xref: /dflybsd-src/sys/vfs/hammer/hammer_ondisk.c (revision c4bf625e67439f34b29bfd33c4e2555ffea63ce9)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.36 2008/03/25 06:43:44 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41 
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46 #include <sys/buf2.h>
47 
48 static void hammer_free_volume(hammer_volume_t volume);
49 static int hammer_load_volume(hammer_volume_t volume);
50 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
51 static int hammer_load_node(hammer_node_t node);
52 
53 /*
54  * Red-Black tree support for various structures
55  */
56 static int
57 hammer_ino_rb_compare(hammer_inode_t ip1, hammer_inode_t ip2)
58 {
59 	if (ip1->obj_id < ip2->obj_id)
60 		return(-1);
61 	if (ip1->obj_id > ip2->obj_id)
62 		return(1);
63 	if (ip1->obj_asof < ip2->obj_asof)
64 		return(-1);
65 	if (ip1->obj_asof > ip2->obj_asof)
66 		return(1);
67 	return(0);
68 }
69 
70 static int
71 hammer_inode_info_cmp(hammer_inode_info_t info, hammer_inode_t ip)
72 {
73 	if (info->obj_id < ip->obj_id)
74 		return(-1);
75 	if (info->obj_id > ip->obj_id)
76 		return(1);
77 	if (info->obj_asof < ip->obj_asof)
78 		return(-1);
79 	if (info->obj_asof > ip->obj_asof)
80 		return(1);
81 	return(0);
82 }
83 
84 static int
85 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
86 {
87 	if (vol1->vol_no < vol2->vol_no)
88 		return(-1);
89 	if (vol1->vol_no > vol2->vol_no)
90 		return(1);
91 	return(0);
92 }
93 
94 static int
95 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
96 {
97 	if (buf1->zone2_offset < buf2->zone2_offset)
98 		return(-1);
99 	if (buf1->zone2_offset > buf2->zone2_offset)
100 		return(1);
101 	return(0);
102 }
103 
104 static int
105 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
106 {
107 	if (node1->node_offset < node2->node_offset)
108 		return(-1);
109 	if (node1->node_offset > node2->node_offset)
110 		return(1);
111 	return(0);
112 }
113 
114 /*
115  * Note: The lookup function for hammer_ino_rb_tree winds up being named
116  * hammer_ino_rb_tree_RB_LOOKUP_INFO(root, info).  The other lookup
117  * functions are normal, e.g. hammer_buf_rb_tree_RB_LOOKUP(root, zone2_offset).
118  */
119 RB_GENERATE(hammer_ino_rb_tree, hammer_inode, rb_node, hammer_ino_rb_compare);
120 RB_GENERATE_XLOOKUP(hammer_ino_rb_tree, INFO, hammer_inode, rb_node,
121 		hammer_inode_info_cmp, hammer_inode_info_t);
122 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
123 	     hammer_vol_rb_compare, int32_t, vol_no);
124 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
125 	     hammer_buf_rb_compare, hammer_off_t, zone2_offset);
126 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
127 	     hammer_nod_rb_compare, hammer_off_t, node_offset);
128 
129 /************************************************************************
130  *				VOLUMES					*
131  ************************************************************************
132  *
133  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
134  * code on failure.  Volumes must be loaded at mount time, get_volume() will
135  * not load a new volume.
136  *
137  * Calls made to hammer_load_volume() or single-threaded
138  */
139 int
140 hammer_install_volume(struct hammer_mount *hmp, const char *volname)
141 {
142 	struct mount *mp;
143 	hammer_volume_t volume;
144 	struct hammer_volume_ondisk *ondisk;
145 	struct nlookupdata nd;
146 	struct buf *bp = NULL;
147 	int error;
148 	int ronly;
149 	int setmp = 0;
150 
151 	mp = hmp->mp;
152 	ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
153 
154 	/*
155 	 * Allocate a volume structure
156 	 */
157 	++hammer_count_volumes;
158 	volume = kmalloc(sizeof(*volume), M_HAMMER, M_WAITOK|M_ZERO);
159 	volume->vol_name = kstrdup(volname, M_HAMMER);
160 	volume->hmp = hmp;
161 	hammer_io_init(&volume->io, HAMMER_STRUCTURE_VOLUME);
162 	volume->io.offset = 0LL;
163 
164 	/*
165 	 * Get the device vnode
166 	 */
167 	error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
168 	if (error == 0)
169 		error = nlookup(&nd);
170 	if (error == 0)
171 		error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
172 	nlookup_done(&nd);
173 	if (error == 0) {
174 		if (vn_isdisk(volume->devvp, &error)) {
175 			error = vfs_mountedon(volume->devvp);
176 		}
177 	}
178 	if (error == 0 &&
179 	    count_udev(volume->devvp->v_umajor, volume->devvp->v_uminor) > 0) {
180 		error = EBUSY;
181 	}
182 	if (error == 0) {
183 		vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
184 		error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
185 		if (error == 0) {
186 			error = VOP_OPEN(volume->devvp,
187 					 (ronly ? FREAD : FREAD|FWRITE),
188 					 FSCRED, NULL);
189 		}
190 		vn_unlock(volume->devvp);
191 	}
192 	if (error) {
193 		hammer_free_volume(volume);
194 		return(error);
195 	}
196 	volume->devvp->v_rdev->si_mountpoint = mp;
197 	setmp = 1;
198 
199 	/*
200 	 * Extract the volume number from the volume header and do various
201 	 * sanity checks.
