xref: /dflybsd-src/sys/vfs/hammer/hammer_io.c (revision 4a2796f3cdd35eef5ac2bad49c22e2ee53bcea04)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_io.c,v 1.44 2008/06/20 05:38:26 dillon Exp $
35  */
36 /*
37  * IO Primitives and buffer cache management
38  *
39  * All major data-tracking structures in HAMMER contain a struct hammer_io
40  * which is used to manage their backing store.  We use filesystem buffers
41  * for backing store and we leave them passively associated with their
42  * HAMMER structures.
43  *
44  * If the kernel tries to destroy a passively associated buf which we cannot
45  * yet let go we set B_LOCKED in the buffer and then actively released it
46  * later when we can.
47  */
48 
49 #include "hammer.h"
50 #include <sys/fcntl.h>
51 #include <sys/nlookup.h>
52 #include <sys/buf.h>
53 #include <sys/buf2.h>
54 
55 static void hammer_io_modify(hammer_io_t io, int count);
56 static void hammer_io_deallocate(struct buf *bp);
57 
58 /*
59  * Initialize a new, already-zero'd hammer_io structure, or reinitialize
60  * an existing hammer_io structure which may have switched to another type.
61  */
62 void
63 hammer_io_init(hammer_io_t io, hammer_mount_t hmp, enum hammer_io_type type)
64 {
65 	io->hmp = hmp;
66 	io->type = type;
67 }
68 
69 /*
70  * Helper routine to disassociate a buffer cache buffer from an I/O
71  * structure.
72  *
73  * The io may have 0 or 1 references depending on who called us.  The
74  * caller is responsible for dealing with the refs.
75  *
76  * This call can only be made when no action is required on the buffer.
77  * HAMMER must own the buffer (released == 0) since we mess around with it.
78  */
79 static void
80 hammer_io_disassociate(hammer_io_structure_t iou, int elseit)
81 {
82 	struct buf *bp = iou->io.bp;
83 
84 	KKASSERT(iou->io.modified == 0);
85 	KKASSERT(LIST_FIRST(&bp->b_dep) == (void *)iou);
86 	buf_dep_init(bp);
87 	iou->io.bp = NULL;
88 
89 	/*
90 	 * If the buffer was locked someone wanted to get rid of it.
91 	 */
92 	if (bp->b_flags & B_LOCKED) {
93 		--hammer_count_io_locked;
94 		bp->b_flags &= ~B_LOCKED;
95 	}
96 
97 	/*
98 	 * elseit is 0 when called from the kernel path when the io
99 	 * might have no references.
100 	 */
101 	if (elseit) {
102 		KKASSERT(iou->io.released == 0);
103 		iou->io.released = 1;
104 		if (iou->io.reclaim)
105 			bp->b_flags |= B_NOCACHE|B_RELBUF;
106 		bqrelse(bp);
107 	} else {
108 		KKASSERT(iou->io.released);
109 	}
110 	iou->io.reclaim = 0;
111 
112 	switch(iou->io.type) {
113 	case HAMMER_STRUCTURE_VOLUME:
114 		iou->volume.ondisk = NULL;
115 		break;
116 	case HAMMER_STRUCTURE_DATA_BUFFER:
117 	case HAMMER_STRUCTURE_META_BUFFER:
118 	case HAMMER_STRUCTURE_UNDO_BUFFER:
119 		iou->buffer.ondisk = NULL;
120 		break;
121 	}
122 }
123 
124 /*
125  * Wait for any physical IO to complete
126  */
127 static void
128 hammer_io_wait(hammer_io_t io)
129 {
130 	if (io->running) {
131 		crit_enter();
132 		tsleep_interlock(io);
133 		io->waiting = 1;
134 		for (;;) {
135 			tsleep(io, 0, "hmrflw", 0);
136 			if (io->running == 0)
137 				break;
138 			tsleep_interlock(io);
139 			io->waiting = 1;
140 			if (io->running == 0)
141 				break;
142 		}
143 		crit_exit();
144 	}
145 }
146 
147 /*
148  * Wait for all hammer_io-initated write I/O's to complete.  This is not
149  * supposed to count direct I/O's but some can leak through (for
150  * non-full-sized direct I/Os).
151  */
152 void
153 hammer_io_wait_all(hammer_mount_t hmp, const char *ident)
154 {
155 	crit_enter();
156 	while (hmp->io_running_count)
157 		tsleep(&hmp->io_running_count, 0, ident, 0);
158 	crit_exit();
159 }
160 
161 #define HAMMER_MAXRA	4
162 
163 /*
164  * Load bp for a HAMMER structure.  The io must be exclusively locked by
165  * the caller.
