XXX return error if cannot resize.
1560   */
1561  int
1562  hammer2_chain_resize(hammer2_chain_t *chain,
1563  		     hammer2_tid_t mtid, hammer2_off_t dedup_off,
1564  		     int nradix, int flags)
1565  {
1566  	hammer2_dev_t *hmp;
1567  	size_t obytes;
1568  	size_t nbytes;
1569  	int error;
1570  
1571  	hmp = chain->hmp;
1572  
1573  	/*
1574  	 * Only data and indirect blocks can be resized for now.
1575  	 * (The volu root, inodes, and freemap elements use a fixed size).
1576  	 */
1577  	KKASSERT(chain != &hmp->vchain);
1578  	KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1579  		 chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1580  		 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1581  
1582  	/*
1583  	 * Nothing to do if the element is already the proper size
1584  	 */
1585  	obytes = chain->bytes;
1586  	nbytes = (nradix) ? (1U << nradix) : 0;
1587  	if (obytes == nbytes)
1588  		return (chain->error);
1589  
1590  	/*
1591  	 * Make sure the old data is instantiated so we can copy it.  If this
1592  	 * is a data block, the device data may be superfluous since the data
1593  	 * might be in a logical block, but compressed or encrypted data is
1594  	 * another matter.
1595  	 *
1596  	 * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1597  	 */
1598  	error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1599  	if (error)
1600  		return error;
1601  
1602  	/*
1603  	 * Reallocate the block, even if making it smaller (because different
1604  	 * block sizes may be in different regions).
1605  	 *
1606  	 * NOTE: Operation does not copy the data and may only be used
1607  	 *	 to resize data blocks in-place, or directory entry blocks
1608  	 *	 which are about to be modified in some manner.
1609  	 */
1610  	error = hammer2_freemap_alloc(chain, nbytes);
1611  	if (error)
1612  		return error;
1613  
1614  	chain->bytes = nbytes;
1615  
1616  	/*
1617  	 * We don't want the followup chain_modify() to try to copy data
1618  	 * from the old (wrong-sized) buffer.  It won't know how much to
1619  	 * copy.  This case should only occur during writes when the
1620  	 * originator already has the data to write in-hand.
1621  	 */
1622  	if (chain->dio) {
1623  		KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1624  			 chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1625  		hammer2_io_brelse(&chain->dio);
1626  		chain->data = NULL;
1627  	}
1628  	return (chain->error);
1629  }
1630  
1631  /*
1632   * Set the chain modified so its data can be changed by the caller, or
1633   * install deduplicated data.  The caller must call this routine for each
1634   * set of modifications it makes, even if the chain is already flagged
1635   * MODIFIED.
1636   *
1637   * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1638   * is a CLC (cluster level change) field and is not updated by parent
1639   * propagation during a flush.
1640   *
1641   * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1642   * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1643   * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1644   * remains unmodified with its old data ref intact and chain->error
1645   * unchanged.
1646   *
1647   *				 Dedup Handling
1648   *
1649   * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1650   * even if the chain is still flagged MODIFIED.  In this case the chain's
1651   * DEDUPABLE flag will be cleared once the new storage has been assigned.
1652   *
1653   * If the caller passes a non-zero dedup_off we will use it to assign the
1654   * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1655   * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1656   * must not modify the data content upon return.
1657   */
1658  int
1659  hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1660  		     hammer2_off_t dedup_off, int flags)
1661  {
1662  	hammer2_blockref_t obref;
1663  	hammer2_dev_t *hmp;
1664  	hammer2_io_t *dio;
1665  	int error;
1666  	int wasinitial;
1667  	int setmodified;
1668  	int setupdate;
1669  	int newmod;
1670  	char *bdata;
1671  
1672  	hmp = chain->hmp;
1673  	obref = chain->bref;
1674  	KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1675  
1676  	/*
1677  	 * Data is not optional for freemap chains (we must always be sure
1678  	 * to copy the data on COW storage allocations).
1679  	 */
1680  	if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1681  	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1682  		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1683  			 (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1684  	}
1685  
1686  	/*
1687  	 * Data must be resolved if already assigned, unless explicitly
1688  	 * flagged otherwise.  If we cannot safety load the data the
1689  	 * modification fails and we return early.
1690  	 */
1691  	if (chain->data == NULL && chain->bytes != 0 &&
1692  	    (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1693  	    (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1694  		hammer2_chain_load_data(chain);
1695  		if (chain->error)
1696  			return (chain->error);
1697  	}
1698  	error = 0;
1699  
1700  	/*
1701  	 * Set MODIFIED to indicate that the chain has been modified.  A new
1702  	 * allocation is required when modifying a chain.
1703  	 *
1704  	 * Set UPDATE to ensure that the blockref is updated in the parent.
1705  	 *
1706  	 * If MODIFIED is already set determine if we can reuse the assigned
1707  	 * data block or if we need a new data block.
1708  	 */
1709  	if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1710  		/*
1711  		 * Must set modified bit.
1712  		 */
1713  		atomic_add_long(&hammer2_count_modified_chains, 1);
1714  		atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1715  		hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1716  		setmodified = 1;
1717  
1718  		/*
1719  		 * We may be able to avoid a copy-on-write if the chain's
1720  		 * check mode is set to NONE and the chain's current
1721  		 * modify_tid is beyond the last explicit snapshot tid.
1722  		 *
1723  		 * This implements HAMMER2's overwrite-in-place feature.
1724  		 *
1725  		 * NOTE! This data-block cannot be used as a de-duplication
1726  		 *	 source when the check mode is set to NONE.
1727  		 */
1728  		if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1729  		     chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1730  		    (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1731  		    (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1732  		    HAMMER2_DEC_CHECK(chain->bref.methods) ==
1733  		     HAMMER2_CHECK_NONE &&
1734  		    chain->pmp &&
1735  		    chain->bref.modify_tid >
1736  		     chain->pmp->iroot->meta.pfs_lsnap_tid) {
1737  			/*
1738  			 * Sector overwrite allowed.
1739  			 */
1740  			newmod = 0;
1741  		} else if ((hmp->hflags & HMNT2_EMERG) &&
1742  			   chain->pmp &&
1743  			   chain->bref.modify_tid >
1744  			    chain->pmp->iroot->meta.pfs_lsnap_tid) {
1745  			/*
1746  			 * If in emergency delete mode then do a modify-in-
1747  			 * place on any chain type belonging to the PFS as
1748  			 * long as it doesn't mess up a snapshot.  We might
1749  			 * be forced to do this anyway a little further down
1750  			 * in the code if the allocation fails.
1751  			 *
1752  			 * Also note that in emergency mode, these modify-in-
1753  			 * place operations are NOT SAFE.  A storage failure,
1754  			 * power failure, or panic can corrupt the filesystem.
1755  			 */
1756  			newmod = 0;
1757  		} else {
1758  			/*
1759  			 * Sector overwrite not allowed, must copy-on-write.
1760  			 */
1761  			newmod = 1;
1762  		}
1763  	} else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1764  		/*
1765  		 * If the modified chain was registered for dedup we need
1766  		 * a new allocation.  This only happens for delayed-flush
1767  		 * chains (i.e. which run through the front-end buffer
1768  		 * cache).
1769  		 */
1770  		newmod = 1;
1771  		setmodified = 0;
1772  	} else {
1773  		/*
1774  		 * Already flagged modified, no new allocation is needed.
1775  		 */
1776  		newmod = 0;
1777  		setmodified = 0;
1778  	}
1779  
1780  	/*
1781  	 * Flag parent update required.
1782  	 */
1783  	if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1784  		atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1785  		setupdate = 1;
1786  	} else {
1787  		setupdate = 0;
1788  	}
1789  
1790  	/*
1791  	 * The XOP code returns held but unlocked focus chains.  This
1792  	 * prevents the chain from being destroyed but does not prevent
1793  	 * it from being modified.  diolk is used to interlock modifications
1794  	 * against XOP frontend accesses to the focus.
1795  	 *
1796  	 * This allows us to theoretically avoid deadlocking the frontend
1797  	 * if one of the backends lock up by not formally locking the
1798  	 * focused chain in the frontend.  In addition, the synchronization
1799  	 * code relies on this mechanism to avoid deadlocking concurrent
1800  	 * synchronization threads.
1801  	 */
1802  	lockmgr(&chain->diolk, LK_EXCLUSIVE);
1803  
1804  	/*
1805  	 * The modification or re-modification requires an allocation and
1806  	 * possible COW.  If an error occurs, the previous content and data
1807  	 * reference is retained and the modification fails.
1808  	 *
1809  	 * If dedup_off is non-zero, the caller is requesting a deduplication
1810  	 * rather than a modification.  The MODIFIED bit is not set and the
1811  	 * data offset is set to the deduplication offset.  The data cannot
1812  	 * be modified.
1813  	 *
1814  	 * NOTE: The dedup offset is allowed to be in a partially free state
1815  	 *	 and we must be sure to reset it to a fully allocated state
1816  	 *	 to force two bulkfree passes to free it again.
1817  	 *
1818  	 * NOTE: Only applicable when chain->bytes != 0.
1819  	 *
1820  	 * XXX can a chain already be marked MODIFIED without a data
1821  	 * assignment?  If not, assert here instead of testing the case.
1822  	 */
1823  	if (chain != &hmp->vchain && chain != &hmp->fchain &&
1824  	    chain->bytes) {
1825  		if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1826  		    newmod
1827  		) {
1828  			/*
1829  			 * NOTE: We do not have to remove the dedup
1830  			 *	 registration because the area is still
1831  			 *	 allocated and the underlying DIO will
1832  			 *	 still be flushed.
1833  			 */
1834  			if (dedup_off) {
1835  				chain->bref.data_off = dedup_off;
1836  				if ((int)(dedup_off & HAMMER2_OFF_MASK_RADIX))
1837  					chain->bytes = 1 <<
1838  						(int)(dedup_off &
1839  						HAMMER2_OFF_MASK_RADIX);
1840  				else
1841  					chain->bytes = 0;
1842  				chain->error = 0;
1843  				atomic_clear_int(&chain->flags,
1844  						 HAMMER2_CHAIN_MODIFIED);
1845  				atomic_add_long(&hammer2_count_modified_chains,
1846  						-1);
1847  				if (chain->pmp) {
1848  					hammer2_pfs_memory_wakeup(
1849  						chain->pmp, -1);
1850  				}
1851  				hammer2_freemap_adjust(hmp, &chain->bref,
1852  						HAMMER2_FREEMAP_DORECOVER);
1853  				atomic_set_int(&chain->flags,
1854  						HAMMER2_CHAIN_DEDUPABLE);
1855  			} else {
1856  				error = hammer2_freemap_alloc(chain,
1857  							      chain->bytes);
1858  				atomic_clear_int(&chain->flags,
1859  						HAMMER2_CHAIN_DEDUPABLE);
1860  
1861  				/*
1862  				 * If we are unable to allocate a new block
1863  				 * but we are in emergency mode, issue a
1864  				 * warning to the console and reuse the same
1865  				 * block.
1866  				 *
1867  				 * We behave as if the allocation were
1868  				 * successful.
1869  				 *
1870  				 * THIS IS IMPORTANT: These modifications
1871  				 * are virtually guaranteed to corrupt any
1872  				 * snapshots related to this filesystem.
1873  				 */
1874  				if (error && (hmp->hflags & HMNT2_EMERG)) {
1875  					error = 0;
1876  					chain->bref.flags |=
1877  						HAMMER2_BREF_FLAG_EMERG_MIP;
1878  
1879  					krateprintf(&krate_h2em,
1880  					    "hammer2: Emergency Mode WARNING: "
1881  					    "Operation will likely corrupt "
1882  					    "related snapshot: "
1883  					    "%016jx.%02x key=%016jx\n",
1884  					    chain->bref.data_off,
1885  					    chain->bref.type,
1886  					    chain->bref.key);
1887  				} else if (error == 0) {
1888  					chain->bref.flags &=
1889  						~HAMMER2_BREF_FLAG_EMERG_MIP;
1890  				}
1891  			}
1892  		}
1893  	}
1894  
1895  	/*
1896  	 * Stop here if error.  We have to undo any flag bits we might
1897  	 * have set above.
1898  	 */
1899  	if (error) {
1900  		if (setmodified) {
1901  			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1902  			atomic_add_long(&hammer2_count_modified_chains, -1);
1903  			if (chain->pmp)
1904  				hammer2_pfs_memory_wakeup(chain->pmp, -1);
1905  		}
1906  		if (setupdate) {
1907  			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1908  		}
1909  		lockmgr(&chain->diolk, LK_RELEASE);
1910  
1911  		return error;
1912  	}
1913  
1914  	/*
1915  	 * Update mirror_tid and modify_tid.  modify_tid is only updated
1916  	 * if not passed as zero (during flushes, parent propagation passes
1917  	 * the value 0).
1918  	 *
1919  	 * NOTE: chain->pmp could be the device spmp.
1920  	 */
1921  	chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1922  	if (mtid)
1923  		chain->bref.modify_tid = mtid;
1924  
1925  	/*
1926  	 * Set BMAPUPD to tell the flush code that an existing blockmap entry
1927  	 * requires updating as well as to tell the delete code that the
1928  	 * chain's blockref might not exactly match (in terms of physical size
1929  	 * or block offset) the one in the parent's blocktable.  The base key
1930  	 * of course will still match.
1931  	 */
1932  	if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1933  		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1934  
1935  	/*
1936  	 * Short-cut data block handling when the caller does not need an
1937  	 * actual data reference to (aka OPTDATA), as long as the chain does
1938  	 * not already have a data pointer to the data and no de-duplication
1939  	 * occurred.
1940  	 *
1941  	 * This generally means that the modifications are being done via the
1942  	 * logical buffer cache.
1943  	 *
1944  	 * NOTE: If deduplication occurred we have to run through the data
1945  	 *	 stuff to clear INITIAL, and the caller will likely want to
1946  	 *	 assign the check code anyway.  Leaving INITIAL set on a
1947  	 *	 dedup can be deadly (it can cause the block to be zero'd!).
1948  	 *
1949  	 * This code also handles bytes == 0 (most dirents).
1950  	 */
1951  	if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1952  	    (flags & HAMMER2_MODIFY_OPTDATA) &&
1953  	    chain->data == NULL) {
1954  		if (dedup_off == 0) {
1955  			KKASSERT(chain->dio == NULL);
1956  			goto skip2;
1957  		}
1958  	}
1959  
1960  	/*
1961  	 * Clearing the INITIAL flag (for indirect blocks) indicates that
1962  	 * we've processed the uninitialized storage allocation.
1963  	 *
1964  	 * If this flag is already clear we are likely in a copy-on-write
1965  	 * situation but we have to be sure NOT to bzero the storage if
1966  	 * no data is present.
1967  	 *
1968  	 * Clearing of NOTTESTED is allowed if the MODIFIED bit is set,
1969  	 */
1970  	if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1971  		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1972  		wasinitial = 1;
1973  	} else {
1974  		wasinitial = 0;
1975  	}
1976  
1977  	/*
1978  	 * Instantiate data buffer and possibly execute COW operation
1979  	 */
1980  	switch(chain->bref.type) {
1981  	case HAMMER2_BREF_TYPE_VOLUME:
1982  	case HAMMER2_BREF_TYPE_FREEMAP:
1983  		/*
1984  		 * The data is embedded, no copy-on-write operation is
1985  		 * needed.
1986  		 */
1987  		KKASSERT(chain->dio == NULL);
1988  		break;
1989  	case HAMMER2_BREF_TYPE_DIRENT:
1990  		/*
1991  		 * The data might be fully embedded.
1992  		 */
1993  		if (chain->bytes == 0) {
1994  			KKASSERT(chain->dio == NULL);
1995  			break;
1996  		}
1997  		/* fall through */
1998  	case HAMMER2_BREF_TYPE_INODE:
1999  	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2000  	case HAMMER2_BREF_TYPE_DATA:
2001  	case HAMMER2_BREF_TYPE_INDIRECT:
2002  	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2003  		/*
2004  		 * Perform the copy-on-write operation
2005  		 *
2006  		 * zero-fill or copy-on-write depending on whether
2007  		 * chain->data exists or not and set the dirty state for
2008  		 * the new buffer.  hammer2_io_new() will handle the
2009  		 * zero-fill.
2010  		 *
2011  		 * If a dedup_off was supplied this is an existing block
2012  		 * and no COW, copy, or further modification is required.
2013  		 */
2014  		KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2015  
2016  		if (wasinitial && dedup_off == 0) {
2017  			error = hammer2_io_new(hmp, chain->bref.type,
2018  					       chain->bref.data_off,
2019  					       chain->bytes, &dio);
2020  		} else {
2021  			error = hammer2_io_bread(hmp, chain->bref.type,
2022  						 chain->bref.data_off,
2023  						 chain->bytes, &dio);
2024  		}
2025  		hammer2_adjreadcounter(chain->bref.type, chain->bytes);
2026  
2027  		/*
2028  		 * If an I/O error occurs make sure callers cannot accidently
2029  		 * modify the old buffer's contents and corrupt the filesystem.
2030  		 *
2031  		 * NOTE: hammer2_io_data() call issues bkvasync()
2032  		 */
2033  		if (error) {
2034  			kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2035  				hmp);
2036  			chain->error = HAMMER2_ERROR_EIO;
2037  			hammer2_io_brelse(&dio);
2038  			hammer2_io_brelse(&chain->dio);
2039  			chain->data = NULL;
2040  			break;
2041  		}
2042  		chain->error = 0;
2043  		bdata = hammer2_io_data(dio, chain->bref.data_off);
2044  
2045  		if (chain->data) {
2046  			/*
2047  			 * COW (unless a dedup).
2048  			 */
2049  			KKASSERT(chain->dio != NULL);
2050  			if (chain->data != (void *)bdata && dedup_off == 0) {
2051  				bcopy(chain->data, bdata, chain->bytes);
2052  			}
2053  		} else if (wasinitial == 0 && dedup_off == 0) {
2054  			/*
2055  			 * We have a problem.  We were asked to COW but
2056  			 * we don't have any data to COW with!
2057  			 */
2058  			panic("hammer2_chain_modify: having a COW %p\n",
2059  			      chain);
2060  		}
2061  
2062  		/*
2063  		 * Retire the old buffer, replace with the new.  Dirty or
2064  		 * redirty the new buffer.
2065  		 *
2066  		 * WARNING! The system buffer cache may have already flushed
2067  		 *	    the buffer, so we must be sure to [re]dirty it
2068  		 *	    for further modification.
2069  		 *
2070  		 *	    If dedup_off was supplied, the caller is not
2071  		 *	    expected to make any further modification to the
2072  		 *	    buffer.
2073  		 *
2074  		 * WARNING! hammer2_get_gdata() assumes dio never transitions
2075  		 *	    through NULL in order to optimize away unnecessary
2076  		 *	    diolk operations.
2077  		 */
2078  		{
2079  			hammer2_io_t *tio;
2080  
2081  			if ((tio = chain->dio) != NULL)
2082  				hammer2_io_bqrelse(&tio);
2083  			chain->data = (void *)bdata;
2084  			chain->dio = dio;
2085  			if (dedup_off == 0)
2086  				hammer2_io_setdirty(dio);
2087  		}
2088  		break;
2089  	default:
2090  		panic("hammer2_chain_modify: illegal non-embedded type %d",
2091  		      chain->bref.type);
2092  		break;
2093  
2094  	}
2095  skip2:
2096  	/*
2097  	 * setflush on parent indicating that the parent must recurse down
2098  	 * to us.  Do not call on chain itself which might already have it
2099  	 * set.
2100  	 */
2101  	if (chain->parent)
2102  		hammer2_chain_setflush(chain->parent);
2103  	lockmgr(&chain->diolk, LK_RELEASE);
2104  
2105  	return (chain->error);
2106  }
2107  
2108  /*
2109   * Modify the chain associated with an inode.