202 	 */
203 	error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
204 	if (error)
205 		goto late_failure;
206 	ondisk = (void *)bp->b_data;
207 	if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
208 		kprintf("hammer_mount: volume %s has an invalid header\n",
209 			volume->vol_name);
210 		error = EFTYPE;
211 		goto late_failure;
212 	}
213 	volume->vol_no = ondisk->vol_no;
214 	volume->buffer_base = ondisk->vol_buf_beg;
215 	volume->vol_flags = ondisk->vol_flags;
216 	volume->nblocks = ondisk->vol_nblocks;
217 	volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
218 				    ondisk->vol_buf_end - ondisk->vol_buf_beg);
219 	RB_INIT(&volume->rb_bufs_root);
220 
221 	hmp->mp->mnt_stat.f_blocks += volume->nblocks;
222 
223 	if (RB_EMPTY(&hmp->rb_vols_root)) {
224 		hmp->fsid = ondisk->vol_fsid;
225 	} else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
226 		kprintf("hammer_mount: volume %s's fsid does not match "
227 			"other volumes\n", volume->vol_name);
228 		error = EFTYPE;
229 		goto late_failure;
230 	}
231 
232 	/*
233 	 * Insert the volume structure into the red-black tree.
234 	 */
235 	if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
236 		kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
237 			volume->vol_name, volume->vol_no);
238 		error = EEXIST;
239 	}
240 
241 	/*
242 	 * Set the root volume .  HAMMER special cases rootvol the structure.
243 	 * We do not hold a ref because this would prevent related I/O
244 	 * from being flushed.
245 	 */
246 	if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
247 		hmp->rootvol = volume;
248 		if (bp) {
249 			brelse(bp);
250 			bp = NULL;
251 		}
252 		hmp->fsid_udev = dev2udev(vn_todev(volume->devvp));
253 	}
254 late_failure:
255 	if (bp)
256 		brelse(bp);
257 	if (error) {
258 		/*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
259 		if (setmp)
260 			volume->devvp->v_rdev->si_mountpoint = NULL;
261 		VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE);
262 		hammer_free_volume(volume);
263 	}
264 	return (error);
265 }
266 
267 /*
268  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
269  * so returns -1 on failure.
270  */
271 int
272 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
273 {
274 	struct hammer_mount *hmp = volume->hmp;
275 	int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
276 
277 	/*
278 	 * Sync clusters, sync volume
279 	 */
280 
281 	hmp->mp->mnt_stat.f_blocks -= volume->nblocks;
282 
283 	/*
284 	 * Clean up the root volume pointer, which is held unlocked in hmp.
285 	 */
286 	if (hmp->rootvol == volume)
287 		hmp->rootvol = NULL;
288 
289 	/*
290 	 * Unload buffers.
291 	 */
292 	RB_SCAN(hammer_buf_rb_tree, &volume->rb_bufs_root, NULL,
293 			hammer_unload_buffer, NULL);
294 
295 	/*
296 	 * Release our buffer and flush anything left in the buffer cache.
297 	 */
298 	volume->io.flush = 1;
299 	volume->io.waitdep = 1;
300 	hammer_io_release(&volume->io);
301 
302 	/*
303 	 * There should be no references on the volume, no clusters, and
304 	 * no super-clusters.
305 	 */
306 	KKASSERT(volume->io.lock.refs == 0);
307 	KKASSERT(RB_EMPTY(&volume->rb_bufs_root));
308 
309 	volume->ondisk = NULL;
310 	if (volume->devvp) {
311 		if (volume->devvp->v_rdev &&
312 		    volume->devvp->v_rdev->si_mountpoint == hmp->mp
313 		) {
314 			volume->devvp->v_rdev->si_mountpoint = NULL;
315 		}
316 		if (ronly) {
317 			vinvalbuf(volume->devvp, 0, 0, 0);
318 			VOP_CLOSE(volume->devvp, FREAD);
319 		} else {
320 			vinvalbuf(volume->devvp, V_SAVE, 0, 0);
321 			VOP_CLOSE(volume->devvp, FREAD|FWRITE);
322 		}
323 	}
324 
325 	/*
326 	 * Destroy the structure
327 	 */
328 	RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
329 	hammer_free_volume(volume);
330 	return(0);
331 }
332 
333 static
334 void
335 hammer_free_volume(hammer_volume_t volume)
336 {
337 	if (volume->vol_name) {
338 		kfree(volume->vol_name, M_HAMMER);
339 		volume->vol_name = NULL;
340 	}
341 	if (volume->devvp) {
342 		vrele(volume->devvp);
343 		volume->devvp = NULL;
344 	}
345 	--hammer_count_volumes;
346 	kfree(volume, M_HAMMER);
347 }
348 
349 /*
350  * Get a HAMMER volume.  The volume must already exist.
