1 /* 2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/vnode.h> 39 #include <sys/mount.h> 40 #include <sys/malloc.h> 41 #include <sys/nlookup.h> 42 #include <sys/fcntl.h> 43 #include <sys/sysctl.h> 44 #include <sys/buf.h> 45 #include <sys/buf2.h> 46 #include "hammer.h" 47 48 /* 49 * NOTE! Global statistics may not be MPSAFE so HAMMER never uses them 50 * in conditionals. 51 */ 52 int hammer_supported_version = HAMMER_VOL_VERSION_DEFAULT; 53 int hammer_debug_io; 54 int hammer_debug_general; 55 int hammer_debug_debug = 1; /* medium-error panics */ 56 int hammer_debug_inode; 57 int hammer_debug_locks; 58 int hammer_debug_btree; 59 int hammer_debug_tid; 60 int hammer_debug_recover; /* -1 will disable, +1 will force */ 61 int hammer_debug_recover_faults; 62 int hammer_debug_critical; /* non-zero enter debugger on error */ 63 int hammer_cluster_enable = 1; /* enable read clustering by default */ 64 int hammer_live_dedup = 0; 65 int hammer_tdmux_ticks; 66 int hammer_count_fsyncs; 67 int hammer_count_inodes; 68 int hammer_count_iqueued; 69 int hammer_count_reclaims; 70 int hammer_count_records; 71 int hammer_count_record_datas; 72 int hammer_count_volumes; 73 int hammer_count_buffers; 74 int hammer_count_nodes; 75 int64_t hammer_count_extra_space_used; 76 int64_t hammer_stats_btree_lookups; 77 int64_t hammer_stats_btree_searches; 78 int64_t hammer_stats_btree_inserts; 79 int64_t hammer_stats_btree_deletes; 80 int64_t hammer_stats_btree_elements; 81 int64_t hammer_stats_btree_splits; 82 int64_t hammer_stats_btree_iterations; 83 int64_t hammer_stats_btree_root_iterations; 84 int64_t hammer_stats_record_iterations; 85 86 int64_t hammer_stats_file_read; 87 int64_t hammer_stats_file_write; 88 int64_t hammer_stats_file_iopsr; 89 int64_t hammer_stats_file_iopsw; 90 int64_t hammer_stats_disk_read; 91 int64_t hammer_stats_disk_write; 92 int64_t hammer_stats_inode_flushes; 93 int64_t hammer_stats_commits; 94 int64_t hammer_stats_undo; 95 int64_t hammer_stats_redo; 96 97 long hammer_count_dirtybufspace; /* global */ 98 int hammer_count_refedbufs; /* global */ 99 int hammer_count_reservations; 100 long hammer_count_io_running_read; 101 long hammer_count_io_running_write; 102 int hammer_count_io_locked; 103 long hammer_limit_dirtybufspace; /* per-mount */ 104 int hammer_limit_recs; /* as a whole XXX */ 105 int hammer_limit_inode_recs = 2048; /* per inode */ 106 int hammer_limit_reclaims; 107 int hammer_live_dedup_cache_size = DEDUP_CACHE_SIZE; 108 int hammer_limit_redo = 4096 * 1024; /* per inode */ 109 int hammer_autoflush = 500; /* auto flush (typ on reclaim) */ 110 int hammer_bio_count; 111 int hammer_verify_zone; 112 int hammer_verify_data = 1; 113 int hammer_write_mode; 114 int hammer_double_buffer; 115 int hammer_btree_full_undo = 1; 116 int hammer_yield_check = 16; 117 int hammer_fsync_mode = 3; 118 int64_t hammer_contention_count; 119 int64_t hammer_zone_limit; 120 121 /* 122 * Live dedup debug counters (sysctls are writable so that counters 123 * can be reset from userspace). 124 */ 125 int64_t hammer_live_dedup_vnode_bcmps = 0; 126 int64_t hammer_live_dedup_device_bcmps = 0; 127 int64_t hammer_live_dedup_findblk_failures = 0; 128 int64_t hammer_live_dedup_bmap_saves = 0; 129 130 131 SYSCTL_NODE(_vfs, OID_AUTO, hammer, CTLFLAG_RW, 0, "HAMMER filesystem"); 132 133 SYSCTL_INT(_vfs_hammer, OID_AUTO, supported_version, CTLFLAG_RD, 134 &hammer_supported_version, 0, ""); 135 SYSCTL_INT(_vfs_hammer, OID_AUTO, debug_general, CTLFLAG_RW, 136 &hammer_debug_general, 0, ""); 137 SYSCTL_INT(_vfs_hammer, OID_AUTO, debug_io, CTLFLAG_RW, 138 &hammer_debug_io, 0, ""); 139 SYSCTL_INT(_vfs_hammer, OID_AUTO, debug_debug, CTLFLAG_RW, 140 &hammer_debug_debug, 0, ""); 141 SYSCTL_INT(_vfs_hammer, OID_AUTO, debug_inode, CTLFLAG_RW, 142 &hammer_debug_inode, 0, ""); 143 SYSCTL_INT(_vfs_hammer, OID_AUTO, debug_locks, CTLFLAG_RW, 144 &hammer_debug_locks, 0, ""); 145 SYSCTL_INT(_vfs_hammer, OID_AUTO, debug_btree, CTLFLAG_RW, 146 &hammer_debug_btree, 0, ""); 147 SYSCTL_INT(_vfs_hammer, OID_AUTO, debug_tid, CTLFLAG_RW, 148 &hammer_debug_tid, 0, ""); 149 SYSCTL_INT(_vfs_hammer, OID_AUTO, debug_recover, CTLFLAG_RW, 150 &hammer_debug_recover, 0, ""); 151 SYSCTL_INT(_vfs_hammer, OID_AUTO, debug_recover_faults, CTLFLAG_RW, 152 &hammer_debug_recover_faults, 0, ""); 153 SYSCTL_INT(_vfs_hammer, OID_AUTO, debug_critical, CTLFLAG_RW, 154 &hammer_debug_critical, 0, ""); 155 SYSCTL_INT(_vfs_hammer, OID_AUTO, cluster_enable, CTLFLAG_RW, 156 &hammer_cluster_enable, 0, ""); 157 /* 158 * 0 - live dedup is disabled 159 * 1 - dedup cache is populated on reads only 160 * 2 - dedup cache is populated on both reads and writes 161 * 162 * LIVE_DEDUP IS DISABLED PERMANENTLY! This feature appears to cause 163 * blockmap corruption over time so we've turned it off permanently. 