1 /* 2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $DragonFly: src/sys/vfs/hammer/hammer_object.c,v 1.97 2008/09/23 22:28:56 dillon Exp $ 35 */ 36 37 #include "hammer.h" 38 39 static int hammer_mem_lookup(hammer_cursor_t cursor); 40 static void hammer_mem_first(hammer_cursor_t cursor); 41 static int hammer_frontend_trunc_callback(hammer_record_t record, 42 void *data __unused); 43 static int hammer_bulk_scan_callback(hammer_record_t record, void *data); 44 static int hammer_record_needs_overwrite_delete(hammer_record_t record); 45 static int hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip, 46 hammer_btree_leaf_elm_t leaf); 47 48 struct rec_trunc_info { 49 u_int16_t rec_type; 50 int64_t trunc_off; 51 }; 52 53 struct hammer_bulk_info { 54 hammer_record_t record; 55 struct hammer_btree_leaf_elm leaf; 56 }; 57 58 /* 59 * Red-black tree support. Comparison code for insertion. 60 */ 61 static int 62 hammer_rec_rb_compare(hammer_record_t rec1, hammer_record_t rec2) 63 { 64 if (rec1->leaf.base.rec_type < rec2->leaf.base.rec_type) 65 return(-1); 66 if (rec1->leaf.base.rec_type > rec2->leaf.base.rec_type) 67 return(1); 68 69 if (rec1->leaf.base.key < rec2->leaf.base.key) 70 return(-1); 71 if (rec1->leaf.base.key > rec2->leaf.base.key) 72 return(1); 73 74 /* 75 * For search & insertion purposes records deleted by the 76 * frontend or deleted/committed by the backend are silently 77 * ignored. Otherwise pipelined insertions will get messed 78 * up. 79 * 80 * rec1 is greater then rec2 if rec1 is marked deleted. 81 * rec1 is less then rec2 if rec2 is marked deleted. 82 * 83 * Multiple deleted records may be present, do not return 0 84 * if both are marked deleted. 85 */ 86 if (rec1->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE | 87 HAMMER_RECF_COMMITTED)) { 88 return(1); 89 } 90 if (rec2->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE | 91 HAMMER_RECF_COMMITTED)) { 92 return(-1); 93 } 94 95 return(0); 96 } 97 98 /* 99 * Basic record comparison code similar to hammer_btree_cmp(). 100 */ 101 static int 102 hammer_rec_cmp(hammer_base_elm_t elm, hammer_record_t rec) 103 { 104 if (elm->rec_type < rec->leaf.base.rec_type) 105 return(-3); 106 if (elm->rec_type > rec->leaf.base.rec_type) 107 return(3); 108 109 if (elm->key < rec->leaf.base.key) 110 return(-2); 111 if (elm->key > rec->leaf.base.key) 112 return(2); 113 114 /* 115 * Never match against an item deleted by the frontend 116 * or backend, or committed by the backend. 117 * 118 * elm is less then rec if rec is marked deleted. 119 */ 120 if (rec->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE | 121 HAMMER_RECF_COMMITTED)) { 122 return(-1); 123 } 124 return(0); 125 } 126 127 /* 128 * Ranged scan to locate overlapping record(s). This is used by 129 * hammer_ip_get_bulk() to locate an overlapping record. We have 130 * to use a ranged scan because the keys for data records with the 131 * same file base offset can be different due to differing data_len's. 132 * 133 * NOTE: The base file offset of a data record is (key - data_len), not (key). 134 */ 135 static int 136 hammer_rec_overlap_cmp(hammer_record_t rec, void *data) 137 { 138 struct hammer_bulk_info *info = data; 139 hammer_btree_leaf_elm_t leaf = &info->leaf; 140 141 if (rec->leaf.base.rec_type < leaf->base.rec_type) 142 return(-3); 143 if (rec->leaf.base.rec_type > leaf->base.rec_type) 144 return(3); 145 146 /* 147 * Overlap compare 148 */ 149 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) { 150 /* rec_beg >= leaf_end */ 151 if (rec->leaf.base.key - rec->leaf.data_len >= leaf->base.key) 152 return(2); 153 /* rec_end <= leaf_beg */ 154 if (rec->leaf.base.key <= leaf->base.key - leaf->data_len) 155 return(-2); 156 } else { 157 if (rec->leaf.base.key < leaf->base.key) 158 return(-2); 159 if (rec->leaf.base.key > leaf->base.key) 160 return(2); 161 } 162 163 /* 164 * We have to return 0 at this point, even if DELETED_FE is set, 165 * because returning anything else will cause the scan to ignore 166 * one of the branches when we really want it to check both. 167 */ 168 return(0); 169 } 170 171 /* 172 * RB_SCAN comparison code for hammer_mem_first(). The argument order 173 * is reversed so the comparison result has to be negated. key_beg and 174 * key_end are both range-inclusive. 175 * 176 * Localized deletions are not cached in-memory. 177 */ 178 static 179 int 180 hammer_rec_scan_cmp(hammer_record_t rec, void *data) 181 { 182 hammer_cursor_t cursor = data; 183 int r; 184 185 r = hammer_rec_cmp(&cursor->key_beg, rec); 186 if (r > 1) 187 return(-1); 188 r = hammer_rec_cmp(&cursor->key_end, rec); 189 if (r < -1) 190 return(1); 191 return(0); 192 } 193 194 /* 195 * This compare function is used when simply looking up key_beg. 196 */ 197 static 198 int 199 hammer_rec_find_cmp(hammer_record_t rec, void *data) 200 { 201 hammer_cursor_t cursor = data; 202 int r; 203 204 r = hammer_rec_cmp(&cursor->key_beg, rec); 205 if (r > 1) 206 return(-1); 207 if (r < -1) 208 return(1); 209 return(0); 210 } 211 212 /* 213 * Locate blocks within the truncation range. Partial blocks do not count. 214 */ 215 static 216 int 217 hammer_rec_trunc_cmp(hammer_record_t rec, void *data) 218 { 219 struct rec_trunc_info *info = data; 220 221 if (rec->leaf.base.rec_type < info->rec_type) 222 return(-1); 223 if (rec->leaf.base.rec_type > info->rec_type) 224 return(1); 225 226 switch(rec->leaf.base.rec_type) { 227 case HAMMER_RECTYPE_DB: 228 /* 229 * DB record key is not beyond the truncation point, retain. 230 */ 231 if (rec->leaf.base.key < info->trunc_off) 232 return(-1); 233 break; 234 case HAMMER_RECTYPE_DATA: 235 /* 236 * DATA record offset start is not beyond the truncation point, 237 * retain. 238 */ 239 if (rec->leaf.base.key - rec->leaf.data_len < info->trunc_off) 240 return(-1); 241 break; 242 default: 243 panic("hammer_rec_trunc_cmp: unexpected record type"); 244 } 245 246 /* 247 * The record start is >= the truncation point, return match, 248 * the record should be destroyed. 249 */ 250 return(0); 251 } 252 253 RB_GENERATE(hammer_rec_rb_tree, hammer_record, rb_node, hammer_rec_rb_compare); 254 255 /* 256 * Allocate a record for the caller to finish filling in. The record is 257 * returned referenced. 258 */ 259 hammer_record_t 260 hammer_alloc_mem_record(hammer_inode_t ip, int data_len) 261 { 262 hammer_record_t record; 263 hammer_mount_t hmp; 264 265 hmp = ip->hmp; 266 ++hammer_count_records; 267 record = kmalloc(sizeof(*record), hmp->m_misc, 268 M_WAITOK | M_ZERO | M_USE_RESERVE); 269 record->flush_state = HAMMER_FST_IDLE; 270 record->ip = ip; 271 record->leaf.base.btype = HAMMER_BTREE_TYPE_RECORD; 272 record->leaf.data_len = data_len; 273 hammer_ref(&record->lock); 274 275 if (data_len) { 276 record->data = kmalloc(data_len, hmp->m_misc, M_WAITOK | M_ZERO); 277 record->flags |= HAMMER_RECF_ALLOCDATA; 278 ++hammer_count_record_datas; 279 } 280 281 return (record); 282 } 283 284 void 285 hammer_wait_mem_record_ident(hammer_record_t record, const char *ident) 286 { 287 while (record->flush_state == HAMMER_FST_FLUSH) { 288 record->flags |= HAMMER_RECF_WANTED; 289 tsleep(record, 0, ident, 0); 290 } 291 } 292 293 /* 294 * Called from the backend, hammer_inode.c, after a record has been 295 * flushed to disk. The record has been exclusively locked by the 296 * caller and interlocked with BE. 297 * 298 * We clean up the state, unlock, and release the record (the record 299 * was referenced by the fact that it was in the HAMMER_FST_FLUSH state). 300 */ 301 void 302 hammer_flush_record_done(hammer_record_t record, int error) 303 { 304 hammer_inode_t target_ip; 305 306 KKASSERT(record->flush_state == HAMMER_FST_FLUSH); 307 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE); 308 309 /* 310 * If an error occured, the backend was unable to sync the 311 * record to its media. Leave the record intact. 312 */ 313 if (error) { 314 hammer_critical_error(record->ip->hmp, record->ip, error, 315 "while flushing record"); 316 } 317 318 --record->flush_group->refs; 319 record->flush_group = NULL; 320 321 /* 322 * Adjust the flush state and dependancy based on success or 323 * failure. 324 */ 325 if (record->flags & (HAMMER_RECF_DELETED_BE | HAMMER_RECF_COMMITTED)) { 326 if ((target_ip = record->target_ip) != NULL) { 327 TAILQ_REMOVE(&target_ip->target_list, record, 328 target_entry); 329 record->target_ip = NULL; 330 hammer_test_inode(target_ip); 331 } 332 record->flush_state = HAMMER_FST_IDLE; 333 } else { 334 if (record->target_ip) { 335 record->flush_state = HAMMER_FST_SETUP; 336 hammer_test_inode(record->ip); 337 hammer_test_inode(record->target_ip); 338 } else { 339 record->flush_state = HAMMER_FST_IDLE; 340 } 341 } 342 record->flags &= ~HAMMER_RECF_INTERLOCK_BE; 343 344 /* 345 * Cleanup 346 */ 347 if (record->flags & HAMMER_RECF_WANTED) { 348 record->flags &= ~HAMMER_RECF_WANTED; 349 wakeup(record); 350 } 351 hammer_rel_mem_record(record); 352 } 353 354 /* 355 * Release a memory record. Records marked for deletion are immediately 356 * removed from the RB-Tree but otherwise left intact until the last ref 357 * goes away. 358 */ 359 void 360 hammer_rel_mem_record(struct hammer_record *record) 361 { 362 hammer_mount_t hmp; 363 hammer_reserve_t resv; 364 hammer_inode_t ip; 365 hammer_inode_t target_ip; 366 int diddrop; 367 368 hammer_unref(&record->lock); 369 370 if (record->lock.refs == 0) { 371 /* 372 * Upon release of the last reference wakeup any waiters. 