xref: /dflybsd-src/sys/vfs/hammer/hammer_object.c (revision d54592ee9e96c920b951af2e00cd72c0081ccae3)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_object.c,v 1.95 2008/08/06 15:38:58 dillon Exp $
35  */
36 
37 #include "hammer.h"
38 
39 static int hammer_mem_lookup(hammer_cursor_t cursor);
40 static int hammer_mem_first(hammer_cursor_t cursor);
41 static int hammer_frontend_trunc_callback(hammer_record_t record,
42 				void *data __unused);
43 static int hammer_record_needs_overwrite_delete(hammer_record_t record);
44 static int hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
45 		      hammer_btree_leaf_elm_t leaf);
46 
47 struct rec_trunc_info {
48 	u_int16_t	rec_type;
49 	int64_t		trunc_off;
50 };
51 
52 /*
53  * Red-black tree support.  Comparison code for insertion.
54  */
55 static int
56 hammer_rec_rb_compare(hammer_record_t rec1, hammer_record_t rec2)
57 {
58 	if (rec1->leaf.base.rec_type < rec2->leaf.base.rec_type)
59 		return(-1);
60 	if (rec1->leaf.base.rec_type > rec2->leaf.base.rec_type)
61 		return(1);
62 
63 	if (rec1->leaf.base.key < rec2->leaf.base.key)
64 		return(-1);
65 	if (rec1->leaf.base.key > rec2->leaf.base.key)
66 		return(1);
67 
68 	/*
69 	 * Never match against an item deleted by the front-end.
70 	 *
71 	 * rec1 is greater then rec2 if rec1 is marked deleted.
72 	 * rec1 is less then rec2 if rec2 is marked deleted.
73 	 *
74 	 * Multiple deleted records may be present, do not return 0
75 	 * if both are marked deleted.
76 	 */
77 	if (rec1->flags & HAMMER_RECF_DELETED_FE)
78 		return(1);
79 	if (rec2->flags & HAMMER_RECF_DELETED_FE)
80 		return(-1);
81 
82         return(0);
83 }
84 
85 /*
86  * Basic record comparison code similar to hammer_btree_cmp().
87  */
88 static int
89 hammer_rec_cmp(hammer_base_elm_t elm, hammer_record_t rec)
90 {
91 	if (elm->rec_type < rec->leaf.base.rec_type)
92 		return(-3);
93 	if (elm->rec_type > rec->leaf.base.rec_type)
94 		return(3);
95 
96         if (elm->key < rec->leaf.base.key)
97                 return(-2);
98         if (elm->key > rec->leaf.base.key)
99                 return(2);
100 
101 	/*
102 	 * Never match against an item deleted by the front-end.
103 	 * elm is less then rec if rec is marked deleted.
104 	 */
105 	if (rec->flags & HAMMER_RECF_DELETED_FE)
106 		return(-1);
107         return(0);
108 }
109 
110 /*
111  * Special LOOKUP_INFO to locate an overlapping record.  This used by
112  * the reservation code to implement small-block records (whos keys will
113  * be different depending on data_len, when representing the same base
114  * offset).
115  *
116  * NOTE: The base file offset of a data record is (key - data_len), not (key).
117  */
118 static int
119 hammer_rec_overlap_compare(hammer_btree_leaf_elm_t leaf, hammer_record_t rec)
120 {
121 	if (leaf->base.rec_type < rec->leaf.base.rec_type)
122 		return(-3);
123 	if (leaf->base.rec_type > rec->leaf.base.rec_type)
124 		return(3);
125 
126 	/*
127 	 * Overlap compare
128 	 */
129 	if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
130 		/* leaf_end <= rec_beg */
131 		if (leaf->base.key <= rec->leaf.base.key - rec->leaf.data_len)
132 			return(-2);
133 		/* leaf_beg >= rec_end */
134 		if (leaf->base.key - leaf->data_len >= rec->leaf.base.key)
135 			return(2);
136 	} else {
137 		if (leaf->base.key < rec->leaf.base.key)
138 			return(-2);
139 		if (leaf->base.key > rec->leaf.base.key)
140 			return(2);
141 	}
142 
143 	/*
144 	 * Never match against an item deleted by the front-end.
145 	 * leaf is less then rec if rec is marked deleted.
146 	 *
147 	 * We must still return the proper code for the scan to continue
148 	 * along the correct branches.
149 	 */
150 	if (rec->flags & HAMMER_RECF_DELETED_FE) {
151 		if (leaf->base.key < rec->leaf.base.key)
152 			return(-2);
153 		if (leaf->base.key > rec->leaf.base.key)
154 			return(2);
155 		return(-1);
156 	}
157         return(0);
158 }
159 
160 /*
161  * RB_SCAN comparison code for hammer_mem_first().  The argument order
162  * is reversed so the comparison result has to be negated.  key_beg and
163  * key_end are both range-inclusive.
164  *
165  * Localized deletions are not cached in-memory.
166  */
167 static
168 int
169 hammer_rec_scan_cmp(hammer_record_t rec, void *data)
170 {
171 	hammer_cursor_t cursor = data;
172 	int r;
173 
174 	r = hammer_rec_cmp(&cursor->key_beg, rec);
175 	if (r > 1)
176 		return(-1);
177 	r = hammer_rec_cmp(&cursor->key_end, rec);
178 	if (r < -1)
179 		return(1);
180 	return(0);
181 }
182 
183 /*
184  * This compare function is used when simply looking up key_beg.
185  */
186 static
187 int
188 hammer_rec_find_cmp(hammer_record_t rec, void *data)
189 {
190 	hammer_cursor_t cursor = data;
191 	int r;
192 
193 	r = hammer_rec_cmp(&cursor->key_beg, rec);
194 	if (r > 1)
195 		return(-1);
196 	if (r < -1)
197 		return(1);
198 	return(0);
199 }
200 
201 /*
202  * Locate blocks within the truncation range.  Partial blocks do not count.
203  */
204 static
205 int
206 hammer_rec_trunc_cmp(hammer_record_t rec, void *data)
207 {
208 	struct rec_trunc_info *info = data;
209 
210 	if (rec->leaf.base.rec_type < info->rec_type)
211 		return(-1);
212 	if (rec->leaf.base.rec_type > info->rec_type)
213 		return(1);
214 
215 	switch(rec->leaf.base.rec_type) {
216 	case HAMMER_RECTYPE_DB:
217 		/*
218 		 * DB record key is not beyond the truncation point, retain.
219 		 */
220 		if (rec->leaf.base.key < info->trunc_off)
221 			return(-1);
222 		break;
223 	case HAMMER_RECTYPE_DATA:
224 		/*
225 		 * DATA record offset start is not beyond the truncation point,
226 		 * retain.
227 		 */
228 		if (rec->leaf.base.key - rec->leaf.data_len < info->trunc_off)
229 			return(-1);
230 		break;
231 	default:
232 		panic("hammer_rec_trunc_cmp: unexpected record type");
233 	}
234 
235 	/*
236 	 * The record start is >= the truncation point, return match,
237 	 * the record should be destroyed.
238 	 */
239 	return(0);
240 }
241 
242 RB_GENERATE(hammer_rec_rb_tree, hammer_record, rb_node, hammer_rec_rb_compare);
243 RB_GENERATE_XLOOKUP(hammer_rec_rb_tree, INFO, hammer_record, rb_node,
244 		    hammer_rec_overlap_compare, hammer_btree_leaf_elm_t);
245 
246 /*
247  * Allocate a record for the caller to finish filling in.  The record is
248  * returned referenced.
249  */
250 hammer_record_t
251 hammer_alloc_mem_record(hammer_inode_t ip, int data_len)
252 {
253 	hammer_record_t record;
254 
255 	++hammer_count_records;
256 	record = kmalloc(sizeof(*record), M_HAMMER,
257 			 M_WAITOK | M_ZERO | M_USE_RESERVE);
258 	record->flush_state = HAMMER_FST_IDLE;
259 	record->ip = ip;
260 	record->leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
261 	record->leaf.data_len = data_len;
262 	hammer_ref(&record->lock);
263 
264 	if (data_len) {
265 		record->data = kmalloc(data_len, M_HAMMER, M_WAITOK | M_ZERO);
266 		record->flags |= HAMMER_RECF_ALLOCDATA;
267 		++hammer_count_record_datas;
268 	}
269 
270 	return (record);
271 }
272 
273 void
274 hammer_wait_mem_record_ident(hammer_record_t record, const char *ident)
275 {
276 	while (record->flush_state == HAMMER_FST_FLUSH) {
277 		record->flags |= HAMMER_RECF_WANTED;
278 		tsleep(record, 0, ident, 0);
279 	}
280 }
281 
282 /*
283  * Called from the backend, hammer_inode.c, after a record has been
284  * flushed to disk.  The record has been exclusively locked by the
285  * caller and interlocked with BE.
286  *
287  * We clean up the state, unlock, and release the record (the record
288  * was referenced by the fact that it was in the HAMMER_FST_FLUSH state).
289  */
290 void
291 hammer_flush_record_done(hammer_record_t record, int error)
292 {
293 	hammer_inode_t target_ip;
294 
295 	KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
296 	KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
297 
298 	if (error) {
299 		/*
300 		 * An error occured, the backend was unable to sync the
301 		 * record to its media.  Leave the record intact.
302 		 */
303 		hammer_critical_error(record->ip->hmp, record->ip, error,
304 				      "while flushing record");
305 	}
306 
307 	--record->flush_group->refs;
308 	record->flush_group = NULL;
309 
310 	if (record->flags & HAMMER_RECF_DELETED_BE) {
311 		if ((target_ip = record->target_ip) != NULL) {
312 			TAILQ_REMOVE(&target_ip->target_list, record,
313 				     target_entry);
314 			record->target_ip = NULL;
315 			hammer_test_inode(target_ip);
316 		}
317 		record->flush_state = HAMMER_FST_IDLE;
318 	} else {
319 		if (record->target_ip) {
320 			record->flush_state = HAMMER_FST_SETUP;
321 			hammer_test_inode(record->ip);
322 			hammer_test_inode(record->target_ip);
323 		} else {
324 			record->flush_state = HAMMER_FST_IDLE;
325 		}
326 	}
327 	record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
328 	if (record->flags & HAMMER_RECF_WANTED) {
329 		record->flags &= ~HAMMER_RECF_WANTED;
330 		wakeup(record);
331 	}
332 	hammer_rel_mem_record(record);
333 }
334 
335 /*
336  * Release a memory record.  Records marked for deletion are immediately
337  * removed from the RB-Tree but otherwise left intact until the last ref
338  * goes away.