351  */
352 hammer_volume_t
353 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
354 {
355 	struct hammer_volume *volume;
356 
357 	/*
358 	 * Locate the volume structure
359 	 */
360 	volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
361 	if (volume == NULL) {
362 		*errorp = ENOENT;
363 		return(NULL);
364 	}
365 	hammer_ref(&volume->io.lock);
366 
367 	/*
368 	 * Deal with on-disk info
369 	 */
370 	if (volume->ondisk == NULL || volume->io.loading) {
371 		*errorp = hammer_load_volume(volume);
372 		if (*errorp) {
373 			hammer_rel_volume(volume, 1);
374 			volume = NULL;
375 		}
376 	} else {
377 		*errorp = 0;
378 	}
379 	return(volume);
380 }
381 
382 int
383 hammer_ref_volume(hammer_volume_t volume)
384 {
385 	int error;
386 
387 	hammer_ref(&volume->io.lock);
388 
389 	/*
390 	 * Deal with on-disk info
391 	 */
392 	if (volume->ondisk == NULL || volume->io.loading) {
393 		error = hammer_load_volume(volume);
394 		if (error)
395 			hammer_rel_volume(volume, 1);
396 	} else {
397 		error = 0;
398 	}
399 	return (error);
400 }
401 
402 hammer_volume_t
403 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
404 {
405 	hammer_volume_t volume;
406 
407 	volume = hmp->rootvol;
408 	KKASSERT(volume != NULL);
409 	hammer_ref(&volume->io.lock);
410 
411 	/*
412 	 * Deal with on-disk info
413 	 */
414 	if (volume->ondisk == NULL || volume->io.loading) {
415 		*errorp = hammer_load_volume(volume);
416 		if (*errorp) {
417 			hammer_rel_volume(volume, 1);
418 			volume = NULL;
419 		}
420 	} else {
421 		*errorp = 0;
422 	}
423 	return (volume);
424 }
425 
426 /*
427  * Load a volume's on-disk information.  The volume must be referenced and
428  * not locked.  We temporarily acquire an exclusive lock to interlock
429  * against releases or multiple get's.
430  */
431 static int
432 hammer_load_volume(hammer_volume_t volume)
433 {
434 	int error;
435 
436 	++volume->io.loading;
437 	hammer_lock_ex(&volume->io.lock);
438 
439 	if (volume->ondisk == NULL) {
440 		error = hammer_io_read(volume->devvp, &volume->io);
441 		if (error == 0)
442 			volume->ondisk = (void *)volume->io.bp->b_data;
443 	} else {
444 		error = 0;
445 	}
446 	--volume->io.loading;
447 	hammer_unlock(&volume->io.lock);
448 	return(error);
449 }
450 
451 /*
452  * Release a volume.  Call hammer_io_release on the last reference.  We have
453  * to acquire an exclusive lock to interlock against volume->ondisk tests
454  * in hammer_load_volume(), and hammer_io_release() also expects an exclusive
455  * lock to be held.
456  *
457  * Volumes are not unloaded from memory during normal operation.
458  */
459 void
460 hammer_rel_volume(hammer_volume_t volume, int flush)
461 {
462 	if (flush)
463 		volume->io.flush = 1;
464 	crit_enter();
465 	if (volume->io.lock.refs == 1) {
466 		++volume->io.loading;
467 		hammer_lock_ex(&volume->io.lock);
468 		if (volume->io.lock.refs == 1) {
469 			volume->ondisk = NULL;
470 			hammer_io_release(&volume->io);
471 		}
472 		--volume->io.loading;
473 		hammer_unlock(&volume->io.lock);
474 	}
475 	hammer_unref(&volume->io.lock);
476 	crit_exit();
477 }
478 
479 /************************************************************************
480  *				BUFFERS					*
481  ************************************************************************
482  *
483  * Manage buffers.  Currently all blockmap-backed zones are translated
484  * to zone-2 buffer offsets.
485  */
486 hammer_buffer_t
487 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
488 		  int isnew, int *errorp)
489 {
490 	hammer_buffer_t buffer;
491 	hammer_volume_t volume;
492 	hammer_off_t	zoneX_offset;
493 	int vol_no;
494 	int zone;
495 
496 	zoneX_offset = buf_offset;
497 	zone = HAMMER_ZONE_DECODE(buf_offset);
498 	if (zone >= HAMMER_ZONE_BTREE_INDEX) {
499 		buf_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
500 		KKASSERT(*errorp == 0);
501 	} else if (zone == HAMMER_ZONE_UNDO_INDEX) {
502 		buf_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
503 		KKASSERT(*errorp == 0);
504 	}
505 	buf_offset &= ~HAMMER_BUFMASK64;
506 	KKASSERT((buf_offset & HAMMER_ZONE_RAW_BUFFER) ==
507 		 HAMMER_ZONE_RAW_BUFFER);
508 	vol_no = HAMMER_VOL_DECODE(buf_offset);
509 	volume = hammer_get_volume(hmp, vol_no, errorp);
510 	if (volume == NULL)
511 		return(NULL);
512 
513 	/*
514 	 * NOTE: buf_offset and maxbuf_off are both full offset
515 	 * specifications.
516 	 */
517 	KKASSERT(buf_offset < volume->maxbuf_off);
518 
519 	/*
520 	 * Locate and lock the buffer structure, creating one if necessary.
521 	 */
522 again:
523 	buffer = RB_LOOKUP(hammer_buf_rb_tree, &volume->rb_bufs_root,
524 			   buf_offset);
525 	if (buffer == NULL) {
526 		++hammer_count_buffers;
527 		buffer = kmalloc(sizeof(*buffer), M_HAMMER, M_WAITOK|M_ZERO);
528 		buffer->zone2_offset = buf_offset;
529 		buffer->volume = volume;
530 		hammer_io_init(&buffer->io, HAMMER_STRUCTURE_BUFFER);
531 		buffer->io.offset = volume->ondisk->vol_buf_beg +
532 				    (buf_offset & HAMMER_OFF_SHORT_MASK);
533 		TAILQ_INIT(&buffer->clist);
534 		hammer_ref(&buffer->io.lock);
535 
536 		/*
537 		 * Insert the buffer into the RB tree and handle late
538 		 * collisions.