373 * The record structure may get destroyed so callers will 374 * loop up and do a relookup. 375 * 376 * WARNING! Record must be removed from RB-TREE before we 377 * might possibly block. hammer_test_inode() can block! 378 */ 379 ip = record->ip; 380 hmp = ip->hmp; 381 382 /* 383 * Upon release of the last reference a record marked deleted 384 * by the front or backend, or committed by the backend, 385 * is destroyed. 386 */ 387 if (record->flags & (HAMMER_RECF_DELETED_FE | 388 HAMMER_RECF_DELETED_BE | 389 HAMMER_RECF_COMMITTED)) { 390 KKASSERT(ip->lock.refs > 0); 391 KKASSERT(record->flush_state != HAMMER_FST_FLUSH); 392 393 /* 394 * target_ip may have zero refs, we have to ref it 395 * to prevent it from being ripped out from under 396 * us. 397 */ 398 if ((target_ip = record->target_ip) != NULL) { 399 TAILQ_REMOVE(&target_ip->target_list, 400 record, target_entry); 401 record->target_ip = NULL; 402 hammer_ref(&target_ip->lock); 403 } 404 405 /* 406 * Remove the record from the B-Tree 407 */ 408 if (record->flags & HAMMER_RECF_ONRBTREE) { 409 RB_REMOVE(hammer_rec_rb_tree, 410 &record->ip->rec_tree, 411 record); 412 record->flags &= ~HAMMER_RECF_ONRBTREE; 413 KKASSERT(ip->rsv_recs > 0); 414 diddrop = 1; 415 } else { 416 diddrop = 0; 417 } 418 419 /* 420 * We must wait for any direct-IO to complete before 421 * we can destroy the record because the bio may 422 * have a reference to it. 423 */ 424 if (record->flags & 425 (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL)) { 426 hammer_io_direct_wait(record); 427 } 428 429 /* 430 * Account for the completion after the direct IO 431 * has completed. 432 */ 433 if (diddrop) { 434 --hmp->rsv_recs; 435 --ip->rsv_recs; 436 hmp->rsv_databytes -= record->leaf.data_len; 437 438 if (RB_EMPTY(&record->ip->rec_tree)) { 439 record->ip->flags &= ~HAMMER_INODE_XDIRTY; 440 record->ip->sync_flags &= ~HAMMER_INODE_XDIRTY; 441 hammer_test_inode(record->ip); 442 } 443 if (ip->rsv_recs == hammer_limit_inode_recs - 1) 444 wakeup(&ip->rsv_recs); 445 } 446 447 /* 448 * Do this test after removing record from the B-Tree. 449 */ 450 if (target_ip) { 451 hammer_test_inode(target_ip); 452 hammer_rel_inode(target_ip, 0); 453 } 454 455 if (record->flags & HAMMER_RECF_ALLOCDATA) { 456 --hammer_count_record_datas; 457 kfree(record->data, hmp->m_misc); 458 record->flags &= ~HAMMER_RECF_ALLOCDATA; 459 } 460 461 /* 462 * Release the reservation. 463 * 464 * If the record was not committed we can theoretically 465 * undo the reservation. However, doing so might 466 * create weird edge cases with the ordering of 467 * direct writes because the related buffer cache 468 * elements are per-vnode. So we don't try. 469 */ 470 if ((resv = record->resv) != NULL) { 471 /* XXX undo leaf.data_offset,leaf.data_len */ 472 hammer_blockmap_reserve_complete(hmp, resv); 473 record->resv = NULL; 474 } 475 record->data = NULL; 476 --hammer_count_records; 477 kfree(record, hmp->m_misc); 478 } 479 } 480 } 481 482 /* 483 * Record visibility depends on whether the record is being accessed by 484 * the backend or the frontend. Backend tests ignore the frontend delete 485 * flag. Frontend tests do NOT ignore the backend delete/commit flags and 486 * must also check for commit races. 487 * 488 * Return non-zero if the record is visible, zero if it isn't or if it is 489 * deleted. Returns 0 if the record has been comitted (unless the special 490 * delete-visibility flag is set). A committed record must be located 491 * via the media B-Tree. Returns non-zero if the record is good. 492 * 493 * If HAMMER_CURSOR_DELETE_VISIBILITY is set we allow deleted memory 494 * records to be returned. This is so pending deletions are detected 495 * when using an iterator to locate an unused hash key, or when we need 496 * to locate historical records on-disk to destroy. 497 */ 498 static __inline 499 int 500 hammer_ip_iterate_mem_good(hammer_cursor_t cursor, hammer_record_t record) 501 { 502 if (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) 503 return(1); 504 if (cursor->flags & HAMMER_CURSOR_BACKEND) { 505 if (record->flags & (HAMMER_RECF_DELETED_BE | 506 HAMMER_RECF_COMMITTED)) { 507 return(0); 508 } 509 } else { 510 if (record->flags & (HAMMER_RECF_DELETED_FE | 511 HAMMER_RECF_DELETED_BE | 512 HAMMER_RECF_COMMITTED)) { 513 return(0); 514 } 515 } 516 return(1); 517 } 518 519 /* 520 * This callback is used as part of the RB_SCAN function for in-memory 521 * records. We terminate it (return -1) as soon as we get a match. 522 * 523 * This routine is used by frontend code. 524 * 525 * The primary compare code does not account for ASOF lookups. This 526 * code handles that case as well as a few others. 527 */ 528 static 529 int 530 hammer_rec_scan_callback(hammer_record_t rec, void *data) 531 { 532 hammer_cursor_t cursor = data; 533 534 /* 535 * We terminate on success, so this should be NULL on entry. 536 */ 537 KKASSERT(cursor->iprec == NULL); 538 539 /* 540 * Skip if the record was marked deleted or committed. 541 */ 542 if (hammer_ip_iterate_mem_good(cursor, rec) == 0) 543 return(0); 544 545 /* 546 * Skip if not visible due to our as-of TID 547 */ 548 if (cursor->flags & HAMMER_CURSOR_ASOF) { 549 if (cursor->asof < rec->leaf.base.create_tid) 550 return(0); 551 if (rec->leaf.base.delete_tid && 552 cursor->asof >= rec->leaf.base.delete_tid) { 553 return(0); 554 } 555 } 556 557 /* 558 * ref the record. The record is protected from backend B-Tree 559 * interactions by virtue of the cursor's IP lock. 560 */ 561 hammer_ref(&rec->lock); 562 563 /* 564 * The record may have been deleted or committed while we 565 * were blocked. XXX remove? 566 */ 567 if (hammer_ip_iterate_mem_good(cursor, rec) == 0) { 568 hammer_rel_mem_record(rec); 569 return(0); 570 } 571 572 /* 573 * Set the matching record and stop the scan. 574 */ 575 cursor->iprec = rec; 576 return(-1); 577 } 578 579 580 /* 581 * Lookup an in-memory record given the key specified in the cursor. Works 582 * just like hammer_btree_lookup() but operates on an inode's in-memory 583 * record list. 584 * 585 * The lookup must fail if the record is marked for deferred deletion. 586 * 587 * The API for mem/btree_lookup() does not mess with the ATE/EOF bits. 588 */ 589 static 590 int 591 hammer_mem_lookup(hammer_cursor_t cursor) 592 { 593 KKASSERT(cursor->ip); 594 if (cursor->iprec) { 595 hammer_rel_mem_record(cursor->iprec); 596 cursor->iprec = NULL; 597 } 598 hammer_rec_rb_tree_RB_SCAN(&cursor->ip->rec_tree, hammer_rec_find_cmp, 599 hammer_rec_scan_callback, cursor); 600 601 return (cursor->iprec ? 0 : ENOENT); 602 } 603 604 /* 605 * hammer_mem_first() - locate the first in-memory record matching the 606 * cursor within the bounds of the key range. 607 * 608 * WARNING! API is slightly different from btree_first(). hammer_mem_first() 609 * will set ATEMEM the same as MEMEOF, and does not return any error. 610 */ 611 static 612 void 613 hammer_mem_first(hammer_cursor_t cursor) 614 { 615 hammer_inode_t ip; 616 617 ip = cursor->ip; 618 KKASSERT(ip != NULL); 619 620 if (cursor->iprec) { 621 hammer_rel_mem_record(cursor->iprec); 622 cursor->iprec = NULL; 623 } 624 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_scan_cmp, 625 hammer_rec_scan_callback, cursor); 626 627 if (cursor->iprec) 628 cursor->flags &= ~(HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM); 629 else 630 cursor->flags |= HAMMER_CURSOR_MEMEOF | HAMMER_CURSOR_ATEMEM; 631 } 632 633 /************************************************************************ 634 * HAMMER IN-MEMORY RECORD FUNCTIONS * 635 ************************************************************************ 636 * 637 * These functions manipulate in-memory records. Such records typically 638 * exist prior to being committed to disk or indexed via the on-disk B-Tree. 639 */ 640 641 /* 642 * Add a directory entry (dip,ncp) which references inode (ip). 643 * 644 * Note that the low 32 bits of the namekey are set temporarily to create 645 * a unique in-memory record, and may be modified a second time when the 646 * record is synchronized to disk. In particular, the low 32 bits cannot be 647 * all 0's when synching to disk, which is not handled here. 648 * 649 * NOTE: bytes does not include any terminating \0 on name, and name might 650 * not be terminated. 651 */ 652 int 653 hammer_ip_add_directory(struct hammer_transaction *trans, 654 struct hammer_inode *dip, const char *name, int bytes, 655 struct hammer_inode *ip) 656 { 657 struct hammer_cursor cursor; 658 hammer_record_t record; 659 int error; 660 u_int32_t max_iterations; 661 662 record = hammer_alloc_mem_record(dip, HAMMER_ENTRY_SIZE(bytes)); 663 664 record->type = HAMMER_MEM_RECORD_ADD; 665 record->leaf.base.localization = dip->obj_localization + 666 hammer_dir_localization(dip); 667 record->leaf.base.obj_id = dip->obj_id; 668 record->leaf.base.key = hammer_directory_namekey(dip, name, bytes, 669 &max_iterations); 670 record->leaf.base.rec_type = HAMMER_RECTYPE_DIRENTRY; 671 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type; 672 record->data->entry.obj_id = ip->obj_id; 673 record->data->entry.localization = ip->obj_localization; 674 bcopy(name, record->data->entry.name, bytes); 675 676 ++ip->ino_data.nlinks; 677 ip->ino_data.ctime = trans->time; 678 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY); 679 680 /* 681 * Find an unused namekey. Both the in-memory record tree and 682 * the B-Tree are checked. We do not want historically deleted 683 * names to create a collision as our iteration space may be limited, 684 * and since create_tid wouldn't match anyway an ASOF search 685 * must be used to locate collisions. 