164 */ 165 SYSCTL_INT(_vfs_hammer, OID_AUTO, live_dedup, CTLFLAG_RD, 166 &hammer_live_dedup, 0, "Enable live dedup (experimental)"); 167 SYSCTL_INT(_vfs_hammer, OID_AUTO, tdmux_ticks, CTLFLAG_RW, 168 &hammer_tdmux_ticks, 0, "Hammer tdmux ticks"); 169 170 SYSCTL_LONG(_vfs_hammer, OID_AUTO, limit_dirtybufspace, CTLFLAG_RW, 171 &hammer_limit_dirtybufspace, 0, ""); 172 SYSCTL_INT(_vfs_hammer, OID_AUTO, limit_recs, CTLFLAG_RW, 173 &hammer_limit_recs, 0, ""); 174 SYSCTL_INT(_vfs_hammer, OID_AUTO, limit_inode_recs, CTLFLAG_RW, 175 &hammer_limit_inode_recs, 0, ""); 176 SYSCTL_INT(_vfs_hammer, OID_AUTO, limit_reclaims, CTLFLAG_RW, 177 &hammer_limit_reclaims, 0, ""); 178 SYSCTL_INT(_vfs_hammer, OID_AUTO, live_dedup_cache_size, CTLFLAG_RW, 179 &hammer_live_dedup_cache_size, 0, 180 "Number of cache entries"); 181 SYSCTL_INT(_vfs_hammer, OID_AUTO, limit_redo, CTLFLAG_RW, 182 &hammer_limit_redo, 0, ""); 183 184 SYSCTL_INT(_vfs_hammer, OID_AUTO, count_fsyncs, CTLFLAG_RD, 185 &hammer_count_fsyncs, 0, ""); 186 SYSCTL_INT(_vfs_hammer, OID_AUTO, count_inodes, CTLFLAG_RD, 187 &hammer_count_inodes, 0, ""); 188 SYSCTL_INT(_vfs_hammer, OID_AUTO, count_iqueued, CTLFLAG_RD, 189 &hammer_count_iqueued, 0, ""); 190 SYSCTL_INT(_vfs_hammer, OID_AUTO, count_reclaims, CTLFLAG_RD, 191 &hammer_count_reclaims, 0, ""); 192 SYSCTL_INT(_vfs_hammer, OID_AUTO, count_records, CTLFLAG_RD, 193 &hammer_count_records, 0, ""); 194 SYSCTL_INT(_vfs_hammer, OID_AUTO, count_record_datas, CTLFLAG_RD, 195 &hammer_count_record_datas, 0, ""); 196 SYSCTL_INT(_vfs_hammer, OID_AUTO, count_volumes, CTLFLAG_RD, 197 &hammer_count_volumes, 0, ""); 198 SYSCTL_INT(_vfs_hammer, OID_AUTO, count_buffers, CTLFLAG_RD, 199 &hammer_count_buffers, 0, ""); 200 SYSCTL_INT(_vfs_hammer, OID_AUTO, count_nodes, CTLFLAG_RD, 201 &hammer_count_nodes, 0, ""); 202 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, count_extra_space_used, CTLFLAG_RD, 203 &hammer_count_extra_space_used, 0, ""); 204 205 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_btree_searches, CTLFLAG_RD, 206 &hammer_stats_btree_searches, 0, ""); 207 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_btree_lookups, CTLFLAG_RD, 208 &hammer_stats_btree_lookups, 0, ""); 209 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_btree_inserts, CTLFLAG_RD, 210 &hammer_stats_btree_inserts, 0, ""); 211 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_btree_deletes, CTLFLAG_RD, 212 &hammer_stats_btree_deletes, 0, ""); 213 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_btree_elements, CTLFLAG_RD, 214 &hammer_stats_btree_elements, 0, ""); 215 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_btree_splits, CTLFLAG_RD, 216 &hammer_stats_btree_splits, 0, ""); 217 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_btree_iterations, CTLFLAG_RD, 218 &hammer_stats_btree_iterations, 0, ""); 219 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_btree_root_iterations, CTLFLAG_RD, 220 &hammer_stats_btree_root_iterations, 0, ""); 221 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_record_iterations, CTLFLAG_RD, 222 &hammer_stats_record_iterations, 0, ""); 223 224 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_file_read, CTLFLAG_RD, 225 &hammer_stats_file_read, 0, ""); 226 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_file_write, CTLFLAG_RD, 227 &hammer_stats_file_write, 0, ""); 228 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_file_iopsr, CTLFLAG_RD, 229 &hammer_stats_file_iopsr, 0, ""); 230 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_file_iopsw, CTLFLAG_RD, 231 &hammer_stats_file_iopsw, 0, ""); 232 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_disk_read, CTLFLAG_RD, 233 &hammer_stats_disk_read, 0, ""); 234 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_disk_write, CTLFLAG_RD, 235 &hammer_stats_disk_write, 0, ""); 236 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_inode_flushes, CTLFLAG_RD, 237 &hammer_stats_inode_flushes, 0, ""); 238 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_commits, CTLFLAG_RD, 239 &hammer_stats_commits, 0, ""); 240 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_undo, CTLFLAG_RD, 241 &hammer_stats_undo, 0, ""); 242 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, stats_redo, CTLFLAG_RD, 243 &hammer_stats_redo, 0, ""); 244 245 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, live_dedup_vnode_bcmps, CTLFLAG_RW, 246 &hammer_live_dedup_vnode_bcmps, 0, 247 "successful vnode buffer comparisons"); 248 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, live_dedup_device_bcmps, CTLFLAG_RW, 249 &hammer_live_dedup_device_bcmps, 0, 250 "successful device buffer comparisons"); 251 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, live_dedup_findblk_failures, CTLFLAG_RW, 252 &hammer_live_dedup_findblk_failures, 0, 253 "block lookup failures for comparison"); 254 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, live_dedup_bmap_saves, CTLFLAG_RW, 255 &hammer_live_dedup_bmap_saves, 0, 256 "useful physical block lookups"); 257 258 