339  */
340 void
341 hammer_rel_mem_record(struct hammer_record *record)
342 {
343 	hammer_mount_t hmp;
344 	hammer_reserve_t resv;
345 	hammer_inode_t ip;
346 	hammer_inode_t target_ip;
347 
348 	hammer_unref(&record->lock);
349 
350 	if (record->lock.refs == 0) {
351 		/*
352 		 * Upon release of the last reference wakeup any waiters.
353 		 * The record structure may get destroyed so callers will
354 		 * loop up and do a relookup.
355 		 *
356 		 * WARNING!  Record must be removed from RB-TREE before we
357 		 * might possibly block.  hammer_test_inode() can block!
358 		 */
359 		ip = record->ip;
360 		hmp = ip->hmp;
361 
362 		/*
363 		 * Upon release of the last reference a record marked deleted
364 		 * is destroyed.
365 		 */
366 		if (record->flags & HAMMER_RECF_DELETED_FE) {
367 			KKASSERT(ip->lock.refs > 0);
368 			KKASSERT(record->flush_state != HAMMER_FST_FLUSH);
369 
370 			/*
371 			 * target_ip may have zero refs, we have to ref it
372 			 * to prevent it from being ripped out from under
373 			 * us.
374 			 */
375 			if ((target_ip = record->target_ip) != NULL) {
376 				TAILQ_REMOVE(&target_ip->target_list,
377 					     record, target_entry);
378 				record->target_ip = NULL;
379 				hammer_ref(&target_ip->lock);
380 			}
381 
382 			if (record->flags & HAMMER_RECF_ONRBTREE) {
383 				RB_REMOVE(hammer_rec_rb_tree,
384 					  &record->ip->rec_tree,
385 					  record);
386 				KKASSERT(ip->rsv_recs > 0);
387 				--hmp->rsv_recs;
388 				--ip->rsv_recs;
389 				hmp->rsv_databytes -= record->leaf.data_len;
390 				record->flags &= ~HAMMER_RECF_ONRBTREE;
391 
392 				if (RB_EMPTY(&record->ip->rec_tree)) {
393 					record->ip->flags &= ~HAMMER_INODE_XDIRTY;
394 					record->ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
395 					hammer_test_inode(record->ip);
396 				}
397 			}
398 
399 			/*
400 			 * We must wait for any direct-IO to complete before
401 			 * we can destroy the record because the bio may
402 			 * have a reference to it.
403 			 */
404 			if (record->flags &
405 			   (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL)) {
406 				hammer_io_direct_wait(record);
407 			}
408 
409 
410 			/*
411 			 * Do this test after removing record from the B-Tree.
412 			 */
413 			if (target_ip) {
414 				hammer_test_inode(target_ip);
415 				hammer_rel_inode(target_ip, 0);
416 			}
417 
418 			if (record->flags & HAMMER_RECF_ALLOCDATA) {
419 				--hammer_count_record_datas;
420 				kfree(record->data, M_HAMMER);
421 				record->flags &= ~HAMMER_RECF_ALLOCDATA;
422 			}
423 
424 			/*
425 			 * Release the reservation.  If the record was not
426 			 * committed return the reservation before
427 			 * releasing it.
428 			 */
429 			if ((resv = record->resv) != NULL) {
430 				if ((record->flags & HAMMER_RECF_COMMITTED) == 0) {
431 					hammer_blockmap_reserve_undo(
432 						resv,
433 						record->leaf.data_offset,
434 						record->leaf.data_len);
435 				}
436 				hammer_blockmap_reserve_complete(hmp, resv);
437 				record->resv = NULL;
438 			}
439 			record->data = NULL;
440 			--hammer_count_records;
441 			kfree(record, M_HAMMER);
442 		}
443 	}
444 }
445 
446 /*
447  * Record visibility depends on whether the record is being accessed by
448  * the backend or the frontend.
449  *
450  * Return non-zero if the record is visible, zero if it isn't or if it is
451  * deleted.
452  */
453 static __inline
454 int
455 hammer_ip_iterate_mem_good(hammer_cursor_t cursor, hammer_record_t record)
456 {
457 	if (cursor->flags & HAMMER_CURSOR_BACKEND) {
458 		if (record->flags & HAMMER_RECF_DELETED_BE)
459 			return(0);
460 	} else {
461 		if (record->flags & HAMMER_RECF_DELETED_FE)
462 			return(0);
463 	}
464 	return(1);
465 }
466 
467 /*
468  * This callback is used as part of the RB_SCAN function for in-memory
469  * records.  We terminate it (return -1) as soon as we get a match.
470  *
471  * This routine is used by frontend code.
472  *
473  * The primary compare code does not account for ASOF lookups.  This
474  * code handles that case as well as a few others.
475  */
476 static
477 int
478 hammer_rec_scan_callback(hammer_record_t rec, void *data)
479 {
480 	hammer_cursor_t cursor = data;
481 
482 	/*
483 	 * We terminate on success, so this should be NULL on entry.
484 	 */
485 	KKASSERT(cursor->iprec == NULL);
486 
487 	/*
488 	 * Skip if the record was marked deleted.
489 	 */
490 	if (hammer_ip_iterate_mem_good(cursor, rec) == 0)
491 		return(0);
492 
493 	/*
494 	 * Skip if not visible due to our as-of TID
495 	 */
496         if (cursor->flags & HAMMER_CURSOR_ASOF) {
497                 if (cursor->asof < rec->leaf.base.create_tid)
498                         return(0);
499                 if (rec->leaf.base.delete_tid &&
500 		    cursor->asof >= rec->leaf.base.delete_tid) {
501                         return(0);
502 		}
503         }
504 
505 	/*
506 	 * ref the record.  The record is protected from backend B-Tree
507 	 * interactions by virtue of the cursor's IP lock.
508 	 */
509 	hammer_ref(&rec->lock);
510 
511 	/*
512 	 * The record may have been deleted while we were blocked.
513 	 */
514 	if (hammer_ip_iterate_mem_good(cursor, rec) == 0) {
515 		hammer_rel_mem_record(rec);
516 		return(0);
517 	}
518 
519 	/*
520 	 * Set the matching record and stop the scan.
521 	 */
522 	cursor->iprec = rec;
523 	return(-1);
524 }
525 
526 
527 /*
528  * Lookup an in-memory record given the key specified in the cursor.  Works
529  * just like hammer_btree_lookup() but operates on an inode's in-memory
530  * record list.
531  *
532  * The lookup must fail if the record is marked for deferred deletion.
533  */
534 static
535 int
536 hammer_mem_lookup(hammer_cursor_t cursor)
537 {
538 	int error;
539 
540 	KKASSERT(cursor->ip);
541 	if (cursor->iprec) {
542 		hammer_rel_mem_record(cursor->iprec);
543 		cursor->iprec = NULL;
544 	}
545 	hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_find_cmp,
546 				   hammer_rec_scan_callback, cursor);
547 
548 	if (cursor->iprec == NULL)
549 		error = ENOENT;
550 	else
551 		error = 0;
552 	return(error);
553 }
554 
555 /*
556  * hammer_mem_first() - locate the first in-memory record matching the
557  * cursor within the bounds of the key range.
558  */
559 static
560 int
561 hammer_mem_first(hammer_cursor_t cursor)
562 {
563 	hammer_inode_t ip;
564 
565 	ip = cursor->ip;
566 	KKASSERT(ip != NULL);
567 
568 	if (cursor->iprec) {
569 		hammer_rel_mem_record(cursor->iprec);
570 		cursor->iprec = NULL;
571 	}
572 
573 	hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_scan_cmp,
574 				   hammer_rec_scan_callback, cursor);
575 
576 	/*
577 	 * Adjust scan.node and keep it linked into the RB-tree so we can
578 	 * hold the cursor through third party modifications of the RB-tree.
579 	 */
580 	if (cursor->iprec)
581 		return(0);
582 	return(ENOENT);
583 }
584 
585 /************************************************************************
586  *		     HAMMER IN-MEMORY RECORD FUNCTIONS			*
587  ************************************************************************
588  *
589  * These functions manipulate in-memory records.  Such records typically
590  * exist prior to being committed to disk or indexed via the on-disk B-Tree.
591  */
592 
593 /*
594  * Add a directory entry (dip,ncp) which references inode (ip).
595  *
596  * Note that the low 32 bits of the namekey are set temporarily to create
597  * a unique in-memory record, and may be modified a second time when the
598  * record is synchronized to disk.  In particular, the low 32 bits cannot be
599  * all 0's when synching to disk, which is not handled here.
600  *
601  * NOTE: bytes does not include any terminating \0 on name, and name might
602  * not be terminated.
603  */
604 int
605 hammer_ip_add_directory(struct hammer_transaction *trans,
606 		     struct hammer_inode *dip, const char *name, int bytes,
607 		     struct hammer_inode *ip)
608 {
609 	struct hammer_cursor cursor;
610 	hammer_record_t record;
611 	int error;
612 	int count;
613 	u_int32_t iterator;
614 
615 	record = hammer_alloc_mem_record(dip, HAMMER_ENTRY_SIZE(bytes));
616 	if (++trans->hmp->namekey_iterator == 0)
617 		++trans->hmp->namekey_iterator;
618 
619 	record->type = HAMMER_MEM_RECORD_ADD;
620 	record->leaf.base.localization = dip->obj_localization +
621 					 HAMMER_LOCALIZE_MISC;
622 	record->leaf.base.obj_id = dip->obj_id;
623 	record->leaf.base.key = hammer_directory_namekey(name, bytes);
624 	record->leaf.base.key += trans->hmp->namekey_iterator;
625 	record->leaf.base.rec_type = HAMMER_RECTYPE_DIRENTRY;
626 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
627 	record->data->entry.obj_id = ip->obj_id;
628 	record->data->entry.localization = ip->obj_localization;
629 	bcopy(name, record->data->entry.name, bytes);
630 
631 	++ip->ino_data.nlinks;
632 	hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
633 
634 	/*
635 	 * Find an unused namekey.  Both the in-memory record tree and
636 	 * the B-Tree are checked.  Exact matches also match create_tid
637 	 * so use an ASOF search to (mostly) ignore it.
