xref: /dflybsd-src/sys/vfs/hammer/hammer_btree.c (revision e398539c897cfd9198147643baf927768eeba8d0)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.76 2008/08/06 15:38:58 dillon Exp $
35  */
36 
37 /*
38  * HAMMER B-Tree index
39  *
40  * HAMMER implements a modified B+Tree.  In documentation this will
41  * simply be refered to as the HAMMER B-Tree.  Basically a HAMMER B-Tree
42  * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43  * of the tree), but adds two additional boundary elements which describe
44  * the left-most and right-most element a node is able to represent.  In
45  * otherwords, we have boundary elements at the two ends of a B-Tree node
46  * instead of sub-tree pointers.
47  *
48  * A B-Tree internal node looks like this:
49  *
50  *	B N N N N N N B   <-- boundary and internal elements
51  *       S S S S S S S    <-- subtree pointers
52  *
53  * A B-Tree leaf node basically looks like this:
54  *
55  *	L L L L L L L L   <-- leaf elemenets
56  *
57  * The radix for an internal node is 1 less then a leaf but we get a
58  * number of significant benefits for our troubles.
59  *
60  * The big benefit to using a B-Tree containing boundary information
61  * is that it is possible to cache pointers into the middle of the tree
62  * and not have to start searches, insertions, OR deletions at the root
63  * node.   In particular, searches are able to progress in a definitive
64  * direction from any point in the tree without revisting nodes.  This
65  * greatly improves the efficiency of many operations, most especially
66  * record appends.
67  *
68  * B-Trees also make the stacking of trees fairly straightforward.
69  *
70  * INSERTIONS:  A search performed with the intention of doing
71  * an insert will guarantee that the terminal leaf node is not full by
72  * splitting full nodes.  Splits occur top-down during the dive down the
73  * B-Tree.
74  *
75  * DELETIONS: A deletion makes no attempt to proactively balance the
76  * tree and will recursively remove nodes that become empty.  If a
77  * deadlock occurs a deletion may not be able to remove an empty leaf.
78  * Deletions never allow internal nodes to become empty (that would blow
79  * up the boundaries).
80  */
81 #include "hammer.h"
82 #include <sys/buf.h>
83 #include <sys/buf2.h>
84 
85 static int btree_search(hammer_cursor_t cursor, int flags);
86 static int btree_split_internal(hammer_cursor_t cursor);
87 static int btree_split_leaf(hammer_cursor_t cursor);
88 static int btree_remove(hammer_cursor_t cursor);
89 static int btree_node_is_full(hammer_node_ondisk_t node);
90 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
91 			hammer_tid_t mirror_tid);
92 static void hammer_make_separator(hammer_base_elm_t key1,
93 			hammer_base_elm_t key2, hammer_base_elm_t dest);
94 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
95 
96 /*
97  * Iterate records after a search.  The cursor is iterated forwards past
98  * the current record until a record matching the key-range requirements
99  * is found.  ENOENT is returned if the iteration goes past the ending
100  * key.
101  *
102  * The iteration is inclusive of key_beg and can be inclusive or exclusive
103  * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
104  *
105  * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
106  * may be modified by B-Tree functions.
107  *
108  * cursor->key_beg may or may not be modified by this function during
109  * the iteration.  XXX future - in case of an inverted lock we may have
110  * to reinitiate the lookup and set key_beg to properly pick up where we
111  * left off.
112  *
113  * NOTE!  EDEADLK *CANNOT* be returned by this procedure.
114  */
115 int
116 hammer_btree_iterate(hammer_cursor_t cursor)
117 {
118 	hammer_node_ondisk_t node;
119 	hammer_btree_elm_t elm;
120 	int error = 0;
121 	int r;
122 	int s;
123 
124 	/*
125 	 * Skip past the current record
126 	 */
127 	node = cursor->node->ondisk;
128 	if (node == NULL)
129 		return(ENOENT);
130 	if (cursor->index < node->count &&
131 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
132 		++cursor->index;
133 	}
134 
135 	/*
136 	 * Loop until an element is found or we are done.
137 	 */
138 	for (;;) {
139 		/*
140 		 * We iterate up the tree and then index over one element
141 		 * while we are at the last element in the current node.
142 		 *
143 		 * If we are at the root of the filesystem, cursor_up
144 		 * returns ENOENT.
145 		 *
146 		 * XXX this could be optimized by storing the information in
147 		 * the parent reference.
148 		 *
149 		 * XXX we can lose the node lock temporarily, this could mess
150 		 * up our scan.
151 		 */
152 		++hammer_stats_btree_iterations;
153 		hammer_flusher_clean_loose_ios(cursor->trans->hmp);
154 
155 		if (cursor->index == node->count) {
156 			if (hammer_debug_btree) {
157 				kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
158 					cursor->node->node_offset,
159 					cursor->index,
160 					(cursor->parent ? cursor->parent->node_offset : -1),
161 					cursor->parent_index,
162 					curthread);
163 			}
164 			KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
165 			error = hammer_cursor_up(cursor);
166 			if (error)
167 				break;
168 			/* reload stale pointer */
169 			node = cursor->node->ondisk;
170 			KKASSERT(cursor->index != node->count);
171 
172 			/*
173 			 * If we are reblocking we want to return internal
174 			 * nodes.  Note that the internal node will be
175 			 * returned multiple times, on each upward recursion
176 			 * from its children.  The caller selects which
177 			 * revisit it cares about (usually first or last only).
178 			 */
179 			if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
180 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
181 				return(0);
182 			}
183 			++cursor->index;
184 			continue;
185 		}
186 
187 		/*
188 		 * Check internal or leaf element.  Determine if the record
189 		 * at the cursor has gone beyond the end of our range.
190 		 *
191 		 * We recurse down through internal nodes.
192 		 */
193 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
194 			elm = &node->elms[cursor->index];
195 
196 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
197 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
198 			if (hammer_debug_btree) {
199 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
200 					cursor->node->node_offset,
201 					cursor->index,
202 					elm[0].internal.base.obj_id,
203 					elm[0].internal.base.rec_type,
204 					elm[0].internal.base.key,
205 					elm[0].internal.base.localization,
206 					r,
207 					curthread
208 				);
209 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
210 					cursor->node->node_offset,
211 					cursor->index + 1,
212 					elm[1].internal.base.obj_id,
213 					elm[1].internal.base.rec_type,
214 					elm[1].internal.base.key,
215 					elm[1].internal.base.localization,
216 					s
217 				);
218 			}
219 
220 			if (r < 0) {
221 				error = ENOENT;
222 				break;
223 			}
224 			if (r == 0 && (cursor->flags &
225 				       HAMMER_CURSOR_END_INCLUSIVE) == 0) {
226 				error = ENOENT;
227 				break;
228 			}
229 			KKASSERT(s <= 0);
230 
231 			/*
232 			 * Better not be zero
233 			 */
234 			KKASSERT(elm->internal.subtree_offset != 0);
235 
236 			/*
237 			 * If running the mirror filter see if we can skip
238 			 * one or more entire sub-trees.  If we can we
239 			 * return the internal mode and the caller processes
240 			 * the skipped range (see mirror_read)
241 			 */
242 			if (cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) {
243 				if (elm->internal.mirror_tid <
244 				    cursor->cmirror->mirror_tid) {
245 					hammer_cursor_mirror_filter(cursor);
246 					return(0);
247 				}
248 			}
249 
250 			error = hammer_cursor_down(cursor);
251 			if (error)
252 				break;
253 			KKASSERT(cursor->index == 0);
254 			/* reload stale pointer */
255 			node = cursor->node->ondisk;
256 			continue;
257 		} else {
258 			elm = &node->elms[cursor->index];
259 			r = hammer_btree_cmp(&cursor->key_end, &elm->base);
260 			if (hammer_debug_btree) {
261 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
262 					cursor->node->node_offset,
263 					cursor->index,
264 					(elm[0].leaf.base.btype ?
265 					 elm[0].leaf.base.btype : '?'),
266 					elm[0].leaf.base.obj_id,
267 					elm[0].leaf.base.rec_type,
268 					elm[0].leaf.base.key,
269 					elm[0].leaf.base.localization,
270 					r
271 				);
272 			}
273 			if (r < 0) {
274 				error = ENOENT;
275 				break;
276 			}
277 
278 			/*
279 			 * We support both end-inclusive and
280 			 * end-exclusive searches.
281 			 */
282 			if (r == 0 &&
283 			   (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
284 				error = ENOENT;
285 				break;
286 			}
287 
288 			switch(elm->leaf.base.btype) {
289 			case HAMMER_BTREE_TYPE_RECORD:
290 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
291 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
292 					++cursor->index;
293 					continue;
294 				}
295 				error = 0;
296 				break;
297 			default:
298 				error = EINVAL;
299 				break;
300 			}
301 			if (error)
302 				break;
303 		}
304 		/*
305 		 * node pointer invalid after loop
306 		 */
307 
308 		/*
309 		 * Return entry
310 		 */
311 		if (hammer_debug_btree) {
312 			int i = cursor->index;
313 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
314 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
315 				cursor->node, i,
316 				elm->internal.base.obj_id,
317 				elm->internal.base.rec_type,
318 				elm->internal.base.key,
319 				elm->internal.base.localization
320 			);
321 		}
322 		return(0);
323 	}
324 	return(error);
325 }
326 
327 /*
328  * We hit an internal element that we could skip as part of a mirroring
329  * scan.  Calculate the entire range being skipped.
330  *
331  * It is important to include any gaps between the parent's left_bound
332  * and the node's left_bound, and same goes for the right side.
333  */
334 static void
335 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
336 {
337 	struct hammer_cmirror *cmirror;
338 	hammer_node_ondisk_t ondisk;
339 	hammer_btree_elm_t elm;
340 
341 	ondisk = cursor->node->ondisk;
342 	cmirror = cursor->cmirror;
343 
344 	/*
345 	 * Calculate the skipped range
346 	 */
347 	elm = &ondisk->elms[cursor->index];
348 	if (cursor->index == 0)
349 		cmirror->skip_beg = *cursor->left_bound;
350 	else
351 		cmirror->skip_beg = elm->internal.base;
352 	while (cursor->index < ondisk->count) {
353 		if (elm->internal.mirror_tid >= cmirror->mirror_tid)
354 			break;
355 		++cursor->index;
356 		++elm;
357 	}
358 	if (cursor->index == ondisk->count)
359 		cmirror->skip_end = *cursor->right_bound;
360 	else
361 		cmirror->skip_end = elm->internal.base;
362 
363 	/*
364 	 * clip the returned result.
365 	 */
366 	if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
367 		cmirror->skip_beg = cursor->key_beg;
368 	if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
369 		cmirror->skip_end = cursor->key_end;
370 }
371 
372 /*
373  * Iterate in the reverse direction.  This is used by the pruning code to
374  * avoid overlapping records.
375  */
376 int
377 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
378 {
379 	hammer_node_ondisk_t node;
380 	hammer_btree_elm_t elm;
381 	int error = 0;
382 	int r;
383 	int s;
384 
385 	/* mirror filtering not supported for reverse iteration */
386 	KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
387 
388 	/*
389 	 * Skip past the current record.  For various reasons the cursor
390 	 * may end up set to -1 or set to point at the end of the current
391 	 * node.  These cases must be addressed.
392 	 */
393 	node = cursor->node->ondisk;
394 	if (node == NULL)
395 		return(ENOENT);
396 	if (cursor->index != -1 &&
397 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
398 		--cursor->index;
399 	}
400 	if (cursor->index == cursor->node->ondisk->count)
401 		--cursor->index;
402 
403 	/*
404 	 * Loop until an element is found or we are done.
405 	 */
406 	for (;;) {
407 		++hammer_stats_btree_iterations;
408 		hammer_flusher_clean_loose_ios(cursor->trans->hmp);
409 
410 		/*
411 		 * We iterate up the tree and then index over one element
412 		 * while we are at the last element in the current node.