166  *
167  * This routine is mostly used on meta-data and small-data blocks.  Generally
168  * speaking HAMMER assumes some locality of reference and will cluster
169  * a 64K read.
170  *
171  * Note that clustering occurs at the device layer, not the logical layer.
172  * If the buffers do not apply to the current operation they may apply to
173  * some other.
174  */
175 int
176 hammer_io_read(struct vnode *devvp, struct hammer_io *io, hammer_off_t limit)
177 {
178 	struct buf *bp;
179 	int   error;
180 
181 	if ((bp = io->bp) == NULL) {
182 		++hammer_count_io_running_read;
183 #if 1
184 		error = cluster_read(devvp, limit, io->offset, io->bytes,
185 				     HAMMER_CLUSTER_SIZE,
186 				     HAMMER_CLUSTER_BUFS, &io->bp);
187 #else
188 		error = bread(devvp, io->offset, io->bytes, &io->bp);
189 #endif
190 		--hammer_count_io_running_read;
191 		if (error == 0) {
192 			bp = io->bp;
193 			bp->b_ops = &hammer_bioops;
194 			KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
195 			LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
196 			BUF_KERNPROC(bp);
197 		}
198 		KKASSERT(io->modified == 0);
199 		KKASSERT(io->running == 0);
200 		KKASSERT(io->waiting == 0);
201 		io->released = 0;	/* we hold an active lock on bp */
202 	} else {
203 		error = 0;
204 	}
205 	return(error);
206 }
207 
208 /*
209  * Similar to hammer_io_read() but returns a zero'd out buffer instead.
210  * Must be called with the IO exclusively locked.
211  *
212  * vfs_bio_clrbuf() is kinda nasty, enforce serialization against background
213  * I/O by forcing the buffer to not be in a released state before calling
214  * it.
215  *
216  * This function will also mark the IO as modified but it will not
217  * increment the modify_refs count.
218  */
219 int
220 hammer_io_new(struct vnode *devvp, struct hammer_io *io)
221 {
222 	struct buf *bp;
223 
224 	if ((bp = io->bp) == NULL) {
225 		io->bp = getblk(devvp, io->offset, io->bytes, 0, 0);
226 		bp = io->bp;
227 		bp->b_ops = &hammer_bioops;
228 		KKASSERT(LIST_FIRST(&bp->b_dep) == NULL);
229 		LIST_INSERT_HEAD(&bp->b_dep, &io->worklist, node);
230 		io->released = 0;
231 		KKASSERT(io->running == 0);
232 		io->waiting = 0;
233 		BUF_KERNPROC(bp);
234 	} else {
235 		if (io->released) {
236 			regetblk(bp);
237 			BUF_KERNPROC(bp);
238 			io->released = 0;
239 		}
240 	}
241 	hammer_io_modify(io, 0);
242 	vfs_bio_clrbuf(bp);
243 	return(0);
244 }
245 
246 /*
247  * Remove potential device level aliases against buffers managed by high level
248  * vnodes.
249  */
250 void
251 hammer_io_inval(hammer_volume_t volume, hammer_off_t zone2_offset)
252 {
253 	hammer_io_structure_t iou;
254 	hammer_off_t phys_offset;
255 	struct buf *bp;
256 
257 	phys_offset = volume->ondisk->vol_buf_beg +
258 		      (zone2_offset & HAMMER_OFF_SHORT_MASK);
259 	crit_enter();
260 	if ((bp = findblk(volume->devvp, phys_offset)) != NULL) {
261 		bp = getblk(volume->devvp, phys_offset, bp->b_bufsize, 0, 0);
262 		if ((iou = (void *)LIST_FIRST(&bp->b_dep)) != NULL) {
263 			hammer_io_clear_modify(&iou->io, 1);
264 			bundirty(bp);
265 			iou->io.reclaim = 1;
266 			hammer_io_deallocate(bp);
267 		} else {
268 			KKASSERT((bp->b_flags & B_LOCKED) == 0);
269 			bundirty(bp);
270 			bp->b_flags |= B_NOCACHE|B_RELBUF;
271 			brelse(bp);
272 		}
273 	}
274 	crit_exit();
275 }
276 
277 /*
278  * This routine is called on the last reference to a hammer structure.
279  * The io is usually locked exclusively (but may not be during unmount).
280  *
281  * This routine is responsible for the disposition of the buffer cache
282  * buffer backing the IO.  Only pure-data and undo buffers can be handed
283  * back to the kernel.  Volume and meta-data buffers must be retained
284  * by HAMMER until explicitly flushed by the backend.