2110   */
2111  int
2112  hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2113  			hammer2_tid_t mtid, int flags)
2114  {
2115  	int error;
2116  
2117  	hammer2_inode_modify(ip);
2118  	error = hammer2_chain_modify(chain, mtid, 0, flags);
2119  
2120  	return error;
2121  }
2122  
2123  /*
2124   * This function returns the chain at the nearest key within the specified
2125   * range.  The returned chain will be referenced but not locked.
2126   *
2127   * This function will recurse through chain->rbtree as necessary and will
2128   * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2129   * the iteration value is less than the current value of *key_nextp.
2130   *
2131   * The caller should use (*key_nextp) to calculate the actual range of
2132   * the returned element, which will be (key_beg to *key_nextp - 1), because
2133   * there might be another element which is superior to the returned element
2134   * and overlaps it.
2135   *
2136   * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2137   * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2138   * it will wind up being (key_end + 1).
2139   *
2140   * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2141   *	     held through the operation.
2142   */
2143  struct hammer2_chain_find_info {
2144  	hammer2_chain_t		*best;
2145  	hammer2_key_t		key_beg;
2146  	hammer2_key_t		key_end;
2147  	hammer2_key_t		key_next;
2148  };
2149  
2150  static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2151  static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2152  
2153  static
2154  hammer2_chain_t *
2155  hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2156  			  hammer2_key_t key_beg, hammer2_key_t key_end)
2157  {
2158  	struct hammer2_chain_find_info info;
2159  
2160  	info.best = NULL;
2161  	info.key_beg = key_beg;
2162  	info.key_end = key_end;
2163  	info.key_next = *key_nextp;
2164  
2165  	RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2166  		hammer2_chain_find_cmp, hammer2_chain_find_callback,
2167  		&info);
2168  	*key_nextp = info.key_next;
2169  #if 0
2170  	kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2171  		parent, key_beg, key_end, *key_nextp);
2172  #endif
2173  
2174  	return (info.best);
2175  }
2176  
2177  static
2178  int
2179  hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2180  {
2181  	struct hammer2_chain_find_info *info = data;
2182  	hammer2_key_t child_beg;
2183  	hammer2_key_t child_end;
2184  
2185  	child_beg = child->bref.key;
2186  	child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2187  
2188  	if (child_end < info->key_beg)
2189  		return(-1);
2190  	if (child_beg > info->key_end)
2191  		return(1);
2192  	return(0);
2193  }
2194  
2195  static
2196  int
2197  hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2198  {
2199  	struct hammer2_chain_find_info *info = data;
2200  	hammer2_chain_t *best;
2201  	hammer2_key_t child_end;
2202  
2203  	/*
2204  	 * WARNING! Layerq is scanned forwards, exact matches should keep
2205  	 *	    the existing info->best.
2206  	 */
2207  	if ((best = info->best) == NULL) {
2208  		/*
2209  		 * No previous best.  Assign best
2210  		 */
2211  		info->best = child;
2212  	} else if (best->bref.key <= info->key_beg &&
2213  		   child->bref.key <= info->key_beg) {
2214  		/*
2215  		 * Illegal overlap.
2216  		 */
2217  		KKASSERT(0);
2218  		/*info->best = child;*/
2219  	} else if (child->bref.key < best->bref.key) {
2220  		/*
2221  		 * Child has a nearer key and best is not flush with key_beg.
2222  		 * Set best to child.  Truncate key_next to the old best key.
2223  		 */
2224  		info->best = child;
2225  		if (info->key_next > best->bref.key || info->key_next == 0)
2226  			info->key_next = best->bref.key;
2227  	} else if (child->bref.key == best->bref.key) {
2228  		/*
2229  		 * If our current best is flush with the child then this
2230  		 * is an illegal overlap.
2231  		 *
2232  		 * key_next will automatically be limited to the smaller of
2233  		 * the two end-points.
2234  		 */
2235  		KKASSERT(0);
2236  		info->best = child;
2237  	} else {
2238  		/*
2239  		 * Keep the current best but truncate key_next to the child's
2240  		 * base.
2241  		 *
2242  		 * key_next will also automatically be limited to the smaller
2243  		 * of the two end-points (probably not necessary for this case
2244  		 * but we do it anyway).
2245  		 */
2246  		if (info->key_next > child->bref.key || info->key_next == 0)
2247  			info->key_next = child->bref.key;
2248  	}
2249  
2250  	/*
2251  	 * Always truncate key_next based on child's end-of-range.
2252  	 */
2253  	child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2254  	if (child_end && (info->key_next > child_end || info->key_next == 0))
2255  		info->key_next = child_end;
2256  
2257  	return(0);
2258  }
2259  
2260  /*
2261   * Retrieve the specified chain from a media blockref, creating the
2262   * in-memory chain structure which reflects it.  The returned chain is
2263   * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2264   * handle crc-checks and so forth, and should check chain->error before
2265   * assuming that the data is good.
2266   *
2267   * To handle insertion races pass the INSERT_RACE flag along with the
2268   * generation number of the core.  NULL will be returned if the generation
2269   * number changes before we have a chance to insert the chain.  Insert
2270   * races can occur because the parent might be held shared.
2271   *
2272   * Caller must hold the parent locked shared or exclusive since we may
2273   * need the parent's bref array to find our block.
2274   *
2275   * WARNING! chain->pmp is always set to NULL for any chain representing
2276   *	    part of the super-root topology.
2277   */
2278  hammer2_chain_t *
2279  hammer2_chain_get(hammer2_chain_t *parent, int generation,
2280  		  hammer2_blockref_t *bref, int how)
2281  {
2282  	hammer2_dev_t *hmp = parent->hmp;
2283  	hammer2_chain_t *chain;
2284  	int error;
2285  
2286  	/*
2287  	 * Allocate a chain structure representing the existing media
2288  	 * entry.  Resulting chain has one ref and is not locked.
2289  	 */
2290  	if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2291  		chain = hammer2_chain_alloc(hmp, NULL, bref);
2292  	else
2293  		chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2294  	/* ref'd chain returned */
2295  
2296  	/*
2297  	 * Flag that the chain is in the parent's blockmap so delete/flush
2298  	 * knows what to do with it.
2299  	 */
2300  	atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2301  
2302  	/*
2303  	 * chain must be locked to avoid unexpected ripouts
2304  	 */
2305  	hammer2_chain_lock(chain, how);
2306  
2307  	/*
2308  	 * Link the chain into its parent.  A spinlock is required to safely
2309  	 * access the RBTREE, and it is possible to collide with another
2310  	 * hammer2_chain_get() operation because the caller might only hold
2311  	 * a shared lock on the parent.
2312  	 *
2313  	 * NOTE: Get races can occur quite often when we distribute
2314  	 *	 asynchronous read-aheads across multiple threads.
2315  	 */
2316  	KKASSERT(parent->refs > 0);
2317  	error = hammer2_chain_insert(parent, chain,
2318  				     HAMMER2_CHAIN_INSERT_SPIN |
2319  				     HAMMER2_CHAIN_INSERT_RACE,
2320  				     generation);
2321  	if (error) {
2322  		KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2323  		/*kprintf("chain %p get race\n", chain);*/
2324  		hammer2_chain_unlock(chain);
2325  		hammer2_chain_drop(chain);
2326  		chain = NULL;
2327  	} else {
2328  		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2329  	}
2330  
2331  	/*
2332  	 * Return our new chain referenced but not locked, or NULL if
2333  	 * a race occurred.
2334  	 */
2335  	return (chain);
2336  }
2337  
2338  /*
2339   * Lookup initialization/completion API
2340   */
2341  hammer2_chain_t *
2342  hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2343  {
2344  	hammer2_chain_ref(parent);
2345  	if (flags & HAMMER2_LOOKUP_SHARED) {
2346  		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2347  					   HAMMER2_RESOLVE_SHARED);
2348  	} else {
2349  		hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2350  	}
2351  	return (parent);
2352  }
2353  
2354  void
2355  hammer2_chain_lookup_done(hammer2_chain_t *parent)
2356  {
2357  	if (parent) {
2358  		hammer2_chain_unlock(parent);
2359  		hammer2_chain_drop(parent);
2360  	}
2361  }
2362  
2363  /*
2364   * Take the locked chain and return a locked parent.  The chain remains
2365   * locked on return, but may have to be temporarily unlocked to acquire
2366   * the parent.  Because of this, (chain) must be stable and cannot be
2367   * deleted while it was temporarily unlocked (typically means that (chain)
2368   * is an inode).
2369   *
2370   * Pass HAMMER2_RESOLVE_* flags in flags.
2371   *
2372   * This will work even if the chain is errored, and the caller can check
2373   * parent->error on return if desired since the parent will be locked.
2374   *
2375   * This function handles the lock order reversal.
2376   */
2377  hammer2_chain_t *
2378  hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2379  {
2380  	hammer2_chain_t *parent;
2381  
2382  	/*
2383  	 * Be careful of order, chain must be unlocked before parent
2384  	 * is locked below to avoid a deadlock.  Try it trivially first.
2385  	 */
2386  	parent = chain->parent;
2387  	if (parent == NULL)
2388  		panic("hammer2_chain_getparent: no parent");
2389  	hammer2_chain_ref(parent);
2390  	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2391  		return parent;
2392  
2393  	for (;;) {
2394  		hammer2_chain_unlock(chain);
2395  		hammer2_chain_lock(parent, flags);
2396  		hammer2_chain_lock(chain, flags);
2397  
2398  		/*
2399  		 * Parent relinking races are quite common.  We have to get
2400  		 * it right or we will blow up the block table.
2401  		 */
2402  		if (chain->parent == parent)
2403  			break;
2404  		hammer2_chain_unlock(parent);
2405  		hammer2_chain_drop(parent);
2406  		cpu_ccfence();
2407  		parent = chain->parent;
2408  		if (parent == NULL)
2409  			panic("hammer2_chain_getparent: no parent");
2410  		hammer2_chain_ref(parent);
2411  	}
2412  	return parent;
2413  }
2414  
2415  /*
2416   * Take the locked chain and return a locked parent.  The chain is unlocked
2417   * and dropped.  *chainp is set to the returned parent as a convenience.
2418   * Pass HAMMER2_RESOLVE_* flags in flags.
2419   *
2420   * This will work even if the chain is errored, and the caller can check
2421   * parent->error on return if desired since the parent will be locked.
2422   *
2423   * The chain does NOT need to be stable.  We use a tracking structure
2424   * to track the expected parent if the chain is deleted out from under us.
2425   *
2426   * This function handles the lock order reversal.
2427   */
2428  hammer2_chain_t *
2429  hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2430  {
2431  	hammer2_chain_t *chain;
2432  	hammer2_chain_t *parent;
2433  	struct hammer2_reptrack reptrack;
2434  	struct hammer2_reptrack **repp;
2435  
2436  	/*
2437  	 * Be careful of order, chain must be unlocked before parent
2438  	 * is locked below to avoid a deadlock.  Try it trivially first.
2439  	 */
2440  	chain = *chainp;
2441  	parent = chain->parent;
2442  	if (parent == NULL) {
2443  		hammer2_spin_unex(&chain->core.spin);
2444  		panic("hammer2_chain_repparent: no parent");
2445  	}
2446  	hammer2_chain_ref(parent);
2447  	if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2448  		hammer2_chain_unlock(chain);
2449  		hammer2_chain_drop(chain);
2450  		*chainp = parent;
2451  
2452  		return parent;
2453  	}
2454  
2455  	/*
2456  	 * Ok, now it gets a bit nasty.  There are multiple situations where
2457  	 * the parent might be in the middle of a deletion, or where the child
2458  	 * (chain) might be deleted the instant we let go of its lock.
2459  	 * We can potentially end up in a no-win situation!
2460  	 *
2461  	 * In particular, the indirect_maintenance() case can cause these
2462  	 * situations.
2463  	 *
2464  	 * To deal with this we install a reptrack structure in the parent
2465  	 * This reptrack structure 'owns' the parent ref and will automatically
2466  	 * migrate to the parent's parent if the parent is deleted permanently.
2467  	 */
2468  	hammer2_spin_init(&reptrack.spin, "h2reptrk");
2469  	reptrack.chain = parent;
2470  	hammer2_chain_ref(parent);		/* for the reptrack */
2471  
2472  	hammer2_spin_ex(&parent->core.spin);
2473  	reptrack.next = parent->core.reptrack;
2474  	parent->core.reptrack = &reptrack;
2475  	hammer2_spin_unex(&parent->core.spin);
2476  
2477  	hammer2_chain_unlock(chain);
2478  	hammer2_chain_drop(chain);
2479  	chain = NULL;	/* gone */
2480  
2481  	/*
2482  	 * At the top of this loop, chain is gone and parent is refd both
2483  	 * by us explicitly AND via our reptrack.  We are attempting to
2484  	 * lock parent.
2485  	 */
2486  	for (;;) {
2487  		hammer2_chain_lock(parent, flags);
2488  
2489  		if (reptrack.chain == parent)
2490  			break;
2491  		hammer2_chain_unlock(parent);
2492  		hammer2_chain_drop(parent);
2493  
2494  		kprintf("hammer2: debug REPTRACK %p->%p\n",
2495  			parent, reptrack.chain);
2496  		hammer2_spin_ex(&reptrack.spin);
2497  		parent = reptrack.chain;
2498  		hammer2_chain_ref(parent);
2499  		hammer2_spin_unex(&reptrack.spin);
2500  	}
2501  
2502  	/*
2503  	 * Once parent is locked and matches our reptrack, our reptrack
2504  	 * will be stable and we have our parent.  We can unlink our
2505  	 * reptrack.
2506  	 *
2507  	 * WARNING!  Remember that the chain lock might be shared.  Chains
2508  	 *	     locked shared have stable parent linkages.
2509  	 */
2510  	hammer2_spin_ex(&parent->core.spin);
2511  	repp = &parent->core.reptrack;
2512  	while (*repp != &reptrack)
2513  		repp = &(*repp)->next;
2514  	*repp = reptrack.next;
2515  	hammer2_spin_unex(&parent->core.spin);
2516  
2517  	hammer2_chain_drop(parent);	/* reptrack ref */
2518  	*chainp = parent;		/* return parent lock+ref */
2519  
2520  	return parent;
2521  }
2522  
2523  /*
2524   * Dispose of any linked reptrack structures in (chain) by shifting them to
2525   * (parent).  Both (chain) and (parent) must be exclusively locked.
2526   *
2527   * This is interlocked against any children of (chain) on the other side.
2528   * No children so remain as-of when this is called so we can test
2529   * core.reptrack without holding the spin-lock.
2530   *
2531   * Used whenever the caller intends to permanently delete chains related
2532   * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2533   * where the chains underneath the node being deleted are given a new parent
2534   * above the node being deleted.
2535   */
2536  static
2537  void
2538  hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2539  {
2540  	struct hammer2_reptrack *reptrack;
2541  
2542  	KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2543  	while (chain->core.reptrack) {
2544  		hammer2_spin_ex(&parent->core.spin);
2545  		hammer2_spin_ex(&chain->core.spin);
2546  		reptrack = chain->core.reptrack;
2547  		if (reptrack == NULL) {
2548  			hammer2_spin_unex(&chain->core.spin);
2549  			hammer2_spin_unex(&parent->core.spin);
2550  			break;
2551  		}
2552  		hammer2_spin_ex(&reptrack->spin);
2553  		chain->core.reptrack = reptrack->next;
2554  		reptrack->chain = parent;
2555  		reptrack->next = parent->core.reptrack;
2556  		parent->core.reptrack = reptrack;
2557  		hammer2_chain_ref(parent);		/* reptrack */
2558  
2559  		hammer2_spin_unex(&chain->core.spin);
2560  		hammer2_spin_unex(&parent->core.spin);
2561  		kprintf("hammer2: debug repchange %p %p->%p\n",
2562  			reptrack, chain, parent);
2563  		hammer2_chain_drop(chain);		/* reptrack */
2564  	}
2565  }
2566  
2567  /*
2568   * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2569   * (*parentp) typically points to an inode but can also point to a related
2570   * indirect block and this function will recurse upwards and find the inode
2571   * or the nearest undeleted indirect block covering the key range.
2572   *
2573   * This function unconditionally sets *errorp, replacing any previous value.
2574   *
2575   * (*parentp) must be exclusive or shared locked (depending on flags) and
2576   * referenced and can be an inode or an existing indirect block within the
2577   * inode.
2578   *
2579   * If (*parent) is errored out, this function will not attempt to recurse
2580   * the radix tree and will return NULL along with an appropriate *errorp.
2581   * If NULL is returned and *errorp is 0, the requested lookup could not be
2582   * located.
2583   *
2584   * On return (*parentp) will be modified to point at the deepest parent chain
2585   * element encountered during the search, as a helper for an insertion or
2586   * deletion.
2587   *
2588   * The new (*parentp) will be locked shared or exclusive (depending on flags),
2589   * and referenced, and the old will be unlocked and dereferenced (no change
2590   * if they are both the same).  This is particularly important if the caller
2591   * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2592   * is returned, as long as no error occurred.
2593   *
2594   * The matching chain will be returned locked according to flags.
2595   *
2596   * --
2597   *
2598   * NULL is returned if no match was found, but (*parentp) will still
2599   * potentially be adjusted.
2600   *
2601   * On return (*key_nextp) will point to an iterative value for key_beg.
2602   * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2603   *
2604   * This function will also recurse up the chain if the key is not within the
2605   * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2606   * can simply allow (*parentp) to float inside the loop.
2607   *
2608   * NOTE!  chain->data is not always resolved.  By default it will not be
2609   *	  resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2610   *	  HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2611   *	  BREF_TYPE_DATA as the device buffer can alias the logical file
2612   *	  buffer).
2613   */
2614  
2615  hammer2_chain_t *
2616  hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2617  		     hammer2_key_t key_beg, hammer2_key_t key_end,
2618  		     int *errorp, int flags)
2619  {
2620  	hammer2_dev_t *hmp;
2621  	hammer2_chain_t *parent;
2622  	hammer2_chain_t *chain;
2623  	hammer2_blockref_t *base;
2624  	hammer2_blockref_t *bref;
2625  	hammer2_blockref_t bsave;
2626  	hammer2_key_t scan_beg;
2627  	hammer2_key_t scan_end;
2628  	int count = 0;
2629  	int how_always = HAMMER2_RESOLVE_ALWAYS;
2630  	int how_maybe = HAMMER2_RESOLVE_MAYBE;
2631  	int how;
2632  	int generation;
2633  	int maxloops = 300000;
2634  	volatile hammer2_mtx_t save_mtx;
2635  
2636  	if (flags & HAMMER2_LOOKUP_ALWAYS) {
2637  		how_maybe = how_always;
2638  		how = HAMMER2_RESOLVE_ALWAYS;
2639  	} else if (flags & HAMMER2_LOOKUP_NODATA) {
2640  		how = HAMMER2_RESOLVE_NEVER;
2641  	} else {
2642  		how = HAMMER2_RESOLVE_MAYBE;
2643  	}
2644  	if (flags & HAMMER2_LOOKUP_SHARED) {
2645  		how_maybe |= HAMMER2_RESOLVE_SHARED;
2646  		how_always |= HAMMER2_RESOLVE_SHARED;
2647  		how |= HAMMER2_RESOLVE_SHARED;
2648  	}
2649  
2650  	/*
2651  	 * Recurse (*parentp) upward if necessary until the parent completely
2652  	 * encloses the key range or we hit the inode.
2653  	 *
2654  	 * Handle races against the flusher deleting indirect nodes on its
2655  	 * way back up by continuing to recurse upward past the deletion.