686 * 687 * delete-visibility is set so pending deletions do not give us 688 * a false-negative on our ability to use an iterator. 689 * 690 * The iterator must not rollover the key. Directory keys only 691 * use the positive key space. 692 */ 693 hammer_init_cursor(trans, &cursor, &dip->cache[1], dip); 694 cursor.key_beg = record->leaf.base; 695 cursor.flags |= HAMMER_CURSOR_ASOF; 696 cursor.flags |= HAMMER_CURSOR_DELETE_VISIBILITY; 697 cursor.asof = ip->obj_asof; 698 699 while (hammer_ip_lookup(&cursor) == 0) { 700 ++record->leaf.base.key; 701 KKASSERT(record->leaf.base.key > 0); 702 cursor.key_beg.key = record->leaf.base.key; 703 if (--max_iterations == 0) { 704 hammer_rel_mem_record(record); 705 error = ENOSPC; 706 goto failed; 707 } 708 } 709 710 /* 711 * The target inode and the directory entry are bound together. 712 */ 713 record->target_ip = ip; 714 record->flush_state = HAMMER_FST_SETUP; 715 TAILQ_INSERT_TAIL(&ip->target_list, record, target_entry); 716 717 /* 718 * The inode now has a dependancy and must be taken out of the idle 719 * state. An inode not in an idle state is given an extra reference. 720 * 721 * When transitioning to a SETUP state flag for an automatic reflush 722 * when the dependancies are disposed of if someone is waiting on 723 * the inode. 724 */ 725 if (ip->flush_state == HAMMER_FST_IDLE) { 726 hammer_ref(&ip->lock); 727 ip->flush_state = HAMMER_FST_SETUP; 728 if (ip->flags & HAMMER_INODE_FLUSHW) 729 ip->flags |= HAMMER_INODE_REFLUSH; 730 } 731 error = hammer_mem_add(record); 732 if (error == 0) { 733 dip->ino_data.mtime = trans->time; 734 hammer_modify_inode(dip, HAMMER_INODE_MTIME); 735 } 736 failed: 737 hammer_done_cursor(&cursor); 738 return(error); 739 } 740 741 /* 742 * Delete the directory entry and update the inode link count. The 743 * cursor must be seeked to the directory entry record being deleted. 744 * 745 * The related inode should be share-locked by the caller. The caller is 746 * on the frontend. It could also be NULL indicating that the directory 747 * entry being removed has no related inode. 748 * 749 * This function can return EDEADLK requiring the caller to terminate 750 * the cursor, any locks, wait on the returned record, and retry. 751 */ 752 int 753 hammer_ip_del_directory(struct hammer_transaction *trans, 754 hammer_cursor_t cursor, struct hammer_inode *dip, 755 struct hammer_inode *ip) 756 { 757 hammer_record_t record; 758 int error; 759 760 if (hammer_cursor_inmem(cursor)) { 761 /* 762 * In-memory (unsynchronized) records can simply be freed. 763 * 764 * Even though the HAMMER_RECF_DELETED_FE flag is ignored 765 * by the backend, we must still avoid races against the 766 * backend potentially syncing the record to the media. 767 * 768 * We cannot call hammer_ip_delete_record(), that routine may 769 * only be called from the backend. 770 */ 771 record = cursor->iprec; 772 if (record->flags & (HAMMER_RECF_INTERLOCK_BE | 773 HAMMER_RECF_DELETED_BE | 774 HAMMER_RECF_COMMITTED)) { 775 KKASSERT(cursor->deadlk_rec == NULL); 776 hammer_ref(&record->lock); 777 cursor->deadlk_rec = record; 778 error = EDEADLK; 779 } else { 780 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD); 781 record->flags |= HAMMER_RECF_DELETED_FE; 782 error = 0; 783 } 784 } else { 785 /* 786 * If the record is on-disk we have to queue the deletion by 787 * the record's key. This also causes lookups to skip the 788 * record. 789 */ 790 KKASSERT(dip->flags & 791 (HAMMER_INODE_ONDISK | HAMMER_INODE_DONDISK)); 792 record = hammer_alloc_mem_record(dip, 0); 793 record->type = HAMMER_MEM_RECORD_DEL; 794 record->leaf.base = cursor->leaf->base; 795 796 /* 797 * ip may be NULL, indicating the deletion of a directory 798 * entry which has no related inode. 799 */ 800 record->target_ip = ip; 801 if (ip) { 802 record->flush_state = HAMMER_FST_SETUP; 803 TAILQ_INSERT_TAIL(&ip->target_list, record, 804 target_entry); 805 } else { 806 record->flush_state = HAMMER_FST_IDLE; 807 } 808 809 /* 810 * The inode now has a dependancy and must be taken out of 811 * the idle state. An inode not in an idle state is given 812 * an extra reference. 813 * 814 * When transitioning to a SETUP state flag for an automatic 815 * reflush when the dependancies are disposed of if someone 816 * is waiting on the inode. 817 */ 818 if (ip && ip->flush_state == HAMMER_FST_IDLE) { 819 hammer_ref(&ip->lock); 820 ip->flush_state = HAMMER_FST_SETUP; 821 if (ip->flags & HAMMER_INODE_FLUSHW) 822 ip->flags |= HAMMER_INODE_REFLUSH; 823 } 824 825 error = hammer_mem_add(record); 826 } 827 828 /* 829 * One less link. The file may still be open in the OS even after 830 * all links have gone away. 831 * 832 * We have to terminate the cursor before syncing the inode to 833 * avoid deadlocking against ourselves. XXX this may no longer 834 * be true. 835 * 836 * If nlinks drops to zero and the vnode is inactive (or there is 837 * no vnode), call hammer_inode_unloadable_check() to zonk the 838 * inode. If we don't do this here the inode will not be destroyed 839 * on-media until we unmount. 840 */ 841 if (error == 0) { 842 if (ip) { 843 --ip->ino_data.nlinks; /* do before we might block */ 844 ip->ino_data.ctime = trans->time; 845 } 846 dip->ino_data.mtime = trans->time; 847 hammer_modify_inode(dip, HAMMER_INODE_MTIME); 848 if (ip) { 849 hammer_modify_inode(ip, HAMMER_INODE_DDIRTY); 850 if (ip->ino_data.nlinks == 0 && 851 (ip->vp == NULL || (ip->vp->v_flag & VINACTIVE))) { 852 hammer_done_cursor(cursor); 853 hammer_inode_unloadable_check(ip, 1); 854 hammer_flush_inode(ip, 0); 855 } 856 } 857 858 } 859 return(error); 860 } 861 862 /* 863 * Add a record to an inode. 864 * 865 * The caller must allocate the record with hammer_alloc_mem_record(ip) and 866 * initialize the following additional fields: 867 * 868 * The related inode should be share-locked by the caller. The caller is 869 * on the frontend. 870 * 871 * record->rec.entry.base.base.key 872 * record->rec.entry.base.base.rec_type 873 * record->rec.entry.base.base.data_len 874 * record->data (a copy will be kmalloc'd if it cannot be embedded) 875 */ 876 int 877 hammer_ip_add_record(struct hammer_transaction *trans, hammer_record_t record) 878 { 879 hammer_inode_t ip = record->ip; 880 int error; 881 882 KKASSERT(record->leaf.base.localization != 0); 883 record->leaf.base.obj_id = ip->obj_id; 884 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type; 885 error = hammer_mem_add(record); 886 return(error); 887 } 888 889 /* 890 * Locate a bulk record in-memory. Bulk records allow disk space to be 891 * reserved so the front-end can flush large data writes without having 892 * to queue the BIO to the flusher. Only the related record gets queued 893 * to the flusher. 894 */ 895 896 static hammer_record_t 897 hammer_ip_get_bulk(hammer_inode_t ip, off_t file_offset, int bytes) 898 { 899 struct hammer_bulk_info info; 900 901 bzero(&info, sizeof(info)); 902 info.leaf.base.obj_id = ip->obj_id; 903 info.leaf.base.key = file_offset + bytes; 904 info.leaf.base.create_tid = 0; 905 info.leaf.base.delete_tid = 0; 906 info.leaf.base.rec_type = HAMMER_RECTYPE_DATA; 907 info.leaf.base.obj_type = 0; /* unused */ 908 info.leaf.base.btype = HAMMER_BTREE_TYPE_RECORD; /* unused */ 909 info.leaf.base.localization = ip->obj_localization + /* unused */ 910 HAMMER_LOCALIZE_MISC; 911 info.leaf.data_len = bytes; 912 913 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_overlap_cmp, 914 hammer_bulk_scan_callback, &info); 915 916 return(info.record); /* may be NULL */ 917 } 918 919 /* 920 * Take records vetted by overlap_cmp. The first non-deleted record 921 * (if any) stops the scan. 922 */ 923 static int 924 hammer_bulk_scan_callback(hammer_record_t record, void *data) 925 { 926 struct hammer_bulk_info *info = data; 927 928 if (record->flags & (HAMMER_RECF_DELETED_FE | HAMMER_RECF_DELETED_BE | 929 HAMMER_RECF_COMMITTED)) { 930 return(0); 931 } 932 hammer_ref(&record->lock); 933 info->record = record; 934 return(-1); /* stop scan */ 935 } 936 937 /* 938 * Reserve blockmap space placemarked with an in-memory record. 939 * 940 * This routine is called by the frontend in order to be able to directly 941 * flush a buffer cache buffer. The frontend has locked the related buffer 942 * cache buffers and we should be able to manipulate any overlapping 943 * in-memory records. 944 * 945 * The caller is responsible for adding the returned record. 946 */ 947 hammer_record_t 948 hammer_ip_add_bulk(hammer_inode_t ip, off_t file_offset, void *data, int bytes, 949 int *errorp) 950 { 951 hammer_record_t record; 952 hammer_record_t conflict; 953 int zone; 954 955 /* 956 * Deal with conflicting in-memory records. We cannot have multiple 957 * in-memory records for the same base offset without seriously 958 * confusing the backend, including but not limited to the backend 959 * issuing delete-create-delete or create-delete-create sequences 960 * and asserting on the delete_tid being the same as the create_tid. 961 * 962 * If we encounter a record with the backend interlock set we cannot 963 * immediately delete it without confusing the backend. 964 */ 965 while ((conflict = hammer_ip_get_bulk(ip, file_offset, bytes)) !