539 		 */
540 		if (RB_INSERT(hammer_buf_rb_tree, &volume->rb_bufs_root, buffer)) {
541 			hammer_unref(&buffer->io.lock);
542 			--hammer_count_buffers;
543 			kfree(buffer, M_HAMMER);
544 			goto again;
545 		}
546 		hammer_ref(&volume->io.lock);
547 	} else {
548 		hammer_ref(&buffer->io.lock);
549 	}
550 
551 	/*
552 	 * Cache the blockmap translation
553 	 */
554 	if ((zoneX_offset & HAMMER_ZONE_RAW_BUFFER) != HAMMER_ZONE_RAW_BUFFER)
555 		buffer->zoneX_offset = zoneX_offset;
556 
557 	/*
558 	 * Deal with on-disk info
559 	 */
560 	if (buffer->ondisk == NULL || buffer->io.loading) {
561 		*errorp = hammer_load_buffer(buffer, isnew);
562 		if (*errorp) {
563 			hammer_rel_buffer(buffer, 1);
564 			buffer = NULL;
565 		}
566 	} else {
567 		*errorp = 0;
568 	}
569 	hammer_rel_volume(volume, 0);
570 	return(buffer);
571 }
572 
573 static int
574 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
575 {
576 	hammer_volume_t volume;
577 	int error;
578 
579 	/*
580 	 * Load the buffer's on-disk info
581 	 */
582 	volume = buffer->volume;
583 	++buffer->io.loading;
584 	hammer_lock_ex(&buffer->io.lock);
585 
586 	if (buffer->ondisk == NULL) {
587 		if (isnew) {
588 			error = hammer_io_new(volume->devvp, &buffer->io);
589 		} else {
590 			error = hammer_io_read(volume->devvp, &buffer->io);
591 		}
592 		if (error == 0)
593 			buffer->ondisk = (void *)buffer->io.bp->b_data;
594 	} else if (isnew) {
595 		error = hammer_io_new(volume->devvp, &buffer->io);
596 	} else {
597 		error = 0;
598 	}
599 	if (error == 0 && isnew) {
600 		hammer_modify_buffer(NULL, buffer, NULL, 0);
601 		/* additional initialization goes here */
602 	}
603 	--buffer->io.loading;
604 	hammer_unlock(&buffer->io.lock);
605 	return (error);
606 }
607 
608 /*
609  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
610  */
611 int
612 hammer_unload_buffer(hammer_buffer_t buffer, void *data __unused)
613 {
614 	hammer_ref(&buffer->io.lock);
615 	hammer_flush_buffer_nodes(buffer);
616 	KKASSERT(buffer->io.lock.refs == 1);
617 	hammer_rel_buffer(buffer, 2);
618 	return(0);
619 }
620 
621 /*
622  * Reference a buffer that is either already referenced or via a specially
623  * handled pointer (aka cursor->buffer).
624  */
625 int
626 hammer_ref_buffer(hammer_buffer_t buffer)
627 {
628 	int error;
629 
630 	hammer_ref(&buffer->io.lock);
631 	if (buffer->ondisk == NULL || buffer->io.loading) {
632 		error = hammer_load_buffer(buffer, 0);
633 		if (error) {
634 			hammer_rel_buffer(buffer, 1);
635 			/*
636 			 * NOTE: buffer pointer can become stale after
637 			 * the above release.
638 			 */
639 		}
640 	} else {
641 		error = 0;
642 	}
643 	return(error);
644 }
645 
646 /*
647  * Release a buffer.  We have to deal with several places where
648  * another thread can ref the buffer.
649  *
650  * Only destroy the structure itself if the related buffer cache buffer
651  * was disassociated from it.  This ties the management of the structure
652  * to the buffer cache subsystem.  buffer->ondisk determines whether the
653  * embedded io is referenced or not.
654  */
655 void
656 hammer_rel_buffer(hammer_buffer_t buffer, int flush)
657 {
658 	hammer_volume_t volume;
659 	int freeme = 0;
660 
661 	if (flush)
662 		buffer->io.flush = 1;
663 	crit_enter();
664 	if (buffer->io.lock.refs == 1) {
665 		++buffer->io.loading;	/* force interlock check */
666 		hammer_lock_ex(&buffer->io.lock);
667 		if (buffer->io.lock.refs == 1) {
668 			hammer_io_release(&buffer->io);
669 			hammer_flush_buffer_nodes(buffer);
670 			KKASSERT(TAILQ_EMPTY(&buffer->clist));
671 
672 			if (buffer->io.bp == NULL &&
673 			    buffer->io.lock.refs == 1) {
674 				/*
675 				 * Final cleanup
676 				 */
677 				volume = buffer->volume;
678 				RB_REMOVE(hammer_buf_rb_tree,
679 					  &volume->rb_bufs_root, buffer);
680 				buffer->volume = NULL; /* sanity */
681 				hammer_rel_volume(volume, 0);
682 				freeme = 1;
683 			}
684 		}
685 		--buffer->io.loading;
686 		hammer_unlock(&buffer->io.lock);
687 	}
688 	hammer_unref(&buffer->io.lock);
689 	crit_exit();
690 	if (freeme) {
691 		--hammer_count_buffers;
692 		kfree(buffer, M_HAMMER);
693 	}
694 }
695 
696 /*
697  * Remove the zoneX translation cache for a buffer given its zone-2 offset.