413 		 */
414 		if (cursor->index == -1) {
415 			error = hammer_cursor_up(cursor);
416 			if (error) {
417 				cursor->index = 0; /* sanity */
418 				break;
419 			}
420 			/* reload stale pointer */
421 			node = cursor->node->ondisk;
422 			KKASSERT(cursor->index != node->count);
423 			--cursor->index;
424 			continue;
425 		}
426 
427 		/*
428 		 * Check internal or leaf element.  Determine if the record
429 		 * at the cursor has gone beyond the end of our range.
430 		 *
431 		 * We recurse down through internal nodes.
432 		 */
433 		KKASSERT(cursor->index != node->count);
434 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
435 			elm = &node->elms[cursor->index];
436 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
437 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
438 			if (hammer_debug_btree) {
439 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
440 					cursor->node->node_offset,
441 					cursor->index,
442 					elm[0].internal.base.obj_id,
443 					elm[0].internal.base.rec_type,
444 					elm[0].internal.base.key,
445 					elm[0].internal.base.localization,
446 					r
447 				);
448 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
449 					cursor->node->node_offset,
450 					cursor->index + 1,
451 					elm[1].internal.base.obj_id,
452 					elm[1].internal.base.rec_type,
453 					elm[1].internal.base.key,
454 					elm[1].internal.base.localization,
455 					s
456 				);
457 			}
458 
459 			if (s >= 0) {
460 				error = ENOENT;
461 				break;
462 			}
463 			KKASSERT(r >= 0);
464 
465 			/*
466 			 * Better not be zero
467 			 */
468 			KKASSERT(elm->internal.subtree_offset != 0);
469 
470 			error = hammer_cursor_down(cursor);
471 			if (error)
472 				break;
473 			KKASSERT(cursor->index == 0);
474 			/* reload stale pointer */
475 			node = cursor->node->ondisk;
476 
477 			/* this can assign -1 if the leaf was empty */
478 			cursor->index = node->count - 1;
479 			continue;
480 		} else {
481 			elm = &node->elms[cursor->index];
482 			s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
483 			if (hammer_debug_btree) {
484 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
485 					cursor->node->node_offset,
486 					cursor->index,
487 					(elm[0].leaf.base.btype ?
488 					 elm[0].leaf.base.btype : '?'),
489 					elm[0].leaf.base.obj_id,
490 					elm[0].leaf.base.rec_type,
491 					elm[0].leaf.base.key,
492 					elm[0].leaf.base.localization,
493 					s
494 				);
495 			}
496 			if (s > 0) {
497 				error = ENOENT;
498 				break;
499 			}
500 
501 			switch(elm->leaf.base.btype) {
502 			case HAMMER_BTREE_TYPE_RECORD:
503 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
504 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
505 					--cursor->index;
506 					continue;
507 				}
508 				error = 0;
509 				break;
510 			default:
511 				error = EINVAL;
512 				break;
513 			}
514 			if (error)
515 				break;
516 		}
517 		/*
518 		 * node pointer invalid after loop
519 		 */
520 
521 		/*
522 		 * Return entry
523 		 */
524 		if (hammer_debug_btree) {
525 			int i = cursor->index;
526 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
527 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
528 				cursor->node, i,
529 				elm->internal.base.obj_id,
530 				elm->internal.base.rec_type,
531 				elm->internal.base.key,
532 				elm->internal.base.localization
533 			);
534 		}
535 		return(0);
536 	}
537 	return(error);
538 }
539 
540 /*
541  * Lookup cursor->key_beg.  0 is returned on success, ENOENT if the entry
542  * could not be found, EDEADLK if inserting and a retry is needed, and a
543  * fatal error otherwise.  When retrying, the caller must terminate the
544  * cursor and reinitialize it.  EDEADLK cannot be returned if not inserting.
545  *
546  * The cursor is suitably positioned for a deletion on success, and suitably
547  * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
548  * specified.
549  *
550  * The cursor may begin anywhere, the search will traverse the tree in
551  * either direction to locate the requested element.
552  *
553  * Most of the logic implementing historical searches is handled here.  We
554  * do an initial lookup with create_tid set to the asof TID.  Due to the
555  * way records are laid out, a backwards iteration may be required if
556  * ENOENT is returned to locate the historical record.  Here's the
557  * problem:
558  *
559  * create_tid:    10      15       20
560  *		     LEAF1   LEAF2
561  * records:         (11)        (18)
562  *
563  * Lets say we want to do a lookup AS-OF timestamp 17.  We will traverse
564  * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
565  * not visible and thus causes ENOENT to be returned.  We really need
566  * to check record 11 in LEAF1.  If it also fails then the search fails
567  * (e.g. it might represent the range 11-16 and thus still not match our
568  * AS-OF timestamp of 17).  Note that LEAF1 could be empty, requiring
569  * further iterations.
570  *
571  * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
572  * and the cursor->create_check TID if an iteration might be needed.
573  * In the above example create_check would be set to 14.
574  */
575 int
576 hammer_btree_lookup(hammer_cursor_t cursor)
577 {
578 	int error;
579 
580 	KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
581 		  cursor->trans->sync_lock_refs > 0);
582 	++hammer_stats_btree_lookups;
583 	if (cursor->flags & HAMMER_CURSOR_ASOF) {
584 		KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
585 		cursor->key_beg.create_tid = cursor->asof;
586 		for (;;) {
587 			cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
588 			error = btree_search(cursor, 0);
589 			if (error != ENOENT ||
590 			    (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
591 				/*
592 				 * Stop if no error.
593 				 * Stop if error other then ENOENT.
594 				 * Stop if ENOENT and not special case.
595 				 */
596 				break;
597 			}
598 			if (hammer_debug_btree) {
599 				kprintf("CREATE_CHECK %016llx\n",
600 					cursor->create_check);
601 			}
602 			cursor->key_beg.create_tid = cursor->create_check;
603 			/* loop */
604 		}
605 	} else {
606 		error = btree_search(cursor, 0);
607 	}
608 	if (error == 0)
609 		error = hammer_btree_extract(cursor, cursor->flags);
610 	return(error);
611 }
612 
613 /*
614  * Execute the logic required to start an iteration.  The first record
615  * located within the specified range is returned and iteration control
616  * flags are adjusted for successive hammer_btree_iterate() calls.
617  *
618  * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
619  * in a loop without worrying about it.  Higher-level merged searches will
620  * adjust the flag appropriately.
621  */
622 int
623 hammer_btree_first(hammer_cursor_t cursor)
624 {
625 	int error;
626 
627 	error = hammer_btree_lookup(cursor);
628 	if (error == ENOENT) {
629 		cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
630 		error = hammer_btree_iterate(cursor);
631 	}
632 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
633 	return(error);
634 }
635 
636 /*
637  * Similarly but for an iteration in the reverse direction.
638  *
639  * Set ATEDISK when iterating backwards to skip the current entry,
640  * which after an ENOENT lookup will be pointing beyond our end point.
641  *
642  * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
643  * in a loop without worrying about it.  Higher-level merged searches will
644  * adjust the flag appropriately.
645  */
646 int
647 hammer_btree_last(hammer_cursor_t cursor)
648 {
649 	struct hammer_base_elm save;
650 	int error;
651 
652 	save = cursor->key_beg;
653 	cursor->key_beg = cursor->key_end;
654 	error = hammer_btree_lookup(cursor);
655 	cursor->key_beg = save;
656 	if (error == ENOENT ||
657 	    (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
658 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
659 		error = hammer_btree_iterate_reverse(cursor);
660 	}
661 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
662 	return(error);
663 }
664 
665 /*
666  * Extract the record and/or data associated with the cursor's current
667  * position.  Any prior record or data stored in the cursor is replaced.
668  * The cursor must be positioned at a leaf node.
669  *
670  * NOTE: All extractions occur at the leaf of the B-Tree.
671  */
672 int
673 hammer_btree_extract(hammer_cursor_t cursor, int flags)
674 {
675 	hammer_node_ondisk_t node;
676 	hammer_btree_elm_t elm;
677 	hammer_off_t data_off;
678 	hammer_mount_t hmp;
679 	int32_t data_len;
680 	int error;
681 
682 	/*
683 	 * The case where the data reference resolves to the same buffer
684 	 * as the record reference must be handled.
685 	 */
686 	node = cursor->node->ondisk;
687 	elm = &node->elms[cursor->index];
688 	cursor->data = NULL;
689 	hmp = cursor->node->hmp;
690 
691 	/*
692 	 * There is nothing to extract for an internal element.
693 	 */
694 	if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
695 		return(EINVAL);
696 
697 	/*
698 	 * Only record types have data.
699 	 */
700 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
701 	cursor->leaf = &elm->leaf;
702 
703 	if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
704 		return(0);
705 	if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
706 		return(0);
707 	data_off = elm->leaf.data_offset;
708 	data_len = elm->leaf.data_len;
709 	if (data_off == 0)
710 		return(0);
711 
712 	/*
713 	 * Load the data
714 	 */
715 	KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
716 	cursor->data = hammer_bread_ext(hmp, data_off, data_len,
717 					&error, &cursor->data_buffer);
718 	if (hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
719 		kprintf("CRC DATA @ %016llx/%d FAILED\n",
720 			elm->leaf.data_offset, elm->leaf.data_len);
721 		if (hammer_debug_debug & 0x0001)
722 			Debugger("CRC FAILED: DATA");
723 		if (cursor->trans->flags & HAMMER_TRANSF_CRCDOM)
724 			error = EDOM;	/* less critical (mirroring) */
725 		else
726 			error = EIO;	/* critical */
727 	}
728 	return(error);
729 }
730 
731 
732 /*
733  * Insert a leaf element into the B-Tree at the current cursor position.
734  * The cursor is positioned such that the element at and beyond the cursor
735  * are shifted to make room for the new record.
736  *
737  * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
738  * flag set and that call must return ENOENT before this function can be
739  * called.
740  *
741  * The caller may depend on the cursor's exclusive lock after return to
742  * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
743  *
744  * ENOSPC is returned if there is no room to insert a new record.
745  */
746 int
747 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
748 		    int *doprop)
749 {
750 	hammer_node_ondisk_t node;
751 	int i;
752 	int error;
753 
754 	*doprop = 0;
755 	if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
756 		return(error);
757 	++hammer_stats_btree_inserts;
758 
759 	/*
760 	 * Insert the element at the leaf node and update the count in the
761 	 * parent.  It is possible for parent to be NULL, indicating that
762 	 * the filesystem's ROOT B-Tree node is a leaf itself, which is
763 	 * possible.  The root inode can never be deleted so the leaf should
764 	 * never be empty.
765 	 *
766 	 * Remember that the right-hand boundary is not included in the
767 	 * count.
768 	 */
769 	hammer_modify_node_all(cursor->trans, cursor->node);
770 	node = cursor->node->ondisk;
771 	i = cursor->index;
772 	KKASSERT(elm->base.btype != 0);
773 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
774 	KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
775 	if (i != node->count) {
776 		bcopy(&node->elms[i], &node->elms[i+1],
777 		      (node->count - i) * sizeof(*elm));
778 	}
779 	node->elms[i].leaf = *elm;
780 	++node->count;
781 	hammer_cursor_inserted_element(cursor->node, i);
782 
783 	/*
784 	 * Update the leaf node's aggregate mirror_tid for mirroring
785 	 * support.
786 	 */
787 	if (node->mirror_tid < elm->base.delete_tid) {
788 		node->mirror_tid = elm->base.delete_tid;
789 		*doprop = 1;
790 	}
791 	if (node->mirror_tid < elm->base.create_tid) {
792 		node->mirror_tid = elm->base.create_tid;
793 		*doprop = 1;
794 	}
795 	hammer_modify_node_done(cursor->node);
796 
797 	/*
798 	 * Debugging sanity checks.
799 	 */
800 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
801 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
802 	if (i) {
803 		KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
804 	}
805 	if (i != node->count - 1)
806 		KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
807 
808 	return(0);
809 }
810 
811 /*
812  * Delete a record from the B-Tree at the current cursor position.
