1 /* 2 * Copyright (c) 2007-2008 The DragonFly Project. All rights reserved. 3 * 4 * This code is derived from software contributed to The DragonFly Project 5 * by Matthew Dillon <dillon@backplane.com> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * 3. Neither the name of The DragonFly Project nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific, prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 24 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 25 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 26 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 27 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 28 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 29 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 30 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 31 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * $DragonFly: src/sys/vfs/hammer/hammer_io.c,v 1.51 2008/07/18 00:19:53 dillon Exp $ 35 */ 36 /* 37 * IO Primitives and buffer cache management 38 * 39 * All major data-tracking structures in HAMMER contain a struct hammer_io 40 * which is used to manage their backing store. We use filesystem buffers 41 * for backing store and we leave them passively associated with their 42 * HAMMER structures. 43 * 44 * If the kernel tries to destroy a passively associated buf which we cannot 45 * yet let go we set B_LOCKED in the buffer and then actively released it 46 * later when we can. 47 */ 48 49 #include "hammer.h" 50 #include <sys/fcntl.h> 51 #include <sys/nlookup.h> 52 #include <sys/buf.h> 53 #include <sys/buf2.h> 54 55 static void hammer_io_modify(hammer_io_t io, int count); 56 static void hammer_io_deallocate(struct buf *bp); 57 #if 0 58 static void hammer_io_direct_read_complete(struct bio *nbio); 59 #endif 60 static void hammer_io_direct_write_complete(struct bio *nbio); 61 static int hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data); 62 static void hammer_io_set_modlist(struct hammer_io *io); 63 64 /* 65 * Initialize a new, already-zero'd hammer_io structure, or reinitialize 66 * an existing hammer_io structure which may have switched to another type. 67 */ 68 void 69 hammer_io_init(hammer_io_t io, hammer_mount_t hmp, enum hammer_io_type type) 70 { 71 io->hmp = hmp; 72 io->type = type; 73 } 74 75 /* 76 * Helper routine to disassociate a buffer cache buffer from an I/O 77 * structure. The buffer is unlocked and marked appropriate for reclamation. 78 * 79 * The io may have 0 or 1 references depending on who called us. The 80 * caller is responsible for dealing with the refs. 81 * 82 * This call can only be made when no action is required on the buffer. 83 * 84 * The caller must own the buffer and the IO must indicate that the 85 * structure no longer owns it (io.released != 0). 86 */ 87 static void 88 hammer_io_disassociate(hammer_io_structure_t iou) 89 { 90 struct buf *bp = iou->io.bp; 91 92 KKASSERT(iou->io.released); 93 KKASSERT(iou->io.modified == 0); 94 KKASSERT(LIST_FIRST(&bp->b_dep) == (void *)iou); 95 buf_dep_init(bp); 96 iou->io.bp = NULL; 97 98 /* 99 * If the buffer was locked someone wanted to get rid of it. 100 */ 101 if (bp->b_flags & B_LOCKED) { 102 --hammer_count_io_locked; 103 bp->b_flags &= ~B_LOCKED; 104 } 105 if (iou->io.reclaim) { 106 bp->b_flags |= B_NOCACHE|B_RELBUF; 107 iou->io.reclaim = 0; 108 } 109 110 switch(iou->io.type) { 111 case HAMMER_STRUCTURE_VOLUME: 112 iou->volume.ondisk = NULL; 113 break; 114 case HAMMER_STRUCTURE_DATA_BUFFER: 115 case HAMMER_STRUCTURE_META_BUFFER: 116 case HAMMER_STRUCTURE_UNDO_BUFFER: 117 iou->buffer.ondisk = NULL; 118 break; 119 } 120 } 121 122 /* 123 * Wait for any physical IO to complete 124 */ 125 void 126 hammer_io_wait(hammer_io_t io) 127 { 128 if (io->running) { 129 crit_enter(); 130 tsleep_interlock(io); 131 io->waiting = 1; 132 for (;;) { 133 tsleep(io, 0, "hmrflw", 0); 134 if (io->running == 0) 135 break; 136 tsleep_interlock(io); 137 io->waiting = 1; 138 if (io->running == 0) 139 break; 140 } 141 crit_exit(); 142 } 143 } 144 145 /* 146 * Wait for all hammer_io-initated write I/O's to complete. This is not 147 * supposed to count direct I/O's but some can leak through (for 148 * non-full-sized direct I/Os). 149 */ 150 void 151 hammer_io_wait_all(hammer_mount_t hmp, const char *ident) 152 { 153 crit_enter(); 154 while (hmp->io_running_space) 155 tsleep(&hmp->io_running_space, 0, ident, 0); 156 crit_exit(); 157 } 158 159 #define HAMMER_MAXRA 4 160 161 /* 162 * Load bp for a HAMMER structure. The io must be exclusively locked by 163 * the caller. 164 * 165 * This routine is mostly used on meta-data and small-data blocks. Generally 166 * speaking HAMMER assumes some locality of reference and will cluster 167 * a 64K read. 168 * 169 * Note that clustering occurs at the device layer, not the logical layer. 170 * If the buffers do not apply to the current operation they may apply to 171 * some other. 