SYSCTL_LONG(_vfs_hammer, OID_AUTO, count_dirtybufspace, CTLFLAG_RD, 259 &hammer_count_dirtybufspace, 0, ""); 260 SYSCTL_INT(_vfs_hammer, OID_AUTO, count_refedbufs, CTLFLAG_RD, 261 &hammer_count_refedbufs, 0, ""); 262 SYSCTL_INT(_vfs_hammer, OID_AUTO, count_reservations, CTLFLAG_RD, 263 &hammer_count_reservations, 0, ""); 264 SYSCTL_LONG(_vfs_hammer, OID_AUTO, count_io_running_read, CTLFLAG_RD, 265 &hammer_count_io_running_read, 0, ""); 266 SYSCTL_INT(_vfs_hammer, OID_AUTO, count_io_locked, CTLFLAG_RD, 267 &hammer_count_io_locked, 0, ""); 268 SYSCTL_LONG(_vfs_hammer, OID_AUTO, count_io_running_write, CTLFLAG_RD, 269 &hammer_count_io_running_write, 0, ""); 270 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, zone_limit, CTLFLAG_RW, 271 &hammer_zone_limit, 0, ""); 272 SYSCTL_QUAD(_vfs_hammer, OID_AUTO, contention_count, CTLFLAG_RW, 273 &hammer_contention_count, 0, ""); 274 SYSCTL_INT(_vfs_hammer, OID_AUTO, autoflush, CTLFLAG_RW, 275 &hammer_autoflush, 0, ""); 276 SYSCTL_INT(_vfs_hammer, OID_AUTO, verify_zone, CTLFLAG_RW, 277 &hammer_verify_zone, 0, ""); 278 SYSCTL_INT(_vfs_hammer, OID_AUTO, verify_data, CTLFLAG_RW, 279 &hammer_verify_data, 0, ""); 280 SYSCTL_INT(_vfs_hammer, OID_AUTO, write_mode, CTLFLAG_RW, 281 &hammer_write_mode, 0, ""); 282 SYSCTL_INT(_vfs_hammer, OID_AUTO, double_buffer, CTLFLAG_RW, 283 &hammer_double_buffer, 0, ""); 284 SYSCTL_INT(_vfs_hammer, OID_AUTO, btree_full_undo, CTLFLAG_RW, 285 &hammer_btree_full_undo, 0, ""); 286 SYSCTL_INT(_vfs_hammer, OID_AUTO, yield_check, CTLFLAG_RW, 287 &hammer_yield_check, 0, ""); 288 SYSCTL_INT(_vfs_hammer, OID_AUTO, fsync_mode, CTLFLAG_RW, 289 &hammer_fsync_mode, 0, ""); 290 291 /* KTR_INFO_MASTER(hammer); */ 292 293 /* 294 * VFS ABI 295 */ 296 static void hammer_free_hmp(struct mount *mp); 297 298 static int hammer_vfs_mount(struct mount *mp, char *path, caddr_t data, 299 struct ucred *cred); 300 static int hammer_vfs_unmount(struct mount *mp, int mntflags); 301 static int hammer_vfs_root(struct mount *mp, struct vnode **vpp); 302 static int hammer_vfs_statfs(struct mount *mp, struct statfs *sbp, 303 struct ucred *cred); 304 static int hammer_vfs_statvfs(struct mount *mp, struct statvfs *sbp, 305 struct ucred *cred); 306 static int hammer_vfs_sync(struct mount *mp, int waitfor); 307 static int hammer_vfs_vget(struct mount *mp, struct vnode *dvp, 308 ino_t ino, struct vnode **vpp); 309 static int hammer_vfs_init(struct vfsconf *conf); 310 static int hammer_vfs_fhtovp(struct mount *mp, struct vnode *rootvp, 311 struct fid *fhp, struct vnode **vpp); 312 static int hammer_vfs_vptofh(struct vnode *vp, struct fid *fhp); 313 static int hammer_vfs_checkexp(struct mount *mp, struct sockaddr *nam, 314 int *exflagsp, struct ucred **credanonp); 315 316 317 static struct vfsops hammer_vfsops = { 318 .vfs_mount = hammer_vfs_mount, 319 .vfs_unmount = hammer_vfs_unmount, 320 .vfs_root = hammer_vfs_root, 321 .vfs_statfs = hammer_vfs_statfs, 322 .vfs_statvfs = hammer_vfs_statvfs, 323 .vfs_sync = hammer_vfs_sync, 324 .vfs_vget = hammer_vfs_vget, 325 .vfs_init = hammer_vfs_init, 326 .vfs_vptofh = hammer_vfs_vptofh, 327 .vfs_fhtovp = hammer_vfs_fhtovp, 328 .vfs_checkexp = hammer_vfs_checkexp 329 }; 330 331 MALLOC_DEFINE(M_HAMMER, "HAMMER-mount", ""); 332 333 VFS_SET(hammer_vfsops, hammer, 0); 334 MODULE_VERSION(hammer, 1); 335 336 static int 337 hammer_vfs_init(struct vfsconf *conf) 338 { 339 long n; 340 341 /* 342 * Wait up to this long for an exclusive deadlock to clear 343 * before acquiring a new shared lock on the ip. The deadlock 344 * may have occured on a b-tree node related to the ip. 345 */ 346 if (hammer_tdmux_ticks == 0) 347 hammer_tdmux_ticks = hz / 5; 348 349 /* 350 * Autosize, but be careful because a hammer filesystem's 351 * reserve is partially calculated based on dirtybufspace, 352 * so we simply cannot allow it to get too large. 353 */ 354 if (hammer_limit_recs == 0) { 355 n = nbuf * 25; 356 if (n > kmalloc_limit(M_HAMMER) / 512) 357 n = kmalloc_limit(M_HAMMER) / 512; 358 if (n > 2 * 1024 * 1024) 359 n = 2 * 1024 * 1024; 360 hammer_limit_recs = (int)n; 361 } 362 if (hammer_limit_dirtybufspace == 0) { 363 hammer_limit_dirtybufspace = hidirtybufspace / 2; 364 if (hammer_limit_dirtybufspace < 1L * 1024 * 1024) 365 hammer_limit_dirtybufspace = 1024L * 1024; 366 if (hammer_limit_dirtybufspace > 1024L * 1024 * 1024) 367 hammer_limit_dirtybufspace = 1024L * 1024 * 1024; 368 } 369 370 /* 371 * The hammer_inode structure detaches from the vnode on reclaim. 372 * This limits the number of inodes in this state to prevent a 373 * memory pool blowout. 