=NULL) { 966 if (conflict->flags & HAMMER_RECF_INTERLOCK_BE) { 967 conflict->flags |= HAMMER_RECF_WANTED; 968 tsleep(conflict, 0, "hmrrc3", 0); 969 } else { 970 conflict->flags |= HAMMER_RECF_DELETED_FE; 971 } 972 hammer_rel_mem_record(conflict); 973 } 974 975 /* 976 * Create a record to cover the direct write. This is called with 977 * the related BIO locked so there should be no possible conflict. 978 * 979 * The backend is responsible for finalizing the space reserved in 980 * this record. 981 * 982 * XXX bytes not aligned, depend on the reservation code to 983 * align the reservation. 984 */ 985 record = hammer_alloc_mem_record(ip, 0); 986 zone = (bytes >= HAMMER_BUFSIZE) ? HAMMER_ZONE_LARGE_DATA_INDEX : 987 HAMMER_ZONE_SMALL_DATA_INDEX; 988 record->resv = hammer_blockmap_reserve(ip->hmp, zone, bytes, 989 &record->leaf.data_offset, 990 errorp); 991 if (record->resv == NULL) { 992 kprintf("hammer_ip_add_bulk: reservation failed\n"); 993 hammer_rel_mem_record(record); 994 return(NULL); 995 } 996 record->type = HAMMER_MEM_RECORD_DATA; 997 record->leaf.base.rec_type = HAMMER_RECTYPE_DATA; 998 record->leaf.base.obj_type = ip->ino_leaf.base.obj_type; 999 record->leaf.base.obj_id = ip->obj_id; 1000 record->leaf.base.key = file_offset + bytes; 1001 record->leaf.base.localization = ip->obj_localization + 1002 HAMMER_LOCALIZE_MISC; 1003 record->leaf.data_len = bytes; 1004 hammer_crc_set_leaf(data, &record->leaf); 1005 KKASSERT(*errorp == 0); 1006 return(record); 1007 } 1008 1009 /* 1010 * Frontend truncation code. Scan in-memory records only. On-disk records 1011 * and records in a flushing state are handled by the backend. The vnops 1012 * setattr code will handle the block containing the truncation point. 1013 * 1014 * Partial blocks are not deleted. 1015 */ 1016 int 1017 hammer_ip_frontend_trunc(struct hammer_inode *ip, off_t file_size) 1018 { 1019 struct rec_trunc_info info; 1020 1021 switch(ip->ino_data.obj_type) { 1022 case HAMMER_OBJTYPE_REGFILE: 1023 info.rec_type = HAMMER_RECTYPE_DATA; 1024 break; 1025 case HAMMER_OBJTYPE_DBFILE: 1026 info.rec_type = HAMMER_RECTYPE_DB; 1027 break; 1028 default: 1029 return(EINVAL); 1030 } 1031 info.trunc_off = file_size; 1032 hammer_rec_rb_tree_RB_SCAN(&ip->rec_tree, hammer_rec_trunc_cmp, 1033 hammer_frontend_trunc_callback, &info); 1034 return(0); 1035 } 1036 1037 static int 1038 hammer_frontend_trunc_callback(hammer_record_t record, void *data __unused) 1039 { 1040 if (record->flags & HAMMER_RECF_DELETED_FE) 1041 return(0); 1042 if (record->flush_state == HAMMER_FST_FLUSH) 1043 return(0); 1044 KKASSERT((record->flags & HAMMER_RECF_INTERLOCK_BE) == 0); 1045 hammer_ref(&record->lock); 1046 record->flags |= HAMMER_RECF_DELETED_FE; 1047 hammer_rel_mem_record(record); 1048 return(0); 1049 } 1050 1051 /* 1052 * Return 1 if the caller must check for and delete existing records 1053 * before writing out a new data record. 1054 * 1055 * Return 0 if the caller can just insert the record into the B-Tree without 1056 * checking. 1057 */ 1058 static int 1059 hammer_record_needs_overwrite_delete(hammer_record_t record) 1060 { 1061 hammer_inode_t ip = record->ip; 1062 int64_t file_offset; 1063 int r; 1064 1065 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) 1066 file_offset = record->leaf.base.key; 1067 else 1068 file_offset = record->leaf.base.key - record->leaf.data_len; 1069 r = (file_offset < ip->save_trunc_off); 1070 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) { 1071 if (ip->save_trunc_off <= record->leaf.base.key) 1072 ip->save_trunc_off = record->leaf.base.key + 1; 1073 } else { 1074 if (ip->save_trunc_off < record->leaf.base.key) 1075 ip->save_trunc_off = record->leaf.base.key; 1076 } 1077 return(r); 1078 } 1079 1080 /* 1081 * Backend code. Sync a record to the media. 1082 */ 1083 int 1084 hammer_ip_sync_record_cursor(hammer_cursor_t cursor, hammer_record_t record) 1085 { 1086 hammer_transaction_t trans = cursor->trans; 1087 int64_t file_offset; 1088 int bytes; 1089 void *bdata; 1090 int error; 1091 int doprop; 1092 1093 KKASSERT(record->flush_state == HAMMER_FST_FLUSH); 1094 KKASSERT(record->flags & HAMMER_RECF_INTERLOCK_BE); 1095 KKASSERT(record->leaf.base.localization != 0); 1096 1097 /* 1098 * Any direct-write related to the record must complete before we 1099 * can sync the record to the on-disk media. 1100 */ 1101 if (record->flags & (HAMMER_RECF_DIRECT_IO | HAMMER_RECF_DIRECT_INVAL)) 1102 hammer_io_direct_wait(record); 1103 1104 /* 1105 * If this is a bulk-data record placemarker there may be an existing 1106 * record on-disk, indicating a data overwrite. If there is the 1107 * on-disk record must be deleted before we can insert our new record. 1108 * 1109 * We've synthesized this record and do not know what the create_tid 1110 * on-disk is, nor how much data it represents. 1111 * 1112 * Keep in mind that (key) for data records is (base_offset + len), 1113 * not (base_offset). Also, we only want to get rid of on-disk 1114 * records since we are trying to sync our in-memory record, call 1115 * hammer_ip_delete_range() with truncating set to 1 to make sure 1116 * it skips in-memory records. 1117 * 1118 * It is ok for the lookup to return ENOENT. 1119 * 1120 * NOTE OPTIMIZATION: sync_trunc_off is used to determine if we have 1121 * to call hammer_ip_delete_range() or not. This also means we must 1122 * update sync_trunc_off() as we write. 1123 */ 1124 if (record->type == HAMMER_MEM_RECORD_DATA && 1125 hammer_record_needs_overwrite_delete(record)) { 1126 file_offset = record->leaf.base.key - record->leaf.data_len; 1127 bytes = (record->leaf.data_len + HAMMER_BUFMASK) & 1128 ~HAMMER_BUFMASK; 1129 KKASSERT((file_offset & HAMMER_BUFMASK) == 0); 1130 error = hammer_ip_delete_range( 1131 cursor, record->ip, 1132 file_offset, file_offset + bytes - 1, 1133 1); 1134 if (error && error != ENOENT) 1135 goto done; 1136 } 1137 1138 /* 1139 * If this is a general record there may be an on-disk version 1140 * that must be deleted before we can insert the new record. 1141 */ 1142 if (record->type == HAMMER_MEM_RECORD_GENERAL) { 1143 error = hammer_delete_general(cursor, record->ip, 1144 &record->leaf); 1145 if (error && error != ENOENT) 1146 goto done; 1147 } 1148 1149 /* 1150 * Setup the cursor. 1151 */ 1152 hammer_normalize_cursor(cursor); 1153 cursor->key_beg = record->leaf.base; 1154 cursor->flags &= ~HAMMER_CURSOR_INITMASK; 1155 cursor->flags |= HAMMER_CURSOR_BACKEND; 1156 cursor->flags &= ~HAMMER_CURSOR_INSERT; 1157 1158 /* 1159 * Records can wind up on-media before the inode itself is on-media. 1160 * Flag the case. 1161 */ 1162 record->ip->flags |= HAMMER_INODE_DONDISK; 1163 1164 /* 1165 * If we are deleting a directory entry an exact match must be 1166 * found on-disk. 1167 */ 1168 if (record->type == HAMMER_MEM_RECORD_DEL) { 1169 error = hammer_btree_lookup(cursor); 1170 if (error == 0) { 1171 KKASSERT(cursor->iprec == NULL); 1172 error = hammer_ip_delete_record(cursor, record->ip, 1173 trans->tid); 1174 if (error == 0) { 1175 record->flags |= HAMMER_RECF_DELETED_BE | 1176 HAMMER_RECF_COMMITTED; 1177 ++record->ip->rec_generation; 1178 } 1179 } 1180 goto done; 1181 } 1182 1183 /* 1184 * We are inserting. 1185 * 1186 * Issue a lookup to position the cursor and locate the insertion 1187 * point. The target key should not exist. If we are creating a 1188 * directory entry we may have to iterate the low 32 bits of the 1189 * key to find an unused key. 1190 */ 1191 hammer_sync_lock_sh(trans); 1192 cursor->flags |= HAMMER_CURSOR_INSERT; 1193 error = hammer_btree_lookup(cursor); 1194 if (hammer_debug_inode) 1195 kprintf("DOINSERT LOOKUP %d\n", error); 1196 if (error == 0) { 1197 kprintf("hammer_ip_sync_record: duplicate rec " 1198 "at (%016llx)\n", (long long)record->leaf.base.key); 1199 Debugger("duplicate record1"); 1200 error = EIO; 1201 } 1202 #if 0 1203 if (record->type == HAMMER_MEM_RECORD_DATA) 1204 kprintf("sync_record %016llx ---------------- %016llx %d\n", 1205 record->leaf.base.key - record->leaf.data_len, 1206 record->leaf.data_offset, error); 1207 #endif 1208 1209 if (error != ENOENT) 1210 goto done_unlock; 1211 1212 /* 1213 * Allocate the record and data. The result buffers will be 1214 * marked as being modified and further calls to 1215 * hammer_modify_buffer() will result in unneeded UNDO records. 1216 * 1217 * Support zero-fill records (data == NULL and data_len != 0) 1218 */ 1219 if (record->type == HAMMER_MEM_RECORD_DATA) { 1220 /* 1221 * The data portion of a bulk-data record has already been 1222 * committed to disk, we need only adjust the layer2 1223 * statistics in the same transaction as our B-Tree insert. 1224 */ 1225 KKASSERT(record->leaf.data_offset != 0); 1226 error = hammer_blockmap_finalize(trans, 1227 record->resv, 1228 record->leaf.data_offset, 1229 record->leaf.data_len); 1230 } else if (record->data && record->leaf.data_len) { 1231 /* 1232 * Wholely cached record, with data. Allocate the data. 1233 */ 1234 bdata = hammer_alloc_data(trans, record->leaf.data_len, 1235 record->leaf.base.rec_type, 1236 &record->leaf.data_offset, 1237 &cursor->data_buffer, 1238 0, &error); 1239 if (bdata == NULL) 1240 goto done_unlock; 1241 hammer_crc_set_leaf(record->data, &record->leaf); 1242 hammer_modify_buffer(trans, cursor->data_buffer, NULL, 0); 1243 bcopy(record->data, bdata, record->leaf.data_len); 1244 hammer_modify_buffer_done(cursor->data_buffer); 1245 } else { 1246 /* 1247 * Wholely cached record, without data. 1248 */ 1249 record->leaf.data_offset = 0; 1250 record->leaf.data_crc = 0; 1251 } 1252 1253 error = hammer_btree_insert(cursor, &record->leaf, &doprop); 1254 if (hammer_debug_inode && error) { 1255 kprintf("BTREE INSERT error %d @ %016llx:%d key %016llx\n", 1256 error, 1257 (long long)cursor->node->node_offset, 1258 cursor->index, 1259 (long long)record->leaf.base.key); 1260 } 1261 1262 /* 1263 * Our record is on-disk and we normally mark the in-memory version 1264 * as having been committed (and not BE-deleted). 