2656  	 */
2657  	parent = *parentp;
2658  	hmp = parent->hmp;
2659  	*errorp = 0;
2660  
2661  	while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2662  	       parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2663  		scan_beg = parent->bref.key;
2664  		scan_end = scan_beg +
2665  			   ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2666  		if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2667  			if (key_beg >= scan_beg && key_end <= scan_end)
2668  				break;
2669  		}
2670  		parent = hammer2_chain_repparent(parentp, how_maybe);
2671  	}
2672  again:
2673  	if (--maxloops == 0)
2674  		panic("hammer2_chain_lookup: maxloops");
2675  
2676  	/*
2677  	 * MATCHIND case that does not require parent->data (do prior to
2678  	 * parent->error check).
2679  	 */
2680  	switch(parent->bref.type) {
2681  	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2682  	case HAMMER2_BREF_TYPE_INDIRECT:
2683  		if (flags & HAMMER2_LOOKUP_MATCHIND) {
2684  			scan_beg = parent->bref.key;
2685  			scan_end = scan_beg +
2686  			       ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2687  			if (key_beg == scan_beg && key_end == scan_end) {
2688  				chain = parent;
2689  				hammer2_chain_ref(chain);
2690  				hammer2_chain_lock(chain, how_maybe);
2691  				*key_nextp = scan_end + 1;
2692  				goto done;
2693  			}
2694  		}
2695  		break;
2696  	default:
2697  		break;
2698  	}
2699  
2700  	/*
2701  	 * No lookup is possible if the parent is errored.  We delayed
2702  	 * this check as long as we could to ensure that the parent backup,
2703  	 * embedded data, and MATCHIND code could still execute.
2704  	 */
2705  	if (parent->error) {
2706  		*errorp = parent->error;
2707  		return NULL;
2708  	}
2709  
2710  	/*
2711  	 * Locate the blockref array.  Currently we do a fully associative
2712  	 * search through the array.
2713  	 */
2714  	switch(parent->bref.type) {
2715  	case HAMMER2_BREF_TYPE_INODE:
2716  		/*
2717  		 * Special shortcut for embedded data returns the inode
2718  		 * itself.  Callers must detect this condition and access
2719  		 * the embedded data (the strategy code does this for us).
2720  		 *
2721  		 * This is only applicable to regular files and softlinks.
2722  		 *
2723  		 * We need a second lock on parent.  Since we already have
2724  		 * a lock we must pass LOCKAGAIN to prevent unexpected
2725  		 * blocking (we don't want to block on a second shared
2726  		 * ref if an exclusive lock is pending)
2727  		 */
2728  		if (parent->data->ipdata.meta.op_flags &
2729  		    HAMMER2_OPFLAG_DIRECTDATA) {
2730  			if (flags & HAMMER2_LOOKUP_NODIRECT) {
2731  				chain = NULL;
2732  				*key_nextp = key_end + 1;
2733  				goto done;
2734  			}
2735  			hammer2_chain_ref(parent);
2736  			hammer2_chain_lock(parent, how_always |
2737  						   HAMMER2_RESOLVE_LOCKAGAIN);
2738  			*key_nextp = key_end + 1;
2739  			return (parent);
2740  		}
2741  		base = &parent->data->ipdata.u.blockset.blockref[0];
2742  		count = HAMMER2_SET_COUNT;
2743  		break;
2744  	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2745  	case HAMMER2_BREF_TYPE_INDIRECT:
2746  		/*
2747  		 * Optimize indirect blocks in the INITIAL state to avoid
2748  		 * I/O.
2749  		 *
2750  		 * Debugging: Enter permanent wait state instead of
2751  		 * panicing on unexpectedly NULL data for the moment.
2752  		 */
2753  		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2754  			base = NULL;
2755  		} else {
2756  			if (parent->data == NULL) {
2757  				kprintf("hammer2: unexpected NULL data "
2758  					"on %p\n", parent);
2759  				while (1)
2760  					tsleep(parent, 0, "xxx", 0);
2761  			}
2762  			base = &parent->data->npdata[0];
2763  		}
2764  		count = parent->bytes / sizeof(hammer2_blockref_t);
2765  		break;
2766  	case HAMMER2_BREF_TYPE_VOLUME:
2767  		base = &parent->data->voldata.sroot_blockset.blockref[0];
2768  		count = HAMMER2_SET_COUNT;
2769  		break;
2770  	case HAMMER2_BREF_TYPE_FREEMAP:
2771  		base = &parent->data->blkset.blockref[0];
2772  		count = HAMMER2_SET_COUNT;
2773  		break;
2774  	default:
2775  		panic("hammer2_chain_lookup: unrecognized "
2776  		      "blockref(B) type: %d",
2777  		      parent->bref.type);
2778  		base = NULL;	/* safety */
2779  		count = 0;	/* safety */
2780  		break;
2781  	}
2782  
2783  	/*
2784  	 * Merged scan to find next candidate.
2785  	 *
2786  	 * hammer2_base_*() functions require the parent->core.live_* fields
2787  	 * to be synchronized.
2788  	 *
2789  	 * We need to hold the spinlock to access the block array and RB tree
2790  	 * and to interlock chain creation.
2791  	 */
2792  	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2793  		hammer2_chain_countbrefs(parent, base, count);
2794  
2795  	/*
2796  	 * Combined search
2797  	 */
2798  	hammer2_spin_ex(&parent->core.spin);
2799  	chain = hammer2_combined_find(parent, base, count,
2800  				      key_nextp,
2801  				      key_beg, key_end,
2802  				      &bref);
2803  	generation = parent->core.generation;
2804  
2805  	/*
2806  	 * Exhausted parent chain, iterate.
2807  	 */
2808  	if (bref == NULL) {
2809  		KKASSERT(chain == NULL);
2810  		hammer2_spin_unex(&parent->core.spin);
2811  		if (key_beg == key_end)	/* short cut single-key case */
2812  			return (NULL);
2813  
2814  		/*
2815  		 * Stop if we reached the end of the iteration.
2816  		 */
2817  		if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2818  		    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2819  			return (NULL);
2820  		}
2821  
2822  		/*
2823  		 * Calculate next key, stop if we reached the end of the
2824  		 * iteration, otherwise go up one level and loop.
2825  		 */
2826  		key_beg = parent->bref.key +
2827  			  ((hammer2_key_t)1 << parent->bref.keybits);
2828  		if (key_beg == 0 || key_beg > key_end)
2829  			return (NULL);
2830  		parent = hammer2_chain_repparent(parentp, how_maybe);
2831  		goto again;
2832  	}
2833  
2834  	/*
2835  	 * Selected from blockref or in-memory chain.
2836  	 */
2837  	bsave = *bref;
2838  	if (chain == NULL) {
2839  		hammer2_spin_unex(&parent->core.spin);
2840  		if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2841  		    bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2842  			chain = hammer2_chain_get(parent, generation,
2843  						  &bsave, how_maybe);
2844  		} else {
2845  			chain = hammer2_chain_get(parent, generation,
2846  						  &bsave, how);
2847  		}
2848  		if (chain == NULL)
2849  			goto again;
2850  	} else {
2851  		hammer2_chain_ref(chain);
2852  		hammer2_spin_unex(&parent->core.spin);
2853  
2854  		/*
2855  		 * chain is referenced but not locked.  We must lock the
2856  		 * chain to obtain definitive state.
2857  		 */
2858  		if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2859  		    bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2860  			hammer2_chain_lock(chain, how_maybe);
2861  		} else {
2862  			hammer2_chain_lock(chain, how);
2863  		}
2864  		KKASSERT(chain->parent == parent);
2865  	}
2866  	if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
2867  	    chain->parent != parent) {
2868  		hammer2_chain_unlock(chain);
2869  		hammer2_chain_drop(chain);
2870  		chain = NULL;	/* SAFETY */
2871  		goto again;
2872  	}
2873  
2874  
2875  	/*
2876  	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2877  	 *
2878  	 * NOTE: Chain's key range is not relevant as there might be
2879  	 *	 one-offs within the range that are not deleted.
2880  	 *
2881  	 * NOTE: Lookups can race delete-duplicate because
2882  	 *	 delete-duplicate does not lock the parent's core
2883  	 *	 (they just use the spinlock on the core).
2884  	 */
2885  	if (chain->flags & HAMMER2_CHAIN_DELETED) {
2886  		kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2887  			chain->bref.data_off, chain->bref.type,
2888  			chain->bref.key);
2889  		hammer2_chain_unlock(chain);
2890  		hammer2_chain_drop(chain);
2891  		chain = NULL;	/* SAFETY */
2892  		key_beg = *key_nextp;
2893  		if (key_beg == 0 || key_beg > key_end)
2894  			return(NULL);
2895  		goto again;
2896  	}
2897  
2898  	/*
2899  	 * If the chain element is an indirect block it becomes the new
2900  	 * parent and we loop on it.  We must maintain our top-down locks
2901  	 * to prevent the flusher from interfering (i.e. doing a
2902  	 * delete-duplicate and leaving us recursing down a deleted chain).
2903  	 *
2904  	 * The parent always has to be locked with at least RESOLVE_MAYBE
2905  	 * so we can access its data.  It might need a fixup if the caller
2906  	 * passed incompatible flags.  Be careful not to cause a deadlock
2907  	 * as a data-load requires an exclusive lock.
2908  	 *
2909  	 * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2910  	 * range is within the requested key range we return the indirect
2911  	 * block and do NOT loop.  This is usually only used to acquire
2912  	 * freemap nodes.
2913  	 */
2914  	if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2915  	    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2916  		save_mtx = parent->lock;
2917  		hammer2_chain_unlock(parent);
2918  		hammer2_chain_drop(parent);
2919  		*parentp = parent = chain;
2920  		chain = NULL;	/* SAFETY */
2921  		goto again;
2922  	}
2923  done:
2924  	/*
2925  	 * All done, return the locked chain.
2926  	 *
2927  	 * If the caller does not want a locked chain, replace the lock with
2928  	 * a ref.  Perhaps this can eventually be optimized to not obtain the
2929  	 * lock in the first place for situations where the data does not
2930  	 * need to be resolved.
2931  	 *
2932  	 * NOTE! A chain->error must be tested by the caller upon return.
2933  	 *	 *errorp is only set based on issues which occur while
2934  	 *	 trying to reach the chain.
2935  	 */
2936  	return (chain);
2937  }
2938  
2939  /*
2940   * After having issued a lookup we can iterate all matching keys.
2941   *
2942   * If chain is non-NULL we continue the iteration from just after it's index.
2943   *
2944   * If chain is NULL we assume the parent was exhausted and continue the
2945   * iteration at the next parent.
2946   *
2947   * If a fatal error occurs (typically an I/O error), a dummy chain is
2948   * returned with chain->error and error-identifying information set.  This
2949   * chain will assert if you try to do anything fancy with it.
2950   *
2951   * XXX Depending on where the error occurs we should allow continued iteration.
2952   *
2953   * parent must be locked on entry and remains locked throughout.  chain's
2954   * lock status must match flags.  Chain is always at least referenced.
2955   *
2956   * WARNING!  The MATCHIND flag does not apply to this function.
2957   */
2958  hammer2_chain_t *
2959  hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2960  		   hammer2_key_t *key_nextp,
2961  		   hammer2_key_t key_beg, hammer2_key_t key_end,
2962  		   int *errorp, int flags)
2963  {
2964  	hammer2_chain_t *parent;
2965  	int how_maybe;
2966  
2967  	/*
2968  	 * Calculate locking flags for upward recursion.
2969  	 */
2970  	how_maybe = HAMMER2_RESOLVE_MAYBE;
2971  	if (flags & HAMMER2_LOOKUP_SHARED)
2972  		how_maybe |= HAMMER2_RESOLVE_SHARED;
2973  
2974  	parent = *parentp;
2975  	*errorp = 0;
2976  
2977  	/*
2978  	 * Calculate the next index and recalculate the parent if necessary.
2979  	 */
2980  	if (chain) {
2981  		key_beg = chain->bref.key +
2982  			  ((hammer2_key_t)1 << chain->bref.keybits);
2983  		hammer2_chain_unlock(chain);
2984  		hammer2_chain_drop(chain);
2985  
2986  		/*
2987  		 * chain invalid past this point, but we can still do a
2988  		 * pointer comparison w/parent.
2989  		 *
2990  		 * Any scan where the lookup returned degenerate data embedded
2991  		 * in the inode has an invalid index and must terminate.
2992  		 */
2993  		if (chain == parent)
2994  			return(NULL);
2995  		if (key_beg == 0 || key_beg > key_end)
2996  			return(NULL);
2997  		chain = NULL;
2998  	} else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2999  		   parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
3000  		/*
3001  		 * We reached the end of the iteration.
3002  		 */
3003  		return (NULL);
3004  	} else {
3005  		/*
3006  		 * Continue iteration with next parent unless the current
3007  		 * parent covers the range.
3008  		 *
3009  		 * (This also handles the case of a deleted, empty indirect
3010  		 * node).
3011  		 */
3012  		key_beg = parent->bref.key +
3013  			  ((hammer2_key_t)1 << parent->bref.keybits);
3014  		if (key_beg == 0 || key_beg > key_end)
3015  			return (NULL);
3016  		parent = hammer2_chain_repparent(parentp, how_maybe);
3017  	}
3018  
3019  	/*
3020  	 * And execute
3021  	 */
3022  	return (hammer2_chain_lookup(parentp, key_nextp,
3023  				     key_beg, key_end,
3024  				     errorp, flags));
3025  }
3026  
3027  /*
3028   * Caller wishes to iterate chains under parent, loading new chains into
3029   * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
3030   * then call hammer2_chain_scan() repeatedly until a non-zero return.
3031   * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3032   * with the returned chain for the scan.  The returned *chainp will be
3033   * locked and referenced.  Any prior contents will be unlocked and dropped.
3034   *
3035   * Caller should check the return value.  A normal scan EOF will return
3036   * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3037   * error trying to access parent data.  Any error in the returned chain
3038   * must be tested separately by the caller.
3039   *
3040   * (*chainp) is dropped on each scan, but will only be set if the returned
3041   * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3042   * returned via *chainp.  The caller will get their bref only.
3043   *
3044   * The raw scan function is similar to lookup/next but does not seek to a key.
3045   * Blockrefs are iterated via first_bref = (parent, NULL) and
3046   * next_chain = (parent, bref).
3047   *
3048   * The passed-in parent must be locked and its data resolved.  The function
3049   * nominally returns a locked and referenced *chainp != NULL for chains
3050   * the caller might need to recurse on (and will dipose of any *chainp passed
3051   * in).  The caller must check the chain->bref.type either way.
3052   */
3053  int
3054  hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3055  		   hammer2_blockref_t *bref, int *firstp,
3056  		   int flags)
3057  {
3058  	hammer2_dev_t *hmp;
3059  	hammer2_blockref_t *base;
3060  	hammer2_blockref_t *bref_ptr;
3061  	hammer2_key_t key;
3062  	hammer2_key_t next_key;
3063  	hammer2_chain_t *chain = NULL;
3064  	int count = 0;
3065  	int how_always = HAMMER2_RESOLVE_ALWAYS;
3066  	int how_maybe = HAMMER2_RESOLVE_MAYBE;
3067  	int how;
3068  	int generation;
3069  	int maxloops = 300000;
3070  	int error;
3071  
3072  	hmp = parent->hmp;
3073  	error = 0;
3074  
3075  	/*
3076  	 * Scan flags borrowed from lookup.
3077  	 */
3078  	if (flags & HAMMER2_LOOKUP_ALWAYS) {
3079  		how_maybe = how_always;
3080  		how = HAMMER2_RESOLVE_ALWAYS;
3081  	} else if (flags & HAMMER2_LOOKUP_NODATA) {
3082  		how = HAMMER2_RESOLVE_NEVER;
3083  	} else {
3084  		how = HAMMER2_RESOLVE_MAYBE;
3085  	}
3086  	if (flags & HAMMER2_LOOKUP_SHARED) {
3087  		how_maybe |= HAMMER2_RESOLVE_SHARED;
3088  		how_always |= HAMMER2_RESOLVE_SHARED;
3089  		how |= HAMMER2_RESOLVE_SHARED;
3090  	}
3091  
3092  	/*
3093  	 * Calculate key to locate first/next element, unlocking the previous
3094  	 * element as we go.  Be careful, the key calculation can overflow.
3095  	 *
3096  	 * (also reset bref to NULL)
3097  	 */
3098  	if (*firstp) {
3099  		key = 0;
3100  		*firstp = 0;
3101  	} else {
3102  		key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3103  		if ((chain = *chainp) != NULL) {
3104  			*chainp = NULL;
3105  			hammer2_chain_unlock(chain);
3106  			hammer2_chain_drop(chain);
3107  			chain = NULL;
3108  		}
3109  		if (key == 0) {
3110  			error |= HAMMER2_ERROR_EOF;
3111  			goto done;
3112  		}
3113  	}
3114  
3115  again:
3116  	if (parent->error) {
3117  		error = parent->error;
3118  		goto done;
3119  	}
3120  	if (--maxloops == 0)
3121  		panic("hammer2_chain_scan: maxloops");
3122  
3123  	/*
3124  	 * Locate the blockref array.  Currently we do a fully associative
3125  	 * search through the array.
3126  	 */
3127  	switch(parent->bref.type) {
3128  	case HAMMER2_BREF_TYPE_INODE:
3129  		/*
3130  		 * An inode with embedded data has no sub-chains.
3131  		 *
3132  		 * WARNING! Bulk scan code may pass a static chain marked
3133  		 *	    as BREF_TYPE_INODE with a copy of the volume
3134  		 *	    root blockset to snapshot the volume.
3135  		 */
3136  		if (parent->data->ipdata.meta.op_flags &
3137  		    HAMMER2_OPFLAG_DIRECTDATA) {
3138  			error |= HAMMER2_ERROR_EOF;
3139  			goto done;
3140  		}
3141  		base = &parent->data->ipdata.u.blockset.blockref[0];
3142  		count = HAMMER2_SET_COUNT;
3143  		break;
3144  	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3145  	case HAMMER2_BREF_TYPE_INDIRECT:
3146  		/*
3147  		 * Optimize indirect blocks in the INITIAL state to avoid
3148  		 * I/O.
3149  		 */
3150  		if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3151  			base = NULL;
3152  		} else {
3153  			if (parent->data == NULL)
3154  				panic("parent->data is NULL");
3155  			base = &parent->data->npdata[0];
3156  		}
3157  		count = parent->bytes / sizeof(hammer2_blockref_t);
3158  		break;
3159  	case HAMMER2_BREF_TYPE_VOLUME:
3160  		base = &parent->data->voldata.sroot_blockset.blockref[0];
3161  		count = HAMMER2_SET_COUNT;
3162  		break;
3163  	case HAMMER2_BREF_TYPE_FREEMAP:
3164  		base = &parent->data->blkset.blockref[0];
3165  		count = HAMMER2_SET_COUNT;
3166  		break;
3167  	default:
3168  		panic("hammer2_chain_scan: unrecognized blockref type: %d",
3169  		      parent->bref.type);
3170  		base = NULL;	/* safety */
3171  		count = 0;	/* safety */
3172  		break;
3173  	}
3174  
3175  	/*
3176  	 * Merged scan to find next candidate.
3177  	 *
3178  	 * hammer2_base_*() functions require the parent->core.live_* fields
3179  	 * to be synchronized.
3180  	 *
3181  	 * We need to hold the spinlock to access the block array and RB tree
3182  	 * and to interlock chain creation.
3183  	 */
3184  	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3185  		hammer2_chain_countbrefs(parent, base, count);
3186  
3187  	next_key = 0;
3188  	bref_ptr = NULL;
3189  	hammer2_spin_ex(&parent->core.spin);
3190  	chain = hammer2_combined_find(parent, base, count,
3191  				      &next_key,
3192  				      key, HAMMER2_KEY_MAX,
3193  				      &bref_ptr);
3194  	generation = parent->core.generation;
3195  
3196  	/*
3197  	 * Exhausted parent chain, we're done.