285  */
286 void
287 hammer_io_release(struct hammer_io *io, int flush)
288 {
289 	union hammer_io_structure *iou = (void *)io;
290 	struct buf *bp;
291 
292 	if ((bp = io->bp) == NULL)
293 		return;
294 
295 	/*
296 	 * Try to flush a dirty IO to disk if asked to by the
297 	 * caller or if the kernel tried to flush the buffer in the past.
298 	 *
299 	 * Kernel-initiated flushes are only allowed for pure-data buffers.
300 	 * meta-data and volume buffers can only be flushed explicitly
301 	 * by HAMMER.
302 	 */
303 	if (io->modified) {
304 		if (flush) {
305 			hammer_io_flush(io);
306 		} else if (bp->b_flags & B_LOCKED) {
307 			switch(io->type) {
308 			case HAMMER_STRUCTURE_DATA_BUFFER:
309 			case HAMMER_STRUCTURE_UNDO_BUFFER:
310 				hammer_io_flush(io);
311 				break;
312 			default:
313 				break;
314 			}
315 		} /* else no explicit request to flush the buffer */
316 	}
317 
318 	/*
319 	 * Wait for the IO to complete if asked to.
320 	 */
321 	if (io->waitdep && io->running) {
322 		hammer_io_wait(io);
323 	}
324 
325 	/*
326 	 * Return control of the buffer to the kernel (with the provisio
327 	 * that our bioops can override kernel decisions with regards to
328 	 * the buffer).
329 	 */
330 	if ((flush || io->reclaim) && io->modified == 0 && io->running == 0) {
331 		/*
332 		 * Always disassociate the bp if an explicit flush
333 		 * was requested and the IO completed with no error
334 		 * (so unmount can really clean up the structure).
335 		 */
336 		if (io->released) {
337 			regetblk(bp);
338 			BUF_KERNPROC(bp);
339 			io->released = 0;
340 		}
341 		hammer_io_disassociate((hammer_io_structure_t)io, 1);
342 	} else if (io->modified) {
343 		/*
344 		 * Only certain IO types can be released to the kernel.
345 		 * volume and meta-data IO types must be explicitly flushed
346 		 * by HAMMER.
347 		 */
348 		switch(io->type) {
349 		case HAMMER_STRUCTURE_DATA_BUFFER:
350 		case HAMMER_STRUCTURE_UNDO_BUFFER:
351 			if (io->released == 0) {
352 				io->released = 1;
353 				bdwrite(bp);
354 			}
355 			break;
356 		default:
357 			break;
358 		}
359 	} else if (io->released == 0) {
360 		/*
361 		 * Clean buffers can be generally released to the kernel.
362 		 * We leave the bp passively associated with the HAMMER
363 		 * structure and use bioops to disconnect it later on
364 		 * if the kernel wants to discard the buffer.
365 		 */
366 		if (bp->b_flags & B_LOCKED) {
367 			hammer_io_disassociate(iou, 1);
368 		} else {
369 			if (io->reclaim) {
370 				hammer_io_disassociate(iou, 1);
371 			} else {
372 				io->released = 1;
373 				bqrelse(bp);
374 			}
375 		}
376 	} else {
377 		/*
378 		 * A released buffer is passively associate with our
379 		 * hammer_io structure.  The kernel cannot destroy it
380 		 * without making a bioops call.  If the kernel (B_LOCKED)
381 		 * or we (reclaim) requested that the buffer be destroyed
382 		 * we destroy it, otherwise we do a quick get/release to
383 		 * reset its position in the kernel's LRU list.
384 		 *
385 		 * Leaving the buffer passively associated allows us to
386 		 * use the kernel's LRU buffer flushing mechanisms rather
387 		 * then rolling our own.
388 		 *
389 		 * XXX there are two ways of doing this.  We can re-acquire
390 		 * and passively release to reset the LRU, or not.
391 		 */
392 		crit_enter();
393 		if (io->running == 0) {
394 			regetblk(bp);
395 			if ((bp->b_flags & B_LOCKED) || io->reclaim) {
396 				/*regetblk(bp);*/
397 				io->released = 0;
398 				hammer_io_disassociate(iou, 1);
399 			} else {
400 				bqrelse(bp);
401 			}
402 		}
403 		crit_exit();
404 	}
405 }
406 
407 /*
408  * This routine is called with a locked IO when a flush is desired and
409  * no other references to the structure exists other then ours.  This
410  * routine is ONLY called when HAMMER believes it is safe to flush a
411  * potentially modified buffer out.
412  */
413 void
414 hammer_io_flush(struct hammer_io *io)
415 {
416 	struct buf *bp;
417 
418 	/*
419 	 * Degenerate case - nothing to flush if nothing is dirty.