638 	 *
639 	 * delete-visibility is set so pending deletions do not give us
640 	 * a false-negative on our ability to use an iterator.
641 	 */
642 	hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
643 	cursor.key_beg = record->leaf.base;
644 	cursor.flags |= HAMMER_CURSOR_ASOF;
645 	cursor.flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
646 	cursor.asof = ip->obj_asof;
647 
648 	count = 0;
649 	while (hammer_ip_lookup(&cursor) == 0) {
650 		iterator = (u_int32_t)record->leaf.base.key + 1;
651 		if (iterator == 0)
652 			iterator = 1;
653 		record->leaf.base.key &= ~0xFFFFFFFFLL;
654 		record->leaf.base.key |= iterator;
655 		cursor.key_beg.key = record->leaf.base.key;
656 		if (++count == 1000000000) {
657 			hammer_rel_mem_record(record);
658 			error = ENOSPC;
659 			goto failed;
660 		}
661 	}
662 
663 	/*
664 	 * The target inode and the directory entry are bound together.
665 	 */
666 	record->target_ip = ip;
667 	record->flush_state = HAMMER_FST_SETUP;
668 	TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
669 
670 	/*
671 	 * The inode now has a dependancy and must be taken out of the idle
672 	 * state.  An inode not in an idle state is given an extra reference.
673 	 *
674 	 * When transitioning to a SETUP state flag for an automatic reflush
675 	 * when the dependancies are disposed of if someone is waiting on
676 	 * the inode.
677 	 */
678 	if (ip->flush_state == HAMMER_FST_IDLE) {
679 		hammer_ref(&ip->lock);
680 		ip->flush_state = HAMMER_FST_SETUP;
681 		if (ip->flags & HAMMER_INODE_FLUSHW)
682 			ip->flags |= HAMMER_INODE_REFLUSH;
683 	}
684 	error = hammer_mem_add(record);
685 	if (error == 0) {
686 		dip->ino_data.mtime = trans->time;
687 		hammer_modify_inode(dip, HAMMER_INODE_MTIME);
688 	}
689 failed:
690 	hammer_done_cursor(&cursor);
691 	return(error);
692 }
693 
694 /*
695  * Delete the directory entry and update the inode link count.  The
696  * cursor must be seeked to the directory entry record being deleted.
697  *
698  * The related inode should be share-locked by the caller.  The caller is
699  * on the frontend.
700  *
701  * This function can return EDEADLK requiring the caller to terminate
702  * the cursor, any locks, wait on the returned record, and retry.
703  */
704 int
705 hammer_ip_del_directory(struct hammer_transaction *trans,
706 		     hammer_cursor_t cursor, struct hammer_inode *dip,
707 		     struct hammer_inode *ip)
708 {
709 	hammer_record_t record;
710 	int error;
711 
712 	if (hammer_cursor_inmem(cursor)) {
713 		/*
714 		 * In-memory (unsynchronized) records can simply be freed.
715 		 * Even though the HAMMER_RECF_DELETED_FE flag is ignored
716 		 * by the backend, we must still avoid races against the
717 		 * backend potentially syncing the record to the media.
718 		 *
719 		 * We cannot call hammer_ip_delete_record(), that routine may
720 		 * only be called from the backend.
721 		 */
722 		record = cursor->iprec;
723 		if (record->flags & HAMMER_RECF_INTERLOCK_BE) {
724 			KKASSERT(cursor->deadlk_rec == NULL);
725 			hammer_ref(&record->lock);
726 			cursor->deadlk_rec = record;
727 			error = EDEADLK;
728 		} else {
729 			KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
730 			record->flags |= HAMMER_RECF_DELETED_FE;
731 			error = 0;
732 		}
733 	} else {
734 		/*
735 		 * If the record is on-disk we have to queue the deletion by
736 		 * the record's key.  This also causes lookups to skip the
737 		 * record.
738 		 */
739 		KKASSERT(dip->flags &
740 			 (HAMMER_INODE_ONDISK | HAMMER_INODE_DONDISK));
741 		record = hammer_alloc_mem_record(dip, 0);
742 		record->type = HAMMER_MEM_RECORD_DEL;
743 		record->leaf.base = cursor->leaf->base;
744 
745 		record->target_ip = ip;
746 		record->flush_state = HAMMER_FST_SETUP;
747 		TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
748 
749 		/*
750 		 * The inode now has a dependancy and must be taken out of
751 		 * the idle state.  An inode not in an idle state is given
752 		 * an extra reference.
753 		 *
754 		 * When transitioning to a SETUP state flag for an automatic
755 		 * reflush when the dependancies are disposed of if someone
756 		 * is waiting on the inode.
757 		 */
758 		if (ip->flush_state == HAMMER_FST_IDLE) {
759 			hammer_ref(&ip->lock);
760 			ip->flush_state = HAMMER_FST_SETUP;
761 			if (ip->flags & HAMMER_INODE_FLUSHW)
762 				ip->flags |= HAMMER_INODE_REFLUSH;
763 		}
764 
765 		error = hammer_mem_add(record);
766 	}
767 
768 	/*
769 	 * One less link.  The file may still be open in the OS even after
770 	 * all links have gone away.
771 	 *
772 	 * We have to terminate the cursor before syncing the inode to
773 	 * avoid deadlocking against ourselves.  XXX this may no longer
774 	 * be true.
775 	 *
776 	 * If nlinks drops to zero and the vnode is inactive (or there is
777 	 * no vnode), call hammer_inode_unloadable_check() to zonk the
778 	 * inode.  If we don't do this here the inode will not be destroyed
779 	 * on-media until we unmount.
780 	 */
781 	if (error == 0) {
782 		--ip->ino_data.nlinks;
783 		hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
784 		if (ip->ino_data.nlinks == 0 &&
785 		    (ip->vp == NULL || (ip->vp->v_flag & VINACTIVE))) {
786 			hammer_done_cursor(cursor);
787 			hammer_inode_unloadable_check(ip, 1);
788 			hammer_flush_inode(ip, 0);
789 		}
790 		dip->ino_data.mtime = trans->time;
791 		hammer_modify_inode(dip, HAMMER_INODE_MTIME);
792 
793 	}
794 	return(error);
795 }
796 
797 /*
798  * Add a record to an inode.
799  *
800  * The caller must allocate the record with hammer_alloc_mem_record(ip) and
801  * initialize the following additional fields:
802  *
803  * The related inode should be share-locked by the caller.  The caller is
804  * on the frontend.
805  *
806  * record->rec.entry.base.base.key
807  * record->rec.entry.base.base.rec_type
808  * record->rec.entry.base.base.data_len
809  * record->data		(a copy will be kmalloc'd if it cannot be embedded)
810  */
811 int
812 hammer_ip_add_record(struct hammer_transaction *trans, hammer_record_t record)
813 {
814 	hammer_inode_t ip = record->ip;
815 	int error;
816 
817 	KKASSERT(record->leaf.base.localization != 0);
818 	record->leaf.base.obj_id = ip->obj_id;
819 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
820 	error = hammer_mem_add(record);
821 	return(error);
822 }
823 
824 /*
825  * Locate a bulk record in-memory.  Bulk records allow disk space to be
826  * reserved so the front-end can flush large data writes without having
827  * to queue the BIO to the flusher.  Only the related record gets queued
828  * to the flusher.
829  */
830 static hammer_record_t
831 hammer_ip_get_bulk(hammer_inode_t ip, off_t file_offset, int bytes)
832 {
833 	hammer_record_t record;
834 	struct hammer_btree_leaf_elm leaf;
835 
836 	bzero(&leaf, sizeof(leaf));
837 	leaf.base.obj_id = ip->obj_id;
838 	leaf.base.key = file_offset + bytes;
839 	leaf.base.create_tid = 0;
840 	leaf.base.delete_tid = 0;
841 	leaf.base.rec_type = HAMMER_RECTYPE_DATA;
842 	leaf.base.obj_type = 0;			/* unused */
843 	leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;	/* unused */
844 	leaf.base.localization = ip->obj_localization + HAMMER_LOCALIZE_MISC;
845 	leaf.data_len = bytes;
846 
847 	record = hammer_rec_rb_tree_RB_LOOKUP_INFO(&ip->rec_tree, &leaf);
848 	if (record)
849 		hammer_ref(&record->lock);
850 	return(record);
851 }
852 
853 /*
854  * Reserve blockmap space placemarked with an in-memory record.
855  *
856  * This routine is called by the frontend in order to be able to directly
857  * flush a buffer cache buffer.  The frontend has locked the related buffer
858  * cache buffers and we should be able to manipulate any overlapping
859  * in-memory records.
860  *
861  * The caller is responsible for adding the returned record.
862  */
863 hammer_record_t
864 hammer_ip_add_bulk(hammer_inode_t ip, off_t file_offset, void *data, int bytes,
865 		   int *errorp)
866 {
867 	hammer_record_t record;
868 	hammer_record_t conflict;
869 	int zone;
870 
871 	/*
872 	 * Deal with conflicting in-memory records.  We cannot have multiple
873 	 * in-memory records for the same offset without seriously confusing
874 	 * the backend, including but not limited to the backend issuing
875 	 * delete-create-delete sequences and asserting on the delete_tid
876 	 * being the same as the create_tid.
877 	 *
878 	 * If we encounter a record with the backend interlock set we cannot
879 	 * immediately delete it without confusing the backend.
880 	 */
881 	while ((conflict = hammer_ip_get_bulk(ip, file_offset, bytes)) !=NULL) {
882 		if (conflict->flags & HAMMER_RECF_INTERLOCK_BE) {
883 			conflict->flags |= HAMMER_RECF_WANTED;
884 			tsleep(conflict, 0, "hmrrc3", 0);
885 		} else {
886 			conflict->flags |= HAMMER_RECF_DELETED_FE;
887 		}
888 		hammer_rel_mem_record(conflict);
889 	}
890 
891 	/*
892 	 * Create a record to cover the direct write.  This is called with
893 	 * the related BIO locked so there should be no possible conflict.