1265 * 1266 * If the record represented a directory deletion but we had to 1267 * sync a valid directory entry to disk due to dependancies, 1268 * we must convert the record to a covering delete so the 1269 * frontend does not have visibility on the synced entry. 1270 */ 1271 if (error == 0) { 1272 if (doprop) { 1273 hammer_btree_do_propagation(cursor, 1274 record->ip->pfsm, 1275 &record->leaf); 1276 } 1277 if (record->flags & HAMMER_RECF_CONVERT_DELETE) { 1278 /* 1279 * Must convert deleted directory entry add 1280 * to a directory entry delete. 1281 */ 1282 KKASSERT(record->type == HAMMER_MEM_RECORD_ADD); 1283 record->flags &= ~HAMMER_RECF_DELETED_FE; 1284 record->type = HAMMER_MEM_RECORD_DEL; 1285 KKASSERT(record->flush_state == HAMMER_FST_FLUSH); 1286 record->flags &= ~HAMMER_RECF_CONVERT_DELETE; 1287 KKASSERT((record->flags & (HAMMER_RECF_COMMITTED | 1288 HAMMER_RECF_DELETED_BE)) == 0); 1289 /* converted record is not yet committed */ 1290 /* hammer_flush_record_done takes care of the rest */ 1291 } else { 1292 /* 1293 * Everything went fine and we are now done with 1294 * this record. 1295 */ 1296 record->flags |= HAMMER_RECF_COMMITTED; 1297 ++record->ip->rec_generation; 1298 } 1299 } else { 1300 if (record->leaf.data_offset) { 1301 hammer_blockmap_free(trans, record->leaf.data_offset, 1302 record->leaf.data_len); 1303 } 1304 } 1305 done_unlock: 1306 hammer_sync_unlock(trans); 1307 done: 1308 return(error); 1309 } 1310 1311 /* 1312 * Add the record to the inode's rec_tree. The low 32 bits of a directory 1313 * entry's key is used to deal with hash collisions in the upper 32 bits. 1314 * A unique 64 bit key is generated in-memory and may be regenerated a 1315 * second time when the directory record is flushed to the on-disk B-Tree. 1316 * 1317 * A referenced record is passed to this function. This function 1318 * eats the reference. If an error occurs the record will be deleted. 1319 * 1320 * A copy of the temporary record->data pointer provided by the caller 1321 * will be made. 1322 */ 1323 int 1324 hammer_mem_add(hammer_record_t record) 1325 { 1326 hammer_mount_t hmp = record->ip->hmp; 1327 1328 /* 1329 * Make a private copy of record->data 1330 */ 1331 if (record->data) 1332 KKASSERT(record->flags & HAMMER_RECF_ALLOCDATA); 1333 1334 /* 1335 * Insert into the RB tree. A unique key should have already 1336 * been selected if this is a directory entry. 1337 */ 1338 if (RB_INSERT(hammer_rec_rb_tree, &record->ip->rec_tree, record)) { 1339 record->flags |= HAMMER_RECF_DELETED_FE; 1340 hammer_rel_mem_record(record); 1341 return (EEXIST); 1342 } 1343 ++hmp->count_newrecords; 1344 ++hmp->rsv_recs; 1345 ++record->ip->rsv_recs; 1346 record->ip->hmp->rsv_databytes += record->leaf.data_len; 1347 record->flags |= HAMMER_RECF_ONRBTREE; 1348 hammer_modify_inode(record->ip, HAMMER_INODE_XDIRTY); 1349 hammer_rel_mem_record(record); 1350 return(0); 1351 } 1352 1353 /************************************************************************ 1354 * HAMMER INODE MERGED-RECORD FUNCTIONS * 1355 ************************************************************************ 1356 * 1357 * These functions augment the B-Tree scanning functions in hammer_btree.c 1358 * by merging in-memory records with on-disk records. 1359 */ 1360 1361 /* 1362 * Locate a particular record either in-memory or on-disk. 1363 * 1364 * NOTE: This is basically a standalone routine, hammer_ip_next() may 1365 * NOT be called to iterate results. 1366 */ 1367 int 1368 hammer_ip_lookup(hammer_cursor_t cursor) 1369 { 1370 int error; 1371 1372 /* 1373 * If the element is in-memory return it without searching the 1374 * on-disk B-Tree 1375 */ 1376 KKASSERT(cursor->ip); 1377 error = hammer_mem_lookup(cursor); 1378 if (error == 0) { 1379 cursor->leaf = &cursor->iprec->leaf; 1380 return(error); 1381 } 1382 if (error != ENOENT) 1383 return(error); 1384 1385 /* 1386 * If the inode has on-disk components search the on-disk B-Tree. 1387 */ 1388 if ((cursor->ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) == 0) 1389 return(error); 1390 error = hammer_btree_lookup(cursor); 1391 if (error == 0) 1392 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF); 1393 return(error); 1394 } 1395 1396 /* 1397 * Helper for hammer_ip_first()/hammer_ip_next() 1398 * 1399 * NOTE: Both ATEDISK and DISKEOF will be set the same. This sets up 1400 * hammer_ip_first() for calling hammer_ip_next(), and sets up the re-seek 1401 * state if hammer_ip_next() needs to re-seek. 1402 */ 1403 static __inline 1404 int 1405 _hammer_ip_seek_btree(hammer_cursor_t cursor) 1406 { 1407 hammer_inode_t ip = cursor->ip; 1408 int error; 1409 1410 if (ip->flags & (HAMMER_INODE_ONDISK|HAMMER_INODE_DONDISK)) { 1411 error = hammer_btree_lookup(cursor); 1412 if (error == ENOENT || error == EDEADLK) { 1413 if (hammer_debug_general & 0x2000) { 1414 kprintf("error %d node %p %016llx index %d\n", 1415 error, cursor->node, 1416 (long long)cursor->node->node_offset, 1417 cursor->index); 1418 } 1419 cursor->flags &= ~HAMMER_CURSOR_ATEDISK; 1420 error = hammer_btree_iterate(cursor); 1421 } 1422 if (error == 0) { 1423 cursor->flags &= ~(HAMMER_CURSOR_DISKEOF | 1424 HAMMER_CURSOR_ATEDISK); 1425 } else { 1426 cursor->flags |= HAMMER_CURSOR_DISKEOF | 1427 HAMMER_CURSOR_ATEDISK; 1428 if (error == ENOENT) 1429 error = 0; 1430 } 1431 } else { 1432 cursor->flags |= HAMMER_CURSOR_DISKEOF | HAMMER_CURSOR_ATEDISK; 1433 error = 0; 1434 } 1435 return(error); 1436 } 1437 1438 /* 1439 * Helper for hammer_ip_next() 1440 * 1441 * The caller has determined that the media cursor is further along than the 1442 * memory cursor and must be reseeked after a generation number change. 1443 */ 1444 static 1445 int 1446 _hammer_ip_reseek(hammer_cursor_t cursor) 1447 { 1448 struct hammer_base_elm save; 1449 hammer_btree_elm_t elm; 1450 int error; 1451 int r; 1452 int again = 0; 1453 1454 /* 1455 * Do the re-seek. 1456 */ 1457 kprintf("HAMMER: Debug: re-seeked during scan @ino=%016llx\n", 1458 (long long)cursor->ip->obj_id); 1459 save = cursor->key_beg; 1460 cursor->key_beg = cursor->iprec->leaf.base; 1461 error = _hammer_ip_seek_btree(cursor); 1462 KKASSERT(error == 0); 1463 cursor->key_beg = save; 1464 1465 /* 1466 * If the memory record was previous returned to 1467 * the caller and the media record matches 1468 * (-1/+1: only create_tid differs), then iterate 1469 * the media record to avoid a double result. 1470 */ 1471 if ((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0 && 1472 (cursor->flags & HAMMER_CURSOR_LASTWASMEM)) { 1473 elm = &cursor->node->ondisk->elms[cursor->index]; 1474 r = hammer_btree_cmp(&elm->base, 1475 &cursor->iprec->leaf.base); 1476 if (cursor->flags & HAMMER_CURSOR_ASOF) { 1477 if (r >= -1 && r <= 1) { 1478 kprintf("HAMMER: Debug: iterated after " 1479 "re-seek (asof r=%d)\n", r); 1480 cursor->flags |= HAMMER_CURSOR_ATEDISK; 1481 again = 1; 1482 } 1483 } else { 1484 if (r == 0) { 1485 kprintf("HAMMER: Debug: iterated after " 1486 "re-seek\n"); 1487 cursor->flags |= HAMMER_CURSOR_ATEDISK; 1488 again = 1; 1489 } 1490 } 1491 } 1492 return(again); 1493 } 1494 1495 /* 1496 * Locate the first record within the cursor's key_beg/key_end range, 1497 * restricted to a particular inode. 0 is returned on success, ENOENT 1498 * if no records matched the requested range, or some other error. 1499 * 1500 * When 0 is returned hammer_ip_next() may be used to iterate additional 1501 * records within the requested range. 1502 * 1503 * This function can return EDEADLK, requiring the caller to terminate 1504 * the cursor and try again. 1505 */ 1506 1507 int 1508 hammer_ip_first(hammer_cursor_t cursor) 1509 { 1510 hammer_inode_t ip = cursor->ip; 1511 int error; 1512 1513 KKASSERT(ip != NULL); 1514 1515 /* 1516 * Clean up fields and setup for merged scan 1517 */ 1518 cursor->flags &= ~HAMMER_CURSOR_RETEST; 1519 1520 /* 1521 * Search the in-memory record list (Red-Black tree). Unlike the 1522 * B-Tree search, mem_first checks for records in the range. 1523 * 1524 * This function will setup both ATEMEM and MEMEOF properly for 1525 * the ip iteration. ATEMEM will be set if MEMEOF is set. 1526 */ 1527 hammer_mem_first(cursor); 1528 1529 /* 1530 * Detect generation changes during blockages, including 1531 * blockages which occur on the initial btree search. 1532 */ 1533 cursor->rec_generation = cursor->ip->rec_generation; 1534 1535 /* 1536 * Initial search and result 1537 */ 1538 error = _hammer_ip_seek_btree(cursor); 1539 if (error == 0) 1540 error = hammer_ip_next(cursor); 1541 1542 return (error); 1543 } 1544 1545 /* 1546 * Retrieve the next record in a merged iteration within the bounds of the 1547 * cursor. This call may be made multiple times after the cursor has been 1548 * initially searched with hammer_ip_first(). 1549 * 1550 * There are numerous special cases in this code to deal with races between 1551 * in-memory records and on-media records. 1552 * 1553 * 0 is returned on success, ENOENT if no further records match the 1554 * requested range, or some other error code is returned. 