1 /* 2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $DragonFly: src/sys/vfs/hammer/hammer_object.c,v 1.97 2008/09/23 22:28:56 dillon Exp $ 35 */ 36 37 #include "hammer.h" 38 39 static int hammer_mem_lookup(hammer_cursor_t cursor); 40 static void hammer_mem_first(hammer_cursor_t cursor); 41 static int hammer_frontend_trunc_callback(hammer_record_t record, 42 void *data __unused); 43 static int hammer_bulk_scan_callback(hammer_record_t record, void *data); 44 static int hammer_record_needs_overwrite_delete(hammer_record_t record); 45 static int hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip, 46 hammer_btree_leaf_elm_t leaf); 47 48 struct rec_trunc_info { 49 u_int16_t rec_type; 50 int64_t trunc_off; 51 }; 52 53 struct hammer_bulk_info { 54 hammer_record_t record; 55 struct hammer_btree_leaf_elm leaf; 56 }; 57 58 /* 59 * Red-black tree support. Comparison code for insertion. 60 */ 61 static int 62 hammer_rec_rb_compare(hammer_record_t rec1, hammer_record_t rec2) 63 { 64 if (rec1->leaf.base.rec_type < rec2->leaf.base.rec_type) 65 return(-1); 66 if (rec1->leaf.base.rec_type > rec2->leaf.base.rec_type) 67 return(1); 68 69 if (rec1->leaf.base.key < rec2->leaf.base.key) 70 return(-1); 71 if (rec1->leaf.base.key > rec2->leaf.base.key) 72 return(1); 73 74 /* 75 * For search & insertion purposes records deleted by the 76 * frontend or deleted/committed by the backend are silently 77 * ignored. Otherwise pipelined insertions will get messed 78 * up. 79 * 80 * rec1 is greater then rec2 if rec1 is marked deleted. 81 * rec1 is less then rec2 if rec2 is marked deleted. 82 * 83 * Multiple deleted records may be present, do not return 0 84 * if both are marked deleted. 85 */ 86 if (rec1->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE | 87 HAMMER_RECF_COMMITTED)) { 88 return(1); 89 } 90 if (rec2->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE | 91 HAMMER_RECF_COMMITTED)) { 92 return(-1); 93 } 94 95 return(0); 96 } 97 98 /* 99 * Basic record comparison code similar to hammer_btree_cmp(). 100 */ 101 static int 102 hammer_rec_cmp(hammer_base_elm_t elm, hammer_record_t rec) 103 { 104 if (elm->rec_type < rec->leaf.base.rec_type) 105 return(-3); 106 if (elm->rec_type > rec->leaf.base.rec_type) 107 return(3); 108 109 if (elm->key < rec->leaf.base.key) 110 return(-2); 111 if (elm->key > rec->leaf.base.key) 112 return(2); 113 114 /* 115 * Never match against an item deleted by the frontend 116 * or backend, or committed by the backend. 117 * 118 * elm is less then rec if rec is marked deleted. 119 */ 120 if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE | 121 HAMMER_RECF_COMMITTED)) { 122 return(-1); 123 } 124 return(0); 125 } 126 127 /* 128 * Ranged scan to locate overlapping record(s). This is used by 129 * hammer_ip_get_bulk() to locate an overlapping record. We have 130 * to use a ranged scan because the keys for data records with the 131 * same file base offset can be different due to differing data_len's. 132 * 133 * NOTE: The base file offset of a data record is (key - data_len), not (key). 134 */ 135 static int 136 hammer_rec_overlap_cmp(hammer_record_t rec, void *data) 137 { 138 struct hammer_bulk_info *info = data; 139 hammer_btree_leaf_elm_t leaf = &info->leaf; 140 141 if (rec->leaf.base.rec_type < leaf->base.rec_type) 142 return(-3); 143 if (rec->leaf.base.rec_type > leaf->base.rec_type) 144 return(3); 145 146 /* 147 * Overlap compare 148 */ 149 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) { 150 /* rec_beg >= leaf_end */ 151 if (rec->leaf.base.key - rec->leaf.data_len >= leaf->base.key) 152 return(2); 153 /* rec_end <= leaf_beg */ 154 if (rec->leaf.base.key <= leaf->base.key - leaf->data_len) 155 return(-2); 156 } else { 157 if (rec->leaf.base.key < leaf->base.key) 158 return(-2); 159 if (rec->leaf.base.key > leaf->base.key) 160 return(2); 161 } 162 163 /* 164 * We have to return 0 at this point, even if DELETED_FE is set, 165 * because returning anything else will cause the scan to ignore 166 * one of the branches when we really want it to check both. 167 */ 168 return(0); 169 } 170 171 /* 172 * RB_SCAN comparison code for hammer_mem_first(). The argument order 173 * is reversed so the comparison result has to be negated. key_beg and 174 * key_end are both range-inclusive. 175 * 176 * Localized deletions are not cached in-memory. 177 */ 178 static 179 int 180 hammer_rec_scan_cmp(hammer_record_t rec, void *data) 181 { 182 hammer_cursor_t cursor = data; 183 int r; 184 185 r = hammer_rec_cmp(&cursor->key_beg, rec); 186 if (r > 1) 187 return(-1); 188 r = hammer_rec_cmp(&cursor->key_end, rec); 189 if (r < -1) 190 return(1); 191 return(0); 192 } 193 194 /* 195 * This compare function is used when simply looking up key_beg. 196 */ 197 static 198 int 199 hammer_rec_find_cmp(hammer_record_t rec, void *data) 200 { 201 hammer_cursor_t cursor = data; 202 int r; 203 204 r = hammer_rec_cmp(&cursor->key_beg, rec); 205 if (r > 1) 206 return(-1); 207 if (r < -1) 208 return(1); 209 return(0); 210 } 211 212 /* 213 * Locate blocks within the truncation range. Partial blocks do not count. 214 */ 215 static 216 int 217 hammer_rec_trunc_cmp(hammer_record_t rec, void *data) 218 { 219 struct rec_trunc_info *info = data; 220 221 if (rec->leaf.base.rec_type < info->rec_type) 222 return(-1); 223 if (rec->leaf.base.rec_type > info->rec_type) 224 return(1); 225 226 switch(rec->leaf.base.rec_type) { 227 case HAMMER_RECTYPE_DB: 228 /* 229 * DB record key is not beyond the truncation point, retain. 230 */ 231 if (rec->leaf.base.key < info->trunc_off) 232 return(-1); 233 break; 234 case HAMMER_RECTYPE_DATA: 235 /* 236 * DATA record offset start is not beyond the truncation point, 237 * retain. 238 */ 239 if (rec->leaf.base.key - rec->leaf.data_len < info->trunc_off) 240 return(-1); 241 break; 242 default: 243 panic("hammer_rec_trunc_cmp: unexpected record type"); 244 } 245 246 /* 247 * The record start is >= the truncation point, return match, 248 * the record should be destroyed. 249 */ 250 return(0); 251 } 252 253 RB_GENERATE(hammer_rec_rb_tree, hammer_record, rb_node, hammer_rec_rb_compare); 254 255 /* 256 * Allocate a record for the caller to finish filling in. The record is 257 * returned referenced. 258 */ 259 hammer_record_t 260 hammer_alloc_mem_record(hammer_inode_t ip, int data_len) 261 { 262 hammer_record_t record; 263 hammer_mount_t hmp; 264 265 hmp = ip->hmp; 266 ++hammer_count_records; 267 record = kmalloc(sizeof(*record), hmp->m_misc, 268 M_WAITOK | M_ZERO | M_USE_RESERVE); 269 record->flush_state = HAMMER_FST_IDLE; 270 record->ip = ip; 271 record->leaf.base.btype = HAMMER_BTREE_TYPE_RECORD; 272 record->leaf.data_len = data_len; 273 hammer_ref(&record->lock); 274 275 if (data_len) { 276 record->data = kmalloc(data_len, hmp->m_misc, M_WAITOK | M_ZERO); 277 record->flags |= HAMMER_RECF_ALLOCDATA; 278 ++hammer_count_record_datas; 279 } 280 281 return (record); 282 } 283 284 void 285 hammer_wait_mem_record_ident(hammer_record_t record, const char *ident) 286 { 287 while (record->flush_state == HAMMER_FST_FLUSH) { 288 record->flags |= HAMMER_RECF_WANTED; 289 tsleep(record, 0, ident, 0); 290 } 291 } 292 293 /* 294 * Called from the backend, hammer_inode.c, after a record has been 295 * flushed to disk. The record has been exclusively locked by the 296 * caller and interlocked with BE. 297 * 298 * We clean up the state, unlock, and release the record (the record 299 * was referenced by the fact that it was in the HAMMER_FST_FLUSH state). 300 */ 301 void 302 hammer_flush_record_done(hammer_record_t record, int error) 303 { 304 hammer_inode_t target_ip; 305 306 KKASSERT(record->flush_state == HAMMER_FST_FLUSH); 307 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE); 308 309 /* 310 * If an error occured, the backend was unable to sync the 311 * record to its media. Leave the record intact. 312 */ 313 if (error) { 314 hammer_critical_error(record->ip->hmp, record->ip, error, 315 "while flushing record"); 316 } 317 318 --record->flush_group->refs; 319 record->flush_group = NULL; 320 321 /* 322 * Adjust the flush state and dependancy based on success or 323 * failure. 324 */ 325 if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) { 326 if ((target_ip = record->target_ip) != NULL) { 327 TAILQ_REMOVE(&target_ip->target_list, record, 328 target_entry); 329 record->target_ip = NULL; 330 hammer_test_inode(target_ip); 331 } 332 record->flush_state = HAMMER_FST_IDLE; 333 } else { 334 if (record->target_ip) { 335 record->flush_state = HAMMER_FST_SETUP; 336 hammer_test_inode(record->ip); 337 hammer_test_inode(record->target_ip); 338 } else { 339 record->flush_state = HAMMER_FST_IDLE; 340 } 341 } 342 record->flags &= ~HAMMER_RECF_INTERLOCK_BE; 343 344 /* 345 * Cleanup 346 */ 347 if (record->flags & HAMMER_RECF_WANTED) { 348 record->flags &= ~HAMMER_RECF_WANTED; 349 wakeup(record); 350 } 351 hammer_rel_mem_record(record); 352 } 353 354 /* 355 * Release a memory record. Records marked for deletion are immediately 356 * removed from the RB-Tree but otherwise left intact until the last ref 357 * goes away. 358 */ 359 void 360 hammer_rel_mem_record(struct hammer_record *record) 361 { 362 hammer_mount_t hmp; 363 hammer_reserve_t resv; 364 hammer_inode_t ip; 365 hammer_inode_t target_ip; 366 367 hammer_unref(&record->lock); 368 369 if (record->lock.refs == 0) { 370 /* 371 * Upon release of the last reference wakeup any waiters. 