813  * The cursor is positioned such that the current element is the one
814  * to be deleted.
815  *
816  * On return the cursor will be positioned after the deleted element and
817  * MAY point to an internal node.  It will be suitable for the continuation
818  * of an iteration but not for an insertion or deletion.
819  *
820  * Deletions will attempt to partially rebalance the B-Tree in an upward
821  * direction, but will terminate rather then deadlock.  Empty internal nodes
822  * are never allowed by a deletion which deadlocks may end up giving us an
823  * empty leaf.  The pruner will clean up and rebalance the tree.
824  *
825  * This function can return EDEADLK, requiring the caller to retry the
826  * operation after clearing the deadlock.
827  */
828 int
829 hammer_btree_delete(hammer_cursor_t cursor)
830 {
831 	hammer_node_ondisk_t ondisk;
832 	hammer_node_t node;
833 	hammer_node_t parent;
834 	int error;
835 	int i;
836 
837 	KKASSERT (cursor->trans->sync_lock_refs > 0);
838 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
839 		return(error);
840 	++hammer_stats_btree_deletes;
841 
842 	/*
843 	 * Delete the element from the leaf node.
844 	 *
845 	 * Remember that leaf nodes do not have boundaries.
846 	 */
847 	node = cursor->node;
848 	ondisk = node->ondisk;
849 	i = cursor->index;
850 
851 	KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
852 	KKASSERT(i >= 0 && i < ondisk->count);
853 	hammer_modify_node_all(cursor->trans, node);
854 	if (i + 1 != ondisk->count) {
855 		bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
856 		      (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
857 	}
858 	--ondisk->count;
859 	hammer_modify_node_done(node);
860 	hammer_cursor_deleted_element(node, i);
861 
862 	/*
863 	 * Validate local parent
864 	 */
865 	if (ondisk->parent) {
866 		parent = cursor->parent;
867 
868 		KKASSERT(parent != NULL);
869 		KKASSERT(parent->node_offset == ondisk->parent);
870 	}
871 
872 	/*
873 	 * If the leaf becomes empty it must be detached from the parent,
874 	 * potentially recursing through to the filesystem root.
875 	 *
876 	 * This may reposition the cursor at one of the parent's of the
877 	 * current node.
878 	 *
879 	 * Ignore deadlock errors, that simply means that btree_remove
880 	 * was unable to recurse and had to leave us with an empty leaf.
881 	 */
882 	KKASSERT(cursor->index <= ondisk->count);
883 	if (ondisk->count == 0) {
884 		error = btree_remove(cursor);
885 		if (error == EDEADLK)
886 			error = 0;
887 	} else {
888 		error = 0;
889 	}
890 	KKASSERT(cursor->parent == NULL ||
891 		 cursor->parent_index < cursor->parent->ondisk->count);
892 	return(error);
893 }
894 
895 /*
896  * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
897  *
898  * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
899  *
900  * The search can begin ANYWHERE in the B-Tree.  As a first step the search
901  * iterates up the tree as necessary to properly position itself prior to
902  * actually doing the sarch.
903  *
904  * INSERTIONS: The search will split full nodes and leaves on its way down
905  * and guarentee that the leaf it ends up on is not full.  If we run out
906  * of space the search continues to the leaf (to position the cursor for
907  * the spike), but ENOSPC is returned.
908  *
909  * The search is only guarenteed to end up on a leaf if an error code of 0
910  * is returned, or if inserting and an error code of ENOENT is returned.
911  * Otherwise it can stop at an internal node.  On success a search returns
912  * a leaf node.
913  *
914  * COMPLEXITY WARNING!  This is the core B-Tree search code for the entire
915  * filesystem, and it is not simple code.  Please note the following facts:
916  *
917  * - Internal node recursions have a boundary on the left AND right.  The
918  *   right boundary is non-inclusive.  The create_tid is a generic part
919  *   of the key for internal nodes.
920  *
921  * - Leaf nodes contain terminal elements only now.
922  *
923  * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
924  *   historical search.  ASOF and INSERT are mutually exclusive.  When
925  *   doing an as-of lookup btree_search() checks for a right-edge boundary
926  *   case.  If while recursing down the left-edge differs from the key
927  *   by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
928  *   with cursor->create_check.  This is used by btree_lookup() to iterate.
929  *   The iteration backwards because as-of searches can wind up going
930  *   down the wrong branch of the B-Tree.
931  */
932 static
933 int
934 btree_search(hammer_cursor_t cursor, int flags)
935 {
936 	hammer_node_ondisk_t node;
937 	hammer_btree_elm_t elm;
938 	int error;
939 	int enospc = 0;
940 	int i;
941 	int r;
942 	int s;
943 
944 	flags |= cursor->flags;
945 	++hammer_stats_btree_searches;
946 
947 	if (hammer_debug_btree) {
948 		kprintf("SEARCH   %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
949 			cursor->node->node_offset,
950 			cursor->index,
951 			cursor->key_beg.obj_id,
952 			cursor->key_beg.rec_type,
953 			cursor->key_beg.key,
954 			cursor->key_beg.create_tid,
955 			cursor->key_beg.localization,
956 			curthread
957 		);
958 		if (cursor->parent)
959 		    kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
960 			cursor->parent->node_offset, cursor->parent_index,
961 			cursor->left_bound->obj_id,
962 			cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
963 			cursor->right_bound->obj_id,
964 			cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
965 			cursor->left_bound,
966 			&cursor->parent->ondisk->elms[cursor->parent_index],
967 			cursor->right_bound,
968 			&cursor->parent->ondisk->elms[cursor->parent_index+1]
969 		    );
970 	}
971 
972 	/*
973 	 * Move our cursor up the tree until we find a node whos range covers
974 	 * the key we are trying to locate.
975 	 *
976 	 * The left bound is inclusive, the right bound is non-inclusive.
977 	 * It is ok to cursor up too far.
978 	 */
979 	for (;;) {
980 		r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
981 		s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
982 		if (r >= 0 && s < 0)
983 			break;
984 		KKASSERT(cursor->parent);
985 		++hammer_stats_btree_iterations;
986 		error = hammer_cursor_up(cursor);
987 		if (error)
988 			goto done;
989 	}
990 
991 	/*
992 	 * The delete-checks below are based on node, not parent.  Set the
993 	 * initial delete-check based on the parent.
994 	 */
995 	if (r == 1) {
996 		KKASSERT(cursor->left_bound->create_tid != 1);
997 		cursor->create_check = cursor->left_bound->create_tid - 1;
998 		cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
999 	}
1000 
1001 	/*
1002 	 * We better have ended up with a node somewhere.
1003 	 */
1004 	KKASSERT(cursor->node != NULL);
1005 
1006 	/*
1007 	 * If we are inserting we can't start at a full node if the parent
1008 	 * is also full (because there is no way to split the node),
1009 	 * continue running up the tree until the requirement is satisfied
1010 	 * or we hit the root of the filesystem.
1011 	 *
1012 	 * (If inserting we aren't doing an as-of search so we don't have
1013 	 *  to worry about create_check).
1014 	 */
1015 	while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1016 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1017 			if (btree_node_is_full(cursor->node->ondisk) == 0)
1018 				break;
1019 		} else {
1020 			if (btree_node_is_full(cursor->node->ondisk) ==0)
1021 				break;
1022 		}
1023 		if (cursor->node->ondisk->parent == 0 ||
1024 		    cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1025 			break;
1026 		}
1027 		++hammer_stats_btree_iterations;
1028 		error = hammer_cursor_up(cursor);
1029 		/* node may have become stale */
1030 		if (error)
1031 			goto done;
1032 	}
1033 
1034 	/*
1035 	 * Push down through internal nodes to locate the requested key.
1036 	 */
1037 	node = cursor->node->ondisk;
1038 	while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1039 		/*
1040 		 * Scan the node to find the subtree index to push down into.
1041 		 * We go one-past, then back-up.
1042 		 *
1043 		 * We must proactively remove deleted elements which may
1044 		 * have been left over from a deadlocked btree_remove().
1045 		 *
1046 		 * The left and right boundaries are included in the loop
1047 		 * in order to detect edge cases.
1048 		 *
1049 		 * If the separator only differs by create_tid (r == 1)
1050 		 * and we are doing an as-of search, we may end up going
1051 		 * down a branch to the left of the one containing the
1052 		 * desired key.  This requires numerous special cases.
1053 		 */
1054 		++hammer_stats_btree_iterations;
1055 		if (hammer_debug_btree) {
1056 			kprintf("SEARCH-I %016llx count=%d\n",
1057 				cursor->node->node_offset,
1058 				node->count);
1059 		}
1060 
1061 		/*
1062 		 * Try to shortcut the search before dropping into the
1063 		 * linear loop.  Locate the first node where r <= 1.
1064 		 */
1065 		i = hammer_btree_search_node(&cursor->key_beg, node);
1066 		while (i <= node->count) {
1067 			++hammer_stats_btree_elements;
1068 			elm = &node->elms[i];
1069 			r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1070 			if (hammer_debug_btree > 2) {
1071 				kprintf(" IELM %p %d r=%d\n",
1072 					&node->elms[i], i, r);
1073 			}
1074 			if (r < 0)
1075 				break;
1076 			if (r == 1) {
1077 				KKASSERT(elm->base.create_tid != 1);
1078 				cursor->create_check = elm->base.create_tid - 1;
1079 				cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1080 			}
1081 			++i;
1082 		}
1083 		if (hammer_debug_btree) {
1084 			kprintf("SEARCH-I preI=%d/%d r=%d\n",
1085 				i, node->count, r);
1086 		}
1087 
1088 		/*
1089 		 * These cases occur when the parent's idea of the boundary
1090 		 * is wider then the child's idea of the boundary, and
1091 		 * require special handling.  If not inserting we can
1092 		 * terminate the search early for these cases but the
1093 		 * child's boundaries cannot be unconditionally modified.
1094 		 */
1095 		if (i == 0) {
1096 			/*
1097 			 * If i == 0 the search terminated to the LEFT of the
1098 			 * left_boundary but to the RIGHT of the parent's left
1099 			 * boundary.
1100 			 */
1101 			u_int8_t save;
1102 
1103 			elm = &node->elms[0];
1104 
1105 			/*
1106 			 * If we aren't inserting we can stop here.
1107 			 */
1108 			if ((flags & (HAMMER_CURSOR_INSERT |
1109 				      HAMMER_CURSOR_PRUNING)) == 0) {
1110 				cursor->index = 0;
1111 				return(ENOENT);
1112 			}
1113 
1114 			/*
1115 			 * Correct a left-hand boundary mismatch.
1116 			 *
1117 			 * We can only do this if we can upgrade the lock,
1118 			 * and synchronized as a background cursor (i.e.
1119 			 * inserting or pruning).
1120 			 *
1121 			 * WARNING: We can only do this if inserting, i.e.
1122 			 * we are running on the backend.
1123 			 */
1124 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1125 				return(error);
1126 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1127 			hammer_modify_node_field(cursor->trans, cursor->node,
1128 						 elms[0]);
1129 			save = node->elms[0].base.btype;
1130 			node->elms[0].base = *cursor->left_bound;
1131 			node->elms[0].base.btype = save;
1132 			hammer_modify_node_done(cursor->node);
1133 		} else if (i == node->count + 1) {
1134 			/*
1135 			 * If i == node->count + 1 the search terminated to
1136 			 * the RIGHT of the right boundary but to the LEFT
1137 			 * of the parent's right boundary.  If we aren't
1138 			 * inserting we can stop here.
1139 			 *
1140 			 * Note that the last element in this case is
1141 			 * elms[i-2] prior to adjustments to 'i'.
1142 			 */
1143 			--i;
1144 			if ((flags & (HAMMER_CURSOR_INSERT |
1145 				      HAMMER_CURSOR_PRUNING)) == 0) {
1146 				cursor->index = i;
1147 				return (ENOENT);
1148 			}
1149 
1150 			/*
1151 			 * Correct a right-hand boundary mismatch.