1555 */ 1556 int 1557 hammer_ip_next(hammer_cursor_t cursor) 1558 { 1559 hammer_btree_elm_t elm; 1560 hammer_record_t rec; 1561 hammer_record_t tmprec; 1562 int error; 1563 int r; 1564 1565 again: 1566 /* 1567 * Get the next on-disk record 1568 * 1569 * NOTE: If we deleted the last on-disk record we had scanned 1570 * ATEDISK will be clear and RETEST will be set, forcing 1571 * a call to iterate. The fact that ATEDISK is clear causes 1572 * iterate to re-test the 'current' element. If ATEDISK is 1573 * set, iterate will skip the 'current' element. 1574 */ 1575 error = 0; 1576 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) { 1577 if (cursor->flags & (HAMMER_CURSOR_ATEDISK | 1578 HAMMER_CURSOR_RETEST)) { 1579 error = hammer_btree_iterate(cursor); 1580 cursor->flags &= ~HAMMER_CURSOR_RETEST; 1581 if (error == 0) { 1582 cursor->flags &= ~HAMMER_CURSOR_ATEDISK; 1583 hammer_cache_node(&cursor->ip->cache[1], 1584 cursor->node); 1585 } else if (error == ENOENT) { 1586 cursor->flags |= HAMMER_CURSOR_DISKEOF | 1587 HAMMER_CURSOR_ATEDISK; 1588 error = 0; 1589 } 1590 } 1591 } 1592 1593 /* 1594 * If the generation changed the backend has deleted or committed 1595 * one or more memory records since our last check. 1596 * 1597 * When this case occurs if the disk cursor is > current memory record 1598 * or the disk cursor is at EOF, we must re-seek the disk-cursor. 1599 * Since the cursor is ahead it must have not yet been eaten (if 1600 * not at eof anyway). (XXX data offset case?) 1601 * 1602 * NOTE: we are not doing a full check here. That will be handled 1603 * later on. 1604 * 1605 * If we have exhausted all memory records we do not have to do any 1606 * further seeks. 1607 */ 1608 while (cursor->rec_generation != cursor->ip->rec_generation && 1609 error == 0 1610 ) { 1611 kprintf("HAMMER: Debug: generation changed during scan @ino=%016llx\n", (long long)cursor->ip->obj_id); 1612 cursor->rec_generation = cursor->ip->rec_generation; 1613 if (cursor->flags & HAMMER_CURSOR_MEMEOF) 1614 break; 1615 if (cursor->flags & HAMMER_CURSOR_DISKEOF) { 1616 r = 1; 1617 } else { 1618 KKASSERT((cursor->flags & HAMMER_CURSOR_ATEDISK) == 0); 1619 elm = &cursor->node->ondisk->elms[cursor->index]; 1620 r = hammer_btree_cmp(&elm->base, 1621 &cursor->iprec->leaf.base); 1622 } 1623 1624 /* 1625 * Do we re-seek the media cursor? 1626 */ 1627 if (r > 0) { 1628 if (_hammer_ip_reseek(cursor)) 1629 goto again; 1630 } 1631 } 1632 1633 /* 1634 * We can now safely get the next in-memory record. We cannot 1635 * block here. 1636 * 1637 * hammer_rec_scan_cmp: Is the record still in our general range, 1638 * (non-inclusive of snapshot exclusions)? 1639 * hammer_rec_scan_callback: Is the record in our snapshot? 1640 */ 1641 tmprec = NULL; 1642 if ((cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) { 1643 /* 1644 * If the current memory record was eaten then get the next 1645 * one. Stale records are skipped. 1646 */ 1647 if (cursor->flags & HAMMER_CURSOR_ATEMEM) { 1648 tmprec = cursor->iprec; 1649 cursor->iprec = NULL; 1650 rec = hammer_rec_rb_tree_RB_NEXT(tmprec); 1651 while (rec) { 1652 if (hammer_rec_scan_cmp(rec, cursor) != 0) 1653 break; 1654 if (hammer_rec_scan_callback(rec, cursor) != 0) 1655 break; 1656 rec = hammer_rec_rb_tree_RB_NEXT(rec); 1657 } 1658 if (cursor->iprec) { 1659 KKASSERT(cursor->iprec == rec); 1660 cursor->flags &= ~HAMMER_CURSOR_ATEMEM; 1661 } else { 1662 cursor->flags |= HAMMER_CURSOR_MEMEOF; 1663 } 1664 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM; 1665 } 1666 } 1667 1668 /* 1669 * MEMORY RECORD VALIDITY TEST 1670 * 1671 * (We still can't block, which is why tmprec is being held so 1672 * long). 1673 * 1674 * If the memory record is no longer valid we skip it. It may 1675 * have been deleted by the frontend. If it was deleted or 1676 * committed by the backend the generation change re-seeked the 1677 * disk cursor and the record will be present there. 1678 */ 1679 if (error == 0 && (cursor->flags & HAMMER_CURSOR_MEMEOF) == 0) { 1680 KKASSERT(cursor->iprec); 1681 KKASSERT((cursor->flags & HAMMER_CURSOR_ATEMEM) == 0); 1682 if (!hammer_ip_iterate_mem_good(cursor, cursor->iprec)) { 1683 cursor->flags |= HAMMER_CURSOR_ATEMEM; 1684 if (tmprec) 1685 hammer_rel_mem_record(tmprec); 1686 goto again; 1687 } 1688 } 1689 if (tmprec) 1690 hammer_rel_mem_record(tmprec); 1691 1692 /* 1693 * Extract either the disk or memory record depending on their 1694 * relative position. 1695 */ 1696 error = 0; 1697 switch(cursor->flags & (HAMMER_CURSOR_ATEDISK | HAMMER_CURSOR_ATEMEM)) { 1698 case 0: 1699 /* 1700 * Both entries valid. Compare the entries and nominally 1701 * return the first one in the sort order. Numerous cases 1702 * require special attention, however. 1703 */ 1704 elm = &cursor->node->ondisk->elms[cursor->index]; 1705 r = hammer_btree_cmp(&elm->base, &cursor->iprec->leaf.base); 1706 1707 /* 1708 * If the two entries differ only by their key (-2/2) or 1709 * create_tid (-1/1), and are DATA records, we may have a 1710 * nominal match. We have to calculate the base file 1711 * offset of the data. 1712 */ 1713 if (r <= 2 && r >= -2 && r != 0 && 1714 cursor->ip->ino_data.obj_type == HAMMER_OBJTYPE_REGFILE && 1715 cursor->iprec->type == HAMMER_MEM_RECORD_DATA) { 1716 int64_t base1 = elm->leaf.base.key - elm->leaf.data_len; 1717 int64_t base2 = cursor->iprec->leaf.base.key - 1718 cursor->iprec->leaf.data_len; 1719 if (base1 == base2) 1720 r = 0; 1721 } 1722 1723 if (r < 0) { 1724 error = hammer_btree_extract(cursor, 1725 HAMMER_CURSOR_GET_LEAF); 1726 cursor->flags |= HAMMER_CURSOR_ATEDISK; 1727 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM; 1728 break; 1729 } 1730 1731 /* 1732 * If the entries match exactly the memory entry is either 1733 * an on-disk directory entry deletion or a bulk data 1734 * overwrite. If it is a directory entry deletion we eat 1735 * both entries. 1736 * 1737 * For the bulk-data overwrite case it is possible to have 1738 * visibility into both, which simply means the syncer 1739 * hasn't gotten around to doing the delete+insert sequence 1740 * on the B-Tree. Use the memory entry and throw away the 1741 * on-disk entry. 1742 * 1743 * If the in-memory record is not either of these we 1744 * probably caught the syncer while it was syncing it to 1745 * the media. Since we hold a shared lock on the cursor, 1746 * the in-memory record had better be marked deleted at 1747 * this point. 1748 */ 1749 if (r == 0) { 1750 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL) { 1751 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) { 1752 cursor->flags |= HAMMER_CURSOR_ATEDISK; 1753 cursor->flags |= HAMMER_CURSOR_ATEMEM; 1754 goto again; 1755 } 1756 } else if (cursor->iprec->type == HAMMER_MEM_RECORD_DATA) { 1757 if ((cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) { 1758 cursor->flags |= HAMMER_CURSOR_ATEDISK; 1759 } 1760 /* fall through to memory entry */ 1761 } else { 1762 panic("hammer_ip_next: duplicate mem/b-tree entry %p %d %08x", cursor->iprec, cursor->iprec->type, cursor->iprec->flags); 1763 cursor->flags |= HAMMER_CURSOR_ATEMEM; 1764 goto again; 1765 } 1766 } 1767 /* fall through to the memory entry */ 1768 case HAMMER_CURSOR_ATEDISK: 1769 /* 1770 * Only the memory entry is valid. 1771 */ 1772 cursor->leaf = &cursor->iprec->leaf; 1773 cursor->flags |= HAMMER_CURSOR_ATEMEM; 1774 cursor->flags |= HAMMER_CURSOR_LASTWASMEM; 1775 1776 /* 1777 * If the memory entry is an on-disk deletion we should have 1778 * also had found a B-Tree record. If the backend beat us 1779 * to it it would have interlocked the cursor and we should 1780 * have seen the in-memory record marked DELETED_FE. 1781 */ 1782 if (cursor->iprec->type == HAMMER_MEM_RECORD_DEL && 1783 (cursor->flags & HAMMER_CURSOR_DELETE_VISIBILITY) == 0) { 1784 panic("hammer_ip_next: del-on-disk with no b-tree entry iprec %p flags %08x", cursor->iprec, cursor->iprec->flags); 1785 } 1786 break; 1787 case HAMMER_CURSOR_ATEMEM: 1788 /* 1789 * Only the disk entry is valid 1790 */ 1791 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF); 1792 cursor->flags |= HAMMER_CURSOR_ATEDISK; 1793 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM; 1794 break; 1795 default: 1796 /* 1797 * Neither entry is valid 1798 * 1799 * XXX error not set properly 1800 */ 1801 cursor->flags &= ~HAMMER_CURSOR_LASTWASMEM; 1802 cursor->leaf = NULL; 1803 error = ENOENT; 1804 break; 1805 } 1806 return(error); 1807 } 1808 1809 /* 1810 * Resolve the cursor->data pointer for the current cursor position in 1811 * a merged iteration. 1812 */ 1813 int 1814 hammer_ip_resolve_data(hammer_cursor_t cursor) 1815 { 1816 hammer_record_t record; 1817 int error; 1818 1819 if (hammer_cursor_inmem(cursor)) { 1820 /* 1821 * The data associated with an in-memory record is usually 1822 * kmalloced, but reserve-ahead data records will have an 1823 * on-disk reference. 1824 * 1825 * NOTE: Reserve-ahead data records must be handled in the 1826 * context of the related high level buffer cache buffer 1827 * to interlock against async writes. 1828 */ 1829 record = cursor->iprec; 1830 cursor->data = record->data; 1831 error = 0; 1832 if (cursor->data == NULL) { 1833 KKASSERT(record->leaf.base.rec_type == 1834 HAMMER_RECTYPE_DATA); 1835 cursor->data = hammer_bread_ext(cursor->trans->hmp, 1836 record->leaf.data_offset, 1837 record->leaf.data_len, 1838 &error, 1839 &cursor->data_buffer); 1840 } 1841 } else { 1842 cursor->leaf = &cursor->node->ondisk->elms[cursor->index].leaf; 1843 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_DATA); 1844 } 1845 return(error); 1846 } 1847 1848 /* 1849 * Backend truncation / record replacement - delete records in range. 