372 * The record structure may get destroyed so callers will 373 * loop up and do a relookup. 374 * 375 * WARNING! Record must be removed from RB-TREE before we 376 * might possibly block. hammer_test_inode() can block! 377 */ 378 ip = record->ip; 379 hmp = ip->hmp; 380 381 /* 382 * Upon release of the last reference a record marked deleted 383 * by the front or backend, or committed by the backend, 384 * is destroyed. 385 */ 386 if (record->flags & (HAMMER_RECF_DELETED_FE | 387 HAMMER_RECF_DELETED_BE | 388 HAMMER_RECF_COMMITTED)) { 389 KKASSERT(ip->lock.refs > 0); 390 KKASSERT(record->flush_state != HAMMER_FST_FLUSH); 391 392 /* 393 * target_ip may have zero refs, we have to ref it 394 * to prevent it from being ripped out from under 395 * us. 396 */ 397 if ((target_ip = record->target_ip) != NULL) { 398 TAILQ_REMOVE(&target_ip->target_list, 399 record, target_entry); 400 record->target_ip = NULL; 401 hammer_ref(&target_ip->lock); 402 } 403 404 if (record->flags & HAMMER_RECF_ONRBTREE) { 405 RB_REMOVE(hammer_rec_rb_tree, 406 &record->ip->rec_tree, 407 record); 408 KKASSERT(ip->rsv_recs > 0); 409 --hmp->rsv_recs; 410 --ip->rsv_recs; 411 hmp->rsv_databytes -= record->leaf.data_len; 412 record->flags &= ~HAMMER_RECF_ONRBTREE; 413 414 if (RB_EMPTY(&record->ip->rec_tree)) { 415 record->ip->flags &= ~HAMMER_INODE_XDIRTY; 416 record->ip->sync_flags &= ~HAMMER_INODE_XDIRTY; 417 hammer_test_inode(record->ip); 418 } 419 } 420 421 /* 422 * We must wait for any direct-IO to complete before 423 * we can destroy the record because the bio may 424 * have a reference to it. 425 */ 426 if (record->flags & 427 (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL)) { 428 hammer_io_direct_wait(record); 429 } 430 431 432 /* 433 * Do this test after removing record from the B-Tree. 434 */ 435 if (target_ip) { 436 hammer_test_inode(target_ip); 437 hammer_rel_inode(target_ip, 0); 438 } 439 440 if (record->flags & HAMMER_RECF_ALLOCDATA) { 441 --hammer_count_record_datas; 442 kfree(record->data, hmp->m_misc); 443 record->flags &= ~HAMMER_RECF_ALLOCDATA; 444 } 445 446 /* 447 * Release the reservation. 448 * 449 * If the record was not committed we can theoretically 450 * undo the reservation. However, doing so might 451 * create weird edge cases with the ordering of 452 * direct writes because the related buffer cache 453 * elements are per-vnode. So we don't try. 454 */ 455 if ((resv = record->resv) != NULL) { 456 /* XXX undo leaf.data_offset,leaf.data_len */ 457 hammer_blockmap_reserve_complete(hmp, resv); 458 record->resv = NULL; 459 } 460 record->data = NULL; 461 --hammer_count_records; 462 kfree(record, hmp->m_misc); 463 } 464 } 465 } 466 467 /* 468 * Record visibility depends on whether the record is being accessed by 469 * the backend or the frontend. Backend tests ignore the frontend delete 470 * flag. Frontend tests do NOT ignore the backend delete/commit flags and 471 * must also check for commit races. 472 * 473 * Return non-zero if the record is visible, zero if it isn't or if it is 474 * deleted. Returns 0 if the record has been comitted (unless the special 475 * delete-visibility flag is set). A committed record must be located 476 * via the media B-Tree. Returns non-zero if the record is good. 477 * 478 * If HAMMER_CURSOR_DELETE_VISIBILITY is set we allow deleted memory 479 * records to be returned. This is so pending deletions are detected 480 * when using an iterator to locate an unused hash key, or when we need 481 * to locate historical records on-disk to destroy. 482 */ 483 static __inline 484 int 485 hammer_ip_iterate_mem_good(hammer_cursor_t cursor, hammer_record_t record) 486 { 487 if (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) 488 return(1); 489 if (cursor->flags & HAMMER_CURSOR_BACKEND) { 490 if (record->flags & (HAMMER_RECF_DELETED_BE | 491 HAMMER_RECF_COMMITTED)) { 492 return(0); 493 } 494 } else { 495 if (record->flags & (HAMMER_RECF_DELETED_FE | 496 HAMMER_RECF_DELETED_BE | 497 HAMMER_RECF_COMMITTED)) { 498 return(0); 499 } 500 } 501 return(1); 502 } 503 504 /* 505 * This callback is used as part of the RB_SCAN function for in-memory 506 * records. We terminate it (return -1) as soon as we get a match. 507 * 508 * This routine is used by frontend code. 509 * 510 * The primary compare code does not account for ASOF lookups. This 511 * code handles that case as well as a few others. 512 */ 513 static 514 int 515 hammer_rec_scan_callback(hammer_record_t rec, void *data) 516 { 517 hammer_cursor_t cursor = data; 518 519 /* 520 * We terminate on success, so this should be NULL on entry. 521 */ 522 KKASSERT(cursor->iprec == NULL); 523 524 /* 525 * Skip if the record was marked deleted or committed. 526 */ 527 if (hammer_ip_iterate_mem_good(cursor, rec) == 0) 528 return(0); 529 530 /* 531 * Skip if not visible due to our as-of TID 532 */ 533 if (cursor->flags & HAMMER_CURSOR_ASOF) { 534 if (cursor->asof < rec->leaf.base.create_tid) 535 return(0); 536 if (rec->leaf.base.delete_tid && 537 cursor->asof >= rec->leaf.base.delete_tid) { 538 return(0); 539 } 540 } 541 542 /* 543 * ref the record. The record is protected from backend B-Tree 544 * interactions by virtue of the cursor's IP lock. 545 */ 546 hammer_ref(&rec->lock); 547 548 /* 549 * The record may have been deleted or committed while we 550 * were blocked. XXX remove? 551 */ 552 if (hammer_ip_iterate_mem_good(cursor, rec) == 0) { 553 hammer_rel_mem_record(rec); 554 return(0); 555 } 556 557 /* 558 * Set the matching record and stop the scan. 559 */ 560 cursor->iprec = rec; 561 return(-1); 562 } 563 564 565 /* 566 * Lookup an in-memory record given the key specified in the cursor. Works 567 * just like hammer_btree_lookup() but operates on an inode's in-memory 568 * record list. 569 * 570 * The lookup must fail if the record is marked for deferred deletion. 571 * 572 * The API for mem/btree_lookup() does not mess with the ATE/EOF bits. 573 */ 574 static 575 int 576 hammer_mem_lookup(hammer_cursor_t cursor) 577 { 578 KKASSERT(cursor->ip); 579 if (cursor->iprec) { 580 hammer_rel_mem_record(cursor->iprec); 581 cursor->iprec = NULL; 582 } 583 hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_find_cmp, 584 hammer_rec_scan_callback, cursor); 585 586 return (cursor->iprec ? 0 : ENOENT); 587 } 588 589 /* 590 * hammer_mem_first() - locate the first in-memory record matching the 591 * cursor within the bounds of the key range. 592 * 593 * WARNING! API is slightly different from btree_first(). hammer_mem_first() 594 * will set ATEMEM the same as MEMEOF, and does not return any error. 595 */ 596 static 597 void 598 hammer_mem_first(hammer_cursor_t cursor) 599 { 600 hammer_inode_t ip; 601 602 ip = cursor->ip; 603 KKASSERT(ip != NULL); 604 605 if (cursor->iprec) { 606 hammer_rel_mem_record(cursor->iprec); 607 cursor->iprec = NULL; 608 } 609 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_scan_cmp, 610 hammer_rec_scan_callback, cursor); 611 612 if (cursor->iprec) 613 cursor->flags &= ~(HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM); 614 else 615 cursor->flags |= HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM; 616 } 617 618 /************************************************************************ 619 * HAMMER IN-MEMORY RECORD FUNCTIONS * 620 ************************************************************************ 621 * 622 * These functions manipulate in-memory records. Such records typically 623 * exist prior to being committed to disk or indexed via the on-disk B-Tree. 624 */ 625 626 /* 627 * Add a directory entry (dip,ncp) which references inode (ip). 628 * 629 * Note that the low 32 bits of the namekey are set temporarily to create 630 * a unique in-memory record, and may be modified a second time when the 631 * record is synchronized to disk. In particular, the low 32 bits cannot be 632 * all 0's when synching to disk, which is not handled here. 633 * 634 * NOTE: bytes does not include any terminating \0 on name, and name might 635 * not be terminated. 636 */ 637 int 638 hammer_ip_add_directory(struct hammer_transaction *trans, 639 struct hammer_inode *dip, const char *name, int bytes, 640 struct hammer_inode *ip) 641 { 642 struct hammer_cursor cursor; 643 hammer_record_t record; 644 int error; 645 u_int32_t max_iterations; 646 647 record = hammer_alloc_mem_record(dip, HAMMER_ENTRY_SIZE(bytes)); 648 649 record->type = HAMMER_MEM_RECORD_ADD; 650 record->leaf.base.localization = dip->obj_localization + 651 hammer_dir_localization(dip); 652 record->leaf.base.obj_id = dip->obj_id; 653 record->leaf.base.key = hammer_directory_namekey(dip, name, bytes, 654 &max_iterations); 655 record->leaf.base.rec_type = HAMMER_RECTYPE_DIRENTRY; 656 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type; 657 record->data->entry.obj_id = ip->obj_id; 658 record->data->entry.localization = ip->obj_localization; 659 bcopy(name, record->data->entry.name, bytes); 660 661 ++ip->ino_data.nlinks; 662 ip->ino_data.ctime = trans->time; 663 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY); 664 665 /* 666 * Find an unused namekey. Both the in-memory record tree and 667 * the B-Tree are checked. We do not want historically deleted 668 * names to create a collision as our iteration space may be limited, 669 * and since create_tid wouldn't match anyway an ASOF search 670 * must be used to locate collisions. 671 * 672 * delete-visibility is set so pending deletions do not give us 673 * a false-negative on our ability to use an iterator. 