3198  	 */
3199  	if (bref_ptr == NULL) {
3200  		hammer2_spin_unex(&parent->core.spin);
3201  		KKASSERT(chain == NULL);
3202  		error |= HAMMER2_ERROR_EOF;
3203  		goto done;
3204  	}
3205  
3206  	/*
3207  	 * Copy into the supplied stack-based blockref.
3208  	 */
3209  	*bref = *bref_ptr;
3210  
3211  	/*
3212  	 * Selected from blockref or in-memory chain.
3213  	 */
3214  	if (chain == NULL) {
3215  		switch(bref->type) {
3216  		case HAMMER2_BREF_TYPE_INODE:
3217  		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3218  		case HAMMER2_BREF_TYPE_INDIRECT:
3219  		case HAMMER2_BREF_TYPE_VOLUME:
3220  		case HAMMER2_BREF_TYPE_FREEMAP:
3221  			/*
3222  			 * Recursion, always get the chain
3223  			 */
3224  			hammer2_spin_unex(&parent->core.spin);
3225  			chain = hammer2_chain_get(parent, generation,
3226  						  bref, how);
3227  			if (chain == NULL)
3228  				goto again;
3229  			break;
3230  		default:
3231  			/*
3232  			 * No recursion, do not waste time instantiating
3233  			 * a chain, just iterate using the bref.
3234  			 */
3235  			hammer2_spin_unex(&parent->core.spin);
3236  			break;
3237  		}
3238  	} else {
3239  		/*
3240  		 * Recursion or not we need the chain in order to supply
3241  		 * the bref.
3242  		 */
3243  		hammer2_chain_ref(chain);
3244  		hammer2_spin_unex(&parent->core.spin);
3245  		hammer2_chain_lock(chain, how);
3246  	}
3247  	if (chain &&
3248  	    (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3249  	     chain->parent != parent)) {
3250  		hammer2_chain_unlock(chain);
3251  		hammer2_chain_drop(chain);
3252  		chain = NULL;
3253  		goto again;
3254  	}
3255  
3256  	/*
3257  	 * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3258  	 *
3259  	 * NOTE: chain's key range is not relevant as there might be
3260  	 *	 one-offs within the range that are not deleted.
3261  	 *
3262  	 * NOTE: XXX this could create problems with scans used in
3263  	 *	 situations other than mount-time recovery.
3264  	 *
3265  	 * NOTE: Lookups can race delete-duplicate because
3266  	 *	 delete-duplicate does not lock the parent's core
3267  	 *	 (they just use the spinlock on the core).
3268  	 */
3269  	if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3270  		hammer2_chain_unlock(chain);
3271  		hammer2_chain_drop(chain);
3272  		chain = NULL;
3273  
3274  		key = next_key;
3275  		if (key == 0) {
3276  			error |= HAMMER2_ERROR_EOF;
3277  			goto done;
3278  		}
3279  		goto again;
3280  	}
3281  
3282  done:
3283  	/*
3284  	 * All done, return the bref or NULL, supply chain if necessary.
3285  	 */
3286  	if (chain)
3287  		*chainp = chain;
3288  	return (error);
3289  }
3290  
3291  /*
3292   * Create and return a new hammer2 system memory structure of the specified
3293   * key, type and size and insert it under (*parentp).  This is a full
3294   * insertion, based on the supplied key/keybits, and may involve creating
3295   * indirect blocks and moving other chains around via delete/duplicate.
3296   *
3297   * This call can be made with parent == NULL as long as a non -1 methods
3298   * is supplied.  hmp must also be supplied in this situation (otherwise
3299   * hmp is extracted from the supplied parent).  The chain will be detached
3300   * from the topology.  A later call with both parent and chain can be made
3301   * to attach it.
3302   *
3303   * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3304   * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3305   * FULL.  This typically means that the caller is creating the chain after
3306   * doing a hammer2_chain_lookup().
3307   *
3308   * (*parentp) must be exclusive locked and may be replaced on return
3309   * depending on how much work the function had to do.
3310   *
3311   * (*parentp) must not be errored or this function will assert.
3312   *
3313   * (*chainp) usually starts out NULL and returns the newly created chain,
3314   * but if the caller desires the caller may allocate a disconnected chain
3315   * and pass it in instead.
3316   *
3317   * This function should NOT be used to insert INDIRECT blocks.  It is
3318   * typically used to create/insert inodes and data blocks.
3319   *
3320   * Caller must pass-in an exclusively locked parent the new chain is to
3321   * be inserted under, and optionally pass-in a disconnected, exclusively
3322   * locked chain to insert (else we create a new chain).  The function will
3323   * adjust (*parentp) as necessary, create or connect the chain, and
3324   * return an exclusively locked chain in *chainp.
3325   *
3326   * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3327   * and will be reassigned.
3328   *
3329   * NOTE: returns HAMMER_ERROR_* flags
3330   */
3331  int
3332  hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3333  		     hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3334  		     hammer2_key_t key, int keybits, int type, size_t bytes,
3335  		     hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3336  {
3337  	hammer2_chain_t *chain;
3338  	hammer2_chain_t *parent;
3339  	hammer2_blockref_t *base;
3340  	hammer2_blockref_t dummy;
3341  	int allocated = 0;
3342  	int error = 0;
3343  	int count;
3344  	int maxloops = 300000;
3345  
3346  	/*
3347  	 * Topology may be crossing a PFS boundary.
3348  	 */
3349  	parent = *parentp;
3350  	if (parent) {
3351  		KKASSERT(hammer2_mtx_owned(&parent->lock));
3352  		KKASSERT(parent->error == 0);
3353  		hmp = parent->hmp;
3354  	}
3355  	chain = *chainp;
3356  
3357  	if (chain == NULL) {
3358  		/*
3359  		 * First allocate media space and construct the dummy bref,
3360  		 * then allocate the in-memory chain structure.  Set the
3361  		 * INITIAL flag for fresh chains which do not have embedded
3362  		 * data.
3363  		 */
3364  		bzero(&dummy, sizeof(dummy));
3365  		dummy.type = type;
3366  		dummy.key = key;
3367  		dummy.keybits = keybits;
3368  		dummy.data_off = hammer2_getradix(bytes);
3369  
3370  		/*
3371  		 * Inherit methods from parent by default.  Primarily used
3372  		 * for BREF_TYPE_DATA.  Non-data types *must* be set to
3373  		 * a non-NONE check algorithm.
3374  		 */
3375  		if (methods == -1)
3376  			dummy.methods = parent->bref.methods;
3377  		else
3378  			dummy.methods = (uint8_t)methods;
3379  
3380  		if (type != HAMMER2_BREF_TYPE_DATA &&
3381  		    HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3382  			dummy.methods |=
3383  				HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3384  		}
3385  
3386  		chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3387  
3388  		/*
3389  		 * Lock the chain manually, chain_lock will load the chain
3390  		 * which we do NOT want to do.  (note: chain->refs is set
3391  		 * to 1 by chain_alloc() for us, but lockcnt is not).
3392  		 */
3393  		chain->lockcnt = 1;
3394  		hammer2_mtx_ex(&chain->lock);
3395  		allocated = 1;
3396  
3397  		/*
3398  		 * Set INITIAL to optimize I/O.  The flag will generally be
3399  		 * processed when we call hammer2_chain_modify().
3400  		 */
3401  		switch(type) {
3402  		case HAMMER2_BREF_TYPE_VOLUME:
3403  		case HAMMER2_BREF_TYPE_FREEMAP:
3404  			panic("hammer2_chain_create: called with volume type");
3405  			break;
3406  		case HAMMER2_BREF_TYPE_INDIRECT:
3407  			panic("hammer2_chain_create: cannot be used to"
3408  			      "create indirect block");
3409  			break;
3410  		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3411  			panic("hammer2_chain_create: cannot be used to"
3412  			      "create freemap root or node");
3413  			break;
3414  		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3415  			KKASSERT(bytes == sizeof(chain->data->bmdata));
3416  			/* fall through */
3417  		case HAMMER2_BREF_TYPE_DIRENT:
3418  		case HAMMER2_BREF_TYPE_INODE:
3419  		case HAMMER2_BREF_TYPE_DATA:
3420  		default:
3421  			/*
3422  			 * leave chain->data NULL, set INITIAL
3423  			 */
3424  			KKASSERT(chain->data == NULL);
3425  			atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3426  			break;
3427  		}
3428  	} else {
3429  		/*
3430  		 * We are reattaching a previously deleted chain, possibly
3431  		 * under a new parent and possibly with a new key/keybits.
3432  		 * The chain does not have to be in a modified state.  The
3433  		 * UPDATE flag will be set later on in this routine.
3434  		 *
3435  		 * Do NOT mess with the current state of the INITIAL flag.
3436  		 */
3437  		chain->bref.key = key;
3438  		chain->bref.keybits = keybits;
3439  		if (chain->flags & HAMMER2_CHAIN_DELETED)
3440  			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3441  		KKASSERT(chain->parent == NULL);
3442  	}
3443  
3444  	/*
3445  	 * Set the appropriate bref flag if requested.
3446  	 *
3447  	 * NOTE! Callers can call this function to move chains without
3448  	 *	 knowing about special flags, so don't clear bref flags
3449  	 *	 here!
3450  	 */
3451  	if (flags & HAMMER2_INSERT_PFSROOT)
3452  		chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3453  
3454  	if (parent == NULL)
3455  		goto skip;
3456  
3457  	/*
3458  	 * Calculate how many entries we have in the blockref array and
3459  	 * determine if an indirect block is required when inserting into
3460  	 * the parent.
3461  	 */
3462  again:
3463  	if (--maxloops == 0)
3464  		panic("hammer2_chain_create: maxloops");
3465  
3466  	switch(parent->bref.type) {
3467  	case HAMMER2_BREF_TYPE_INODE:
3468  		if ((parent->data->ipdata.meta.op_flags &
3469  		     HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3470  			kprintf("hammer2: parent set for direct-data! "
3471  				"pkey=%016jx ckey=%016jx\n",
3472  				parent->bref.key,
3473  				chain->bref.key);
3474  	        }
3475  		KKASSERT((parent->data->ipdata.meta.op_flags &
3476  			  HAMMER2_OPFLAG_DIRECTDATA) == 0);
3477  		KKASSERT(parent->data != NULL);
3478  		base = &parent->data->ipdata.u.blockset.blockref[0];
3479  		count = HAMMER2_SET_COUNT;
3480  		break;
3481  	case HAMMER2_BREF_TYPE_INDIRECT:
3482  	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3483  		if (parent->flags & HAMMER2_CHAIN_INITIAL)
3484  			base = NULL;
3485  		else
3486  			base = &parent->data->npdata[0];
3487  		count = parent->bytes / sizeof(hammer2_blockref_t);
3488  		break;
3489  	case HAMMER2_BREF_TYPE_VOLUME:
3490  		KKASSERT(parent->data != NULL);
3491  		base = &parent->data->voldata.sroot_blockset.blockref[0];
3492  		count = HAMMER2_SET_COUNT;
3493  		break;
3494  	case HAMMER2_BREF_TYPE_FREEMAP:
3495  		KKASSERT(parent->data != NULL);
3496  		base = &parent->data->blkset.blockref[0];
3497  		count = HAMMER2_SET_COUNT;
3498  		break;
3499  	default:
3500  		panic("hammer2_chain_create: unrecognized blockref type: %d",
3501  		      parent->bref.type);
3502  		base = NULL;
3503  		count = 0;
3504  		break;
3505  	}
3506  
3507  	/*
3508  	 * Make sure we've counted the brefs
3509  	 */
3510  	if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3511  		hammer2_chain_countbrefs(parent, base, count);
3512  
3513  	KASSERT(parent->core.live_count >= 0 &&
3514  		parent->core.live_count <= count,
3515  		("bad live_count %d/%d (%02x, %d)",
3516  			parent->core.live_count, count,
3517  			parent->bref.type, parent->bytes));
3518  
3519  	/*
3520  	 * If no free blockref could be found we must create an indirect
3521  	 * block and move a number of blockrefs into it.  With the parent
3522  	 * locked we can safely lock each child in order to delete+duplicate
3523  	 * it without causing a deadlock.
3524  	 *
3525  	 * This may return the new indirect block or the old parent depending
3526  	 * on where the key falls.  NULL is returned on error.
3527  	 */
3528  	if (parent->core.live_count == count) {
3529  		hammer2_chain_t *nparent;
3530  
3531  		KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3532  
3533  		nparent = hammer2_chain_create_indirect(parent, key, keybits,
3534  							mtid, type, &error);
3535  		if (nparent == NULL) {
3536  			if (allocated)
3537  				hammer2_chain_drop(chain);
3538  			chain = NULL;
3539  			goto done;
3540  		}
3541  		if (parent != nparent) {
3542  			hammer2_chain_unlock(parent);
3543  			hammer2_chain_drop(parent);
3544  			parent = *parentp = nparent;
3545  		}
3546  		goto again;
3547  	}
3548  
3549  	/*
3550  	 * fall through if parent, or skip to here if no parent.
3551  	 */
3552  skip:
3553  	if (chain->flags & HAMMER2_CHAIN_DELETED)
3554  		kprintf("Inserting deleted chain @%016jx\n",
3555  			chain->bref.key);
3556  
3557  	/*
3558  	 * Link the chain into its parent.
3559  	 */
3560  	if (chain->parent != NULL)
3561  		panic("hammer2: hammer2_chain_create: chain already connected");
3562  	KKASSERT(chain->parent == NULL);
3563  	if (parent) {
3564  		KKASSERT(parent->core.live_count < count);
3565  		hammer2_chain_insert(parent, chain,
3566  				     HAMMER2_CHAIN_INSERT_SPIN |
3567  				     HAMMER2_CHAIN_INSERT_LIVE,
3568  				     0);
3569  	}
3570  
3571  	if (allocated) {
3572  		/*
3573  		 * Mark the newly created chain modified.  This will cause
3574  		 * UPDATE to be set and process the INITIAL flag.
3575  		 *
3576  		 * Device buffers are not instantiated for DATA elements
3577  		 * as these are handled by logical buffers.
3578  		 *
3579  		 * Indirect and freemap node indirect blocks are handled
3580  		 * by hammer2_chain_create_indirect() and not by this
3581  		 * function.
3582  		 *
3583  		 * Data for all other bref types is expected to be
3584  		 * instantiated (INODE, LEAF).
3585  		 */
3586  		switch(chain->bref.type) {
3587  		case HAMMER2_BREF_TYPE_DATA:
3588  		case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3589  		case HAMMER2_BREF_TYPE_DIRENT:
3590  		case HAMMER2_BREF_TYPE_INODE:
3591  			error = hammer2_chain_modify(chain, mtid, dedup_off,
3592  						     HAMMER2_MODIFY_OPTDATA);
3593  			break;
3594  		default:
3595  			/*
3596  			 * Remaining types are not supported by this function.
3597  			 * In particular, INDIRECT and LEAF_NODE types are
3598  			 * handled by create_indirect().
3599  			 */
3600  			panic("hammer2_chain_create: bad type: %d",
3601  			      chain->bref.type);
3602  			/* NOT REACHED */
3603  			break;
3604  		}
3605  	} else {
3606  		/*
3607  		 * When reconnecting a chain we must set UPDATE and
3608  		 * setflush so the flush recognizes that it must update
3609  		 * the bref in the parent.
3610  		 */
3611  		if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3612  			atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3613  	}
3614  
3615  	/*
3616  	 * We must setflush(parent) to ensure that it recurses through to
3617  	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3618  	 * already set in the chain (so it won't recurse up to set it in the
3619  	 * parent).
3620  	 */
3621  	if (parent)
3622  		hammer2_chain_setflush(parent);
3623  
3624  done:
3625  	*chainp = chain;
3626  
3627  	return (error);
3628  }
3629  
3630  /*
3631   * Move the chain from its old parent to a new parent.  The chain must have
3632   * already been deleted or already disconnected (or never associated) with
3633   * a parent.  The chain is reassociated with the new parent and the deleted
3634   * flag will be cleared (no longer deleted).  The chain's modification state
3635   * is not altered.
3636   *
3637   * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3638   * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3639   * FULL.  This typically means that the caller is creating the chain after
3640   * doing a hammer2_chain_lookup().
3641   *
3642   * Neither (parent) or (chain) can be errored.
3643   *
3644   * If (parent) is non-NULL then the chain is inserted under the parent.
3645   *
3646   * If (parent) is NULL then the newly duplicated chain is not inserted
3647   * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3648   * passing into hammer2_chain_create() after this function returns).
3649   *
3650   * WARNING! This function calls create which means it can insert indirect
3651   *	    blocks.  This can cause other unrelated chains in the parent to
3652   *	    be moved to a newly inserted indirect block in addition to the
3653   *	    specific chain.
3654   */
3655  void
3656  hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3657  		     hammer2_tid_t mtid, int flags)
3658  {
3659  	hammer2_blockref_t *bref;
3660  	hammer2_dev_t *hmp;
3661  	hammer2_chain_t *parent;
3662  
3663  	/*
3664  	 * WARNING!  We should never resolve DATA to device buffers
3665  	 *	     (XXX allow it if the caller did?), and since
3666  	 *	     we currently do not have the logical buffer cache
3667  	 *	     buffer in-hand to fix its cached physical offset
3668  	 *	     we also force the modify code to not COW it. XXX
3669  	 *
3670  	 * NOTE!     We allow error'd chains to be renamed.  The bref itself
3671  	 *	     is good and can be renamed.  The content, however, may
3672  	 *	     be inaccessible.
3673  	 */
3674  	hmp = chain->hmp;
3675  	KKASSERT(chain->parent == NULL);
3676  	/*KKASSERT(chain->error == 0); allow */
3677  	bref = &chain->bref;
3678  
3679  	/*
3680  	 * If parent is not NULL the duplicated chain will be entered under
3681  	 * the parent and the UPDATE bit set to tell flush to update
3682  	 * the blockref.
3683  	 *
3684  	 * We must setflush(parent) to ensure that it recurses through to
3685  	 * chain.  setflush(chain) might not work because ONFLUSH is possibly
3686  	 * already set in the chain (so it won't recurse up to set it in the
3687  	 * parent).
3688  	 *
3689  	 * Having both chains locked is extremely important for atomicy.
3690  	 */
3691  	if (parentp && (parent = *parentp) != NULL) {
3692  		KKASSERT(hammer2_mtx_owned(&parent->lock));
3693  		KKASSERT(parent->refs > 0);
3694  		KKASSERT(parent->error == 0);
3695  
3696  		hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3697  				     HAMMER2_METH_DEFAULT,
3698  				     bref->key, bref->keybits, bref->type,
3699  				     chain->bytes, mtid, 0, flags);
3700  		KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3701  		hammer2_chain_setflush(*parentp);
3702  	}
3703  }
3704  
3705  /*
3706   * This works in tandem with delete_obref() to install a blockref in
3707   * (typically) an indirect block that is associated with the chain being
3708   * moved to *parentp.
3709   *
3710   * The reason we need this function is that the caller needs to maintain
3711   * the blockref as it was, and not generate a new blockref for what might
3712   * be a modified chain.  Otherwise stuff will leak into the flush that
3713   * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3714   *
3715   * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3716   * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3717   * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3718   * it does.  Otherwise we can end up in a situation where H2 is unable to
3719   * clean up the in-memory chain topology.
3720   *
3721   * The reason for this is that flushes do not generally flush through
3722   * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3723   * or sideq to properly flush and dispose of the related inode chain's flags.
3724   * Situations where the inode is not actually modified by the frontend,
3725   * but where we have to move the related chains around as we insert or cleanup
3726   * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3727   * inode chain that does not have a hammer2_inode_t associated with it.
3728   */
3729  static void
3730  hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3731  			   hammer2_tid_t mtid, int flags,
3732  			   hammer2_blockref_t *obref)
3733  {
3734  	hammer2_chain_rename(parentp, chain, mtid, flags);
3735  
3736  	if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3737  		hammer2_blockref_t *tbase;
3738  		int tcount;
3739  
3740  		KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3741  		hammer2_chain_modify(*parentp, mtid, 0, 0);
3742  		tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3743  		hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3744  		if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3745  			atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3746  						      HAMMER2_CHAIN_UPDATE);
3747  		} else {
3748  			atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3749  		}
3750  	}
3751  }
3752  
3753  /*
3754   * Helper function for deleting chains.