1850 * 1851 * Delete all records within the specified range for inode ip. In-memory 1852 * records still associated with the frontend are ignored. 1853 * 1854 * If truncating is non-zero in-memory records associated with the back-end 1855 * are ignored. If truncating is > 1 we can return EWOULDBLOCK. 1856 * 1857 * NOTES: 1858 * 1859 * * An unaligned range will cause new records to be added to cover 1860 * the edge cases. (XXX not implemented yet). 1861 * 1862 * * Replacement via reservations (see hammer_ip_sync_record_cursor()) 1863 * also do not deal with unaligned ranges. 1864 * 1865 * * ran_end is inclusive (e.g. 0,1023 instead of 0,1024). 1866 * 1867 * * Record keys for regular file data have to be special-cased since 1868 * they indicate the end of the range (key = base + bytes). 1869 * 1870 * * This function may be asked to delete ridiculously huge ranges, for 1871 * example if someone truncates or removes a 1TB regular file. We 1872 * must be very careful on restarts and we may have to stop w/ 1873 * EWOULDBLOCK to avoid blowing out the buffer cache. 1874 */ 1875 int 1876 hammer_ip_delete_range(hammer_cursor_t cursor, hammer_inode_t ip, 1877 int64_t ran_beg, int64_t ran_end, int truncating) 1878 { 1879 hammer_transaction_t trans = cursor->trans; 1880 hammer_btree_leaf_elm_t leaf; 1881 int error; 1882 int64_t off; 1883 int64_t tmp64; 1884 1885 #if 0 1886 kprintf("delete_range %p %016llx-%016llx\n", ip, ran_beg, ran_end); 1887 #endif 1888 1889 KKASSERT(trans->type == HAMMER_TRANS_FLS); 1890 retry: 1891 hammer_normalize_cursor(cursor); 1892 cursor->key_beg.localization = ip->obj_localization + 1893 HAMMER_LOCALIZE_MISC; 1894 cursor->key_beg.obj_id = ip->obj_id; 1895 cursor->key_beg.create_tid = 0; 1896 cursor->key_beg.delete_tid = 0; 1897 cursor->key_beg.obj_type = 0; 1898 1899 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) { 1900 cursor->key_beg.key = ran_beg; 1901 cursor->key_beg.rec_type = HAMMER_RECTYPE_DB; 1902 } else { 1903 /* 1904 * The key in the B-Tree is (base+bytes), so the first possible 1905 * matching key is ran_beg + 1. 1906 */ 1907 cursor->key_beg.key = ran_beg + 1; 1908 cursor->key_beg.rec_type = HAMMER_RECTYPE_DATA; 1909 } 1910 1911 cursor->key_end = cursor->key_beg; 1912 if (ip->ino_data.obj_type == HAMMER_OBJTYPE_DBFILE) { 1913 cursor->key_end.key = ran_end; 1914 } else { 1915 tmp64 = ran_end + MAXPHYS + 1; /* work around GCC-4 bug */ 1916 if (tmp64 < ran_end) 1917 cursor->key_end.key = 0x7FFFFFFFFFFFFFFFLL; 1918 else 1919 cursor->key_end.key = ran_end + MAXPHYS + 1; 1920 } 1921 1922 cursor->asof = ip->obj_asof; 1923 cursor->flags &= ~HAMMER_CURSOR_INITMASK; 1924 cursor->flags |= HAMMER_CURSOR_ASOF; 1925 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY; 1926 cursor->flags |= HAMMER_CURSOR_BACKEND; 1927 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE; 1928 1929 error = hammer_ip_first(cursor); 1930 1931 /* 1932 * Iterate through matching records and mark them as deleted. 1933 */ 1934 while (error == 0) { 1935 leaf = cursor->leaf; 1936 1937 KKASSERT(leaf->base.delete_tid == 0); 1938 KKASSERT(leaf->base.obj_id == ip->obj_id); 1939 1940 /* 1941 * There may be overlap cases for regular file data. Also 1942 * remember the key for a regular file record is (base + len), 1943 * NOT (base). 1944 * 1945 * Note that do to duplicates (mem & media) allowed by 1946 * DELETE_VISIBILITY, off can wind up less then ran_beg. 1947 */ 1948 if (leaf->base.rec_type == HAMMER_RECTYPE_DATA) { 1949 off = leaf->base.key - leaf->data_len; 1950 /* 1951 * Check the left edge case. We currently do not 1952 * split existing records. 1953 */ 1954 if (off < ran_beg && leaf->base.key > ran_beg) { 1955 panic("hammer left edge case %016llx %d\n", 1956 (long long)leaf->base.key, 1957 leaf->data_len); 1958 } 1959 1960 /* 1961 * Check the right edge case. Note that the 1962 * record can be completely out of bounds, which 1963 * terminates the search. 1964 * 1965 * base->key is exclusive of the right edge while 1966 * ran_end is inclusive of the right edge. The 1967 * (key - data_len) left boundary is inclusive. 1968 * 1969 * XXX theory-check this test at some point, are 1970 * we missing a + 1 somewhere? Note that ran_end 1971 * could overflow. 1972 */ 1973 if (leaf->base.key - 1 > ran_end) { 1974 if (leaf->base.key - leaf->data_len > ran_end) 1975 break; 1976 panic("hammer right edge case\n"); 1977 } 1978 } else { 1979 off = leaf->base.key; 1980 } 1981 1982 /* 1983 * Delete the record. When truncating we do not delete 1984 * in-memory (data) records because they represent data 1985 * written after the truncation. 1986 * 1987 * This will also physically destroy the B-Tree entry and 1988 * data if the retention policy dictates. The function 1989 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next() 1990 * to retest the new 'current' element. 1991 */ 1992 if (truncating == 0 || hammer_cursor_ondisk(cursor)) { 1993 error = hammer_ip_delete_record(cursor, ip, trans->tid); 1994 /* 1995 * If we have built up too many meta-buffers we risk 1996 * deadlocking the kernel and must stop. This can 1997 * occur when deleting ridiculously huge files. 1998 * sync_trunc_off is updated so the next cycle does 1999 * not re-iterate records we have already deleted. 2000 * 2001 * This is only done with formal truncations. 2002 */ 2003 if (truncating > 1 && error == 0 && 2004 hammer_flusher_meta_limit(ip->hmp)) { 2005 ip->sync_trunc_off = off; 2006 error = EWOULDBLOCK; 2007 } 2008 } 2009 if (error) 2010 break; 2011 ran_beg = off; /* for restart */ 2012 error = hammer_ip_next(cursor); 2013 } 2014 if (cursor->node) 2015 hammer_cache_node(&ip->cache[1], cursor->node); 2016 2017 if (error == EDEADLK) { 2018 hammer_done_cursor(cursor); 2019 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip); 2020 if (error == 0) 2021 goto retry; 2022 } 2023 if (error == ENOENT) 2024 error = 0; 2025 return(error); 2026 } 2027 2028 /* 2029 * This backend function deletes the specified record on-disk, similar to 2030 * delete_range but for a specific record. Unlike the exact deletions 2031 * used when deleting a directory entry this function uses an ASOF search 2032 * like delete_range. 2033 * 2034 * This function may be called with ip->obj_asof set for a slave snapshot, 2035 * so don't use it. We always delete non-historical records only. 2036 */ 2037 static int 2038 hammer_delete_general(hammer_cursor_t cursor, hammer_inode_t ip, 2039 hammer_btree_leaf_elm_t leaf) 2040 { 2041 hammer_transaction_t trans = cursor->trans; 2042 int error; 2043 2044 KKASSERT(trans->type == HAMMER_TRANS_FLS); 2045 retry: 2046 hammer_normalize_cursor(cursor); 2047 cursor->key_beg = leaf->base; 2048 cursor->asof = HAMMER_MAX_TID; 2049 cursor->flags &= ~HAMMER_CURSOR_INITMASK; 2050 cursor->flags |= HAMMER_CURSOR_ASOF; 2051 cursor->flags |= HAMMER_CURSOR_BACKEND; 2052 cursor->flags &= ~HAMMER_CURSOR_INSERT; 2053 2054 error = hammer_btree_lookup(cursor); 2055 if (error == 0) { 2056 error = hammer_ip_delete_record(cursor, ip, trans->tid); 2057 } 2058 if (error == EDEADLK) { 2059 hammer_done_cursor(cursor); 2060 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip); 2061 if (error == 0) 2062 goto retry; 2063 } 2064 return(error); 2065 } 2066 2067 /* 2068 * This function deletes remaining auxillary records when an inode is 2069 * being deleted. This function explicitly does not delete the 2070 * inode record, directory entry, data, or db records. Those must be 2071 * properly disposed of prior to this call. 2072 */ 2073 int 2074 hammer_ip_delete_clean(hammer_cursor_t cursor, hammer_inode_t ip, int *countp) 2075 { 2076 hammer_transaction_t trans = cursor->trans; 2077 hammer_btree_leaf_elm_t leaf; 2078 int error; 2079 2080 KKASSERT(trans->type == HAMMER_TRANS_FLS); 2081 retry: 2082 hammer_normalize_cursor(cursor); 2083 cursor->key_beg.localization = ip->obj_localization + 2084 HAMMER_LOCALIZE_MISC; 2085 cursor->key_beg.obj_id = ip->obj_id; 2086 cursor->key_beg.create_tid = 0; 2087 cursor->key_beg.delete_tid = 0; 2088 cursor->key_beg.obj_type = 0; 2089 cursor->key_beg.rec_type = HAMMER_RECTYPE_CLEAN_START; 2090 cursor->key_beg.key = HAMMER_MIN_KEY; 2091 2092 cursor->key_end = cursor->key_beg; 2093 cursor->key_end.rec_type = HAMMER_RECTYPE_MAX; 2094 cursor->key_end.key = HAMMER_MAX_KEY; 2095 2096 cursor->asof = ip->obj_asof; 2097 cursor->flags &= ~HAMMER_CURSOR_INITMASK; 2098 cursor->flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF; 2099 cursor->flags |= HAMMER_CURSOR_DELETE_VISIBILITY; 2100 cursor->flags |= HAMMER_CURSOR_BACKEND; 2101 2102 error = hammer_ip_first(cursor); 2103 2104 /* 2105 * Iterate through matching records and mark them as deleted. 2106 */ 2107 while (error == 0) { 2108 leaf = cursor->leaf; 2109 2110 KKASSERT(leaf->base.delete_tid == 0); 2111 2112 /* 2113 * Mark the record and B-Tree entry as deleted. This will 2114 * also physically delete the B-Tree entry, record, and 2115 * data if the retention policy dictates. The function 2116 * will set HAMMER_CURSOR_RETEST to cause hammer_ip_next() 2117 * to retest the new 'current' element. 2118 * 2119 * Directory entries (and delete-on-disk directory entries) 2120 * must be synced and cannot be deleted. 