xref: /dflybsd-src/sys/vfs/hammer/hammer_object.c (revision 97fecd825dd1a70c628493b90a9b1b1724f151df)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_object.c,v 1.97 2008/09/23 22:28:56 dillon Exp $
35  */
36 
37 #include "hammer.h"
38 
39 static int hammer_mem_lookup(hammer_cursor_t cursor);
40 static void hammer_mem_first(hammer_cursor_t cursor);
41 static int hammer_frontend_trunc_callback(hammer_record_t record,
42 				void *data __unused);
43 static int hammer_bulk_scan_callback(hammer_record_t record, void *data);
44 static int hammer_record_needs_overwrite_delete(hammer_record_t record);
45 static int hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
46 		      hammer_btree_leaf_elm_t leaf);
47 
48 struct rec_trunc_info {
49 	u_int16_t	rec_type;
50 	int64_t		trunc_off;
51 };
52 
53 struct hammer_bulk_info {
54 	hammer_record_t record;
55 	struct hammer_btree_leaf_elm leaf;
56 };
57 
58 /*
59  * Red-black tree support.  Comparison code for insertion.
60  */
61 static int
62 hammer_rec_rb_compare(hammer_record_t rec1, hammer_record_t rec2)
63 {
64 	if (rec1->leaf.base.rec_type < rec2->leaf.base.rec_type)
65 		return(-1);
66 	if (rec1->leaf.base.rec_type > rec2->leaf.base.rec_type)
67 		return(1);
68 
69 	if (rec1->leaf.base.key < rec2->leaf.base.key)
70 		return(-1);
71 	if (rec1->leaf.base.key > rec2->leaf.base.key)
72 		return(1);
73 
74 	/*
75 	 * For search & insertion purposes records deleted by the
76 	 * frontend or deleted/committed by the backend are silently
77 	 * ignored.  Otherwise pipelined insertions will get messed
78 	 * up.
79 	 *
80 	 * rec1 is greater then rec2 if rec1 is marked deleted.
81 	 * rec1 is less then rec2 if rec2 is marked deleted.
82 	 *
83 	 * Multiple deleted records may be present, do not return 0
84 	 * if both are marked deleted.
85 	 */
86 	if (rec1->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
87 			   HAMMER_RECF_COMMITTED)) {
88 		return(1);
89 	}
90 	if (rec2->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
91 			   HAMMER_RECF_COMMITTED)) {
92 		return(-1);
93 	}
94 
95         return(0);
96 }
97 
98 /*
99  * Basic record comparison code similar to hammer_btree_cmp().
100  */
101 static int
102 hammer_rec_cmp(hammer_base_elm_t elm, hammer_record_t rec)
103 {
104 	if (elm->rec_type < rec->leaf.base.rec_type)
105 		return(-3);
106 	if (elm->rec_type > rec->leaf.base.rec_type)
107 		return(3);
108 
109         if (elm->key < rec->leaf.base.key)
110                 return(-2);
111         if (elm->key > rec->leaf.base.key)
112                 return(2);
113 
114 	/*
115 	 * Never match against an item deleted by the frontend
116 	 * or backend, or committed by the backend.
117 	 *
118 	 * elm is less then rec if rec is marked deleted.
119 	 */
120 	if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
121 			  HAMMER_RECF_COMMITTED)) {
122 		return(-1);
123 	}
124         return(0);
125 }
126 
127 /*
128  * Ranged scan to locate overlapping record(s).  This is used by
129  * hammer_ip_get_bulk() to locate an overlapping record.  We have
130  * to use a ranged scan because the keys for data records with the
131  * same file base offset can be different due to differing data_len's.
132  *
133  * NOTE: The base file offset of a data record is (key - data_len), not (key).
134  */
135 static int
136 hammer_rec_overlap_cmp(hammer_record_t rec, void *data)
137 {
138 	struct hammer_bulk_info *info = data;
139 	hammer_btree_leaf_elm_t leaf = &info->leaf;
140 
141 	if (rec->leaf.base.rec_type < leaf->base.rec_type)
142 		return(-3);
143 	if (rec->leaf.base.rec_type > leaf->base.rec_type)
144 		return(3);
145 
146 	/*
147 	 * Overlap compare
148 	 */
149 	if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
150 		/* rec_beg >= leaf_end */
151 		if (rec->leaf.base.key - rec->leaf.data_len >= leaf->base.key)
152 			return(2);
153 		/* rec_end <= leaf_beg */
154 		if (rec->leaf.base.key <= leaf->base.key - leaf->data_len)
155 			return(-2);
156 	} else {
157 		if (rec->leaf.base.key < leaf->base.key)
158 			return(-2);
159 		if (rec->leaf.base.key > leaf->base.key)
160 			return(2);
161 	}
162 
163 	/*
164 	 * We have to return 0 at this point, even if DELETED_FE is set,
165 	 * because returning anything else will cause the scan to ignore
166 	 * one of the branches when we really want it to check both.
167 	 */
168         return(0);
169 }
170 
171 /*
172  * RB_SCAN comparison code for hammer_mem_first().  The argument order
173  * is reversed so the comparison result has to be negated.  key_beg and
174  * key_end are both range-inclusive.
175  *
176  * Localized deletions are not cached in-memory.
177  */
178 static
179 int
180 hammer_rec_scan_cmp(hammer_record_t rec, void *data)
181 {
182 	hammer_cursor_t cursor = data;
183 	int r;
184 
185 	r = hammer_rec_cmp(&cursor->key_beg, rec);
186 	if (r > 1)
187 		return(-1);
188 	r = hammer_rec_cmp(&cursor->key_end, rec);
189 	if (r < -1)
190 		return(1);
191 	return(0);
192 }
193 
194 /*
195  * This compare function is used when simply looking up key_beg.
196  */
197 static
198 int
199 hammer_rec_find_cmp(hammer_record_t rec, void *data)
200 {
201 	hammer_cursor_t cursor = data;
202 	int r;
203 
204 	r = hammer_rec_cmp(&cursor->key_beg, rec);
205 	if (r > 1)
206 		return(-1);
207 	if (r < -1)
208 		return(1);
209 	return(0);
210 }
211 
212 /*
213  * Locate blocks within the truncation range.  Partial blocks do not count.
214  */
215 static
216 int
217 hammer_rec_trunc_cmp(hammer_record_t rec, void *data)
218 {
219 	struct rec_trunc_info *info = data;
220 
221 	if (rec->leaf.base.rec_type < info->rec_type)
222 		return(-1);
223 	if (rec->leaf.base.rec_type > info->rec_type)
224 		return(1);
225 
226 	switch(rec->leaf.base.rec_type) {
227 	case HAMMER_RECTYPE_DB:
228 		/*
229 		 * DB record key is not beyond the truncation point, retain.
230 		 */
231 		if (rec->leaf.base.key < info->trunc_off)
232 			return(-1);
233 		break;
234 	case HAMMER_RECTYPE_DATA:
235 		/*
236 		 * DATA record offset start is not beyond the truncation point,
237 		 * retain.
238 		 */
239 		if (rec->leaf.base.key - rec->leaf.data_len < info->trunc_off)
240 			return(-1);
241 		break;
242 	default:
243 		panic("hammer_rec_trunc_cmp: unexpected record type");
244 	}
245 
246 	/*
247 	 * The record start is >= the truncation point, return match,
248 	 * the record should be destroyed.
249 	 */
250 	return(0);
251 }
252 
253 RB_GENERATE(hammer_rec_rb_tree, hammer_record, rb_node, hammer_rec_rb_compare);
254 
255 /*
256  * Allocate a record for the caller to finish filling in.  The record is
257  * returned referenced.
258  */
259 hammer_record_t
260 hammer_alloc_mem_record(hammer_inode_t ip, int data_len)
261 {
262 	hammer_record_t record;
263 	hammer_mount_t hmp;
264 
265 	hmp = ip->hmp;
266 	++hammer_count_records;
267 	record = kmalloc(sizeof(*record), hmp->m_misc,
268 			 M_WAITOK | M_ZERO | M_USE_RESERVE);
269 	record->flush_state = HAMMER_FST_IDLE;
270 	record->ip = ip;
271 	record->leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;
272 	record->leaf.data_len = data_len;
273 	hammer_ref(&record->lock);
274 
275 	if (data_len) {
276 		record->data = kmalloc(data_len, hmp->m_misc, M_WAITOK | M_ZERO);
277 		record->flags |= HAMMER_RECF_ALLOCDATA;
278 		++hammer_count_record_datas;
279 	}
280 
281 	return (record);
282 }
283 
284 void
285 hammer_wait_mem_record_ident(hammer_record_t record, const char *ident)
286 {
287 	while (record->flush_state == HAMMER_FST_FLUSH) {
288 		record->flags |= HAMMER_RECF_WANTED;
289 		tsleep(record, 0, ident, 0);
290 	}
291 }
292 
293 /*
294  * Called from the backend, hammer_inode.c, after a record has been
295  * flushed to disk.  The record has been exclusively locked by the
296  * caller and interlocked with BE.
297  *
298  * We clean up the state, unlock, and release the record (the record
299  * was referenced by the fact that it was in the HAMMER_FST_FLUSH state).
300  */
301 void
302 hammer_flush_record_done(hammer_record_t record, int error)
303 {
304 	hammer_inode_t target_ip;
305 
306 	KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
307 	KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
308 
309 	/*
310 	 * If an error occured, the backend was unable to sync the
311 	 * record to its media.  Leave the record intact.
312 	 */
313 	if (error) {
314 		hammer_critical_error(record->ip->hmp, record->ip, error,
315 				      "while flushing record");
316 	}
317 
318 	--record->flush_group->refs;
319 	record->flush_group = NULL;
320 
321 	/*
322 	 * Adjust the flush state and dependancy based on success or
323 	 * failure.
324 	 */
325 	if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) {
326 		if ((target_ip = record->target_ip) != NULL) {
327 			TAILQ_REMOVE(&target_ip->target_list, record,
328 				     target_entry);
329 			record->target_ip = NULL;
330 			hammer_test_inode(target_ip);
331 		}
332 		record->flush_state = HAMMER_FST_IDLE;
333 	} else {
334 		if (record->target_ip) {
335 			record->flush_state = HAMMER_FST_SETUP;
336 			hammer_test_inode(record->ip);
337 			hammer_test_inode(record->target_ip);
338 		} else {
339 			record->flush_state = HAMMER_FST_IDLE;
340 		}
341 	}
342 	record->flags &= ~HAMMER_RECF_INTERLOCK_BE;
343 
344 	/*
345 	 * Cleanup
346 	 */
347 	if (record->flags & HAMMER_RECF_WANTED) {
348 		record->flags &= ~HAMMER_RECF_WANTED;
349 		wakeup(record);
350 	}
351 	hammer_rel_mem_record(record);
352 }
353 
354 /*
355  * Release a memory record.  Records marked for deletion are immediately
356  * removed from the RB-Tree but otherwise left intact until the last ref
357  * goes away.
358  */
359 void
360 hammer_rel_mem_record(struct hammer_record *record)
361 {
362 	hammer_mount_t hmp;
363 	hammer_reserve_t resv;
364 	hammer_inode_t ip;
365 	hammer_inode_t target_ip;
366 
367 	hammer_unref(&record->lock);
368 
369 	if (record->lock.refs == 0) {
370 		/*
371 		 * Upon release of the last reference wakeup any waiters.