3755   *
3756   * The chain is removed from the live view (the RBTREE) as well as the parent's
3757   * blockmap.  Both chain and its parent must be locked.
3758   *
3759   * parent may not be errored.  chain can be errored.
3760   */
3761  static int
3762  _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3763  			     hammer2_tid_t mtid, int flags,
3764  			     hammer2_blockref_t *obref)
3765  {
3766  	hammer2_dev_t *hmp;
3767  	int error = 0;
3768  
3769  	KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
3770  	KKASSERT(chain->parent == parent);
3771  	hmp = chain->hmp;
3772  
3773  	if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3774  		/*
3775  		 * Chain is blockmapped, so there must be a parent.
3776  		 * Atomically remove the chain from the parent and remove
3777  		 * the blockmap entry.  The parent must be set modified
3778  		 * to remove the blockmap entry.
3779  		 */
3780  		hammer2_blockref_t *base;
3781  		int count;
3782  
3783  		KKASSERT(parent != NULL);
3784  		KKASSERT(parent->error == 0);
3785  		KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3786  		error = hammer2_chain_modify(parent, mtid, 0, 0);
3787  		if (error)
3788  			goto done;
3789  
3790  		/*
3791  		 * Calculate blockmap pointer
3792  		 */
3793  		KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3794  		hammer2_spin_ex(&chain->core.spin);
3795  		hammer2_spin_ex(&parent->core.spin);
3796  
3797  		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3798  		atomic_add_int(&parent->core.live_count, -1);
3799  		++parent->core.generation;
3800  		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3801  		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3802  		--parent->core.chain_count;
3803  		chain->parent = NULL;
3804  
3805  		switch(parent->bref.type) {
3806  		case HAMMER2_BREF_TYPE_INODE:
3807  			/*
3808  			 * Access the inode's block array.  However, there
3809  			 * is no block array if the inode is flagged
3810  			 * DIRECTDATA.
3811  			 */
3812  			if (parent->data &&
3813  			    (parent->data->ipdata.meta.op_flags &
3814  			     HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3815  				base =
3816  				   &parent->data->ipdata.u.blockset.blockref[0];
3817  			} else {
3818  				base = NULL;
3819  			}
3820  			count = HAMMER2_SET_COUNT;
3821  			break;
3822  		case HAMMER2_BREF_TYPE_INDIRECT:
3823  		case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3824  			if (parent->data)
3825  				base = &parent->data->npdata[0];
3826  			else
3827  				base = NULL;
3828  			count = parent->bytes / sizeof(hammer2_blockref_t);
3829  			break;
3830  		case HAMMER2_BREF_TYPE_VOLUME:
3831  			base = &parent->data->voldata.
3832  					sroot_blockset.blockref[0];
3833  			count = HAMMER2_SET_COUNT;
3834  			break;
3835  		case HAMMER2_BREF_TYPE_FREEMAP:
3836  			base = &parent->data->blkset.blockref[0];
3837  			count = HAMMER2_SET_COUNT;
3838  			break;
3839  		default:
3840  			base = NULL;
3841  			count = 0;
3842  			panic("_hammer2_chain_delete_helper: "
3843  			      "unrecognized blockref type: %d",
3844  			      parent->bref.type);
3845  			break;
3846  		}
3847  
3848  		/*
3849  		 * delete blockmapped chain from its parent.
3850  		 *
3851  		 * The parent is not affected by any statistics in chain
3852  		 * which are pending synchronization.  That is, there is
3853  		 * nothing to undo in the parent since they have not yet
3854  		 * been incorporated into the parent.
3855  		 *
3856  		 * The parent is affected by statistics stored in inodes.
3857  		 * Those have already been synchronized, so they must be
3858  		 * undone.  XXX split update possible w/delete in middle?
3859  		 */
3860  		if (base) {
3861  			hammer2_base_delete(parent, base, count, chain, obref);
3862  		}
3863  		hammer2_spin_unex(&parent->core.spin);
3864  		hammer2_spin_unex(&chain->core.spin);
3865  	} else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3866  		/*
3867  		 * Chain is not blockmapped but a parent is present.
3868  		 * Atomically remove the chain from the parent.  There is
3869  		 * no blockmap entry to remove.
3870  		 *
3871  		 * Because chain was associated with a parent but not
3872  		 * synchronized, the chain's *_count_up fields contain
3873  		 * inode adjustment statistics which must be undone.
3874  		 */
3875  		hammer2_spin_ex(&chain->core.spin);
3876  		hammer2_spin_ex(&parent->core.spin);
3877  		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3878  		atomic_add_int(&parent->core.live_count, -1);
3879  		++parent->core.generation;
3880  		RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3881  		atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3882  		--parent->core.chain_count;
3883  		chain->parent = NULL;
3884  		hammer2_spin_unex(&parent->core.spin);
3885  		hammer2_spin_unex(&chain->core.spin);
3886  	} else {
3887  		/*
3888  		 * Chain is not blockmapped and has no parent.  This
3889  		 * is a degenerate case.
3890  		 */
3891  		atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3892  	}
3893  done:
3894  	return error;
3895  }
3896  
3897  /*
3898   * Create an indirect block that covers one or more of the elements in the
3899   * current parent.  Either returns the existing parent with no locking or
3900   * ref changes or returns the new indirect block locked and referenced
3901   * and leaving the original parent lock/ref intact as well.
3902   *
3903   * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3904   *
3905   * The returned chain depends on where the specified key falls.
3906   *
3907   * The key/keybits for the indirect mode only needs to follow three rules:
3908   *
3909   * (1) That all elements underneath it fit within its key space and
3910   *
3911   * (2) That all elements outside it are outside its key space.
3912   *
3913   * (3) When creating the new indirect block any elements in the current
3914   *     parent that fit within the new indirect block's keyspace must be
3915   *     moved into the new indirect block.
3916   *
3917   * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3918   *     keyspace the the current parent, but lookup/iteration rules will
3919   *     ensure (and must ensure) that rule (2) for all parents leading up
3920   *     to the nearest inode or the root volume header is adhered to.  This
3921   *     is accomplished by always recursing through matching keyspaces in
3922   *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3923   *
3924   * The current implementation calculates the current worst-case keyspace by
3925   * iterating the current parent and then divides it into two halves, choosing
3926   * whichever half has the most elements (not necessarily the half containing
3927   * the requested key).
3928   *
3929   * We can also opt to use the half with the least number of elements.  This
3930   * causes lower-numbered keys (aka logical file offsets) to recurse through
3931   * fewer indirect blocks and higher-numbered keys to recurse through more.
3932   * This also has the risk of not moving enough elements to the new indirect
3933   * block and being forced to create several indirect blocks before the element
3934   * can be inserted.
3935   *
3936   * Must be called with an exclusively locked parent.
3937   *
3938   * NOTE: *errorp set to HAMMER_ERROR_* flags
3939   */
3940  static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3941  				hammer2_key_t *keyp, int keybits,
3942  				hammer2_blockref_t *base, int count);
3943  static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3944  				hammer2_key_t *keyp, int keybits,
3945  				hammer2_blockref_t *base, int count,
3946  				int ncount);
3947  static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
3948  				hammer2_key_t *keyp, int keybits,
3949  				hammer2_blockref_t *base, int count,
3950  				int ncount);
3951  static
3952  hammer2_chain_t *
3953  hammer2_chain_create_indirect(hammer2_chain_t *parent,
3954  			      hammer2_key_t create_key, int create_bits,
3955  			      hammer2_tid_t mtid, int for_type, int *errorp)
3956  {
3957  	hammer2_dev_t *hmp;
3958  	hammer2_blockref_t *base;
3959  	hammer2_blockref_t *bref;
3960  	hammer2_blockref_t bsave;
3961  	hammer2_blockref_t dummy;
3962  	hammer2_chain_t *chain;
3963  	hammer2_chain_t *ichain;
3964  	hammer2_key_t key = create_key;
3965  	hammer2_key_t key_beg;
3966  	hammer2_key_t key_end;
3967  	hammer2_key_t key_next;
3968  	int keybits = create_bits;
3969  	int count;
3970  	int ncount;
3971  	int nbytes;
3972  	int loops;
3973  	int error;
3974  	int reason;
3975  	int generation;
3976  	int maxloops = 300000;
3977  
3978  	/*
3979  	 * Calculate the base blockref pointer or NULL if the chain
3980  	 * is known to be empty.  We need to calculate the array count
3981  	 * for RB lookups either way.
3982  	 */
3983  	hmp = parent->hmp;
3984  	KKASSERT(hammer2_mtx_owned(&parent->lock));
3985  
3986  	/*
3987  	 * Pre-modify the parent now to avoid having to deal with error
3988  	 * processing if we tried to later (in the middle of our loop).
3989  	 *
3990  	 * We are going to be moving bref's around, the indirect blocks
3991  	 * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
3992  	 */
3993  	*errorp = hammer2_chain_modify(parent, mtid, 0, 0);
3994  	if (*errorp) {
3995  		kprintf("hammer2_chain_create_indirect: error %08x %s\n",
3996  			*errorp, hammer2_error_str(*errorp));
3997  		return NULL;
3998  	}
3999  	KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
4000  
4001  	/*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
4002  	base = hammer2_chain_base_and_count(parent, &count);
4003  
4004  	/*
4005  	 * How big should our new indirect block be?  It has to be at least
4006  	 * as large as its parent for splits to work properly.
4007  	 *
4008  	 * The freemap uses a specific indirect block size.  The number of
4009  	 * levels are built dynamically and ultimately depend on the size
4010  	 * volume.  Because freemap blocks are taken from the reserved areas
4011  	 * of the volume our goal is efficiency (fewer levels) and not so
4012  	 * much to save disk space.
4013  	 *
4014  	 * The first indirect block level for a directory usually uses
4015  	 * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4016  	 * the hash mechanism, this typically gives us a nominal
4017  	 * 32 * 4 entries with one level of indirection.
4018  	 *
4019  	 * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4020  	 * indirect blocks.  The initial 4 entries in the inode gives us
4021  	 * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4022  	 * of indirection gives us 137GB, and so forth.  H2 can support
4023  	 * huge file sizes but they are not typical, so we try to stick
4024  	 * with compactness and do not use a larger indirect block size.
4025  	 *
4026  	 * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4027  	 * due to the way indirect blocks are created this usually winds
4028  	 * up being extremely inefficient for small files.  Even though
4029  	 * 16KB requires more levels of indirection for very large files,
4030  	 * the 16KB records can be ganged together into 64KB DIOs.
4031  	 */
4032  	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4033  	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4034  		nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4035  	} else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4036  		if (parent->data->ipdata.meta.type ==
4037  		    HAMMER2_OBJTYPE_DIRECTORY)
4038  			nbytes = HAMMER2_IND_BYTES_MIN;	/* 4KB = 32 entries */
4039  		else
4040  			nbytes = HAMMER2_IND_BYTES_NOM;	/* 16KB = ~8MB file */
4041  
4042  	} else {
4043  		nbytes = HAMMER2_IND_BYTES_NOM;
4044  	}
4045  	if (nbytes < count * sizeof(hammer2_blockref_t)) {
4046  		KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4047  			 for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4048  		nbytes = count * sizeof(hammer2_blockref_t);
4049  	}
4050  	ncount = nbytes / sizeof(hammer2_blockref_t);
4051  
4052  	/*
4053  	 * When creating an indirect block for a freemap node or leaf
4054  	 * the key/keybits must be fitted to static radix levels because
4055  	 * particular radix levels use particular reserved blocks in the
4056  	 * related zone.
4057  	 *
4058  	 * This routine calculates the key/radix of the indirect block
4059  	 * we need to create, and whether it is on the high-side or the
4060  	 * low-side.
4061  	 */
4062  	switch(for_type) {
4063  	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4064  	case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4065  		keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4066  						       base, count);
4067  		break;
4068  	case HAMMER2_BREF_TYPE_DATA:
4069  		keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4070  						    base, count, ncount);
4071  		break;
4072  	case HAMMER2_BREF_TYPE_DIRENT:
4073  	case HAMMER2_BREF_TYPE_INODE:
4074  		keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4075  						   base, count, ncount);
4076  		break;
4077  	default:
4078  		panic("illegal indirect block for bref type %d", for_type);
4079  		break;
4080  	}
4081  
4082  	/*
4083  	 * Normalize the key for the radix being represented, keeping the
4084  	 * high bits and throwing away the low bits.
4085  	 */
4086  	key &= ~(((hammer2_key_t)1 << keybits) - 1);
4087  
4088  	/*
4089  	 * Ok, create our new indirect block
4090  	 */
4091  	bzero(&dummy, sizeof(dummy));
4092  	if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4093  	    for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4094  		dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4095  	} else {
4096  		dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4097  	}
4098  	dummy.key = key;
4099  	dummy.keybits = keybits;
4100  	dummy.data_off = hammer2_getradix(nbytes);
4101  	dummy.methods =
4102  		HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4103  		HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4104  
4105  	ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4106  	atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4107  	hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4108  	/* ichain has one ref at this point */
4109  
4110  	/*
4111  	 * We have to mark it modified to allocate its block, but use
4112  	 * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4113  	 * it won't be acted upon by the flush code.
4114  	 *
4115  	 * XXX remove OPTDATA, we need a fully initialized indirect block to
4116  	 * be able to move the original blockref.
4117  	 */
4118  	*errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4119  	if (*errorp) {
4120  		kprintf("hammer2_chain_create_indirect: error %08x %s\n",
4121  			*errorp, hammer2_error_str(*errorp));
4122  		hammer2_chain_unlock(ichain);
4123  		hammer2_chain_drop(ichain);
4124  		return NULL;
4125  	}
4126  	KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4127  
4128  	/*
4129  	 * Iterate the original parent and move the matching brefs into
4130  	 * the new indirect block.
4131  	 *
4132  	 * XXX handle flushes.
4133  	 */
4134  	key_beg = 0;
4135  	key_end = HAMMER2_KEY_MAX;
4136  	key_next = 0;	/* avoid gcc warnings */
4137  	hammer2_spin_ex(&parent->core.spin);
4138  	loops = 0;
4139  	reason = 0;
4140  
4141  	for (;;) {
4142  		/*
4143  		 * Parent may have been modified, relocating its block array.
4144  		 * Reload the base pointer.
4145  		 */
4146  		base = hammer2_chain_base_and_count(parent, &count);
4147  
4148  		if (++loops > 100000) {
4149  		    hammer2_spin_unex(&parent->core.spin);
4150  		    panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4151  			  reason, parent, base, count, key_next);
4152  		}
4153  
4154  		/*
4155  		 * NOTE: spinlock stays intact, returned chain (if not NULL)
4156  		 *	 is not referenced or locked which means that we
4157  		 *	 cannot safely check its flagged / deletion status
4158  		 *	 until we lock it.
4159  		 */
4160  		chain = hammer2_combined_find(parent, base, count,
4161  					      &key_next,
4162  					      key_beg, key_end,
4163  					      &bref);
4164  		generation = parent->core.generation;
4165  		if (bref == NULL)
4166  			break;
4167  		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4168  
4169  		/*
4170  		 * Skip keys that are not within the key/radix of the new
4171  		 * indirect block.  They stay in the parent.
4172  		 */
4173  		if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4174  			goto next_key_spinlocked;
4175  		}
4176  
4177  		/*
4178  		 * Load the new indirect block by acquiring the related
4179  		 * chains (potentially from media as it might not be
4180  		 * in-memory).  Then move it to the new parent (ichain).
4181  		 *
4182  		 * chain is referenced but not locked.  We must lock the
4183  		 * chain to obtain definitive state.
4184  		 */
4185  		bsave = *bref;
4186  		if (chain) {
4187  			/*
4188  			 * Use chain already present in the RBTREE
4189  			 */
4190  			hammer2_chain_ref(chain);
4191  			hammer2_spin_unex(&parent->core.spin);
4192  			hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4193  		} else {
4194  			/*
4195  			 * Get chain for blockref element.  _get returns NULL
4196  			 * on insertion race.
4197  			 */
4198  			hammer2_spin_unex(&parent->core.spin);
4199  			chain = hammer2_chain_get(parent, generation, &bsave,
4200  						  HAMMER2_RESOLVE_NEVER);
4201  			if (chain == NULL) {
4202  				reason = 1;
4203  				hammer2_spin_ex(&parent->core.spin);
4204  				continue;
4205  			}
4206  		}
4207  
4208  		/*
4209  		 * This is always live so if the chain has been deleted
4210  		 * we raced someone and we have to retry.
4211  		 *
4212  		 * NOTE: Lookups can race delete-duplicate because
4213  		 *	 delete-duplicate does not lock the parent's core
4214  		 *	 (they just use the spinlock on the core).
4215  		 *
4216  		 *	 (note reversed logic for this one)
4217  		 */
4218  		if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
4219  		    chain->parent != parent ||
4220  		    (chain->flags & HAMMER2_CHAIN_DELETED)) {
4221  			hammer2_chain_unlock(chain);
4222  			hammer2_chain_drop(chain);
4223  			if (hammer2_debug & 0x0040) {
4224  				kprintf("LOST PARENT RETRY "
4225  				"RETRY (%p,%p)->%p %08x\n",
4226  				parent, chain->parent, chain, chain->flags);
4227  			}
4228  			hammer2_spin_ex(&parent->core.spin);
4229  			continue;
4230  		}
4231  
4232  		/*
4233  		 * Shift the chain to the indirect block.
4234  		 *
4235  		 * WARNING! No reason for us to load chain data, pass NOSTATS
4236  		 *	    to prevent delete/insert from trying to access
4237  		 *	    inode stats (and thus asserting if there is no
4238  		 *	    chain->data loaded).
4239  		 *
4240  		 * WARNING! The (parent, chain) deletion may modify the parent
4241  		 *	    and invalidate the base pointer.
4242  		 *
4243  		 * WARNING! Parent must already be marked modified, so we
4244  		 *	    can assume that chain_delete always suceeds.
4245  		 *
4246  		 * WARNING! hammer2_chain_repchange() does not have to be
4247  		 *	    called (and doesn't work anyway because we are
4248  		 *	    only doing a partial shift).  A recursion that is
4249  		 *	    in-progress can continue at the current parent
4250  		 *	    and will be able to properly find its next key.
4251  		 */
4252  		error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4253  						   &bsave);
4254  		KKASSERT(error == 0);
4255  		hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bsave);
4256  		hammer2_chain_unlock(chain);
4257  		hammer2_chain_drop(chain);
4258  		KKASSERT(parent->refs > 0);
4259  		chain = NULL;
4260  		base = NULL;	/* safety */
4261  		hammer2_spin_ex(&parent->core.spin);
4262  next_key_spinlocked:
4263  		if (--maxloops == 0)
4264  			panic("hammer2_chain_create_indirect: maxloops");
4265  		reason = 4;
4266  		if (key_next == 0 || key_next > key_end)
4267  			break;
4268  		key_beg = key_next;
4269  		/* loop */
4270  	}
4271  	hammer2_spin_unex(&parent->core.spin);
4272  
4273  	/*
4274  	 * Insert the new indirect block into the parent now that we've
4275  	 * cleared out some entries in the parent.  We calculated a good
4276  	 * insertion index in the loop above (ichain->index).
4277  	 *
4278  	 * We don't have to set UPDATE here because we mark ichain
4279  	 * modified down below (so the normal modified -> flush -> set-moved
4280  	 * sequence applies).
4281  	 *
4282  	 * The insertion shouldn't race as this is a completely new block
4283  	 * and the parent is locked.