172 */ 173 int 174 hammer_io_read(struct vnode *devvp, struct hammer_io *io, hammer_off_t limit) 175 { 176 struct buf *bp; 177 int error; 178 179 if ((bp = io->bp) == NULL) { 180 hammer_count_io_running_read += io->bytes; 181 if (hammer_cluster_enable) { 182 error = cluster_read(devvp, limit, 183 io->offset, io->bytes, 184 HAMMER_CLUSTER_SIZE, 185 HAMMER_CLUSTER_BUFS, &io->bp); 186 } else { 187 error = bread(devvp, io->offset, io->bytes, &io->bp); 188 } 189 hammer_stats_disk_read += io->bytes; 190 hammer_count_io_running_read -= io->bytes; 191 192 /* 193 * The code generally assumes b_ops/b_dep has been set-up, 194 * even if we error out here. 195 */ 196 bp = io->bp; 197 bp->b_ops = &hammer_bioops; 198 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 199 LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node); 200 BUF_KERNPROC(bp); 201 KKASSERT(io->modified == 0); 202 KKASSERT(io->running == 0); 203 KKASSERT(io->waiting == 0); 204 io->released = 0; /* we hold an active lock on bp */ 205 } else { 206 error = 0; 207 } 208 return(error); 209 } 210 211 /* 212 * Similar to hammer_io_read() but returns a zero'd out buffer instead. 213 * Must be called with the IO exclusively locked. 214 * 215 * vfs_bio_clrbuf() is kinda nasty, enforce serialization against background 216 * I/O by forcing the buffer to not be in a released state before calling 217 * it. 218 * 219 * This function will also mark the IO as modified but it will not 220 * increment the modify_refs count. 221 */ 222 int 223 hammer_io_new(struct vnode *devvp, struct hammer_io *io) 224 { 225 struct buf *bp; 226 227 if ((bp = io->bp) == NULL) { 228 io->bp = getblk(devvp, io->offset, io->bytes, 0, 0); 229 bp = io->bp; 230 bp->b_ops = &hammer_bioops; 231 KKASSERT(LIST_FIRST(&bp->b_dep) == NULL); 232 LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node); 233 io->released = 0; 234 KKASSERT(io->running == 0); 235 io->waiting = 0; 236 BUF_KERNPROC(bp); 237 } else { 238 if (io->released) { 239 regetblk(bp); 240 BUF_KERNPROC(bp); 241 io->released = 0; 242 } 243 } 244 hammer_io_modify(io, 0); 245 vfs_bio_clrbuf(bp); 246 return(0); 247 } 248 249 /* 250 * Remove potential device level aliases against buffers managed by high level 251 * vnodes. 252 */ 253 void 254 hammer_io_inval(hammer_volume_t volume, hammer_off_t zone2_offset) 255 { 256 hammer_io_structure_t iou; 257 hammer_off_t phys_offset; 258 struct buf *bp; 259 260 phys_offset = volume->ondisk->vol_buf_beg + 261 (zone2_offset & HAMMER_OFF_SHORT_MASK); 262 crit_enter(); 263 if ((bp = findblk(volume->devvp, phys_offset)) != NULL) { 264 bp = getblk(volume->devvp, phys_offset, bp->b_bufsize, 0, 0); 265 if ((iou = (void *)LIST_FIRST(&bp->b_dep)) != NULL) { 266 hammer_io_clear_modify(&iou->io, 1); 267 bundirty(bp); 268 iou->io.reclaim = 1; 269 hammer_io_deallocate(bp); 270 } else { 271 KKASSERT((bp->b_flags & B_LOCKED) == 0); 272 bundirty(bp); 273 bp->b_flags |= B_NOCACHE|B_RELBUF; 274 } 275 brelse(bp); 276 } 277 crit_exit(); 278 } 279 280 /* 281 * This routine is called on the last reference to a hammer structure. 282 * The io is usually interlocked with io.loading and io.refs must be 1. 283 * 284 * This routine may return a non-NULL bp to the caller for dispoal. Disposal 285 * simply means the caller finishes decrementing the ref-count on the 286 * IO structure then brelse()'s the bp. The bp may or may not still be 287 * passively associated with the IO. 288 * 289 * The only requirement here is that modified meta-data and volume-header 290 * buffer may NOT be disassociated from the IO structure, and consequently 291 * we also leave such buffers actively associated with the IO if they already 292 * are (since the kernel can't do anything with them anyway). Only the 293 * flusher is allowed to write such buffers out. Modified pure-data and 294 * undo buffers are returned to the kernel but left passively associated 295 * so we can track when the kernel writes the bp out. 296 */ 297 struct buf * 298 hammer_io_release(struct hammer_io *io, int flush) 299 { 300 union hammer_io_structure *iou = (void *)io; 301 struct buf *bp; 302 303 if ((bp = io->bp) == NULL) 304 return(NULL); 305 306 /* 307 * Try to flush a dirty IO to disk if asked to by the 308 * caller or if the kernel tried to flush the buffer in the past. 309 * 310 * Kernel-initiated flushes are only allowed for pure-data buffers. 311 * meta-data and volume buffers can only be flushed explicitly 312 * by HAMMER. 313 */ 314 if (io->modified) { 315 if (flush) { 316 hammer_io_flush(io); 317 } else if (bp->b_flags & B_LOCKED) { 318 switch(io->type) { 319 case HAMMER_STRUCTURE_DATA_BUFFER: 320 case HAMMER_STRUCTURE_UNDO_BUFFER: 321 hammer_io_flush(io); 322 break; 323 default: 324 break; 325 } 326 } /* else no explicit request to flush the buffer */ 327 } 328 329 /* 330 * Wait for the IO to complete if asked to. 331 */ 332 if (io->waitdep && io->running) { 333 hammer_io_wait(io); 334 } 335 336 /* 337 * Return control of the buffer to the kernel (with the provisio 338 * that our bioops can override kernel decisions with regards to 339 * the buffer). 