698  */
699 void
700 hammer_uncache_buffer(hammer_mount_t hmp, hammer_off_t buf_offset)
701 {
702 	hammer_volume_t volume;
703 	hammer_buffer_t buffer;
704 	int vol_no;
705 	int error;
706 
707 	buf_offset &= ~HAMMER_BUFMASK64;
708 	KKASSERT((buf_offset & HAMMER_ZONE_RAW_BUFFER) ==
709 		 HAMMER_ZONE_RAW_BUFFER);
710 	vol_no = HAMMER_VOL_DECODE(buf_offset);
711 	volume = hammer_get_volume(hmp, vol_no, &error);
712 	KKASSERT(volume != 0);
713 	KKASSERT(buf_offset < volume->maxbuf_off);
714 
715 	buffer = RB_LOOKUP(hammer_buf_rb_tree, &volume->rb_bufs_root,
716 			   buf_offset);
717 	if (buffer)
718 		buffer->zoneX_offset = 0;
719 	hammer_rel_volume(volume, 0);
720 }
721 
722 /*
723  * Access the filesystem buffer containing the specified hammer offset.
724  * buf_offset is a conglomeration of the volume number and vol_buf_beg
725  * relative buffer offset.  It must also have bit 55 set to be valid.
726  * (see hammer_off_t in hammer_disk.h).
727  *
728  * Any prior buffer in *bufferp will be released and replaced by the
729  * requested buffer.
730  */
731 void *
732 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int *errorp,
733 	     struct hammer_buffer **bufferp)
734 {
735 	hammer_buffer_t buffer;
736 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
737 
738 	buf_offset &= ~HAMMER_BUFMASK64;
739 	KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
740 
741 	buffer = *bufferp;
742 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
743 			       buffer->zoneX_offset != buf_offset)) {
744 		if (buffer)
745 			hammer_rel_buffer(buffer, 0);
746 		buffer = hammer_get_buffer(hmp, buf_offset, 0, errorp);
747 		*bufferp = buffer;
748 	} else {
749 		*errorp = 0;
750 	}
751 
752 	/*
753 	 * Return a pointer to the buffer data.
754 	 */
755 	if (buffer == NULL)
756 		return(NULL);
757 	else
758 		return((char *)buffer->ondisk + xoff);
759 }
760 
761 /*
762  * Access the filesystem buffer containing the specified hammer offset.
763  * No disk read operation occurs.  The result buffer may contain garbage.
764  *
765  * Any prior buffer in *bufferp will be released and replaced by the
766  * requested buffer.
767  */
768 void *
769 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int *errorp,
770 	     struct hammer_buffer **bufferp)
771 {
772 	hammer_buffer_t buffer;
773 	int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
774 
775 	buf_offset &= ~HAMMER_BUFMASK64;
776 
777 	buffer = *bufferp;
778 	if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
779 			       buffer->zoneX_offset != buf_offset)) {
780 		if (buffer)
781 			hammer_rel_buffer(buffer, 0);
782 		buffer = hammer_get_buffer(hmp, buf_offset, 1, errorp);
783 		*bufferp = buffer;
784 	} else {
785 		*errorp = 0;
786 	}
787 
788 	/*
789 	 * Return a pointer to the buffer data.
790 	 */
791 	if (buffer == NULL)
792 		return(NULL);
793 	else
794 		return((char *)buffer->ondisk + xoff);
795 }
796 
797 /************************************************************************
798  *				NODES					*
799  ************************************************************************
800  *
801  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
802  * method used by the HAMMER filesystem.
803  *
804  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
805  * associated with its buffer, and will only referenced the buffer while
806  * the node itself is referenced.
807  *
808  * A hammer_node can also be passively associated with other HAMMER
809  * structures, such as inodes, while retaining 0 references.  These
810  * associations can be cleared backwards using a pointer-to-pointer in
811  * the hammer_node.
812  *
813  * This allows the HAMMER implementation to cache hammer_nodes long-term
814  * and short-cut a great deal of the infrastructure's complexity.  In
815  * most cases a cached node can be reacquired without having to dip into
816  * either the buffer or cluster management code.
817  *
818  * The caller must pass a referenced cluster on call and will retain
819  * ownership of the reference on return.  The node will acquire its own
820  * additional references, if necessary.
821  */
822 hammer_node_t
823 hammer_get_node(hammer_mount_t hmp, hammer_off_t node_offset, int *errorp)
824 {
825 	hammer_node_t node;
826 
827 	KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
828 
829 	/*
830 	 * Locate the structure, allocating one if necessary.
831 	 */
832 again:
833 	node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
834 	if (node == NULL) {
835 		++hammer_count_nodes;
836 		node = kmalloc(sizeof(*node), M_HAMMER, M_WAITOK|M_ZERO);
837 		node->node_offset = node_offset;
838 		node->hmp = hmp;
839 		if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
840 			--hammer_count_nodes;
841 			kfree(node, M_HAMMER);
842 			goto again;
843 		}
844 	}
845 	hammer_ref(&node->lock);
846 	if (node->ondisk)
847 		*errorp = 0;
848 	else
849 		*errorp = hammer_load_node(node);
850 	if (*errorp) {
851 		hammer_rel_node(node);
852 		node = NULL;
853 	}
854 	return(node);
855 }
856 
857 /*
858  * Reference an already-referenced node.
859  */
860 void
861 hammer_ref_node(hammer_node_t node)
862 {
863 	KKASSERT(node->lock.refs > 0 && node->ondisk != NULL);
864 	hammer_ref(&node->lock);
865 }
866 
867 /*
868  * Load a node's on-disk data reference.