420 	 */
421 	if (io->modified == 0) {
422 		return;
423 	}
424 
425 	KKASSERT(io->bp);
426 	KKASSERT(io->modify_refs <= 0);
427 
428 	/*
429 	 * Acquire ownership of the bp, particularly before we clear our
430 	 * modified flag.
431 	 *
432 	 * We are going to bawrite() this bp.  Don't leave a window where
433 	 * io->released is set, we actually own the bp rather then our
434 	 * buffer.
435 	 */
436 	bp = io->bp;
437 	if (io->released) {
438 		regetblk(bp);
439 		/* BUF_KERNPROC(io->bp); */
440 		/* io->released = 0; */
441 		KKASSERT(io->released);
442 		KKASSERT(io->bp == bp);
443 	}
444 	io->released = 1;
445 
446 	/*
447 	 * Acquire exclusive access to the bp and then clear the modified
448 	 * state of the buffer prior to issuing I/O to interlock any
449 	 * modifications made while the I/O is in progress.  This shouldn't
450 	 * happen anyway but losing data would be worse.  The modified bit
451 	 * will be rechecked after the IO completes.
452 	 *
453 	 * NOTE: This call also finalizes the buffer's content (inval == 0).
454 	 *
455 	 * This is only legal when lock.refs == 1 (otherwise we might clear
456 	 * the modified bit while there are still users of the cluster
457 	 * modifying the data).
458 	 *
459 	 * Do this before potentially blocking so any attempt to modify the
460 	 * ondisk while we are blocked blocks waiting for us.
461 	 */
462 	hammer_io_clear_modify(io, 0);
463 
464 	/*
465 	 * Transfer ownership to the kernel and initiate I/O.
466 	 */
467 	io->running = 1;
468 	++io->hmp->io_running_count;
469 	++hammer_count_io_running_write;
470 	bawrite(bp);
471 }
472 
473 /************************************************************************
474  *				BUFFER DIRTYING				*
475  ************************************************************************
476  *
477  * These routines deal with dependancies created when IO buffers get
478  * modified.  The caller must call hammer_modify_*() on a referenced
479  * HAMMER structure prior to modifying its on-disk data.
480  *
481  * Any intent to modify an IO buffer acquires the related bp and imposes
482  * various write ordering dependancies.
483  */
484 
485 /*
486  * Mark a HAMMER structure as undergoing modification.  Meta-data buffers
487  * are locked until the flusher can deal with them, pure data buffers
488  * can be written out.
489  */
490 static
491 void
492 hammer_io_modify(hammer_io_t io, int count)
493 {
494 	struct hammer_mount *hmp = io->hmp;
495 
496 	/*
497 	 * io->modify_refs must be >= 0
498 	 */
499 	while (io->modify_refs < 0) {
500 		io->waitmod = 1;
501 		tsleep(io, 0, "hmrmod", 0);
502 	}
503 
504 	/*
505 	 * Shortcut if nothing to do.
506 	 */
507 	KKASSERT(io->lock.refs != 0 && io->bp != NULL);
508 	io->modify_refs += count;
509 	if (io->modified && io->released == 0)
510 		return;
511 
512 	hammer_lock_ex(&io->lock);
513 	if (io->modified == 0) {
514 		KKASSERT(io->mod_list == NULL);
515 		switch(io->type) {
516 		case HAMMER_STRUCTURE_VOLUME:
517 			io->mod_list = &hmp->volu_list;
518 			++hmp->locked_dirty_count;
519 			++hammer_count_dirtybufs;
520 			break;
521 		case HAMMER_STRUCTURE_META_BUFFER:
522 			io->mod_list = &hmp->meta_list;
523 			++hmp->locked_dirty_count;
524 			++hammer_count_dirtybufs;
525 			break;
526 		case HAMMER_STRUCTURE_UNDO_BUFFER:
527 			io->mod_list = &hmp->undo_list;
528 			break;
529 		case HAMMER_STRUCTURE_DATA_BUFFER:
530 			io->mod_list = &hmp->data_list;
531 			break;
532 		}
533 		TAILQ_INSERT_TAIL(io->mod_list, io, mod_entry);
534 		io->modified = 1;
535 	}
536 	if (io->released) {
537 		regetblk(io->bp);
538 		BUF_KERNPROC(io->bp);
539 		io->released = 0;
540 		KKASSERT(io->modified != 0);
541 	}
542 	hammer_unlock(&io->lock);
543 }
544 
545 static __inline
546 void
547 hammer_io_modify_done(hammer_io_t io)
548 {
549 	KKASSERT(io->modify_refs > 0);
550 	--io->modify_refs;
551 	if (io->modify_refs == 0 && io->waitmod) {
552 		io->waitmod = 0;
553 		wakeup(io);
554 	}
555 }
556 
557 void
558 hammer_io_write_interlock(hammer_io_t io)
559 {
560 	while (io->modify_refs != 0) {
561 		io->waitmod = 1;
562 		tsleep(io, 0, "hmrmod", 0);
563 	}
564 	io->modify_refs = -1;
565 }
566 
567 void
568 hammer_io_done_interlock(hammer_io_t io)
569 {
570 	KKASSERT(io->modify_refs == -1);
571 	io->modify_refs = 0;
572 	if (io->waitmod) {
573 		io->waitmod = 0;
574 		wakeup(io);
575 	}
576 }
577 
578 /*
579  * Caller intends to modify a volume's ondisk structure.
