xref: /dflybsd-src/sys/vfs/hammer2/hammer2_admin.c (revision fc962bc679e9e19b6e8b92bfd9d55faf0515eacd)
1 /*
2  * Copyright (c) 2015 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * This module implements the hammer2 helper thread API, including
36  * the frontend/backend XOP API.
37  */
38 #include "hammer2.h"
39 
40 /*
41  * Set flags and wakeup any waiters.
42  *
43  * WARNING! During teardown (thr) can disappear the instant our cmpset
44  *	    succeeds.
45  */
46 void
47 hammer2_thr_signal(hammer2_thread_t *thr, uint32_t flags)
48 {
49 	uint32_t oflags;
50 	uint32_t nflags;
51 
52 	for (;;) {
53 		oflags = thr->flags;
54 		cpu_ccfence();
55 		nflags = (oflags | flags) & ~HAMMER2_THREAD_WAITING;
56 
57 		if (oflags & HAMMER2_THREAD_WAITING) {
58 			if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
59 				wakeup(&thr->flags);
60 				break;
61 			}
62 		} else {
63 			if (atomic_cmpset_int(&thr->flags, oflags, nflags))
64 				break;
65 		}
66 	}
67 }
68 
69 /*
70  * Set and clear flags and wakeup any waiters.
71  *
72  * WARNING! During teardown (thr) can disappear the instant our cmpset
73  *	    succeeds.
74  */
75 void
76 hammer2_thr_signal2(hammer2_thread_t *thr, uint32_t posflags, uint32_t negflags)
77 {
78 	uint32_t oflags;
79 	uint32_t nflags;
80 
81 	for (;;) {
82 		oflags = thr->flags;
83 		cpu_ccfence();
84 		nflags = (oflags | posflags) &
85 			~(negflags | HAMMER2_THREAD_WAITING);
86 		if (oflags & HAMMER2_THREAD_WAITING) {
87 			if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
88 				wakeup(&thr->flags);
89 				break;
90 			}
91 		} else {
92 			if (atomic_cmpset_int(&thr->flags, oflags, nflags))
93 				break;
94 		}
95 	}
96 }
97 
98 /*
99  * Wait until all the bits in flags are set.
100  *
101  * WARNING! During teardown (thr) can disappear the instant our cmpset
102  *	    succeeds.
103  */
104 void
105 hammer2_thr_wait(hammer2_thread_t *thr, uint32_t flags)
106 {
107 	uint32_t oflags;
108 	uint32_t nflags;
109 
110 	for (;;) {
111 		oflags = thr->flags;
112 		cpu_ccfence();
113 		if ((oflags & flags) == flags)
114 			break;
115 		nflags = oflags | HAMMER2_THREAD_WAITING;
116 		tsleep_interlock(&thr->flags, 0);
117 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
118 			tsleep(&thr->flags, PINTERLOCKED, "h2twait", hz*60);
119 		}
120 	}
121 }
122 
123 /*
124  * Wait until any of the bits in flags are set, with timeout.
125  *
126  * WARNING! During teardown (thr) can disappear the instant our cmpset
127  *	    succeeds.
128  */
129 int
130 hammer2_thr_wait_any(hammer2_thread_t *thr, uint32_t flags, int timo)
131 {
132 	uint32_t oflags;
133 	uint32_t nflags;
134 	int error;
135 
136 	error = 0;
137 	for (;;) {
138 		oflags = thr->flags;
139 		cpu_ccfence();
140 		if (oflags & flags)
141 			break;
142 		nflags = oflags | HAMMER2_THREAD_WAITING;
143 		tsleep_interlock(&thr->flags, 0);
144 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
145 			error = tsleep(&thr->flags, PINTERLOCKED,
146 				       "h2twait", timo);
147 		}
148 		if (error == ETIMEDOUT) {
149 			error = HAMMER2_ERROR_ETIMEDOUT;
150 			break;
151 		}
152 	}
153 	return error;
154 }
155 
156 /*
157  * Wait until the bits in flags are clear.
158  *
159  * WARNING! During teardown (thr) can disappear the instant our cmpset
160  *	    succeeds.
161  */
162 void
163 hammer2_thr_wait_neg(hammer2_thread_t *thr, uint32_t flags)
164 {
165 	uint32_t oflags;
166 	uint32_t nflags;
167 
168 	for (;;) {
169 		oflags = thr->flags;
170 		cpu_ccfence();
171 		if ((oflags & flags) == 0)
172 			break;
173 		nflags = oflags | HAMMER2_THREAD_WAITING;
174 		tsleep_interlock(&thr->flags, 0);
175 		if (atomic_cmpset_int(&thr->flags, oflags, nflags)) {
176 			tsleep(&thr->flags, PINTERLOCKED, "h2twait", hz*60);
177 		}
178 	}
179 }
180 
181 /*
182  * Initialize the supplied thread structure, starting the specified
183  * thread.
184  *
185  * NOTE: thr structure can be retained across mounts and unmounts for this
186  *	 pmp, so make sure the flags are in a sane state.