372 		 * The record structure may get destroyed so callers will
373 		 * loop up and do a relookup.
374 		 *
375 		 * WARNING!  Record must be removed from RB-TREE before we
376 		 * might possibly block.  hammer_test_inode() can block!
377 		 */
378 		ip = record->ip;
379 		hmp = ip->hmp;
380 
381 		/*
382 		 * Upon release of the last reference a record marked deleted
383 		 * by the front or backend, or committed by the backend,
384 		 * is destroyed.
385 		 */
386 		if (record->flags & (HAMMER_RECF_DELETED_FE |
387 				     HAMMER_RECF_DELETED_BE |
388 				     HAMMER_RECF_COMMITTED)) {
389 			KKASSERT(ip->lock.refs > 0);
390 			KKASSERT(record->flush_state != HAMMER_FST_FLUSH);
391 
392 			/*
393 			 * target_ip may have zero refs, we have to ref it
394 			 * to prevent it from being ripped out from under
395 			 * us.
396 			 */
397 			if ((target_ip = record->target_ip) != NULL) {
398 				TAILQ_REMOVE(&target_ip->target_list,
399 					     record, target_entry);
400 				record->target_ip = NULL;
401 				hammer_ref(&target_ip->lock);
402 			}
403 
404 			if (record->flags & HAMMER_RECF_ONRBTREE) {
405 				RB_REMOVE(hammer_rec_rb_tree,
406 					  &record->ip->rec_tree,
407 					  record);
408 				KKASSERT(ip->rsv_recs > 0);
409 				--hmp->rsv_recs;
410 				--ip->rsv_recs;
411 				hmp->rsv_databytes -= record->leaf.data_len;
412 				record->flags &= ~HAMMER_RECF_ONRBTREE;
413 
414 				if (RB_EMPTY(&record->ip->rec_tree)) {
415 					record->ip->flags &= ~HAMMER_INODE_XDIRTY;
416 					record->ip->sync_flags &= ~HAMMER_INODE_XDIRTY;
417 					hammer_test_inode(record->ip);
418 				}
419 			}
420 
421 			/*
422 			 * We must wait for any direct-IO to complete before
423 			 * we can destroy the record because the bio may
424 			 * have a reference to it.
425 			 */
426 			if (record->flags &
427 			   (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL)) {
428 				hammer_io_direct_wait(record);
429 			}
430 
431 
432 			/*
433 			 * Do this test after removing record from the B-Tree.
434 			 */
435 			if (target_ip) {
436 				hammer_test_inode(target_ip);
437 				hammer_rel_inode(target_ip, 0);
438 			}
439 
440 			if (record->flags & HAMMER_RECF_ALLOCDATA) {
441 				--hammer_count_record_datas;
442 				kfree(record->data, hmp->m_misc);
443 				record->flags &= ~HAMMER_RECF_ALLOCDATA;
444 			}
445 
446 			/*
447 			 * Release the reservation.
448 			 *
449 			 * If the record was not committed we can theoretically
450 			 * undo the reservation.  However, doing so might
451 			 * create weird edge cases with the ordering of
452 			 * direct writes because the related buffer cache
453 			 * elements are per-vnode.  So we don't try.
454 			 */
455 			if ((resv = record->resv) != NULL) {
456 				/* XXX undo leaf.data_offset,leaf.data_len */
457 				hammer_blockmap_reserve_complete(hmp, resv);
458 				record->resv = NULL;
459 			}
460 			record->data = NULL;
461 			--hammer_count_records;
462 			kfree(record, hmp->m_misc);
463 		}
464 	}
465 }
466 
467 /*
468  * Record visibility depends on whether the record is being accessed by
469  * the backend or the frontend.  Backend tests ignore the frontend delete
470  * flag.  Frontend tests do NOT ignore the backend delete/commit flags and
471  * must also check for commit races.
472  *
473  * Return non-zero if the record is visible, zero if it isn't or if it is
474  * deleted.  Returns 0 if the record has been comitted (unless the special
475  * delete-visibility flag is set).  A committed record must be located
476  * via the media B-Tree.  Returns non-zero if the record is good.
477  *
478  * If HAMMER_CURSOR_DELETE_VISIBILITY is set we allow deleted memory
479  * records to be returned.  This is so pending deletions are detected
480  * when using an iterator to locate an unused hash key, or when we need
481  * to locate historical records on-disk to destroy.
482  */
483 static __inline
484 int
485 hammer_ip_iterate_mem_good(hammer_cursor_t cursor, hammer_record_t record)
486 {
487 	if (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY)
488 		return(1);
489 	if (cursor->flags & HAMMER_CURSOR_BACKEND) {
490 		if (record->flags & (HAMMER_RECF_DELETED_BE |
491 				     HAMMER_RECF_COMMITTED)) {
492 			return(0);
493 		}
494 	} else {
495 		if (record->flags & (HAMMER_RECF_DELETED_FE |
496 				     HAMMER_RECF_DELETED_BE |
497 				     HAMMER_RECF_COMMITTED)) {
498 			return(0);
499 		}
500 	}
501 	return(1);
502 }
503 
504 /*
505  * This callback is used as part of the RB_SCAN function for in-memory
506  * records.  We terminate it (return -1) as soon as we get a match.
507  *
508  * This routine is used by frontend code.
509  *
510  * The primary compare code does not account for ASOF lookups.  This
511  * code handles that case as well as a few others.
512  */
513 static
514 int
515 hammer_rec_scan_callback(hammer_record_t rec, void *data)
516 {
517 	hammer_cursor_t cursor = data;
518 
519 	/*
520 	 * We terminate on success, so this should be NULL on entry.
521 	 */
522 	KKASSERT(cursor->iprec == NULL);
523 
524 	/*
525 	 * Skip if the record was marked deleted or committed.
526 	 */
527 	if (hammer_ip_iterate_mem_good(cursor, rec) == 0)
528 		return(0);
529 
530 	/*
531 	 * Skip if not visible due to our as-of TID
532 	 */
533         if (cursor->flags & HAMMER_CURSOR_ASOF) {
534                 if (cursor->asof < rec->leaf.base.create_tid)
535                         return(0);
536                 if (rec->leaf.base.delete_tid &&
537 		    cursor->asof >= rec->leaf.base.delete_tid) {
538                         return(0);
539 		}
540         }
541 
542 	/*
543 	 * ref the record.  The record is protected from backend B-Tree
544 	 * interactions by virtue of the cursor's IP lock.
545 	 */
546 	hammer_ref(&rec->lock);
547 
548 	/*
549 	 * The record may have been deleted or committed while we
550 	 * were blocked.  XXX remove?
551 	 */
552 	if (hammer_ip_iterate_mem_good(cursor, rec) == 0) {
553 		hammer_rel_mem_record(rec);
554 		return(0);
555 	}
556 
557 	/*
558 	 * Set the matching record and stop the scan.
559 	 */
560 	cursor->iprec = rec;
561 	return(-1);
562 }
563 
564 
565 /*
566  * Lookup an in-memory record given the key specified in the cursor.  Works
567  * just like hammer_btree_lookup() but operates on an inode's in-memory
568  * record list.
569  *
570  * The lookup must fail if the record is marked for deferred deletion.
571  *
572  * The API for mem/btree_lookup() does not mess with the ATE/EOF bits.
573  */
574 static
575 int
576 hammer_mem_lookup(hammer_cursor_t cursor)
577 {
578 	KKASSERT(cursor->ip);
579 	if (cursor->iprec) {
580 		hammer_rel_mem_record(cursor->iprec);
581 		cursor->iprec = NULL;
582 	}
583 	hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_find_cmp,
584 				   hammer_rec_scan_callback, cursor);
585 
586 	return (cursor->iprec ? 0 : ENOENT);
587 }
588 
589 /*
590  * hammer_mem_first() - locate the first in-memory record matching the
591  * cursor within the bounds of the key range.
592  *
593  * WARNING!  API is slightly different from btree_first().  hammer_mem_first()
594  * will set ATEMEM the same as MEMEOF, and does not return any error.
595  */
596 static
597 void
598 hammer_mem_first(hammer_cursor_t cursor)
599 {
600 	hammer_inode_t ip;
601 
602 	ip = cursor->ip;
603 	KKASSERT(ip != NULL);
604 
605 	if (cursor->iprec) {
606 		hammer_rel_mem_record(cursor->iprec);
607 		cursor->iprec = NULL;
608 	}
609 	hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_scan_cmp,
610 				   hammer_rec_scan_callback, cursor);
611 
612 	if (cursor->iprec)
613 		cursor->flags &= ~(HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM);
614 	else
615 		cursor->flags |= HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM;
616 }
617 
618 /************************************************************************
619  *		     HAMMER IN-MEMORY RECORD FUNCTIONS			*
620  ************************************************************************
621  *
622  * These functions manipulate in-memory records.  Such records typically
623  * exist prior to being committed to disk or indexed via the on-disk B-Tree.
624  */
625 
626 /*
627  * Add a directory entry (dip,ncp) which references inode (ip).
628  *
629  * Note that the low 32 bits of the namekey are set temporarily to create
630  * a unique in-memory record, and may be modified a second time when the
631  * record is synchronized to disk.  In particular, the low 32 bits cannot be
632  * all 0's when synching to disk, which is not handled here.
633  *
634  * NOTE: bytes does not include any terminating \0 on name, and name might
635  * not be terminated.
636  */
637 int
638 hammer_ip_add_directory(struct hammer_transaction *trans,
639 		     struct hammer_inode *dip, const char *name, int bytes,
640 		     struct hammer_inode *ip)
641 {
642 	struct hammer_cursor cursor;
643 	hammer_record_t record;
644 	int error;
645 	u_int32_t max_iterations;
646 
647 	record = hammer_alloc_mem_record(dip, HAMMER_ENTRY_SIZE(bytes));
648 
649 	record->type = HAMMER_MEM_RECORD_ADD;
650 	record->leaf.base.localization = dip->obj_localization +
651 					 hammer_dir_localization(dip);
652 	record->leaf.base.obj_id = dip->obj_id;
653 	record->leaf.base.key = hammer_directory_namekey(dip, name, bytes,
654 							 &max_iterations);
655 	record->leaf.base.rec_type = HAMMER_RECTYPE_DIRENTRY;
656 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
657 	record->data->entry.obj_id = ip->obj_id;
658 	record->data->entry.localization = ip->obj_localization;
659 	bcopy(name, record->data->entry.name, bytes);
660 
661 	++ip->ino_data.nlinks;
662 	ip->ino_data.ctime = trans->time;
663 	hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
664 
665 	/*
666 	 * Find an unused namekey.  Both the in-memory record tree and
667 	 * the B-Tree are checked.  We do not want historically deleted
668 	 * names to create a collision as our iteration space may be limited,
669 	 * and since create_tid wouldn't match anyway an ASOF search
670 	 * must be used to locate collisions.
671 	 *
672 	 * delete-visibility is set so pending deletions do not give us
673 	 * a false-negative on our ability to use an iterator.
674 	 *
675 	 * The iterator must not rollover the key.  Directory keys only
676 	 * use the positive key space.