580  *
581  * This is only allowed if we are the flusher or we have a ref on the
582  * sync_lock.
583  */
584 void
585 hammer_modify_volume(hammer_transaction_t trans, hammer_volume_t volume,
586 		     void *base, int len)
587 {
588 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
589 
590 	hammer_io_modify(&volume->io, 1);
591 	if (len) {
592 		intptr_t rel_offset = (intptr_t)base - (intptr_t)volume->ondisk;
593 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
594 		hammer_generate_undo(trans, &volume->io,
595 			 HAMMER_ENCODE_RAW_VOLUME(volume->vol_no, rel_offset),
596 			 base, len);
597 	}
598 }
599 
600 /*
601  * Caller intends to modify a buffer's ondisk structure.
602  *
603  * This is only allowed if we are the flusher or we have a ref on the
604  * sync_lock.
605  */
606 void
607 hammer_modify_buffer(hammer_transaction_t trans, hammer_buffer_t buffer,
608 		     void *base, int len)
609 {
610 	KKASSERT (trans == NULL || trans->sync_lock_refs > 0);
611 
612 	hammer_io_modify(&buffer->io, 1);
613 	if (len) {
614 		intptr_t rel_offset = (intptr_t)base - (intptr_t)buffer->ondisk;
615 		KKASSERT((rel_offset & ~(intptr_t)HAMMER_BUFMASK) == 0);
616 		hammer_generate_undo(trans, &buffer->io,
617 				     buffer->zone2_offset + rel_offset,
618 				     base, len);
619 	}
620 }
621 
622 void
623 hammer_modify_volume_done(hammer_volume_t volume)
624 {
625 	hammer_io_modify_done(&volume->io);
626 }
627 
628 void
629 hammer_modify_buffer_done(hammer_buffer_t buffer)
630 {
631 	hammer_io_modify_done(&buffer->io);
632 }
633 
634 /*
635  * Mark an entity as not being dirty any more and finalize any
636  * delayed adjustments to the buffer.
637  *
638  * Delayed adjustments are an important performance enhancement, allowing
639  * us to avoid recalculating B-Tree node CRCs over and over again when
640  * making bulk-modifications to the B-Tree.
641  *
642  * If inval is non-zero delayed adjustments are ignored.
643  */
644 void
645 hammer_io_clear_modify(struct hammer_io *io, int inval)
646 {
647 	if (io->modified == 0)
648 		return;
649 
650 	/*
651 	 * Take us off the mod-list and clear the modified bit.
652 	 */
653 	KKASSERT(io->mod_list != NULL);
654 	if (io->mod_list == &io->hmp->volu_list ||
655 	    io->mod_list == &io->hmp->meta_list) {
656 		--io->hmp->locked_dirty_count;
657 		--hammer_count_dirtybufs;
658 	}
659 	TAILQ_REMOVE(io->mod_list, io, mod_entry);
660 	io->mod_list = NULL;
661 	io->modified = 0;
662 
663 	/*
664 	 * If this bit is not set there are no delayed adjustments.
665 	 */
666 	if (io->gencrc == 0)
667 		return;
668 	io->gencrc = 0;
669 
670 	/*
671 	 * Finalize requested CRCs.  The NEEDSCRC flag also holds a reference
672 	 * on the node (& underlying buffer).  Release the node after clearing
673 	 * the flag.
674 	 */
675 	if (io->type == HAMMER_STRUCTURE_META_BUFFER) {
676 		hammer_buffer_t buffer = (void *)io;
677 		hammer_node_t node;
678 
679 restart:
680 		TAILQ_FOREACH(node, &buffer->clist, entry) {
681 			if ((node->flags & HAMMER_NODE_NEEDSCRC) == 0)
682 				continue;
683 			node->flags &= ~HAMMER_NODE_NEEDSCRC;
684 			KKASSERT(node->ondisk);
685 			if (inval == 0)
686 				node->ondisk->crc = crc32(&node->ondisk->crc + 1, HAMMER_BTREE_CRCSIZE);
687 			hammer_rel_node(node);
688 			goto restart;
689 		}
690 	}
691 
692 }
693 
694 /*
695  * Clear the IO's modify list.  Even though the IO is no longer modified
696  * it may still be on the lose_list.  This routine is called just before
697  * the governing hammer_buffer is destroyed.