674 * 675 * The iterator must not rollover the key. Directory keys only 676 * use the positive key space. 677 */ 678 hammer_init_cursor(trans, &cursor, &dip->cache[1], dip); 679 cursor.key_beg = record->leaf.base; 680 cursor.flags |= HAMMER_CURSOR_ASOF; 681 cursor.flags |= HAMMER_CURSOR_DELETE_VISIBILITY; 682 cursor.asof = ip->obj_asof; 683 684 while (hammer_ip_lookup(&cursor) == 0) { 685 ++record->leaf.base.key; 686 KKASSERT(record->leaf.base.key > 0); 687 cursor.key_beg.key = record->leaf.base.key; 688 if (--max_iterations == 0) { 689 hammer_rel_mem_record(record); 690 error = ENOSPC; 691 goto failed; 692 } 693 } 694 695 /* 696 * The target inode and the directory entry are bound together. 697 */ 698 record->target_ip = ip; 699 record->flush_state = HAMMER_FST_SETUP; 700 TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry); 701 702 /* 703 * The inode now has a dependancy and must be taken out of the idle 704 * state. An inode not in an idle state is given an extra reference. 705 * 706 * When transitioning to a SETUP state flag for an automatic reflush 707 * when the dependancies are disposed of if someone is waiting on 708 * the inode. 709 */ 710 if (ip->flush_state == HAMMER_FST_IDLE) { 711 hammer_ref(&ip->lock); 712 ip->flush_state = HAMMER_FST_SETUP; 713 if (ip->flags & HAMMER_INODE_FLUSHW) 714 ip->flags |= HAMMER_INODE_REFLUSH; 715 } 716 error = hammer_mem_add(record); 717 if (error == 0) { 718 dip->ino_data.mtime = trans->time; 719 hammer_modify_inode(dip, HAMMER_INODE_MTIME); 720 } 721 failed: 722 hammer_done_cursor(&cursor); 723 return(error); 724 } 725 726 /* 727 * Delete the directory entry and update the inode link count. The 728 * cursor must be seeked to the directory entry record being deleted. 729 * 730 * The related inode should be share-locked by the caller. The caller is 731 * on the frontend. It could also be NULL indicating that the directory 732 * entry being removed has no related inode. 733 * 734 * This function can return EDEADLK requiring the caller to terminate 735 * the cursor, any locks, wait on the returned record, and retry. 736 */ 737 int 738 hammer_ip_del_directory(struct hammer_transaction *trans, 739 hammer_cursor_t cursor, struct hammer_inode *dip, 740 struct hammer_inode *ip) 741 { 742 hammer_record_t record; 743 int error; 744 745 if (hammer_cursor_inmem(cursor)) { 746 /* 747 * In-memory (unsynchronized) records can simply be freed. 748 * 749 * Even though the HAMMER_RECF_DELETED_FE flag is ignored 750 * by the backend, we must still avoid races against the 751 * backend potentially syncing the record to the media. 752 * 753 * We cannot call hammer_ip_delete_record(), that routine may 754 * only be called from the backend. 755 */ 756 record = cursor->iprec; 757 if (record->flags & (HAMMER_RECF_INTERLOCK_BE | 758 HAMMER_RECF_DELETED_BE | 759 HAMMER_RECF_COMMITTED)) { 760 KKASSERT(cursor->deadlk_rec == NULL); 761 hammer_ref(&record->lock); 762 cursor->deadlk_rec = record; 763 error = EDEADLK; 764 } else { 765 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD); 766 record->flags |= HAMMER_RECF_DELETED_FE; 767 error = 0; 768 } 769 } else { 770 /* 771 * If the record is on-disk we have to queue the deletion by 772 * the record's key. This also causes lookups to skip the 773 * record. 774 */ 775 KKASSERT(dip->flags & 776 (HAMMER_INODE_ONDISK | HAMMER_INODE_DONDISK)); 777 record = hammer_alloc_mem_record(dip, 0); 778 record->type = HAMMER_MEM_RECORD_DEL; 779 record->leaf.base = cursor->leaf->base; 780 781 /* 782 * ip may be NULL, indicating the deletion of a directory 783 * entry which has no related inode. 784 */ 785 record->target_ip = ip; 786 if (ip) { 787 record->flush_state = HAMMER_FST_SETUP; 788 TAILQ_INSERT_TAIL(&ip->target_list, record, 789 target_entry); 790 } else { 791 record->flush_state = HAMMER_FST_IDLE; 792 } 793 794 /* 795 * The inode now has a dependancy and must be taken out of 796 * the idle state. An inode not in an idle state is given 797 * an extra reference. 798 * 799 * When transitioning to a SETUP state flag for an automatic 800 * reflush when the dependancies are disposed of if someone 801 * is waiting on the inode. 802 */ 803 if (ip && ip->flush_state == HAMMER_FST_IDLE) { 804 hammer_ref(&ip->lock); 805 ip->flush_state = HAMMER_FST_SETUP; 806 if (ip->flags & HAMMER_INODE_FLUSHW) 807 ip->flags |= HAMMER_INODE_REFLUSH; 808 } 809 810 error = hammer_mem_add(record); 811 } 812 813 /* 814 * One less link. The file may still be open in the OS even after 815 * all links have gone away. 816 * 817 * We have to terminate the cursor before syncing the inode to 818 * avoid deadlocking against ourselves. XXX this may no longer 819 * be true. 820 * 821 * If nlinks drops to zero and the vnode is inactive (or there is 822 * no vnode), call hammer_inode_unloadable_check() to zonk the 823 * inode. If we don't do this here the inode will not be destroyed 824 * on-media until we unmount. 825 */ 826 if (error == 0) { 827 if (ip) { 828 --ip->ino_data.nlinks; /* do before we might block */ 829 ip->ino_data.ctime = trans->time; 830 } 831 dip->ino_data.mtime = trans->time; 832 hammer_modify_inode(dip, HAMMER_INODE_MTIME); 833 if (ip) { 834 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY); 835 if (ip->ino_data.nlinks == 0 && 836 (ip->vp == NULL || (ip->vp->v_flag & VINACTIVE))) { 837 hammer_done_cursor(cursor); 838 hammer_inode_unloadable_check(ip, 1); 839 hammer_flush_inode(ip, 0); 840 } 841 } 842 843 } 844 return(error); 845 } 846 847 /* 848 * Add a record to an inode. 849 * 850 * The caller must allocate the record with hammer_alloc_mem_record(ip) and 851 * initialize the following additional fields: 852 * 853 * The related inode should be share-locked by the caller. The caller is 854 * on the frontend. 855 * 856 * record->rec.entry.base.base.key 857 * record->rec.entry.base.base.rec_type 858 * record->rec.entry.base.base.data_len 859 * record->data (a copy will be kmalloc'd if it cannot be embedded) 860 */ 861 int 862 hammer_ip_add_record(struct hammer_transaction *trans, hammer_record_t record) 863 { 864 hammer_inode_t ip = record->ip; 865 int error; 866 867 KKASSERT(record->leaf.base.localization != 0); 868 record->leaf.base.obj_id = ip->obj_id; 869 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type; 870 error = hammer_mem_add(record); 871 return(error); 872 } 873 874 /* 875 * Locate a bulk record in-memory. Bulk records allow disk space to be 876 * reserved so the front-end can flush large data writes without having 877 * to queue the BIO to the flusher. Only the related record gets queued 878 * to the flusher. 879 */ 880 881 static hammer_record_t 882 hammer_ip_get_bulk(hammer_inode_t ip, off_t file_offset, int bytes) 883 { 884 struct hammer_bulk_info info; 885 886 bzero(&info, sizeof(info)); 887 info.leaf.base.obj_id = ip->obj_id; 888 info.leaf.base.key = file_offset + bytes; 889 info.leaf.base.create_tid = 0; 890 info.leaf.base.delete_tid = 0; 891 info.leaf.base.rec_type = HAMMER_RECTYPE_DATA; 892 info.leaf.base.obj_type = 0; /* unused */ 893 info.leaf.base.btype = HAMMER_BTREE_TYPE_RECORD; /* unused */ 894 info.leaf.base.localization = ip->obj_localization + /* unused */ 895 HAMMER_LOCALIZE_MISC; 896 info.leaf.data_len = bytes; 897 898 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_overlap_cmp, 899 hammer_bulk_scan_callback, &info); 900 901 return(info.record); /* may be NULL */ 902 } 903 904 /* 905 * Take records vetted by overlap_cmp. The first non-deleted record 906 * (if any) stops the scan. 907 */ 908 static int 909 hammer_bulk_scan_callback(hammer_record_t record, void *data) 910 { 911 struct hammer_bulk_info *info = data; 912 913 if (record->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE | 914 HAMMER_RECF_COMMITTED)) { 915 return(0); 916 } 917 hammer_ref(&record->lock); 918 info->record = record; 919 return(-1); /* stop scan */ 920 } 921 922 /* 923 * Reserve blockmap space placemarked with an in-memory record. 924 * 925 * This routine is called by the frontend in order to be able to directly 926 * flush a buffer cache buffer. The frontend has locked the related buffer 927 * cache buffers and we should be able to manipulate any overlapping 928 * in-memory records. 929 * 930 * The caller is responsible for adding the returned record. 931 */ 932 hammer_record_t 933 hammer_ip_add_bulk(hammer_inode_t ip, off_t file_offset, void *data, int bytes, 934 int *errorp) 935 { 936 hammer_record_t record; 937 hammer_record_t conflict; 938 int zone; 939 940 /* 941 * Deal with conflicting in-memory records. We cannot have multiple 942 * in-memory records for the same base offset without seriously 943 * confusing the backend, including but not limited to the backend 944 * issuing delete-create-delete or create-delete-create sequences 945 * and asserting on the delete_tid being the same as the create_tid. 946 * 947 * If we encounter a record with the backend interlock set we cannot 948 * immediately delete it without confusing the backend. 949 */ 950 while ((conflict = hammer_ip_get_bulk(ip, file_offset, bytes)) !=NULL) { 951 if (conflict->flags & HAMMER_RECF_INTERLOCK_BE) { 952 conflict->flags |= HAMMER_RECF_WANTED; 953 tsleep(conflict, 0, "hmrrc3", 0); 954 } else { 955 conflict->flags |= HAMMER_RECF_DELETED_FE; 956 } 957 hammer_rel_mem_record(conflict); 958 } 959 960 /* 961 * Create a record to cover the direct write. This is called with 962 * the related BIO locked so there should be no possible conflict. 