4284  	 */
4285  	base = NULL;	/* safety, parent modify may change address */
4286  	KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4287  	KKASSERT(parent->core.live_count < count);
4288  	hammer2_chain_insert(parent, ichain,
4289  			     HAMMER2_CHAIN_INSERT_SPIN |
4290  			     HAMMER2_CHAIN_INSERT_LIVE,
4291  			     0);
4292  
4293  	/*
4294  	 * Make sure flushes propogate after our manual insertion.
4295  	 */
4296  	hammer2_chain_setflush(ichain);
4297  	hammer2_chain_setflush(parent);
4298  
4299  	/*
4300  	 * Figure out what to return.
4301  	 */
4302  	if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits)) {
4303  		/*
4304  		 * Key being created is outside the key range,
4305  		 * return the original parent.
4306  		 */
4307  		hammer2_chain_unlock(ichain);
4308  		hammer2_chain_drop(ichain);
4309  	} else {
4310  		/*
4311  		 * Otherwise its in the range, return the new parent.
4312  		 * (leave both the new and old parent locked).
4313  		 */
4314  		parent = ichain;
4315  	}
4316  
4317  	return(parent);
4318  }
4319  
4320  /*
4321   * Do maintenance on an indirect chain.  Both parent and chain are locked.
4322   *
4323   * Returns non-zero if (chain) is deleted, either due to being empty or
4324   * because its children were safely moved into the parent.
4325   */
4326  int
4327  hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4328  				   hammer2_chain_t *chain)
4329  {
4330  	hammer2_blockref_t *chain_base;
4331  	hammer2_blockref_t *base;
4332  	hammer2_blockref_t *bref;
4333  	hammer2_blockref_t bsave;
4334  	hammer2_key_t key_next;
4335  	hammer2_key_t key_beg;
4336  	hammer2_key_t key_end;
4337  	hammer2_chain_t *sub;
4338  	int chain_count;
4339  	int count;
4340  	int error;
4341  	int generation;
4342  
4343  	/*
4344  	 * Make sure we have an accurate live_count
4345  	 */
4346  	if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4347  			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4348  		base = &chain->data->npdata[0];
4349  		count = chain->bytes / sizeof(hammer2_blockref_t);
4350  		hammer2_chain_countbrefs(chain, base, count);
4351  	}
4352  
4353  	/*
4354  	 * If the indirect block is empty we can delete it.
4355  	 * (ignore deletion error)
4356  	 */
4357  	if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4358  		hammer2_chain_delete(parent, chain,
4359  				     chain->bref.modify_tid,
4360  				     HAMMER2_DELETE_PERMANENT);
4361  		hammer2_chain_repchange(parent, chain);
4362  		return 1;
4363  	}
4364  
4365  	base = hammer2_chain_base_and_count(parent, &count);
4366  
4367  	if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4368  			     HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4369  		hammer2_chain_countbrefs(parent, base, count);
4370  	}
4371  
4372  	/*
4373  	 * Determine if we can collapse chain into parent, calculate
4374  	 * hysteresis for chain emptiness.
4375  	 */
4376  	if (parent->core.live_count + chain->core.live_count - 1 > count)
4377  		return 0;
4378  	chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4379  	if (chain->core.live_count > chain_count * 3 / 4)
4380  		return 0;
4381  
4382  	/*
4383  	 * Ok, theoretically we can collapse chain's contents into
4384  	 * parent.  chain is locked, but any in-memory children of chain
4385  	 * are not.  For this to work, we must be able to dispose of any
4386  	 * in-memory children of chain.
4387  	 *
4388  	 * For now require that there are no in-memory children of chain.
4389  	 *
4390  	 * WARNING! Both chain and parent must remain locked across this
4391  	 *	    entire operation.
4392  	 */
4393  
4394  	/*
4395  	 * Parent must be marked modified.  Don't try to collapse it if we
4396  	 * can't mark it modified.  Once modified, destroy chain to make room
4397  	 * and to get rid of what will be a conflicting key (this is included
4398  	 * in the calculation above).  Finally, move the children of chain
4399  	 * into chain's parent.
4400  	 *
4401  	 * This order creates an accounting problem for bref.embed.stats
4402  	 * because we destroy chain before we remove its children.  Any
4403  	 * elements whos blockref is already synchronized will be counted
4404  	 * twice.  To deal with the problem we clean out chain's stats prior
4405  	 * to deleting it.
4406  	 */
4407  	error = hammer2_chain_modify(parent, 0, 0, 0);
4408  	if (error) {
4409  		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4410  			    hammer2_error_str(error));
4411  		return 0;
4412  	}
4413  	error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4414  	if (error) {
4415  		krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4416  			    hammer2_error_str(error));
4417  		return 0;
4418  	}
4419  
4420  	chain->bref.embed.stats.inode_count = 0;
4421  	chain->bref.embed.stats.data_count = 0;
4422  	error = hammer2_chain_delete(parent, chain,
4423  				     chain->bref.modify_tid,
4424  				     HAMMER2_DELETE_PERMANENT);
4425  	KKASSERT(error == 0);
4426  
4427  	/*
4428  	 * The combined_find call requires core.spin to be held.  One would
4429  	 * think there wouldn't be any conflicts since we hold chain
4430  	 * exclusively locked, but the caching mechanism for 0-ref children
4431  	 * does not require a chain lock.
4432  	 */
4433  	hammer2_spin_ex(&chain->core.spin);
4434  
4435  	key_next = 0;
4436  	key_beg = 0;
4437  	key_end = HAMMER2_KEY_MAX;
4438  	for (;;) {
4439  		chain_base = &chain->data->npdata[0];
4440  		chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4441  		sub = hammer2_combined_find(chain, chain_base, chain_count,
4442  					    &key_next,
4443  					    key_beg, key_end,
4444  					    &bref);
4445  		generation = chain->core.generation;
4446  		if (bref == NULL)
4447  			break;
4448  		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4449  
4450  		bsave = *bref;
4451  		if (sub) {
4452  			hammer2_chain_ref(sub);
4453  			hammer2_spin_unex(&chain->core.spin);
4454  			hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4455  		} else {
4456  			hammer2_spin_unex(&chain->core.spin);
4457  			sub = hammer2_chain_get(chain, generation, &bsave,
4458  						HAMMER2_RESOLVE_NEVER);
4459  			if (sub == NULL) {
4460  				hammer2_spin_ex(&chain->core.spin);
4461  				continue;
4462  			}
4463  		}
4464  		if (bcmp(&bsave, &sub->bref, sizeof(bsave)) ||
4465  		    sub->parent != chain ||
4466  		    (sub->flags & HAMMER2_CHAIN_DELETED)) {
4467  			hammer2_chain_unlock(sub);
4468  			hammer2_chain_drop(sub);
4469  			hammer2_spin_ex(&chain->core.spin);
4470  			sub = NULL;	/* safety */
4471  			continue;
4472  		}
4473  		error = hammer2_chain_delete_obref(chain, sub,
4474  						   sub->bref.modify_tid, 0,
4475  						   &bsave);
4476  		KKASSERT(error == 0);
4477  		hammer2_chain_rename_obref(&parent, sub,
4478  				     sub->bref.modify_tid,
4479  				     HAMMER2_INSERT_SAMEPARENT, &bsave);
4480  		hammer2_chain_unlock(sub);
4481  		hammer2_chain_drop(sub);
4482  		hammer2_spin_ex(&chain->core.spin);
4483  
4484  		if (key_next == 0)
4485  			break;
4486  		key_beg = key_next;
4487  	}
4488  	hammer2_spin_unex(&chain->core.spin);
4489  
4490  	hammer2_chain_repchange(parent, chain);
4491  
4492  	return 1;
4493  }
4494  
4495  /*
4496   * Freemap indirect blocks
4497   *
4498   * Calculate the keybits and highside/lowside of the freemap node the
4499   * caller is creating.
4500   *
4501   * This routine will specify the next higher-level freemap key/radix
4502   * representing the lowest-ordered set.  By doing so, eventually all
4503   * low-ordered sets will be moved one level down.
4504   *
4505   * We have to be careful here because the freemap reserves a limited
4506   * number of blocks for a limited number of levels.  So we can't just
4507   * push indiscriminately.
4508   */
4509  int
4510  hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4511  			     int keybits, hammer2_blockref_t *base, int count)
4512  {
4513  	hammer2_chain_t *chain;
4514  	hammer2_blockref_t *bref;
4515  	hammer2_key_t key;
4516  	hammer2_key_t key_beg;
4517  	hammer2_key_t key_end;
4518  	hammer2_key_t key_next;
4519  	int locount;
4520  	int hicount;
4521  	int maxloops = 300000;
4522  
4523  	key = *keyp;
4524  	locount = 0;
4525  	hicount = 0;
4526  	keybits = 64;
4527  
4528  	/*
4529  	 * Calculate the range of keys in the array being careful to skip
4530  	 * slots which are overridden with a deletion.
4531  	 */
4532  	key_beg = 0;
4533  	key_end = HAMMER2_KEY_MAX;
4534  	hammer2_spin_ex(&parent->core.spin);
4535  
4536  	for (;;) {
4537  		if (--maxloops == 0) {
4538  			panic("indkey_freemap shit %p %p:%d\n",
4539  			      parent, base, count);
4540  		}
4541  		chain = hammer2_combined_find(parent, base, count,
4542  					      &key_next,
4543  					      key_beg, key_end,
4544  					      &bref);
4545  
4546  		/*
4547  		 * Exhausted search
4548  		 */
4549  		if (bref == NULL)
4550  			break;
4551  
4552  		/*
4553  		 * Skip deleted chains.
4554  		 */
4555  		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4556  			if (key_next == 0 || key_next > key_end)
4557  				break;
4558  			key_beg = key_next;
4559  			continue;
4560  		}
4561  
4562  		/*
4563  		 * Use the full live (not deleted) element for the scan
4564  		 * iteration.  HAMMER2 does not allow partial replacements.
4565  		 *
4566  		 * XXX should be built into hammer2_combined_find().
4567  		 */
4568  		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4569  
4570  		if (keybits > bref->keybits) {
4571  			key = bref->key;
4572  			keybits = bref->keybits;
4573  		} else if (keybits == bref->keybits && bref->key < key) {
4574  			key = bref->key;
4575  		}
4576  		if (key_next == 0)
4577  			break;
4578  		key_beg = key_next;
4579  	}
4580  	hammer2_spin_unex(&parent->core.spin);
4581  
4582  	/*
4583  	 * Return the keybits for a higher-level FREEMAP_NODE covering
4584  	 * this node.
4585  	 */
4586  	switch(keybits) {
4587  	case HAMMER2_FREEMAP_LEVEL0_RADIX:
4588  		keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4589  		break;
4590  	case HAMMER2_FREEMAP_LEVEL1_RADIX:
4591  		keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4592  		break;
4593  	case HAMMER2_FREEMAP_LEVEL2_RADIX:
4594  		keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4595  		break;
4596  	case HAMMER2_FREEMAP_LEVEL3_RADIX:
4597  		keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4598  		break;
4599  	case HAMMER2_FREEMAP_LEVEL4_RADIX:
4600  		keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4601  		break;
4602  	case HAMMER2_FREEMAP_LEVEL5_RADIX:
4603  		panic("hammer2_chain_indkey_freemap: level too high");
4604  		break;
4605  	default:
4606  		panic("hammer2_chain_indkey_freemap: bad radix");
4607  		break;
4608  	}
4609  	*keyp = key;
4610  
4611  	return (keybits);
4612  }
4613  
4614  /*
4615   * File indirect blocks
4616   *
4617   * Calculate the key/keybits for the indirect block to create by scanning
4618   * existing keys.  The key being created is also passed in *keyp and can be
4619   * inside or outside the indirect block.  Regardless, the indirect block
4620   * must hold at least two keys in order to guarantee sufficient space.
4621   *
4622   * We use a modified version of the freemap's fixed radix tree, but taylored
4623   * for file data.  Basically we configure an indirect block encompassing the
4624   * smallest key.
4625   */
4626  static int
4627  hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4628  			    int keybits, hammer2_blockref_t *base, int count,
4629  			    int ncount)
4630  {
4631  	hammer2_chain_t *chain;
4632  	hammer2_blockref_t *bref;
4633  	hammer2_key_t key;
4634  	hammer2_key_t key_beg;
4635  	hammer2_key_t key_end;
4636  	hammer2_key_t key_next;
4637  	int nradix;
4638  	int locount;
4639  	int hicount;
4640  	int maxloops = 300000;
4641  
4642  	key = *keyp;
4643  	locount = 0;
4644  	hicount = 0;
4645  	keybits = 64;
4646  
4647  	/*
4648  	 * Calculate the range of keys in the array being careful to skip
4649  	 * slots which are overridden with a deletion.
4650  	 *
4651  	 * Locate the smallest key.
4652  	 */
4653  	key_beg = 0;
4654  	key_end = HAMMER2_KEY_MAX;
4655  	hammer2_spin_ex(&parent->core.spin);
4656  
4657  	for (;;) {
4658  		if (--maxloops == 0) {
4659  			panic("indkey_freemap shit %p %p:%d\n",
4660  			      parent, base, count);
4661  		}
4662  		chain = hammer2_combined_find(parent, base, count,
4663  					      &key_next,
4664  					      key_beg, key_end,
4665  					      &bref);
4666  
4667  		/*
4668  		 * Exhausted search
4669  		 */
4670  		if (bref == NULL)
4671  			break;
4672  
4673  		/*
4674  		 * Skip deleted chains.
4675  		 */
4676  		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4677  			if (key_next == 0 || key_next > key_end)
4678  				break;
4679  			key_beg = key_next;
4680  			continue;
4681  		}
4682  
4683  		/*
4684  		 * Use the full live (not deleted) element for the scan
4685  		 * iteration.  HAMMER2 does not allow partial replacements.
4686  		 *
4687  		 * XXX should be built into hammer2_combined_find().
4688  		 */
4689  		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4690  
4691  		if (keybits > bref->keybits) {
4692  			key = bref->key;
4693  			keybits = bref->keybits;
4694  		} else if (keybits == bref->keybits && bref->key < key) {
4695  			key = bref->key;
4696  		}
4697  		if (key_next == 0)
4698  			break;
4699  		key_beg = key_next;
4700  	}
4701  	hammer2_spin_unex(&parent->core.spin);
4702  
4703  	/*
4704  	 * Calculate the static keybits for a higher-level indirect block
4705  	 * that contains the key.
4706  	 */
4707  	*keyp = key;
4708  
4709  	switch(ncount) {
4710  	case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4711  		nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4712  		break;
4713  	case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4714  		nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4715  		break;
4716  	case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4717  		nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4718  		break;
4719  	default:
4720  		panic("bad ncount %d\n", ncount);
4721  		nradix = 0;
4722  		break;
4723  	}
4724  
4725  	/*
4726  	 * The largest radix that can be returned for an indirect block is
4727  	 * 63 bits.  (The largest practical indirect block radix is actually
4728  	 * 62 bits because the top-level inode or volume root contains four
4729  	 * entries, but allow 63 to be returned).
4730  	 */
4731  	if (nradix >= 64)
4732  		nradix = 63;
4733  
4734  	return keybits + nradix;
4735  }
4736  
4737  #if 1
4738  
4739  /*
4740   * Directory indirect blocks.
4741   *
4742   * Covers both the inode index (directory of inodes), and directory contents
4743   * (filenames hardlinked to inodes).
4744   *
4745   * Because directory keys are hashed we generally try to cut the space in
4746   * half.  We accomodate the inode index (which tends to have linearly
4747   * increasing inode numbers) by ensuring that the keyspace is at least large
4748   * enough to fill up the indirect block being created.
4749   */
4750  static int
4751  hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4752  			 int keybits, hammer2_blockref_t *base, int count,
4753  			 int ncount)
4754  {
4755  	hammer2_blockref_t *bref;
4756  	hammer2_chain_t	*chain;
4757  	hammer2_key_t key_beg;
4758  	hammer2_key_t key_end;
4759  	hammer2_key_t key_next;
4760  	hammer2_key_t key;
4761  	int nkeybits;
4762  	int locount;
4763  	int hicount;
4764  	int maxloops = 300000;
4765  
4766  	/*
4767  	 * NOTE: We can't take a shortcut here anymore for inodes because
4768  	 *	 the root directory can contain a mix of inodes and directory
4769  	 *	 entries (we used to just return 63 if parent->bref.type was
4770  	 *	 HAMMER2_BREF_TYPE_INODE.
4771  	 */
4772  	key = *keyp;
4773  	locount = 0;
4774  	hicount = 0;
4775  
4776  	/*
4777  	 * Calculate the range of keys in the array being careful to skip
4778  	 * slots which are overridden with a deletion.
4779  	 */
4780  	key_beg = 0;
4781  	key_end = HAMMER2_KEY_MAX;
4782  	hammer2_spin_ex(&parent->core.spin);
4783  
4784  	for (;;) {
4785  		if (--maxloops == 0) {
4786  			panic("indkey_freemap shit %p %p:%d\n",
4787  			      parent, base, count);
4788  		}
4789  		chain = hammer2_combined_find(parent, base, count,
4790  					      &key_next,
4791  					      key_beg, key_end,
4792  					      &bref);
4793  
4794  		/*
4795  		 * Exhausted search
4796  		 */
4797  		if (bref == NULL)
4798  			break;
4799  
4800  		/*
4801  		 * Deleted object
4802  		 */
4803  		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4804  			if (key_next == 0 || key_next > key_end)
4805  				break;
4806  			key_beg = key_next;
4807  			continue;
4808  		}
4809  
4810  		/*
4811  		 * Use the full live (not deleted) element for the scan
4812  		 * iteration.  HAMMER2 does not allow partial replacements.
4813  		 *
4814  		 * XXX should be built into hammer2_combined_find().
4815  		 */
4816  		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4817  
4818  		/*
4819  		 * Expand our calculated key range (key, keybits) to fit
4820  		 * the scanned key.  nkeybits represents the full range
4821  		 * that we will later cut in half (two halves @ nkeybits - 1).
4822  		 */
4823  		nkeybits = keybits;
4824  		if (nkeybits < bref->keybits) {
4825  			if (bref->keybits > 64) {
4826  				kprintf("bad bref chain %p bref %p\n",
4827  					chain, bref);
4828  				Debugger("fubar");
4829  			}
4830  			nkeybits = bref->keybits;
4831  		}
4832  		while (nkeybits < 64 &&
4833  		       rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4834  			++nkeybits;
4835  		}
4836  
4837  		/*
4838  		 * If the new key range is larger we have to determine
4839  		 * which side of the new key range the existing keys fall
4840  		 * under by checking the high bit, then collapsing the
4841  		 * locount into the hicount or vise-versa.
4842  		 */
4843  		if (keybits != nkeybits) {
4844  			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4845  				hicount += locount;
4846  				locount = 0;
4847  			} else {
4848  				locount += hicount;
4849  				hicount = 0;
4850  			}
4851  			keybits = nkeybits;
4852  		}
4853  
4854  		/*
4855  		 * The newly scanned key will be in the lower half or the
4856  		 * upper half of the (new) key range.
4857  		 */
4858  		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4859  			++hicount;
4860  		else
4861  			++locount;
4862  
4863  		if (key_next == 0)
4864  			break;
4865  		key_beg = key_next;
4866  	}
4867  	hammer2_spin_unex(&parent->core.spin);
4868  	bref = NULL;	/* now invalid (safety) */
4869  
4870  	/*
4871  	 * Adjust keybits to represent half of the full range calculated
4872  	 * above (radix 63 max) for our new indirect block.
4873  	 */
4874  	--keybits;
4875  
4876  	/*
4877  	 * Expand keybits to hold at least ncount elements.  ncount will be
4878  	 * a power of 2.  This is to try to completely fill leaf nodes (at
4879  	 * least for keys which are not hashes).