894 	 *
895 	 * The backend is responsible for finalizing the space reserved in
896 	 * this record.
897 	 *
898 	 * XXX bytes not aligned, depend on the reservation code to
899 	 * align the reservation.
900 	 */
901 	record = hammer_alloc_mem_record(ip, 0);
902 	zone = (bytes >= HAMMER_BUFSIZE) ? HAMMER_ZONE_LARGE_DATA_INDEX :
903 					   HAMMER_ZONE_SMALL_DATA_INDEX;
904 	record->resv = hammer_blockmap_reserve(ip->hmp, zone, bytes,
905 					       &record->leaf.data_offset,
906 					       errorp);
907 	if (record->resv == NULL) {
908 		kprintf("hammer_ip_add_bulk: reservation failed\n");
909 		hammer_rel_mem_record(record);
910 		return(NULL);
911 	}
912 	record->type = HAMMER_MEM_RECORD_DATA;
913 	record->leaf.base.rec_type = HAMMER_RECTYPE_DATA;
914 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
915 	record->leaf.base.obj_id = ip->obj_id;
916 	record->leaf.base.key = file_offset + bytes;
917 	record->leaf.base.localization = ip->obj_localization +
918 					 HAMMER_LOCALIZE_MISC;
919 	record->leaf.data_len = bytes;
920 	hammer_crc_set_leaf(data, &record->leaf);
921 	KKASSERT(*errorp == 0);
922 	return(record);
923 }
924 
925 /*
926  * Frontend truncation code.  Scan in-memory records only.  On-disk records
927  * and records in a flushing state are handled by the backend.  The vnops
928  * setattr code will handle the block containing the truncation point.
929  *
930  * Partial blocks are not deleted.
931  */
932 int
933 hammer_ip_frontend_trunc(struct hammer_inode *ip, off_t file_size)
934 {
935 	struct rec_trunc_info info;
936 
937 	switch(ip->ino_data.obj_type) {
938 	case HAMMER_OBJTYPE_REGFILE:
939 		info.rec_type = HAMMER_RECTYPE_DATA;
940 		break;
941 	case HAMMER_OBJTYPE_DBFILE:
942 		info.rec_type = HAMMER_RECTYPE_DB;
943 		break;
944 	default:
945 		return(EINVAL);
946 	}
947 	info.trunc_off = file_size;
948 	hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_trunc_cmp,
949 				   hammer_frontend_trunc_callback, &info);
950 	return(0);
951 }
952 
953 static int
954 hammer_frontend_trunc_callback(hammer_record_t record, void *data __unused)
955 {
956 	if (record->flags & HAMMER_RECF_DELETED_FE)
957 		return(0);
958 	if (record->flush_state == HAMMER_FST_FLUSH)
959 		return(0);
960 	KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
961 	hammer_ref(&record->lock);
962 	record->flags |= HAMMER_RECF_DELETED_FE;
963 	hammer_rel_mem_record(record);
964 	return(0);
965 }
966 
967 /*
968  * Return 1 if the caller must check for and delete existing records
969  * before writing out a new data record.
970  *
971  * Return 0 if the caller can just insert the record into the B-Tree without
972  * checking.
973  */
974 static int
975 hammer_record_needs_overwrite_delete(hammer_record_t record)
976 {
977 	hammer_inode_t ip = record->ip;
978 	int64_t file_offset;
979 	int r;
980 
981 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE)
982 		file_offset = record->leaf.base.key;
983 	else
984 		file_offset = record->leaf.base.key - record->leaf.data_len;
985 	r = (file_offset < ip->save_trunc_off);
986 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
987 		if (ip->save_trunc_off <= record->leaf.base.key)
988 			ip->save_trunc_off = record->leaf.base.key + 1;
989 	} else {
990 		if (ip->save_trunc_off < record->leaf.base.key)
991 			ip->save_trunc_off = record->leaf.base.key;
992 	}
993 	return(r);
994 }
995 
996 /*
997  * Backend code.  Sync a record to the media.
998  */
999 int
1000 hammer_ip_sync_record_cursor(hammer_cursor_t cursor, hammer_record_t record)
1001 {
1002 	hammer_transaction_t trans = cursor->trans;
1003 	int64_t file_offset;
1004 	int bytes;
1005 	void *bdata;
1006 	int error;
1007 	int doprop;
1008 
1009 	KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1010 	KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
1011 	KKASSERT(record->leaf.base.localization != 0);
1012 
1013 	/*
1014 	 * Any direct-write related to the record must complete before we
1015 	 * can sync the record to the on-disk media.
1016 	 */
1017 	if (record->flags & (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL))
1018 		hammer_io_direct_wait(record);
1019 
1020 	/*
1021 	 * If this is a bulk-data record placemarker there may be an existing
1022 	 * record on-disk, indicating a data overwrite.  If there is the
1023 	 * on-disk record must be deleted before we can insert our new record.
1024 	 *
1025 	 * We've synthesized this record and do not know what the create_tid
1026 	 * on-disk is, nor how much data it represents.
1027 	 *
1028 	 * Keep in mind that (key) for data records is (base_offset + len),
1029 	 * not (base_offset).  Also, we only want to get rid of on-disk
1030 	 * records since we are trying to sync our in-memory record, call
1031 	 * hammer_ip_delete_range() with truncating set to 1 to make sure
1032 	 * it skips in-memory records.
1033 	 *
1034 	 * It is ok for the lookup to return ENOENT.
1035 	 *
1036 	 * NOTE OPTIMIZATION: sync_trunc_off is used to determine if we have
1037 	 * to call hammer_ip_delete_range() or not.  This also means we must
1038 	 * update sync_trunc_off() as we write.
1039 	 */
1040 	if (record->type == HAMMER_MEM_RECORD_DATA &&
1041 	    hammer_record_needs_overwrite_delete(record)) {
1042 		file_offset = record->leaf.base.key - record->leaf.data_len;
1043 		bytes = (record->leaf.data_len + HAMMER_BUFMASK) &
1044 			~HAMMER_BUFMASK;
1045 		KKASSERT((file_offset & HAMMER_BUFMASK) == 0);
1046 		error = hammer_ip_delete_range(
1047 				cursor, record->ip,
1048 				file_offset, file_offset + bytes - 1,
1049 				1);
1050 		if (error && error != ENOENT)
1051 			goto done;
1052 	}
1053 
1054 	/*
1055 	 * If this is a general record there may be an on-disk version
1056 	 * that must be deleted before we can insert the new record.
1057 	 */
1058 	if (record->type == HAMMER_MEM_RECORD_GENERAL) {
1059 		error = hammer_delete_general(cursor, record->ip,
1060 					      &record->leaf);
1061 		if (error && error != ENOENT)
1062 			goto done;
1063 	}
1064 
1065 	/*
1066 	 * Setup the cursor.
1067 	 */
1068 	hammer_normalize_cursor(cursor);
1069 	cursor->key_beg = record->leaf.base;
1070 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1071 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1072 	cursor->flags &= ~HAMMER_CURSOR_INSERT;
1073 
1074 	/*
1075 	 * Records can wind up on-media before the inode itself is on-media.
1076 	 * Flag the case.
1077 	 */
1078 	record->ip->flags |= HAMMER_INODE_DONDISK;
1079 
1080 	/*
1081 	 * If we are deleting a directory entry an exact match must be
1082 	 * found on-disk.
1083 	 */
1084 	if (record->type == HAMMER_MEM_RECORD_DEL) {
1085 		error = hammer_btree_lookup(cursor);
1086 		if (error == 0) {
1087 			KKASSERT(cursor->iprec == NULL);
1088 			error = hammer_ip_delete_record(cursor, record->ip,
1089 							trans->tid);
1090 			if (error == 0) {
1091 				record->flags |= HAMMER_RECF_DELETED_FE;
1092 				record->flags |= HAMMER_RECF_DELETED_BE;
1093 				record->flags |= HAMMER_RECF_COMMITTED;
1094 			}
1095 		}
1096 		goto done;
1097 	}
1098 
1099 	/*
1100 	 * We are inserting.
1101 	 *
1102 	 * Issue a lookup to position the cursor and locate the cluster.  The
1103 	 * target key should not exist.  If we are creating a directory entry
1104 	 * we may have to iterate the low 32 bits of the key to find an unused
1105 	 * key.
1106 	 */
1107 	hammer_sync_lock_sh(trans);
1108 	cursor->flags |= HAMMER_CURSOR_INSERT;
1109 	error = hammer_btree_lookup(cursor);
1110 	if (hammer_debug_inode)
1111 		kprintf("DOINSERT LOOKUP %d\n", error);
1112 	if (error == 0) {
1113 		kprintf("hammer_ip_sync_record: duplicate rec "
1114 			"at (%016llx)\n", record->leaf.base.key);
1115 		Debugger("duplicate record1");
1116 		error = EIO;
1117 	}
1118 #if 0
1119 	if (record->type == HAMMER_MEM_RECORD_DATA)
1120 		kprintf("sync_record  %016llx ---------------- %016llx %d\n",
1121 			record->leaf.base.key - record->leaf.data_len,
1122 			record->leaf.data_offset, error);
1123 #endif
1124 
1125 	if (error != ENOENT)
1126 		goto done_unlock;
1127 
1128 	/*
1129 	 * Allocate the record and data.  The result buffers will be
1130 	 * marked as being modified and further calls to
1131 	 * hammer_modify_buffer() will result in unneeded UNDO records.
1132 	 *
1133 	 * Support zero-fill records (data == NULL and data_len != 0)
1134 	 */
1135 	if (record->type == HAMMER_MEM_RECORD_DATA) {
1136 		/*
1137 		 * The data portion of a bulk-data record has already been
1138 		 * committed to disk, we need only adjust the layer2
1139 		 * statistics in the same transaction as our B-Tree insert.
1140 		 */
1141 		KKASSERT(record->leaf.data_offset != 0);
1142 		error = hammer_blockmap_finalize(trans,
1143 						 record->leaf.data_offset,
1144 						 record->leaf.data_len);
1145 	} else if (record->data && record->leaf.data_len) {
1146 		/*
1147 		 * Wholely cached record, with data.  Allocate the data.