187  */
188 void
189 hammer2_thr_create(hammer2_thread_t *thr, hammer2_pfs_t *pmp,
190 		   hammer2_dev_t *hmp,
191 		   const char *id, int clindex, int repidx,
192 		   void (*func)(void *arg))
193 {
194 	thr->pmp = pmp;		/* xop helpers */
195 	thr->hmp = hmp;		/* bulkfree */
196 	thr->clindex = clindex;
197 	thr->repidx = repidx;
198 	TAILQ_INIT(&thr->xopq);
199 	atomic_clear_int(&thr->flags, HAMMER2_THREAD_STOP |
200 				      HAMMER2_THREAD_STOPPED |
201 				      HAMMER2_THREAD_FREEZE |
202 				      HAMMER2_THREAD_FROZEN);
203 	if (thr->scratch == NULL)
204 		thr->scratch = kmalloc(MAXPHYS, M_HAMMER2, M_WAITOK | M_ZERO);
205 	if (repidx >= 0) {
206 		lwkt_create(func, thr, &thr->td, NULL, 0, repidx % ncpus,
207 			    "%s-%s.%02d", id, pmp->pfs_names[clindex], repidx);
208 	} else if (pmp) {
209 		lwkt_create(func, thr, &thr->td, NULL, 0, -1,
210 			    "%s-%s", id, pmp->pfs_names[clindex]);
211 	} else {
212 		lwkt_create(func, thr, &thr->td, NULL, 0, -1, "%s", id);
213 	}
214 }
215 
216 /*
217  * Terminate a thread.  This function will silently return if the thread
218  * was never initialized or has already been deleted.
219  *
220  * This is accomplished by setting the STOP flag and waiting for the td
221  * structure to become NULL.
222  */
223 void
224 hammer2_thr_delete(hammer2_thread_t *thr)
225 {
226 	if (thr->td == NULL)
227 		return;
228 	hammer2_thr_signal(thr, HAMMER2_THREAD_STOP);
229 	hammer2_thr_wait(thr, HAMMER2_THREAD_STOPPED);
230 	thr->pmp = NULL;
231 	if (thr->scratch) {
232 		kfree(thr->scratch, M_HAMMER2);
233 		thr->scratch = NULL;
234 	}
235 	KKASSERT(TAILQ_EMPTY(&thr->xopq));
236 }
237 
238 /*
239  * Asynchronous remaster request.  Ask the synchronization thread to
240  * start over soon (as if it were frozen and unfrozen, but without waiting).
241  * The thread always recalculates mastership relationships when restarting.
242  */
243 void
244 hammer2_thr_remaster(hammer2_thread_t *thr)
245 {
246 	if (thr->td == NULL)
247 		return;
248 	hammer2_thr_signal(thr, HAMMER2_THREAD_REMASTER);
249 }
250 
251 void
252 hammer2_thr_freeze_async(hammer2_thread_t *thr)
253 {
254 	hammer2_thr_signal(thr, HAMMER2_THREAD_FREEZE);
255 }
256 
257 void
258 hammer2_thr_freeze(hammer2_thread_t *thr)
259 {
260 	if (thr->td == NULL)
261 		return;
262 	hammer2_thr_signal(thr, HAMMER2_THREAD_FREEZE);
263 	hammer2_thr_wait(thr, HAMMER2_THREAD_FROZEN);
264 }
265 
266 void
267 hammer2_thr_unfreeze(hammer2_thread_t *thr)
268 {
269 	if (thr->td == NULL)
270 		return;
271 	hammer2_thr_signal(thr, HAMMER2_THREAD_UNFREEZE);
272 	hammer2_thr_wait_neg(thr, HAMMER2_THREAD_FROZEN);
273 }
274 
275 int
276 hammer2_thr_break(hammer2_thread_t *thr)
277 {
278 	if (thr->flags & (HAMMER2_THREAD_STOP |
279 			  HAMMER2_THREAD_REMASTER |
280 			  HAMMER2_THREAD_FREEZE)) {
281 		return 1;
282 	}
283 	return 0;
284 }
285 
286 /****************************************************************************
287  *			    HAMMER2 XOPS API	 			    *
288  ****************************************************************************/
289 
290 void
291 hammer2_xop_group_init(hammer2_pfs_t *pmp, hammer2_xop_group_t *xgrp)
292 {
293 	/* no extra fields in structure at the moment */
294 }
295 
296 /*
297  * Allocate a XOP request.
298  *
299  * Once allocated a XOP request can be started, collected, and retired,
300  * and can be retired early if desired.
301  *
302  * NOTE: Fifo indices might not be zero but ri == wi on objcache_get().