374 */ 375 if (hammer_limit_reclaims == 0) 376 hammer_limit_reclaims = desiredvnodes / 10; 377 378 return(0); 379 } 380 381 static int 382 hammer_vfs_mount(struct mount *mp, char *mntpt, caddr_t data, 383 struct ucred *cred) 384 { 385 struct hammer_mount_info info; 386 hammer_mount_t hmp; 387 hammer_volume_t rootvol; 388 struct vnode *rootvp; 389 struct vnode *devvp = NULL; 390 const char *upath; /* volume name in userspace */ 391 char *path; /* volume name in system space */ 392 int error; 393 int i; 394 int master_id; 395 char *next_volume_ptr = NULL; 396 397 /* 398 * Accept hammer_mount_info. mntpt is NULL for root mounts at boot. 399 */ 400 if (mntpt == NULL) { 401 bzero(&info, sizeof(info)); 402 info.asof = 0; 403 info.hflags = 0; 404 info.nvolumes = 1; 405 406 next_volume_ptr = mp->mnt_stat.f_mntfromname; 407 408 /* Count number of volumes separated by ':' */ 409 for (char *p = next_volume_ptr; *p != '\0'; ++p) { 410 if (*p == ':') { 411 ++info.nvolumes; 412 } 413 } 414 415 mp->mnt_flag &= ~MNT_RDONLY; /* mount R/W */ 416 } else { 417 if ((error = copyin(data, &info, sizeof(info))) != 0) 418 return (error); 419 } 420 421 /* 422 * updating or new mount 423 */ 424 if (mp->mnt_flag & MNT_UPDATE) { 425 hmp = (void *)mp->mnt_data; 426 KKASSERT(hmp != NULL); 427 } else { 428 if (info.nvolumes <= 0 || info.nvolumes > HAMMER_MAX_VOLUMES) 429 return (EINVAL); 430 hmp = NULL; 431 } 432 433 /* 434 * master-id validation. The master id may not be changed by a 435 * mount update. 436 */ 437 if (info.hflags & HMNT_MASTERID) { 438 if (hmp && hmp->master_id != info.master_id) { 439 kprintf("hammer: cannot change master id " 440 "with mount update\n"); 441 return(EINVAL); 442 } 443 master_id = info.master_id; 444 if (master_id < -1 || master_id >= HAMMER_MAX_MASTERS) 445 return (EINVAL); 446 } else { 447 if (hmp) 448 master_id = hmp->master_id; 449 else 450 master_id = 0; 451 } 452 453 /* 454 * Internal mount data structure 455 */ 456 if (hmp == NULL) { 457 hmp = kmalloc(sizeof(*hmp), M_HAMMER, M_WAITOK | M_ZERO); 458 mp->mnt_data = (qaddr_t)hmp; 459 hmp->mp = mp; 460 /*TAILQ_INIT(&hmp->recycle_list);*/ 461 462 /* 463 * Make sure kmalloc type limits are set appropriately. 464 * 465 * Our inode kmalloc group is sized based on maxvnodes 466 * (controlled by the system, not us). 467 */ 468 kmalloc_create(&hmp->m_misc, "HAMMER-others"); 469 kmalloc_create(&hmp->m_inodes, "HAMMER-inodes"); 470 471 kmalloc_raise_limit(hmp->m_inodes, 0); /* unlimited */ 472 473 hmp->root_btree_beg.localization = 0x00000000U; 474 hmp->root_btree_beg.obj_id = -0x8000000000000000LL; 475 hmp->root_btree_beg.key = -0x8000000000000000LL; 476 hmp->root_btree_beg.create_tid = 1; 477 hmp->root_btree_beg.delete_tid = 1; 478 hmp->root_btree_beg.rec_type = 0; 479 hmp->root_btree_beg.obj_type = 0; 480 hmp->root_btree_beg.btype = HAMMER_BTREE_TYPE_NONE; 481 482 hmp->root_btree_end.localization = 0xFFFFFFFFU; 483 hmp->root_btree_end.obj_id = 0x7FFFFFFFFFFFFFFFLL; 484 hmp->root_btree_end.key = 0x7FFFFFFFFFFFFFFFLL; 485 hmp->root_btree_end.create_tid = 0xFFFFFFFFFFFFFFFFULL; 486 hmp->root_btree_end.delete_tid = 0; /* special case */ 487 hmp->root_btree_end.rec_type = 0xFFFFU; 488 hmp->root_btree_end.obj_type = 0; 489 hmp->root_btree_end.btype = HAMMER_BTREE_TYPE_NONE; 490 491 hmp->krate.freq = 1; /* maximum reporting rate (hz) */ 492 hmp->krate.count = -16; /* initial burst */ 493 hmp->kdiag.freq = 1; /* maximum reporting rate (hz) */ 494 hmp->kdiag.count = -16; /* initial burst */ 495 496 hmp->sync_lock.refs = 1; 497 hmp->free_lock.refs = 1; 498 hmp->undo_lock.refs = 1; 499 hmp->blkmap_lock.refs = 1; 500 hmp->snapshot_lock.refs = 1; 501 hmp->volume_lock.refs = 1; 502 503 TAILQ_INIT(&hmp->delay_list); 504 TAILQ_INIT(&hmp->flush_group_list); 505 TAILQ_INIT(&hmp->objid_cache_list); 506 TAILQ_INIT(&hmp->undo_lru_list); 507 TAILQ_INIT(&hmp->reclaim_list); 508 509 RB_INIT(&hmp->rb_dedup_crc_root); 510 RB_INIT(&hmp->rb_dedup_off_root); 511 TAILQ_INIT(&hmp->dedup_lru_list); 512 } 513 hmp->hflags &= ~HMNT_USERFLAGS; 514 hmp->hflags |= info.hflags & HMNT_USERFLAGS; 515 516 hmp->master_id = master_id; 517 518 if (info.asof) { 519 mp->mnt_flag |= MNT_RDONLY; 520 hmp->asof = info.asof; 521 } else { 522 hmp->asof = HAMMER_MAX_TID; 523 } 524 525 hmp->volume_to_remove = -1; 526 527 /* 528 * Re-open read-write if originally read-only, or vise-versa. 529 * 530 * When going from read-only to read-write execute the stage2 531 * recovery if it has not already been run. 532 */ 533 if (mp->mnt_flag & MNT_UPDATE) { 534 lwkt_gettoken(&hmp->fs_token); 535 error = 0; 536 if (hmp->ronly && (mp->mnt_kern_flag & MNTK_WANTRDWR)) { 537 kprintf("HAMMER read-only -> read-write\n"); 538 hmp->ronly = 0; 539 RB_SCAN(hammer_vol_rb_tree, &hmp->rb_vols_root, NULL, 540 hammer_adjust_volume_mode, NULL); 541 rootvol = hammer_get_root_volume(hmp, &error); 542 if (rootvol) { 543 hammer_recover_flush_buffers(hmp, rootvol, 1); 544 error = hammer_recover_stage2(hmp, rootvol); 545 bcopy(rootvol->ondisk->vol0_blockmap, 546 hmp->blockmap, 547 sizeof(hmp->blockmap)); 548 hammer_rel_volume(rootvol, 0); 549 } 550 RB_SCAN(hammer_ino_rb_tree, &hmp->rb_inos_root, NULL, 551 hammer_reload_inode, NULL); 552 /* kernel clears MNT_RDONLY */ 553 } else if (hmp->ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) { 