340 */ 341 if ((flush || io->reclaim) && io->modified == 0 && io->running == 0) { 342 /* 343 * Always disassociate the bp if an explicit flush 344 * was requested and the IO completed with no error 345 * (so unmount can really clean up the structure). 346 */ 347 if (io->released) { 348 regetblk(bp); 349 BUF_KERNPROC(bp); 350 } else { 351 io->released = 1; 352 } 353 hammer_io_disassociate((hammer_io_structure_t)io); 354 /* return the bp */ 355 } else if (io->modified) { 356 /* 357 * Only certain IO types can be released to the kernel if 358 * the buffer has been modified. 359 * 360 * volume and meta-data IO types may only be explicitly 361 * flushed by HAMMER. 362 */ 363 switch(io->type) { 364 case HAMMER_STRUCTURE_DATA_BUFFER: 365 case HAMMER_STRUCTURE_UNDO_BUFFER: 366 if (io->released == 0) { 367 io->released = 1; 368 bdwrite(bp); 369 } 370 break; 371 default: 372 break; 373 } 374 bp = NULL; /* bp left associated */ 375 } else if (io->released == 0) { 376 /* 377 * Clean buffers can be generally released to the kernel. 378 * We leave the bp passively associated with the HAMMER 379 * structure and use bioops to disconnect it later on 380 * if the kernel wants to discard the buffer. 381 * 382 * We can steal the structure's ownership of the bp. 383 */ 384 io->released = 1; 385 if (bp->b_flags & B_LOCKED) { 386 hammer_io_disassociate(iou); 387 /* return the bp */ 388 } else { 389 if (io->reclaim) { 390 hammer_io_disassociate(iou); 391 /* return the bp */ 392 } else { 393 /* return the bp (bp passively associated) */ 394 } 395 } 396 } else { 397 /* 398 * A released buffer is passively associate with our 399 * hammer_io structure. The kernel cannot destroy it 400 * without making a bioops call. If the kernel (B_LOCKED) 401 * or we (reclaim) requested that the buffer be destroyed 402 * we destroy it, otherwise we do a quick get/release to 403 * reset its position in the kernel's LRU list. 404 * 405 * Leaving the buffer passively associated allows us to 406 * use the kernel's LRU buffer flushing mechanisms rather 407 * then rolling our own. 408 * 409 * XXX there are two ways of doing this. We can re-acquire 410 * and passively release to reset the LRU, or not. 411 */ 412 if (io->running == 0) { 413 regetblk(bp); 414 if ((bp->b_flags & B_LOCKED) || io->reclaim) { 415 hammer_io_disassociate(iou); 416 /* return the bp */ 417 } else { 418 /* return the bp (bp passively associated) */ 419 } 420 } else { 421 /* 422 * bp is left passively associated but we do not 423 * try to reacquire it. Interactions with the io 424 * structure will occur on completion of the bp's 425 * I/O. 426 */ 427 bp = NULL; 428 } 429 } 430 return(bp); 431 } 432 433 /* 434 * This routine is called with a locked IO when a flush is desired and 435 * no other references to the structure exists other then ours. This 436 * routine is ONLY called when HAMMER believes it is safe to flush a 437 * potentially modified buffer out. 438 */ 439 void 440 hammer_io_flush(struct hammer_io *io) 441 { 442 struct buf *bp; 443 444 /* 445 * Degenerate case - nothing to flush if nothing is dirty. 446 */ 447 if (io->modified == 0) { 448 return; 449 } 450 451 KKASSERT(io->bp); 452 KKASSERT(io->modify_refs <= 0); 453 454 /* 455 * Acquire ownership of the bp, particularly before we clear our 456 * modified flag. 457 * 458 * We are going to bawrite() this bp. Don't leave a window where 459 * io->released is set, we actually own the bp rather then our 460 * buffer. 461 */ 462 bp = io->bp; 463 if (io->released) { 464 regetblk(bp); 465 /* BUF_KERNPROC(io->bp); */ 466 /* io->released = 0; */ 467 KKASSERT(io->released); 468 KKASSERT(io->bp == bp); 469 } 470 io->released = 1; 471 472 /* 473 * Acquire exclusive access to the bp and then clear the modified 474 * state of the buffer prior to issuing I/O to interlock any 475 * modifications made while the I/O is in progress. This shouldn't 476 * happen anyway but losing data would be worse. The modified bit 477 * will be rechecked after the IO completes. 478 * 479 * NOTE: This call also finalizes the buffer's content (inval == 0). 480 * 481 * This is only legal when lock.refs == 1 (otherwise we might clear 482 * the modified bit while there are still users of the cluster 483 * modifying the data). 484 * 485 * Do this before potentially blocking so any attempt to modify the 486 * ondisk while we are blocked blocks waiting for us. 487 */ 488 hammer_io_clear_modify(io, 0); 489 490 /* 491 * Transfer ownership to the kernel and initiate I/O. 492 */ 493 io->running = 1; 494 io->hmp->io_running_space += io->bytes; 495 hammer_count_io_running_write += io->bytes; 496 bawrite(bp); 497 } 498 499 /************************************************************************ 500 * BUFFER DIRTYING * 501 ************************************************************************ 502 * 503 * These routines deal with dependancies created when IO buffers get 504 * modified. The caller must call hammer_modify_*() on a referenced 505 * HAMMER structure prior to modifying its on-disk data. 506 * 507 * Any intent to modify an IO buffer acquires the related bp and imposes 508 * various write ordering dependancies. 