1148 		 */
1149 		bdata = hammer_alloc_data(trans, record->leaf.data_len,
1150 					  record->leaf.base.rec_type,
1151 					  &record->leaf.data_offset,
1152 					  &cursor->data_buffer, &error);
1153 		if (bdata == NULL)
1154 			goto done_unlock;
1155 		hammer_crc_set_leaf(record->data, &record->leaf);
1156 		hammer_modify_buffer(trans, cursor->data_buffer, NULL, 0);
1157 		bcopy(record->data, bdata, record->leaf.data_len);
1158 		hammer_modify_buffer_done(cursor->data_buffer);
1159 	} else {
1160 		/*
1161 		 * Wholely cached record, without data.
1162 		 */
1163 		record->leaf.data_offset = 0;
1164 		record->leaf.data_crc = 0;
1165 	}
1166 
1167 	error = hammer_btree_insert(cursor, &record->leaf, &doprop);
1168 	if (hammer_debug_inode && error)
1169 		kprintf("BTREE INSERT error %d @ %016llx:%d key %016llx\n", error, cursor->node->node_offset, cursor->index, record->leaf.base.key);
1170 
1171 	/*
1172 	 * Our record is on-disk, normally mark the in-memory version as
1173 	 * deleted.  If the record represented a directory deletion but
1174 	 * we had to sync a valid directory entry to disk we must convert
1175 	 * the record to a covering delete so the frontend does not have
1176 	 * visibility on the synced entry.
1177 	 */
1178 	if (error == 0) {
1179 		if (doprop) {
1180 			hammer_btree_do_propagation(cursor,
1181 						    record->ip->pfsm,
1182 						    &record->leaf);
1183 		}
1184 		if (record->flags & HAMMER_RECF_CONVERT_DELETE) {
1185 			KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
1186 			record->flags &= ~HAMMER_RECF_DELETED_FE;
1187 			record->type = HAMMER_MEM_RECORD_DEL;
1188 			KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1189 			record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1190 			/* hammer_flush_record_done takes care of the rest */
1191 		} else {
1192 			record->flags |= HAMMER_RECF_DELETED_FE;
1193 			record->flags |= HAMMER_RECF_DELETED_BE;
1194 		}
1195 		record->flags |= HAMMER_RECF_COMMITTED;
1196 	} else {
1197 		if (record->leaf.data_offset) {
1198 			hammer_blockmap_free(trans, record->leaf.data_offset,
1199 					     record->leaf.data_len);
1200 		}
1201 	}
1202 done_unlock:
1203 	hammer_sync_unlock(trans);
1204 done:
1205 	return(error);
1206 }
1207 
1208 /*
1209  * Add the record to the inode's rec_tree.  The low 32 bits of a directory
1210  * entry's key is used to deal with hash collisions in the upper 32 bits.
1211  * A unique 64 bit key is generated in-memory and may be regenerated a
1212  * second time when the directory record is flushed to the on-disk B-Tree.
1213  *
1214  * A referenced record is passed to this function.  This function
1215  * eats the reference.  If an error occurs the record will be deleted.
1216  *
1217  * A copy of the temporary record->data pointer provided by the caller
1218  * will be made.
1219  */
1220 int
1221 hammer_mem_add(hammer_record_t record)
1222 {
1223 	hammer_mount_t hmp = record->ip->hmp;
1224 
1225 	/*
1226 	 * Make a private copy of record->data
1227 	 */
1228 	if (record->data)
1229 		KKASSERT(record->flags & HAMMER_RECF_ALLOCDATA);
1230 
1231 	/*
1232 	 * Insert into the RB tree.  A unique key should have already
1233 	 * been selected if this is a directory entry.
1234 	 */
1235 	if (RB_INSERT(hammer_rec_rb_tree, &record->ip->rec_tree, record)) {
1236 		record->flags |= HAMMER_RECF_DELETED_FE;
1237 		hammer_rel_mem_record(record);
1238 		return (EEXIST);
1239 	}
1240 	++hmp->count_newrecords;
1241 	++hmp->rsv_recs;
1242 	++record->ip->rsv_recs;
1243 	record->ip->hmp->rsv_databytes += record->leaf.data_len;
1244 	record->flags |= HAMMER_RECF_ONRBTREE;
1245 	hammer_modify_inode(record->ip, HAMMER_INODE_XDIRTY);
1246 	hammer_rel_mem_record(record);
1247 	return(0);
1248 }
1249 
1250 /************************************************************************
1251  *		     HAMMER INODE MERGED-RECORD FUNCTIONS		*
1252  ************************************************************************
1253  *
1254  * These functions augment the B-Tree scanning functions in hammer_btree.c
1255  * by merging in-memory records with on-disk records.
1256  */
1257 
1258 /*
1259  * Locate a particular record either in-memory or on-disk.
1260  *
1261  * NOTE: This is basically a standalone routine, hammer_ip_next() may
1262  * NOT be called to iterate results.
1263  */
1264 int
1265 hammer_ip_lookup(hammer_cursor_t cursor)
1266 {
1267 	int error;
1268 
1269 	/*
1270 	 * If the element is in-memory return it without searching the
1271 	 * on-disk B-Tree
1272 	 */
1273 	KKASSERT(cursor->ip);
1274 	error = hammer_mem_lookup(cursor);
1275 	if (error == 0) {
1276 		cursor->leaf = &cursor->iprec->leaf;
1277 		return(error);
1278 	}
1279 	if (error != ENOENT)
1280 		return(error);
1281 
1282 	/*
1283 	 * If the inode has on-disk components search the on-disk B-Tree.
1284 	 */
1285 	if ((cursor->ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) == 0)
1286 		return(error);
1287 	error = hammer_btree_lookup(cursor);
1288 	if (error == 0)
1289 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1290 	return(error);
1291 }
1292 
1293 /*
1294  * Locate the first record within the cursor's key_beg/key_end range,
1295  * restricted to a particular inode.  0 is returned on success, ENOENT
1296  * if no records matched the requested range, or some other error.
1297  *
1298  * When 0 is returned hammer_ip_next() may be used to iterate additional
1299  * records within the requested range.
1300  *
1301  * This function can return EDEADLK, requiring the caller to terminate
1302  * the cursor and try again.
1303  */
1304 int
1305 hammer_ip_first(hammer_cursor_t cursor)
1306 {
1307 	hammer_inode_t ip = cursor->ip;
1308 	int error;
1309 
1310 	KKASSERT(ip != NULL);
1311 
1312 	/*
1313 	 * Clean up fields and setup for merged scan
1314 	 */
1315 	cursor->flags &= ~HAMMER_CURSOR_RETEST;
1316 	cursor->flags |= HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM;
1317 	cursor->flags |= HAMMER_CURSOR_DISKEOF | HAMMER_CURSOR_MEMEOF;
1318 	if (cursor->iprec) {
1319 		hammer_rel_mem_record(cursor->iprec);
1320 		cursor->iprec = NULL;
1321 	}
1322 
1323 	/*
1324 	 * Search the on-disk B-Tree.  hammer_btree_lookup() only does an
1325 	 * exact lookup so if we get ENOENT we have to call the iterate
1326 	 * function to validate the first record after the begin key.
1327 	 *
1328 	 * The ATEDISK flag is used by hammer_btree_iterate to determine
1329 	 * whether it must index forwards or not.  It is also used here
1330 	 * to select the next record from in-memory or on-disk.
1331 	 *
1332 	 * EDEADLK can only occur if the lookup hit an empty internal
1333 	 * element and couldn't delete it.  Since this could only occur
1334 	 * in-range, we can just iterate from the failure point.
1335 	 */
1336 	if (ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) {
1337 		error = hammer_btree_lookup(cursor);
1338 		if (error == ENOENT || error == EDEADLK) {
1339 			cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1340 			if (hammer_debug_general & 0x2000)
1341 				kprintf("error %d node %p %016llx index %d\n", error, cursor->node, cursor->node->node_offset, cursor->index);
1342 			error = hammer_btree_iterate(cursor);
1343 		}
1344 		if (error && error != ENOENT)
1345 			return(error);
1346 		if (error == 0) {
1347 			cursor->flags &= ~HAMMER_CURSOR_DISKEOF;
1348 			cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1349 		} else {
1350 			cursor->flags |= HAMMER_CURSOR_ATEDISK;
1351 		}
1352 	}
1353 
1354 	/*
1355 	 * Search the in-memory record list (Red-Black tree).  Unlike the
1356 	 * B-Tree search, mem_first checks for records in the range.
1357 	 */
1358 	error = hammer_mem_first(cursor);
1359 	if (error && error != ENOENT)
1360 		return(error);
1361 	if (error == 0) {
1362 		cursor->flags &= ~HAMMER_CURSOR_MEMEOF;
1363 		cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1364 		if (hammer_ip_iterate_mem_good(cursor, cursor->iprec) == 0)
1365 			cursor->flags |= HAMMER_CURSOR_ATEMEM;
1366 	}
1367 
1368 	/*
1369 	 * This will return the first matching record.
1370 	 */
1371 	return(hammer_ip_next(cursor));
1372 }
1373 
1374 /*
1375  * Retrieve the next record in a merged iteration within the bounds of the
1376  * cursor.  This call may be made multiple times after the cursor has been
1377  * initially searched with hammer_ip_first().
1378  *
1379  * 0 is returned on success, ENOENT if no further records match the
1380  * requested range, or some other error code is returned.
1381  */
1382 int
1383 hammer_ip_next(hammer_cursor_t cursor)
1384 {
1385 	hammer_btree_elm_t elm;
1386 	hammer_record_t rec, save;
1387 	int error;
1388 	int r;
1389 
1390 next_btree:
1391 	/*
1392 	 * Load the current on-disk and in-memory record.  If we ate any
1393 	 * records we have to get the next one.
1394 	 *
1395 	 * If we deleted the last on-disk record we had scanned ATEDISK will
1396 	 * be clear and RETEST will be set, forcing a call to iterate.  The
1397 	 * fact that ATEDISK is clear causes iterate to re-test the 'current'
1398 	 * element.  If ATEDISK is set, iterate will skip the 'current'
1399 	 * element.