677 	 */
678 	hammer_init_cursor(trans, &cursor, &dip->cache[1], dip);
679 	cursor.key_beg = record->leaf.base;
680 	cursor.flags |= HAMMER_CURSOR_ASOF;
681 	cursor.flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
682 	cursor.asof = ip->obj_asof;
683 
684 	while (hammer_ip_lookup(&cursor) == 0) {
685 		++record->leaf.base.key;
686 		KKASSERT(record->leaf.base.key > 0);
687 		cursor.key_beg.key = record->leaf.base.key;
688 		if (--max_iterations == 0) {
689 			hammer_rel_mem_record(record);
690 			error = ENOSPC;
691 			goto failed;
692 		}
693 	}
694 
695 	/*
696 	 * The target inode and the directory entry are bound together.
697 	 */
698 	record->target_ip = ip;
699 	record->flush_state = HAMMER_FST_SETUP;
700 	TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry);
701 
702 	/*
703 	 * The inode now has a dependancy and must be taken out of the idle
704 	 * state.  An inode not in an idle state is given an extra reference.
705 	 *
706 	 * When transitioning to a SETUP state flag for an automatic reflush
707 	 * when the dependancies are disposed of if someone is waiting on
708 	 * the inode.
709 	 */
710 	if (ip->flush_state == HAMMER_FST_IDLE) {
711 		hammer_ref(&ip->lock);
712 		ip->flush_state = HAMMER_FST_SETUP;
713 		if (ip->flags & HAMMER_INODE_FLUSHW)
714 			ip->flags |= HAMMER_INODE_REFLUSH;
715 	}
716 	error = hammer_mem_add(record);
717 	if (error == 0) {
718 		dip->ino_data.mtime = trans->time;
719 		hammer_modify_inode(dip, HAMMER_INODE_MTIME);
720 	}
721 failed:
722 	hammer_done_cursor(&cursor);
723 	return(error);
724 }
725 
726 /*
727  * Delete the directory entry and update the inode link count.  The
728  * cursor must be seeked to the directory entry record being deleted.
729  *
730  * The related inode should be share-locked by the caller.  The caller is
731  * on the frontend.  It could also be NULL indicating that the directory
732  * entry being removed has no related inode.
733  *
734  * This function can return EDEADLK requiring the caller to terminate
735  * the cursor, any locks, wait on the returned record, and retry.
736  */
737 int
738 hammer_ip_del_directory(struct hammer_transaction *trans,
739 		     hammer_cursor_t cursor, struct hammer_inode *dip,
740 		     struct hammer_inode *ip)
741 {
742 	hammer_record_t record;
743 	int error;
744 
745 	if (hammer_cursor_inmem(cursor)) {
746 		/*
747 		 * In-memory (unsynchronized) records can simply be freed.
748 		 *
749 		 * Even though the HAMMER_RECF_DELETED_FE flag is ignored
750 		 * by the backend, we must still avoid races against the
751 		 * backend potentially syncing the record to the media.
752 		 *
753 		 * We cannot call hammer_ip_delete_record(), that routine may
754 		 * only be called from the backend.
755 		 */
756 		record = cursor->iprec;
757 		if (record->flags & (HAMMER_RECF_INTERLOCK_BE |
758 				     HAMMER_RECF_DELETED_BE |
759 				     HAMMER_RECF_COMMITTED)) {
760 			KKASSERT(cursor->deadlk_rec == NULL);
761 			hammer_ref(&record->lock);
762 			cursor->deadlk_rec = record;
763 			error = EDEADLK;
764 		} else {
765 			KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
766 			record->flags |= HAMMER_RECF_DELETED_FE;
767 			error = 0;
768 		}
769 	} else {
770 		/*
771 		 * If the record is on-disk we have to queue the deletion by
772 		 * the record's key.  This also causes lookups to skip the
773 		 * record.
774 		 */
775 		KKASSERT(dip->flags &
776 			 (HAMMER_INODE_ONDISK | HAMMER_INODE_DONDISK));
777 		record = hammer_alloc_mem_record(dip, 0);
778 		record->type = HAMMER_MEM_RECORD_DEL;
779 		record->leaf.base = cursor->leaf->base;
780 
781 		/*
782 		 * ip may be NULL, indicating the deletion of a directory
783 		 * entry which has no related inode.
784 		 */
785 		record->target_ip = ip;
786 		if (ip) {
787 			record->flush_state = HAMMER_FST_SETUP;
788 			TAILQ_INSERT_TAIL(&ip->target_list, record,
789 					  target_entry);
790 		} else {
791 			record->flush_state = HAMMER_FST_IDLE;
792 		}
793 
794 		/*
795 		 * The inode now has a dependancy and must be taken out of
796 		 * the idle state.  An inode not in an idle state is given
797 		 * an extra reference.
798 		 *
799 		 * When transitioning to a SETUP state flag for an automatic
800 		 * reflush when the dependancies are disposed of if someone
801 		 * is waiting on the inode.
802 		 */
803 		if (ip && ip->flush_state == HAMMER_FST_IDLE) {
804 			hammer_ref(&ip->lock);
805 			ip->flush_state = HAMMER_FST_SETUP;
806 			if (ip->flags & HAMMER_INODE_FLUSHW)
807 				ip->flags |= HAMMER_INODE_REFLUSH;
808 		}
809 
810 		error = hammer_mem_add(record);
811 	}
812 
813 	/*
814 	 * One less link.  The file may still be open in the OS even after
815 	 * all links have gone away.
816 	 *
817 	 * We have to terminate the cursor before syncing the inode to
818 	 * avoid deadlocking against ourselves.  XXX this may no longer
819 	 * be true.
820 	 *
821 	 * If nlinks drops to zero and the vnode is inactive (or there is
822 	 * no vnode), call hammer_inode_unloadable_check() to zonk the
823 	 * inode.  If we don't do this here the inode will not be destroyed
824 	 * on-media until we unmount.
825 	 */
826 	if (error == 0) {
827 		if (ip) {
828 			--ip->ino_data.nlinks;	/* do before we might block */
829 			ip->ino_data.ctime = trans->time;
830 		}
831 		dip->ino_data.mtime = trans->time;
832 		hammer_modify_inode(dip, HAMMER_INODE_MTIME);
833 		if (ip) {
834 			hammer_modify_inode(ip, HAMMER_INODE_DDIRTY);
835 			if (ip->ino_data.nlinks == 0 &&
836 			    (ip->vp == NULL || (ip->vp->v_flag & VINACTIVE))) {
837 				hammer_done_cursor(cursor);
838 				hammer_inode_unloadable_check(ip, 1);
839 				hammer_flush_inode(ip, 0);
840 			}
841 		}
842 
843 	}
844 	return(error);
845 }
846 
847 /*
848  * Add a record to an inode.
849  *
850  * The caller must allocate the record with hammer_alloc_mem_record(ip) and
851  * initialize the following additional fields:
852  *
853  * The related inode should be share-locked by the caller.  The caller is
854  * on the frontend.
855  *
856  * record->rec.entry.base.base.key
857  * record->rec.entry.base.base.rec_type
858  * record->rec.entry.base.base.data_len
859  * record->data		(a copy will be kmalloc'd if it cannot be embedded)
860  */
861 int
862 hammer_ip_add_record(struct hammer_transaction *trans, hammer_record_t record)
863 {
864 	hammer_inode_t ip = record->ip;
865 	int error;
866 
867 	KKASSERT(record->leaf.base.localization != 0);
868 	record->leaf.base.obj_id = ip->obj_id;
869 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
870 	error = hammer_mem_add(record);
871 	return(error);
872 }
873 
874 /*
875  * Locate a bulk record in-memory.  Bulk records allow disk space to be
876  * reserved so the front-end can flush large data writes without having
877  * to queue the BIO to the flusher.  Only the related record gets queued
878  * to the flusher.
879  */
880 
881 static hammer_record_t
882 hammer_ip_get_bulk(hammer_inode_t ip, off_t file_offset, int bytes)
883 {
884 	struct hammer_bulk_info info;
885 
886 	bzero(&info, sizeof(info));
887 	info.leaf.base.obj_id = ip->obj_id;
888 	info.leaf.base.key = file_offset + bytes;
889 	info.leaf.base.create_tid = 0;
890 	info.leaf.base.delete_tid = 0;
891 	info.leaf.base.rec_type = HAMMER_RECTYPE_DATA;
892 	info.leaf.base.obj_type = 0;				/* unused */
893 	info.leaf.base.btype = HAMMER_BTREE_TYPE_RECORD;	/* unused */
894 	info.leaf.base.localization = ip->obj_localization +	/* unused */
895 				      HAMMER_LOCALIZE_MISC;
896 	info.leaf.data_len = bytes;
897 
898 	hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_overlap_cmp,
899 				   hammer_bulk_scan_callback, &info);
900 
901 	return(info.record);	/* may be NULL */
902 }
903 
904 /*
905  * Take records vetted by overlap_cmp.  The first non-deleted record
906  * (if any) stops the scan.
907  */
908 static int
909 hammer_bulk_scan_callback(hammer_record_t record, void *data)
910 {
911 	struct hammer_bulk_info *info = data;
912 
913 	if (record->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE |
914 			     HAMMER_RECF_COMMITTED)) {
915 		return(0);
916 	}
917 	hammer_ref(&record->lock);
918 	info->record = record;
919 	return(-1);			/* stop scan */
920 }
921 
922 /*
923  * Reserve blockmap space placemarked with an in-memory record.
924  *
925  * This routine is called by the frontend in order to be able to directly
926  * flush a buffer cache buffer.  The frontend has locked the related buffer
927  * cache buffers and we should be able to manipulate any overlapping
928  * in-memory records.
929  *
930  * The caller is responsible for adding the returned record.
931  */
932 hammer_record_t
933 hammer_ip_add_bulk(hammer_inode_t ip, off_t file_offset, void *data, int bytes,
934 		   int *errorp)
935 {
936 	hammer_record_t record;
937 	hammer_record_t conflict;
938 	int zone;
939 
940 	/*
941 	 * Deal with conflicting in-memory records.  We cannot have multiple
942 	 * in-memory records for the same base offset without seriously
943 	 * confusing the backend, including but not limited to the backend
944 	 * issuing delete-create-delete or create-delete-create sequences
945 	 * and asserting on the delete_tid being the same as the create_tid.
946 	 *
947 	 * If we encounter a record with the backend interlock set we cannot
948 	 * immediately delete it without confusing the backend.
949 	 */
950 	while ((conflict = hammer_ip_get_bulk(ip, file_offset, bytes)) !=NULL) {
951 		if (conflict->flags & HAMMER_RECF_INTERLOCK_BE) {
952 			conflict->flags |= HAMMER_RECF_WANTED;
953 			tsleep(conflict, 0, "hmrrc3", 0);
954 		} else {
955 			conflict->flags |= HAMMER_RECF_DELETED_FE;
956 		}
957 		hammer_rel_mem_record(conflict);
958 	}
959 
960 	/*
961 	 * Create a record to cover the direct write.  This is called with
962 	 * the related BIO locked so there should be no possible conflict.
963 	 *
964 	 * The backend is responsible for finalizing the space reserved in
965 	 * this record.
966 	 *
967 	 * XXX bytes not aligned, depend on the reservation code to
968 	 * align the reservation.