2121 */ 2122 error = hammer_ip_delete_record(cursor, ip, trans->tid); 2123 ++*countp; 2124 if (error) 2125 break; 2126 error = hammer_ip_next(cursor); 2127 } 2128 if (cursor->node) 2129 hammer_cache_node(&ip->cache[1], cursor->node); 2130 if (error == EDEADLK) { 2131 hammer_done_cursor(cursor); 2132 error = hammer_init_cursor(trans, cursor, &ip->cache[1], ip); 2133 if (error == 0) 2134 goto retry; 2135 } 2136 if (error == ENOENT) 2137 error = 0; 2138 return(error); 2139 } 2140 2141 /* 2142 * Delete the record at the current cursor. On success the cursor will 2143 * be positioned appropriately for an iteration but may no longer be at 2144 * a leaf node. 2145 * 2146 * This routine is only called from the backend. 2147 * 2148 * NOTE: This can return EDEADLK, requiring the caller to terminate the 2149 * cursor and retry. 2150 */ 2151 int 2152 hammer_ip_delete_record(hammer_cursor_t cursor, hammer_inode_t ip, 2153 hammer_tid_t tid) 2154 { 2155 hammer_record_t iprec; 2156 hammer_mount_t hmp; 2157 int error; 2158 2159 KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND); 2160 KKASSERT(tid != 0); 2161 hmp = cursor->node->hmp; 2162 2163 /* 2164 * In-memory (unsynchronized) records can simply be freed. This 2165 * only occurs in range iterations since all other records are 2166 * individually synchronized. Thus there should be no confusion with 2167 * the interlock. 2168 * 2169 * An in-memory record may be deleted before being committed to disk, 2170 * but could have been accessed in the mean time. The reservation 2171 * code will deal with the case. 2172 */ 2173 if (hammer_cursor_inmem(cursor)) { 2174 iprec = cursor->iprec; 2175 KKASSERT((iprec->flags & HAMMER_RECF_INTERLOCK_BE) ==0); 2176 iprec->flags |= HAMMER_RECF_DELETED_FE; 2177 iprec->flags |= HAMMER_RECF_DELETED_BE; 2178 KKASSERT(iprec->ip == ip); 2179 ++ip->rec_generation; 2180 return(0); 2181 } 2182 2183 /* 2184 * On-disk records are marked as deleted by updating their delete_tid. 2185 * This does not effect their position in the B-Tree (which is based 2186 * on their create_tid). 2187 * 2188 * Frontend B-Tree operations track inodes so we tell 2189 * hammer_delete_at_cursor() not to. 2190 */ 2191 error = hammer_btree_extract(cursor, HAMMER_CURSOR_GET_LEAF); 2192 2193 if (error == 0) { 2194 error = hammer_delete_at_cursor( 2195 cursor, 2196 HAMMER_DELETE_ADJUST | hammer_nohistory(ip), 2197 cursor->trans->tid, 2198 cursor->trans->time32, 2199 0, NULL); 2200 } 2201 return(error); 2202 } 2203 2204 /* 2205 * Delete the B-Tree element at the current cursor and do any necessary 2206 * mirror propagation. 2207 * 2208 * The cursor must be properly positioned for an iteration on return but 2209 * may be pointing at an internal element. 2210 * 2211 * An element can be un-deleted by passing a delete_tid of 0 with 2212 * HAMMER_DELETE_ADJUST. 2213 */ 2214 int 2215 hammer_delete_at_cursor(hammer_cursor_t cursor, int delete_flags, 2216 hammer_tid_t delete_tid, u_int32_t delete_ts, 2217 int track, int64_t *stat_bytes) 2218 { 2219 struct hammer_btree_leaf_elm save_leaf; 2220 hammer_transaction_t trans; 2221 hammer_btree_leaf_elm_t leaf; 2222 hammer_node_t node; 2223 hammer_btree_elm_t elm; 2224 hammer_off_t data_offset; 2225 int32_t data_len; 2226 u_int16_t rec_type; 2227 int error; 2228 int icount; 2229 int doprop; 2230 2231 error = hammer_cursor_upgrade(cursor); 2232 if (error) 2233 return(error); 2234 2235 trans = cursor->trans; 2236 node = cursor->node; 2237 elm = &node->ondisk->elms[cursor->index]; 2238 leaf = &elm->leaf; 2239 KKASSERT(elm->base.btype == HAMMER_BTREE_TYPE_RECORD); 2240 2241 hammer_sync_lock_sh(trans); 2242 doprop = 0; 2243 icount = 0; 2244 2245 /* 2246 * Adjust the delete_tid. Update the mirror_tid propagation field 2247 * as well. delete_tid can be 0 (undelete -- used by mirroring). 2248 */ 2249 if (delete_flags & HAMMER_DELETE_ADJUST) { 2250 if (elm->base.rec_type == HAMMER_RECTYPE_INODE) { 2251 if (elm->leaf.base.delete_tid == 0 && delete_tid) 2252 icount = -1; 2253 if (elm->leaf.base.delete_tid && delete_tid == 0) 2254 icount = 1; 2255 } 2256 2257 hammer_modify_node(trans, node, elm, sizeof(*elm)); 2258 elm->leaf.base.delete_tid = delete_tid; 2259 elm->leaf.delete_ts = delete_ts; 2260 hammer_modify_node_done(node); 2261 2262 if (elm->leaf.base.delete_tid > node->ondisk->mirror_tid) { 2263 hammer_modify_node_field(trans, node, mirror_tid); 2264 node->ondisk->mirror_tid = elm->leaf.base.delete_tid; 2265 hammer_modify_node_done(node); 2266 doprop = 1; 2267 if (hammer_debug_general & 0x0002) { 2268 kprintf("delete_at_cursor: propagate %016llx" 2269 " @%016llx\n", 2270 (long long)elm->leaf.base.delete_tid, 2271 (long long)node->node_offset); 2272 } 2273 } 2274 2275 /* 2276 * Adjust for the iteration. We have deleted the current 2277 * element and want to clear ATEDISK so the iteration does 2278 * not skip the element after, which now becomes the current 2279 * element. This element must be re-tested if doing an 2280 * iteration, which is handled by the RETEST flag. 2281 */ 2282 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) { 2283 cursor->flags |= HAMMER_CURSOR_RETEST; 2284 cursor->flags &= ~HAMMER_CURSOR_ATEDISK; 2285 } 2286 2287 /* 2288 * An on-disk record cannot have the same delete_tid 2289 * as its create_tid. In a chain of record updates 2290 * this could result in a duplicate record. 2291 */ 2292 KKASSERT(elm->leaf.base.delete_tid != 2293 elm->leaf.base.create_tid); 2294 } 2295 2296 /* 2297 * Destroy the B-Tree element if asked (typically if a nohistory 2298 * file or mount, or when called by the pruning code). 2299 * 2300 * Adjust the ATEDISK flag to properly support iterations. 2301 */ 2302 if (delete_flags & HAMMER_DELETE_DESTROY) { 2303 data_offset = elm->leaf.data_offset; 2304 data_len = elm->leaf.data_len; 2305 rec_type = elm->leaf.base.rec_type; 2306 if (doprop) { 2307 save_leaf = elm->leaf; 2308 leaf = &save_leaf; 2309 } 2310 if (elm->base.rec_type == HAMMER_RECTYPE_INODE && 2311 elm->leaf.base.delete_tid == 0) { 2312 icount = -1; 2313 } 2314 2315 error = hammer_btree_delete(cursor); 2316 if (error == 0) { 2317 /* 2318 * The deletion moves the next element (if any) to 2319 * the current element position. We must clear 2320 * ATEDISK so this element is not skipped and we 2321 * must set RETEST to force any iteration to re-test 2322 * the element. 2323 */ 2324 if ((cursor->flags & HAMMER_CURSOR_DISKEOF) == 0) { 2325 cursor->flags |= HAMMER_CURSOR_RETEST; 2326 cursor->flags &= ~HAMMER_CURSOR_ATEDISK; 2327 } 2328 } 2329 if (error == 0) { 2330 switch(data_offset & HAMMER_OFF_ZONE_MASK) { 2331 case HAMMER_ZONE_LARGE_DATA: 2332 case HAMMER_ZONE_SMALL_DATA: 2333 case HAMMER_ZONE_META: 2334 hammer_blockmap_free(trans, 2335 data_offset, data_len); 2336 break; 2337 default: 2338 break; 2339 } 2340 } 2341 } 2342 2343 /* 2344 * Track inode count and next_tid. This is used by the mirroring 2345 * and PFS code. icount can be negative, zero, or positive. 2346 */ 2347 if (error == 0 && track) { 2348 if (icount) { 2349 hammer_modify_volume_field(trans, trans->rootvol, 2350 vol0_stat_inodes); 2351 trans->rootvol->ondisk->vol0_stat_inodes += icount; 2352 hammer_modify_volume_done(trans->rootvol); 2353 } 2354 if (trans->rootvol->ondisk->vol0_next_tid < delete_tid) { 2355 hammer_modify_volume(trans, trans->rootvol, NULL, 0); 2356 trans->rootvol->ondisk->vol0_next_tid = delete_tid; 2357 hammer_modify_volume_done(trans->rootvol); 2358 } 2359 } 2360 2361 /* 2362 * mirror_tid propagation occurs if the node's mirror_tid had to be 2363 * updated while adjusting the delete_tid. 2364 * 2365 * This occurs when deleting even in nohistory mode, but does not 2366 * occur when pruning an already-deleted node. 2367 * 2368 * cursor->ip is NULL when called from the pruning, mirroring, 2369 * and pfs code. If non-NULL propagation will be conditionalized 2370 * on whether the PFS is in no-history mode or not. 2371 */ 2372 if (doprop) { 2373 if (cursor->ip) 2374 hammer_btree_do_propagation(cursor, cursor->ip->pfsm, leaf); 2375 else 2376 hammer_btree_do_propagation(cursor, NULL, leaf); 2377 } 2378 hammer_sync_unlock(trans); 2379 return (error); 2380 } 2381 2382 /* 2383 * Determine whether we can remove a directory. This routine checks whether 2384 * a directory is empty or not and enforces flush connectivity. 2385 * 2386 * Flush connectivity requires that we block if the target directory is 2387 * currently flushing, otherwise it may not end up in the same flush group. 2388 * 2389 * Returns 0 on success, ENOTEMPTY or EDEADLK (or other errors) on failure. 2390 */ 2391 int 2392 hammer_ip_check_directory_empty(hammer_transaction_t trans, hammer_inode_t ip) 2393 { 2394 struct hammer_cursor cursor; 2395 int error; 2396 2397 /* 2398 * Check directory empty 2399 */ 2400 hammer_init_cursor(trans, &cursor, &ip->cache[1], ip); 2401 2402 cursor.key_beg.localization = ip->obj_localization + 2403 hammer_dir_localization(ip); 2404 cursor.key_beg.obj_id = ip->obj_id; 2405 cursor.key_beg.create_tid = 0; 2406 cursor.key_beg.delete_tid = 0; 2407 cursor.key_beg.obj_type = 0; 2408 cursor.key_beg.rec_type = HAMMER_RECTYPE_INODE + 1; 2409 cursor.key_beg.key = HAMMER_MIN_KEY; 2410 2411 cursor.key_end = cursor.key_beg; 2412 cursor.key_end.rec_type = 0xFFFF; 2413 cursor.key_end.key = HAMMER_MAX_KEY; 2414 2415 cursor.asof = ip->obj_asof; 2416 cursor.flags |= HAMMER_CURSOR_END_INCLUSIVE | HAMMER_CURSOR_ASOF; 2417 2418 error = hammer_ip_first(&cursor); 2419 if (error == ENOENT) 2420 error = 0; 2421 else if (error == 0) 2422 error = ENOTEMPTY; 2423 hammer_done_cursor(&cursor); 2424 return(error); 2425 } 2426 2427