509 */ 510 511 /* 512 * Mark a HAMMER structure as undergoing modification. Meta-data buffers 513 * are locked until the flusher can deal with them, pure data buffers 514 * can be written out. 515 */ 516 static 517 void 518 hammer_io_modify(hammer_io_t io, int count) 519 { 520 /* 521 * io->modify_refs must be >= 0 522 */ 523 while (io->modify_refs < 0) { 524 io->waitmod = 1; 525 tsleep(io, 0, "hmrmod", 0); 526 } 527 528 /* 529 * Shortcut if nothing to do. 530 */ 531 KKASSERT(io->lock.refs != 0 && io->bp != NULL); 532 io->modify_refs += count; 533 if (io->modified && io->released == 0) 534 return; 535 536 hammer_lock_ex(&io->lock); 537 if (io->modified == 0) { 538 hammer_io_set_modlist(io); 539 io->modified = 1; 540 } 541 if (io->released) { 542 regetblk(io->bp); 543 BUF_KERNPROC(io->bp); 544 io->released = 0; 545 KKASSERT(io->modified != 0); 546 } 547 hammer_unlock(&io->lock); 548 } 549 550 static __inline 551 void 552 hammer_io_modify_done(hammer_io_t io) 553 { 554 KKASSERT(io->modify_refs > 0); 555 --io->modify_refs; 556 if (io->modify_refs == 0 && io->waitmod) { 557 io->waitmod = 0; 558 wakeup(io); 559 } 560 } 561 562 void 563 hammer_io_write_interlock(hammer_io_t io) 564 { 565 while (io->modify_refs != 0) { 566 io->waitmod = 1; 567 tsleep(io, 0, "hmrmod", 0); 568 } 569 io->modify_refs = -1; 570 } 571 572 void 573 hammer_io_done_interlock(hammer_io_t io) 574 { 575 KKASSERT(io->modify_refs == -1); 576 io->modify_refs = 0; 577 if (io->waitmod) { 578 io->waitmod = 0; 579 wakeup(io); 580 } 581 } 582 583 /* 584 * Caller intends to modify a volume's ondisk structure. 585 * 586 * This is only allowed if we are the flusher or we have a ref on the 587 * sync_lock. 588 */ 589 void 590 hammer_modify_volume(hammer_transaction_t trans, hammer_volume_t volume, 591 void *base, int len) 592 { 593 KKASSERT (trans == NULL || trans->sync_lock_refs > 0); 594 595 hammer_io_modify(&volume->io, 1); 596 if (len) { 597 intptr_t rel_offset = (intptr_t)base - (intptr_t)volume->ondisk; 598 KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0); 599 hammer_generate_undo(trans, &volume->io, 600 HAMMER_ENCODE_RAW_VOLUME(volume->vol_no, rel_offset), 601 base, len); 602 } 603 } 604 605 /* 606 * Caller intends to modify a buffer's ondisk structure. 607 * 608 * This is only allowed if we are the flusher or we have a ref on the 609 * sync_lock. 610 */ 611 void 612 hammer_modify_buffer(hammer_transaction_t trans, hammer_buffer_t buffer, 613 void *base, int len) 614 { 615 KKASSERT (trans == NULL || trans->sync_lock_refs > 0); 616 617 hammer_io_modify(&buffer->io, 1); 618 if (len) { 619 intptr_t rel_offset = (intptr_t)base - (intptr_t)buffer->ondisk; 620 KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0); 621 hammer_generate_undo(trans, &buffer->io, 622 buffer->zone2_offset + rel_offset, 623 base, len); 624 } 625 } 626 627 void 628 hammer_modify_volume_done(hammer_volume_t volume) 629 { 630 hammer_io_modify_done(&volume->io); 631 } 632 633 void 634 hammer_modify_buffer_done(hammer_buffer_t buffer) 635 { 636 hammer_io_modify_done(&buffer->io); 637 } 638 639 /* 640 * Mark an entity as not being dirty any more and finalize any 641 * delayed adjustments to the buffer. 642 * 643 * Delayed adjustments are an important performance enhancement, allowing 644 * us to avoid recalculating B-Tree node CRCs over and over again when 645 * making bulk-modifications to the B-Tree. 646 * 647 * If inval is non-zero delayed adjustments are ignored. 648 */ 649 void 650 hammer_io_clear_modify(struct hammer_io *io, int inval) 651 { 652 if (io->modified == 0) 653 return; 654 655 /* 656 * Take us off the mod-list and clear the modified bit. 657 */ 658 KKASSERT(io->mod_list != NULL); 659 if (io->mod_list == &io->hmp->volu_list || 660 io->mod_list == &io->hmp->meta_list) { 661 io->hmp->locked_dirty_space -= io->bytes; 662 hammer_count_dirtybufspace -= io->bytes; 663 } 664 TAILQ_REMOVE(io->mod_list, io, mod_entry); 665 io->mod_list = NULL; 666 io->modified = 0; 667 668 /* 669 * If this bit is not set there are no delayed adjustments. 670 */ 671 if (io->gencrc == 0) 672 return; 673 io->gencrc = 0; 674 675 /* 676 * Finalize requested CRCs. The NEEDSCRC flag also holds a reference 677 * on the node (& underlying buffer). Release the node after clearing 678 * the flag. 679 */ 680 if (io->type == HAMMER_STRUCTURE_META_BUFFER) { 681 hammer_buffer_t buffer = (void *)io; 682 hammer_node_t node; 683 684 restart: 685 TAILQ_FOREACH(node, &buffer->clist, entry) { 686 if ((node->flags & HAMMER_NODE_NEEDSCRC) == 0) 687 continue; 688 node->flags &= ~HAMMER_NODE_NEEDSCRC; 689 KKASSERT(node->ondisk); 690 if (inval == 0) 691 node->ondisk->crc = crc32(&node->ondisk->crc + 1, HAMMER_BTREE_CRCSIZE); 692 hammer_rel_node(node); 693 goto restart; 694 } 695 } 696 697 } 698 699 /* 700 * Clear the IO's modify list. Even though the IO is no longer modified 701 * it may still be on the lose_list. This routine is called just before 702 * the governing hammer_buffer is destroyed. 