1152 			 * (actual push-down record is i-2 prior to
1153 			 * adjustments to i).
1154 			 *
1155 			 * We can only do this if we can upgrade the lock,
1156 			 * and synchronized as a background cursor (i.e.
1157 			 * inserting or pruning).
1158 			 *
1159 			 * WARNING: We can only do this if inserting, i.e.
1160 			 * we are running on the backend.
1161 			 */
1162 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1163 				return(error);
1164 			elm = &node->elms[i];
1165 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1166 			hammer_modify_node(cursor->trans, cursor->node,
1167 					   &elm->base, sizeof(elm->base));
1168 			elm->base = *cursor->right_bound;
1169 			hammer_modify_node_done(cursor->node);
1170 			--i;
1171 		} else {
1172 			/*
1173 			 * The push-down index is now i - 1.  If we had
1174 			 * terminated on the right boundary this will point
1175 			 * us at the last element.
1176 			 */
1177 			--i;
1178 		}
1179 		cursor->index = i;
1180 		elm = &node->elms[i];
1181 
1182 		if (hammer_debug_btree) {
1183 			kprintf("RESULT-I %016llx[%d] %016llx %02x "
1184 				"key=%016llx cre=%016llx lo=%02x\n",
1185 				cursor->node->node_offset,
1186 				i,
1187 				elm->internal.base.obj_id,
1188 				elm->internal.base.rec_type,
1189 				elm->internal.base.key,
1190 				elm->internal.base.create_tid,
1191 				elm->internal.base.localization
1192 			);
1193 		}
1194 
1195 		/*
1196 		 * We better have a valid subtree offset.
1197 		 */
1198 		KKASSERT(elm->internal.subtree_offset != 0);
1199 
1200 		/*
1201 		 * Handle insertion and deletion requirements.
1202 		 *
1203 		 * If inserting split full nodes.  The split code will
1204 		 * adjust cursor->node and cursor->index if the current
1205 		 * index winds up in the new node.
1206 		 *
1207 		 * If inserting and a left or right edge case was detected,
1208 		 * we cannot correct the left or right boundary and must
1209 		 * prepend and append an empty leaf node in order to make
1210 		 * the boundary correction.
1211 		 *
1212 		 * If we run out of space we set enospc and continue on
1213 		 * to a leaf to provide the spike code with a good point
1214 		 * of entry.
1215 		 */
1216 		if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1217 			if (btree_node_is_full(node)) {
1218 				error = btree_split_internal(cursor);
1219 				if (error) {
1220 					if (error != ENOSPC)
1221 						goto done;
1222 					enospc = 1;
1223 				}
1224 				/*
1225 				 * reload stale pointers
1226 				 */
1227 				i = cursor->index;
1228 				node = cursor->node->ondisk;
1229 			}
1230 		}
1231 
1232 		/*
1233 		 * Push down (push into new node, existing node becomes
1234 		 * the parent) and continue the search.
1235 		 */
1236 		error = hammer_cursor_down(cursor);
1237 		/* node may have become stale */
1238 		if (error)
1239 			goto done;
1240 		node = cursor->node->ondisk;
1241 	}
1242 
1243 	/*
1244 	 * We are at a leaf, do a linear search of the key array.
1245 	 *
1246 	 * On success the index is set to the matching element and 0
1247 	 * is returned.
1248 	 *
1249 	 * On failure the index is set to the insertion point and ENOENT
1250 	 * is returned.
1251 	 *
1252 	 * Boundaries are not stored in leaf nodes, so the index can wind
1253 	 * up to the left of element 0 (index == 0) or past the end of
1254 	 * the array (index == node->count).  It is also possible that the
1255 	 * leaf might be empty.
1256 	 */
1257 	++hammer_stats_btree_iterations;
1258 	KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1259 	KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1260 	if (hammer_debug_btree) {
1261 		kprintf("SEARCH-L %016llx count=%d\n",
1262 			cursor->node->node_offset,
1263 			node->count);
1264 	}
1265 
1266 	/*
1267 	 * Try to shortcut the search before dropping into the
1268 	 * linear loop.  Locate the first node where r <= 1.
1269 	 */
1270 	i = hammer_btree_search_node(&cursor->key_beg, node);
1271 	while (i < node->count) {
1272 		++hammer_stats_btree_elements;
1273 		elm = &node->elms[i];
1274 
1275 		r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1276 
1277 		if (hammer_debug_btree > 1)
1278 			kprintf("  ELM %p %d r=%d\n", &node->elms[i], i, r);
1279 
1280 		/*
1281 		 * We are at a record element.  Stop if we've flipped past
1282 		 * key_beg, not counting the create_tid test.  Allow the
1283 		 * r == 1 case (key_beg > element but differs only by its
1284 		 * create_tid) to fall through to the AS-OF check.
1285 		 */
1286 		KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1287 
1288 		if (r < 0)
1289 			goto failed;
1290 		if (r > 1) {
1291 			++i;
1292 			continue;
1293 		}
1294 
1295 		/*
1296 		 * Check our as-of timestamp against the element.
1297 		 */
1298 		if (flags & HAMMER_CURSOR_ASOF) {
1299 			if (hammer_btree_chkts(cursor->asof,
1300 					       &node->elms[i].base) != 0) {
1301 				++i;
1302 				continue;
1303 			}
1304 			/* success */
1305 		} else {
1306 			if (r > 0) {	/* can only be +1 */
1307 				++i;
1308 				continue;
1309 			}
1310 			/* success */
1311 		}
1312 		cursor->index = i;
1313 		error = 0;
1314 		if (hammer_debug_btree) {
1315 			kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1316 				cursor->node->node_offset, i);
1317 		}
1318 		goto done;
1319 	}
1320 
1321 	/*
1322 	 * The search of the leaf node failed.  i is the insertion point.
1323 	 */
1324 failed:
1325 	if (hammer_debug_btree) {
1326 		kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1327 			cursor->node->node_offset, i);
1328 	}
1329 
1330 	/*
1331 	 * No exact match was found, i is now at the insertion point.
1332 	 *
1333 	 * If inserting split a full leaf before returning.  This
1334 	 * may have the side effect of adjusting cursor->node and
1335 	 * cursor->index.
1336 	 */
1337 	cursor->index = i;
1338 	if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1339 	     btree_node_is_full(node)) {
1340 		error = btree_split_leaf(cursor);
1341 		if (error) {
1342 			if (error != ENOSPC)
1343 				goto done;
1344 			enospc = 1;
1345 		}
1346 		/*
1347 		 * reload stale pointers
1348 		 */
1349 		/* NOT USED
1350 		i = cursor->index;
1351 		node = &cursor->node->internal;
1352 		*/
1353 	}
1354 
1355 	/*
1356 	 * We reached a leaf but did not find the key we were looking for.
1357 	 * If this is an insert we will be properly positioned for an insert
1358 	 * (ENOENT) or spike (ENOSPC) operation.
1359 	 */
1360 	error = enospc ? ENOSPC : ENOENT;
1361 done:
1362 	return(error);
1363 }
1364 
1365 /*
1366  * Heuristical search for the first element whos comparison is <= 1.  May
1367  * return an index whos compare result is > 1 but may only return an index
1368  * whos compare result is <= 1 if it is the first element with that result.
1369  */
1370 int
1371 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1372 {
1373 	int b;
1374 	int s;
1375 	int i;
1376 	int r;
1377 
1378 	/*
1379 	 * Don't bother if the node does not have very many elements
1380 	 */
1381 	b = 0;
1382 	s = node->count;
1383 	while (s - b > 4) {
1384 		i = b + (s - b) / 2;
1385 		++hammer_stats_btree_elements;
1386 		r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1387 		if (r <= 1) {
1388 			s = i;
1389 		} else {
1390 			b = i;
1391 		}
1392 	}
1393 	return(b);
1394 }
1395 
1396 
1397 /************************************************************************
1398  *			   SPLITTING AND MERGING 			*
1399  ************************************************************************
1400  *
1401  * These routines do all the dirty work required to split and merge nodes.
1402  */
1403 
1404 /*
1405  * Split an internal node into two nodes and move the separator at the split
1406  * point to the parent.
1407  *
1408  * (cursor->node, cursor->index) indicates the element the caller intends
1409  * to push into.  We will adjust node and index if that element winds
1410  * up in the split node.
1411  *
1412  * If we are at the root of the filesystem a new root must be created with
1413  * two elements, one pointing to the original root and one pointing to the
1414  * newly allocated split node.
1415  */
1416 static
1417 int
1418 btree_split_internal(hammer_cursor_t cursor)
1419 {
1420 	hammer_node_ondisk_t ondisk;
1421 	hammer_node_t node;
1422 	hammer_node_t parent;
1423 	hammer_node_t new_node;
1424 	hammer_btree_elm_t elm;
1425 	hammer_btree_elm_t parent_elm;
1426 	struct hammer_node_lock lockroot;
1427 	hammer_mount_t hmp = cursor->trans->hmp;
1428 	int parent_index;
1429 	int made_root;
1430 	int split;
1431 	int error;
1432 	int i;
1433 	const int esize = sizeof(*elm);
1434 
1435 	hammer_node_lock_init(&lockroot, cursor->node);
1436 	error = hammer_btree_lock_children(cursor, 1, &lockroot);
1437 	if (error)
1438 		goto done;
1439 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1440 		goto done;
1441 	++hammer_stats_btree_splits;
1442 
1443 	/*
1444 	 * We are splitting but elms[split] will be promoted to the parent,
1445 	 * leaving the right hand node with one less element.  If the
1446 	 * insertion point will be on the left-hand side adjust the split
1447 	 * point to give the right hand side one additional node.
1448 	 */
1449 	node = cursor->node;
1450 	ondisk = node->ondisk;
1451 	split = (ondisk->count + 1) / 2;
1452 	if (cursor->index <= split)
1453 		--split;
1454 
1455 	/*
1456 	 * If we are at the root of the filesystem, create a new root node
1457 	 * with 1 element and split normally.  Avoid making major
1458 	 * modifications until we know the whole operation will work.
1459 	 */
1460 	if (ondisk->parent == 0) {
1461 		parent = hammer_alloc_btree(cursor->trans, &error);
1462 		if (parent == NULL)
1463 			goto done;
1464 		hammer_lock_ex(&parent->lock);
1465 		hammer_modify_node_noundo(cursor->trans, parent);
1466 		ondisk = parent->ondisk;
1467 		ondisk->count = 1;
1468 		ondisk->parent = 0;
1469 		ondisk->mirror_tid = node->ondisk->mirror_tid;
1470 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1471 		ondisk->elms[0].base = hmp->root_btree_beg;
1472 		ondisk->elms[0].base.btype = node->ondisk->type;
1473 		ondisk->elms[0].internal.subtree_offset = node->node_offset;
1474 		ondisk->elms[1].base = hmp->root_btree_end;
1475 		hammer_modify_node_done(parent);
1476 		/* ondisk->elms[1].base.btype - not used */
1477 		made_root = 1;
1478 		parent_index = 0;	/* index of current node in parent */
1479 	} else {
1480 		made_root = 0;
1481 		parent = cursor->parent;
1482 		parent_index = cursor->parent_index;
1483 	}
1484 
1485 	/*
1486 	 * Split node into new_node at the split point.
1487 	 *
1488 	 *  B O O O P N N B	<-- P = node->elms[split]
1489 	 *   0 1 2 3 4 5 6	<-- subtree indices
1490 	 *
1491 	 *       x x P x x
1492 	 *        s S S s
1493 	 *         /   \
1494 	 *  B O O O B    B N N B	<--- inner boundary points are 'P'
1495 	 *   0 1 2 3      4 5 6
1496 	 *
1497 	 */
1498 	new_node = hammer_alloc_btree(cursor->trans, &error);
1499 	if (new_node == NULL) {
1500 		if (made_root) {
1501 			hammer_unlock(&parent->lock);
1502 			hammer_delete_node(cursor->trans, parent);
1503 			hammer_rel_node(parent);
1504 		}
1505 		goto done;
1506 	}
1507 	hammer_lock_ex(&new_node->lock);
1508 
1509 	/*
1510 	 * Create the new node.  P becomes the left-hand boundary in the
1511 	 * new node.  Copy the right-hand boundary as well.