303  */
304 void *
305 hammer2_xop_alloc(hammer2_inode_t *ip, int flags)
306 {
307 	hammer2_xop_t *xop;
308 
309 	xop = objcache_get(cache_xops, M_WAITOK);
310 	KKASSERT(xop->head.cluster.array[0].chain == NULL);
311 
312 	xop->head.ip1 = ip;
313 	xop->head.func = NULL;
314 	xop->head.flags = flags;
315 	xop->head.state = 0;
316 	xop->head.error = 0;
317 	xop->head.collect_key = 0;
318 	xop->head.check_counter = 0;
319 	if (flags & HAMMER2_XOP_MODIFYING)
320 		xop->head.mtid = hammer2_trans_sub(ip->pmp);
321 	else
322 		xop->head.mtid = 0;
323 
324 	xop->head.cluster.nchains = ip->cluster.nchains;
325 	xop->head.cluster.pmp = ip->pmp;
326 	xop->head.cluster.flags = HAMMER2_CLUSTER_LOCKED;
327 
328 	/*
329 	 * run_mask - Active thread (or frontend) associated with XOP
330 	 */
331 	xop->head.run_mask = HAMMER2_XOPMASK_VOP;
332 
333 	hammer2_inode_ref(ip);
334 
335 	return xop;
336 }
337 
338 void
339 hammer2_xop_setname(hammer2_xop_head_t *xop, const char *name, size_t name_len)
340 {
341 	xop->name1 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
342 	xop->name1_len = name_len;
343 	bcopy(name, xop->name1, name_len);
344 }
345 
346 void
347 hammer2_xop_setname2(hammer2_xop_head_t *xop, const char *name, size_t name_len)
348 {
349 	xop->name2 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
350 	xop->name2_len = name_len;
351 	bcopy(name, xop->name2, name_len);
352 }
353 
354 size_t
355 hammer2_xop_setname_inum(hammer2_xop_head_t *xop, hammer2_key_t inum)
356 {
357 	const size_t name_len = 18;
358 
359 	xop->name1 = kmalloc(name_len + 1, M_HAMMER2, M_WAITOK | M_ZERO);
360 	xop->name1_len = name_len;
361 	ksnprintf(xop->name1, name_len + 1, "0x%016jx", (intmax_t)inum);
362 
363 	return name_len;
364 }
365 
366 
367 void
368 hammer2_xop_setip2(hammer2_xop_head_t *xop, hammer2_inode_t *ip2)
369 {
370 	xop->ip2 = ip2;
371 	hammer2_inode_ref(ip2);
372 }
373 
374 void
375 hammer2_xop_setip3(hammer2_xop_head_t *xop, hammer2_inode_t *ip3)
376 {
377 	xop->ip3 = ip3;
378 	hammer2_inode_ref(ip3);
379 }
380 
381 void
382 hammer2_xop_reinit(hammer2_xop_head_t *xop)
383 {
384 	xop->state = 0;
385 	xop->error = 0;
386 	xop->collect_key = 0;
387 	xop->run_mask = HAMMER2_XOPMASK_VOP;
388 }
389 
390 /*
391  * A mounted PFS needs Xops threads to support frontend operations.
392  */
393 void
394 hammer2_xop_helper_create(hammer2_pfs_t *pmp)
395 {
396 	int i;
397 	int j;
398 
399 	lockmgr(&pmp->lock, LK_EXCLUSIVE);
400 	pmp->has_xop_threads = 1;
401 
402 	for (i = 0; i < pmp->iroot->cluster.nchains; ++i) {
403 		for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
404 			if (pmp->xop_groups[j].thrs[i].td)
405 				continue;
406 			hammer2_thr_create(&pmp->xop_groups[j].thrs[i],
407 					   pmp, NULL,
408 					   "h2xop", i, j,
409 					   hammer2_primary_xops_thread);
410 		}
411 	}
412 	lockmgr(&pmp->lock, LK_RELEASE);
413 }
414 
415 void
416 hammer2_xop_helper_cleanup(hammer2_pfs_t *pmp)
417 {
418 	int i;
419 	int j;
420 
421 	for (i = 0; i < pmp->pfs_nmasters; ++i) {
422 		for (j = 0; j < HAMMER2_XOPGROUPS; ++j) {
423 			if (pmp->xop_groups[j].thrs[i].td)
424 				hammer2_thr_delete(&pmp->xop_groups[j].thrs[i]);
425 		}
426 	}
427 	pmp->has_xop_threads = 0;
428 }
429 
430 /*
431  * Start a XOP request, queueing it to all nodes in the cluster to
432  * execute the cluster op.
433  *
434  * XXX optimize single-target case.
435  */
436 void
437 hammer2_xop_start_except(hammer2_xop_head_t *xop, hammer2_xop_func_t func,
438 			 int notidx)
439 {
440 	hammer2_inode_t *ip1;
441 	hammer2_pfs_t *pmp;
442 	hammer2_thread_t *thr;
443 	int i;
444 	int ng;
445 	int nchains;
446 
447 	ip1 = xop->ip1;
448 	pmp = ip1->pmp;
449 	if (pmp->has_xop_threads == 0)
450 		hammer2_xop_helper_create(pmp);
451 
452 	/*
453 	 * The intent of the XOP sequencer is to ensure that ops on the same
454 	 * inode execute in the same order.  This is necessary when issuing
455 	 * modifying operations to multiple targets because some targets might
456 	 * get behind and the frontend is allowed to complete the moment a
457 	 * quorum of targets succeed.
458 	 *
459 	 * Strategy operations must be segregated from non-strategy operations
460 	 * to avoid a deadlock.  For example, if a vfsync and a bread/bwrite
461 	 * were queued to the same worker thread, the locked buffer in the
462 	 * strategy operation can deadlock the vfsync's buffer list scan.
463 	 *
464 	 * TODO - RENAME fails here because it is potentially modifying
465 	 *	  three different inodes.