698  */
699 void
700 hammer_io_clear_modlist(struct hammer_io *io)
701 {
702 	KKASSERT(io->modified == 0);
703 	if (io->mod_list) {
704 		crit_enter();	/* biodone race against list */
705 		KKASSERT(io->mod_list == &io->hmp->lose_list);
706 		TAILQ_REMOVE(io->mod_list, io, mod_entry);
707 		io->mod_list = NULL;
708 		crit_exit();
709 	}
710 }
711 
712 /************************************************************************
713  *				HAMMER_BIOOPS				*
714  ************************************************************************
715  *
716  */
717 
718 /*
719  * Pre-IO initiation kernel callback - cluster build only
720  */
721 static void
722 hammer_io_start(struct buf *bp)
723 {
724 }
725 
726 /*
727  * Post-IO completion kernel callback - MAY BE CALLED FROM INTERRUPT!
728  *
729  * NOTE: HAMMER may modify a buffer after initiating I/O.  The modified bit
730  * may also be set if we were marking a cluster header open.  Only remove
731  * our dependancy if the modified bit is clear.
732  */
733 static void
734 hammer_io_complete(struct buf *bp)
735 {
736 	union hammer_io_structure *iou = (void *)LIST_FIRST(&bp->b_dep);
737 
738 	KKASSERT(iou->io.released == 1);
739 
740 	/*
741 	 * Deal with people waiting for I/O to drain
742 	 */
743 	if (iou->io.running) {
744 		--hammer_count_io_running_write;
745 		if (--iou->io.hmp->io_running_count == 0)
746 			wakeup(&iou->io.hmp->io_running_count);
747 		KKASSERT(iou->io.hmp->io_running_count >= 0);
748 		iou->io.running = 0;
749 	}
750 
751 	if (iou->io.waiting) {
752 		iou->io.waiting = 0;
753 		wakeup(iou);
754 	}
755 
756 	/*
757 	 * If B_LOCKED is set someone wanted to deallocate the bp at some
758 	 * point, do it now if refs has become zero.
759 	 */
760 	if ((bp->b_flags & B_LOCKED) && iou->io.lock.refs == 0) {
761 		KKASSERT(iou->io.modified == 0);
762 		--hammer_count_io_locked;
763 		bp->b_flags &= ~B_LOCKED;
764 		hammer_io_deallocate(bp);
765 		/* structure may be dead now */
766 	}
767 }
768 
769 /*
770  * Callback from kernel when it wishes to deallocate a passively
771  * associated structure.  This mostly occurs with clean buffers
772  * but it may be possible for a holding structure to be marked dirty
773  * while its buffer is passively associated.  The caller owns the bp.
774  *
775  * If we cannot disassociate we set B_LOCKED to prevent the buffer
776  * from getting reused.
777  *
778  * WARNING: Because this can be called directly by getnewbuf we cannot
779  * recurse into the tree.  If a bp cannot be immediately disassociated
780  * our only recourse is to set B_LOCKED.
781  *
782  * WARNING: This may be called from an interrupt via hammer_io_complete()
783  */
784 static void
785 hammer_io_deallocate(struct buf *bp)
786 {
787 	hammer_io_structure_t iou = (void *)LIST_FIRST(&bp->b_dep);
788 
789 	KKASSERT((bp->b_flags & B_LOCKED) == 0 && iou->io.running == 0);
790 	if (iou->io.lock.refs > 0 || iou->io.modified) {
791 		/*
792 		 * It is not legal to disassociate a modified buffer.  This
793 		 * case really shouldn't ever occur.
794 		 */
795 		bp->b_flags |= B_LOCKED;
796 		++hammer_count_io_locked;
797 	} else {
798 		/*
799 		 * Disassociate the BP.  If the io has no refs left we
800 		 * have to add it to the loose list.