1400 	 *
1401 	 * Get the next on-disk record
1402 	 */
1403 	if (cursor->flags & (HAMMER_CURSOR_ATEDISK|HAMMER_CURSOR_RETEST)) {
1404 		if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
1405 			error = hammer_btree_iterate(cursor);
1406 			cursor->flags &= ~HAMMER_CURSOR_RETEST;
1407 			if (error == 0) {
1408 				cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1409 				hammer_cache_node(&cursor->ip->cache[1],
1410 						  cursor->node);
1411 			} else {
1412 				cursor->flags |= HAMMER_CURSOR_DISKEOF |
1413 						 HAMMER_CURSOR_ATEDISK;
1414 			}
1415 		}
1416 	}
1417 
1418 next_memory:
1419 	/*
1420 	 * Get the next in-memory record.
1421 	 *
1422 	 * hammer_rec_scan_cmp:  Is the record still in our general range,
1423 	 *			 (non-inclusive of snapshot exclusions)?
1424 	 * hammer_rec_scan_callback: Is the record in our snapshot?
1425 	 */
1426 	if (cursor->flags & HAMMER_CURSOR_ATEMEM) {
1427 		if ((cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1428 			save = cursor->iprec;
1429 			cursor->iprec = NULL;
1430 			rec = save ? hammer_rec_rb_tree_RB_NEXT(save) : NULL;
1431 			while (rec) {
1432 				if (hammer_rec_scan_cmp(rec, cursor) != 0)
1433 					break;
1434 				if (hammer_rec_scan_callback(rec, cursor) != 0)
1435 					break;
1436 				rec = hammer_rec_rb_tree_RB_NEXT(rec);
1437 			}
1438 			if (save)
1439 				hammer_rel_mem_record(save);
1440 			if (cursor->iprec) {
1441 				KKASSERT(cursor->iprec == rec);
1442 				cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1443 			} else {
1444 				cursor->flags |= HAMMER_CURSOR_MEMEOF;
1445 			}
1446 		}
1447 	}
1448 
1449 	/*
1450 	 * The memory record may have become stale while being held in
1451 	 * cursor->iprec.  We are interlocked against the backend on
1452 	 * with regards to B-Tree entries.
1453 	 */
1454 	if ((cursor->flags & HAMMER_CURSOR_ATEMEM) == 0) {
1455 		if (hammer_ip_iterate_mem_good(cursor, cursor->iprec) == 0) {
1456 			cursor->flags |= HAMMER_CURSOR_ATEMEM;
1457 			goto next_memory;
1458 		}
1459 	}
1460 
1461 	/*
1462 	 * Extract either the disk or memory record depending on their
1463 	 * relative position.
1464 	 */
1465 	error = 0;
1466 	switch(cursor->flags & (HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM)) {
1467 	case 0:
1468 		/*
1469 		 * Both entries valid.   Compare the entries and nominally
1470 		 * return the first one in the sort order.  Numerous cases
1471 		 * require special attention, however.
1472 		 */
1473 		elm = &cursor->node->ondisk->elms[cursor->index];
1474 		r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base);
1475 
1476 		/*
1477 		 * If the two entries differ only by their key (-2/2) or
1478 		 * create_tid (-1/1), and are DATA records, we may have a
1479 		 * nominal match.  We have to calculate the base file
1480 		 * offset of the data.
1481 		 */
1482 		if (r <= 2 && r >= -2 && r != 0 &&
1483 		    cursor->ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE &&
1484 		    cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1485 			int64_t base1 = elm->leaf.base.key - elm->leaf.data_len;
1486 			int64_t base2 = cursor->iprec->leaf.base.key -
1487 					cursor->iprec->leaf.data_len;
1488 			if (base1 == base2)
1489 				r = 0;
1490 		}
1491 
1492 		if (r < 0) {
1493 			error = hammer_btree_extract(cursor,
1494 						     HAMMER_CURSOR_GET_LEAF);
1495 			cursor->flags |= HAMMER_CURSOR_ATEDISK;
1496 			break;
1497 		}
1498 
1499 		/*
1500 		 * If the entries match exactly the memory entry is either
1501 		 * an on-disk directory entry deletion or a bulk data
1502 		 * overwrite.  If it is a directory entry deletion we eat
1503 		 * both entries.
1504 		 *
1505 		 * For the bulk-data overwrite case it is possible to have
1506 		 * visibility into both, which simply means the syncer
1507 		 * hasn't gotten around to doing the delete+insert sequence
1508 		 * on the B-Tree.  Use the memory entry and throw away the
1509 		 * on-disk entry.
1510 		 *
1511 		 * If the in-memory record is not either of these we
1512 		 * probably caught the syncer while it was syncing it to
1513 		 * the media.  Since we hold a shared lock on the cursor,
1514 		 * the in-memory record had better be marked deleted at
1515 		 * this point.
1516 		 */
1517 		if (r == 0) {
1518 			if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL) {
1519 				if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1520 					cursor->flags |= HAMMER_CURSOR_ATEDISK;
1521 					cursor->flags |= HAMMER_CURSOR_ATEMEM;
1522 					goto next_btree;
1523 				}
1524 			} else if (cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1525 				if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1526 					cursor->flags |= HAMMER_CURSOR_ATEDISK;
1527 				}
1528 				/* fall through to memory entry */
1529 			} else {
1530 				panic("hammer_ip_next: duplicate mem/b-tree entry %p %d %08x", cursor->iprec, cursor->iprec->type, cursor->iprec->flags);
1531 				cursor->flags |= HAMMER_CURSOR_ATEMEM;
1532 				goto next_memory;
1533 			}
1534 		}
1535 		/* fall through to the memory entry */
1536 	case HAMMER_CURSOR_ATEDISK:
1537 		/*
1538 		 * Only the memory entry is valid.
1539 		 */
1540 		cursor->leaf = &cursor->iprec->leaf;
1541 		cursor->flags |= HAMMER_CURSOR_ATEMEM;
1542 
1543 		/*
1544 		 * If the memory entry is an on-disk deletion we should have
1545 		 * also had found a B-Tree record.  If the backend beat us
1546 		 * to it it would have interlocked the cursor and we should
1547 		 * have seen the in-memory record marked DELETED_FE.
1548 		 */
1549 		if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL &&
1550 		    (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1551 			panic("hammer_ip_next: del-on-disk with no b-tree entry iprec %p flags %08x", cursor->iprec, cursor->iprec->flags);
1552 		}
1553 		break;
1554 	case HAMMER_CURSOR_ATEMEM:
1555 		/*
1556 		 * Only the disk entry is valid
1557 		 */
1558 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1559 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
1560 		break;
1561 	default:
1562 		/*
1563 		 * Neither entry is valid
1564 		 *
1565 		 * XXX error not set properly
1566 		 */
1567 		cursor->leaf = NULL;
1568 		error = ENOENT;
1569 		break;
1570 	}
1571 	return(error);
1572 }
1573 
1574 /*
1575  * Resolve the cursor->data pointer for the current cursor position in
1576  * a merged iteration.
1577  */
1578 int
1579 hammer_ip_resolve_data(hammer_cursor_t cursor)
1580 {
1581 	hammer_record_t record;
1582 	int error;
1583 
1584 	if (hammer_cursor_inmem(cursor)) {
1585 		/*
1586 		 * The data associated with an in-memory record is usually
1587 		 * kmalloced, but reserve-ahead data records will have an
1588 		 * on-disk reference.
1589 		 *
1590 		 * NOTE: Reserve-ahead data records must be handled in the
1591 		 * context of the related high level buffer cache buffer
1592 		 * to interlock against async writes.
1593 		 */
1594 		record = cursor->iprec;
1595 		cursor->data = record->data;
1596 		error = 0;
1597 		if (cursor->data == NULL) {
1598 			KKASSERT(record->leaf.base.rec_type ==
1599 				 HAMMER_RECTYPE_DATA);
1600 			cursor->data = hammer_bread_ext(cursor->trans->hmp,
1601 						    record->leaf.data_offset,
1602 						    record->leaf.data_len,
1603 						    &error,
1604 						    &cursor->data_buffer);
1605 		}
1606 	} else {
1607 		cursor->leaf = &cursor->node->ondisk->elms[cursor->index].leaf;
1608 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_DATA);
1609 	}
1610 	return(error);
1611 }
1612 
1613 /*
1614  * Backend truncation / record replacement - delete records in range.
1615  *
1616  * Delete all records within the specified range for inode ip.  In-memory
1617  * records still associated with the frontend are ignored.
1618  *
1619  * If truncating is non-zero in-memory records associated with the back-end
1620  * are ignored.  If truncating is > 1 we can return EWOULDBLOCK.
1621  *
1622  * NOTES:
1623  *
1624  *	* An unaligned range will cause new records to be added to cover
1625  *        the edge cases. (XXX not implemented yet).
1626  *
1627  *	* Replacement via reservations (see hammer_ip_sync_record_cursor())
1628  *        also do not deal with unaligned ranges.
1629  *
1630  *	* ran_end is inclusive (e.g. 0,1023 instead of 0,1024).
1631  *
1632  *	* Record keys for regular file data have to be special-cased since
1633  * 	  they indicate the end of the range (key = base + bytes).
1634  *
1635  *	* This function may be asked to delete ridiculously huge ranges, for
1636  *	  example if someone truncates or removes a 1TB regular file.  We
1637  *	  must be very careful on restarts and we may have to stop w/
1638  *	  EWOULDBLOCK to avoid blowing out the buffer cache.
1639  */
1640 int
1641 hammer_ip_delete_range(hammer_cursor_t cursor, hammer_inode_t ip,
1642 		       int64_t ran_beg, int64_t ran_end, int truncating)
1643 {
1644 	hammer_transaction_t trans = cursor->trans;
1645 	hammer_btree_leaf_elm_t leaf;
1646 	int error;
1647 	int64_t off;
1648 	int64_t tmp64;
1649 
1650 #if 0
1651 	kprintf("delete_range %p %016llx-%016llx\n", ip, ran_beg, ran_end);
1652 #endif
1653 
1654 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
1655 retry:
1656 	hammer_normalize_cursor(cursor);
1657 	cursor->key_beg.localization = ip->obj_localization +
1658 				       HAMMER_LOCALIZE_MISC;
1659 	cursor->key_beg.obj_id = ip->obj_id;
1660 	cursor->key_beg.create_tid = 0;
1661 	cursor->key_beg.delete_tid = 0;
1662 	cursor->key_beg.obj_type = 0;
1663 
1664 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1665 		cursor->key_beg.key = ran_beg;
1666 		cursor->key_beg.rec_type = HAMMER_RECTYPE_DB;
1667 	} else {
1668 		/*
1669 		 * The key in the B-Tree is (base+bytes), so the first possible
1670 		 * matching key is ran_beg + 1.