466 	 */
467 	if (xop->flags & HAMMER2_XOP_STRATEGY) {
468 		hammer2_xop_strategy_t *xopst;
469 
470 		xopst = &((hammer2_xop_t *)xop)->xop_strategy;
471 		ng = (int)(hammer2_icrc32(&xop->ip1, sizeof(xop->ip1)) ^
472 			   hammer2_icrc32(&xopst->lbase, sizeof(xopst->lbase)));
473 		ng = ng & (HAMMER2_XOPGROUPS_MASK >> 1);
474 		ng += HAMMER2_XOPGROUPS / 2;
475 	} else {
476 		ng = (int)(hammer2_icrc32(&xop->ip1, sizeof(xop->ip1)));
477 		ng = ng & (HAMMER2_XOPGROUPS_MASK >> 1);
478 	}
479 	xop->func = func;
480 
481 	/*
482 	 * The instant xop is queued another thread can pick it off.  In the
483 	 * case of asynchronous ops, another thread might even finish and
484 	 * deallocate it.
485 	 */
486 	hammer2_spin_ex(&pmp->xop_spin);
487 	nchains = ip1->cluster.nchains;
488 	for (i = 0; i < nchains; ++i) {
489 		/*
490 		 * XXX ip1->cluster.array* not stable here.  This temporary
491 		 *     hack fixes basic issues in target XOPs which need to
492 		 *     obtain a starting chain from the inode but does not
493 		 *     address possible races against inode updates which
494 		 *     might NULL-out a chain.
495 		 */
496 		if (i != notidx && ip1->cluster.array[i].chain) {
497 			thr = &pmp->xop_groups[ng].thrs[i];
498 			atomic_set_int(&xop->run_mask, 1U << i);
499 			atomic_set_int(&xop->chk_mask, 1U << i);
500 			xop->collect[i].thr = thr;
501 			TAILQ_INSERT_TAIL(&thr->xopq, xop, collect[i].entry);
502 		}
503 	}
504 	hammer2_spin_unex(&pmp->xop_spin);
505 	/* xop can become invalid at this point */
506 
507 	/*
508 	 * Each thread has its own xopq
509 	 */
510 	for (i = 0; i < nchains; ++i) {
511 		if (i != notidx) {
512 			thr = &pmp->xop_groups[ng].thrs[i];
513 			hammer2_thr_signal(thr, HAMMER2_THREAD_XOPQ);
514 		}
515 	}
516 }
517 
518 void
519 hammer2_xop_start(hammer2_xop_head_t *xop, hammer2_xop_func_t func)
520 {
521 	hammer2_xop_start_except(xop, func, -1);
522 }
523 
524 /*
525  * Retire a XOP.  Used by both the VOP frontend and by the XOP backend.
526  */
527 void
528 hammer2_xop_retire(hammer2_xop_head_t *xop, uint32_t mask)
529 {
530 	hammer2_chain_t *chain;
531 	uint32_t nmask;
532 	int i;
533 
534 	/*
535 	 * Remove the frontend collector or remove a backend feeder.
536 	 * When removing the frontend we must wakeup any backend feeders
537 	 * who are waiting for FIFO space.
538 	 *
539 	 * XXX optimize wakeup.
540 	 */
541 	KKASSERT(xop->run_mask & mask);
542 	nmask = atomic_fetchadd_int(&xop->run_mask, -mask);
543 	if ((nmask & ~HAMMER2_XOPMASK_FIFOW) != mask) {
544 		if (mask == HAMMER2_XOPMASK_VOP) {
545 			if (nmask & HAMMER2_XOPMASK_FIFOW)
546 				wakeup(xop);
547 		}
548 		return;
549 	}
550 	/* else nobody else left, we can ignore FIFOW */
551 
552 	/*
553 	 * All collectors are gone, we can cleanup and dispose of the XOP.
554 	 * Note that this can wind up being a frontend OR a backend.
555 	 * Pending chains are locked shared and not owned by any thread.
556 	 *
557 	 * Cleanup the collection cluster.
558 	 */
559 	for (i = 0; i < xop->cluster.nchains; ++i) {
560 		xop->cluster.array[i].flags = 0;
561 		chain = xop->cluster.array[i].chain;
562 		if (chain) {
563 			xop->cluster.array[i].chain = NULL;
564 			hammer2_chain_drop_unhold(chain);
565 		}
566 	}
567 
568 	/*
569 	 * Cleanup the fifos, use check_counter to optimize the loop.
570 	 * Since we are the only entity left on this xop we don't have
571 	 * to worry about fifo flow control, and one lfence() will do the
572 	 * job.
573 	 */
574 	cpu_lfence();
575 	mask = xop->chk_mask;
576 	for (i = 0; mask && i < HAMMER2_MAXCLUSTER; ++i) {
577 		hammer2_xop_fifo_t *fifo = &xop->collect[i];
578 		while (fifo->ri != fifo->wi) {
579 			chain = fifo->array[fifo->ri & HAMMER2_XOPFIFO_MASK];
580 			if (chain)
581 				hammer2_chain_drop_unhold(chain);
582 			++fifo->ri;
583 		}
584 		mask &= ~(1U << i);
585 	}
586 
587 	/*
588 	 * The inode is only held at this point, simply drop it.