969 	 */
970 	record = hammer_alloc_mem_record(ip, 0);
971 	zone = (bytes >= HAMMER_BUFSIZE) ? HAMMER_ZONE_LARGE_DATA_INDEX :
972 					   HAMMER_ZONE_SMALL_DATA_INDEX;
973 	record->resv = hammer_blockmap_reserve(ip->hmp, zone, bytes,
974 					       &record->leaf.data_offset,
975 					       errorp);
976 	if (record->resv == NULL) {
977 		kprintf("hammer_ip_add_bulk: reservation failed\n");
978 		hammer_rel_mem_record(record);
979 		return(NULL);
980 	}
981 	record->type = HAMMER_MEM_RECORD_DATA;
982 	record->leaf.base.rec_type = HAMMER_RECTYPE_DATA;
983 	record->leaf.base.obj_type = ip->ino_leaf.base.obj_type;
984 	record->leaf.base.obj_id = ip->obj_id;
985 	record->leaf.base.key = file_offset + bytes;
986 	record->leaf.base.localization = ip->obj_localization +
987 					 HAMMER_LOCALIZE_MISC;
988 	record->leaf.data_len = bytes;
989 	hammer_crc_set_leaf(data, &record->leaf);
990 	KKASSERT(*errorp == 0);
991 	return(record);
992 }
993 
994 /*
995  * Frontend truncation code.  Scan in-memory records only.  On-disk records
996  * and records in a flushing state are handled by the backend.  The vnops
997  * setattr code will handle the block containing the truncation point.
998  *
999  * Partial blocks are not deleted.
1000  */
1001 int
1002 hammer_ip_frontend_trunc(struct hammer_inode *ip, off_t file_size)
1003 {
1004 	struct rec_trunc_info info;
1005 
1006 	switch(ip->ino_data.obj_type) {
1007 	case HAMMER_OBJTYPE_REGFILE:
1008 		info.rec_type = HAMMER_RECTYPE_DATA;
1009 		break;
1010 	case HAMMER_OBJTYPE_DBFILE:
1011 		info.rec_type = HAMMER_RECTYPE_DB;
1012 		break;
1013 	default:
1014 		return(EINVAL);
1015 	}
1016 	info.trunc_off = file_size;
1017 	hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_trunc_cmp,
1018 				   hammer_frontend_trunc_callback, &info);
1019 	return(0);
1020 }
1021 
1022 static int
1023 hammer_frontend_trunc_callback(hammer_record_t record, void *data __unused)
1024 {
1025 	if (record->flags & HAMMER_RECF_DELETED_FE)
1026 		return(0);
1027 	if (record->flush_state == HAMMER_FST_FLUSH)
1028 		return(0);
1029 	KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0);
1030 	hammer_ref(&record->lock);
1031 	record->flags |= HAMMER_RECF_DELETED_FE;
1032 	hammer_rel_mem_record(record);
1033 	return(0);
1034 }
1035 
1036 /*
1037  * Return 1 if the caller must check for and delete existing records
1038  * before writing out a new data record.
1039  *
1040  * Return 0 if the caller can just insert the record into the B-Tree without
1041  * checking.
1042  */
1043 static int
1044 hammer_record_needs_overwrite_delete(hammer_record_t record)
1045 {
1046 	hammer_inode_t ip = record->ip;
1047 	int64_t file_offset;
1048 	int r;
1049 
1050 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE)
1051 		file_offset = record->leaf.base.key;
1052 	else
1053 		file_offset = record->leaf.base.key - record->leaf.data_len;
1054 	r = (file_offset < ip->save_trunc_off);
1055 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1056 		if (ip->save_trunc_off <= record->leaf.base.key)
1057 			ip->save_trunc_off = record->leaf.base.key + 1;
1058 	} else {
1059 		if (ip->save_trunc_off < record->leaf.base.key)
1060 			ip->save_trunc_off = record->leaf.base.key;
1061 	}
1062 	return(r);
1063 }
1064 
1065 /*
1066  * Backend code.  Sync a record to the media.
1067  */
1068 int
1069 hammer_ip_sync_record_cursor(hammer_cursor_t cursor, hammer_record_t record)
1070 {
1071 	hammer_transaction_t trans = cursor->trans;
1072 	int64_t file_offset;
1073 	int bytes;
1074 	void *bdata;
1075 	int error;
1076 	int doprop;
1077 
1078 	KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1079 	KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE);
1080 	KKASSERT(record->leaf.base.localization != 0);
1081 
1082 	/*
1083 	 * Any direct-write related to the record must complete before we
1084 	 * can sync the record to the on-disk media.
1085 	 */
1086 	if (record->flags & (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL))
1087 		hammer_io_direct_wait(record);
1088 
1089 	/*
1090 	 * If this is a bulk-data record placemarker there may be an existing
1091 	 * record on-disk, indicating a data overwrite.  If there is the
1092 	 * on-disk record must be deleted before we can insert our new record.
1093 	 *
1094 	 * We've synthesized this record and do not know what the create_tid
1095 	 * on-disk is, nor how much data it represents.
1096 	 *
1097 	 * Keep in mind that (key) for data records is (base_offset + len),
1098 	 * not (base_offset).  Also, we only want to get rid of on-disk
1099 	 * records since we are trying to sync our in-memory record, call
1100 	 * hammer_ip_delete_range() with truncating set to 1 to make sure
1101 	 * it skips in-memory records.
1102 	 *
1103 	 * It is ok for the lookup to return ENOENT.
1104 	 *
1105 	 * NOTE OPTIMIZATION: sync_trunc_off is used to determine if we have
1106 	 * to call hammer_ip_delete_range() or not.  This also means we must
1107 	 * update sync_trunc_off() as we write.
1108 	 */
1109 	if (record->type == HAMMER_MEM_RECORD_DATA &&
1110 	    hammer_record_needs_overwrite_delete(record)) {
1111 		file_offset = record->leaf.base.key - record->leaf.data_len;
1112 		bytes = (record->leaf.data_len + HAMMER_BUFMASK) &
1113 			~HAMMER_BUFMASK;
1114 		KKASSERT((file_offset & HAMMER_BUFMASK) == 0);
1115 		error = hammer_ip_delete_range(
1116 				cursor, record->ip,
1117 				file_offset, file_offset + bytes - 1,
1118 				1);
1119 		if (error && error != ENOENT)
1120 			goto done;
1121 	}
1122 
1123 	/*
1124 	 * If this is a general record there may be an on-disk version
1125 	 * that must be deleted before we can insert the new record.
1126 	 */
1127 	if (record->type == HAMMER_MEM_RECORD_GENERAL) {
1128 		error = hammer_delete_general(cursor, record->ip,
1129 					      &record->leaf);
1130 		if (error && error != ENOENT)
1131 			goto done;
1132 	}
1133 
1134 	/*
1135 	 * Setup the cursor.
1136 	 */
1137 	hammer_normalize_cursor(cursor);
1138 	cursor->key_beg = record->leaf.base;
1139 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1140 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1141 	cursor->flags &= ~HAMMER_CURSOR_INSERT;
1142 
1143 	/*
1144 	 * Records can wind up on-media before the inode itself is on-media.
1145 	 * Flag the case.
1146 	 */
1147 	record->ip->flags |= HAMMER_INODE_DONDISK;
1148 
1149 	/*
1150 	 * If we are deleting a directory entry an exact match must be
1151 	 * found on-disk.
1152 	 */
1153 	if (record->type == HAMMER_MEM_RECORD_DEL) {
1154 		error = hammer_btree_lookup(cursor);
1155 		if (error == 0) {
1156 			KKASSERT(cursor->iprec == NULL);
1157 			error = hammer_ip_delete_record(cursor, record->ip,
1158 							trans->tid);
1159 			if (error == 0) {
1160 				record->flags |= HAMMER_RECF_DELETED_BE |
1161 						 HAMMER_RECF_COMMITTED;
1162 				++record->ip->rec_generation;
1163 			}
1164 		}
1165 		goto done;
1166 	}
1167 
1168 	/*
1169 	 * We are inserting.
1170 	 *
1171 	 * Issue a lookup to position the cursor and locate the insertion
1172 	 * point.  The target key should not exist.  If we are creating a
1173 	 * directory entry we may have to iterate the low 32 bits of the
1174 	 * key to find an unused key.
1175 	 */
1176 	hammer_sync_lock_sh(trans);
1177 	cursor->flags |= HAMMER_CURSOR_INSERT;
1178 	error = hammer_btree_lookup(cursor);
1179 	if (hammer_debug_inode)
1180 		kprintf("DOINSERT LOOKUP %d\n", error);
1181 	if (error == 0) {
1182 		kprintf("hammer_ip_sync_record: duplicate rec "
1183 			"at (%016llx)\n", (long long)record->leaf.base.key);
1184 		Debugger("duplicate record1");
1185 		error = EIO;
1186 	}
1187 #if 0
1188 	if (record->type == HAMMER_MEM_RECORD_DATA)
1189 		kprintf("sync_record  %016llx ---------------- %016llx %d\n",
1190 			record->leaf.base.key - record->leaf.data_len,
1191 			record->leaf.data_offset, error);
1192 #endif
1193 
1194 	if (error != ENOENT)
1195 		goto done_unlock;
1196 
1197 	/*
1198 	 * Allocate the record and data.  The result buffers will be
1199 	 * marked as being modified and further calls to
1200 	 * hammer_modify_buffer() will result in unneeded UNDO records.
1201 	 *
1202 	 * Support zero-fill records (data == NULL and data_len != 0)
1203 	 */
1204 	if (record->type == HAMMER_MEM_RECORD_DATA) {
1205 		/*
1206 		 * The data portion of a bulk-data record has already been
1207 		 * committed to disk, we need only adjust the layer2
1208 		 * statistics in the same transaction as our B-Tree insert.
1209 		 */
1210 		KKASSERT(record->leaf.data_offset != 0);
1211 		error = hammer_blockmap_finalize(trans,
1212 						 record->resv,
1213 						 record->leaf.data_offset,
1214 						 record->leaf.data_len);
1215 	} else if (record->data && record->leaf.data_len) {
1216 		/*
1217 		 * Wholely cached record, with data.  Allocate the data.
1218 		 */
1219 		bdata = hammer_alloc_data(trans, record->leaf.data_len,
1220 					  record->leaf.base.rec_type,
1221 					  &record->leaf.data_offset,
1222 					  &cursor->data_buffer,
1223 					  0, &error);
1224 		if (bdata == NULL)
1225 			goto done_unlock;
1226 		hammer_crc_set_leaf(record->data, &record->leaf);
1227 		hammer_modify_buffer(trans, cursor->data_buffer, NULL, 0);
1228 		bcopy(record->data, bdata, record->leaf.data_len);
1229 		hammer_modify_buffer_done(cursor->data_buffer);
1230 	} else {
1231 		/*
1232 		 * Wholely cached record, without data.
1233 		 */
1234 		record->leaf.data_offset = 0;
1235 		record->leaf.data_crc = 0;
1236 	}
1237 
1238 	error = hammer_btree_insert(cursor, &record->leaf, &doprop);
1239 	if (hammer_debug_inode && error) {
1240 		kprintf("BTREE INSERT error %d @ %016llx:%d key %016llx\n",
1241 			error,
1242 			(long long)cursor->node->node_offset,
1243 			cursor->index,
1244 			(long long)record->leaf.base.key);
1245 	}
1246 
1247 	/*
1248 	 * Our record is on-disk and we normally mark the in-memory version
1249 	 * as having been committed (and not BE-deleted).
1250 	 *
1251 	 * If the record represented a directory deletion but we had to
1252 	 * sync a valid directory entry to disk due to dependancies,
1253 	 * we must convert the record to a covering delete so the
1254 	 * frontend does not have visibility on the synced entry.