963 * 964 * The backend is responsible for finalizing the space reserved in 965 * this record. 966 * 967 * XXX bytes not aligned, depend on the reservation code to 968 * align the reservation. 969 */ 970 record = hammer_alloc_mem_record(ip, 0); 971 zone = (bytes >= HAMMER_BUFSIZE) ? HAMMER_ZONE_LARGE_DATA_INDEX : 972 HAMMER_ZONE_SMALL_DATA_INDEX; 973 record->resv = hammer_blockmap_reserve(ip->hmp, zone, bytes, 974 &record->leaf.data_offset, 975 errorp); 976 if (record->resv == NULL) { 977 kprintf("hammer_ip_add_bulk: reservation failed\n"); 978 hammer_rel_mem_record(record); 979 return(NULL); 980 } 981 record->type = HAMMER_MEM_RECORD_DATA; 982 record->leaf.base.rec_type = HAMMER_RECTYPE_DATA; 983 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type; 984 record->leaf.base.obj_id = ip->obj_id; 985 record->leaf.base.key = file_offset + bytes; 986 record->leaf.base.localization = ip->obj_localization + 987 HAMMER_LOCALIZE_MISC; 988 record->leaf.data_len = bytes; 989 hammer_crc_set_leaf(data, &record->leaf); 990 KKASSERT(*errorp == 0); 991 return(record); 992 } 993 994 /* 995 * Frontend truncation code. Scan in-memory records only. On-disk records 996 * and records in a flushing state are handled by the backend. The vnops 997 * setattr code will handle the block containing the truncation point. 998 * 999 * Partial blocks are not deleted. 1000 */ 1001 int 1002 hammer_ip_frontend_trunc(struct hammer_inode *ip, off_t file_size) 1003 { 1004 struct rec_trunc_info info; 1005 1006 switch(ip->ino_data.obj_type) { 1007 case HAMMER_OBJTYPE_REGFILE: 1008 info.rec_type = HAMMER_RECTYPE_DATA; 1009 break; 1010 case HAMMER_OBJTYPE_DBFILE: 1011 info.rec_type = HAMMER_RECTYPE_DB; 1012 break; 1013 default: 1014 return(EINVAL); 1015 } 1016 info.trunc_off = file_size; 1017 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_trunc_cmp, 1018 hammer_frontend_trunc_callback, &info); 1019 return(0); 1020 } 1021 1022 static int 1023 hammer_frontend_trunc_callback(hammer_record_t record, void *data __unused) 1024 { 1025 if (record->flags & HAMMER_RECF_DELETED_FE) 1026 return(0); 1027 if (record->flush_state == HAMMER_FST_FLUSH) 1028 return(0); 1029 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0); 1030 hammer_ref(&record->lock); 1031 record->flags |= HAMMER_RECF_DELETED_FE; 1032 hammer_rel_mem_record(record); 1033 return(0); 1034 } 1035 1036 /* 1037 * Return 1 if the caller must check for and delete existing records 1038 * before writing out a new data record. 1039 * 1040 * Return 0 if the caller can just insert the record into the B-Tree without 1041 * checking. 1042 */ 1043 static int 1044 hammer_record_needs_overwrite_delete(hammer_record_t record) 1045 { 1046 hammer_inode_t ip = record->ip; 1047 int64_t file_offset; 1048 int r; 1049 1050 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) 1051 file_offset = record->leaf.base.key; 1052 else 1053 file_offset = record->leaf.base.key - record->leaf.data_len; 1054 r = (file_offset < ip->save_trunc_off); 1055 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) { 1056 if (ip->save_trunc_off <= record->leaf.base.key) 1057 ip->save_trunc_off = record->leaf.base.key + 1; 1058 } else { 1059 if (ip->save_trunc_off < record->leaf.base.key) 1060 ip->save_trunc_off = record->leaf.base.key; 1061 } 1062 return(r); 1063 } 1064 1065 /* 1066 * Backend code. Sync a record to the media. 1067 */ 1068 int 1069 hammer_ip_sync_record_cursor(hammer_cursor_t cursor, hammer_record_t record) 1070 { 1071 hammer_transaction_t trans = cursor->trans; 1072 int64_t file_offset; 1073 int bytes; 1074 void *bdata; 1075 int error; 1076 int doprop; 1077 1078 KKASSERT(record->flush_state == HAMMER_FST_FLUSH); 1079 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE); 1080 KKASSERT(record->leaf.base.localization != 0); 1081 1082 /* 1083 * Any direct-write related to the record must complete before we 1084 * can sync the record to the on-disk media. 1085 */ 1086 if (record->flags & (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL)) 1087 hammer_io_direct_wait(record); 1088 1089 /* 1090 * If this is a bulk-data record placemarker there may be an existing 1091 * record on-disk, indicating a data overwrite. If there is the 1092 * on-disk record must be deleted before we can insert our new record. 1093 * 1094 * We've synthesized this record and do not know what the create_tid 1095 * on-disk is, nor how much data it represents. 1096 * 1097 * Keep in mind that (key) for data records is (base_offset + len), 1098 * not (base_offset). Also, we only want to get rid of on-disk 1099 * records since we are trying to sync our in-memory record, call 1100 * hammer_ip_delete_range() with truncating set to 1 to make sure 1101 * it skips in-memory records. 1102 * 1103 * It is ok for the lookup to return ENOENT. 1104 * 1105 * NOTE OPTIMIZATION: sync_trunc_off is used to determine if we have 1106 * to call hammer_ip_delete_range() or not. This also means we must 1107 * update sync_trunc_off() as we write. 1108 */ 1109 if (record->type == HAMMER_MEM_RECORD_DATA && 1110 hammer_record_needs_overwrite_delete(record)) { 1111 file_offset = record->leaf.base.key - record->leaf.data_len; 1112 bytes = (record->leaf.data_len + HAMMER_BUFMASK) & 1113 ~HAMMER_BUFMASK; 1114 KKASSERT((file_offset & HAMMER_BUFMASK) == 0); 1115 error = hammer_ip_delete_range( 1116 cursor, record->ip, 1117 file_offset, file_offset + bytes - 1, 1118 1); 1119 if (error && error != ENOENT) 1120 goto done; 1121 } 1122 1123 /* 1124 * If this is a general record there may be an on-disk version 1125 * that must be deleted before we can insert the new record. 1126 */ 1127 if (record->type == HAMMER_MEM_RECORD_GENERAL) { 1128 error = hammer_delete_general(cursor, record->ip, 1129 &record->leaf); 1130 if (error && error != ENOENT) 1131 goto done; 1132 } 1133 1134 /* 1135 * Setup the cursor. 1136 */ 1137 hammer_normalize_cursor(cursor); 1138 cursor->key_beg = record->leaf.base; 1139 cursor->flags &= ~HAMMER_CURSOR_INITMASK; 1140 cursor->flags |= HAMMER_CURSOR_BACKEND; 1141 cursor->flags &= ~HAMMER_CURSOR_INSERT; 1142 1143 /* 1144 * Records can wind up on-media before the inode itself is on-media. 1145 * Flag the case. 1146 */ 1147 record->ip->flags |= HAMMER_INODE_DONDISK; 1148 1149 /* 1150 * If we are deleting a directory entry an exact match must be 1151 * found on-disk. 1152 */ 1153 if (record->type == HAMMER_MEM_RECORD_DEL) { 1154 error = hammer_btree_lookup(cursor); 1155 if (error == 0) { 1156 KKASSERT(cursor->iprec == NULL); 1157 error = hammer_ip_delete_record(cursor, record->ip, 1158 trans->tid); 1159 if (error == 0) { 1160 record->flags |= HAMMER_RECF_DELETED_BE | 1161 HAMMER_RECF_COMMITTED; 1162 ++record->ip->rec_generation; 1163 } 1164 } 1165 goto done; 1166 } 1167 1168 /* 1169 * We are inserting. 1170 * 1171 * Issue a lookup to position the cursor and locate the insertion 1172 * point. The target key should not exist. If we are creating a 1173 * directory entry we may have to iterate the low 32 bits of the 1174 * key to find an unused key. 1175 */ 1176 hammer_sync_lock_sh(trans); 1177 cursor->flags |= HAMMER_CURSOR_INSERT; 1178 error = hammer_btree_lookup(cursor); 1179 if (hammer_debug_inode) 1180 kprintf("DOINSERT LOOKUP %d\n", error); 1181 if (error == 0) { 1182 kprintf("hammer_ip_sync_record: duplicate rec " 1183 "at (%016llx)\n", (long long)record->leaf.base.key); 1184 Debugger("duplicate record1"); 1185 error = EIO; 1186 } 1187 #if 0 1188 if (record->type == HAMMER_MEM_RECORD_DATA) 1189 kprintf("sync_record %016llx ---------------- %016llx %d\n", 1190 record->leaf.base.key - record->leaf.data_len, 1191 record->leaf.data_offset, error); 1192 #endif 1193 1194 if (error != ENOENT) 1195 goto done_unlock; 1196 1197 /* 1198 * Allocate the record and data. The result buffers will be 1199 * marked as being modified and further calls to 1200 * hammer_modify_buffer() will result in unneeded UNDO records. 1201 * 1202 * Support zero-fill records (data == NULL and data_len != 0) 1203 */ 1204 if (record->type == HAMMER_MEM_RECORD_DATA) { 1205 /* 1206 * The data portion of a bulk-data record has already been 1207 * committed to disk, we need only adjust the layer2 1208 * statistics in the same transaction as our B-Tree insert. 1209 */ 1210 KKASSERT(record->leaf.data_offset != 0); 1211 error = hammer_blockmap_finalize(trans, 1212 record->resv, 1213 record->leaf.data_offset, 1214 record->leaf.data_len); 1215 } else if (record->data && record->leaf.data_len) { 1216 /* 1217 * Wholely cached record, with data. Allocate the data. 1218 */ 1219 bdata = hammer_alloc_data(trans, record->leaf.data_len, 1220 record->leaf.base.rec_type, 1221 &record->leaf.data_offset, 1222 &cursor->data_buffer, 1223 0, &error); 1224 if (bdata == NULL) 1225 goto done_unlock; 1226 hammer_crc_set_leaf(record->data, &record->leaf); 1227 hammer_modify_buffer(trans, cursor->data_buffer, NULL, 0); 1228 bcopy(record->data, bdata, record->leaf.data_len); 1229 hammer_modify_buffer_done(cursor->data_buffer); 1230 } else { 1231 /* 1232 * Wholely cached record, without data. 1233 */ 1234 record->leaf.data_offset = 0; 1235 record->leaf.data_crc = 0; 1236 } 1237 1238 error = hammer_btree_insert(cursor, &record->leaf, &doprop); 1239 if (hammer_debug_inode && error) { 1240 kprintf("BTREE INSERT error %d @ %016llx:%d key %016llx\n", 1241 error, 1242 (long long)cursor->node->node_offset, 1243 cursor->index, 1244 (long long)record->leaf.base.key); 1245 } 1246 1247 /* 1248 * Our record is on-disk and we normally mark the in-memory version 1249 * as having been committed (and not BE-deleted). 