869  */
870 static int
871 hammer_load_node(hammer_node_t node)
872 {
873 	hammer_buffer_t buffer;
874 	int error;
875 
876 	error = 0;
877 	++node->loading;
878 	hammer_lock_ex(&node->lock);
879 	if (node->ondisk == NULL) {
880 		/*
881 		 * This is a little confusing but the jist is that
882 		 * node->buffer determines whether the node is on
883 		 * the buffer's clist and node->ondisk determines
884 		 * whether the buffer is referenced.
885 		 *
886 		 * We could be racing a buffer release, in which case
887 		 * node->buffer may become NULL while we are blocked
888 		 * referencing the buffer.
889 		 */
890 		if ((buffer = node->buffer) != NULL) {
891 			error = hammer_ref_buffer(buffer);
892 			if (error == 0 && node->buffer == NULL) {
893 				TAILQ_INSERT_TAIL(&buffer->clist,
894 						  node, entry);
895 				node->buffer = buffer;
896 			}
897 		} else {
898 			buffer = hammer_get_buffer(node->hmp,
899 						   node->node_offset, 0,
900 						   &error);
901 			if (buffer) {
902 				KKASSERT(error == 0);
903 				TAILQ_INSERT_TAIL(&buffer->clist,
904 						  node, entry);
905 				node->buffer = buffer;
906 			}
907 		}
908 		if (error == 0) {
909 			node->ondisk = (void *)((char *)buffer->ondisk +
910 			       (node->node_offset & HAMMER_BUFMASK));
911 		}
912 	}
913 	--node->loading;
914 	hammer_unlock(&node->lock);
915 	return (error);
916 }
917 
918 /*
919  * Safely reference a node, interlock against flushes via the IO subsystem.
920  */
921 hammer_node_t
922 hammer_ref_node_safe(struct hammer_mount *hmp, struct hammer_node **cache,
923 		     int *errorp)
924 {
925 	hammer_node_t node;
926 
927 	node = *cache;
928 	if (node != NULL) {
929 		hammer_ref(&node->lock);
930 		if (node->ondisk)
931 			*errorp = 0;
932 		else
933 			*errorp = hammer_load_node(node);
934 		if (*errorp) {
935 			hammer_rel_node(node);
936 			node = NULL;
937 		}
938 	} else {
939 		*errorp = ENOENT;
940 	}
941 	return(node);
942 }
943 
944 /*
945  * Release a hammer_node.  On the last release the node dereferences
946  * its underlying buffer and may or may not be destroyed.
947  */
948 void
949 hammer_rel_node(hammer_node_t node)
950 {
951 	hammer_buffer_t buffer;
952 
953 	/*
954 	 * If this isn't the last ref just decrement the ref count and
955 	 * return.
956 	 */
957 	if (node->lock.refs > 1) {
958 		hammer_unref(&node->lock);
959 		return;
960 	}
961 
962 	/*
963 	 * If there is no ondisk info or no buffer the node failed to load,
964 	 * remove the last reference and destroy the node.
965 	 */
966 	if (node->ondisk == NULL) {
967 		hammer_unref(&node->lock);
968 		hammer_flush_node(node);
969 		/* node is stale now */
970 		return;
971 	}
972 
973 	/*
974 	 * Do final cleanups and then either destroy the node and leave it
975 	 * passively cached.  The buffer reference is removed regardless.
976 	 */
977 	buffer = node->buffer;
978 	node->ondisk = NULL;
979 
980 	if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
981 		hammer_unref(&node->lock);
982 		hammer_rel_buffer(buffer, 0);
983 		return;
984 	}
985 
986 	/*
987 	 * Destroy the node.
988 	 */
989 	hammer_unref(&node->lock);
990 	hammer_flush_node(node);
991 	/* node is stale */
992 	hammer_rel_buffer(buffer, 0);
993 }
994 
995 /*
996  *
997  *
998  */
999 void
1000 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1001 {
1002 	node->flags |= HAMMER_NODE_DELETED;
1003 	hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1004 }
1005 
1006 /*
1007  * Passively cache a referenced hammer_node in *cache.  The caller may
1008  * release the node on return.
1009  */
1010 void
1011 hammer_cache_node(hammer_node_t node, struct hammer_node **cache)
1012 {
1013 	hammer_node_t old;
1014 
1015 	/*
1016 	 * If the node is being deleted, don't cache it!
1017 	 */
1018 	if (node->flags & HAMMER_NODE_DELETED)
1019 		return;
1020 
1021 	/*
1022 	 * Cache the node.  If we previously cached a different node we
1023 	 * have to give HAMMER a chance to destroy it.
1024 	 */
1025 again:
1026 	if (node->cache1 != cache) {
1027 		if (node->cache2 != cache) {
1028 			if ((old = *cache) != NULL) {
1029 				KKASSERT(node->lock.refs != 0);
1030 				hammer_uncache_node(cache);
1031 				goto again;
1032 			}
1033 			if (node->cache2)
1034 				*node->cache2 = NULL;
1035 			node->cache2 = node->cache1;
1036 			node->cache1 = cache;
1037 			*cache = node;
1038 		} else {
1039 			struct hammer_node **tmp;
1040 			tmp = node->cache1;
1041 			node->cache1 = node->cache2;
1042 			node->cache2 = tmp;
1043 		}
1044 	}
1045 }
1046 
1047 void
1048 hammer_uncache_node(struct hammer_node **cache)
1049 {
1050 	hammer_node_t node;
1051 
1052 	if ((node = *cache) != NULL) {
1053 		*cache = NULL;
1054 		if (node->cache1 == cache) {
1055 			node->cache1 = node->cache2;
1056 			node->cache2 = NULL;
1057 		} else if (node->cache2 == cache) {
1058 			node->cache2 = NULL;
1059 		} else {
1060 			panic("hammer_uncache_node: missing cache linkage");
1061 		}
1062 		if (node->cache1 == NULL && node->cache2 == NULL)
1063 			hammer_flush_node(node);
1064 	}
1065 }
1066 
1067 /*
1068  * Remove a node's cache references and destroy the node if it has no
1069  * other references or backing store.