801 		 */
802 		hammer_io_disassociate(iou, 0);
803 		if (iou->io.bp == NULL &&
804 		    iou->io.type != HAMMER_STRUCTURE_VOLUME) {
805 			KKASSERT(iou->io.mod_list == NULL);
806 			crit_enter();	/* biodone race against list */
807 			iou->io.mod_list = &iou->io.hmp->lose_list;
808 			TAILQ_INSERT_TAIL(iou->io.mod_list, &iou->io, mod_entry);
809 			crit_exit();
810 		}
811 	}
812 }
813 
814 static int
815 hammer_io_fsync(struct vnode *vp)
816 {
817 	return(0);
818 }
819 
820 /*
821  * NOTE: will not be called unless we tell the kernel about the
822  * bioops.  Unused... we use the mount's VFS_SYNC instead.
823  */
824 static int
825 hammer_io_sync(struct mount *mp)
826 {
827 	return(0);
828 }
829 
830 static void
831 hammer_io_movedeps(struct buf *bp1, struct buf *bp2)
832 {
833 }
834 
835 /*
836  * I/O pre-check for reading and writing.  HAMMER only uses this for
837  * B_CACHE buffers so checkread just shouldn't happen, but if it does
838  * allow it.
839  *
840  * Writing is a different case.  We don't want the kernel to try to write
841  * out a buffer that HAMMER may be modifying passively or which has a
842  * dependancy.  In addition, kernel-demanded writes can only proceed for
843  * certain types of buffers (i.e. UNDO and DATA types).  Other dirty
844  * buffer types can only be explicitly written by the flusher.
845  *
846  * checkwrite will only be called for bdwrite()n buffers.  If we return
847  * success the kernel is guaranteed to initiate the buffer write.
848  */
849 static int
850 hammer_io_checkread(struct buf *bp)
851 {
852 	return(0);
853 }
854 
855 static int
856 hammer_io_checkwrite(struct buf *bp)
857 {
858 	hammer_io_t io = (void *)LIST_FIRST(&bp->b_dep);
859 
860 	/*
861 	 * This shouldn't happen under normal operation.
862 	 */
863 	if (io->type == HAMMER_STRUCTURE_VOLUME ||
864 	    io->type == HAMMER_STRUCTURE_META_BUFFER) {
865 		if (!panicstr)
866 			panic("hammer_io_checkwrite: illegal buffer");
867 		if ((bp->b_flags & B_LOCKED) == 0) {
868 			bp->b_flags |= B_LOCKED;
869 			++hammer_count_io_locked;
870 		}
871 		return(1);
872 	}
873 
874 	/*
875 	 * We can only clear the modified bit if the IO is not currently
876 	 * undergoing modification.  Otherwise we may miss changes.
877 	 */
878 	if (io->modify_refs == 0 && io->modified)
879 		hammer_io_clear_modify(io, 0);
880 
881 	/*
882 	 * The kernel is going to start the IO, set io->running.
883 	 */
884 	KKASSERT(io->running == 0);
885 	io->running = 1;
886 	++io->hmp->io_running_count;
887 	++hammer_count_io_running_write;
888 	return(0);
889 }
890 
891 /*
892  * Return non-zero if we wish to delay the kernel's attempt to flush
893  * this buffer to disk.
894  */
895 static int
896 hammer_io_countdeps(struct buf *bp, int n)
897 {
898 	return(0);
899 }
900 
901 struct bio_ops hammer_bioops = {
902 	.io_start	= hammer_io_start,
903 	.io_complete	= hammer_io_complete,
904 	.io_deallocate	= hammer_io_deallocate,
905 	.io_fsync	= hammer_io_fsync,
906 	.io_sync	= hammer_io_sync,
907 	.io_movedeps	= hammer_io_movedeps,
908 	.io_countdeps	= hammer_io_countdeps,
909 	.io_checkread	= hammer_io_checkread,
910 	.io_checkwrite	= hammer_io_checkwrite,
911 };
912 
913 /************************************************************************
914  *				DIRECT IO OPS 				*
915  ************************************************************************
916  *
917  * These functions operate directly on the buffer cache buffer associated
918  * with a front-end vnode rather then a back-end device vnode.
919  */
920 
921 /*
922  * Read a buffer associated with a front-end vnode directly from the
923  * disk media.  The bio may be issued asynchronously.
924  *
925  * This function can takes a zone-2 or zone-X blockmap offset.