1250 * 1251 * If the record represented a directory deletion but we had to 1252 * sync a valid directory entry to disk due to dependancies, 1253 * we must convert the record to a covering delete so the 1254 * frontend does not have visibility on the synced entry. 1255 */ 1256 if (error == 0) { 1257 if (doprop) { 1258 hammer_btree_do_propagation(cursor, 1259 record->ip->pfsm, 1260 &record->leaf); 1261 } 1262 if (record->flags & HAMMER_RECF_CONVERT_DELETE) { 1263 /* 1264 * Must convert deleted directory entry add 1265 * to a directory entry delete. 1266 */ 1267 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD); 1268 record->flags &= ~HAMMER_RECF_DELETED_FE; 1269 record->type = HAMMER_MEM_RECORD_DEL; 1270 KKASSERT(record->flush_state == HAMMER_FST_FLUSH); 1271 record->flags &= ~HAMMER_RECF_CONVERT_DELETE; 1272 KKASSERT((record->flags & (HAMMER_RECF_COMMITTED | 1273 HAMMER_RECF_DELETED_BE)) == 0); 1274 /* converted record is not yet committed */ 1275 /* hammer_flush_record_done takes care of the rest */ 1276 } else { 1277 /* 1278 * Everything went fine and we are now done with 1279 * this record. 1280 */ 1281 record->flags |= HAMMER_RECF_COMMITTED; 1282 ++record->ip->rec_generation; 1283 } 1284 } else { 1285 if (record->leaf.data_offset) { 1286 hammer_blockmap_free(trans, record->leaf.data_offset, 1287 record->leaf.data_len); 1288 } 1289 } 1290 done_unlock: 1291 hammer_sync_unlock(trans); 1292 done: 1293 return(error); 1294 } 1295 1296 /* 1297 * Add the record to the inode's rec_tree. The low 32 bits of a directory 1298 * entry's key is used to deal with hash collisions in the upper 32 bits. 1299 * A unique 64 bit key is generated in-memory and may be regenerated a 1300 * second time when the directory record is flushed to the on-disk B-Tree. 1301 * 1302 * A referenced record is passed to this function. This function 1303 * eats the reference. If an error occurs the record will be deleted. 1304 * 1305 * A copy of the temporary record->data pointer provided by the caller 1306 * will be made. 1307 */ 1308 int 1309 hammer_mem_add(hammer_record_t record) 1310 { 1311 hammer_mount_t hmp = record->ip->hmp; 1312 1313 /* 1314 * Make a private copy of record->data 1315 */ 1316 if (record->data) 1317 KKASSERT(record->flags & HAMMER_RECF_ALLOCDATA); 1318 1319 /* 1320 * Insert into the RB tree. A unique key should have already 1321 * been selected if this is a directory entry. 1322 */ 1323 if (RB_INSERT(hammer_rec_rb_tree, &record->ip->rec_tree, record)) { 1324 record->flags |= HAMMER_RECF_DELETED_FE; 1325 hammer_rel_mem_record(record); 1326 return (EEXIST); 1327 } 1328 ++hmp->count_newrecords; 1329 ++hmp->rsv_recs; 1330 ++record->ip->rsv_recs; 1331 record->ip->hmp->rsv_databytes += record->leaf.data_len; 1332 record->flags |= HAMMER_RECF_ONRBTREE; 1333 hammer_modify_inode(record->ip, HAMMER_INODE_XDIRTY); 1334 hammer_rel_mem_record(record); 1335 return(0); 1336 } 1337 1338 /************************************************************************ 1339 * HAMMER INODE MERGED-RECORD FUNCTIONS * 1340 ************************************************************************ 1341 * 1342 * These functions augment the B-Tree scanning functions in hammer_btree.c 1343 * by merging in-memory records with on-disk records. 1344 */ 1345 1346 /* 1347 * Locate a particular record either in-memory or on-disk. 1348 * 1349 * NOTE: This is basically a standalone routine, hammer_ip_next() may 1350 * NOT be called to iterate results. 1351 */ 1352 int 1353 hammer_ip_lookup(hammer_cursor_t cursor) 1354 { 1355 int error; 1356 1357 /* 1358 * If the element is in-memory return it without searching the 1359 * on-disk B-Tree 1360 */ 1361 KKASSERT(cursor->ip); 1362 error = hammer_mem_lookup(cursor); 1363 if (error == 0) { 1364 cursor->leaf = &cursor->iprec->leaf; 1365 return(error); 1366 } 1367 if (error != ENOENT) 1368 return(error); 1369 1370 /* 1371 * If the inode has on-disk components search the on-disk B-Tree. 1372 */ 1373 if ((cursor->ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) == 0) 1374 return(error); 1375 error = hammer_btree_lookup(cursor); 1376 if (error == 0) 1377 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF); 1378 return(error); 1379 } 1380 1381 /* 1382 * Helper for hammer_ip_first()/hammer_ip_next() 1383 * 1384 * NOTE: Both ATEDISK and DISKEOF will be set the same. This sets up 1385 * hammer_ip_first() for calling hammer_ip_next(), and sets up the re-seek 1386 * state if hammer_ip_next() needs to re-seek. 1387 */ 1388 static __inline 1389 int 1390 _hammer_ip_seek_btree(hammer_cursor_t cursor) 1391 { 1392 hammer_inode_t ip = cursor->ip; 1393 int error; 1394 1395 if (ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) { 1396 error = hammer_btree_lookup(cursor); 1397 if (error == ENOENT || error == EDEADLK) { 1398 if (hammer_debug_general & 0x2000) { 1399 kprintf("error %d node %p %016llx index %d\n", 1400 error, cursor->node, 1401 (long long)cursor->node->node_offset, 1402 cursor->index); 1403 } 1404 cursor->flags &= ~HAMMER_CURSOR_ATEDISK; 1405 error = hammer_btree_iterate(cursor); 1406 } 1407 if (error == 0) { 1408 cursor->flags &= ~(HAMMER_CURSOR_DISKEOF | 1409 HAMMER_CURSOR_ATEDISK); 1410 } else { 1411 cursor->flags |= HAMMER_CURSOR_DISKEOF | 1412 HAMMER_CURSOR_ATEDISK; 1413 if (error == ENOENT) 1414 error = 0; 1415 } 1416 } else { 1417 cursor->flags |= HAMMER_CURSOR_DISKEOF | HAMMER_CURSOR_ATEDISK; 1418 error = 0; 1419 } 1420 return(error); 1421 } 1422 1423 /* 1424 * Helper for hammer_ip_next() 1425 * 1426 * The caller has determined that the media cursor is further along than the 1427 * memory cursor and must be reseeked after a generation number change. 1428 */ 1429 static 1430 int 1431 _hammer_ip_reseek(hammer_cursor_t cursor) 1432 { 1433 struct hammer_base_elm save; 1434 hammer_btree_elm_t elm; 1435 int error; 1436 int r; 1437 int again = 0; 1438 1439 /* 1440 * Do the re-seek. 1441 */ 1442 kprintf("HAMMER: Debug: re-seeked during scan @ino=%016llx\n", 1443 (long long)cursor->ip->obj_id); 1444 save = cursor->key_beg; 1445 cursor->key_beg = cursor->iprec->leaf.base; 1446 error = _hammer_ip_seek_btree(cursor); 1447 KKASSERT(error == 0); 1448 cursor->key_beg = save; 1449 1450 /* 1451 * If the memory record was previous returned to 1452 * the caller and the media record matches 1453 * (-1/+1: only create_tid differs), then iterate 1454 * the media record to avoid a double result. 1455 */ 1456 if ((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0 && 1457 (cursor->flags & HAMMER_CURSOR_LASTWASMEM)) { 1458 elm = &cursor->node->ondisk->elms[cursor->index]; 1459 r = hammer_btree_cmp(&elm->base, 1460 &cursor->iprec->leaf.base); 1461 if (cursor->flags & HAMMER_CURSOR_ASOF) { 1462 if (r >= -1 && r <= 1) { 1463 kprintf("HAMMER: Debug: iterated after " 1464 "re-seek (asof r=%d)\n", r); 1465 cursor->flags |= HAMMER_CURSOR_ATEDISK; 1466 again = 1; 1467 } 1468 } else { 1469 if (r == 0) { 1470 kprintf("HAMMER: Debug: iterated after " 1471 "re-seek\n"); 1472 cursor->flags |= HAMMER_CURSOR_ATEDISK; 1473 again = 1; 1474 } 1475 } 1476 } 1477 return(again); 1478 } 1479 1480 /* 1481 * Locate the first record within the cursor's key_beg/key_end range, 1482 * restricted to a particular inode. 0 is returned on success, ENOENT 1483 * if no records matched the requested range, or some other error. 1484 * 1485 * When 0 is returned hammer_ip_next() may be used to iterate additional 1486 * records within the requested range. 1487 * 1488 * This function can return EDEADLK, requiring the caller to terminate 1489 * the cursor and try again. 1490 */ 1491 1492 int 1493 hammer_ip_first(hammer_cursor_t cursor) 1494 { 1495 hammer_inode_t ip = cursor->ip; 1496 int error; 1497 1498 KKASSERT(ip != NULL); 1499 1500 /* 1501 * Clean up fields and setup for merged scan 1502 */ 1503 cursor->flags &= ~HAMMER_CURSOR_RETEST; 1504 1505 /* 1506 * Search the in-memory record list (Red-Black tree). Unlike the 1507 * B-Tree search, mem_first checks for records in the range. 1508 * 1509 * This function will setup both ATEMEM and MEMEOF properly for 1510 * the ip iteration. ATEMEM will be set if MEMEOF is set. 1511 */ 1512 hammer_mem_first(cursor); 1513 1514 /* 1515 * Detect generation changes during blockages, including 1516 * blockages which occur on the initial btree search. 1517 */ 1518 cursor->rec_generation = cursor->ip->rec_generation; 1519 1520 /* 1521 * Initial search and result 1522 */ 1523 error = _hammer_ip_seek_btree(cursor); 1524 if (error == 0) 1525 error = hammer_ip_next(cursor); 1526 1527 return (error); 1528 } 1529 1530 /* 1531 * Retrieve the next record in a merged iteration within the bounds of the 1532 * cursor. This call may be made multiple times after the cursor has been 1533 * initially searched with hammer_ip_first(). 1534 * 1535 * There are numerous special cases in this code to deal with races between 1536 * in-memory records and on-media records. 1537 * 1538 * 0 is returned on success, ENOENT if no further records match the 1539 * requested range, or some other error code is returned. 