1255 	 */
1256 	if (error == 0) {
1257 		if (doprop) {
1258 			hammer_btree_do_propagation(cursor,
1259 						    record->ip->pfsm,
1260 						    &record->leaf);
1261 		}
1262 		if (record->flags & HAMMER_RECF_CONVERT_DELETE) {
1263 			/*
1264 			 * Must convert deleted directory entry add
1265 			 * to a directory entry delete.
1266 			 */
1267 			KKASSERT(record->type == HAMMER_MEM_RECORD_ADD);
1268 			record->flags &= ~HAMMER_RECF_DELETED_FE;
1269 			record->type = HAMMER_MEM_RECORD_DEL;
1270 			KKASSERT(record->flush_state == HAMMER_FST_FLUSH);
1271 			record->flags &= ~HAMMER_RECF_CONVERT_DELETE;
1272 			KKASSERT((record->flags & (HAMMER_RECF_COMMITTED |
1273 						 HAMMER_RECF_DELETED_BE)) == 0);
1274 			/* converted record is not yet committed */
1275 			/* hammer_flush_record_done takes care of the rest */
1276 		} else {
1277 			/*
1278 			 * Everything went fine and we are now done with
1279 			 * this record.
1280 			 */
1281 			record->flags |= HAMMER_RECF_COMMITTED;
1282 			++record->ip->rec_generation;
1283 		}
1284 	} else {
1285 		if (record->leaf.data_offset) {
1286 			hammer_blockmap_free(trans, record->leaf.data_offset,
1287 					     record->leaf.data_len);
1288 		}
1289 	}
1290 done_unlock:
1291 	hammer_sync_unlock(trans);
1292 done:
1293 	return(error);
1294 }
1295 
1296 /*
1297  * Add the record to the inode's rec_tree.  The low 32 bits of a directory
1298  * entry's key is used to deal with hash collisions in the upper 32 bits.
1299  * A unique 64 bit key is generated in-memory and may be regenerated a
1300  * second time when the directory record is flushed to the on-disk B-Tree.
1301  *
1302  * A referenced record is passed to this function.  This function
1303  * eats the reference.  If an error occurs the record will be deleted.
1304  *
1305  * A copy of the temporary record->data pointer provided by the caller
1306  * will be made.
1307  */
1308 int
1309 hammer_mem_add(hammer_record_t record)
1310 {
1311 	hammer_mount_t hmp = record->ip->hmp;
1312 
1313 	/*
1314 	 * Make a private copy of record->data
1315 	 */
1316 	if (record->data)
1317 		KKASSERT(record->flags & HAMMER_RECF_ALLOCDATA);
1318 
1319 	/*
1320 	 * Insert into the RB tree.  A unique key should have already
1321 	 * been selected if this is a directory entry.
1322 	 */
1323 	if (RB_INSERT(hammer_rec_rb_tree, &record->ip->rec_tree, record)) {
1324 		record->flags |= HAMMER_RECF_DELETED_FE;
1325 		hammer_rel_mem_record(record);
1326 		return (EEXIST);
1327 	}
1328 	++hmp->count_newrecords;
1329 	++hmp->rsv_recs;
1330 	++record->ip->rsv_recs;
1331 	record->ip->hmp->rsv_databytes += record->leaf.data_len;
1332 	record->flags |= HAMMER_RECF_ONRBTREE;
1333 	hammer_modify_inode(record->ip, HAMMER_INODE_XDIRTY);
1334 	hammer_rel_mem_record(record);
1335 	return(0);
1336 }
1337 
1338 /************************************************************************
1339  *		     HAMMER INODE MERGED-RECORD FUNCTIONS		*
1340  ************************************************************************
1341  *
1342  * These functions augment the B-Tree scanning functions in hammer_btree.c
1343  * by merging in-memory records with on-disk records.
1344  */
1345 
1346 /*
1347  * Locate a particular record either in-memory or on-disk.
1348  *
1349  * NOTE: This is basically a standalone routine, hammer_ip_next() may
1350  * NOT be called to iterate results.
1351  */
1352 int
1353 hammer_ip_lookup(hammer_cursor_t cursor)
1354 {
1355 	int error;
1356 
1357 	/*
1358 	 * If the element is in-memory return it without searching the
1359 	 * on-disk B-Tree
1360 	 */
1361 	KKASSERT(cursor->ip);
1362 	error = hammer_mem_lookup(cursor);
1363 	if (error == 0) {
1364 		cursor->leaf = &cursor->iprec->leaf;
1365 		return(error);
1366 	}
1367 	if (error != ENOENT)
1368 		return(error);
1369 
1370 	/*
1371 	 * If the inode has on-disk components search the on-disk B-Tree.
1372 	 */
1373 	if ((cursor->ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) == 0)
1374 		return(error);
1375 	error = hammer_btree_lookup(cursor);
1376 	if (error == 0)
1377 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1378 	return(error);
1379 }
1380 
1381 /*
1382  * Helper for hammer_ip_first()/hammer_ip_next()
1383  *
1384  * NOTE: Both ATEDISK and DISKEOF will be set the same.  This sets up
1385  * hammer_ip_first() for calling hammer_ip_next(), and sets up the re-seek
1386  * state if hammer_ip_next() needs to re-seek.
1387  */
1388 static __inline
1389 int
1390 _hammer_ip_seek_btree(hammer_cursor_t cursor)
1391 {
1392 	hammer_inode_t ip = cursor->ip;
1393 	int error;
1394 
1395 	if (ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) {
1396 		error = hammer_btree_lookup(cursor);
1397 		if (error == ENOENT || error == EDEADLK) {
1398 			if (hammer_debug_general & 0x2000) {
1399 				kprintf("error %d node %p %016llx index %d\n",
1400 					error, cursor->node,
1401 					(long long)cursor->node->node_offset,
1402 					cursor->index);
1403 			}
1404 			cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1405 			error = hammer_btree_iterate(cursor);
1406 		}
1407 		if (error == 0) {
1408 			cursor->flags &= ~(HAMMER_CURSOR_DISKEOF |
1409 					   HAMMER_CURSOR_ATEDISK);
1410 		} else {
1411 			cursor->flags |= HAMMER_CURSOR_DISKEOF |
1412 					 HAMMER_CURSOR_ATEDISK;
1413 			if (error == ENOENT)
1414 				error = 0;
1415 		}
1416 	} else {
1417 		cursor->flags |= HAMMER_CURSOR_DISKEOF | HAMMER_CURSOR_ATEDISK;
1418 		error = 0;
1419 	}
1420 	return(error);
1421 }
1422 
1423 /*
1424  * Helper for hammer_ip_next()
1425  *
1426  * The caller has determined that the media cursor is further along than the
1427  * memory cursor and must be reseeked after a generation number change.
1428  */
1429 static
1430 int
1431 _hammer_ip_reseek(hammer_cursor_t cursor)
1432 {
1433 	struct hammer_base_elm save;
1434 	hammer_btree_elm_t elm;
1435 	int error;
1436 	int r;
1437 	int again = 0;
1438 
1439 	/*
1440 	 * Do the re-seek.
1441 	 */
1442 	kprintf("HAMMER: Debug: re-seeked during scan @ino=%016llx\n",
1443 		(long long)cursor->ip->obj_id);
1444 	save = cursor->key_beg;
1445 	cursor->key_beg = cursor->iprec->leaf.base;
1446 	error = _hammer_ip_seek_btree(cursor);
1447 	KKASSERT(error == 0);
1448 	cursor->key_beg = save;
1449 
1450 	/*
1451 	 * If the memory record was previous returned to
1452 	 * the caller and the media record matches
1453 	 * (-1/+1: only create_tid differs), then iterate
1454 	 * the media record to avoid a double result.
1455 	 */
1456 	if ((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0 &&
1457 	    (cursor->flags & HAMMER_CURSOR_LASTWASMEM)) {
1458 		elm = &cursor->node->ondisk->elms[cursor->index];
1459 		r = hammer_btree_cmp(&elm->base,
1460 				     &cursor->iprec->leaf.base);
1461 		if (cursor->flags & HAMMER_CURSOR_ASOF) {
1462 			if (r >= -1 && r <= 1) {
1463 				kprintf("HAMMER: Debug: iterated after "
1464 					"re-seek (asof r=%d)\n", r);
1465 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
1466 				again = 1;
1467 			}
1468 		} else {
1469 			if (r == 0) {
1470 				kprintf("HAMMER: Debug: iterated after "
1471 					"re-seek\n");
1472 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
1473 				again = 1;
1474 			}
1475 		}
1476 	}
1477 	return(again);
1478 }
1479 
1480 /*
1481  * Locate the first record within the cursor's key_beg/key_end range,
1482  * restricted to a particular inode.  0 is returned on success, ENOENT
1483  * if no records matched the requested range, or some other error.
1484  *
1485  * When 0 is returned hammer_ip_next() may be used to iterate additional
1486  * records within the requested range.
1487  *
1488  * This function can return EDEADLK, requiring the caller to terminate
1489  * the cursor and try again.
1490  */
1491 
1492 int
1493 hammer_ip_first(hammer_cursor_t cursor)
1494 {
1495 	hammer_inode_t ip = cursor->ip;
1496 	int error;
1497 
1498 	KKASSERT(ip != NULL);
1499 
1500 	/*
1501 	 * Clean up fields and setup for merged scan
1502 	 */
1503 	cursor->flags &= ~HAMMER_CURSOR_RETEST;
1504 
1505 	/*
1506 	 * Search the in-memory record list (Red-Black tree).  Unlike the
1507 	 * B-Tree search, mem_first checks for records in the range.
1508 	 *
1509 	 * This function will setup both ATEMEM and MEMEOF properly for
1510 	 * the ip iteration.  ATEMEM will be set if MEMEOF is set.
1511 	 */
1512 	hammer_mem_first(cursor);
1513 
1514 	/*
1515 	 * Detect generation changes during blockages, including
1516 	 * blockages which occur on the initial btree search.
1517 	 */
1518 	cursor->rec_generation = cursor->ip->rec_generation;
1519 
1520 	/*
1521 	 * Initial search and result
1522 	 */
1523 	error = _hammer_ip_seek_btree(cursor);
1524 	if (error == 0)
1525 		error = hammer_ip_next(cursor);
1526 
1527 	return (error);
1528 }
1529 
1530 /*
1531  * Retrieve the next record in a merged iteration within the bounds of the
1532  * cursor.  This call may be made multiple times after the cursor has been
1533  * initially searched with hammer_ip_first().
1534  *
1535  * There are numerous special cases in this code to deal with races between
1536  * in-memory records and on-media records.
1537  *
1538  * 0 is returned on success, ENOENT if no further records match the
1539  * requested range, or some other error code is returned.
1540  */
1541 int
1542 hammer_ip_next(hammer_cursor_t cursor)
1543 {
1544 	hammer_btree_elm_t elm;
1545 	hammer_record_t rec;
1546 	hammer_record_t tmprec;
1547 	int error;
1548 	int r;
1549 
1550 again:
1551 	/*
1552 	 * Get the next on-disk record
1553 	 *
1554 	 * NOTE: If we deleted the last on-disk record we had scanned
1555 	 * 	 ATEDISK will be clear and RETEST will be set, forcing
1556 	 *	 a call to iterate.  The fact that ATEDISK is clear causes
1557 	 *	 iterate to re-test the 'current' element.  If ATEDISK is
1558 	 *	 set, iterate will skip the 'current' element.