1070  */
1071 void
1072 hammer_flush_node(hammer_node_t node)
1073 {
1074 	hammer_buffer_t buffer;
1075 
1076 	if (node->cache1)
1077 		*node->cache1 = NULL;
1078 	if (node->cache2)
1079 		*node->cache2 = NULL;
1080 	if (node->lock.refs == 0 && node->ondisk == NULL) {
1081 		RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1082 		if ((buffer = node->buffer) != NULL) {
1083 			node->buffer = NULL;
1084 			TAILQ_REMOVE(&buffer->clist, node, entry);
1085 			/* buffer is unreferenced because ondisk is NULL */
1086 		}
1087 		--hammer_count_nodes;
1088 		kfree(node, M_HAMMER);
1089 	}
1090 }
1091 
1092 /*
1093  * Flush passively cached B-Tree nodes associated with this buffer.
1094  * This is only called when the buffer is about to be destroyed, so
1095  * none of the nodes should have any references.  The buffer is locked.
1096  *
1097  * We may be interlocked with the buffer.
1098  */
1099 void
1100 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1101 {
1102 	hammer_node_t node;
1103 
1104 	while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1105 		KKASSERT(node->ondisk == NULL);
1106 
1107 		if (node->lock.refs == 0) {
1108 			hammer_ref(&node->lock);
1109 			node->flags |= HAMMER_NODE_FLUSH;
1110 			hammer_rel_node(node);
1111 		} else {
1112 			KKASSERT(node->loading != 0);
1113 			KKASSERT(node->buffer != NULL);
1114 			buffer = node->buffer;
1115 			node->buffer = NULL;
1116 			TAILQ_REMOVE(&buffer->clist, node, entry);
1117 			/* buffer is unreferenced because ondisk is NULL */
1118 		}
1119 	}
1120 }
1121 
1122 
1123 /************************************************************************
1124  *				ALLOCATORS				*
1125  ************************************************************************/
1126 
1127 /*
1128  * Allocate a B-Tree node.
1129  */
1130 hammer_node_t
1131 hammer_alloc_btree(hammer_transaction_t trans, int *errorp)
1132 {
1133 	hammer_buffer_t buffer = NULL;
1134 	hammer_node_t node = NULL;
1135 	hammer_off_t node_offset;
1136 
1137 	node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1138 					    sizeof(struct hammer_node_ondisk),
1139 					    errorp);
1140 	if (*errorp == 0) {
1141 		node = hammer_get_node(trans->hmp, node_offset, errorp);
1142 		hammer_modify_node_noundo(trans, node);
1143 		bzero(node->ondisk, sizeof(*node->ondisk));
1144 	}
1145 	if (buffer)
1146 		hammer_rel_buffer(buffer, 0);
1147 	return(node);
1148 }
1149 
1150 /*
1151  * The returned buffers are already appropriately marked as being modified.
1152  * If the caller marks them again unnecessary undo records may be generated.
1153  *
1154  * In-band data is indicated by data_bufferp == NULL.  Pass a data_len of 0
1155  * for zero-fill (caller modifies data_len afterwords).
1156  */
1157 void *
1158 hammer_alloc_record(hammer_transaction_t trans,
1159 		    hammer_off_t *rec_offp, u_int16_t rec_type,
1160 		    struct hammer_buffer **rec_bufferp,
1161 		    int32_t data_len, void **datap,
1162 		    struct hammer_buffer **data_bufferp, int *errorp)
1163 {
1164 	hammer_record_ondisk_t rec;
1165 	hammer_off_t rec_offset;
1166 	hammer_off_t data_offset;
1167 	int32_t reclen;
1168 
1169 	if (datap)
1170 		*datap = NULL;
1171 
1172 	/*
1173 	 * Allocate the record
1174 	 */
1175 	rec_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_RECORD_INDEX,
1176 					   HAMMER_RECORD_SIZE, errorp);
1177 	if (*errorp)
1178 		return(NULL);
1179 
1180 	/*
1181 	 * Allocate data
1182 	 */
1183 	if (data_len) {
1184 		if (data_bufferp == NULL) {
1185 			switch(rec_type) {
1186 			case HAMMER_RECTYPE_DATA:
1187 				reclen = offsetof(struct hammer_data_record,
1188 						  data[0]);
1189 				break;
1190 			case HAMMER_RECTYPE_DIRENTRY:
1191 				reclen = offsetof(struct hammer_entry_record,
1192 						  name[0]);
1193 				break;
1194 			default:
1195 				panic("hammer_alloc_record: illegal "
1196 				      "in-band data");
1197 				/* NOT REACHED */
1198 				reclen = 0;
1199 				break;
1200 			}
1201 			KKASSERT(reclen + data_len <= HAMMER_RECORD_SIZE);
1202 			data_offset = rec_offset + reclen;
1203 		} else if (data_len < HAMMER_BUFSIZE) {
1204 			data_offset = hammer_blockmap_alloc(trans,
1205 						HAMMER_ZONE_SMALL_DATA_INDEX,
1206 						data_len, errorp);
1207 		} else {
1208 			data_offset = hammer_blockmap_alloc(trans,
1209 						HAMMER_ZONE_LARGE_DATA_INDEX,
1210 						data_len, errorp);
1211 		}
1212 	} else {
1213 		data_offset = 0;
1214 	}
1215 	if (*errorp) {
1216 		hammer_blockmap_free(trans, rec_offset, HAMMER_RECORD_SIZE);
1217 		return(NULL);
1218 	}
1219 
1220 	/*
1221 	 * Basic return values.