1671 		 */
1672 		cursor->key_beg.key = ran_beg + 1;
1673 		cursor->key_beg.rec_type = HAMMER_RECTYPE_DATA;
1674 	}
1675 
1676 	cursor->key_end = cursor->key_beg;
1677 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1678 		cursor->key_end.key = ran_end;
1679 	} else {
1680 		tmp64 = ran_end + MAXPHYS + 1;	/* work around GCC-4 bug */
1681 		if (tmp64 < ran_end)
1682 			cursor->key_end.key = 0x7FFFFFFFFFFFFFFFLL;
1683 		else
1684 			cursor->key_end.key = ran_end + MAXPHYS + 1;
1685 	}
1686 
1687 	cursor->asof = ip->obj_asof;
1688 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1689 	cursor->flags |= HAMMER_CURSOR_ASOF;
1690 	cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
1691 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1692 	cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE;
1693 
1694 	error = hammer_ip_first(cursor);
1695 
1696 	/*
1697 	 * Iterate through matching records and mark them as deleted.
1698 	 */
1699 	while (error == 0) {
1700 		leaf = cursor->leaf;
1701 
1702 		KKASSERT(leaf->base.delete_tid == 0);
1703 		KKASSERT(leaf->base.obj_id == ip->obj_id);
1704 
1705 		/*
1706 		 * There may be overlap cases for regular file data.  Also
1707 		 * remember the key for a regular file record is (base + len),
1708 		 * NOT (base).
1709 		 *
1710 		 * Note that do to duplicates (mem & media) allowed by
1711 		 * DELETE_VISIBILITY, off can wind up less then ran_beg.
1712 		 */
1713 		if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
1714 			off = leaf->base.key - leaf->data_len;
1715 			/*
1716 			 * Check the left edge case.  We currently do not
1717 			 * split existing records.
1718 			 */
1719 			if (off < ran_beg && leaf->base.key > ran_beg) {
1720 				panic("hammer left edge case %016llx %d\n",
1721 					leaf->base.key, leaf->data_len);
1722 			}
1723 
1724 			/*
1725 			 * Check the right edge case.  Note that the
1726 			 * record can be completely out of bounds, which
1727 			 * terminates the search.
1728 			 *
1729 			 * base->key is exclusive of the right edge while
1730 			 * ran_end is inclusive of the right edge.  The
1731 			 * (key - data_len) left boundary is inclusive.
1732 			 *
1733 			 * XXX theory-check this test at some point, are
1734 			 * we missing a + 1 somewhere?  Note that ran_end
1735 			 * could overflow.
1736 			 */
1737 			if (leaf->base.key - 1 > ran_end) {
1738 				if (leaf->base.key - leaf->data_len > ran_end)
1739 					break;
1740 				panic("hammer right edge case\n");
1741 			}
1742 		} else {
1743 			off = leaf->base.key;
1744 		}
1745 
1746 		/*
1747 		 * Delete the record.  When truncating we do not delete
1748 		 * in-memory (data) records because they represent data
1749 		 * written after the truncation.
1750 		 *
1751 		 * This will also physically destroy the B-Tree entry and
1752 		 * data if the retention policy dictates.  The function
1753 		 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
1754 		 * to retest the new 'current' element.
1755 		 */
1756 		if (truncating == 0 || hammer_cursor_ondisk(cursor)) {
1757 			error = hammer_ip_delete_record(cursor, ip, trans->tid);
1758 			/*
1759 			 * If we have built up too many meta-buffers we risk
1760 			 * deadlocking the kernel and must stop.  This can
1761 			 * occur when deleting ridiculously huge files.
1762 			 * sync_trunc_off is updated so the next cycle does
1763 			 * not re-iterate records we have already deleted.
1764 			 *
1765 			 * This is only done with formal truncations.
1766 			 */
1767 			if (truncating > 1 && error == 0 &&
1768 			    hammer_flusher_meta_limit(ip->hmp)) {
1769 				ip->sync_trunc_off = off;
1770 				error = EWOULDBLOCK;
1771 			}
1772 		}
1773 		if (error)
1774 			break;
1775 		ran_beg = off;	/* for restart */
1776 		error = hammer_ip_next(cursor);
1777 	}
1778 	if (cursor->node)
1779 		hammer_cache_node(&ip->cache[1], cursor->node);
1780 
1781 	if (error == EDEADLK) {
1782 		hammer_done_cursor(cursor);
1783 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
1784 		if (error == 0)
1785 			goto retry;
1786 	}
1787 	if (error == ENOENT)
1788 		error = 0;
1789 	return(error);
1790 }
1791 
1792 /*
1793  * This backend function deletes the specified record on-disk, similar to
1794  * delete_range but for a specific record.  Unlike the exact deletions
1795  * used when deleting a directory entry this function uses an ASOF search
1796  * like delete_range.
1797  *
1798  * This function may be called with ip->obj_asof set for a slave snapshot,
1799  * so don't use it.  We always delete non-historical records only.
1800  */
1801 static int
1802 hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
1803 		      hammer_btree_leaf_elm_t leaf)
1804 {
1805 	hammer_transaction_t trans = cursor->trans;
1806 	int error;
1807 
1808 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
1809 retry:
1810 	hammer_normalize_cursor(cursor);
1811 	cursor->key_beg = leaf->base;
1812 	cursor->asof = HAMMER_MAX_TID;
1813 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1814 	cursor->flags |= HAMMER_CURSOR_ASOF;
1815 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1816 	cursor->flags &= ~HAMMER_CURSOR_INSERT;
1817 
1818 	error = hammer_btree_lookup(cursor);
1819 	if (error == 0) {
1820 		error = hammer_ip_delete_record(cursor, ip, trans->tid);
1821 	}
1822 	if (error == EDEADLK) {
1823 		hammer_done_cursor(cursor);
1824 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
1825 		if (error == 0)
1826 			goto retry;
1827 	}
1828 	return(error);
1829 }
1830 
1831 /*
1832  * This function deletes remaining auxillary records when an inode is
1833  * being deleted.  This function explicitly does not delete the
1834  * inode record, directory entry, data, or db records.  Those must be
1835  * properly disposed of prior to this call.
1836  */
1837 int
1838 hammer_ip_delete_clean(hammer_cursor_t cursor, hammer_inode_t ip, int *countp)
1839 {
1840 	hammer_transaction_t trans = cursor->trans;
1841 	hammer_btree_leaf_elm_t leaf;
1842 	int error;
1843 
1844 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
1845 retry:
1846 	hammer_normalize_cursor(cursor);
1847 	cursor->key_beg.localization = ip->obj_localization +
1848 				       HAMMER_LOCALIZE_MISC;
1849 	cursor->key_beg.obj_id = ip->obj_id;
1850 	cursor->key_beg.create_tid = 0;
1851 	cursor->key_beg.delete_tid = 0;
1852 	cursor->key_beg.obj_type = 0;
1853 	cursor->key_beg.rec_type = HAMMER_RECTYPE_CLEAN_START;
1854 	cursor->key_beg.key = HAMMER_MIN_KEY;
1855 
1856 	cursor->key_end = cursor->key_beg;
1857 	cursor->key_end.rec_type = HAMMER_RECTYPE_MAX;
1858 	cursor->key_end.key = HAMMER_MAX_KEY;
1859 
1860 	cursor->asof = ip->obj_asof;
1861 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1862 	cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
1863 	cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
1864 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1865 
1866 	error = hammer_ip_first(cursor);
1867 
1868 	/*
1869 	 * Iterate through matching records and mark them as deleted.
1870 	 */
1871 	while (error == 0) {
1872 		leaf = cursor->leaf;
1873 
1874 		KKASSERT(leaf->base.delete_tid == 0);
1875 
1876 		/*
1877 		 * Mark the record and B-Tree entry as deleted.  This will
1878 		 * also physically delete the B-Tree entry, record, and
1879 		 * data if the retention policy dictates.  The function
1880 		 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
1881 		 * to retest the new 'current' element.
1882 		 *
1883 		 * Directory entries (and delete-on-disk directory entries)
1884 		 * must be synced and cannot be deleted.
1885 		 */
1886 		error = hammer_ip_delete_record(cursor, ip, trans->tid);
1887 		++*countp;
1888 		if (error)
1889 			break;
1890 		error = hammer_ip_next(cursor);
1891 	}
1892 	if (cursor->node)
1893 		hammer_cache_node(&ip->cache[1], cursor->node);
1894 	if (error == EDEADLK) {
1895 		hammer_done_cursor(cursor);
1896 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
1897 		if (error == 0)
1898 			goto retry;
1899 	}
1900 	if (error == ENOENT)
1901 		error = 0;
1902 	return(error);
1903 }
1904 
1905 /*
1906  * Delete the record at the current cursor.  On success the cursor will
1907  * be positioned appropriately for an iteration but may no longer be at
1908  * a leaf node.
1909  *
1910  * This routine is only called from the backend.
1911  *
1912  * NOTE: This can return EDEADLK, requiring the caller to terminate the
1913  * cursor and retry.
1914  */
1915 int
1916 hammer_ip_delete_record(hammer_cursor_t cursor, hammer_inode_t ip,
1917 			hammer_tid_t tid)
1918 {
1919 	hammer_record_t iprec;
1920 	hammer_mount_t hmp;
1921 	int error;
1922 
1923 	KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1924 	KKASSERT(tid != 0);
1925 	hmp = cursor->node->hmp;
1926 
1927 	/*
1928 	 * In-memory (unsynchronized) records can simply be freed.  This
1929 	 * only occurs in range iterations since all other records are
1930 	 * individually synchronized.  Thus there should be no confusion with
1931 	 * the interlock.
1932 	 *
1933 	 * An in-memory record may be deleted before being committed to disk,
1934 	 * but could have been accessed in the mean time.  The reservation
1935 	 * code will deal with the case.