1559 	 */
1560 	error = 0;
1561 	if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
1562 		if (cursor->flags & (HAMMER_CURSOR_ATEDISK |
1563 				     HAMMER_CURSOR_RETEST)) {
1564 			error = hammer_btree_iterate(cursor);
1565 			cursor->flags &= ~HAMMER_CURSOR_RETEST;
1566 			if (error == 0) {
1567 				cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
1568 				hammer_cache_node(&cursor->ip->cache[1],
1569 						  cursor->node);
1570 			} else if (error == ENOENT) {
1571 				cursor->flags |= HAMMER_CURSOR_DISKEOF |
1572 						 HAMMER_CURSOR_ATEDISK;
1573 				error = 0;
1574 			}
1575 		}
1576 	}
1577 
1578 	/*
1579 	 * If the generation changed the backend has deleted or committed
1580 	 * one or more memory records since our last check.
1581 	 *
1582 	 * When this case occurs if the disk cursor is > current memory record
1583 	 * or the disk cursor is at EOF, we must re-seek the disk-cursor.
1584 	 * Since the cursor is ahead it must have not yet been eaten (if
1585 	 * not at eof anyway). (XXX data offset case?)
1586 	 *
1587 	 * NOTE: we are not doing a full check here.  That will be handled
1588 	 * later on.
1589 	 *
1590 	 * If we have exhausted all memory records we do not have to do any
1591 	 * further seeks.
1592 	 */
1593 	while (cursor->rec_generation != cursor->ip->rec_generation &&
1594 	       error == 0
1595 	) {
1596 		kprintf("HAMMER: Debug: generation changed during scan @ino=%016llx\n", (long long)cursor->ip->obj_id);
1597 		cursor->rec_generation = cursor->ip->rec_generation;
1598 		if (cursor->flags & HAMMER_CURSOR_MEMEOF)
1599 			break;
1600 		if (cursor->flags & HAMMER_CURSOR_DISKEOF) {
1601 			r = 1;
1602 		} else {
1603 			KKASSERT((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0);
1604 			elm = &cursor->node->ondisk->elms[cursor->index];
1605 			r = hammer_btree_cmp(&elm->base,
1606 					     &cursor->iprec->leaf.base);
1607 		}
1608 
1609 		/*
1610 		 * Do we re-seek the media cursor?
1611 		 */
1612 		if (r > 0) {
1613 			if (_hammer_ip_reseek(cursor))
1614 				goto again;
1615 		}
1616 	}
1617 
1618 	/*
1619 	 * We can now safely get the next in-memory record.  We cannot
1620 	 * block here.
1621 	 *
1622 	 * hammer_rec_scan_cmp:  Is the record still in our general range,
1623 	 *			 (non-inclusive of snapshot exclusions)?
1624 	 * hammer_rec_scan_callback: Is the record in our snapshot?
1625 	 */
1626 	tmprec = NULL;
1627 	if ((cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1628 		/*
1629 		 * If the current memory record was eaten then get the next
1630 		 * one.  Stale records are skipped.
1631 		 */
1632 		if (cursor->flags & HAMMER_CURSOR_ATEMEM) {
1633 			tmprec = cursor->iprec;
1634 			cursor->iprec = NULL;
1635 			rec = hammer_rec_rb_tree_RB_NEXT(tmprec);
1636 			while (rec) {
1637 				if (hammer_rec_scan_cmp(rec, cursor) != 0)
1638 					break;
1639 				if (hammer_rec_scan_callback(rec, cursor) != 0)
1640 					break;
1641 				rec = hammer_rec_rb_tree_RB_NEXT(rec);
1642 			}
1643 			if (cursor->iprec) {
1644 				KKASSERT(cursor->iprec == rec);
1645 				cursor->flags &= ~HAMMER_CURSOR_ATEMEM;
1646 			} else {
1647 				cursor->flags |= HAMMER_CURSOR_MEMEOF;
1648 			}
1649 			cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * MEMORY RECORD VALIDITY TEST
1655 	 *
1656 	 * (We still can't block, which is why tmprec is being held so
1657 	 * long).
1658 	 *
1659 	 * If the memory record is no longer valid we skip it.  It may
1660 	 * have been deleted by the frontend.  If it was deleted or
1661 	 * committed by the backend the generation change re-seeked the
1662 	 * disk cursor and the record will be present there.
1663 	 */
1664 	if (error == 0 && (cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) {
1665 		KKASSERT(cursor->iprec);
1666 		KKASSERT((cursor->flags & HAMMER_CURSOR_ATEMEM) == 0);
1667 		if (!hammer_ip_iterate_mem_good(cursor, cursor->iprec)) {
1668 			cursor->flags |= HAMMER_CURSOR_ATEMEM;
1669 			if (tmprec)
1670 				hammer_rel_mem_record(tmprec);
1671 			goto again;
1672 		}
1673 	}
1674 	if (tmprec)
1675 		hammer_rel_mem_record(tmprec);
1676 
1677 	/*
1678 	 * Extract either the disk or memory record depending on their
1679 	 * relative position.
1680 	 */
1681 	error = 0;
1682 	switch(cursor->flags & (HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM)) {
1683 	case 0:
1684 		/*
1685 		 * Both entries valid.   Compare the entries and nominally
1686 		 * return the first one in the sort order.  Numerous cases
1687 		 * require special attention, however.
1688 		 */
1689 		elm = &cursor->node->ondisk->elms[cursor->index];
1690 		r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base);
1691 
1692 		/*
1693 		 * If the two entries differ only by their key (-2/2) or
1694 		 * create_tid (-1/1), and are DATA records, we may have a
1695 		 * nominal match.  We have to calculate the base file
1696 		 * offset of the data.
1697 		 */
1698 		if (r <= 2 && r >= -2 && r != 0 &&
1699 		    cursor->ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE &&
1700 		    cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1701 			int64_t base1 = elm->leaf.base.key - elm->leaf.data_len;
1702 			int64_t base2 = cursor->iprec->leaf.base.key -
1703 					cursor->iprec->leaf.data_len;
1704 			if (base1 == base2)
1705 				r = 0;
1706 		}
1707 
1708 		if (r < 0) {
1709 			error = hammer_btree_extract(cursor,
1710 						     HAMMER_CURSOR_GET_LEAF);
1711 			cursor->flags |= HAMMER_CURSOR_ATEDISK;
1712 			cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1713 			break;
1714 		}
1715 
1716 		/*
1717 		 * If the entries match exactly the memory entry is either
1718 		 * an on-disk directory entry deletion or a bulk data
1719 		 * overwrite.  If it is a directory entry deletion we eat
1720 		 * both entries.
1721 		 *
1722 		 * For the bulk-data overwrite case it is possible to have
1723 		 * visibility into both, which simply means the syncer
1724 		 * hasn't gotten around to doing the delete+insert sequence
1725 		 * on the B-Tree.  Use the memory entry and throw away the
1726 		 * on-disk entry.
1727 		 *
1728 		 * If the in-memory record is not either of these we
1729 		 * probably caught the syncer while it was syncing it to
1730 		 * the media.  Since we hold a shared lock on the cursor,
1731 		 * the in-memory record had better be marked deleted at
1732 		 * this point.
1733 		 */
1734 		if (r == 0) {
1735 			if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL) {
1736 				if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1737 					cursor->flags |= HAMMER_CURSOR_ATEDISK;
1738 					cursor->flags |= HAMMER_CURSOR_ATEMEM;
1739 					goto again;
1740 				}
1741 			} else if (cursor->iprec->type == HAMMER_MEM_RECORD_DATA) {
1742 				if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1743 					cursor->flags |= HAMMER_CURSOR_ATEDISK;
1744 				}
1745 				/* fall through to memory entry */
1746 			} else {
1747 				panic("hammer_ip_next: duplicate mem/b-tree entry %p %d %08x", cursor->iprec, cursor->iprec->type, cursor->iprec->flags);
1748 				cursor->flags |= HAMMER_CURSOR_ATEMEM;
1749 				goto again;
1750 			}
1751 		}
1752 		/* fall through to the memory entry */
1753 	case HAMMER_CURSOR_ATEDISK:
1754 		/*
1755 		 * Only the memory entry is valid.
1756 		 */
1757 		cursor->leaf = &cursor->iprec->leaf;
1758 		cursor->flags |= HAMMER_CURSOR_ATEMEM;
1759 		cursor->flags |= HAMMER_CURSOR_LASTWASMEM;
1760 
1761 		/*
1762 		 * If the memory entry is an on-disk deletion we should have
1763 		 * also had found a B-Tree record.  If the backend beat us
1764 		 * to it it would have interlocked the cursor and we should
1765 		 * have seen the in-memory record marked DELETED_FE.
1766 		 */
1767 		if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL &&
1768 		    (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) {
1769 			panic("hammer_ip_next: del-on-disk with no b-tree entry iprec %p flags %08x", cursor->iprec, cursor->iprec->flags);
1770 		}
1771 		break;
1772 	case HAMMER_CURSOR_ATEMEM:
1773 		/*
1774 		 * Only the disk entry is valid
1775 		 */
1776 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
1777 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
1778 		cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1779 		break;
1780 	default:
1781 		/*
1782 		 * Neither entry is valid
1783 		 *
1784 		 * XXX error not set properly
1785 		 */
1786 		cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM;
1787 		cursor->leaf = NULL;
1788 		error = ENOENT;
1789 		break;
1790 	}
1791 	return(error);
1792 }
1793 
1794 /*
1795  * Resolve the cursor->data pointer for the current cursor position in
1796  * a merged iteration.
1797  */
1798 int
1799 hammer_ip_resolve_data(hammer_cursor_t cursor)
1800 {
1801 	hammer_record_t record;
1802 	int error;
1803 
1804 	if (hammer_cursor_inmem(cursor)) {
1805 		/*
1806 		 * The data associated with an in-memory record is usually
1807 		 * kmalloced, but reserve-ahead data records will have an
1808 		 * on-disk reference.
1809 		 *
1810 		 * NOTE: Reserve-ahead data records must be handled in the
1811 		 * context of the related high level buffer cache buffer
1812 		 * to interlock against async writes.
1813 		 */
1814 		record = cursor->iprec;
1815 		cursor->data = record->data;
1816 		error = 0;
1817 		if (cursor->data == NULL) {
1818 			KKASSERT(record->leaf.base.rec_type ==
1819 				 HAMMER_RECTYPE_DATA);
1820 			cursor->data = hammer_bread_ext(cursor->trans->hmp,
1821 						    record->leaf.data_offset,
1822 						    record->leaf.data_len,
1823 						    &error,
1824 						    &cursor->data_buffer);
1825 		}
1826 	} else {
1827 		cursor->leaf = &cursor->node->ondisk->elms[cursor->index].leaf;
1828 		error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_DATA);
1829 	}
1830 	return(error);
1831 }
1832 
1833 /*
1834  * Backend truncation / record replacement - delete records in range.
1835  *
1836  * Delete all records within the specified range for inode ip.  In-memory
1837  * records still associated with the frontend are ignored.
1838  *
1839  * If truncating is non-zero in-memory records associated with the back-end
1840  * are ignored.  If truncating is > 1 we can return EWOULDBLOCK.