1222 	 */
1223 	*rec_offp = rec_offset;
1224 	rec = hammer_bread(trans->hmp, rec_offset, errorp, rec_bufferp);
1225 	hammer_modify_buffer(trans, *rec_bufferp, NULL, 0);
1226 	bzero(rec, sizeof(*rec));
1227 	KKASSERT(*errorp == 0);
1228 	rec->base.data_off = data_offset;
1229 	rec->base.data_len = data_len;
1230 
1231 	if (data_bufferp) {
1232 		if (data_len) {
1233 			*datap = hammer_bread(trans->hmp, data_offset, errorp,
1234 					      data_bufferp);
1235 			KKASSERT(*errorp == 0);
1236 			hammer_modify_buffer(trans, *data_bufferp, NULL, 0);
1237 		} else {
1238 			*datap = NULL;
1239 		}
1240 	} else if (data_len) {
1241 		KKASSERT(data_offset + data_len - rec_offset <=
1242 			 HAMMER_RECORD_SIZE);
1243 		if (datap) {
1244 			*datap = (void *)((char *)rec +
1245 					  (int32_t)(data_offset - rec_offset));
1246 		}
1247 	} else {
1248 		KKASSERT(datap == NULL);
1249 	}
1250 	KKASSERT(*errorp == 0);
1251 	return(rec);
1252 }
1253 
1254 void *
1255 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len,
1256 		  hammer_off_t *data_offsetp,
1257 		  struct hammer_buffer **data_bufferp, int *errorp)
1258 {
1259 	void *data;
1260 
1261 	/*
1262 	 * Allocate data
1263 	 */
1264 	if (data_len) {
1265 		if (data_len < HAMMER_BUFSIZE) {
1266 			*data_offsetp = hammer_blockmap_alloc(trans,
1267 						HAMMER_ZONE_SMALL_DATA_INDEX,
1268 						data_len, errorp);
1269 		} else {
1270 			*data_offsetp = hammer_blockmap_alloc(trans,
1271 						HAMMER_ZONE_LARGE_DATA_INDEX,
1272 						data_len, errorp);
1273 		}
1274 	} else {
1275 		*data_offsetp = 0;
1276 	}
1277 	if (*errorp == 0 && data_bufferp) {
1278 		if (data_len) {
1279 			data = hammer_bread(trans->hmp, *data_offsetp, errorp,
1280 					    data_bufferp);
1281 			KKASSERT(*errorp == 0);
1282 			hammer_modify_buffer(trans, *data_bufferp, NULL, 0);
1283 		} else {
1284 			data = NULL;
1285 		}
1286 	} else {
1287 		data = NULL;
1288 	}
1289 	KKASSERT(*errorp == 0);
1290 	return(data);
1291 }
1292 
1293 
1294 /*
1295  * Sync dirty buffers to the media
1296  */
1297 
1298 static int hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data);
1299 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1300 
1301 int
1302 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1303 {
1304 	struct hammer_sync_info info;
1305 
1306 	info.error = 0;
1307 	info.waitfor = waitfor;
1308 
1309 	vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_NOWAIT,
1310 		      hammer_sync_scan1, hammer_sync_scan2, &info);
1311 
1312 	RB_SCAN(hammer_vol_rb_tree, &hmp->rb_vols_root, NULL,
1313 		hammer_sync_volume, &info);
1314 	return(info.error);
1315 }
1316 
1317 static int
1318 hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data)
1319 {
1320 	struct hammer_inode *ip;
1321 
1322 	ip = VTOI(vp);
1323 	if (vp->v_type == VNON || ip == NULL ||
1324 	    ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1325 	     RB_EMPTY(&vp->v_rbdirty_tree))) {
1326 		return(-1);
1327 	}
1328 	return(0);
1329 }
1330 
1331 static int
1332 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1333 {
1334 	struct hammer_sync_info *info = data;
1335 	struct hammer_inode *ip;
1336 	int error;
1337 
1338 	ip = VTOI(vp);
1339 	if (vp->v_type == VNON || vp->v_type == VBAD ||
1340 	    ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1341 	     RB_EMPTY(&vp->v_rbdirty_tree))) {
1342 		return(0);
1343 	}
1344 	error = VOP_FSYNC(vp, info->waitfor);
1345 	if (error)
1346 		info->error = error;
1347 	return(0);
1348 }
1349 
1350 int
1351 hammer_sync_volume(hammer_volume_t volume, void *data)
1352 {
1353 	struct hammer_sync_info *info = data;
1354 
1355 	hammer_ref(&volume->io.lock);
1356 	RB_SCAN(hammer_buf_rb_tree, &volume->rb_bufs_root, NULL,
1357 		hammer_sync_buffer, info);
1358 	hammer_rel_volume(volume, 1);
1359 	return(0);
1360 }
1361 
1362 int
1363 hammer_sync_buffer(hammer_buffer_t buffer, void *data __unused)
1364 {
1365 	hammer_ref(&buffer->io.lock);
1366 	hammer_rel_buffer(buffer, 1);
1367 	return(0);
1368 }
1369 
1370