589 	 */
590 	if (xop->ip1) {
591 		hammer2_inode_drop(xop->ip1);
592 		xop->ip1 = NULL;
593 	}
594 	if (xop->ip2) {
595 		hammer2_inode_drop(xop->ip2);
596 		xop->ip2 = NULL;
597 	}
598 	if (xop->ip3) {
599 		hammer2_inode_drop(xop->ip3);
600 		xop->ip3 = NULL;
601 	}
602 	if (xop->name1) {
603 		kfree(xop->name1, M_HAMMER2);
604 		xop->name1 = NULL;
605 		xop->name1_len = 0;
606 	}
607 	if (xop->name2) {
608 		kfree(xop->name2, M_HAMMER2);
609 		xop->name2 = NULL;
610 		xop->name2_len = 0;
611 	}
612 
613 	objcache_put(cache_xops, xop);
614 }
615 
616 /*
617  * (Backend) Returns non-zero if the frontend is still attached.
618  */
619 int
620 hammer2_xop_active(hammer2_xop_head_t *xop)
621 {
622 	if (xop->run_mask & HAMMER2_XOPMASK_VOP)
623 		return 1;
624 	else
625 		return 0;
626 }
627 
628 /*
629  * (Backend) Feed chain data through the cluster validator and back to
630  * the frontend.  Chains are fed from multiple nodes concurrently
631  * and pipelined via per-node FIFOs in the XOP.
632  *
633  * The chain must be locked (either shared or exclusive).  The caller may
634  * unlock and drop the chain on return.  This function will add an extra
635  * ref and hold the chain's data for the pass-back.
636  *
637  * No xop lock is needed because we are only manipulating fields under
638  * our direct control.
639  *
640  * Returns 0 on success and a hammer error code if sync is permanently
641  * lost.  The caller retains a ref on the chain but by convention
642  * the lock is typically inherited by the xop (caller loses lock).
643  *
644  * Returns non-zero on error.  In this situation the caller retains a
645  * ref on the chain but loses the lock (we unlock here).
646  */
647 int
648 hammer2_xop_feed(hammer2_xop_head_t *xop, hammer2_chain_t *chain,
649 		 int clindex, int error)
650 {
651 	hammer2_xop_fifo_t *fifo;
652 	uint32_t mask;
653 
654 	/*
655 	 * Early termination (typicaly of xop_readir)
656 	 */
657 	if (hammer2_xop_active(xop) == 0) {
658 		error = HAMMER2_ERROR_ABORTED;
659 		goto done;
660 	}
661 
662 	/*
663 	 * Multi-threaded entry into the XOP collector.  We own the
664 	 * fifo->wi for our clindex.
665 	 */
666 	fifo = &xop->collect[clindex];
667 
668 	if (fifo->ri == fifo->wi - HAMMER2_XOPFIFO)
669 		lwkt_yield();
670 	while (fifo->ri == fifo->wi - HAMMER2_XOPFIFO) {
671 		atomic_set_int(&fifo->flags, HAMMER2_XOP_FIFO_STALL);
672 		mask = xop->run_mask;
673 		if ((mask & HAMMER2_XOPMASK_VOP) == 0) {
674 			error = HAMMER2_ERROR_ABORTED;
675 			goto done;
676 		}
677 		tsleep_interlock(xop, 0);
678 		if (atomic_cmpset_int(&xop->run_mask, mask,
679 				      mask | HAMMER2_XOPMASK_FIFOW)) {
680 			if (fifo->ri == fifo->wi - HAMMER2_XOPFIFO) {
681 				tsleep(xop, PINTERLOCKED, "h2feed", hz*60);
682 			}
683 		}
684 		/* retry */
685 	}
686 	atomic_clear_int(&fifo->flags, HAMMER2_XOP_FIFO_STALL);
687 	if (chain)
688 		hammer2_chain_ref_hold(chain);
689 	if (error == 0 && chain)
690 		error = chain->error;
691 	fifo->errors[fifo->wi & HAMMER2_XOPFIFO_MASK] = error;
692 	fifo->array[fifo->wi & HAMMER2_XOPFIFO_MASK] = chain;
693 	cpu_sfence();
694 	++fifo->wi;
695 	if (atomic_fetchadd_int(&xop->check_counter, HAMMER2_XOP_CHKINC) &
696 	    HAMMER2_XOP_CHKWAIT) {
697 		atomic_clear_int(&xop->check_counter, HAMMER2_XOP_CHKWAIT);
698 		wakeup(&xop->check_counter);
699 	}
700 	error = 0;
701 
702 	/*
703 	 * Cleanup.  If an error occurred we eat the lock.  If no error
704 	 * occurred the fifo inherits the lock and gains an additional ref.
705 	 *
706 	 * The caller's ref remains in both cases.
707 	 */
708 done:
709 	return error;
710 }
711 
712 /*
713  * (Frontend) collect a response from a running cluster op.
714  *
715  * Responses are fed from all appropriate nodes concurrently
716  * and collected into a cohesive response >= collect_key.
717  *
718  * The collector will return the instant quorum or other requirements
719  * are met, even if some nodes get behind or become non-responsive.