1512 	 *
1513 	 * elm is the new separator.
1514 	 */
1515 	hammer_modify_node_noundo(cursor->trans, new_node);
1516 	hammer_modify_node_all(cursor->trans, node);
1517 	ondisk = node->ondisk;
1518 	elm = &ondisk->elms[split];
1519 	bcopy(elm, &new_node->ondisk->elms[0],
1520 	      (ondisk->count - split + 1) * esize);
1521 	new_node->ondisk->count = ondisk->count - split;
1522 	new_node->ondisk->parent = parent->node_offset;
1523 	new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1524 	new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1525 	KKASSERT(ondisk->type == new_node->ondisk->type);
1526 	hammer_cursor_split_node(node, new_node, split);
1527 
1528 	/*
1529 	 * Cleanup the original node.  Elm (P) becomes the new boundary,
1530 	 * its subtree_offset was moved to the new node.  If we had created
1531 	 * a new root its parent pointer may have changed.
1532 	 */
1533 	elm->internal.subtree_offset = 0;
1534 	ondisk->count = split;
1535 
1536 	/*
1537 	 * Insert the separator into the parent, fixup the parent's
1538 	 * reference to the original node, and reference the new node.
1539 	 * The separator is P.
1540 	 *
1541 	 * Remember that base.count does not include the right-hand boundary.
1542 	 */
1543 	hammer_modify_node_all(cursor->trans, parent);
1544 	ondisk = parent->ondisk;
1545 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1546 	parent_elm = &ondisk->elms[parent_index+1];
1547 	bcopy(parent_elm, parent_elm + 1,
1548 	      (ondisk->count - parent_index) * esize);
1549 	parent_elm->internal.base = elm->base;	/* separator P */
1550 	parent_elm->internal.base.btype = new_node->ondisk->type;
1551 	parent_elm->internal.subtree_offset = new_node->node_offset;
1552 	parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1553 	++ondisk->count;
1554 	hammer_modify_node_done(parent);
1555 	hammer_cursor_inserted_element(parent, parent_index + 1);
1556 
1557 	/*
1558 	 * The children of new_node need their parent pointer set to new_node.
1559 	 * The children have already been locked by
1560 	 * hammer_btree_lock_children().
1561 	 */
1562 	for (i = 0; i < new_node->ondisk->count; ++i) {
1563 		elm = &new_node->ondisk->elms[i];
1564 		error = btree_set_parent(cursor->trans, new_node, elm);
1565 		if (error) {
1566 			panic("btree_split_internal: btree-fixup problem");
1567 		}
1568 	}
1569 	hammer_modify_node_done(new_node);
1570 
1571 	/*
1572 	 * The filesystem's root B-Tree pointer may have to be updated.
1573 	 */
1574 	if (made_root) {
1575 		hammer_volume_t volume;
1576 
1577 		volume = hammer_get_root_volume(hmp, &error);
1578 		KKASSERT(error == 0);
1579 
1580 		hammer_modify_volume_field(cursor->trans, volume,
1581 					   vol0_btree_root);
1582 		volume->ondisk->vol0_btree_root = parent->node_offset;
1583 		hammer_modify_volume_done(volume);
1584 		node->ondisk->parent = parent->node_offset;
1585 		if (cursor->parent) {
1586 			hammer_unlock(&cursor->parent->lock);
1587 			hammer_rel_node(cursor->parent);
1588 		}
1589 		cursor->parent = parent;	/* lock'd and ref'd */
1590 		hammer_rel_volume(volume, 0);
1591 	}
1592 	hammer_modify_node_done(node);
1593 
1594 	/*
1595 	 * Ok, now adjust the cursor depending on which element the original
1596 	 * index was pointing at.  If we are >= the split point the push node
1597 	 * is now in the new node.
1598 	 *
1599 	 * NOTE: If we are at the split point itself we cannot stay with the
1600 	 * original node because the push index will point at the right-hand
1601 	 * boundary, which is illegal.
1602 	 *
1603 	 * NOTE: The cursor's parent or parent_index must be adjusted for
1604 	 * the case where a new parent (new root) was created, and the case
1605 	 * where the cursor is now pointing at the split node.
1606 	 */
1607 	if (cursor->index >= split) {
1608 		cursor->parent_index = parent_index + 1;
1609 		cursor->index -= split;
1610 		hammer_unlock(&cursor->node->lock);
1611 		hammer_rel_node(cursor->node);
1612 		cursor->node = new_node;	/* locked and ref'd */
1613 	} else {
1614 		cursor->parent_index = parent_index;
1615 		hammer_unlock(&new_node->lock);
1616 		hammer_rel_node(new_node);
1617 	}
1618 
1619 	/*
1620 	 * Fixup left and right bounds
1621 	 */
1622 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1623 	cursor->left_bound = &parent_elm[0].internal.base;
1624 	cursor->right_bound = &parent_elm[1].internal.base;
1625 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1626 		 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1627 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1628 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1629 
1630 done:
1631 	hammer_btree_unlock_children(cursor, &lockroot);
1632 	hammer_cursor_downgrade(cursor);
1633 	return (error);
1634 }
1635 
1636 /*
1637  * Same as the above, but splits a full leaf node.
1638  *
1639  * This function
1640  */
1641 static
1642 int
1643 btree_split_leaf(hammer_cursor_t cursor)
1644 {
1645 	hammer_node_ondisk_t ondisk;
1646 	hammer_node_t parent;
1647 	hammer_node_t leaf;
1648 	hammer_mount_t hmp;
1649 	hammer_node_t new_leaf;
1650 	hammer_btree_elm_t elm;
1651 	hammer_btree_elm_t parent_elm;
1652 	hammer_base_elm_t mid_boundary;
1653 	int parent_index;
1654 	int made_root;
1655 	int split;
1656 	int error;
1657 	const size_t esize = sizeof(*elm);
1658 
1659 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1660 		return(error);
1661 	++hammer_stats_btree_splits;
1662 
1663 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1664 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1665 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1666 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1667 
1668 	/*
1669 	 * Calculate the split point.  If the insertion point will be on
1670 	 * the left-hand side adjust the split point to give the right
1671 	 * hand side one additional node.
1672 	 *
1673 	 * Spikes are made up of two leaf elements which cannot be
1674 	 * safely split.
1675 	 */
1676 	leaf = cursor->node;
1677 	ondisk = leaf->ondisk;
1678 	split = (ondisk->count + 1) / 2;
1679 	if (cursor->index <= split)
1680 		--split;
1681 	error = 0;
1682 	hmp = leaf->hmp;
1683 
1684 	elm = &ondisk->elms[split];
1685 
1686 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1687 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1688 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1689 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1690 
1691 	/*
1692 	 * If we are at the root of the tree, create a new root node with
1693 	 * 1 element and split normally.  Avoid making major modifications
1694 	 * until we know the whole operation will work.
1695 	 */
1696 	if (ondisk->parent == 0) {
1697 		parent = hammer_alloc_btree(cursor->trans, &error);
1698 		if (parent == NULL)
1699 			goto done;
1700 		hammer_lock_ex(&parent->lock);
1701 		hammer_modify_node_noundo(cursor->trans, parent);
1702 		ondisk = parent->ondisk;
1703 		ondisk->count = 1;
1704 		ondisk->parent = 0;
1705 		ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1706 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1707 		ondisk->elms[0].base = hmp->root_btree_beg;
1708 		ondisk->elms[0].base.btype = leaf->ondisk->type;
1709 		ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1710 		ondisk->elms[1].base = hmp->root_btree_end;
1711 		/* ondisk->elms[1].base.btype = not used */
1712 		hammer_modify_node_done(parent);
1713 		made_root = 1;
1714 		parent_index = 0;	/* insertion point in parent */
1715 	} else {
1716 		made_root = 0;
1717 		parent = cursor->parent;
1718 		parent_index = cursor->parent_index;
1719 	}
1720 
1721 	/*
1722 	 * Split leaf into new_leaf at the split point.  Select a separator
1723 	 * value in-between the two leafs but with a bent towards the right
1724 	 * leaf since comparisons use an 'elm >= separator' inequality.
1725 	 *
1726 	 *  L L L L L L L L
1727 	 *
1728 	 *       x x P x x
1729 	 *        s S S s
1730 	 *         /   \
1731 	 *  L L L L     L L L L
1732 	 */
1733 	new_leaf = hammer_alloc_btree(cursor->trans, &error);
1734 	if (new_leaf == NULL) {
1735 		if (made_root) {
1736 			hammer_unlock(&parent->lock);
1737 			hammer_delete_node(cursor->trans, parent);
1738 			hammer_rel_node(parent);
1739 		}
1740 		goto done;
1741 	}
1742 	hammer_lock_ex(&new_leaf->lock);
1743 
1744 	/*
1745 	 * Create the new node and copy the leaf elements from the split
1746 	 * point on to the new node.
1747 	 */
1748 	hammer_modify_node_all(cursor->trans, leaf);
1749 	hammer_modify_node_noundo(cursor->trans, new_leaf);
1750 	ondisk = leaf->ondisk;
1751 	elm = &ondisk->elms[split];
1752 	bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1753 	new_leaf->ondisk->count = ondisk->count - split;
1754 	new_leaf->ondisk->parent = parent->node_offset;
1755 	new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1756 	new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1757 	KKASSERT(ondisk->type == new_leaf->ondisk->type);
1758 	hammer_modify_node_done(new_leaf);
1759 	hammer_cursor_split_node(leaf, new_leaf, split);
1760 
1761 	/*
1762 	 * Cleanup the original node.  Because this is a leaf node and
1763 	 * leaf nodes do not have a right-hand boundary, there
1764 	 * aren't any special edge cases to clean up.  We just fixup the
1765 	 * count.
1766 	 */
1767 	ondisk->count = split;
1768 
1769 	/*
1770 	 * Insert the separator into the parent, fixup the parent's
1771 	 * reference to the original node, and reference the new node.
1772 	 * The separator is P.
1773 	 *
1774 	 * Remember that base.count does not include the right-hand boundary.
1775 	 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1776 	 */
1777 	hammer_modify_node_all(cursor->trans, parent);
1778 	ondisk = parent->ondisk;
1779 	KKASSERT(split != 0);
1780 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1781 	parent_elm = &ondisk->elms[parent_index+1];
1782 	bcopy(parent_elm, parent_elm + 1,
1783 	      (ondisk->count - parent_index) * esize);
1784 
1785 	hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1786 	parent_elm->internal.base.btype = new_leaf->ondisk->type;
1787 	parent_elm->internal.subtree_offset = new_leaf->node_offset;
1788 	parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1789 	mid_boundary = &parent_elm->base;
1790 	++ondisk->count;
1791 	hammer_modify_node_done(parent);
1792 	hammer_cursor_inserted_element(parent, parent_index + 1);
1793 
1794 	/*
1795 	 * The filesystem's root B-Tree pointer may have to be updated.
1796 	 */
1797 	if (made_root) {
1798 		hammer_volume_t volume;
1799 
1800 		volume = hammer_get_root_volume(hmp, &error);
1801 		KKASSERT(error == 0);
1802 
1803 		hammer_modify_volume_field(cursor->trans, volume,
1804 					   vol0_btree_root);
1805 		volume->ondisk->vol0_btree_root = parent->node_offset;
1806 		hammer_modify_volume_done(volume);
1807 		leaf->ondisk->parent = parent->node_offset;
1808 		if (cursor->parent) {
1809 			hammer_unlock(&cursor->parent->lock);
1810 			hammer_rel_node(cursor->parent);
1811 		}
1812 		cursor->parent = parent;	/* lock'd and ref'd */
1813 		hammer_rel_volume(volume, 0);
1814 	}
1815 	hammer_modify_node_done(leaf);
1816 
1817 	/*
1818 	 * Ok, now adjust the cursor depending on which element the original
1819 	 * index was pointing at.  If we are >= the split point the push node
1820 	 * is now in the new node.