1841  *
1842  * NOTES:
1843  *
1844  *	* An unaligned range will cause new records to be added to cover
1845  *        the edge cases. (XXX not implemented yet).
1846  *
1847  *	* Replacement via reservations (see hammer_ip_sync_record_cursor())
1848  *        also do not deal with unaligned ranges.
1849  *
1850  *	* ran_end is inclusive (e.g. 0,1023 instead of 0,1024).
1851  *
1852  *	* Record keys for regular file data have to be special-cased since
1853  * 	  they indicate the end of the range (key = base + bytes).
1854  *
1855  *	* This function may be asked to delete ridiculously huge ranges, for
1856  *	  example if someone truncates or removes a 1TB regular file.  We
1857  *	  must be very careful on restarts and we may have to stop w/
1858  *	  EWOULDBLOCK to avoid blowing out the buffer cache.
1859  */
1860 int
1861 hammer_ip_delete_range(hammer_cursor_t cursor, hammer_inode_t ip,
1862 		       int64_t ran_beg, int64_t ran_end, int truncating)
1863 {
1864 	hammer_transaction_t trans = cursor->trans;
1865 	hammer_btree_leaf_elm_t leaf;
1866 	int error;
1867 	int64_t off;
1868 	int64_t tmp64;
1869 
1870 #if 0
1871 	kprintf("delete_range %p %016llx-%016llx\n", ip, ran_beg, ran_end);
1872 #endif
1873 
1874 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
1875 retry:
1876 	hammer_normalize_cursor(cursor);
1877 	cursor->key_beg.localization = ip->obj_localization +
1878 				       HAMMER_LOCALIZE_MISC;
1879 	cursor->key_beg.obj_id = ip->obj_id;
1880 	cursor->key_beg.create_tid = 0;
1881 	cursor->key_beg.delete_tid = 0;
1882 	cursor->key_beg.obj_type = 0;
1883 
1884 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1885 		cursor->key_beg.key = ran_beg;
1886 		cursor->key_beg.rec_type = HAMMER_RECTYPE_DB;
1887 	} else {
1888 		/*
1889 		 * The key in the B-Tree is (base+bytes), so the first possible
1890 		 * matching key is ran_beg + 1.
1891 		 */
1892 		cursor->key_beg.key = ran_beg + 1;
1893 		cursor->key_beg.rec_type = HAMMER_RECTYPE_DATA;
1894 	}
1895 
1896 	cursor->key_end = cursor->key_beg;
1897 	if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) {
1898 		cursor->key_end.key = ran_end;
1899 	} else {
1900 		tmp64 = ran_end + MAXPHYS + 1;	/* work around GCC-4 bug */
1901 		if (tmp64 < ran_end)
1902 			cursor->key_end.key = 0x7FFFFFFFFFFFFFFFLL;
1903 		else
1904 			cursor->key_end.key = ran_end + MAXPHYS + 1;
1905 	}
1906 
1907 	cursor->asof = ip->obj_asof;
1908 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
1909 	cursor->flags |= HAMMER_CURSOR_ASOF;
1910 	cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
1911 	cursor->flags |= HAMMER_CURSOR_BACKEND;
1912 	cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE;
1913 
1914 	error = hammer_ip_first(cursor);
1915 
1916 	/*
1917 	 * Iterate through matching records and mark them as deleted.
1918 	 */
1919 	while (error == 0) {
1920 		leaf = cursor->leaf;
1921 
1922 		KKASSERT(leaf->base.delete_tid == 0);
1923 		KKASSERT(leaf->base.obj_id == ip->obj_id);
1924 
1925 		/*
1926 		 * There may be overlap cases for regular file data.  Also
1927 		 * remember the key for a regular file record is (base + len),
1928 		 * NOT (base).
1929 		 *
1930 		 * Note that do to duplicates (mem & media) allowed by
1931 		 * DELETE_VISIBILITY, off can wind up less then ran_beg.
1932 		 */
1933 		if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) {
1934 			off = leaf->base.key - leaf->data_len;
1935 			/*
1936 			 * Check the left edge case.  We currently do not
1937 			 * split existing records.
1938 			 */
1939 			if (off < ran_beg && leaf->base.key > ran_beg) {
1940 				panic("hammer left edge case %016llx %d\n",
1941 					(long long)leaf->base.key,
1942 					leaf->data_len);
1943 			}
1944 
1945 			/*
1946 			 * Check the right edge case.  Note that the
1947 			 * record can be completely out of bounds, which
1948 			 * terminates the search.
1949 			 *
1950 			 * base->key is exclusive of the right edge while
1951 			 * ran_end is inclusive of the right edge.  The
1952 			 * (key - data_len) left boundary is inclusive.
1953 			 *
1954 			 * XXX theory-check this test at some point, are
1955 			 * we missing a + 1 somewhere?  Note that ran_end
1956 			 * could overflow.
1957 			 */
1958 			if (leaf->base.key - 1 > ran_end) {
1959 				if (leaf->base.key - leaf->data_len > ran_end)
1960 					break;
1961 				panic("hammer right edge case\n");
1962 			}
1963 		} else {
1964 			off = leaf->base.key;
1965 		}
1966 
1967 		/*
1968 		 * Delete the record.  When truncating we do not delete
1969 		 * in-memory (data) records because they represent data
1970 		 * written after the truncation.
1971 		 *
1972 		 * This will also physically destroy the B-Tree entry and
1973 		 * data if the retention policy dictates.  The function
1974 		 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
1975 		 * to retest the new 'current' element.
1976 		 */
1977 		if (truncating == 0 || hammer_cursor_ondisk(cursor)) {
1978 			error = hammer_ip_delete_record(cursor, ip, trans->tid);
1979 			/*
1980 			 * If we have built up too many meta-buffers we risk
1981 			 * deadlocking the kernel and must stop.  This can
1982 			 * occur when deleting ridiculously huge files.
1983 			 * sync_trunc_off is updated so the next cycle does
1984 			 * not re-iterate records we have already deleted.
1985 			 *
1986 			 * This is only done with formal truncations.
1987 			 */
1988 			if (truncating > 1 && error == 0 &&
1989 			    hammer_flusher_meta_limit(ip->hmp)) {
1990 				ip->sync_trunc_off = off;
1991 				error = EWOULDBLOCK;
1992 			}
1993 		}
1994 		if (error)
1995 			break;
1996 		ran_beg = off;	/* for restart */
1997 		error = hammer_ip_next(cursor);
1998 	}
1999 	if (cursor->node)
2000 		hammer_cache_node(&ip->cache[1], cursor->node);
2001 
2002 	if (error == EDEADLK) {
2003 		hammer_done_cursor(cursor);
2004 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2005 		if (error == 0)
2006 			goto retry;
2007 	}
2008 	if (error == ENOENT)
2009 		error = 0;
2010 	return(error);
2011 }
2012 
2013 /*
2014  * This backend function deletes the specified record on-disk, similar to
2015  * delete_range but for a specific record.  Unlike the exact deletions
2016  * used when deleting a directory entry this function uses an ASOF search
2017  * like delete_range.
2018  *
2019  * This function may be called with ip->obj_asof set for a slave snapshot,
2020  * so don't use it.  We always delete non-historical records only.
2021  */
2022 static int
2023 hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip,
2024 		      hammer_btree_leaf_elm_t leaf)
2025 {
2026 	hammer_transaction_t trans = cursor->trans;
2027 	int error;
2028 
2029 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
2030 retry:
2031 	hammer_normalize_cursor(cursor);
2032 	cursor->key_beg = leaf->base;
2033 	cursor->asof = HAMMER_MAX_TID;
2034 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2035 	cursor->flags |= HAMMER_CURSOR_ASOF;
2036 	cursor->flags |= HAMMER_CURSOR_BACKEND;
2037 	cursor->flags &= ~HAMMER_CURSOR_INSERT;
2038 
2039 	error = hammer_btree_lookup(cursor);
2040 	if (error == 0) {
2041 		error = hammer_ip_delete_record(cursor, ip, trans->tid);
2042 	}
2043 	if (error == EDEADLK) {
2044 		hammer_done_cursor(cursor);
2045 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2046 		if (error == 0)
2047 			goto retry;
2048 	}
2049 	return(error);
2050 }
2051 
2052 /*
2053  * This function deletes remaining auxillary records when an inode is
2054  * being deleted.  This function explicitly does not delete the
2055  * inode record, directory entry, data, or db records.  Those must be
2056  * properly disposed of prior to this call.
2057  */
2058 int
2059 hammer_ip_delete_clean(hammer_cursor_t cursor, hammer_inode_t ip, int *countp)
2060 {
2061 	hammer_transaction_t trans = cursor->trans;
2062 	hammer_btree_leaf_elm_t leaf;
2063 	int error;
2064 
2065 	KKASSERT(trans->type == HAMMER_TRANS_FLS);
2066 retry:
2067 	hammer_normalize_cursor(cursor);
2068 	cursor->key_beg.localization = ip->obj_localization +
2069 				       HAMMER_LOCALIZE_MISC;
2070 	cursor->key_beg.obj_id = ip->obj_id;
2071 	cursor->key_beg.create_tid = 0;
2072 	cursor->key_beg.delete_tid = 0;
2073 	cursor->key_beg.obj_type = 0;
2074 	cursor->key_beg.rec_type = HAMMER_RECTYPE_CLEAN_START;
2075 	cursor->key_beg.key = HAMMER_MIN_KEY;
2076 
2077 	cursor->key_end = cursor->key_beg;
2078 	cursor->key_end.rec_type = HAMMER_RECTYPE_MAX;
2079 	cursor->key_end.key = HAMMER_MAX_KEY;
2080 
2081 	cursor->asof = ip->obj_asof;
2082 	cursor->flags &= ~HAMMER_CURSOR_INITMASK;
2083 	cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2084 	cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY;
2085 	cursor->flags |= HAMMER_CURSOR_BACKEND;
2086 
2087 	error = hammer_ip_first(cursor);
2088 
2089 	/*
2090 	 * Iterate through matching records and mark them as deleted.
2091 	 */
2092 	while (error == 0) {
2093 		leaf = cursor->leaf;
2094 
2095 		KKASSERT(leaf->base.delete_tid == 0);
2096 
2097 		/*
2098 		 * Mark the record and B-Tree entry as deleted.  This will
2099 		 * also physically delete the B-Tree entry, record, and
2100 		 * data if the retention policy dictates.  The function
2101 		 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next()
2102 		 * to retest the new 'current' element.
2103 		 *
2104 		 * Directory entries (and delete-on-disk directory entries)
2105 		 * must be synced and cannot be deleted.
2106 		 */
2107 		error = hammer_ip_delete_record(cursor, ip, trans->tid);
2108 		++*countp;
2109 		if (error)
2110 			break;
2111 		error = hammer_ip_next(cursor);
2112 	}
2113 	if (cursor->node)
2114 		hammer_cache_node(&ip->cache[1], cursor->node);
2115 	if (error == EDEADLK) {
2116 		hammer_done_cursor(cursor);
2117 		error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip);
2118 		if (error == 0)
2119 			goto retry;
2120 	}
2121 	if (error == ENOENT)
2122 		error = 0;
2123 	return(error);
2124 }
2125 
2126 /*
2127  * Delete the record at the current cursor.  On success the cursor will
2128  * be positioned appropriately for an iteration but may no longer be at
2129  * a leaf node.