720  *
721  * HAMMER2_XOP_COLLECT_NOWAIT	- Used to 'poll' a completed collection,
722  *				  usually called synchronously from the
723  *				  node XOPs for the strategy code to
724  *				  fake the frontend collection and complete
725  *				  the BIO as soon as possible.
726  *
727  * HAMMER2_XOP_SYNCHRONIZER	- Reqeuest synchronization with a particular
728  *				  cluster index, prevents looping when that
729  *				  index is out of sync so caller can act on
730  *				  the out of sync element.  ESRCH and EDEADLK
731  *				  can be returned if this flag is specified.
732  *
733  * Returns 0 on success plus a filled out xop->cluster structure.
734  * Return ENOENT on normal termination.
735  * Otherwise return an error.
736  */
737 int
738 hammer2_xop_collect(hammer2_xop_head_t *xop, int flags)
739 {
740 	hammer2_xop_fifo_t *fifo;
741 	hammer2_chain_t *chain;
742 	hammer2_key_t lokey;
743 	int error;
744 	int keynull;
745 	int adv;		/* advance the element */
746 	int i;
747 	uint32_t check_counter;
748 
749 loop:
750 	/*
751 	 * First loop tries to advance pieces of the cluster which
752 	 * are out of sync.
753 	 */
754 	lokey = HAMMER2_KEY_MAX;
755 	keynull = HAMMER2_CHECK_NULL;
756 	check_counter = xop->check_counter;
757 	cpu_lfence();
758 
759 	for (i = 0; i < xop->cluster.nchains; ++i) {
760 		chain = xop->cluster.array[i].chain;
761 		if (chain == NULL) {
762 			adv = 1;
763 		} else if (chain->bref.key < xop->collect_key) {
764 			adv = 1;
765 		} else {
766 			keynull &= ~HAMMER2_CHECK_NULL;
767 			if (lokey > chain->bref.key)
768 				lokey = chain->bref.key;
769 			adv = 0;
770 		}
771 		if (adv == 0)
772 			continue;
773 
774 		/*
775 		 * Advance element if possible, advanced element may be NULL.
776 		 */
777 		if (chain)
778 			hammer2_chain_drop_unhold(chain);
779 
780 		fifo = &xop->collect[i];
781 		if (fifo->ri != fifo->wi) {
782 			cpu_lfence();
783 			chain = fifo->array[fifo->ri & HAMMER2_XOPFIFO_MASK];
784 			error = fifo->errors[fifo->ri & HAMMER2_XOPFIFO_MASK];
785 			++fifo->ri;
786 			xop->cluster.array[i].chain = chain;
787 			xop->cluster.array[i].error = error;
788 			if (chain == NULL) {
789 				/* XXX */
790 				xop->cluster.array[i].flags |=
791 							HAMMER2_CITEM_NULL;
792 			}
793 			if (fifo->wi - fifo->ri <= HAMMER2_XOPFIFO / 2) {
794 				if (fifo->flags & HAMMER2_XOP_FIFO_STALL) {
795 					atomic_clear_int(&fifo->flags,
796 						    HAMMER2_XOP_FIFO_STALL);
797 					wakeup(xop);
798 					lwkt_yield();
799 				}
800 			}
801 			--i;		/* loop on same index */
802 		} else {
803 			/*
804 			 * Retain CITEM_NULL flag.  If set just repeat EOF.
805 			 * If not, the NULL,0 combination indicates an
806 			 * operation in-progress.
807 			 */
808 			xop->cluster.array[i].chain = NULL;
809 			/* retain any CITEM_NULL setting */
810 		}
811 	}
812 
813 	/*
814 	 * Determine whether the lowest collected key meets clustering
815 	 * requirements.  Returns:
816 	 *
817 	 * 0	 	 - key valid, cluster can be returned.
818 	 *
819 	 * ENOENT	 - normal end of scan, return ENOENT.
820 	 *
821 	 * ESRCH	 - sufficient elements collected, quorum agreement
822 	 *		   that lokey is not a valid element and should be
823 	 *		   skipped.
824 	 *
825 	 * EDEADLK	 - sufficient elements collected, no quorum agreement
826 	 *		   (and no agreement possible).  In this situation a
827 	 *		   repair is needed, for now we loop.
828 	 *
829 	 * EINPROGRESS	 - insufficient elements collected to resolve, wait
830 	 *		   for event and loop.