1821 	 *
1822 	 * NOTE: If we are at the split point itself we need to select the
1823 	 * old or new node based on where key_beg's insertion point will be.
1824 	 * If we pick the wrong side the inserted element will wind up in
1825 	 * the wrong leaf node and outside that node's bounds.
1826 	 */
1827 	if (cursor->index > split ||
1828 	    (cursor->index == split &&
1829 	     hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1830 		cursor->parent_index = parent_index + 1;
1831 		cursor->index -= split;
1832 		hammer_unlock(&cursor->node->lock);
1833 		hammer_rel_node(cursor->node);
1834 		cursor->node = new_leaf;
1835 	} else {
1836 		cursor->parent_index = parent_index;
1837 		hammer_unlock(&new_leaf->lock);
1838 		hammer_rel_node(new_leaf);
1839 	}
1840 
1841 	/*
1842 	 * Fixup left and right bounds
1843 	 */
1844 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1845 	cursor->left_bound = &parent_elm[0].internal.base;
1846 	cursor->right_bound = &parent_elm[1].internal.base;
1847 
1848 	/*
1849 	 * Assert that the bounds are correct.
1850 	 */
1851 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1852 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1853 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1854 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1855 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
1856 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
1857 
1858 done:
1859 	hammer_cursor_downgrade(cursor);
1860 	return (error);
1861 }
1862 
1863 #if 0
1864 
1865 /*
1866  * Recursively correct the right-hand boundary's create_tid to (tid) as
1867  * long as the rest of the key matches.  We have to recurse upward in
1868  * the tree as well as down the left side of each parent's right node.
1869  *
1870  * Return EDEADLK if we were only partially successful, forcing the caller
1871  * to try again.  The original cursor is not modified.  This routine can
1872  * also fail with EDEADLK if it is forced to throw away a portion of its
1873  * record history.
1874  *
1875  * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
1876  */
1877 struct hammer_rhb {
1878 	TAILQ_ENTRY(hammer_rhb) entry;
1879 	hammer_node_t	node;
1880 	int		index;
1881 };
1882 
1883 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
1884 
1885 int
1886 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
1887 {
1888 	struct hammer_mount *hmp;
1889 	struct hammer_rhb_list rhb_list;
1890 	hammer_base_elm_t elm;
1891 	hammer_node_t orig_node;
1892 	struct hammer_rhb *rhb;
1893 	int orig_index;
1894 	int error;
1895 
1896 	TAILQ_INIT(&rhb_list);
1897 	hmp = cursor->trans->hmp;
1898 
1899 	/*
1900 	 * Save our position so we can restore it on return.  This also
1901 	 * gives us a stable 'elm'.
1902 	 */
1903 	orig_node = cursor->node;
1904 	hammer_ref_node(orig_node);
1905 	hammer_lock_sh(&orig_node->lock);
1906 	orig_index = cursor->index;
1907 	elm = &orig_node->ondisk->elms[orig_index].base;
1908 
1909 	/*
1910 	 * Now build a list of parents going up, allocating a rhb
1911 	 * structure for each one.
1912 	 */
1913 	while (cursor->parent) {
1914 		/*
1915 		 * Stop if we no longer have any right-bounds to fix up
1916 		 */
1917 		if (elm->obj_id != cursor->right_bound->obj_id ||
1918 		    elm->rec_type != cursor->right_bound->rec_type ||
1919 		    elm->key != cursor->right_bound->key) {
1920 			break;
1921 		}
1922 
1923 		/*
1924 		 * Stop if the right-hand bound's create_tid does not
1925 		 * need to be corrected.
1926 		 */
1927 		if (cursor->right_bound->create_tid >= tid)
1928 			break;
1929 
1930 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
1931 		rhb->node = cursor->parent;
1932 		rhb->index = cursor->parent_index;
1933 		hammer_ref_node(rhb->node);
1934 		hammer_lock_sh(&rhb->node->lock);
1935 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
1936 
1937 		hammer_cursor_up(cursor);
1938 	}
1939 
1940 	/*
1941 	 * now safely adjust the right hand bound for each rhb.  This may
1942 	 * also require taking the right side of the tree and iterating down
1943 	 * ITS left side.
1944 	 */
1945 	error = 0;
1946 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1947 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
1948 		if (error)
1949 			break;
1950 		TAILQ_REMOVE(&rhb_list, rhb, entry);
1951 		hammer_unlock(&rhb->node->lock);
1952 		hammer_rel_node(rhb->node);
1953 		kfree(rhb, hmp->m_misc);
1954 
1955 		switch (cursor->node->ondisk->type) {
1956 		case HAMMER_BTREE_TYPE_INTERNAL:
1957 			/*
1958 			 * Right-boundary for parent at internal node
1959 			 * is one element to the right of the element whos
1960 			 * right boundary needs adjusting.  We must then
1961 			 * traverse down the left side correcting any left
1962 			 * bounds (which may now be too far to the left).
1963 			 */
1964 			++cursor->index;
1965 			error = hammer_btree_correct_lhb(cursor, tid);
1966 			break;
1967 		default:
1968 			panic("hammer_btree_correct_rhb(): Bad node type");
1969 			error = EINVAL;
1970 			break;
1971 		}
1972 	}
1973 
1974 	/*
1975 	 * Cleanup
1976 	 */
1977 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
1978 		TAILQ_REMOVE(&rhb_list, rhb, entry);
1979 		hammer_unlock(&rhb->node->lock);
1980 		hammer_rel_node(rhb->node);
1981 		kfree(rhb, hmp->m_misc);
1982 	}
1983 	error = hammer_cursor_seek(cursor, orig_node, orig_index);
1984 	hammer_unlock(&orig_node->lock);
1985 	hammer_rel_node(orig_node);
1986 	return (error);
1987 }
1988 
1989 /*
1990  * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
1991  * bound going downward starting at the current cursor position.
1992  *
1993  * This function does not restore the cursor after use.
1994  */
1995 int
1996 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
1997 {
1998 	struct hammer_rhb_list rhb_list;
1999 	hammer_base_elm_t elm;
2000 	hammer_base_elm_t cmp;
2001 	struct hammer_rhb *rhb;
2002 	struct hammer_mount *hmp;
2003 	int error;
2004 
2005 	TAILQ_INIT(&rhb_list);
2006 	hmp = cursor->trans->hmp;
2007 
2008 	cmp = &cursor->node->ondisk->elms[cursor->index].base;
2009 
2010 	/*
2011 	 * Record the node and traverse down the left-hand side for all
2012 	 * matching records needing a boundary correction.
2013 	 */
2014 	error = 0;
2015 	for (;;) {
2016 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2017 		rhb->node = cursor->node;
2018 		rhb->index = cursor->index;
2019 		hammer_ref_node(rhb->node);
2020 		hammer_lock_sh(&rhb->node->lock);
2021 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2022 
2023 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2024 			/*
2025 			 * Nothing to traverse down if we are at the right
2026 			 * boundary of an internal node.
2027 			 */
2028 			if (cursor->index == cursor->node->ondisk->count)
2029 				break;
2030 		} else {
2031 			elm = &cursor->node->ondisk->elms[cursor->index].base;
2032 			if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2033 				break;
2034 			panic("Illegal leaf record type %02x", elm->btype);
2035 		}
2036 		error = hammer_cursor_down(cursor);
2037 		if (error)
2038 			break;
2039 
2040 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2041 		if (elm->obj_id != cmp->obj_id ||
2042 		    elm->rec_type != cmp->rec_type ||
2043 		    elm->key != cmp->key) {
2044 			break;
2045 		}
2046 		if (elm->create_tid >= tid)
2047 			break;
2048 
2049 	}
2050 
2051 	/*
2052 	 * Now we can safely adjust the left-hand boundary from the bottom-up.
2053 	 * The last element we remove from the list is the caller's right hand
2054 	 * boundary, which must also be adjusted.
2055 	 */
2056 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2057 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2058 		if (error)
2059 			break;
2060 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2061 		hammer_unlock(&rhb->node->lock);
2062 		hammer_rel_node(rhb->node);
2063 		kfree(rhb, hmp->m_misc);
2064 
2065 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2066 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2067 			hammer_modify_node(cursor->trans, cursor->node,
2068 					   &elm->create_tid,
2069 					   sizeof(elm->create_tid));
2070 			elm->create_tid = tid;
2071 			hammer_modify_node_done(cursor->node);
2072 		} else {
2073 			panic("hammer_btree_correct_lhb(): Bad element type");
2074 		}
2075 	}
2076 
2077 	/*
2078 	 * Cleanup
2079 	 */
2080 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2081 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2082 		hammer_unlock(&rhb->node->lock);
2083 		hammer_rel_node(rhb->node);
2084 		kfree(rhb, hmp->m_misc);
2085 	}
2086 	return (error);
2087 }
2088 
2089 #endif
2090 
2091 /*
2092  * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2093  * (cursor->node).  Returns 0 on success, EDEADLK if we could not complete
2094  * the operation due to a deadlock, or some other error.
2095  *
2096  * This routine is initially called with an empty leaf and may be
2097  * recursively called with single-element internal nodes.
2098  *
2099  * It should also be noted that when removing empty leaves we must be sure
2100  * to test and update mirror_tid because another thread may have deadlocked
2101  * against us (or someone) trying to propagate it up and cannot retry once
2102  * the node has been deleted.
2103  *
2104  * On return the cursor may end up pointing to an internal node, suitable
2105  * for further iteration but not for an immediate insertion or deletion.
2106  */
2107 static int
2108 btree_remove(hammer_cursor_t cursor)
2109 {
2110 	hammer_node_ondisk_t ondisk;
2111 	hammer_btree_elm_t elm;
2112 	hammer_node_t node;
2113 	hammer_node_t parent;
2114 	const int esize = sizeof(*elm);
2115 	int error;
2116 
2117 	node = cursor->node;
2118 
2119 	/*
2120 	 * When deleting the root of the filesystem convert it to
2121 	 * an empty leaf node.  Internal nodes cannot be empty.
2122 	 */
2123 	ondisk = node->ondisk;
2124 	if (ondisk->parent == 0) {
2125 		KKASSERT(cursor->parent == NULL);
2126 		hammer_modify_node_all(cursor->trans, node);
2127 		KKASSERT(ondisk == node->ondisk);
2128 		ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2129 		ondisk->count = 0;
2130 		hammer_modify_node_done(node);
2131 		cursor->index = 0;
2132 		return(0);
2133 	}
2134 
2135 	parent = cursor->parent;
2136 	hammer_cursor_removed_node(node, parent, cursor->parent_index);
2137 
2138 	/*
2139 	 * Attempt to remove the parent's reference to the child.  If the
2140 	 * parent would become empty we have to recurse.  If we fail we
2141 	 * leave the parent pointing to an empty leaf node.
2142 	 *
2143 	 * We have to recurse successfully before we can delete the internal
2144 	 * node as it is illegal to have empty internal nodes.  Even though
2145 	 * the operation may be aborted we must still fixup any unlocked
2146 	 * cursors as if we had deleted the element prior to recursing
2147 	 * (by calling hammer_cursor_deleted_element()) so those cursors
2148 	 * are properly forced up the chain by the recursion.
2149 	 */
2150 	if (parent->ondisk->count == 1) {
2151 		/*
2152 		 * This special cursor_up_locked() call leaves the original
2153 		 * node exclusively locked and referenced, leaves the
2154 		 * original parent locked (as the new node), and locks the
2155 		 * new parent.  It can return EDEADLK.