703 */ 704 void 705 hammer_io_clear_modlist(struct hammer_io *io) 706 { 707 KKASSERT(io->modified == 0); 708 if (io->mod_list) { 709 crit_enter(); /* biodone race against list */ 710 KKASSERT(io->mod_list == &io->hmp->lose_list); 711 TAILQ_REMOVE(io->mod_list, io, mod_entry); 712 io->mod_list = NULL; 713 crit_exit(); 714 } 715 } 716 717 static void 718 hammer_io_set_modlist(struct hammer_io *io) 719 { 720 struct hammer_mount *hmp = io->hmp; 721 722 KKASSERT(io->mod_list == NULL); 723 724 switch(io->type) { 725 case HAMMER_STRUCTURE_VOLUME: 726 io->mod_list = &hmp->volu_list; 727 hmp->locked_dirty_space += io->bytes; 728 hammer_count_dirtybufspace += io->bytes; 729 break; 730 case HAMMER_STRUCTURE_META_BUFFER: 731 io->mod_list = &hmp->meta_list; 732 hmp->locked_dirty_space += io->bytes; 733 hammer_count_dirtybufspace += io->bytes; 734 break; 735 case HAMMER_STRUCTURE_UNDO_BUFFER: 736 io->mod_list = &hmp->undo_list; 737 break; 738 case HAMMER_STRUCTURE_DATA_BUFFER: 739 io->mod_list = &hmp->data_list; 740 break; 741 } 742 TAILQ_INSERT_TAIL(io->mod_list, io, mod_entry); 743 } 744 745 /************************************************************************ 746 * HAMMER_BIOOPS * 747 ************************************************************************ 748 * 749 */ 750 751 /* 752 * Pre-IO initiation kernel callback - cluster build only 753 */ 754 static void 755 hammer_io_start(struct buf *bp) 756 { 757 } 758 759 /* 760 * Post-IO completion kernel callback - MAY BE CALLED FROM INTERRUPT! 761 * 762 * NOTE: HAMMER may modify a buffer after initiating I/O. The modified bit 763 * may also be set if we were marking a cluster header open. Only remove 764 * our dependancy if the modified bit is clear. 765 */ 766 static void 767 hammer_io_complete(struct buf *bp) 768 { 769 union hammer_io_structure *iou = (void *)LIST_FIRST(&bp->b_dep); 770 771 KKASSERT(iou->io.released == 1); 772 773 /* 774 * Deal with people waiting for I/O to drain 775 */ 776 if (iou->io.running) { 777 /* 778 * Deal with critical write errors. Once a critical error 779 * has been flagged in hmp the UNDO FIFO will not be updated. 780 * That way crash recover will give us a consistent 781 * filesystem. 782 * 783 * Because of this we can throw away failed UNDO buffers. If 784 * we throw away META or DATA buffers we risk corrupting 785 * the now read-only version of the filesystem visible to 786 * the user. Clear B_ERROR so the buffer is not re-dirtied 787 * by the kernel and ref the io so it doesn't get thrown 788 * away. 789 */ 790 if (bp->b_flags & B_ERROR) { 791 hammer_critical_error(iou->io.hmp, NULL, bp->b_error, 792 "while flushing meta-data"); 793 switch(iou->io.type) { 794 case HAMMER_STRUCTURE_UNDO_BUFFER: 795 break; 796 default: 797 if (iou->io.ioerror == 0) { 798 iou->io.ioerror = 1; 799 if (iou->io.lock.refs == 0) 800 ++hammer_count_refedbufs; 801 hammer_ref(&iou->io.lock); 802 } 803 break; 804 } 805 bp->b_flags &= ~B_ERROR; 806 bundirty(bp); 807 #if 0 808 hammer_io_set_modlist(&iou->io); 809 iou->io.modified = 1; 810 #endif 811 } 812 hammer_stats_disk_write += iou->io.bytes; 813 hammer_count_io_running_write -= iou->io.bytes; 814 iou->io.hmp->io_running_space -= iou->io.bytes; 815 if (iou->io.hmp->io_running_space == 0) 816 wakeup(&iou->io.hmp->io_running_space); 817 KKASSERT(iou->io.hmp->io_running_space >= 0); 818 iou->io.running = 0; 819 } else { 820 hammer_stats_disk_read += iou->io.bytes; 821 } 822 823 if (iou->io.waiting) { 824 iou->io.waiting = 0; 825 wakeup(iou); 826 } 827 828 /* 829 * If B_LOCKED is set someone wanted to deallocate the bp at some 830 * point, do it now if refs has become zero. 831 */ 832 if ((bp->b_flags & B_LOCKED) && iou->io.lock.refs == 0) { 833 KKASSERT(iou->io.modified == 0); 834 --hammer_count_io_locked; 835 bp->b_flags &= ~B_LOCKED; 836 hammer_io_deallocate(bp); 837 /* structure may be dead now */ 838 } 839 } 840 841 /* 842 * Callback from kernel when it wishes to deallocate a passively 843 * associated structure. This mostly occurs with clean buffers 844 * but it may be possible for a holding structure to be marked dirty 845 * while its buffer is passively associated. The caller owns the bp. 846 * 847 * If we cannot disassociate we set B_LOCKED to prevent the buffer 848 * from getting reused. 849 * 850 * WARNING: Because this can be called directly by getnewbuf we cannot 851 * recurse into the tree. If a bp cannot be immediately disassociated 852 * our only recourse is to set B_LOCKED. 