831 	 */
832 	if ((flags & HAMMER2_XOP_COLLECT_WAITALL) &&
833 	    xop->run_mask != HAMMER2_XOPMASK_VOP) {
834 		error = HAMMER2_ERROR_EINPROGRESS;
835 	} else {
836 		error = hammer2_cluster_check(&xop->cluster, lokey, keynull);
837 	}
838 	if (error == HAMMER2_ERROR_EINPROGRESS) {
839 		if ((flags & HAMMER2_XOP_COLLECT_NOWAIT) == 0)
840 			tsleep_interlock(&xop->check_counter, 0);
841 		if (atomic_cmpset_int(&xop->check_counter,
842 				      check_counter,
843 				      check_counter | HAMMER2_XOP_CHKWAIT)) {
844 			if (flags & HAMMER2_XOP_COLLECT_NOWAIT)
845 				goto done;
846 			tsleep(&xop->check_counter, PINTERLOCKED, "h2coll", hz*60);
847 		}
848 		goto loop;
849 	}
850 	if (error == HAMMER2_ERROR_ESRCH) {
851 		if (lokey != HAMMER2_KEY_MAX) {
852 			xop->collect_key = lokey + 1;
853 			goto loop;
854 		}
855 		error = HAMMER2_ERROR_ENOENT;
856 	}
857 	if (error == HAMMER2_ERROR_EDEADLK) {
858 		kprintf("hammer2: no quorum possible lokey %016jx\n",
859 			lokey);
860 		if (lokey != HAMMER2_KEY_MAX) {
861 			xop->collect_key = lokey + 1;
862 			goto loop;
863 		}
864 		error = HAMMER2_ERROR_ENOENT;
865 	}
866 	if (lokey == HAMMER2_KEY_MAX)
867 		xop->collect_key = lokey;
868 	else
869 		xop->collect_key = lokey + 1;
870 done:
871 	return error;
872 }
873 
874 /*
875  * N x M processing threads are available to handle XOPs, N per cluster
876  * index x M cluster nodes.
877  *
878  * Locate and return the next runnable xop, or NULL if no xops are
879  * present or none of the xops are currently runnable (for various reasons).
880  * The xop is left on the queue and serves to block other dependent xops
881  * from being run.
882  *
883  * Dependent xops will not be returned.
884  *
885  * Sets HAMMER2_XOP_FIFO_RUN on the returned xop or returns NULL.
886  *
887  * NOTE! Xops run concurrently for each cluster index.
888  */
889 #define XOP_HASH_SIZE	16
890 #define XOP_HASH_MASK	(XOP_HASH_SIZE - 1)
891 
892 static __inline
893 int
894 xop_testhash(hammer2_thread_t *thr, hammer2_inode_t *ip, uint32_t *hash)
895 {
896 	uint32_t mask;
897 	int hv;
898 
899 	hv = (int)((uintptr_t)ip + (uintptr_t)thr) / sizeof(hammer2_inode_t);
900 	mask = 1U << (hv & 31);
901 	hv >>= 5;
902 
903 	return ((int)(hash[hv & XOP_HASH_MASK] & mask));
904 }
905 
906 static __inline
907 void
908 xop_sethash(hammer2_thread_t *thr, hammer2_inode_t *ip, uint32_t *hash)
909 {
910 	uint32_t mask;
911 	int hv;
912 
913 	hv = (int)((uintptr_t)ip + (uintptr_t)thr) / sizeof(hammer2_inode_t);
914 	mask = 1U << (hv & 31);
915 	hv >>= 5;
916 
917 	hash[hv & XOP_HASH_MASK] |= mask;
918 }
919 
920 static
921 hammer2_xop_head_t *
922 hammer2_xop_next(hammer2_thread_t *thr)
923 {
924 	hammer2_pfs_t *pmp = thr->pmp;
925 	int clindex = thr->clindex;
926 	uint32_t hash[XOP_HASH_SIZE] = { 0 };
927 	hammer2_xop_head_t *xop;
928 
929 	hammer2_spin_ex(&pmp->xop_spin);
930 	TAILQ_FOREACH(xop, &thr->xopq, collect[clindex].entry) {
931 		/*
932 		 * Check dependency
933 		 */
934 		if (xop_testhash(thr, xop->ip1, hash) ||
935 		    (xop->ip2 && xop_testhash(thr, xop->ip2, hash)) ||
936 		    (xop->ip3 && xop_testhash(thr, xop->ip3, hash))) {
937 			continue;
938 		}
939 		xop_sethash(thr, xop->ip1, hash);
940 		if (xop->ip2)
941 			xop_sethash(thr, xop->ip2, hash);
942 		if (xop->ip3)
943 			xop_sethash(thr, xop->ip3, hash);
944 
945 		/*
946 		 * Check already running
947 		 */
948 		if (xop->collect[clindex].flags & HAMMER2_XOP_FIFO_RUN)
949 			continue;
950 
951 		/*
952 		 * Found a good one, return it.
953 		 */
954 		atomic_set_int(&xop->collect[clindex].flags,
955 			       HAMMER2_XOP_FIFO_RUN);
956 		break;
957 	}
958 	hammer2_spin_unex(&pmp->xop_spin);
959 
960 	return xop;
961 }
962 
963 /*
964  * Remove the completed XOP from the queue, clear HAMMER2_XOP_FIFO_RUN.
965  *
966  * NOTE! Xops run concurrently for each cluster index.
967  */
968 static
969 void
970 hammer2_xop_dequeue(hammer2_thread_t *thr, hammer2_xop_head_t *xop)
971 {
972 	hammer2_pfs_t *pmp = thr->pmp;
973 	int clindex = thr->clindex;
974 
975 	hammer2_spin_ex(&pmp->xop_spin);
976 	TAILQ_REMOVE(&thr->xopq, xop, collect[clindex].entry);
977 	atomic_clear_int(&xop->collect[clindex].flags,
978 			 HAMMER2_XOP_FIFO_RUN);
979 	hammer2_spin_unex(&pmp->xop_spin);
980 	if (TAILQ_FIRST(&thr->xopq))
981 		hammer2_thr_signal(thr, HAMMER2_THREAD_XOPQ);
982 }
983 
984 /*
985  * Primary management thread for xops support.  Each node has several such
986  * threads which replicate front-end operations on cluster nodes.