1540 */ 1541 int 1542 hammer_ip_next(hammer_cursor_t cursor) 1543 { 1544 hammer_btree_elm_t elm; 1545 hammer_record_t rec; 1546 hammer_record_t tmprec; 1547 int error; 1548 int r; 1549 1550 again: 1551 /* 1552 * Get the next on-disk record 1553 * 1554 * NOTE: If we deleted the last on-disk record we had scanned 1555 * ATEDISK will be clear and RETEST will be set, forcing 1556 * a call to iterate. The fact that ATEDISK is clear causes 1557 * iterate to re-test the 'current' element. If ATEDISK is 1558 * set, iterate will skip the 'current' element. 1559 */ 1560 error = 0; 1561 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) { 1562 if (cursor->flags & (HAMMER_CURSOR_ATEDISK | 1563 HAMMER_CURSOR_RETEST)) { 1564 error = hammer_btree_iterate(cursor); 1565 cursor->flags &= ~HAMMER_CURSOR_RETEST; 1566 if (error == 0) { 1567 cursor->flags &= ~HAMMER_CURSOR_ATEDISK; 1568 hammer_cache_node(&cursor->ip->cache[1], 1569 cursor->node); 1570 } else if (error == ENOENT) { 1571 cursor->flags |= HAMMER_CURSOR_DISKEOF | 1572 HAMMER_CURSOR_ATEDISK; 1573 error = 0; 1574 } 1575 } 1576 } 1577 1578 /* 1579 * If the generation changed the backend has deleted or committed 1580 * one or more memory records since our last check. 1581 * 1582 * When this case occurs if the disk cursor is > current memory record 1583 * or the disk cursor is at EOF, we must re-seek the disk-cursor. 1584 * Since the cursor is ahead it must have not yet been eaten (if 1585 * not at eof anyway). (XXX data offset case?) 1586 * 1587 * NOTE: we are not doing a full check here. That will be handled 1588 * later on. 1589 * 1590 * If we have exhausted all memory records we do not have to do any 1591 * further seeks. 1592 */ 1593 while (cursor->rec_generation != cursor->ip->rec_generation && 1594 error == 0 1595 ) { 1596 kprintf("HAMMER: Debug: generation changed during scan @ino=%016llx\n", (long long)cursor->ip->obj_id); 1597 cursor->rec_generation = cursor->ip->rec_generation; 1598 if (cursor->flags & HAMMER_CURSOR_MEMEOF) 1599 break; 1600 if (cursor->flags & HAMMER_CURSOR_DISKEOF) { 1601 r = 1; 1602 } else { 1603 KKASSERT((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0); 1604 elm = &cursor->node->ondisk->elms[cursor->index]; 1605 r = hammer_btree_cmp(&elm->base, 1606 &cursor->iprec->leaf.base); 1607 } 1608 1609 /* 1610 * Do we re-seek the media cursor? 1611 */ 1612 if (r > 0) { 1613 if (_hammer_ip_reseek(cursor)) 1614 goto again; 1615 } 1616 } 1617 1618 /* 1619 * We can now safely get the next in-memory record. We cannot 1620 * block here. 1621 * 1622 * hammer_rec_scan_cmp: Is the record still in our general range, 1623 * (non-inclusive of snapshot exclusions)? 1624 * hammer_rec_scan_callback: Is the record in our snapshot? 1625 */ 1626 tmprec = NULL; 1627 if ((cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) { 1628 /* 1629 * If the current memory record was eaten then get the next 1630 * one. Stale records are skipped. 1631 */ 1632 if (cursor->flags & HAMMER_CURSOR_ATEMEM) { 1633 tmprec = cursor->iprec; 1634 cursor->iprec = NULL; 1635 rec = hammer_rec_rb_tree_RB_NEXT(tmprec); 1636 while (rec) { 1637 if (hammer_rec_scan_cmp(rec, cursor) != 0) 1638 break; 1639 if (hammer_rec_scan_callback(rec, cursor) != 0) 1640 break; 1641 rec = hammer_rec_rb_tree_RB_NEXT(rec); 1642 } 1643 if (cursor->iprec) { 1644 KKASSERT(cursor->iprec == rec); 1645 cursor->flags &= ~HAMMER_CURSOR_ATEMEM; 1646 } else { 1647 cursor->flags |= HAMMER_CURSOR_MEMEOF; 1648 } 1649 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM; 1650 } 1651 } 1652 1653 /* 1654 * MEMORY RECORD VALIDITY TEST 1655 * 1656 * (We still can't block, which is why tmprec is being held so 1657 * long). 1658 * 1659 * If the memory record is no longer valid we skip it. It may 1660 * have been deleted by the frontend. If it was deleted or 1661 * committed by the backend the generation change re-seeked the 1662 * disk cursor and the record will be present there. 1663 */ 1664 if (error == 0 && (cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) { 1665 KKASSERT(cursor->iprec); 1666 KKASSERT((cursor->flags & HAMMER_CURSOR_ATEMEM) == 0); 1667 if (!hammer_ip_iterate_mem_good(cursor, cursor->iprec)) { 1668 cursor->flags |= HAMMER_CURSOR_ATEMEM; 1669 if (tmprec) 1670 hammer_rel_mem_record(tmprec); 1671 goto again; 1672 } 1673 } 1674 if (tmprec) 1675 hammer_rel_mem_record(tmprec); 1676 1677 /* 1678 * Extract either the disk or memory record depending on their 1679 * relative position. 1680 */ 1681 error = 0; 1682 switch(cursor->flags & (HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM)) { 1683 case 0: 1684 /* 1685 * Both entries valid. Compare the entries and nominally 1686 * return the first one in the sort order. Numerous cases 1687 * require special attention, however. 1688 */ 1689 elm = &cursor->node->ondisk->elms[cursor->index]; 1690 r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base); 1691 1692 /* 1693 * If the two entries differ only by their key (-2/2) or 1694 * create_tid (-1/1), and are DATA records, we may have a 1695 * nominal match. We have to calculate the base file 1696 * offset of the data. 1697 */ 1698 if (r <= 2 && r >= -2 && r != 0 && 1699 cursor->ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE && 1700 cursor->iprec->type == HAMMER_MEM_RECORD_DATA) { 1701 int64_t base1 = elm->leaf.base.key - elm->leaf.data_len; 1702 int64_t base2 = cursor->iprec->leaf.base.key - 1703 cursor->iprec->leaf.data_len; 1704 if (base1 == base2) 1705 r = 0; 1706 } 1707 1708 if (r < 0) { 1709 error = hammer_btree_extract(cursor, 1710 HAMMER_CURSOR_GET_LEAF); 1711 cursor->flags |= HAMMER_CURSOR_ATEDISK; 1712 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM; 1713 break; 1714 } 1715 1716 /* 1717 * If the entries match exactly the memory entry is either 1718 * an on-disk directory entry deletion or a bulk data 1719 * overwrite. If it is a directory entry deletion we eat 1720 * both entries. 1721 * 1722 * For the bulk-data overwrite case it is possible to have 1723 * visibility into both, which simply means the syncer 1724 * hasn't gotten around to doing the delete+insert sequence 1725 * on the B-Tree. Use the memory entry and throw away the 1726 * on-disk entry. 1727 * 1728 * If the in-memory record is not either of these we 1729 * probably caught the syncer while it was syncing it to 1730 * the media. Since we hold a shared lock on the cursor, 1731 * the in-memory record had better be marked deleted at 1732 * this point. 1733 */ 1734 if (r == 0) { 1735 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL) { 1736 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) { 1737 cursor->flags |= HAMMER_CURSOR_ATEDISK; 1738 cursor->flags |= HAMMER_CURSOR_ATEMEM; 1739 goto again; 1740 } 1741 } else if (cursor->iprec->type == HAMMER_MEM_RECORD_DATA) { 1742 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) { 1743 cursor->flags |= HAMMER_CURSOR_ATEDISK; 1744 } 1745 /* fall through to memory entry */ 1746 } else { 1747 panic("hammer_ip_next: duplicate mem/b-tree entry %p %d %08x", cursor->iprec, cursor->iprec->type, cursor->iprec->flags); 1748 cursor->flags |= HAMMER_CURSOR_ATEMEM; 1749 goto again; 1750 } 1751 } 1752 /* fall through to the memory entry */ 1753 case HAMMER_CURSOR_ATEDISK: 1754 /* 1755 * Only the memory entry is valid. 1756 */ 1757 cursor->leaf = &cursor->iprec->leaf; 1758 cursor->flags |= HAMMER_CURSOR_ATEMEM; 1759 cursor->flags |= HAMMER_CURSOR_LASTWASMEM; 1760 1761 /* 1762 * If the memory entry is an on-disk deletion we should have 1763 * also had found a B-Tree record. If the backend beat us 1764 * to it it would have interlocked the cursor and we should 1765 * have seen the in-memory record marked DELETED_FE. 1766 */ 1767 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL && 1768 (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) { 1769 panic("hammer_ip_next: del-on-disk with no b-tree entry iprec %p flags %08x", cursor->iprec, cursor->iprec->flags); 1770 } 1771 break; 1772 case HAMMER_CURSOR_ATEMEM: 1773 /* 1774 * Only the disk entry is valid 1775 */ 1776 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF); 1777 cursor->flags |= HAMMER_CURSOR_ATEDISK; 1778 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM; 1779 break; 1780 default: 1781 /* 1782 * Neither entry is valid 1783 * 1784 * XXX error not set properly 1785 */ 1786 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM; 1787 cursor->leaf = NULL; 1788 error = ENOENT; 1789 break; 1790 } 1791 return(error); 1792 } 1793 1794 /* 1795 * Resolve the cursor->data pointer for the current cursor position in 1796 * a merged iteration. 1797 */ 1798 int 1799 hammer_ip_resolve_data(hammer_cursor_t cursor) 1800 { 1801 hammer_record_t record; 1802 int error; 1803 1804 if (hammer_cursor_inmem(cursor)) { 1805 /* 1806 * The data associated with an in-memory record is usually 1807 * kmalloced, but reserve-ahead data records will have an 1808 * on-disk reference. 1809 * 1810 * NOTE: Reserve-ahead data records must be handled in the 1811 * context of the related high level buffer cache buffer 1812 * to interlock against async writes. 1813 */ 1814 record = cursor->iprec; 1815 cursor->data = record->data; 1816 error = 0; 1817 if (cursor->data == NULL) { 1818 KKASSERT(record->leaf.base.rec_type == 1819 HAMMER_RECTYPE_DATA); 1820 cursor->data = hammer_bread_ext(cursor->trans->hmp, 1821 record->leaf.data_offset, 1822 record->leaf.data_len, 1823 &error, 1824 &cursor->data_buffer); 1825 } 1826 } else { 1827 cursor->leaf = &cursor->node->ondisk->elms[cursor->index].leaf; 1828 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_DATA); 1829 } 1830 return(error); 1831 } 1832 1833 /* 1834 * Backend truncation / record replacement - delete records in range. 