xref: /dflybsd-src/sys/vfs/hammer/hammer_btree.c (revision a9656fbcd49c376aba5e04370d8b0f1fa96e063c)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * $DragonFly: src/sys/vfs/hammer/hammer_btree.c,v 1.76 2008/08/06 15:38:58 dillon Exp $
35  */
36 
37 /*
38  * HAMMER B-Tree index
39  *
40  * HAMMER implements a modified B+Tree.  In documentation this will
41  * simply be refered to as the HAMMER B-Tree.  Basically a HAMMER B-Tree
42  * looks like a B+Tree (A B-Tree which stores its records only at the leafs
43  * of the tree), but adds two additional boundary elements which describe
44  * the left-most and right-most element a node is able to represent.  In
45  * otherwords, we have boundary elements at the two ends of a B-Tree node
46  * instead of sub-tree pointers.
47  *
48  * A B-Tree internal node looks like this:
49  *
50  *	B N N N N N N B   <-- boundary and internal elements
51  *       S S S S S S S    <-- subtree pointers
52  *
53  * A B-Tree leaf node basically looks like this:
54  *
55  *	L L L L L L L L   <-- leaf elemenets
56  *
57  * The radix for an internal node is 1 less then a leaf but we get a
58  * number of significant benefits for our troubles.
59  *
60  * The big benefit to using a B-Tree containing boundary information
61  * is that it is possible to cache pointers into the middle of the tree
62  * and not have to start searches, insertions, OR deletions at the root
63  * node.   In particular, searches are able to progress in a definitive
64  * direction from any point in the tree without revisting nodes.  This
65  * greatly improves the efficiency of many operations, most especially
66  * record appends.
67  *
68  * B-Trees also make the stacking of trees fairly straightforward.
69  *
70  * INSERTIONS:  A search performed with the intention of doing
71  * an insert will guarantee that the terminal leaf node is not full by
72  * splitting full nodes.  Splits occur top-down during the dive down the
73  * B-Tree.
74  *
75  * DELETIONS: A deletion makes no attempt to proactively balance the
76  * tree and will recursively remove nodes that become empty.  If a
77  * deadlock occurs a deletion may not be able to remove an empty leaf.
78  * Deletions never allow internal nodes to become empty (that would blow
79  * up the boundaries).
80  */
81 #include "hammer.h"
82 #include <sys/buf.h>
83 #include <sys/buf2.h>
84 
85 static int btree_search(hammer_cursor_t cursor, int flags);
86 static int btree_split_internal(hammer_cursor_t cursor);
87 static int btree_split_leaf(hammer_cursor_t cursor);
88 static int btree_remove(hammer_cursor_t cursor);
89 static int btree_node_is_full(hammer_node_ondisk_t node);
90 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
91 			hammer_tid_t mirror_tid);
92 static void hammer_make_separator(hammer_base_elm_t key1,
93 			hammer_base_elm_t key2, hammer_base_elm_t dest);
94 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
95 
96 /*
97  * Iterate records after a search.  The cursor is iterated forwards past
98  * the current record until a record matching the key-range requirements
99  * is found.  ENOENT is returned if the iteration goes past the ending
100  * key.
101  *
102  * The iteration is inclusive of key_beg and can be inclusive or exclusive
103  * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
104  *
105  * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
106  * may be modified by B-Tree functions.
107  *
108  * cursor->key_beg may or may not be modified by this function during
109  * the iteration.  XXX future - in case of an inverted lock we may have
110  * to reinitiate the lookup and set key_beg to properly pick up where we
111  * left off.
112  *
113  * If HAMMER_CURSOR_ITERATE_CHECK is set it is possible that the cursor
114  * was reverse indexed due to being moved to a parent while unlocked,
115  * and something else might have inserted an element outside the iteration
116  * range.  When this case occurs the iterator just keeps iterating until
117  * it gets back into the iteration range (instead of asserting).
118  *
119  * NOTE!  EDEADLK *CANNOT* be returned by this procedure.
120  */
121 int
122 hammer_btree_iterate(hammer_cursor_t cursor)
123 {
124 	hammer_node_ondisk_t node;
125 	hammer_btree_elm_t elm;
126 	hammer_mount_t hmp;
127 	int error = 0;
128 	int r;
129 	int s;
130 
131 	/*
132 	 * Skip past the current record
133 	 */
134 	hmp = cursor->trans->hmp;
135 	node = cursor->node->ondisk;
136 	if (node == NULL)
137 		return(ENOENT);
138 	if (cursor->index < node->count &&
139 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
140 		++cursor->index;
141 	}
142 
143 	/*
144 	 * HAMMER can wind up being cpu-bound.
145 	 */
146 	if (++hmp->check_yield > hammer_yield_check) {
147 		hmp->check_yield = 0;
148 		lwkt_user_yield();
149 	}
150 
151 
152 	/*
153 	 * Loop until an element is found or we are done.
154 	 */
155 	for (;;) {
156 		/*
157 		 * We iterate up the tree and then index over one element
158 		 * while we are at the last element in the current node.
159 		 *
160 		 * If we are at the root of the filesystem, cursor_up
161 		 * returns ENOENT.
162 		 *
163 		 * XXX this could be optimized by storing the information in
164 		 * the parent reference.
165 		 *
166 		 * XXX we can lose the node lock temporarily, this could mess
167 		 * up our scan.