853 * 854 * WARNING: This may be called from an interrupt via hammer_io_complete() 855 */ 856 static void 857 hammer_io_deallocate(struct buf *bp) 858 { 859 hammer_io_structure_t iou = (void *)LIST_FIRST(&bp->b_dep); 860 861 KKASSERT((bp->b_flags & B_LOCKED) == 0 && iou->io.running == 0); 862 if (iou->io.lock.refs > 0 || iou->io.modified) { 863 /* 864 * It is not legal to disassociate a modified buffer. This 865 * case really shouldn't ever occur. 866 */ 867 bp->b_flags |= B_LOCKED; 868 ++hammer_count_io_locked; 869 } else { 870 /* 871 * Disassociate the BP. If the io has no refs left we 872 * have to add it to the loose list. 873 */ 874 hammer_io_disassociate(iou); 875 if (iou->io.type != HAMMER_STRUCTURE_VOLUME) { 876 KKASSERT(iou->io.bp == NULL); 877 KKASSERT(iou->io.mod_list == NULL); 878 crit_enter(); /* biodone race against list */ 879 iou->io.mod_list = &iou->io.hmp->lose_list; 880 TAILQ_INSERT_TAIL(iou->io.mod_list, &iou->io, mod_entry); 881 crit_exit(); 882 } 883 } 884 } 885 886 static int 887 hammer_io_fsync(struct vnode *vp) 888 { 889 return(0); 890 } 891 892 /* 893 * NOTE: will not be called unless we tell the kernel about the 894 * bioops. Unused... we use the mount's VFS_SYNC instead. 895 */ 896 static int 897 hammer_io_sync(struct mount *mp) 898 { 899 return(0); 900 } 901 902 static void 903 hammer_io_movedeps(struct buf *bp1, struct buf *bp2) 904 { 905 } 906 907 /* 908 * I/O pre-check for reading and writing. HAMMER only uses this for 909 * B_CACHE buffers so checkread just shouldn't happen, but if it does 910 * allow it. 911 * 912 * Writing is a different case. We don't want the kernel to try to write 913 * out a buffer that HAMMER may be modifying passively or which has a 914 * dependancy. In addition, kernel-demanded writes can only proceed for 915 * certain types of buffers (i.e. UNDO and DATA types). Other dirty 916 * buffer types can only be explicitly written by the flusher. 917 * 918 * checkwrite will only be called for bdwrite()n buffers. If we return 919 * success the kernel is guaranteed to initiate the buffer write. 920 */ 921 static int 922 hammer_io_checkread(struct buf *bp) 923 { 924 return(0); 925 } 926 927 static int 928 hammer_io_checkwrite(struct buf *bp) 929 { 930 hammer_io_t io = (void *)LIST_FIRST(&bp->b_dep); 931 932 /* 933 * This shouldn't happen under normal operation. 934 */ 935 if (io->type == HAMMER_STRUCTURE_VOLUME || 936 io->type == HAMMER_STRUCTURE_META_BUFFER) { 937 if (!panicstr) 938 panic("hammer_io_checkwrite: illegal buffer"); 939 if ((bp->b_flags & B_LOCKED) == 0) { 940 bp->b_flags |= B_LOCKED; 941 ++hammer_count_io_locked; 942 } 943 return(1); 944 } 945 946 /* 947 * We can only clear the modified bit if the IO is not currently 948 * undergoing modification. Otherwise we may miss changes. 949 */ 950 if (io->modify_refs == 0 && io->modified) 951 hammer_io_clear_modify(io, 0); 952 953 /* 954 * The kernel is going to start the IO, set io->running. 955 */ 956 KKASSERT(io->running == 0); 957 io->running = 1; 958 io->hmp->io_running_space += io->bytes; 959 hammer_count_io_running_write += io->bytes; 960 return(0); 961 } 962 963 /* 964 * Return non-zero if we wish to delay the kernel's attempt to flush 965 * this buffer to disk. 966 */ 967 static int 968 hammer_io_countdeps(struct buf *bp, int n) 969 { 970 return(0); 971 } 972 973 struct bio_ops hammer_bioops = { 974 .io_start = hammer_io_start, 975 .io_complete = hammer_io_complete, 976 .io_deallocate = hammer_io_deallocate, 977 .io_fsync = hammer_io_fsync, 978 .io_sync = hammer_io_sync, 979 .io_movedeps = hammer_io_movedeps, 980 .io_countdeps = hammer_io_countdeps, 981 .io_checkread = hammer_io_checkread, 982 .io_checkwrite = hammer_io_checkwrite, 983 }; 984 985 /************************************************************************ 986 * DIRECT IO OPS * 987 ************************************************************************ 988 * 989 * These functions operate directly on the buffer cache buffer associated 990 * with a front-end vnode rather then a back-end device vnode. 991 */ 992 993 /* 994 * Read a buffer associated with a front-end vnode directly from the 995 * disk media. The bio may be issued asynchronously. If leaf is non-NULL 996 * we validate the CRC. 997 * 998 * A second-level bio already resolved to a zone-2 offset (typically by 999 * the BMAP code, or by a previous hammer_io_direct_write()), is passed. 1000 * 1001 * We must check for the presence of a HAMMER buffer to handle the case 1002 * where the reblocker has rewritten the data (which it does via the HAMMER 1003 * buffer system, not via the high-level vnode buffer cache), but not yet 1004 * committed the buffer to the media. 