2156 		 */
2157 		error = hammer_cursor_up_locked(cursor);
2158 		if (error == 0) {
2159 			hammer_cursor_deleted_element(cursor->node, 0);
2160 			error = btree_remove(cursor);
2161 			if (error == 0) {
2162 				hammer_modify_node_all(cursor->trans, node);
2163 				ondisk = node->ondisk;
2164 				ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2165 				ondisk->count = 0;
2166 				hammer_modify_node_done(node);
2167 				hammer_flush_node(node);
2168 				hammer_delete_node(cursor->trans, node);
2169 			} else {
2170 				/*
2171 				 * Defer parent removal because we could not
2172 				 * get the lock, just let the leaf remain
2173 				 * empty.
2174 				 */
2175 				/**/
2176 			}
2177 			hammer_unlock(&node->lock);
2178 			hammer_rel_node(node);
2179 		} else {
2180 			/*
2181 			 * Defer parent removal because we could not
2182 			 * get the lock, just let the leaf remain
2183 			 * empty.
2184 			 */
2185 			/**/
2186 		}
2187 	} else {
2188 		KKASSERT(parent->ondisk->count > 1);
2189 
2190 		hammer_modify_node_all(cursor->trans, parent);
2191 		ondisk = parent->ondisk;
2192 		KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2193 
2194 		elm = &ondisk->elms[cursor->parent_index];
2195 		KKASSERT(elm->internal.subtree_offset == node->node_offset);
2196 		KKASSERT(ondisk->count > 0);
2197 
2198 		/*
2199 		 * We must retain the highest mirror_tid.  The deleted
2200 		 * range is now encompassed by the element to the left.
2201 		 * If we are already at the left edge the new left edge
2202 		 * inherits mirror_tid.
2203 		 *
2204 		 * Note that bounds of the parent to our parent may create
2205 		 * a gap to the left of our left-most node or to the right
2206 		 * of our right-most node.  The gap is silently included
2207 		 * in the mirror_tid's area of effect from the point of view
2208 		 * of the scan.
2209 		 */
2210 		if (cursor->parent_index) {
2211 			if (elm[-1].internal.mirror_tid <
2212 			    elm[0].internal.mirror_tid) {
2213 				elm[-1].internal.mirror_tid =
2214 				    elm[0].internal.mirror_tid;
2215 			}
2216 		} else {
2217 			if (elm[1].internal.mirror_tid <
2218 			    elm[0].internal.mirror_tid) {
2219 				elm[1].internal.mirror_tid =
2220 				    elm[0].internal.mirror_tid;
2221 			}
2222 		}
2223 
2224 		/*
2225 		 * Delete the subtree reference in the parent
2226 		 */
2227 		bcopy(&elm[1], &elm[0],
2228 		      (ondisk->count - cursor->parent_index) * esize);
2229 		--ondisk->count;
2230 		hammer_modify_node_done(parent);
2231 		hammer_cursor_deleted_element(parent, cursor->parent_index);
2232 		hammer_flush_node(node);
2233 		hammer_delete_node(cursor->trans, node);
2234 
2235 		/*
2236 		 * cursor->node is invalid, cursor up to make the cursor
2237 		 * valid again.
2238 		 */
2239 		error = hammer_cursor_up(cursor);
2240 	}
2241 	return (error);
2242 }
2243 
2244 /*
2245  * Propagate cursor->trans->tid up the B-Tree starting at the current
2246  * cursor position using pseudofs info gleaned from the passed inode.
2247  *
2248  * The passed inode has no relationship to the cursor position other
2249  * then being in the same pseudofs as the insertion or deletion we
2250  * are propagating the mirror_tid for.
2251  */
2252 void
2253 hammer_btree_do_propagation(hammer_cursor_t cursor,
2254 			    hammer_pseudofs_inmem_t pfsm,
2255 			    hammer_btree_leaf_elm_t leaf)
2256 {
2257 	hammer_cursor_t ncursor;
2258 	hammer_tid_t mirror_tid;
2259 	int error;
2260 
2261 	/*
2262 	 * We do not propagate a mirror_tid if the filesystem was mounted
2263 	 * in no-mirror mode.
2264 	 */
2265 	if (cursor->trans->hmp->master_id < 0)
2266 		return;
2267 
2268 	/*
2269 	 * This is a bit of a hack because we cannot deadlock or return
2270 	 * EDEADLK here.  The related operation has already completed and
2271 	 * we must propagate the mirror_tid now regardless.
2272 	 *
2273 	 * Generate a new cursor which inherits the original's locks and
2274 	 * unlock the original.  Use the new cursor to propagate the
2275 	 * mirror_tid.  Then clean up the new cursor and reacquire locks
2276 	 * on the original.
2277 	 *
2278 	 * hammer_dup_cursor() cannot dup locks.  The dup inherits the
2279 	 * original's locks and the original is tracked and must be
2280 	 * re-locked.
2281 	 */
2282 	mirror_tid = cursor->node->ondisk->mirror_tid;
2283 	KKASSERT(mirror_tid != 0);
2284 	ncursor = hammer_push_cursor(cursor);
2285 	error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2286 	KKASSERT(error == 0);
2287 	hammer_pop_cursor(cursor, ncursor);
2288 }
2289 
2290 
2291 /*
2292  * Propagate a mirror TID update upwards through the B-Tree to the root.
2293  *
2294  * A locked internal node must be passed in.  The node will remain locked
2295  * on return.
2296  *
2297  * This function syncs mirror_tid at the specified internal node's element,
2298  * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2299  */
2300 static int
2301 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2302 {
2303 	hammer_btree_internal_elm_t elm;
2304 	hammer_node_t node;
2305 	int error;
2306 
2307 	for (;;) {
2308 		error = hammer_cursor_up(cursor);
2309 		if (error == 0)
2310 			error = hammer_cursor_upgrade(cursor);
2311 		while (error == EDEADLK) {
2312 			hammer_recover_cursor(cursor);
2313 			error = hammer_cursor_upgrade(cursor);
2314 		}
2315 		if (error)
2316 			break;
2317 		node = cursor->node;
2318 		KKASSERT (node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2319 
2320 		/*
2321 		 * Adjust the node's element
2322 		 */
2323 		elm = &node->ondisk->elms[cursor->index].internal;
2324 		if (elm->mirror_tid >= mirror_tid)
2325 			break;
2326 		hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2327 				   sizeof(elm->mirror_tid));
2328 		elm->mirror_tid = mirror_tid;
2329 		hammer_modify_node_done(node);
2330 		if (hammer_debug_general & 0x0002) {
2331 			kprintf("mirror_propagate: propagate "
2332 				"%016llx @%016llx:%d\n",
2333 				mirror_tid, node->node_offset, cursor->index);
2334 		}
2335 
2336 
2337 		/*
2338 		 * Adjust the node's mirror_tid aggregator
2339 		 */
2340 		if (node->ondisk->mirror_tid >= mirror_tid)
2341 			return(0);
2342 		hammer_modify_node_field(cursor->trans, node, mirror_tid);
2343 		node->ondisk->mirror_tid = mirror_tid;
2344 		hammer_modify_node_done(node);
2345 		if (hammer_debug_general & 0x0002) {
2346 			kprintf("mirror_propagate: propagate "
2347 				"%016llx @%016llx\n",
2348 				mirror_tid, node->node_offset);
2349 		}
2350 	}
2351 	if (error == ENOENT)
2352 		error = 0;
2353 	return(error);
2354 }
2355 
2356 hammer_node_t
2357 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
2358 			int *parent_indexp, int *errorp, int try_exclusive)
2359 {
2360 	hammer_node_t parent;
2361 	hammer_btree_elm_t elm;
2362 	int i;
2363 
2364 	/*
2365 	 * Get the node
2366 	 */
2367 	parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
2368 	if (*errorp) {
2369 		KKASSERT(parent == NULL);
2370 		return(NULL);
2371 	}
2372 	KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2373 
2374 	/*
2375 	 * Lock the node
2376 	 */
2377 	if (try_exclusive) {
2378 		if (hammer_lock_ex_try(&parent->lock)) {
2379 			hammer_rel_node(parent);
2380 			*errorp = EDEADLK;
2381 			return(NULL);
2382 		}
2383 	} else {
2384 		hammer_lock_sh(&parent->lock);
2385 	}
2386 
2387 	/*
2388 	 * Figure out which element in the parent is pointing to the
2389 	 * child.
2390 	 */
2391 	if (node->ondisk->count) {
2392 		i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2393 					     parent->ondisk);
2394 	} else {
2395 		i = 0;
2396 	}
2397 	while (i < parent->ondisk->count) {
2398 		elm = &parent->ondisk->elms[i];
2399 		if (elm->internal.subtree_offset == node->node_offset)
2400 			break;
2401 		++i;
2402 	}
2403 	if (i == parent->ondisk->count) {
2404 		hammer_unlock(&parent->lock);
2405 		panic("Bad B-Tree link: parent %p node %p\n", parent, node);
2406 	}
2407 	*parent_indexp = i;
2408 	KKASSERT(*errorp == 0);
2409 	return(parent);
2410 }
2411 
2412 /*
2413  * The element (elm) has been moved to a new internal node (node).
2414  *
2415  * If the element represents a pointer to an internal node that node's
2416  * parent must be adjusted to the element's new location.
2417  *
2418  * XXX deadlock potential here with our exclusive locks
2419  */
2420 int
2421 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2422 		 hammer_btree_elm_t elm)
2423 {
2424 	hammer_node_t child;
2425 	int error;
2426 
2427 	error = 0;
2428 
2429 	switch(elm->base.btype) {
2430 	case HAMMER_BTREE_TYPE_INTERNAL:
2431 	case HAMMER_BTREE_TYPE_LEAF:
2432 		child = hammer_get_node(trans, elm->internal.subtree_offset,
2433 					0, &error);
2434 		if (error == 0) {
2435 			hammer_modify_node_field(trans, child, parent);
2436 			child->ondisk->parent = node->node_offset;
2437 			hammer_modify_node_done(child);
2438 			hammer_rel_node(child);
2439 		}
2440 		break;
2441 	default:
2442 		break;
2443 	}
2444 	return(error);
2445 }
2446 
2447 /*
2448  * Initialize the root of a recursive B-Tree node lock list structure.
2449  */
2450 void
2451 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
2452 {
2453 	TAILQ_INIT(&parent->list);
2454 	parent->parent = NULL;
2455 	parent->node = node;
2456 	parent->index = -1;
2457 	parent->count = node->ondisk->count;
2458 	parent->copy = NULL;
2459 	parent->flags = 0;
2460 }
2461 
2462 /*
2463  * Exclusively lock all the children of node.  This is used by the split
2464  * code to prevent anyone from accessing the children of a cursor node
2465  * while we fix-up its parent offset.
2466  *
2467  * If we don't lock the children we can really mess up cursors which block
2468  * trying to cursor-up into our node.
2469  *
2470  * On failure EDEADLK (or some other error) is returned.  If a deadlock
2471  * error is returned the cursor is adjusted to block on termination.
2472  *
2473  * The caller is responsible for managing parent->node, the root's node
2474  * is usually aliased from a cursor.
2475  */
2476 int
2477 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
2478 			   hammer_node_lock_t parent)
2479 {
2480 	hammer_node_t node;
2481 	hammer_node_lock_t item;
2482 	hammer_node_ondisk_t ondisk;
2483 	hammer_btree_elm_t elm;
2484 	hammer_node_t child;
2485 	struct hammer_mount *hmp;
2486 	int error;
2487 	int i;
2488 
2489 	node = parent->node;
2490 	ondisk = node->ondisk;
2491 	error = 0;
2492 	hmp = cursor->trans->hmp;
2493 
2494 	/*
2495 	 * We really do not want to block on I/O with exclusive locks held,
2496 	 * pre-get the children before trying to lock the mess.  This is
2497 	 * only done one-level deep for now.