554 kprintf("HAMMER read-write -> read-only\n"); 555 hmp->ronly = 1; /* messy */ 556 RB_SCAN(hammer_ino_rb_tree, &hmp->rb_inos_root, NULL, 557 hammer_reload_inode, NULL); 558 hmp->ronly = 0; 559 hammer_flusher_sync(hmp); 560 hammer_flusher_sync(hmp); 561 hammer_flusher_sync(hmp); 562 hmp->ronly = 1; 563 RB_SCAN(hammer_vol_rb_tree, &hmp->rb_vols_root, NULL, 564 hammer_adjust_volume_mode, NULL); 565 } 566 lwkt_reltoken(&hmp->fs_token); 567 return(error); 568 } 569 570 RB_INIT(&hmp->rb_vols_root); 571 RB_INIT(&hmp->rb_inos_root); 572 RB_INIT(&hmp->rb_redo_root); 573 RB_INIT(&hmp->rb_nods_root); 574 RB_INIT(&hmp->rb_undo_root); 575 RB_INIT(&hmp->rb_resv_root); 576 RB_INIT(&hmp->rb_bufs_root); 577 RB_INIT(&hmp->rb_pfsm_root); 578 579 hmp->ronly = ((mp->mnt_flag & MNT_RDONLY) != 0); 580 581 RB_INIT(&hmp->volu_root); 582 RB_INIT(&hmp->undo_root); 583 RB_INIT(&hmp->data_root); 584 RB_INIT(&hmp->meta_root); 585 RB_INIT(&hmp->lose_root); 586 TAILQ_INIT(&hmp->iorun_list); 587 588 lwkt_token_init(&hmp->fs_token, "hammerfs"); 589 lwkt_token_init(&hmp->io_token, "hammerio"); 590 591 lwkt_gettoken(&hmp->fs_token); 592 593 /* 594 * Load volumes 595 */ 596 path = objcache_get(namei_oc, M_WAITOK); 597 hmp->nvolumes = -1; 598 for (i = 0; i < info.nvolumes; ++i) { 599 if (mntpt == NULL) { 600 /* 601 * Root mount. 602 */ 603 KKASSERT(next_volume_ptr != NULL); 604 strcpy(path, ""); 605 if (*next_volume_ptr != '/') { 606 /* relative path */ 607 strcpy(path, "/dev/"); 608 } 609 int k; 610 for (k = strlen(path); k < MAXPATHLEN-1; ++k) { 611 if (*next_volume_ptr == '\0') { 612 break; 613 } else if (*next_volume_ptr == ':') { 614 ++next_volume_ptr; 615 break; 616 } else { 617 path[k] = *next_volume_ptr; 618 ++next_volume_ptr; 619 } 620 } 621 path[k] = '\0'; 622 623 error = 0; 624 cdev_t dev = kgetdiskbyname(path); 625 error = bdevvp(dev, &devvp); 626 if (error) { 627 kprintf("hammer_mountroot: can't find devvp\n"); 628 } 629 } else { 630 error = copyin(&info.volumes[i], &upath, 631 sizeof(char *)); 632 if (error == 0) 633 error = copyinstr(upath, path, 634 MAXPATHLEN, NULL); 635 } 636 if (error == 0) 637 error = hammer_install_volume(hmp, path, devvp); 638 if (error) 639 break; 640 } 641 objcache_put(namei_oc, path); 642 643 /* 644 * Make sure we found a root volume 645 */ 646 if (error == 0 && hmp->rootvol == NULL) { 647 kprintf("hammer_mount: No root volume found!\n"); 648 error = EINVAL; 649 } 650 651 /* 652 * Check that all required volumes are available 653 */ 654 if (error == 0 && hammer_mountcheck_volumes(hmp)) { 655 kprintf("hammer_mount: Missing volumes, cannot mount!\n"); 656 error = EINVAL; 657 } 658 659 if (error) { 660 /* called with fs_token held */ 661 hammer_free_hmp(mp); 662 return (error); 663 } 664 665 /* 666 * No errors, setup enough of the mount point so we can lookup the 667 * root vnode. 668 */ 669 mp->mnt_iosize_max = MAXPHYS; 670 mp->mnt_kern_flag |= MNTK_FSMID; 671 mp->mnt_kern_flag |= MNTK_THR_SYNC; /* new vsyncscan semantics */ 672 673 /* 674 * MPSAFE code. Note that VOPs and VFSops which are not MPSAFE 675 * will acquire a per-mount token prior to entry and release it 676 * on return. 677 */ 678 mp->mnt_kern_flag |= MNTK_ALL_MPSAFE; 679 /*MNTK_RD_MPSAFE | MNTK_GA_MPSAFE | MNTK_IN_MPSAFE;*/ 680 681 /* 682 * note: f_iosize is used by vnode_pager_haspage() when constructing 683 * its VOP_BMAP call. 684 */ 685 mp->mnt_stat.f_iosize = HAMMER_BUFSIZE; 686 mp->mnt_stat.f_bsize = HAMMER_BUFSIZE; 687 688 mp->mnt_vstat.f_frsize = HAMMER_BUFSIZE; 689 mp->mnt_vstat.f_bsize = HAMMER_BUFSIZE; 690 691 mp->mnt_maxsymlinklen = 255; 692 mp->mnt_flag |= MNT_LOCAL; 693 694 vfs_add_vnodeops(mp, &hammer_vnode_vops, &mp->mnt_vn_norm_ops); 695 vfs_add_vnodeops(mp, &hammer_spec_vops, &mp->mnt_vn_spec_ops); 696 vfs_add_vnodeops(mp, &hammer_fifo_vops, &mp->mnt_vn_fifo_ops); 697 698 /* 699 * The root volume's ondisk pointer is only valid if we hold a 700 * reference to it. 701 */ 702 rootvol = hammer_get_root_volume(hmp, &error); 703 if (error) 704 goto failed; 705 706 /* 707 * Perform any necessary UNDO operations. The recovery code does 708 * call hammer_undo_lookup() so we have to pre-cache the blockmap, 709 * and then re-copy it again after recovery is complete. 710 * 711 * If this is a read-only mount the UNDO information is retained 712 * in memory in the form of dirty buffer cache buffers, and not 713 * written back to the media. 714 */ 715 bcopy(rootvol->ondisk->vol0_blockmap, hmp->blockmap, 716 sizeof(hmp->blockmap)); 717 718 /* 719 * Check filesystem version 720 */ 721 hmp->version = rootvol->ondisk->vol_version; 722 if (hmp->version < HAMMER_VOL_VERSION_MIN || 723 hmp->version > HAMMER_VOL_VERSION_MAX) { 724 kprintf("HAMMER: mount unsupported fs version %d\n", 725 hmp->version); 726 error = ERANGE; 727 goto done; 728 } 729 730 /* 731 * The undo_rec_limit limits the size of flush groups to avoid 732 * blowing out the UNDO FIFO. This calculation is typically in 733 * the tens of thousands and is designed primarily when small 734 * HAMMER filesystems are created. 