1005 */ 1006 int 1007 hammer_io_direct_read(hammer_mount_t hmp, struct bio *bio, 1008 hammer_btree_leaf_elm_t leaf) 1009 { 1010 hammer_off_t buf_offset; 1011 hammer_off_t zone2_offset; 1012 hammer_volume_t volume; 1013 struct buf *bp; 1014 struct bio *nbio; 1015 int vol_no; 1016 int error; 1017 1018 buf_offset = bio->bio_offset; 1019 KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) == 1020 HAMMER_ZONE_LARGE_DATA); 1021 1022 /* 1023 * The buffer cache may have an aliased buffer (the reblocker can 1024 * write them). If it does we have to sync any dirty data before 1025 * we can build our direct-read. This is a non-critical code path. 1026 */ 1027 bp = bio->bio_buf; 1028 hammer_sync_buffers(hmp, buf_offset, bp->b_bufsize); 1029 1030 /* 1031 * Resolve to a zone-2 offset. The conversion just requires 1032 * munging the top 4 bits but we want to abstract it anyway 1033 * so the blockmap code can verify the zone assignment. 1034 */ 1035 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error); 1036 if (error) 1037 goto done; 1038 KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) == 1039 HAMMER_ZONE_RAW_BUFFER); 1040 1041 /* 1042 * Resolve volume and raw-offset for 3rd level bio. The 1043 * offset will be specific to the volume. 1044 */ 1045 vol_no = HAMMER_VOL_DECODE(zone2_offset); 1046 volume = hammer_get_volume(hmp, vol_no, &error); 1047 if (error == 0 && zone2_offset >= volume->maxbuf_off) 1048 error = EIO; 1049 1050 if (error == 0) { 1051 zone2_offset &= HAMMER_OFF_SHORT_MASK; 1052 1053 nbio = push_bio(bio); 1054 nbio->bio_offset = volume->ondisk->vol_buf_beg + 1055 zone2_offset; 1056 #if 0 1057 /* 1058 * XXX disabled - our CRC check doesn't work if the OS 1059 * does bogus_page replacement on the direct-read. 1060 */ 1061 if (leaf && hammer_verify_data) { 1062 nbio->bio_done = hammer_io_direct_read_complete; 1063 nbio->bio_caller_info1.uvalue32 = leaf->data_crc; 1064 } 1065 #endif 1066 hammer_stats_disk_read += bp->b_bufsize; 1067 vn_strategy(volume->devvp, nbio); 1068 } 1069 hammer_rel_volume(volume, 0); 1070 done: 1071 if (error) { 1072 kprintf("hammer_direct_read: failed @ %016llx\n", 1073 zone2_offset); 1074 bp->b_error = error; 1075 bp->b_flags |= B_ERROR; 1076 biodone(bio); 1077 } 1078 return(error); 1079 } 1080 1081 #if 0 1082 /* 1083 * On completion of the BIO this callback must check the data CRC 1084 * and chain to the previous bio. 1085 */ 1086 static 1087 void 1088 hammer_io_direct_read_complete(struct bio *nbio) 1089 { 1090 struct bio *obio; 1091 struct buf *bp; 1092 u_int32_t rec_crc = nbio->bio_caller_info1.uvalue32; 1093 1094 bp = nbio->bio_buf; 1095 if (crc32(bp->b_data, bp->b_bufsize) != rec_crc) { 1096 kprintf("HAMMER: data_crc error @%016llx/%d\n", 1097 nbio->bio_offset, bp->b_bufsize); 1098 if (hammer_debug_debug) 1099 Debugger(""); 1100 bp->b_flags |= B_ERROR; 1101 bp->b_error = EIO; 1102 } 1103 obio = pop_bio(nbio); 1104 biodone(obio); 1105 } 1106 #endif 1107 1108 /* 1109 * Write a buffer associated with a front-end vnode directly to the 1110 * disk media. The bio may be issued asynchronously. 1111 * 1112 * The BIO is associated with the specified record and RECF_DIRECT_IO 1113 * is set. 1114 */ 1115 int 1116 hammer_io_direct_write(hammer_mount_t hmp, hammer_record_t record, 1117 struct bio *bio) 1118 { 1119 hammer_btree_leaf_elm_t leaf = &record->leaf; 1120 hammer_off_t buf_offset; 1121 hammer_off_t zone2_offset; 1122 hammer_volume_t volume; 1123 hammer_buffer_t buffer; 1124 struct buf *bp; 1125 struct bio *nbio; 1126 char *ptr; 1127 int vol_no; 1128 int error; 1129 1130 buf_offset = leaf->data_offset; 1131 1132 KKASSERT(buf_offset > HAMMER_ZONE_BTREE); 1133 KKASSERT(bio->bio_buf->b_cmd == BUF_CMD_WRITE); 1134 1135 if ((buf_offset & HAMMER_BUFMASK) == 0 && 1136 leaf->data_len >= HAMMER_BUFSIZE) { 1137 /* 1138 * We are using the vnode's bio to write directly to the 1139 * media, any hammer_buffer at the same zone-X offset will 1140 * now have stale data. 1141 */ 1142 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error); 1143 vol_no = HAMMER_VOL_DECODE(zone2_offset); 1144 volume = hammer_get_volume(hmp, vol_no, &error); 1145 1146 if (error == 0 && zone2_offset >= volume->maxbuf_off) 1147 error = EIO; 1148 if (error == 0) { 1149 bp = bio->bio_buf; 1150 KKASSERT((bp->b_bufsize & HAMMER_BUFMASK) == 0); 1151 hammer_del_buffers(hmp, buf_offset, 1152 zone2_offset, bp->b_bufsize); 1153 1154 /* 1155 * Second level bio - cached zone2 offset. 1156 * 1157 * (We can put our bio_done function in either the 1158 * 2nd or 3rd level). 1159 */ 1160 nbio = push_bio(bio); 1161 nbio->bio_offset = zone2_offset; 1162 nbio->bio_done = hammer_io_direct_write_complete; 1163 nbio->bio_caller_info1.ptr = record; 1164 record->flags |= HAMMER_RECF_DIRECT_IO; 1165 1166 /* 1167 * Third level bio - raw offset specific to the 1168 * correct volume. 