2130  *
2131  * This routine is only called from the backend.
2132  *
2133  * NOTE: This can return EDEADLK, requiring the caller to terminate the
2134  * cursor and retry.
2135  */
2136 int
2137 hammer_ip_delete_record(hammer_cursor_t cursor, hammer_inode_t ip,
2138 			hammer_tid_t tid)
2139 {
2140 	hammer_record_t iprec;
2141 	hammer_mount_t hmp;
2142 	int error;
2143 
2144 	KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
2145 	KKASSERT(tid != 0);
2146 	hmp = cursor->node->hmp;
2147 
2148 	/*
2149 	 * In-memory (unsynchronized) records can simply be freed.  This
2150 	 * only occurs in range iterations since all other records are
2151 	 * individually synchronized.  Thus there should be no confusion with
2152 	 * the interlock.
2153 	 *
2154 	 * An in-memory record may be deleted before being committed to disk,
2155 	 * but could have been accessed in the mean time.  The reservation
2156 	 * code will deal with the case.
2157 	 */
2158 	if (hammer_cursor_inmem(cursor)) {
2159 		iprec = cursor->iprec;
2160 		KKASSERT((iprec->flags & HAMMER_RECF_INTERLOCK_BE) ==0);
2161 		iprec->flags |= HAMMER_RECF_DELETED_FE;
2162 		iprec->flags |= HAMMER_RECF_DELETED_BE;
2163 		KKASSERT(iprec->ip == ip);
2164 		++ip->rec_generation;
2165 		return(0);
2166 	}
2167 
2168 	/*
2169 	 * On-disk records are marked as deleted by updating their delete_tid.
2170 	 * This does not effect their position in the B-Tree (which is based
2171 	 * on their create_tid).
2172 	 *
2173 	 * Frontend B-Tree operations track inodes so we tell
2174 	 * hammer_delete_at_cursor() not to.
2175 	 */
2176 	error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF);
2177 
2178 	if (error == 0) {
2179 		error = hammer_delete_at_cursor(
2180 				cursor,
2181 				HAMMER_DELETE_ADJUST | hammer_nohistory(ip),
2182 				cursor->trans->tid,
2183 				cursor->trans->time32,
2184 				0, NULL);
2185 	}
2186 	return(error);
2187 }
2188 
2189 /*
2190  * Delete the B-Tree element at the current cursor and do any necessary
2191  * mirror propagation.
2192  *
2193  * The cursor must be properly positioned for an iteration on return but
2194  * may be pointing at an internal element.
2195  *
2196  * An element can be un-deleted by passing a delete_tid of 0 with
2197  * HAMMER_DELETE_ADJUST.
2198  */
2199 int
2200 hammer_delete_at_cursor(hammer_cursor_t cursor, int delete_flags,
2201 			hammer_tid_t delete_tid, u_int32_t delete_ts,
2202 			int track, int64_t *stat_bytes)
2203 {
2204 	struct hammer_btree_leaf_elm save_leaf;
2205 	hammer_transaction_t trans;
2206 	hammer_btree_leaf_elm_t leaf;
2207 	hammer_node_t node;
2208 	hammer_btree_elm_t elm;
2209 	hammer_off_t data_offset;
2210 	int32_t data_len;
2211 	u_int16_t rec_type;
2212 	int error;
2213 	int icount;
2214 	int doprop;
2215 
2216 	error = hammer_cursor_upgrade(cursor);
2217 	if (error)
2218 		return(error);
2219 
2220 	trans = cursor->trans;
2221 	node = cursor->node;
2222 	elm = &node->ondisk->elms[cursor->index];
2223 	leaf = &elm->leaf;
2224 	KKASSERT(elm->base.btype == HAMMER_BTREE_TYPE_RECORD);
2225 
2226 	hammer_sync_lock_sh(trans);
2227 	doprop = 0;
2228 	icount = 0;
2229 
2230 	/*
2231 	 * Adjust the delete_tid.  Update the mirror_tid propagation field
2232 	 * as well.  delete_tid can be 0 (undelete -- used by mirroring).
2233 	 */
2234 	if (delete_flags & HAMMER_DELETE_ADJUST) {
2235 		if (elm->base.rec_type == HAMMER_RECTYPE_INODE) {
2236 			if (elm->leaf.base.delete_tid == 0 && delete_tid)
2237 				icount = -1;
2238 			if (elm->leaf.base.delete_tid && delete_tid == 0)
2239 				icount = 1;
2240 		}
2241 
2242 		hammer_modify_node(trans, node, elm, sizeof(*elm));
2243 		elm->leaf.base.delete_tid = delete_tid;
2244 		elm->leaf.delete_ts = delete_ts;
2245 		hammer_modify_node_done(node);
2246 
2247 		if (elm->leaf.base.delete_tid > node->ondisk->mirror_tid) {
2248 			hammer_modify_node_field(trans, node, mirror_tid);
2249 			node->ondisk->mirror_tid = elm->leaf.base.delete_tid;
2250 			hammer_modify_node_done(node);
2251 			doprop = 1;
2252 			if (hammer_debug_general & 0x0002) {
2253 				kprintf("delete_at_cursor: propagate %016llx"
2254 					" @%016llx\n",
2255 					(long long)elm->leaf.base.delete_tid,
2256 					(long long)node->node_offset);
2257 			}
2258 		}
2259 
2260 		/*
2261 		 * Adjust for the iteration.  We have deleted the current
2262 		 * element and want to clear ATEDISK so the iteration does
2263 		 * not skip the element after, which now becomes the current
2264 		 * element.  This element must be re-tested if doing an
2265 		 * iteration, which is handled by the RETEST flag.
2266 		 */
2267 		if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2268 			cursor->flags |= HAMMER_CURSOR_RETEST;
2269 			cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2270 		}
2271 
2272 		/*
2273 		 * An on-disk record cannot have the same delete_tid
2274 		 * as its create_tid.  In a chain of record updates
2275 		 * this could result in a duplicate record.
2276 		 */
2277 		KKASSERT(elm->leaf.base.delete_tid !=
2278 			 elm->leaf.base.create_tid);
2279 	}
2280 
2281 	/*
2282 	 * Destroy the B-Tree element if asked (typically if a nohistory
2283 	 * file or mount, or when called by the pruning code).
2284 	 *
2285 	 * Adjust the ATEDISK flag to properly support iterations.
2286 	 */
2287 	if (delete_flags & HAMMER_DELETE_DESTROY) {
2288 		data_offset = elm->leaf.data_offset;
2289 		data_len = elm->leaf.data_len;
2290 		rec_type = elm->leaf.base.rec_type;
2291 		if (doprop) {
2292 			save_leaf = elm->leaf;
2293 			leaf = &save_leaf;
2294 		}
2295 		if (elm->base.rec_type == HAMMER_RECTYPE_INODE &&
2296 		    elm->leaf.base.delete_tid == 0) {
2297 			icount = -1;
2298 		}
2299 
2300 		error = hammer_btree_delete(cursor);
2301 		if (error == 0) {
2302 			/*
2303 			 * The deletion moves the next element (if any) to
2304 			 * the current element position.  We must clear
2305 			 * ATEDISK so this element is not skipped and we
2306 			 * must set RETEST to force any iteration to re-test
2307 			 * the element.
2308 			 */
2309 			if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) {
2310 				cursor->flags |= HAMMER_CURSOR_RETEST;
2311 				cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
2312 			}
2313 		}
2314 		if (error == 0) {
2315 			switch(data_offset & HAMMER_OFF_ZONE_MASK) {
2316 			case HAMMER_ZONE_LARGE_DATA:
2317 			case HAMMER_ZONE_SMALL_DATA:
2318 			case HAMMER_ZONE_META:
2319 				hammer_blockmap_free(trans,
2320 						     data_offset, data_len);
2321 				break;
2322 			default:
2323 				break;
2324 			}
2325 		}
2326 	}
2327 
2328 	/*
2329 	 * Track inode count and next_tid.  This is used by the mirroring
2330 	 * and PFS code.  icount can be negative, zero, or positive.
2331 	 */
2332 	if (error == 0 && track) {
2333 		if (icount) {
2334 			hammer_modify_volume_field(trans, trans->rootvol,
2335 						   vol0_stat_inodes);
2336 			trans->rootvol->ondisk->vol0_stat_inodes += icount;
2337 			hammer_modify_volume_done(trans->rootvol);
2338 		}
2339 		if (trans->rootvol->ondisk->vol0_next_tid < delete_tid) {
2340 			hammer_modify_volume(trans, trans->rootvol, NULL, 0);
2341 			trans->rootvol->ondisk->vol0_next_tid = delete_tid;
2342 			hammer_modify_volume_done(trans->rootvol);
2343 		}
2344 	}
2345 
2346 	/*
2347 	 * mirror_tid propagation occurs if the node's mirror_tid had to be
2348 	 * updated while adjusting the delete_tid.
2349 	 *
2350 	 * This occurs when deleting even in nohistory mode, but does not
2351 	 * occur when pruning an already-deleted node.
2352 	 *
2353 	 * cursor->ip is NULL when called from the pruning, mirroring,
2354 	 * and pfs code.  If non-NULL propagation will be conditionalized
2355 	 * on whether the PFS is in no-history mode or not.
2356 	 */
2357 	if (doprop) {
2358 		if (cursor->ip)
2359 			hammer_btree_do_propagation(cursor, cursor->ip->pfsm, leaf);
2360 		else
2361 			hammer_btree_do_propagation(cursor, NULL, leaf);
2362 	}
2363 	hammer_sync_unlock(trans);
2364 	return (error);
2365 }
2366 
2367 /*
2368  * Determine whether we can remove a directory.  This routine checks whether
2369  * a directory is empty or not and enforces flush connectivity.
2370  *
2371  * Flush connectivity requires that we block if the target directory is
2372  * currently flushing, otherwise it may not end up in the same flush group.
2373  *
2374  * Returns 0 on success, ENOTEMPTY or EDEADLK (or other errors) on failure.
2375  */
2376 int
2377 hammer_ip_check_directory_empty(hammer_transaction_t trans, hammer_inode_t ip)
2378 {
2379 	struct hammer_cursor cursor;
2380 	int error;
2381 
2382 	/*
2383 	 * Check directory empty
2384 	 */
2385 	hammer_init_cursor(trans, &cursor, &ip->cache[1], ip);
2386 
2387 	cursor.key_beg.localization = ip->obj_localization +
2388 				      hammer_dir_localization(ip);
2389 	cursor.key_beg.obj_id = ip->obj_id;
2390 	cursor.key_beg.create_tid = 0;
2391 	cursor.key_beg.delete_tid = 0;
2392 	cursor.key_beg.obj_type = 0;
2393 	cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE + 1;
2394 	cursor.key_beg.key = HAMMER_MIN_KEY;
2395 
2396 	cursor.key_end = cursor.key_beg;
2397 	cursor.key_end.rec_type = 0xFFFF;
2398 	cursor.key_end.key = HAMMER_MAX_KEY;
2399 
2400 	cursor.asof = ip->obj_asof;
2401 	cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF;
2402 
2403 	error = hammer_ip_first(&cursor);
2404 	if (error == ENOENT)
2405 		error = 0;
2406 	else if (error == 0)
2407 		error = ENOTEMPTY;
2408 	hammer_done_cursor(&cursor);
2409 	return(error);
2410 }
2411 
2412