735 */ 736 hmp->undo_rec_limit = hammer_undo_max(hmp) / 8192 + 100; 737 if (hammer_debug_general & 0x0001) 738 kprintf("HAMMER: undo_rec_limit %d\n", hmp->undo_rec_limit); 739 740 /* 741 * NOTE: Recover stage1 not only handles meta-data recovery, it 742 * also sets hmp->undo_seqno for HAMMER VERSION 4+ filesystems. 743 */ 744 error = hammer_recover_stage1(hmp, rootvol); 745 if (error) { 746 kprintf("Failed to recover HAMMER filesystem on mount\n"); 747 goto done; 748 } 749 750 /* 751 * Finish setup now that we have a good root volume. 752 * 753 * The top 16 bits of fsid.val[1] is a pfs id. 754 */ 755 ksnprintf(mp->mnt_stat.f_mntfromname, 756 sizeof(mp->mnt_stat.f_mntfromname), "%s", 757 rootvol->ondisk->vol_name); 758 mp->mnt_stat.f_fsid.val[0] = 759 crc32((char *)&rootvol->ondisk->vol_fsid + 0, 8); 760 mp->mnt_stat.f_fsid.val[1] = 761 crc32((char *)&rootvol->ondisk->vol_fsid + 8, 8); 762 mp->mnt_stat.f_fsid.val[1] &= 0x0000FFFF; 763 764 mp->mnt_vstat.f_fsid_uuid = rootvol->ondisk->vol_fsid; 765 mp->mnt_vstat.f_fsid = crc32(&mp->mnt_vstat.f_fsid_uuid, 766 sizeof(mp->mnt_vstat.f_fsid_uuid)); 767 768 /* 769 * Certain often-modified fields in the root volume are cached in 770 * the hammer_mount structure so we do not have to generate lots 771 * of little UNDO structures for them. 772 * 773 * Recopy after recovery. This also has the side effect of 774 * setting our cached undo FIFO's first_offset, which serves to 775 * placemark the FIFO start for the NEXT flush cycle while the 776 * on-disk first_offset represents the LAST flush cycle. 777 */ 778 hmp->next_tid = rootvol->ondisk->vol0_next_tid; 779 hmp->flush_tid1 = hmp->next_tid; 780 hmp->flush_tid2 = hmp->next_tid; 781 bcopy(rootvol->ondisk->vol0_blockmap, hmp->blockmap, 782 sizeof(hmp->blockmap)); 783 hmp->copy_stat_freebigblocks = rootvol->ondisk->vol0_stat_freebigblocks; 784 785 hammer_flusher_create(hmp); 786 787 /* 788 * Locate the root directory using the root cluster's B-Tree as a 789 * starting point. The root directory uses an obj_id of 1. 790 * 791 * FUTURE: Leave the root directory cached referenced but unlocked 792 * in hmp->rootvp (need to flush it on unmount). 793 */ 794 error = hammer_vfs_vget(mp, NULL, 1, &rootvp); 795 if (error) 796 goto done; 797 vput(rootvp); 798 /*vn_unlock(hmp->rootvp);*/ 799 if (hmp->ronly == 0) 800 error = hammer_recover_stage2(hmp, rootvol); 801 802 /* 803 * If the stage2 recovery fails be sure to clean out all cached 804 * vnodes before throwing away the mount structure or bad things 805 * will happen. 806 */ 807 if (error) 808 vflush(mp, 0, 0); 809 810 done: 811 if ((mp->mnt_flag & MNT_UPDATE) == 0) { 812 /* New mount */ 813 814 /* Populate info for mount point (NULL pad)*/ 815 bzero(mp->mnt_stat.f_mntonname, MNAMELEN); 816 size_t size; 817 if (mntpt) { 818 copyinstr(mntpt, mp->mnt_stat.f_mntonname, 819 MNAMELEN -1, &size); 820 } else { /* Root mount */ 821 mp->mnt_stat.f_mntonname[0] = '/'; 822 } 823 } 824 (void)VFS_STATFS(mp, &mp->mnt_stat, cred); 825 hammer_rel_volume(rootvol, 0); 826 failed: 827 /* 828 * Cleanup and return. 829 */ 830 if (error) { 831 /* called with fs_token held */ 832 hammer_free_hmp(mp); 833 } else { 834 lwkt_reltoken(&hmp->fs_token); 835 } 836 return (error); 837 } 838 839 static int 840 hammer_vfs_unmount(struct mount *mp, int mntflags) 841 { 842 hammer_mount_t hmp = (void *)mp->mnt_data; 843 int flags; 844 int error; 845 846 /* 847 * Clean out the vnodes 848 */ 849 lwkt_gettoken(&hmp->fs_token); 850 flags = 0; 851 if (mntflags & MNT_FORCE) 852 flags |= FORCECLOSE; 853 error = vflush(mp, 0, flags); 854 855 /* 856 * Clean up the internal mount structure and related entities. This 857 * may issue I/O. 858 */ 859 if (error == 0) { 860 /* called with fs_token held */ 861 hammer_free_hmp(mp); 862 } else { 863 lwkt_reltoken(&hmp->fs_token); 864 } 865 return(error); 866 } 867 868 /* 869 * Clean up the internal mount structure and disassociate it from the mount. 870 * This may issue I/O. 871 * 872 * Called with fs_token held. 873 */ 874 static void 875 hammer_free_hmp(struct mount *mp) 876 { 877 hammer_mount_t hmp = (void *)mp->mnt_data; 878 hammer_flush_group_t flg; 879 int count; 880 int dummy; 881 882 /* 883 * Flush anything dirty. This won't even run if the 884 * filesystem errored-out. 885 */ 886 count = 0; 887 while (hammer_flusher_haswork(hmp)) { 888 hammer_flusher_sync(hmp); 889 ++count; 890 if (count >= 5) { 891 if (count == 5) 892 kprintf("HAMMER: umount flushing."); 893 else 894 kprintf("."); 895 tsleep(&dummy, 0, "hmrufl", hz); 896 } 897 if (count == 30) { 898 kprintf("giving up\n"); 899 break; 900 } 901 } 902 if (count >= 5 && count < 30) 903 kprintf("\n"); 904 905 /* 906 * If the mount had a critical error we have to destroy any 907 * remaining inodes before we can finish cleaning up the flusher. 