987  *
988  * XOPS thread node operations, allowing the function to focus on a single
989  * node in the cluster after validating the operation with the cluster.
990  * This is primarily what prevents dead or stalled nodes from stalling
991  * the front-end.
992  */
993 void
994 hammer2_primary_xops_thread(void *arg)
995 {
996 	hammer2_thread_t *thr = arg;
997 	hammer2_pfs_t *pmp;
998 	hammer2_xop_head_t *xop;
999 	uint32_t mask;
1000 	uint32_t flags;
1001 	uint32_t nflags;
1002 	hammer2_xop_func_t last_func = NULL;
1003 
1004 	pmp = thr->pmp;
1005 	/*xgrp = &pmp->xop_groups[thr->repidx]; not needed */
1006 	mask = 1U << thr->clindex;
1007 
1008 	for (;;) {
1009 		flags = thr->flags;
1010 
1011 		/*
1012 		 * Handle stop request
1013 		 */
1014 		if (flags & HAMMER2_THREAD_STOP)
1015 			break;
1016 
1017 		/*
1018 		 * Handle freeze request
1019 		 */
1020 		if (flags & HAMMER2_THREAD_FREEZE) {
1021 			hammer2_thr_signal2(thr, HAMMER2_THREAD_FROZEN,
1022 						 HAMMER2_THREAD_FREEZE);
1023 			continue;
1024 		}
1025 
1026 		if (flags & HAMMER2_THREAD_UNFREEZE) {
1027 			hammer2_thr_signal2(thr, 0,
1028 						 HAMMER2_THREAD_FROZEN |
1029 						 HAMMER2_THREAD_UNFREEZE);
1030 			continue;
1031 		}
1032 
1033 		/*
1034 		 * Force idle if frozen until unfrozen or stopped.
1035 		 */
1036 		if (flags & HAMMER2_THREAD_FROZEN) {
1037 			hammer2_thr_wait_any(thr,
1038 					     HAMMER2_THREAD_UNFREEZE |
1039 					     HAMMER2_THREAD_STOP,
1040 					     0);
1041 			continue;
1042 		}
1043 
1044 		/*
1045 		 * Reset state on REMASTER request
1046 		 */
1047 		if (flags & HAMMER2_THREAD_REMASTER) {
1048 			hammer2_thr_signal2(thr, 0, HAMMER2_THREAD_REMASTER);
1049 			/* reset state here */
1050 			continue;
1051 		}
1052 
1053 		/*
1054 		 * Process requests.  Each request can be multi-queued.
1055 		 *
1056 		 * If we get behind and the frontend VOP is no longer active,
1057 		 * we retire the request without processing it.  The callback
1058 		 * may also abort processing if the frontend VOP becomes
1059 		 * inactive.
1060 		 */
1061 		if (flags & HAMMER2_THREAD_XOPQ) {
1062 			nflags = flags & ~HAMMER2_THREAD_XOPQ;
1063 			if (!atomic_cmpset_int(&thr->flags, flags, nflags))
1064 				continue;
1065 			flags = nflags;
1066 			/* fall through */
1067 		}
1068 		while ((xop = hammer2_xop_next(thr)) != NULL) {
1069 			if (hammer2_xop_active(xop)) {
1070 				last_func = xop->func;
1071 				xop->func(thr, (hammer2_xop_t *)xop);
1072 				hammer2_xop_dequeue(thr, xop);
1073 				hammer2_xop_retire(xop, mask);
1074 			} else {
1075 				last_func = xop->func;
1076 				hammer2_xop_feed(xop, NULL, thr->clindex,
1077 						 ECONNABORTED);
1078 				hammer2_xop_dequeue(thr, xop);
1079 				hammer2_xop_retire(xop, mask);
1080 			}
1081 		}
1082 
1083 		/*
1084 		 * Wait for event, interlock using THREAD_WAITING and
1085 		 * THREAD_SIGNAL.
1086 		 *
1087 		 * For robustness poll on a 30-second interval, but nominally
1088 		 * expect to be woken up.
1089 		 */
1090 		nflags = flags | HAMMER2_THREAD_WAITING;
1091 
1092 		tsleep_interlock(&thr->flags, 0);
1093 		if (atomic_cmpset_int(&thr->flags, flags, nflags)) {
1094 			tsleep(&thr->flags, PINTERLOCKED, "h2idle", hz*30);
1095 		}
1096 	}
1097 
1098 #if 0
1099 	/*
1100 	 * Cleanup / termination
1101 	 */
1102 	while ((xop = TAILQ_FIRST(&thr->xopq)) != NULL) {
1103 		kprintf("hammer2_thread: aborting xop %p\n", xop->func);
1104 		TAILQ_REMOVE(&thr->xopq, xop,
1105 			     collect[thr->clindex].entry);
1106 		hammer2_xop_retire(xop, mask);
1107 	}
1108 #endif
1109 	thr->td = NULL;
1110 	hammer2_thr_signal(thr, HAMMER2_THREAD_STOPPED);
1111 	/* thr structure can go invalid after this point */
1112 }
1113