1835 * 1836 * Delete all records within the specified range for inode ip. In-memory 1837 * records still associated with the frontend are ignored. 1838 * 1839 * If truncating is non-zero in-memory records associated with the back-end 1840 * are ignored. If truncating is > 1 we can return EWOULDBLOCK. 1841 * 1842 * NOTES: 1843 * 1844 * * An unaligned range will cause new records to be added to cover 1845 * the edge cases. (XXX not implemented yet). 1846 * 1847 * * Replacement via reservations (see hammer_ip_sync_record_cursor()) 1848 * also do not deal with unaligned ranges. 1849 * 1850 * * ran_end is inclusive (e.g. 0,1023 instead of 0,1024). 1851 * 1852 * * Record keys for regular file data have to be special-cased since 1853 * they indicate the end of the range (key = base + bytes). 1854 * 1855 * * This function may be asked to delete ridiculously huge ranges, for 1856 * example if someone truncates or removes a 1TB regular file. We 1857 * must be very careful on restarts and we may have to stop w/ 1858 * EWOULDBLOCK to avoid blowing out the buffer cache. 1859 */ 1860 int 1861 hammer_ip_delete_range(hammer_cursor_t cursor, hammer_inode_t ip, 1862 int64_t ran_beg, int64_t ran_end, int truncating) 1863 { 1864 hammer_transaction_t trans = cursor->trans; 1865 hammer_btree_leaf_elm_t leaf; 1866 int error; 1867 int64_t off; 1868 int64_t tmp64; 1869 1870 #if 0 1871 kprintf("delete_range %p %016llx-%016llx\n", ip, ran_beg, ran_end); 1872 #endif 1873 1874 KKASSERT(trans->type == HAMMER_TRANS_FLS); 1875 retry: 1876 hammer_normalize_cursor(cursor); 1877 cursor->key_beg.localization = ip->obj_localization + 1878 HAMMER_LOCALIZE_MISC; 1879 cursor->key_beg.obj_id = ip->obj_id; 1880 cursor->key_beg.create_tid = 0; 1881 cursor->key_beg.delete_tid = 0; 1882 cursor->key_beg.obj_type = 0; 1883 1884 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) { 1885 cursor->key_beg.key = ran_beg; 1886 cursor->key_beg.rec_type = HAMMER_RECTYPE_DB; 1887 } else { 1888 /* 1889 * The key in the B-Tree is (base+bytes), so the first possible 1890 * matching key is ran_beg + 1. 1891 */ 1892 cursor->key_beg.key = ran_beg + 1; 1893 cursor->key_beg.rec_type = HAMMER_RECTYPE_DATA; 1894 } 1895 1896 cursor->key_end = cursor->key_beg; 1897 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) { 1898 cursor->key_end.key = ran_end; 1899 } else { 1900 tmp64 = ran_end + MAXPHYS + 1; /* work around GCC-4 bug */ 1901 if (tmp64 < ran_end) 1902 cursor->key_end.key = 0x7FFFFFFFFFFFFFFFLL; 1903 else 1904 cursor->key_end.key = ran_end + MAXPHYS + 1; 1905 } 1906 1907 cursor->asof = ip->obj_asof; 1908 cursor->flags &= ~HAMMER_CURSOR_INITMASK; 1909 cursor->flags |= HAMMER_CURSOR_ASOF; 1910 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY; 1911 cursor->flags |= HAMMER_CURSOR_BACKEND; 1912 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE; 1913 1914 error = hammer_ip_first(cursor); 1915 1916 /* 1917 * Iterate through matching records and mark them as deleted. 1918 */ 1919 while (error == 0) { 1920 leaf = cursor->leaf; 1921 1922 KKASSERT(leaf->base.delete_tid == 0); 1923 KKASSERT(leaf->base.obj_id == ip->obj_id); 1924 1925 /* 1926 * There may be overlap cases for regular file data. Also 1927 * remember the key for a regular file record is (base + len), 1928 * NOT (base). 1929 * 1930 * Note that do to duplicates (mem & media) allowed by 1931 * DELETE_VISIBILITY, off can wind up less then ran_beg. 1932 */ 1933 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) { 1934 off = leaf->base.key - leaf->data_len; 1935 /* 1936 * Check the left edge case. We currently do not 1937 * split existing records. 1938 */ 1939 if (off < ran_beg && leaf->base.key > ran_beg) { 1940 panic("hammer left edge case %016llx %d\n", 1941 (long long)leaf->base.key, 1942 leaf->data_len); 1943 } 1944 1945 /* 1946 * Check the right edge case. Note that the 1947 * record can be completely out of bounds, which 1948 * terminates the search. 1949 * 1950 * base->key is exclusive of the right edge while 1951 * ran_end is inclusive of the right edge. The 1952 * (key - data_len) left boundary is inclusive. 1953 * 1954 * XXX theory-check this test at some point, are 1955 * we missing a + 1 somewhere? Note that ran_end 1956 * could overflow. 1957 */ 1958 if (leaf->base.key - 1 > ran_end) { 1959 if (leaf->base.key - leaf->data_len > ran_end) 1960 break; 1961 panic("hammer right edge case\n"); 1962 } 1963 } else { 1964 off = leaf->base.key; 1965 } 1966 1967 /* 1968 * Delete the record. When truncating we do not delete 1969 * in-memory (data) records because they represent data 1970 * written after the truncation. 1971 * 1972 * This will also physically destroy the B-Tree entry and 1973 * data if the retention policy dictates. The function 1974 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next() 1975 * to retest the new 'current' element. 1976 */ 1977 if (truncating == 0 || hammer_cursor_ondisk(cursor)) { 1978 error = hammer_ip_delete_record(cursor, ip, trans->tid); 1979 /* 1980 * If we have built up too many meta-buffers we risk 1981 * deadlocking the kernel and must stop. This can 1982 * occur when deleting ridiculously huge files. 1983 * sync_trunc_off is updated so the next cycle does 1984 * not re-iterate records we have already deleted. 1985 * 1986 * This is only done with formal truncations. 1987 */ 1988 if (truncating > 1 && error == 0 && 1989 hammer_flusher_meta_limit(ip->hmp)) { 1990 ip->sync_trunc_off = off; 1991 error = EWOULDBLOCK; 1992 } 1993 } 1994 if (error) 1995 break; 1996 ran_beg = off; /* for restart */ 1997 error = hammer_ip_next(cursor); 1998 } 1999 if (cursor->node) 2000 hammer_cache_node(&ip->cache[1], cursor->node); 2001 2002 if (error == EDEADLK) { 2003 hammer_done_cursor(cursor); 2004 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip); 2005 if (error == 0) 2006 goto retry; 2007 } 2008 if (error == ENOENT) 2009 error = 0; 2010 return(error); 2011 } 2012 2013 /* 2014 * This backend function deletes the specified record on-disk, similar to 2015 * delete_range but for a specific record. Unlike the exact deletions 2016 * used when deleting a directory entry this function uses an ASOF search 2017 * like delete_range. 2018 * 2019 * This function may be called with ip->obj_asof set for a slave snapshot, 2020 * so don't use it. We always delete non-historical records only. 2021 */ 2022 static int 2023 hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip, 2024 hammer_btree_leaf_elm_t leaf) 2025 { 2026 hammer_transaction_t trans = cursor->trans; 2027 int error; 2028 2029 KKASSERT(trans->type == HAMMER_TRANS_FLS); 2030 retry: 2031 hammer_normalize_cursor(cursor); 2032 cursor->key_beg = leaf->base; 2033 cursor->asof = HAMMER_MAX_TID; 2034 cursor->flags &= ~HAMMER_CURSOR_INITMASK; 2035 cursor->flags |= HAMMER_CURSOR_ASOF; 2036 cursor->flags |= HAMMER_CURSOR_BACKEND; 2037 cursor->flags &= ~HAMMER_CURSOR_INSERT; 2038 2039 error = hammer_btree_lookup(cursor); 2040 if (error == 0) { 2041 error = hammer_ip_delete_record(cursor, ip, trans->tid); 2042 } 2043 if (error == EDEADLK) { 2044 hammer_done_cursor(cursor); 2045 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip); 2046 if (error == 0) 2047 goto retry; 2048 } 2049 return(error); 2050 } 2051 2052 /* 2053 * This function deletes remaining auxillary records when an inode is 2054 * being deleted. This function explicitly does not delete the 2055 * inode record, directory entry, data, or db records. Those must be 2056 * properly disposed of prior to this call. 2057 */ 2058 int 2059 hammer_ip_delete_clean(hammer_cursor_t cursor, hammer_inode_t ip, int *countp) 2060 { 2061 hammer_transaction_t trans = cursor->trans; 2062 hammer_btree_leaf_elm_t leaf; 2063 int error; 2064 2065 KKASSERT(trans->type == HAMMER_TRANS_FLS); 2066 retry: 2067 hammer_normalize_cursor(cursor); 2068 cursor->key_beg.localization = ip->obj_localization + 2069 HAMMER_LOCALIZE_MISC; 2070 cursor->key_beg.obj_id = ip->obj_id; 2071 cursor->key_beg.create_tid = 0; 2072 cursor->key_beg.delete_tid = 0; 2073 cursor->key_beg.obj_type = 0; 2074 cursor->key_beg.rec_type = HAMMER_RECTYPE_CLEAN_START; 2075 cursor->key_beg.key = HAMMER_MIN_KEY; 2076 2077 cursor->key_end = cursor->key_beg; 2078 cursor->key_end.rec_type = HAMMER_RECTYPE_MAX; 2079 cursor->key_end.key = HAMMER_MAX_KEY; 2080 2081 cursor->asof = ip->obj_asof; 2082 cursor->flags &= ~HAMMER_CURSOR_INITMASK; 2083 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF; 2084 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY; 2085 cursor->flags |= HAMMER_CURSOR_BACKEND; 2086 2087 error = hammer_ip_first(cursor); 2088 2089 /* 2090 * Iterate through matching records and mark them as deleted. 2091 */ 2092 while (error == 0) { 2093 leaf = cursor->leaf; 2094 2095 KKASSERT(leaf->base.delete_tid == 0); 2096 2097 /* 2098 * Mark the record and B-Tree entry as deleted. This will 2099 * also physically delete the B-Tree entry, record, and 2100 * data if the retention policy dictates. The function 2101 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next() 2102 * to retest the new 'current' element. 2103 * 2104 * Directory entries (and delete-on-disk directory entries) 2105 * must be synced and cannot be deleted. 