908 */ 909 if (hmp->flags & HAMMER_MOUNT_CRITICAL_ERROR) { 910 RB_SCAN(hammer_ino_rb_tree, &hmp->rb_inos_root, NULL, 911 hammer_destroy_inode_callback, NULL); 912 } 913 914 /* 915 * There shouldn't be any inodes left now and any left over 916 * flush groups should now be empty. 917 */ 918 KKASSERT(RB_EMPTY(&hmp->rb_inos_root)); 919 while ((flg = TAILQ_FIRST(&hmp->flush_group_list)) != NULL) { 920 TAILQ_REMOVE(&hmp->flush_group_list, flg, flush_entry); 921 KKASSERT(RB_EMPTY(&flg->flush_tree)); 922 if (flg->refs) { 923 kprintf("HAMMER: Warning, flush_group %p was " 924 "not empty on umount!\n", flg); 925 } 926 kfree(flg, hmp->m_misc); 927 } 928 929 /* 930 * We can finally destroy the flusher 931 */ 932 hammer_flusher_destroy(hmp); 933 934 /* 935 * We may have held recovered buffers due to a read-only mount. 936 * These must be discarded. 937 */ 938 if (hmp->ronly) 939 hammer_recover_flush_buffers(hmp, NULL, -1); 940 941 /* 942 * Unload buffers and then volumes 943 */ 944 RB_SCAN(hammer_buf_rb_tree, &hmp->rb_bufs_root, NULL, 945 hammer_unload_buffer, NULL); 946 RB_SCAN(hammer_vol_rb_tree, &hmp->rb_vols_root, NULL, 947 hammer_unload_volume, NULL); 948 949 mp->mnt_data = NULL; 950 mp->mnt_flag &= ~MNT_LOCAL; 951 hmp->mp = NULL; 952 hammer_destroy_objid_cache(hmp); 953 hammer_destroy_dedup_cache(hmp); 954 if (hmp->dedup_free_cache != NULL) { 955 kfree(hmp->dedup_free_cache, hmp->m_misc); 956 hmp->dedup_free_cache = NULL; 957 } 958 kmalloc_destroy(&hmp->m_misc); 959 kmalloc_destroy(&hmp->m_inodes); 960 lwkt_reltoken(&hmp->fs_token); 961 kfree(hmp, M_HAMMER); 962 } 963 964 /* 965 * Report critical errors. ip may be NULL. 966 */ 967 void 968 hammer_critical_error(hammer_mount_t hmp, hammer_inode_t ip, 969 int error, const char *msg) 970 { 971 hmp->flags |= HAMMER_MOUNT_CRITICAL_ERROR; 972 973 krateprintf(&hmp->krate, 974 "HAMMER(%s): Critical error inode=%jd error=%d %s\n", 975 hmp->mp->mnt_stat.f_mntfromname, 976 (intmax_t)(ip ? ip->obj_id : -1), 977 error, msg); 978 979 if (hmp->ronly == 0) { 980 hmp->ronly = 2; /* special errored read-only mode */ 981 hmp->mp->mnt_flag |= MNT_RDONLY; 982 RB_SCAN(hammer_vol_rb_tree, &hmp->rb_vols_root, NULL, 983 hammer_adjust_volume_mode, NULL); 984 kprintf("HAMMER(%s): Forcing read-only mode\n", 985 hmp->mp->mnt_stat.f_mntfromname); 986 } 987 hmp->error = error; 988 if (hammer_debug_critical) 989 Debugger("Entering debugger"); 990 } 991 992 993 /* 994 * Obtain a vnode for the specified inode number. An exclusively locked 995 * vnode is returned. 996 */ 997 int 998 hammer_vfs_vget(struct mount *mp, struct vnode *dvp, 999 ino_t ino, struct vnode **vpp) 1000 { 1001 struct hammer_transaction trans; 1002 struct hammer_mount *hmp = (void *)mp->mnt_data; 1003 struct hammer_inode *ip; 1004 int error; 1005 u_int32_t localization; 1006 1007 lwkt_gettoken(&hmp->fs_token); 1008 hammer_simple_transaction(&trans, hmp); 1009 1010 /* 1011 * If a directory vnode is supplied (mainly NFS) then we can acquire 1012 * the PFS domain from it. Otherwise we would only be able to vget 1013 * inodes in the root PFS. 1014 */ 1015 if (dvp) { 1016 localization = HAMMER_DEF_LOCALIZATION + 1017 VTOI(dvp)->obj_localization; 1018 } else { 1019 localization = HAMMER_DEF_LOCALIZATION; 1020 } 1021 1022 /* 1023 * Lookup the requested HAMMER inode. The structure must be 1024 * left unlocked while we manipulate the related vnode to avoid 1025 * a deadlock. 1026 */ 1027 ip = hammer_get_inode(&trans, NULL, ino, 1028 hmp->asof, localization, 1029 0, &error); 1030 if (ip == NULL) { 1031 *vpp = NULL; 1032 } else { 1033 error = hammer_get_vnode(ip, vpp); 1034 hammer_rel_inode(ip, 0); 1035 } 1036 hammer_done_transaction(&trans); 1037 lwkt_reltoken(&hmp->fs_token); 1038 return (error); 1039 } 1040 1041 /* 1042 * Return the root vnode for the filesystem. 1043 * 1044 * HAMMER stores the root vnode in the hammer_mount structure so 1045 * getting it is easy. 1046 */ 1047 static int 1048 hammer_vfs_root(struct mount *mp, struct vnode **vpp) 1049 { 1050 int error; 1051 1052 error = hammer_vfs_vget(mp, NULL, 1, vpp); 1053 return (error); 1054 } 1055 1056 static int 1057 hammer_vfs_statfs(struct mount *mp, struct statfs *sbp, struct ucred *cred) 1058 { 1059 struct hammer_mount *hmp = (void *)mp->mnt_data; 1060 hammer_volume_t volume; 1061 hammer_volume_ondisk_t ondisk; 1062 int error; 1063 int64_t bfree; 1064 int64_t breserved; 1065 1066 lwkt_gettoken(&hmp->fs_token); 1067 volume = hammer_get_root_volume(hmp, &error); 1068 if (error) { 1069 lwkt_reltoken(&hmp->fs_token); 1070 return(error); 1071 } 1072 ondisk = volume->ondisk; 1073 1074 /* 1075 * Basic stats 1076 */ 1077 _hammer_checkspace(hmp, HAMMER_CHKSPC_WRITE, &breserved); 1078 mp->mnt_stat.f_files = ondisk->vol0_stat_inodes; 1079 bfree = ondisk->vol0_stat_freebigblocks * HAMMER_BIGBLOCK_SIZE; 1080 hammer_rel_volume(volume, 0); 1081 1082 mp->mnt_stat.f_bfree = (bfree - breserved) / HAMMER_BUFSIZE; 1083 mp->mnt_stat.f_bavail = mp->mnt_stat.f_bfree; 1084 if (mp->mnt_stat.f_files < 0) 1085 mp->mnt_stat.f_files = 0; 1086 1087 *sbp = mp->mnt_stat; 1088 lwkt_reltoken(&hmp->fs_token); 1089 return(0); 1090 } 1091 1092 static int 1093 hammer_vfs_statvfs(struct mount *mp, struct statvfs *sbp, struct ucred *cred) 1094 { 1095 struct hammer_mount *hmp = (void *)mp->mnt_data; 1096 hammer_volume_t volume; 1097 hammer_volume_ondisk_t ondisk; 1098 int error; 1099 int64_t bfree; 1100 int64_t breserved; 1101 1102 lwkt_gettoken(&hmp->fs_token); 1103 volume = hammer_get_root_volume(hmp, &error); 1104 if (error) { 1105 lwkt_reltoken(&hmp->fs_token); 1106 return(error); 1107 } 1108 ondisk = volume->ondisk; 1109 1110 /* 1111 * Basic stats 1112 */ 1113 _hammer_checkspace(hmp, HAMMER_CHKSPC_WRITE, &breserved); 1114 mp->mnt_vstat.f_files = ondisk->vol0_stat_inodes; 1115 bfree = ondisk->vol0_stat_freebigblocks * HAMMER_BIGBLOCK_SIZE; 1116 hammer_rel_volume(volume, 0); 1117 1118 mp->mnt_vstat.f_bfree = (bfree - breserved) / HAMMER_BUFSIZE; 1119 mp->mnt_vstat.f_bavail = mp->mnt_vstat.f_bfree; 1120 if (mp->mnt_vstat.f_files < 0) 1121 mp->mnt_vstat.f_files = 0; 1122 *sbp = mp->mnt_vstat; 1123 lwkt_reltoken(&hmp->fs_token); 1124 return(0); 1125 } 1126 1127 /* 1128 * Sync the filesystem. Currently we have to run it twice, the second 1129 * one will advance the undo start index to the end index, so if a crash 1130 * occurs no undos will be run on mount. 1131 * 1132 * We do not sync the filesystem if we are called from a panic. If we did 1133 * we might end up blowing up a sync that was already in progress. 1134 */ 1135 static int 1136 hammer_vfs_sync(struct mount *mp, int waitfor) 1137 { 1138 struct hammer_mount *hmp = (void *)mp->mnt_data; 1139 int error; 1140 1141 lwkt_gettoken(&hmp->fs_token); 1142 if (panicstr == NULL) { 1143 error = hammer_sync_hmp(hmp, waitfor); 1144 } else { 1145 error = EIO; 1146 } 1147 lwkt_reltoken(&hmp->fs_token); 1148 return (error); 1149 } 1150 1151 /* 1152 * Convert a vnode to a file handle. 1153 * 1154 * Accesses read-only fields on already-referenced structures so 1155 * no token is needed. 1156 */ 1157 static int 1158 hammer_vfs_vptofh(struct vnode *vp, struct fid *fhp) 1159 { 1160 hammer_inode_t ip; 1161 1162 KKASSERT(MAXFIDSZ >= 16); 1163 ip = VTOI(vp); 1164 fhp->fid_len = offsetof(struct fid, fid_data[16]); 1165 fhp->fid_ext = ip->obj_localization >> 16; 1166 bcopy(&ip->obj_id, fhp->fid_data + 0, sizeof(ip->obj_id)); 1167 bcopy(&ip->obj_asof, fhp->fid_data + 8, sizeof(ip->obj_asof)); 1168 return(0); 1169 } 1170 1171 1172 /* 1173 * Convert a file handle back to a vnode. 1174 * 1175 * Use rootvp to enforce PFS isolation when a PFS is exported via a 1176 * null mount. 1177 */ 1178 static int 1179 hammer_vfs_fhtovp(struct mount *mp, struct vnode *rootvp, 1180 struct fid *fhp, struct vnode **vpp) 1181 { 1182 hammer_mount_t hmp = (void *)mp->mnt_data; 1183 struct hammer_transaction trans; 1184 struct hammer_inode *ip; 1185 struct hammer_inode_info info; 1186 int error; 1187 u_int32_t localization; 1188 1189 bcopy(fhp->fid_data + 0, &info.obj_id, sizeof(info.obj_id)); 1190 bcopy(fhp->fid_data + 8, &info.obj_asof, sizeof(info.obj_asof)); 1191 if (rootvp) 1192 localization = VTOI(rootvp)->obj_localization; 1193 else 1194 localization = (u_int32_t)fhp->fid_ext << 16; 1195 1196 lwkt_gettoken(&hmp->fs_token); 1197 hammer_simple_transaction(&trans, hmp); 1198 1199 /* 1200 * Get/allocate the hammer_inode structure. The structure must be 1201 * unlocked while we manipulate the related vnode to avoid a 1202 * deadlock. 1203 */ 1204 ip = hammer_get_inode(&trans, NULL, info.obj_id, 1205 info.obj_asof, localization, 0, &error); 1206 if (ip) { 1207 error = hammer_get_vnode(ip, vpp); 1208 hammer_rel_inode(ip, 0); 1209 } else { 1210 *vpp = NULL; 1211 } 1212 hammer_done_transaction(&trans); 1213 lwkt_reltoken(&hmp->fs_token); 1214 return (error); 1215 } 1216 1217 static int 1218 hammer_vfs_checkexp(struct mount *mp, struct sockaddr *nam, 1219 int *exflagsp, struct ucred **credanonp) 1220 { 1221 hammer_mount_t hmp = (void *)mp->mnt_data; 1222 struct netcred *np; 1223 int error; 1224 1225 lwkt_gettoken(&hmp->fs_token); 1226 np = vfs_export_lookup(mp, &hmp->export, nam); 1227 if (np) { 1228 *exflagsp = np->netc_exflags; 1229 *credanonp = &np->netc_anon; 1230 error = 0; 1231 } else { 1232 error = EACCES; 1233 } 1234 lwkt_reltoken(&hmp->fs_token); 1235 return (error); 1236 1237 } 1238 1239 int 1240 hammer_vfs_export(struct mount *mp, int op, const struct export_args *export) 1241 { 1242 hammer_mount_t hmp = (void *)mp->mnt_data; 1243 int error; 1244 1245 lwkt_gettoken(&hmp->fs_token); 1246 1247 switch(op) { 1248 case MOUNTCTL_SET_EXPORT: 1249 error = vfs_export(mp, &hmp->export, export); 1250 break; 1251 default: 1252 error = EOPNOTSUPP; 1253 break; 1254 } 1255 lwkt_reltoken(&hmp->fs_token); 1256 1257 return(error); 1258 } 1259 1260