926  */
927 int
928 hammer_io_direct_read(hammer_mount_t hmp, struct bio *bio)
929 {
930 	hammer_off_t data_offset;
931 	hammer_off_t zone2_offset;
932 	hammer_volume_t volume;
933 	struct buf *bp;
934 	struct bio *nbio;
935 	int vol_no;
936 	int error;
937 
938 	data_offset = bio->bio_offset;
939 
940 	if ((data_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_RAW_BUFFER) {
941 		zone2_offset = data_offset;
942 		error = 0;
943 	} else {
944 		KKASSERT(data_offset >= HAMMER_ZONE_BTREE);
945 		KKASSERT((data_offset & HAMMER_BUFMASK) == 0);
946 		zone2_offset = hammer_blockmap_lookup(hmp, data_offset, &error);
947 	}
948 	if (error == 0) {
949 		vol_no = HAMMER_VOL_DECODE(zone2_offset);
950 		volume = hammer_get_volume(hmp, vol_no, &error);
951 		if (error == 0 && zone2_offset >= volume->maxbuf_off)
952 			error = EIO;
953 		if (error == 0) {
954 			zone2_offset &= HAMMER_OFF_SHORT_MASK;
955 
956 			/* NOTE: third-level push */
957 			nbio = push_bio(bio);
958 			nbio->bio_offset = volume->ondisk->vol_buf_beg +
959 					   zone2_offset;
960 			vn_strategy(volume->devvp, nbio);
961 		}
962 		hammer_rel_volume(volume, 0);
963 	}
964 	if (error) {
965 		kprintf("hammer_direct_read: failed @ %016llx\n",
966 			data_offset);
967 		bp = bio->bio_buf;
968 		bp->b_error = error;
969 		bp->b_flags |= B_ERROR;
970 		biodone(bio);
971 	}
972 	return(error);
973 }
974 
975 /*
976  * Write a buffer associated with a front-end vnode directly to the
977  * disk media.  The bio may be issued asynchronously.
978  */
979 int
980 hammer_io_direct_write(hammer_mount_t hmp, hammer_btree_leaf_elm_t leaf,
981 		       struct bio *bio)
982 {
983 	hammer_off_t buf_offset;
984 	hammer_off_t zone2_offset;
985 	hammer_volume_t volume;
986 	hammer_buffer_t buffer;
987 	struct buf *bp;
988 	struct bio *nbio;
989 	char *ptr;
990 	int vol_no;
991 	int error;
992 
993 	buf_offset = leaf->data_offset;
994 
995 	KKASSERT(buf_offset > HAMMER_ZONE_BTREE);
996 	KKASSERT(bio->bio_buf->b_cmd == BUF_CMD_WRITE);
997 
998 	if ((buf_offset & HAMMER_BUFMASK) == 0 &&
999 	    leaf->data_len >= HAMMER_BUFSIZE) {
1000 		/*
1001 		 * We are using the vnode's bio to write directly to the
1002 		 * media, any hammer_buffer at the same zone-X offset will
1003 		 * now have stale data.
1004 		 */
1005 		zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, &error);
1006 		vol_no = HAMMER_VOL_DECODE(zone2_offset);
1007 		volume = hammer_get_volume(hmp, vol_no, &error);
1008 
1009 		if (error == 0 && zone2_offset >= volume->maxbuf_off)
1010 			error = EIO;
1011 		if (error == 0) {
1012 			bp = bio->bio_buf;
1013 			KKASSERT((bp->b_bufsize & HAMMER_BUFMASK) == 0);
1014 			hammer_del_buffers(hmp, buf_offset,
1015 					   zone2_offset, bp->b_bufsize);
1016 			zone2_offset &= HAMMER_OFF_SHORT_MASK;
1017 
1018 			nbio = push_bio(bio);
1019 			nbio->bio_offset = volume->ondisk->vol_buf_beg +
1020 					   zone2_offset;
1021 			vn_strategy(volume->devvp, nbio);
1022 		}
1023 		hammer_rel_volume(volume, 0);
1024 	} else {
1025 		/* must fit in a standard HAMMER buffer */
1026 		KKASSERT(((buf_offset ^ (buf_offset + leaf->data_len - 1)) & ~HAMMER_BUFMASK64) == 0);
1027 		buffer = NULL;
1028 		ptr = hammer_bread(hmp, buf_offset, &error, &buffer);
1029 		if (error == 0) {
1030 			bp = bio->bio_buf;
1031 			bp->b_flags |= B_AGE;
1032 			hammer_io_modify(&buffer->io, 1);
1033 			bcopy(bp->b_data, ptr, leaf->data_len);
1034 			hammer_io_modify_done(&buffer->io);
1035 			hammer_rel_buffer(buffer, 0);
1036 			bp->b_resid = 0;
1037 			biodone(bio);
1038 		}
1039 	}
1040 	if (error) {
1041 		kprintf("hammer_direct_write: failed @ %016llx\n",
1042 			leaf->data_offset);
1043 		bp = bio->bio_buf;
1044 		bp->b_resid = 0;
1045 		bp->b_error = EIO;
1046 		bp->b_flags |= B_ERROR;
1047 		biodone(bio);
1048 	}
1049 	return(error);
1050 }
1051 
1052 
1053