2106 */ 2107 error = hammer_ip_delete_record(cursor, ip, trans->tid); 2108 ++*countp; 2109 if (error) 2110 break; 2111 error = hammer_ip_next(cursor); 2112 } 2113 if (cursor->node) 2114 hammer_cache_node(&ip->cache[1], cursor->node); 2115 if (error == EDEADLK) { 2116 hammer_done_cursor(cursor); 2117 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip); 2118 if (error == 0) 2119 goto retry; 2120 } 2121 if (error == ENOENT) 2122 error = 0; 2123 return(error); 2124 } 2125 2126 /* 2127 * Delete the record at the current cursor. On success the cursor will 2128 * be positioned appropriately for an iteration but may no longer be at 2129 * a leaf node. 2130 * 2131 * This routine is only called from the backend. 2132 * 2133 * NOTE: This can return EDEADLK, requiring the caller to terminate the 2134 * cursor and retry. 2135 */ 2136 int 2137 hammer_ip_delete_record(hammer_cursor_t cursor, hammer_inode_t ip, 2138 hammer_tid_t tid) 2139 { 2140 hammer_record_t iprec; 2141 hammer_mount_t hmp; 2142 int error; 2143 2144 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND); 2145 KKASSERT(tid != 0); 2146 hmp = cursor->node->hmp; 2147 2148 /* 2149 * In-memory (unsynchronized) records can simply be freed. This 2150 * only occurs in range iterations since all other records are 2151 * individually synchronized. Thus there should be no confusion with 2152 * the interlock. 2153 * 2154 * An in-memory record may be deleted before being committed to disk, 2155 * but could have been accessed in the mean time. The reservation 2156 * code will deal with the case. 2157 */ 2158 if (hammer_cursor_inmem(cursor)) { 2159 iprec = cursor->iprec; 2160 KKASSERT((iprec->flags & HAMMER_RECF_INTERLOCK_BE) ==0); 2161 iprec->flags |= HAMMER_RECF_DELETED_FE; 2162 iprec->flags |= HAMMER_RECF_DELETED_BE; 2163 KKASSERT(iprec->ip == ip); 2164 ++ip->rec_generation; 2165 return(0); 2166 } 2167 2168 /* 2169 * On-disk records are marked as deleted by updating their delete_tid. 2170 * This does not effect their position in the B-Tree (which is based 2171 * on their create_tid). 2172 * 2173 * Frontend B-Tree operations track inodes so we tell 2174 * hammer_delete_at_cursor() not to. 2175 */ 2176 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF); 2177 2178 if (error == 0) { 2179 error = hammer_delete_at_cursor( 2180 cursor, 2181 HAMMER_DELETE_ADJUST | hammer_nohistory(ip), 2182 cursor->trans->tid, 2183 cursor->trans->time32, 2184 0, NULL); 2185 } 2186 return(error); 2187 } 2188 2189 /* 2190 * Delete the B-Tree element at the current cursor and do any necessary 2191 * mirror propagation. 2192 * 2193 * The cursor must be properly positioned for an iteration on return but 2194 * may be pointing at an internal element. 2195 * 2196 * An element can be un-deleted by passing a delete_tid of 0 with 2197 * HAMMER_DELETE_ADJUST. 2198 */ 2199 int 2200 hammer_delete_at_cursor(hammer_cursor_t cursor, int delete_flags, 2201 hammer_tid_t delete_tid, u_int32_t delete_ts, 2202 int track, int64_t *stat_bytes) 2203 { 2204 struct hammer_btree_leaf_elm save_leaf; 2205 hammer_transaction_t trans; 2206 hammer_btree_leaf_elm_t leaf; 2207 hammer_node_t node; 2208 hammer_btree_elm_t elm; 2209 hammer_off_t data_offset; 2210 int32_t data_len; 2211 u_int16_t rec_type; 2212 int error; 2213 int icount; 2214 int doprop; 2215 2216 error = hammer_cursor_upgrade(cursor); 2217 if (error) 2218 return(error); 2219 2220 trans = cursor->trans; 2221 node = cursor->node; 2222 elm = &node->ondisk->elms[cursor->index]; 2223 leaf = &elm->leaf; 2224 KKASSERT(elm->base.btype == HAMMER_BTREE_TYPE_RECORD); 2225 2226 hammer_sync_lock_sh(trans); 2227 doprop = 0; 2228 icount = 0; 2229 2230 /* 2231 * Adjust the delete_tid. Update the mirror_tid propagation field 2232 * as well. delete_tid can be 0 (undelete -- used by mirroring). 2233 */ 2234 if (delete_flags & HAMMER_DELETE_ADJUST) { 2235 if (elm->base.rec_type == HAMMER_RECTYPE_INODE) { 2236 if (elm->leaf.base.delete_tid == 0 && delete_tid) 2237 icount = -1; 2238 if (elm->leaf.base.delete_tid && delete_tid == 0) 2239 icount = 1; 2240 } 2241 2242 hammer_modify_node(trans, node, elm, sizeof(*elm)); 2243 elm->leaf.base.delete_tid = delete_tid; 2244 elm->leaf.delete_ts = delete_ts; 2245 hammer_modify_node_done(node); 2246 2247 if (elm->leaf.base.delete_tid > node->ondisk->mirror_tid) { 2248 hammer_modify_node_field(trans, node, mirror_tid); 2249 node->ondisk->mirror_tid = elm->leaf.base.delete_tid; 2250 hammer_modify_node_done(node); 2251 doprop = 1; 2252 if (hammer_debug_general & 0x0002) { 2253 kprintf("delete_at_cursor: propagate %016llx" 2254 " @%016llx\n", 2255 (long long)elm->leaf.base.delete_tid, 2256 (long long)node->node_offset); 2257 } 2258 } 2259 2260 /* 2261 * Adjust for the iteration. We have deleted the current 2262 * element and want to clear ATEDISK so the iteration does 2263 * not skip the element after, which now becomes the current 2264 * element. This element must be re-tested if doing an 2265 * iteration, which is handled by the RETEST flag. 2266 */ 2267 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) { 2268 cursor->flags |= HAMMER_CURSOR_RETEST; 2269 cursor->flags &= ~HAMMER_CURSOR_ATEDISK; 2270 } 2271 2272 /* 2273 * An on-disk record cannot have the same delete_tid 2274 * as its create_tid. In a chain of record updates 2275 * this could result in a duplicate record. 2276 */ 2277 KKASSERT(elm->leaf.base.delete_tid != 2278 elm->leaf.base.create_tid); 2279 } 2280 2281 /* 2282 * Destroy the B-Tree element if asked (typically if a nohistory 2283 * file or mount, or when called by the pruning code). 2284 * 2285 * Adjust the ATEDISK flag to properly support iterations. 2286 */ 2287 if (delete_flags & HAMMER_DELETE_DESTROY) { 2288 data_offset = elm->leaf.data_offset; 2289 data_len = elm->leaf.data_len; 2290 rec_type = elm->leaf.base.rec_type; 2291 if (doprop) { 2292 save_leaf = elm->leaf; 2293 leaf = &save_leaf; 2294 } 2295 if (elm->base.rec_type == HAMMER_RECTYPE_INODE && 2296 elm->leaf.base.delete_tid == 0) { 2297 icount = -1; 2298 } 2299 2300 error = hammer_btree_delete(cursor); 2301 if (error == 0) { 2302 /* 2303 * The deletion moves the next element (if any) to 2304 * the current element position. We must clear 2305 * ATEDISK so this element is not skipped and we 2306 * must set RETEST to force any iteration to re-test 2307 * the element. 2308 */ 2309 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) { 2310 cursor->flags |= HAMMER_CURSOR_RETEST; 2311 cursor->flags &= ~HAMMER_CURSOR_ATEDISK; 2312 } 2313 } 2314 if (error == 0) { 2315 switch(data_offset & HAMMER_OFF_ZONE_MASK) { 2316 case HAMMER_ZONE_LARGE_DATA: 2317 case HAMMER_ZONE_SMALL_DATA: 2318 case HAMMER_ZONE_META: 2319 hammer_blockmap_free(trans, 2320 data_offset, data_len); 2321 break; 2322 default: 2323 break; 2324 } 2325 } 2326 } 2327 2328 /* 2329 * Track inode count and next_tid. This is used by the mirroring 2330 * and PFS code. icount can be negative, zero, or positive. 2331 */ 2332 if (error == 0 && track) { 2333 if (icount) { 2334 hammer_modify_volume_field(trans, trans->rootvol, 2335 vol0_stat_inodes); 2336 trans->rootvol->ondisk->vol0_stat_inodes += icount; 2337 hammer_modify_volume_done(trans->rootvol); 2338 } 2339 if (trans->rootvol->ondisk->vol0_next_tid < delete_tid) { 2340 hammer_modify_volume(trans, trans->rootvol, NULL, 0); 2341 trans->rootvol->ondisk->vol0_next_tid = delete_tid; 2342 hammer_modify_volume_done(trans->rootvol); 2343 } 2344 } 2345 2346 /* 2347 * mirror_tid propagation occurs if the node's mirror_tid had to be 2348 * updated while adjusting the delete_tid. 2349 * 2350 * This occurs when deleting even in nohistory mode, but does not 2351 * occur when pruning an already-deleted node. 2352 * 2353 * cursor->ip is NULL when called from the pruning, mirroring, 2354 * and pfs code. If non-NULL propagation will be conditionalized 2355 * on whether the PFS is in no-history mode or not. 2356 */ 2357 if (doprop) { 2358 if (cursor->ip) 2359 hammer_btree_do_propagation(cursor, cursor->ip->pfsm, leaf); 2360 else 2361 hammer_btree_do_propagation(cursor, NULL, leaf); 2362 } 2363 hammer_sync_unlock(trans); 2364 return (error); 2365 } 2366 2367 /* 2368 * Determine whether we can remove a directory. This routine checks whether 2369 * a directory is empty or not and enforces flush connectivity. 2370 * 2371 * Flush connectivity requires that we block if the target directory is 2372 * currently flushing, otherwise it may not end up in the same flush group. 2373 * 2374 * Returns 0 on success, ENOTEMPTY or EDEADLK (or other errors) on failure. 2375 */ 2376 int 2377 hammer_ip_check_directory_empty(hammer_transaction_t trans, hammer_inode_t ip) 2378 { 2379 struct hammer_cursor cursor; 2380 int error; 2381 2382 /* 2383 * Check directory empty 2384 */ 2385 hammer_init_cursor(trans, &cursor, &ip->cache[1], ip); 2386 2387 cursor.key_beg.localization = ip->obj_localization + 2388 hammer_dir_localization(ip); 2389 cursor.key_beg.obj_id = ip->obj_id; 2390 cursor.key_beg.create_tid = 0; 2391 cursor.key_beg.delete_tid = 0; 2392 cursor.key_beg.obj_type = 0; 2393 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE + 1; 2394 cursor.key_beg.key = HAMMER_MIN_KEY; 2395 2396 cursor.key_end = cursor.key_beg; 2397 cursor.key_end.rec_type = 0xFFFF; 2398 cursor.key_end.key = HAMMER_MAX_KEY; 2399 2400 cursor.asof = ip->obj_asof; 2401 cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF; 2402 2403 error = hammer_ip_first(&cursor); 2404 if (error == ENOENT) 2405 error = 0; 2406 else if (error == 0) 2407 error = ENOTEMPTY; 2408 hammer_done_cursor(&cursor); 2409 return(error); 2410 } 2411 2412