4880  	 *
4881  	 * We aren't counting 'in' or 'out', we are counting 'high side'
4882  	 * and 'low side' based on the bit at (1LL << keybits).  We want
4883  	 * everything to be inside in these cases so shift it all to
4884  	 * the low or high side depending on the new high bit.
4885  	 */
4886  	while (((hammer2_key_t)1 << keybits) < ncount) {
4887  		++keybits;
4888  		if (key & ((hammer2_key_t)1 << keybits)) {
4889  			hicount += locount;
4890  			locount = 0;
4891  		} else {
4892  			locount += hicount;
4893  			hicount = 0;
4894  		}
4895  	}
4896  
4897  	if (hicount > locount)
4898  		key |= (hammer2_key_t)1 << keybits;
4899  	else
4900  		key &= ~(hammer2_key_t)1 << keybits;
4901  
4902  	*keyp = key;
4903  
4904  	return (keybits);
4905  }
4906  
4907  #else
4908  
4909  /*
4910   * Directory indirect blocks.
4911   *
4912   * Covers both the inode index (directory of inodes), and directory contents
4913   * (filenames hardlinked to inodes).
4914   *
4915   * Because directory keys are hashed we generally try to cut the space in
4916   * half.  We accomodate the inode index (which tends to have linearly
4917   * increasing inode numbers) by ensuring that the keyspace is at least large
4918   * enough to fill up the indirect block being created.
4919   */
4920  static int
4921  hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4922  			 int keybits, hammer2_blockref_t *base, int count,
4923  			 int ncount)
4924  {
4925  	hammer2_blockref_t *bref;
4926  	hammer2_chain_t	*chain;
4927  	hammer2_key_t key_beg;
4928  	hammer2_key_t key_end;
4929  	hammer2_key_t key_next;
4930  	hammer2_key_t key;
4931  	int nkeybits;
4932  	int locount;
4933  	int hicount;
4934  	int maxloops = 300000;
4935  
4936  	/*
4937  	 * Shortcut if the parent is the inode.  In this situation the
4938  	 * parent has 4+1 directory entries and we are creating an indirect
4939  	 * block capable of holding many more.
4940  	 */
4941  	if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4942  		return 63;
4943  	}
4944  
4945  	key = *keyp;
4946  	locount = 0;
4947  	hicount = 0;
4948  
4949  	/*
4950  	 * Calculate the range of keys in the array being careful to skip
4951  	 * slots which are overridden with a deletion.
4952  	 */
4953  	key_beg = 0;
4954  	key_end = HAMMER2_KEY_MAX;
4955  	hammer2_spin_ex(&parent->core.spin);
4956  
4957  	for (;;) {
4958  		if (--maxloops == 0) {
4959  			panic("indkey_freemap shit %p %p:%d\n",
4960  			      parent, base, count);
4961  		}
4962  		chain = hammer2_combined_find(parent, base, count,
4963  					      &key_next,
4964  					      key_beg, key_end,
4965  					      &bref);
4966  
4967  		/*
4968  		 * Exhausted search
4969  		 */
4970  		if (bref == NULL)
4971  			break;
4972  
4973  		/*
4974  		 * Deleted object
4975  		 */
4976  		if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4977  			if (key_next == 0 || key_next > key_end)
4978  				break;
4979  			key_beg = key_next;
4980  			continue;
4981  		}
4982  
4983  		/*
4984  		 * Use the full live (not deleted) element for the scan
4985  		 * iteration.  HAMMER2 does not allow partial replacements.
4986  		 *
4987  		 * XXX should be built into hammer2_combined_find().
4988  		 */
4989  		key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4990  
4991  		/*
4992  		 * Expand our calculated key range (key, keybits) to fit
4993  		 * the scanned key.  nkeybits represents the full range
4994  		 * that we will later cut in half (two halves @ nkeybits - 1).
4995  		 */
4996  		nkeybits = keybits;
4997  		if (nkeybits < bref->keybits) {
4998  			if (bref->keybits > 64) {
4999  				kprintf("bad bref chain %p bref %p\n",
5000  					chain, bref);
5001  				Debugger("fubar");
5002  			}
5003  			nkeybits = bref->keybits;
5004  		}
5005  		while (nkeybits < 64 &&
5006  		       (~(((hammer2_key_t)1 << nkeybits) - 1) &
5007  		        (key ^ bref->key)) != 0) {
5008  			++nkeybits;
5009  		}
5010  
5011  		/*
5012  		 * If the new key range is larger we have to determine
5013  		 * which side of the new key range the existing keys fall
5014  		 * under by checking the high bit, then collapsing the
5015  		 * locount into the hicount or vise-versa.
5016  		 */
5017  		if (keybits != nkeybits) {
5018  			if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5019  				hicount += locount;
5020  				locount = 0;
5021  			} else {
5022  				locount += hicount;
5023  				hicount = 0;
5024  			}
5025  			keybits = nkeybits;
5026  		}
5027  
5028  		/*
5029  		 * The newly scanned key will be in the lower half or the
5030  		 * upper half of the (new) key range.
5031  		 */
5032  		if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5033  			++hicount;
5034  		else
5035  			++locount;
5036  
5037  		if (key_next == 0)
5038  			break;
5039  		key_beg = key_next;
5040  	}
5041  	hammer2_spin_unex(&parent->core.spin);
5042  	bref = NULL;	/* now invalid (safety) */
5043  
5044  	/*
5045  	 * Adjust keybits to represent half of the full range calculated
5046  	 * above (radix 63 max) for our new indirect block.
5047  	 */
5048  	--keybits;
5049  
5050  	/*
5051  	 * Expand keybits to hold at least ncount elements.  ncount will be
5052  	 * a power of 2.  This is to try to completely fill leaf nodes (at
5053  	 * least for keys which are not hashes).
5054  	 *
5055  	 * We aren't counting 'in' or 'out', we are counting 'high side'
5056  	 * and 'low side' based on the bit at (1LL << keybits).  We want
5057  	 * everything to be inside in these cases so shift it all to
5058  	 * the low or high side depending on the new high bit.
5059  	 */
5060  	while (((hammer2_key_t)1 << keybits) < ncount) {
5061  		++keybits;
5062  		if (key & ((hammer2_key_t)1 << keybits)) {
5063  			hicount += locount;
5064  			locount = 0;
5065  		} else {
5066  			locount += hicount;
5067  			hicount = 0;
5068  		}
5069  	}
5070  
5071  	if (hicount > locount)
5072  		key |= (hammer2_key_t)1 << keybits;
5073  	else
5074  		key &= ~(hammer2_key_t)1 << keybits;
5075  
5076  	*keyp = key;
5077  
5078  	return (keybits);
5079  }
5080  
5081  #endif
5082  
5083  /*
5084   * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5085   * it exists.
5086   *
5087   * Both parent and chain must be locked exclusively.
5088   *
5089   * This function will modify the parent if the blockref requires removal
5090   * from the parent's block table.
5091   *
5092   * This function is NOT recursive.  Any entity already pushed into the
5093   * chain (such as an inode) may still need visibility into its contents,
5094   * as well as the ability to read and modify the contents.  For example,
5095   * for an unlinked file which is still open.
5096   *
5097   * Also note that the flusher is responsible for cleaning up empty
5098   * indirect blocks.
5099   */
5100  int
5101  hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5102  		     hammer2_tid_t mtid, int flags)
5103  {
5104  	int error = 0;
5105  
5106  	KKASSERT(hammer2_mtx_owned(&chain->lock));
5107  
5108  	/*
5109  	 * Nothing to do if already marked.
5110  	 *
5111  	 * We need the spinlock on the core whos RBTREE contains chain
5112  	 * to protect against races.
5113  	 */
5114  	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5115  		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5116  			 chain->parent == parent);
5117  		error = _hammer2_chain_delete_helper(parent, chain,
5118  						     mtid, flags, NULL);
5119  	}
5120  
5121  	/*
5122  	 * Permanent deletions mark the chain as destroyed.
5123  	 *
5124  	 * NOTE: We do not setflush the chain unless the deletion is
5125  	 *	 permanent, since the deletion of a chain does not actually
5126  	 *	 require it to be flushed.
5127  	 */
5128  	if (error == 0) {
5129  		if (flags & HAMMER2_DELETE_PERMANENT) {
5130  			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5131  			hammer2_chain_setflush(chain);
5132  		}
5133  	}
5134  
5135  	return error;
5136  }
5137  
5138  static int
5139  hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5140  		     hammer2_tid_t mtid, int flags,
5141  		     hammer2_blockref_t *obref)
5142  {
5143  	int error = 0;
5144  
5145  	KKASSERT(hammer2_mtx_owned(&chain->lock));
5146  
5147  	/*
5148  	 * Nothing to do if already marked.
5149  	 *
5150  	 * We need the spinlock on the core whos RBTREE contains chain
5151  	 * to protect against races.
5152  	 */
5153  	obref->type = HAMMER2_BREF_TYPE_EMPTY;
5154  	if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5155  		KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5156  			 chain->parent == parent);
5157  		error = _hammer2_chain_delete_helper(parent, chain,
5158  						     mtid, flags, obref);
5159  	}
5160  
5161  	/*
5162  	 * Permanent deletions mark the chain as destroyed.
5163  	 *
5164  	 * NOTE: We do not setflush the chain unless the deletion is
5165  	 *	 permanent, since the deletion of a chain does not actually
5166  	 *	 require it to be flushed.
5167  	 */
5168  	if (error == 0) {
5169  		if (flags & HAMMER2_DELETE_PERMANENT) {
5170  			atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5171  			hammer2_chain_setflush(chain);
5172  		}
5173  	}
5174  
5175  	return error;
5176  }
5177  
5178  /*
5179   * Returns the index of the nearest element in the blockref array >= elm.
5180   * Returns (count) if no element could be found.
5181   *
5182   * Sets *key_nextp to the next key for loop purposes but does not modify
5183   * it if the next key would be higher than the current value of *key_nextp.
5184   * Note that *key_nexp can overflow to 0, which should be tested by the
5185   * caller.
5186   *
5187   * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5188   *	     held through the operation.
5189   */
5190  static int
5191  hammer2_base_find(hammer2_chain_t *parent,
5192  		  hammer2_blockref_t *base, int count,
5193  		  hammer2_key_t *key_nextp,
5194  		  hammer2_key_t key_beg, hammer2_key_t key_end)
5195  {
5196  	hammer2_blockref_t *scan;
5197  	hammer2_key_t scan_end;
5198  	int i;
5199  	int limit;
5200  
5201  	/*
5202  	 * Require the live chain's already have their core's counted
5203  	 * so we can optimize operations.
5204  	 */
5205          KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5206  
5207  	/*
5208  	 * Degenerate case
5209  	 */
5210  	if (count == 0 || base == NULL)
5211  		return(count);
5212  
5213  	/*
5214  	 * Sequential optimization using parent->cache_index.  This is
5215  	 * the most likely scenario.
5216  	 *
5217  	 * We can avoid trailing empty entries on live chains, otherwise
5218  	 * we might have to check the whole block array.
5219  	 */
5220  	i = parent->cache_index;	/* SMP RACE OK */
5221  	cpu_ccfence();
5222  	limit = parent->core.live_zero;
5223  	if (i >= limit)
5224  		i = limit - 1;
5225  	if (i < 0)
5226  		i = 0;
5227  	KKASSERT(i < count);
5228  
5229  	/*
5230  	 * Search backwards
5231  	 */
5232  	scan = &base[i];
5233  	while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5234  	    scan->key > key_beg)) {
5235  		--scan;
5236  		--i;
5237  	}
5238  	parent->cache_index = i;
5239  
5240  	/*
5241  	 * Search forwards, stop when we find a scan element which
5242  	 * encloses the key or until we know that there are no further
5243  	 * elements.
5244  	 */
5245  	while (i < count) {
5246  		if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5247  			scan_end = scan->key +
5248  				   ((hammer2_key_t)1 << scan->keybits) - 1;
5249  			if (scan->key > key_beg || scan_end >= key_beg)
5250  				break;
5251  		}
5252  		if (i >= limit)
5253  			return (count);
5254  		++scan;
5255  		++i;
5256  	}
5257  	if (i != count) {
5258  		parent->cache_index = i;
5259  		if (i >= limit) {
5260  			i = count;
5261  		} else {
5262  			scan_end = scan->key +
5263  				   ((hammer2_key_t)1 << scan->keybits);
5264  			if (scan_end && (*key_nextp > scan_end ||
5265  					 *key_nextp == 0)) {
5266  				*key_nextp = scan_end;
5267  			}
5268  		}
5269  	}
5270  	return (i);
5271  }
5272  
5273  /*
5274   * Do a combined search and return the next match either from the blockref
5275   * array or from the in-memory chain.  Sets *bresp to the returned bref in
5276   * both cases, or sets it to NULL if the search exhausted.  Only returns
5277   * a non-NULL chain if the search matched from the in-memory chain.
5278   *
5279   * When no in-memory chain has been found and a non-NULL bref is returned
5280   * in *bresp.
5281   *
5282   *
5283   * The returned chain is not locked or referenced.  Use the returned bref
5284   * to determine if the search exhausted or not.  Iterate if the base find
5285   * is chosen but matches a deleted chain.
5286   *
5287   * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5288   *	     held through the operation.
5289   */
5290  hammer2_chain_t *
5291  hammer2_combined_find(hammer2_chain_t *parent,
5292  		      hammer2_blockref_t *base, int count,
5293  		      hammer2_key_t *key_nextp,
5294  		      hammer2_key_t key_beg, hammer2_key_t key_end,
5295  		      hammer2_blockref_t **bresp)
5296  {
5297  	hammer2_blockref_t *bref;
5298  	hammer2_chain_t *chain;
5299  	int i;
5300  
5301  	/*
5302  	 * Lookup in block array and in rbtree.
5303  	 */
5304  	*key_nextp = key_end + 1;
5305  	i = hammer2_base_find(parent, base, count, key_nextp,
5306  			      key_beg, key_end);
5307  	chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5308  
5309  	/*
5310  	 * Neither matched
5311  	 */
5312  	if (i == count && chain == NULL) {
5313  		*bresp = NULL;
5314  		return(NULL);
5315  	}
5316  
5317  	/*
5318  	 * Only chain matched.
5319  	 */
5320  	if (i == count) {
5321  		bref = &chain->bref;
5322  		goto found;
5323  	}
5324  
5325  	/*
5326  	 * Only blockref matched.
5327  	 */
5328  	if (chain == NULL) {
5329  		bref = &base[i];
5330  		goto found;
5331  	}
5332  
5333  	/*
5334  	 * Both in-memory and blockref matched, select the nearer element.
5335  	 *
5336  	 * If both are flush with the left-hand side or both are the
5337  	 * same distance away, select the chain.  In this situation the
5338  	 * chain must have been loaded from the matching blockmap.
5339  	 */
5340  	if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5341  	    chain->bref.key == base[i].key) {
5342  		KKASSERT(chain->bref.key == base[i].key);
5343  		bref = &chain->bref;
5344  		goto found;
5345  	}
5346  
5347  	/*
5348  	 * Select the nearer key
5349  	 */
5350  	if (chain->bref.key < base[i].key) {
5351  		bref = &chain->bref;
5352  	} else {
5353  		bref = &base[i];
5354  		chain = NULL;
5355  	}
5356  
5357  	/*
5358  	 * If the bref is out of bounds we've exhausted our search.
5359  	 */
5360  found:
5361  	if (bref->key > key_end) {
5362  		*bresp = NULL;
5363  		chain = NULL;
5364  	} else {
5365  		*bresp = bref;
5366  	}
5367  	return(chain);
5368  }
5369  
5370  /*
5371   * Locate the specified block array element and delete it.  The element
5372   * must exist.
5373   *
5374   * The spin lock on the related chain must be held.
5375   *
5376   * NOTE: live_count was adjusted when the chain was deleted, so it does not
5377   *	 need to be adjusted when we commit the media change.
5378   */
5379  void
5380  hammer2_base_delete(hammer2_chain_t *parent,
5381  		    hammer2_blockref_t *base, int count,
5382  		    hammer2_chain_t *chain,
5383  		    hammer2_blockref_t *obref)
5384  {
5385  	hammer2_blockref_t *elm = &chain->bref;
5386  	hammer2_blockref_t *scan;
5387  	hammer2_key_t key_next;
5388  	int i;
5389  
5390  	/*
5391  	 * Delete element.  Expect the element to exist.
5392  	 *
5393  	 * XXX see caller, flush code not yet sophisticated enough to prevent
5394  	 *     re-flushed in some cases.
5395  	 */
5396  	key_next = 0; /* max range */
5397  	i = hammer2_base_find(parent, base, count, &key_next,
5398  			      elm->key, elm->key);
5399  	scan = &base[i];
5400  	if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5401  	    scan->key != elm->key ||
5402  	    ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5403  	     scan->keybits != elm->keybits)) {
5404  		hammer2_spin_unex(&parent->core.spin);
5405  		panic("delete base %p element not found at %d/%d elm %p\n",
5406  		      base, i, count, elm);
5407  		return;
5408  	}
5409  
5410  	/*
5411  	 * Update stats and zero the entry.
5412  	 *
5413  	 * NOTE: Handle radix == 0 (0 bytes) case.
5414  	 */
5415  	if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5416  		parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5417  				(int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5418  	}
5419  	switch(scan->type) {
5420  	case HAMMER2_BREF_TYPE_INODE:
5421  		--parent->bref.embed.stats.inode_count;
5422  		/* fall through */
5423  	case HAMMER2_BREF_TYPE_DATA:
5424  		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5425  			atomic_set_int(&chain->flags,
5426  				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5427  		} else {
5428  			if (parent->bref.leaf_count)
5429  				--parent->bref.leaf_count;
5430  		}
5431  		/* fall through */
5432  	case HAMMER2_BREF_TYPE_INDIRECT:
5433  		if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5434  			parent->bref.embed.stats.data_count -=
5435  				scan->embed.stats.data_count;
5436  			parent->bref.embed.stats.inode_count -=
5437  				scan->embed.stats.inode_count;
5438  		}
5439  		if (scan->type == HAMMER2_BREF_TYPE_INODE)
5440  			break;
5441  		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5442  			atomic_set_int(&chain->flags,
5443  				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5444  		} else {
5445  			if (parent->bref.leaf_count <= scan->leaf_count)
5446  				parent->bref.leaf_count = 0;
5447  			else
5448  				parent->bref.leaf_count -= scan->leaf_count;
5449  		}
5450  		break;
5451  	case HAMMER2_BREF_TYPE_DIRENT:
5452  		if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5453  			atomic_set_int(&chain->flags,
5454  				       HAMMER2_CHAIN_HINT_LEAF_COUNT);
5455  		} else {
5456  			if (parent->bref.leaf_count)
5457  				--parent->bref.leaf_count;
5458  		}
5459  	default:
5460  		break;
5461  	}
5462  
5463  	if (obref)
5464  		*obref = *scan;
5465  	bzero(scan, sizeof(*scan));
5466  
5467  	/*
5468  	 * We can only optimize parent->core.live_zero for live chains.
5469  	 */
5470  	if (parent->core.live_zero == i + 1) {
5471  		while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5472  			;
5473  		parent->core.live_zero = i + 1;
5474  	}
5475  
5476  	/*
5477  	 * Clear appropriate blockmap flags in chain.
5478  	 */
5479  	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5480  					HAMMER2_CHAIN_BMAPUPD);
5481  }
5482  
5483  /*
5484   * Insert the specified element.  The block array must not already have the
5485   * element and must have space available for the insertion.
5486   *
5487   * The spin lock on the related chain must be held.
5488   *
5489   * NOTE: live_count was adjusted when the chain was deleted, so it does not
5490   *	 need to be adjusted when we commit the media change.