1936 	 */
1937 	if (hammer_cursor_inmem(cursor)) {
1938 		iprec = cursor->iprec;
1939 		KKASSERT((iprec->flags & HAMMER_RECF_INTERLOCK_BE) ==0);
1940 		iprec->flags |= HAMMER_RECF_DELETED_FE;
1941 		iprec->flags |= HAMMER_RECF_DELETED_BE;
1942 		return(0);
1943 	}
1944 
1945 	/*
1946 	 * On-disk records are marked as deleted by updating their delete_tid.
1947 	 * This does not effect their position in the B-Tree (which is based
1948 	 * on their create_tid).
1949 	 *
1950 	 * Frontend B-Tree operations track inodes so we tell
1951 	 * hammer_delete_at_cursor() not to.
1952 	 */
1953 	error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1954 
1955 	if (error == 0) {
1956 		error = hammer_delete_at_cursor(
1957 				cursor,
1958 				HAMMER_DELETE_ADJUST | hammer_nohistory(ip),
1959 				cursor->trans->tid,
1960 				cursor->trans->time32,
1961 				0, NULL);
1962 	}
1963 	return(error);
1964 }
1965 
1966 /*
1967  * Delete the B-Tree element at the current cursor and do any necessary
1968  * mirror propagation.
1969  *
1970  * The cursor must be properly positioned for an iteration on return but
1971  * may be pointing at an internal element.
1972  *
1973  * An element can be un-deleted by passing a delete_tid of 0 with
1974  * HAMMER_DELETE_ADJUST.
1975  */
1976 int
1977 hammer_delete_at_cursor(hammer_cursor_t cursor, int delete_flags,
1978 			hammer_tid_t delete_tid, u_int32_t delete_ts,
1979 			int track, int64_t *stat_bytes)
1980 {
1981 	struct hammer_btree_leaf_elm save_leaf;
1982 	hammer_transaction_t trans;
1983 	hammer_btree_leaf_elm_t leaf;
1984 	hammer_node_t node;
1985 	hammer_btree_elm_t elm;
1986 	hammer_off_t data_offset;
1987 	int32_t data_len;
1988 	u_int16_t rec_type;
1989 	int error;
1990 	int icount;
1991 	int doprop;
1992 
1993 	error = hammer_cursor_upgrade(cursor);
1994 	if (error)
1995 		return(error);
1996 
1997 	trans = cursor->trans;
1998 	node = cursor->node;
1999 	elm = &node->ondisk->elms[cursor->index];
2000 	leaf = &elm->leaf;
2001 	KKASSERT(elm->base.btype == HAMMER_BTREE_TYPE_RECORD);
2002 
2003 	hammer_sync_lock_sh(trans);
2004 	doprop = 0;
2005 	icount = 0;
2006 
2007 	/*
2008 	 * Adjust the delete_tid.  Update the mirror_tid propagation field
2009 	 * as well.  delete_tid can be 0 (undelete -- used by mirroring).
2010 	 */
2011 	if (delete_flags & HAMMER_DELETE_ADJUST) {
2012 		if (elm->base.rec_type == HAMMER_RECTYPE_INODE) {
2013 			if (elm->leaf.base.delete_tid == 0 && delete_tid)
2014 				icount = -1;
2015 			if (elm->leaf.base.delete_tid && delete_tid == 0)
2016 				icount = 1;
2017 		}
2018 
2019 		hammer_modify_node(trans, node, elm, sizeof(*elm));
2020 		elm->leaf.base.delete_tid = delete_tid;
2021 		elm->leaf.delete_ts = delete_ts;
2022 		hammer_modify_node_done(node);
2023 
2024 		if (elm->leaf.base.delete_tid > node->ondisk->mirror_tid) {
2025 			hammer_modify_node_field(trans, node, mirror_tid);
2026 			node->ondisk->mirror_tid = elm->leaf.base.delete_tid;
2027 			hammer_modify_node_done(node);
2028 			doprop = 1;
2029 			if (hammer_debug_general & 0x0002) {
2030 				kprintf("delete_at_cursor: propagate %016llx"
2031 					" @%016llx\n",
2032 					elm->leaf.base.delete_tid,
2033 					node->node_offset);
2034 			}
2035 		}
2036 
2037 		/*
2038 		 * Adjust for the iteration.  We have deleted the current
2039 		 * element and want to clear ATEDISK so the iteration does
2040 		 * not skip the element after, which now becomes the current
2041 		 * element.  This element must be re-tested if doing an
2042 		 * iteration, which is handled by the RETEST flag.
2043 		 */
2044 		if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2045 			cursor->flags |= HAMMER_CURSOR_RETEST;
2046 			cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2047 		}
2048 
2049 		/*
2050 		 * An on-disk record cannot have the same delete_tid
2051 		 * as its create_tid.  In a chain of record updates
2052 		 * this could result in a duplicate record.
2053 		 */
2054 		KKASSERT(elm->leaf.base.delete_tid !=
2055 			 elm->leaf.base.create_tid);
2056 	}
2057 
2058 	/*
2059 	 * Destroy the B-Tree element if asked (typically if a nohistory
2060 	 * file or mount, or when called by the pruning code).
2061 	 *
2062 	 * Adjust the ATEDISK flag to properly support iterations.
2063 	 */
2064 	if (delete_flags & HAMMER_DELETE_DESTROY) {
2065 		data_offset = elm->leaf.data_offset;
2066 		data_len = elm->leaf.data_len;
2067 		rec_type = elm->leaf.base.rec_type;
2068 		if (doprop) {
2069 			save_leaf = elm->leaf;
2070 			leaf = &save_leaf;
2071 		}
2072 		if (elm->base.rec_type == HAMMER_RECTYPE_INODE &&
2073 		    elm->leaf.base.delete_tid == 0) {
2074 			icount = -1;
2075 		}
2076 
2077 		error = hammer_btree_delete(cursor);
2078 		if (error == 0) {
2079 			/*
2080 			 * The deletion moves the next element (if any) to
2081 			 * the current element position.  We must clear
2082 			 * ATEDISK so this element is not skipped and we
2083 			 * must set RETEST to force any iteration to re-test
2084 			 * the element.
2085 			 */
2086 			if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2087 				cursor->flags |= HAMMER_CURSOR_RETEST;
2088 				cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2089 			}
2090 		}
2091 		if (error == 0) {
2092 			switch(data_offset & HAMMER_OFF_ZONE_MASK) {
2093 			case HAMMER_ZONE_LARGE_DATA:
2094 			case HAMMER_ZONE_SMALL_DATA:
2095 			case HAMMER_ZONE_META:
2096 				hammer_blockmap_free(trans,
2097 						     data_offset, data_len);
2098 				break;
2099 			default:
2100 				break;
2101 			}
2102 		}
2103 	}
2104 
2105 	/*
2106 	 * Track inode count and next_tid.  This is used by the mirroring
2107 	 * and PFS code.  icount can be negative, zero, or positive.
2108 	 */
2109 	if (error == 0 && track) {
2110 		if (icount) {
2111 			hammer_modify_volume_field(trans, trans->rootvol,
2112 						   vol0_stat_inodes);
2113 			trans->rootvol->ondisk->vol0_stat_inodes += icount;
2114 			hammer_modify_volume_done(trans->rootvol);
2115 		}
2116 		if (trans->rootvol->ondisk->vol0_next_tid < delete_tid) {
2117 			hammer_modify_volume(trans, trans->rootvol, NULL, 0);
2118 			trans->rootvol->ondisk->vol0_next_tid = delete_tid;
2119 			hammer_modify_volume_done(trans->rootvol);
2120 		}
2121 	}
2122 
2123 	/*
2124 	 * mirror_tid propagation occurs if the node's mirror_tid had to be
2125 	 * updated while adjusting the delete_tid.
2126 	 *
2127 	 * This occurs when deleting even in nohistory mode, but does not
2128 	 * occur when pruning an already-deleted node.
2129 	 *
2130 	 * cursor->ip is NULL when called from the pruning, mirroring,
2131 	 * and pfs code.  If non-NULL propagation will be conditionalized
2132 	 * on whether the PFS is in no-history mode or not.
2133 	 */
2134 	if (doprop) {
2135 		if (cursor->ip)
2136 			hammer_btree_do_propagation(cursor, cursor->ip->pfsm, leaf);
2137 		else
2138 			hammer_btree_do_propagation(cursor, NULL, leaf);
2139 	}
2140 	hammer_sync_unlock(trans);
2141 	return (error);
2142 }
2143 
2144 /*
2145  * Determine whether we can remove a directory.  This routine checks whether
2146  * a directory is empty or not and enforces flush connectivity.
2147  *
2148  * Flush connectivity requires that we block if the target directory is
2149  * currently flushing, otherwise it may not end up in the same flush group.
2150  *
2151  * Returns 0 on success, ENOTEMPTY or EDEADLK (or other errors) on failure.
2152  */
2153 int
2154 hammer_ip_check_directory_empty(hammer_transaction_t trans, hammer_inode_t ip)
2155 {
2156 	struct hammer_cursor cursor;
2157 	int error;
2158 
2159 	/*
2160 	 * Check directory empty
2161 	 */
2162 	hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2163 
2164 	cursor.key_beg.localization = ip->obj_localization +
2165 				      HAMMER_LOCALIZE_MISC;
2166 	cursor.key_beg.obj_id = ip->obj_id;
2167 	cursor.key_beg.create_tid = 0;
2168 	cursor.key_beg.delete_tid = 0;
2169 	cursor.key_beg.obj_type = 0;
2170 	cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE + 1;
2171 	cursor.key_beg.key = HAMMER_MIN_KEY;
2172 
2173 	cursor.key_end = cursor.key_beg;
2174 	cursor.key_end.rec_type = 0xFFFF;
2175 	cursor.key_end.key = HAMMER_MAX_KEY;
2176 
2177 	cursor.asof = ip->obj_asof;
2178 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2179 
2180 	error = hammer_ip_first(&cursor);
2181 	if (error == ENOENT)
2182 		error = 0;
2183 	else if (error == 0)
2184 		error = ENOTEMPTY;
2185 	hammer_done_cursor(&cursor);
2186 	return(error);
2187 }
2188 
2189