1169 */ 1170 zone2_offset &= HAMMER_OFF_SHORT_MASK; 1171 nbio = push_bio(nbio); 1172 nbio->bio_offset = volume->ondisk->vol_buf_beg + 1173 zone2_offset; 1174 hammer_stats_disk_write += bp->b_bufsize; 1175 vn_strategy(volume->devvp, nbio); 1176 } 1177 hammer_rel_volume(volume, 0); 1178 } else { 1179 /* 1180 * Must fit in a standard HAMMER buffer. In this case all 1181 * consumers use the HAMMER buffer system and RECF_DIRECT_IO 1182 * does not need to be set-up. 1183 */ 1184 KKASSERT(((buf_offset ^ (buf_offset + leaf->data_len - 1)) & ~HAMMER_BUFMASK64) == 0); 1185 buffer = NULL; 1186 ptr = hammer_bread(hmp, buf_offset, &error, &buffer); 1187 if (error == 0) { 1188 bp = bio->bio_buf; 1189 bp->b_flags |= B_AGE; 1190 hammer_io_modify(&buffer->io, 1); 1191 bcopy(bp->b_data, ptr, leaf->data_len); 1192 hammer_io_modify_done(&buffer->io); 1193 hammer_rel_buffer(buffer, 0); 1194 bp->b_resid = 0; 1195 biodone(bio); 1196 } 1197 } 1198 if (error) { 1199 kprintf("hammer_direct_write: failed @ %016llx\n", 1200 leaf->data_offset); 1201 bp = bio->bio_buf; 1202 bp->b_resid = 0; 1203 bp->b_error = EIO; 1204 bp->b_flags |= B_ERROR; 1205 biodone(bio); 1206 } 1207 return(error); 1208 } 1209 1210 /* 1211 * On completion of the BIO this callback must disconnect 1212 * it from the hammer_record and chain to the previous bio. 1213 * 1214 * An I/O error forces the mount to read-only. Data buffers 1215 * are not B_LOCKED like meta-data buffers are, so we have to 1216 * throw the buffer away to prevent the kernel from retrying. 1217 */ 1218 static 1219 void 1220 hammer_io_direct_write_complete(struct bio *nbio) 1221 { 1222 struct bio *obio; 1223 hammer_record_t record = nbio->bio_caller_info1.ptr; 1224 1225 obio = pop_bio(nbio); 1226 if (obio->bio_buf->b_flags & B_ERROR) { 1227 hammer_critical_error(record->ip->hmp, record->ip, 1228 obio->bio_buf->b_error, 1229 "while writing bulk data"); 1230 obio->bio_buf->b_flags |= B_INVAL; 1231 } 1232 biodone(obio); 1233 KKASSERT(record != NULL && (record->flags & HAMMER_RECF_DIRECT_IO)); 1234 record->flags &= ~HAMMER_RECF_DIRECT_IO; 1235 if (record->flags & HAMMER_RECF_DIRECT_WAIT) { 1236 record->flags &= ~HAMMER_RECF_DIRECT_WAIT; 1237 wakeup(&record->flags); 1238 } 1239 } 1240 1241 1242 /* 1243 * This is called before a record is either committed to the B-Tree 1244 * or destroyed, to resolve any associated direct-IO. We must 1245 * ensure that the data is available on-media to other consumers 1246 * such as the reblocker or mirroring code. 1247 * 1248 * Note that other consumers might access the data via the block 1249 * device's buffer cache and not the high level vnode's buffer cache. 1250 */ 1251 void 1252 hammer_io_direct_wait(hammer_record_t record) 1253 { 1254 crit_enter(); 1255 while (record->flags & HAMMER_RECF_DIRECT_IO) { 1256 record->flags |= HAMMER_RECF_DIRECT_WAIT; 1257 tsleep(&record->flags, 0, "hmdiow", 0); 1258 } 1259 crit_exit(); 1260 } 1261 1262 /* 1263 * This is called to remove the second-level cached zone-2 offset from 1264 * frontend buffer cache buffers, now stale due to a data relocation. 1265 * These offsets are generated by cluster_read() via VOP_BMAP, or directly 1266 * by hammer_vop_strategy_read(). 1267 * 1268 * This is rather nasty because here we have something like the reblocker 1269 * scanning the raw B-Tree with no held references on anything, really, 1270 * other then a shared lock on the B-Tree node, and we have to access the 1271 * frontend's buffer cache to check for and clean out the association. 1272 * Specifically, if the reblocker is moving data on the disk, these cached 1273 * offsets will become invalid. 1274 * 1275 * Only data record types associated with the large-data zone are subject 1276 * to direct-io and need to be checked. 1277 * 1278 */ 1279 void 1280 hammer_io_direct_uncache(hammer_mount_t hmp, hammer_btree_leaf_elm_t leaf) 1281 { 1282 struct hammer_inode_info iinfo; 1283 int zone; 1284 1285 if (leaf->base.rec_type != HAMMER_RECTYPE_DATA) 1286 return; 1287 zone = HAMMER_ZONE_DECODE(leaf->data_offset); 1288 if (zone != HAMMER_ZONE_LARGE_DATA_INDEX) 1289 return; 1290 iinfo.obj_id = leaf->base.obj_id; 1291 iinfo.obj_asof = 0; /* unused */ 1292 iinfo.obj_localization = leaf->base.localization & 1293 HAMMER_LOCALIZE_PSEUDOFS_MASK; 1294 iinfo.u.leaf = leaf; 1295 hammer_scan_inode_snapshots(hmp, &iinfo, 1296 hammer_io_direct_uncache_callback, 1297 leaf); 1298 } 1299 1300 static int 1301 hammer_io_direct_uncache_callback(hammer_inode_t ip, void *data) 1302 { 1303 hammer_inode_info_t iinfo = data; 1304 hammer_off_t data_offset; 1305 hammer_off_t file_offset; 1306 struct vnode *vp; 1307 struct buf *bp; 1308 int blksize; 1309 1310 if (ip->vp == NULL) 1311 return(0); 1312 data_offset = iinfo->u.leaf->data_offset; 1313 file_offset = iinfo->u.leaf->base.key - iinfo->u.leaf->data_len; 1314 blksize = iinfo->u.leaf->data_len; 1315 KKASSERT((blksize & HAMMER_BUFMASK) == 0); 1316 1317 hammer_ref(&ip->lock); 1318 if (hammer_get_vnode(ip, &vp) == 0) { 1319 if ((bp = findblk(ip->vp, file_offset)) != NULL && 1320 bp->b_bio2.bio_offset != NOOFFSET) { 1321 bp = getblk(ip->vp, file_offset, blksize, 0, 0); 1322 bp->b_bio2.bio_offset = NOOFFSET; 1323 brelse(bp); 1324 } 1325 vput(vp); 1326 } 1327 hammer_rel_inode(ip, 0); 1328 return(0); 1329 } 1330 1331