5491   */
5492  void
5493  hammer2_base_insert(hammer2_chain_t *parent,
5494  		    hammer2_blockref_t *base, int count,
5495  		    hammer2_chain_t *chain, hammer2_blockref_t *elm)
5496  {
5497  	hammer2_key_t key_next;
5498  	hammer2_key_t xkey;
5499  	int i;
5500  	int j;
5501  	int k;
5502  	int l;
5503  	int u = 1;
5504  
5505  	/*
5506  	 * Insert new element.  Expect the element to not already exist
5507  	 * unless we are replacing it.
5508  	 *
5509  	 * XXX see caller, flush code not yet sophisticated enough to prevent
5510  	 *     re-flushed in some cases.
5511  	 */
5512  	key_next = 0; /* max range */
5513  	i = hammer2_base_find(parent, base, count, &key_next,
5514  			      elm->key, elm->key);
5515  
5516  	/*
5517  	 * Shortcut fill optimization, typical ordered insertion(s) may not
5518  	 * require a search.
5519  	 */
5520  	KKASSERT(i >= 0 && i <= count);
5521  
5522  	/*
5523  	 * Set appropriate blockmap flags in chain (if not NULL)
5524  	 */
5525  	if (chain)
5526  		atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5527  
5528  	/*
5529  	 * Update stats and zero the entry
5530  	 */
5531  	if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5532  		parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5533  				(int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5534  	}
5535  	switch(elm->type) {
5536  	case HAMMER2_BREF_TYPE_INODE:
5537  		++parent->bref.embed.stats.inode_count;
5538  		/* fall through */
5539  	case HAMMER2_BREF_TYPE_DATA:
5540  		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5541  			++parent->bref.leaf_count;
5542  		/* fall through */
5543  	case HAMMER2_BREF_TYPE_INDIRECT:
5544  		if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5545  			parent->bref.embed.stats.data_count +=
5546  				elm->embed.stats.data_count;
5547  			parent->bref.embed.stats.inode_count +=
5548  				elm->embed.stats.inode_count;
5549  		}
5550  		if (elm->type == HAMMER2_BREF_TYPE_INODE)
5551  			break;
5552  		if (parent->bref.leaf_count + elm->leaf_count <
5553  		    HAMMER2_BLOCKREF_LEAF_MAX) {
5554  			parent->bref.leaf_count += elm->leaf_count;
5555  		} else {
5556  			parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5557  		}
5558  		break;
5559  	case HAMMER2_BREF_TYPE_DIRENT:
5560  		if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5561  			++parent->bref.leaf_count;
5562  		break;
5563  	default:
5564  		break;
5565  	}
5566  
5567  
5568  	/*
5569  	 * We can only optimize parent->core.live_zero for live chains.
5570  	 */
5571  	if (i == count && parent->core.live_zero < count) {
5572  		i = parent->core.live_zero++;
5573  		base[i] = *elm;
5574  		return;
5575  	}
5576  
5577  	xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5578  	if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5579  		hammer2_spin_unex(&parent->core.spin);
5580  		panic("insert base %p overlapping elements at %d elm %p\n",
5581  		      base, i, elm);
5582  	}
5583  
5584  	/*
5585  	 * Try to find an empty slot before or after.
5586  	 */
5587  	j = i;
5588  	k = i;
5589  	while (j > 0 || k < count) {
5590  		--j;
5591  		if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5592  			if (j == i - 1) {
5593  				base[j] = *elm;
5594  			} else {
5595  				bcopy(&base[j+1], &base[j],
5596  				      (i - j - 1) * sizeof(*base));
5597  				base[i - 1] = *elm;
5598  			}
5599  			goto validate;
5600  		}
5601  		++k;
5602  		if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5603  			bcopy(&base[i], &base[i+1],
5604  			      (k - i) * sizeof(hammer2_blockref_t));
5605  			base[i] = *elm;
5606  
5607  			/*
5608  			 * We can only update parent->core.live_zero for live
5609  			 * chains.
5610  			 */
5611  			if (parent->core.live_zero <= k)
5612  				parent->core.live_zero = k + 1;
5613  			u = 2;
5614  			goto validate;
5615  		}
5616  	}
5617  	panic("hammer2_base_insert: no room!");
5618  
5619  	/*
5620  	 * Debugging
5621  	 */
5622  validate:
5623  	key_next = 0;
5624  	for (l = 0; l < count; ++l) {
5625  		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5626  			key_next = base[l].key +
5627  				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5628  			break;
5629  		}
5630  	}
5631  	while (++l < count) {
5632  		if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5633  			if (base[l].key <= key_next)
5634  				panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5635  			key_next = base[l].key +
5636  				   ((hammer2_key_t)1 << base[l].keybits) - 1;
5637  
5638  		}
5639  	}
5640  
5641  }
5642  
5643  #if 0
5644  
5645  /*
5646   * Sort the blockref array for the chain.  Used by the flush code to
5647   * sort the blockref[] array.
5648   *
5649   * The chain must be exclusively locked AND spin-locked.
5650   */
5651  typedef hammer2_blockref_t *hammer2_blockref_p;
5652  
5653  static
5654  int
5655  hammer2_base_sort_callback(const void *v1, const void *v2)
5656  {
5657  	hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5658  	hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5659  
5660  	/*
5661  	 * Make sure empty elements are placed at the end of the array
5662  	 */
5663  	if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5664  		if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5665  			return(0);
5666  		return(1);
5667  	} else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5668  		return(-1);
5669  	}
5670  
5671  	/*
5672  	 * Sort by key
5673  	 */
5674  	if (bref1->key < bref2->key)
5675  		return(-1);
5676  	if (bref1->key > bref2->key)
5677  		return(1);
5678  	return(0);
5679  }
5680  
5681  void
5682  hammer2_base_sort(hammer2_chain_t *chain)
5683  {
5684  	hammer2_blockref_t *base;
5685  	int count;
5686  
5687  	switch(chain->bref.type) {
5688  	case HAMMER2_BREF_TYPE_INODE:
5689  		/*
5690  		 * Special shortcut for embedded data returns the inode
5691  		 * itself.  Callers must detect this condition and access
5692  		 * the embedded data (the strategy code does this for us).
5693  		 *
5694  		 * This is only applicable to regular files and softlinks.
5695  		 */
5696  		if (chain->data->ipdata.meta.op_flags &
5697  		    HAMMER2_OPFLAG_DIRECTDATA) {
5698  			return;
5699  		}
5700  		base = &chain->data->ipdata.u.blockset.blockref[0];
5701  		count = HAMMER2_SET_COUNT;
5702  		break;
5703  	case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5704  	case HAMMER2_BREF_TYPE_INDIRECT:
5705  		/*
5706  		 * Optimize indirect blocks in the INITIAL state to avoid
5707  		 * I/O.
5708  		 */
5709  		KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5710  		base = &chain->data->npdata[0];
5711  		count = chain->bytes / sizeof(hammer2_blockref_t);
5712  		break;
5713  	case HAMMER2_BREF_TYPE_VOLUME:
5714  		base = &chain->data->voldata.sroot_blockset.blockref[0];
5715  		count = HAMMER2_SET_COUNT;
5716  		break;
5717  	case HAMMER2_BREF_TYPE_FREEMAP:
5718  		base = &chain->data->blkset.blockref[0];
5719  		count = HAMMER2_SET_COUNT;
5720  		break;
5721  	default:
5722  		panic("hammer2_base_sort: unrecognized "
5723  		      "blockref(A) type: %d",
5724  		      chain->bref.type);
5725  		base = NULL;	/* safety */
5726  		count = 0;	/* safety */
5727  		break;
5728  	}
5729  	kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5730  }
5731  
5732  #endif
5733  
5734  /*
5735   * Set the check data for a chain.  This can be a heavy-weight operation
5736   * and typically only runs on-flush.  For file data check data is calculated
5737   * when the logical buffers are flushed.
5738   */
5739  void
5740  hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5741  {
5742  	atomic_clear_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
5743  
5744  	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5745  	case HAMMER2_CHECK_NONE:
5746  		break;
5747  	case HAMMER2_CHECK_DISABLED:
5748  		break;
5749  	case HAMMER2_CHECK_ISCSI32:
5750  		chain->bref.check.iscsi32.value =
5751  			hammer2_icrc32(bdata, chain->bytes);
5752  		break;
5753  	case HAMMER2_CHECK_XXHASH64:
5754  		chain->bref.check.xxhash64.value =
5755  			XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5756  		break;
5757  	case HAMMER2_CHECK_SHA192:
5758  		{
5759  			SHA256_CTX hash_ctx;
5760  			union {
5761  				uint8_t digest[SHA256_DIGEST_LENGTH];
5762  				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5763  			} u;
5764  
5765  			SHA256_Init(&hash_ctx);
5766  			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5767  			SHA256_Final(u.digest, &hash_ctx);
5768  			u.digest64[2] ^= u.digest64[3];
5769  			bcopy(u.digest,
5770  			      chain->bref.check.sha192.data,
5771  			      sizeof(chain->bref.check.sha192.data));
5772  		}
5773  		break;
5774  	case HAMMER2_CHECK_FREEMAP:
5775  		chain->bref.check.freemap.icrc32 =
5776  			hammer2_icrc32(bdata, chain->bytes);
5777  		break;
5778  	default:
5779  		kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5780  			chain->bref.methods);
5781  		break;
5782  	}
5783  }
5784  
5785  /*
5786   * Characterize a failed check code and try to trace back to the inode.
5787   */
5788  static void
5789  hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5790  				  int bits)
5791  {
5792  	hammer2_chain_t *lchain;
5793  	hammer2_chain_t *ochain;
5794  	int did;
5795  
5796  	did = krateprintf(&krate_h2chk,
5797  		"chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5798  		"(flags=%08x, bref/data ",
5799  		chain->bref.data_off,
5800  		chain->bref.type,
5801  		hammer2_bref_type_str(chain->bref.type),
5802  		chain->bref.methods,
5803  		chain->flags);
5804  	if (did == 0)
5805  		return;
5806  
5807  	if (bits == 32) {
5808  		kprintf("%08x/%08x)\n",
5809  			chain->bref.check.iscsi32.value,
5810  			(uint32_t)check);
5811  	} else {
5812  		kprintf("%016jx/%016jx)\n",
5813  			chain->bref.check.xxhash64.value,
5814  			check);
5815  	}
5816  
5817  	/*
5818  	 * Run up the chains to try to find the governing inode so we
5819  	 * can report it.
5820  	 *
5821  	 * XXX This error reporting is not really MPSAFE
5822  	 */
5823  	ochain = chain;
5824  	lchain = chain;
5825  	while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5826  		lchain = chain;
5827  		chain = chain->parent;
5828  	}
5829  
5830  	if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5831  	    ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5832  	     (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5833  		kprintf("   Resides at/in inode %ld\n",
5834  			chain->bref.key);
5835  	} else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5836  		kprintf("   Resides in inode index - CRITICAL!!!\n");
5837  	} else {
5838  		kprintf("   Resides in root index - CRITICAL!!!\n");
5839  	}
5840  	if (ochain->hmp) {
5841  		const char *pfsname = "UNKNOWN";
5842  		int i;
5843  
5844  		if (ochain->pmp) {
5845  			for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5846  				if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5847  				    ochain->pmp->pfs_names[i]) {
5848  					pfsname = ochain->pmp->pfs_names[i];
5849  					break;
5850  				}
5851  			}
5852  		}
5853  		kprintf("   In pfs %s on device %s\n",
5854  			pfsname, ochain->hmp->devrepname);
5855  	}
5856  }
5857  
5858  /*
5859   * Returns non-zero on success, 0 on failure.
5860   */
5861  int
5862  hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5863  {
5864  	uint32_t check32;
5865  	uint64_t check64;
5866  	int r;
5867  
5868  	if (chain->flags & HAMMER2_CHAIN_NOTTESTED)
5869  		return 1;
5870  
5871  	switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5872  	case HAMMER2_CHECK_NONE:
5873  		r = 1;
5874  		break;
5875  	case HAMMER2_CHECK_DISABLED:
5876  		r = 1;
5877  		break;
5878  	case HAMMER2_CHECK_ISCSI32:
5879  		check32 = hammer2_icrc32(bdata, chain->bytes);
5880  		r = (chain->bref.check.iscsi32.value == check32);
5881  		if (r == 0) {
5882  			hammer2_characterize_failed_chain(chain, check32, 32);
5883  		}
5884  		hammer2_process_icrc32 += chain->bytes;
5885  		break;
5886  	case HAMMER2_CHECK_XXHASH64:
5887  		check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5888  		r = (chain->bref.check.xxhash64.value == check64);
5889  		if (r == 0) {
5890  			hammer2_characterize_failed_chain(chain, check64, 64);
5891  		}
5892  		hammer2_process_xxhash64 += chain->bytes;
5893  		break;
5894  	case HAMMER2_CHECK_SHA192:
5895  		{
5896  			SHA256_CTX hash_ctx;
5897  			union {
5898  				uint8_t digest[SHA256_DIGEST_LENGTH];
5899  				uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5900  			} u;
5901  
5902  			SHA256_Init(&hash_ctx);
5903  			SHA256_Update(&hash_ctx, bdata, chain->bytes);
5904  			SHA256_Final(u.digest, &hash_ctx);
5905  			u.digest64[2] ^= u.digest64[3];
5906  			if (bcmp(u.digest,
5907  				 chain->bref.check.sha192.data,
5908  			         sizeof(chain->bref.check.sha192.data)) == 0) {
5909  				r = 1;
5910  			} else {
5911  				r = 0;
5912  				krateprintf(&krate_h2chk,
5913  					"chain %016jx.%02x meth=%02x "
5914  					"CHECK FAIL\n",
5915  					chain->bref.data_off,
5916  					chain->bref.type,
5917  					chain->bref.methods);
5918  			}
5919  		}
5920  		break;
5921  	case HAMMER2_CHECK_FREEMAP:
5922  		r = (chain->bref.check.freemap.icrc32 ==
5923  		     hammer2_icrc32(bdata, chain->bytes));
5924  		if (r == 0) {
5925  			int did;
5926  
5927  			did = krateprintf(&krate_h2chk,
5928  					  "chain %016jx.%02x meth=%02x "
5929  					  "CHECK FAIL\n",
5930  					  chain->bref.data_off,
5931  					  chain->bref.type,
5932  					  chain->bref.methods);
5933  			if (did) {
5934  				kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
5935  					chain->bref.check.freemap.icrc32,
5936  					hammer2_icrc32(bdata, chain->bytes),
5937  					chain->bytes);
5938  				if (chain->dio) {
5939  					kprintf("dio %p buf %016jx,%d "
5940  						"bdata %p/%p\n",
5941  						chain->dio,
5942  						chain->dio->bp->b_loffset,
5943  						chain->dio->bp->b_bufsize,
5944  						bdata,
5945  						chain->dio->bp->b_data);
5946  				}
5947  			}
5948  		}
5949  		break;
5950  	default:
5951  		kprintf("hammer2_chain_testcheck: unknown check type %02x\n",
5952  			chain->bref.methods);
5953  		r = 1;
5954  		break;
5955  	}
5956  	return r;
5957  }
5958  
5959  /*
5960   * Acquire the chain and parent representing the specified inode for the
5961   * device at the specified cluster index.
5962   *
5963   * The flags passed in are LOOKUP flags, not RESOLVE flags.
5964   *
5965   * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
5966   * *chainp will be NULL.  *parentp may still be set error or not, or NULL
5967   * if the parent itself could not be resolved.
5968   *
5969   * The caller may pass-in a locked *parentp and/or *chainp, or neither.
5970   * They will be unlocked and released by this function.  The *parentp and
5971   * *chainp representing the located inode are returned locked.
5972   */
5973  int
5974  hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
5975  			 int clindex, int flags,
5976  			 hammer2_chain_t **parentp, hammer2_chain_t **chainp)
5977  {
5978  	hammer2_chain_t *parent;
5979  	hammer2_chain_t *rchain;
5980  	hammer2_key_t key_dummy;
5981  	hammer2_inode_t *ip;
5982  	int resolve_flags;
5983  	int error;
5984  
5985  	resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
5986  			HAMMER2_RESOLVE_SHARED : 0;
5987  
5988  	/*
5989  	 * Caller expects us to replace these.
5990  	 */
5991  	if (*chainp) {
5992  		hammer2_chain_unlock(*chainp);
5993  		hammer2_chain_drop(*chainp);
5994  		*chainp = NULL;
5995  	}
5996  	if (*parentp) {
5997  		hammer2_chain_unlock(*parentp);
5998  		hammer2_chain_drop(*parentp);
5999  		*parentp = NULL;
6000  	}
6001  
6002  	/*
6003  	 * Be very careful, this is a backend function and we CANNOT
6004  	 * lock any frontend inode structure we find.  But we have to
6005  	 * look the inode up this way first in case it exists but is
6006  	 * detached from the radix tree.
6007  	 */
6008  	ip = hammer2_inode_lookup(pmp, inum);
6009  	if (ip) {
6010  		*chainp = hammer2_inode_chain_and_parent(ip, clindex,
6011  						       parentp,
6012  						       resolve_flags);
6013  		hammer2_inode_drop(ip);
6014  		if (*chainp)
6015  			return 0;
6016  		hammer2_chain_unlock(*chainp);
6017  		hammer2_chain_drop(*chainp);
6018  		*chainp = NULL;
6019  		if (*parentp) {
6020  			hammer2_chain_unlock(*parentp);
6021  			hammer2_chain_drop(*parentp);
6022  			*parentp = NULL;
6023  		}
6024  	}
6025  
6026  	/*
6027  	 * Inodes hang off of the iroot (bit 63 is clear, differentiating
6028  	 * inodes from root directory entries in the key lookup).
6029  	 */
6030  	parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6031  	rchain = NULL;
6032  	if (parent) {
6033  		rchain = hammer2_chain_lookup(&parent, &key_dummy,
6034  					      inum, inum,
6035  					      &error, flags);
6036  	} else {
6037  		error = HAMMER2_ERROR_EIO;
6038  	}
6039  	*parentp = parent;
6040  	*chainp = rchain;
6041  
6042  	return error;
6043  }
6044  
6045  /*
6046   * Used by the bulkscan code to snapshot the synchronized storage for
6047   * a volume, allowing it to be scanned concurrently against normal
6048   * operation.
6049   */
6050  hammer2_chain_t *
6051  hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6052  {
6053  	hammer2_chain_t *copy;
6054  
6055  	copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6056  	copy->data = kmalloc(sizeof(copy->data->voldata),
6057  			     hmp->mchain,
6058  			     M_WAITOK | M_ZERO);
6059  	hammer2_voldata_lock(hmp);
6060  	copy->data->voldata = hmp->volsync;
6061  	hammer2_voldata_unlock(hmp);
6062  
6063  	return copy;
6064  }
6065  
6066  void
6067  hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6068  {
6069  	KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6070  	KKASSERT(copy->data);
6071  	kfree(copy->data, copy->hmp->mchain);
6072  	copy->data = NULL;
6073  	atomic_add_long(&hammer2_chain_allocs, -1);
6074  	hammer2_chain_drop(copy);
6075  }
6076  
6077  /*
6078   * Returns non-zero if the chain (INODE or DIRENT) matches the
6079   * filename.
6080   */
6081  int
6082  hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6083  			  size_t name_len)
6084  {
6085  	const hammer2_inode_data_t *ripdata;
6086  
6087  	if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6088  		ripdata = &chain->data->ipdata;
6089  		if (ripdata->meta.name_len == name_len &&
6090  		    bcmp(ripdata->filename, name, name_len) == 0) {
6091  			return 1;
6092  		}
6093  	}
6094  	if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6095  	    chain->bref.embed.dirent.namlen == name_len) {
6096  		if (name_len > sizeof(chain->bref.check.buf) &&
6097  		    bcmp(chain->data->buf, name, name_len) == 0) {
6098  			return 1;
6099  		}
6100  		if (name_len <= sizeof(chain->bref.check.buf) &&
6101  		    bcmp(chain->bref.check.buf, name, name_len) == 0) {
6102  			return 1;
6103  		}
6104  	}
6105  	return 0;
6106  }
6107