2498 	 */
2499 	for (i = 0; i < ondisk->count; ++i) {
2500 		++hammer_stats_btree_elements;
2501 		elm = &ondisk->elms[i];
2502 		if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2503 		    elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2504 			continue;
2505 		}
2506 		child = hammer_get_node(cursor->trans,
2507 					elm->internal.subtree_offset,
2508 					0, &error);
2509 		if (child)
2510 			hammer_rel_node(child);
2511 	}
2512 
2513 	/*
2514 	 * Do it for real
2515 	 */
2516 	for (i = 0; error == 0 && i < ondisk->count; ++i) {
2517 		++hammer_stats_btree_elements;
2518 		elm = &ondisk->elms[i];
2519 
2520 		switch(elm->base.btype) {
2521 		case HAMMER_BTREE_TYPE_INTERNAL:
2522 		case HAMMER_BTREE_TYPE_LEAF:
2523 			KKASSERT(elm->internal.subtree_offset != 0);
2524 			child = hammer_get_node(cursor->trans,
2525 						elm->internal.subtree_offset,
2526 						0, &error);
2527 			break;
2528 		default:
2529 			child = NULL;
2530 			break;
2531 		}
2532 		if (child) {
2533 			if (hammer_lock_ex_try(&child->lock) != 0) {
2534 				if (cursor->deadlk_node == NULL) {
2535 					cursor->deadlk_node = child;
2536 					hammer_ref_node(cursor->deadlk_node);
2537 				}
2538 				error = EDEADLK;
2539 				hammer_rel_node(child);
2540 			} else {
2541 				item = kmalloc(sizeof(*item), hmp->m_misc,
2542 					       M_WAITOK|M_ZERO);
2543 				TAILQ_INSERT_TAIL(&parent->list, item, entry);
2544 				TAILQ_INIT(&item->list);
2545 				item->parent = parent;
2546 				item->node = child;
2547 				item->index = i;
2548 				item->count = child->ondisk->count;
2549 
2550 				/*
2551 				 * Recurse (used by the rebalancing code)
2552 				 */
2553 				if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
2554 					error = hammer_btree_lock_children(
2555 							cursor,
2556 							depth - 1,
2557 							item);
2558 				}
2559 			}
2560 		}
2561 	}
2562 	if (error)
2563 		hammer_btree_unlock_children(cursor, parent);
2564 	return(error);
2565 }
2566 
2567 /*
2568  * Create an in-memory copy of all B-Tree nodes listed, recursively,
2569  * including the parent.
2570  */
2571 void
2572 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2573 {
2574 	hammer_mount_t hmp = cursor->trans->hmp;
2575 	hammer_node_lock_t item;
2576 
2577 	if (parent->copy == NULL) {
2578 		parent->copy = kmalloc(sizeof(*parent->copy), hmp->m_misc,
2579 				       M_WAITOK);
2580 		*parent->copy = *parent->node->ondisk;
2581 	}
2582 	TAILQ_FOREACH(item, &parent->list, entry) {
2583 		hammer_btree_lock_copy(cursor, item);
2584 	}
2585 }
2586 
2587 /*
2588  * Recursively sync modified copies to the media.
2589  */
2590 int
2591 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2592 {
2593 	hammer_node_lock_t item;
2594 	int count = 0;
2595 
2596 	if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
2597 		++count;
2598 		hammer_modify_node_all(cursor->trans, parent->node);
2599 		*parent->node->ondisk = *parent->copy;
2600                 hammer_modify_node_done(parent->node);
2601 		if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
2602 			hammer_flush_node(parent->node);
2603 			hammer_delete_node(cursor->trans, parent->node);
2604 		}
2605 	}
2606 	TAILQ_FOREACH(item, &parent->list, entry) {
2607 		count += hammer_btree_sync_copy(cursor, item);
2608 	}
2609 	return(count);
2610 }
2611 
2612 /*
2613  * Release previously obtained node locks.  The caller is responsible for
2614  * cleaning up parent->node itself (its usually just aliased from a cursor),
2615  * but this function will take care of the copies.
2616  */
2617 void
2618 hammer_btree_unlock_children(hammer_cursor_t cursor, hammer_node_lock_t parent)
2619 {
2620 	hammer_node_lock_t item;
2621 
2622 	if (parent->copy) {
2623 		kfree(parent->copy, cursor->trans->hmp->m_misc);
2624 		parent->copy = NULL;	/* safety */
2625 	}
2626 	while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
2627 		TAILQ_REMOVE(&parent->list, item, entry);
2628 		hammer_btree_unlock_children(cursor, item);
2629 		hammer_unlock(&item->node->lock);
2630 		hammer_rel_node(item->node);
2631 		kfree(item, cursor->trans->hmp->m_misc);
2632 	}
2633 }
2634 
2635 /************************************************************************
2636  *			   MISCELLANIOUS SUPPORT 			*
2637  ************************************************************************/
2638 
2639 /*
2640  * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2641  *
2642  * Note that for this particular function a return value of -1, 0, or +1
2643  * can denote a match if create_tid is otherwise discounted.  A create_tid
2644  * of zero is considered to be 'infinity' in comparisons.
2645  *
2646  * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2647  */
2648 int
2649 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2650 {
2651 	if (key1->localization < key2->localization)
2652 		return(-5);
2653 	if (key1->localization > key2->localization)
2654 		return(5);
2655 
2656 	if (key1->obj_id < key2->obj_id)
2657 		return(-4);
2658 	if (key1->obj_id > key2->obj_id)
2659 		return(4);
2660 
2661 	if (key1->rec_type < key2->rec_type)
2662 		return(-3);
2663 	if (key1->rec_type > key2->rec_type)
2664 		return(3);
2665 
2666 	if (key1->key < key2->key)
2667 		return(-2);
2668 	if (key1->key > key2->key)
2669 		return(2);
2670 
2671 	/*
2672 	 * A create_tid of zero indicates a record which is undeletable
2673 	 * and must be considered to have a value of positive infinity.
2674 	 */
2675 	if (key1->create_tid == 0) {
2676 		if (key2->create_tid == 0)
2677 			return(0);
2678 		return(1);
2679 	}
2680 	if (key2->create_tid == 0)
2681 		return(-1);
2682 	if (key1->create_tid < key2->create_tid)
2683 		return(-1);
2684 	if (key1->create_tid > key2->create_tid)
2685 		return(1);
2686 	return(0);
2687 }
2688 
2689 /*
2690  * Test a timestamp against an element to determine whether the
2691  * element is visible.  A timestamp of 0 means 'infinity'.
2692  */
2693 int
2694 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2695 {
2696 	if (asof == 0) {
2697 		if (base->delete_tid)
2698 			return(1);
2699 		return(0);
2700 	}
2701 	if (asof < base->create_tid)
2702 		return(-1);
2703 	if (base->delete_tid && asof >= base->delete_tid)
2704 		return(1);
2705 	return(0);
2706 }
2707 
2708 /*
2709  * Create a separator half way inbetween key1 and key2.  For fields just
2710  * one unit apart, the separator will match key2.  key1 is on the left-hand
2711  * side and key2 is on the right-hand side.
2712  *
2713  * key2 must be >= the separator.  It is ok for the separator to match key2.
2714  *
2715  * NOTE: Even if key1 does not match key2, the separator may wind up matching
2716  * key2.
2717  *
2718  * NOTE: It might be beneficial to just scrap this whole mess and just
2719  * set the separator to key2.
2720  */
2721 #define MAKE_SEPARATOR(key1, key2, dest, field)	\
2722 	dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2723 
2724 static void
2725 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
2726 		      hammer_base_elm_t dest)
2727 {
2728 	bzero(dest, sizeof(*dest));
2729 
2730 	dest->rec_type = key2->rec_type;
2731 	dest->key = key2->key;
2732 	dest->obj_id = key2->obj_id;
2733 	dest->create_tid = key2->create_tid;
2734 
2735 	MAKE_SEPARATOR(key1, key2, dest, localization);
2736 	if (key1->localization == key2->localization) {
2737 		MAKE_SEPARATOR(key1, key2, dest, obj_id);
2738 		if (key1->obj_id == key2->obj_id) {
2739 			MAKE_SEPARATOR(key1, key2, dest, rec_type);
2740 			if (key1->rec_type == key2->rec_type) {
2741 				MAKE_SEPARATOR(key1, key2, dest, key);
2742 				/*
2743 				 * Don't bother creating a separator for
2744 				 * create_tid, which also conveniently avoids
2745 				 * having to handle the create_tid == 0
2746 				 * (infinity) case.  Just leave create_tid
2747 				 * set to key2.
2748 				 *
2749 				 * Worst case, dest matches key2 exactly,
2750 				 * which is acceptable.
2751 				 */
2752 			}
2753 		}
2754 	}
2755 }
2756 
2757 #undef MAKE_SEPARATOR
2758 
2759 /*
2760  * Return whether a generic internal or leaf node is full
2761  */
2762 static int
2763 btree_node_is_full(hammer_node_ondisk_t node)
2764 {
2765 	switch(node->type) {
2766 	case HAMMER_BTREE_TYPE_INTERNAL:
2767 		if (node->count == HAMMER_BTREE_INT_ELMS)
2768 			return(1);
2769 		break;
2770 	case HAMMER_BTREE_TYPE_LEAF:
2771 		if (node->count == HAMMER_BTREE_LEAF_ELMS)
2772 			return(1);
2773 		break;
2774 	default:
2775 		panic("illegal btree subtype");
2776 	}
2777 	return(0);
2778 }
2779 
2780 #if 0
2781 static int
2782 btree_max_elements(u_int8_t type)
2783 {
2784 	if (type == HAMMER_BTREE_TYPE_LEAF)
2785 		return(HAMMER_BTREE_LEAF_ELMS);
2786 	if (type == HAMMER_BTREE_TYPE_INTERNAL)
2787 		return(HAMMER_BTREE_INT_ELMS);
2788 	panic("btree_max_elements: bad type %d\n", type);
2789 }
2790 #endif
2791 
2792 void
2793 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
2794 {
2795 	hammer_btree_elm_t elm;
2796 	int i;
2797 
2798 	kprintf("node %p count=%d parent=%016llx type=%c\n",
2799 		ondisk, ondisk->count, ondisk->parent, ondisk->type);
2800 
2801 	/*
2802 	 * Dump both boundary elements if an internal node
2803 	 */
2804 	if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2805 		for (i = 0; i <= ondisk->count; ++i) {
2806 			elm = &ondisk->elms[i];
2807 			hammer_print_btree_elm(elm, ondisk->type, i);
2808 		}
2809 	} else {
2810 		for (i = 0; i < ondisk->count; ++i) {
2811 			elm = &ondisk->elms[i];
2812 			hammer_print_btree_elm(elm, ondisk->type, i);
2813 		}
2814 	}
2815 }
2816 
2817 void
2818 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
2819 {
2820 	kprintf("  %2d", i);
2821 	kprintf("\tobj_id       = %016llx\n", elm->base.obj_id);
2822 	kprintf("\tkey          = %016llx\n", elm->base.key);
2823 	kprintf("\tcreate_tid   = %016llx\n", elm->base.create_tid);
2824 	kprintf("\tdelete_tid   = %016llx\n", elm->base.delete_tid);
2825 	kprintf("\trec_type     = %04x\n", elm->base.rec_type);
2826 	kprintf("\tobj_type     = %02x\n", elm->base.obj_type);
2827 	kprintf("\tbtype 	= %02x (%c)\n",
2828 		elm->base.btype,
2829 		(elm->base.btype ? elm->base.btype : '?'));
2830 	kprintf("\tlocalization	= %02x\n", elm->base.localization);
2831 
2832 	switch(type) {
2833 	case HAMMER_BTREE_TYPE_INTERNAL:
2834 		kprintf("\tsubtree_off  = %016llx\n",
2835 			elm->internal.subtree_offset);
2836 		break;
2837 	case HAMMER_BTREE_TYPE_RECORD:
2838 		kprintf("\tdata_offset  = %016llx\n", elm->leaf.data_offset);
2839 		kprintf("\tdata_len     = %08x\n", elm->leaf.data_len);
2840 		kprintf("\tdata_crc     = %08x\n", elm->leaf.data_crc);
2841 		break;
2842 	}
2843 }
2844