168 		 */
169 		++hammer_stats_btree_iterations;
170 		hammer_flusher_clean_loose_ios(hmp);
171 
172 		if (cursor->index == node->count) {
173 			if (hammer_debug_btree) {
174 				kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
175 					(long long)cursor->node->node_offset,
176 					cursor->index,
177 					(long long)(cursor->parent ? cursor->parent->node_offset : -1),
178 					cursor->parent_index,
179 					curthread);
180 			}
181 			KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
182 			error = hammer_cursor_up(cursor);
183 			if (error)
184 				break;
185 			/* reload stale pointer */
186 			node = cursor->node->ondisk;
187 			KKASSERT(cursor->index != node->count);
188 
189 			/*
190 			 * If we are reblocking we want to return internal
191 			 * nodes.  Note that the internal node will be
192 			 * returned multiple times, on each upward recursion
193 			 * from its children.  The caller selects which
194 			 * revisit it cares about (usually first or last only).
195 			 */
196 			if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
197 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
198 				return(0);
199 			}
200 			++cursor->index;
201 			continue;
202 		}
203 
204 		/*
205 		 * Check internal or leaf element.  Determine if the record
206 		 * at the cursor has gone beyond the end of our range.
207 		 *
208 		 * We recurse down through internal nodes.
209 		 */
210 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
211 			elm = &node->elms[cursor->index];
212 
213 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
214 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
215 			if (hammer_debug_btree) {
216 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d (td=%p)\n",
217 					(long long)cursor->node->node_offset,
218 					cursor->index,
219 					(long long)elm[0].internal.base.obj_id,
220 					elm[0].internal.base.rec_type,
221 					(long long)elm[0].internal.base.key,
222 					elm[0].internal.base.localization,
223 					r,
224 					curthread
225 				);
226 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
227 					(long long)cursor->node->node_offset,
228 					cursor->index + 1,
229 					(long long)elm[1].internal.base.obj_id,
230 					elm[1].internal.base.rec_type,
231 					(long long)elm[1].internal.base.key,
232 					elm[1].internal.base.localization,
233 					s
234 				);
235 			}
236 
237 			if (r < 0) {
238 				error = ENOENT;
239 				break;
240 			}
241 			if (r == 0 && (cursor->flags &
242 				       HAMMER_CURSOR_END_INCLUSIVE) == 0) {
243 				error = ENOENT;
244 				break;
245 			}
246 
247 			/*
248 			 * Better not be zero
249 			 */
250 			KKASSERT(elm->internal.subtree_offset != 0);
251 
252 			if (s <= 0) {
253 				/*
254 				 * If running the mirror filter see if we
255 				 * can skip one or more entire sub-trees.
256 				 * If we can we return the internal node
257 				 * and the caller processes the skipped
258 				 * range (see mirror_read).
259 				 */
260 				if (cursor->flags &
261 				    HAMMER_CURSOR_MIRROR_FILTERED) {
262 					if (elm->internal.mirror_tid <
263 					    cursor->cmirror->mirror_tid) {
264 						hammer_cursor_mirror_filter(cursor);
265 						return(0);
266 					}
267 				}
268 			} else {
269 				/*
270 				 * Normally it would be impossible for the
271 				 * cursor to have gotten back-indexed,
272 				 * but it can happen if a node is deleted
273 				 * and the cursor is moved to its parent
274 				 * internal node.  ITERATE_CHECK will be set.
275 				 */
276 				KKASSERT(cursor->flags &
277 					 HAMMER_CURSOR_ITERATE_CHECK);
278 				kprintf("hammer_btree_iterate: "
279 					"DEBUG: Caught parent seek "
280 					"in internal iteration\n");
281 			}
282 
283 			error = hammer_cursor_down(cursor);
284 			if (error)
285 				break;
286 			KKASSERT(cursor->index == 0);
287 			/* reload stale pointer */
288 			node = cursor->node->ondisk;
289 			continue;
290 		} else {
291 			elm = &node->elms[cursor->index];
292 			r = hammer_btree_cmp(&cursor->key_end, &elm->base);
293 			if (hammer_debug_btree) {
294 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
295 					(long long)cursor->node->node_offset,
296 					cursor->index,
297 					(elm[0].leaf.base.btype ?
298 					 elm[0].leaf.base.btype : '?'),
299 					(long long)elm[0].leaf.base.obj_id,
300 					elm[0].leaf.base.rec_type,
301 					(long long)elm[0].leaf.base.key,
302 					elm[0].leaf.base.localization,
303 					r
304 				);
305 			}
306 			if (r < 0) {
307 				error = ENOENT;
308 				break;
309 			}
310 
311 			/*
312 			 * We support both end-inclusive and
313 			 * end-exclusive searches.
314 			 */
315 			if (r == 0 &&
316 			   (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
317 				error = ENOENT;
318 				break;
319 			}
320 
321 			/*
322 			 * If ITERATE_CHECK is set an unlocked cursor may
323 			 * have been moved to a parent and the iterate can
324 			 * happen upon elements that are not in the requested
325 			 * range.
326 			 */
327 			if (cursor->flags & HAMMER_CURSOR_ITERATE_CHECK) {
328 				s = hammer_btree_cmp(&cursor->key_beg,
329 						     &elm->base);
330 				if (s > 0) {
331 					kprintf("hammer_btree_iterate: "
332 						"DEBUG: Caught parent seek "
333 						"in leaf iteration\n");
334 					++cursor->index;
335 					continue;
336 				}
337 			}
338 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
339 
340 			/*
341 			 * Return the element
342 			 */
343 			switch(elm->leaf.base.btype) {
344 			case HAMMER_BTREE_TYPE_RECORD:
345 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
346 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
347 					++cursor->index;
348 					continue;
349 				}
350 				error = 0;
351 				break;
352 			default:
353 				error = EINVAL;
354 				break;
355 			}
356 			if (error)
357 				break;
358 		}
359 		/*
360 		 * node pointer invalid after loop
361 		 */
362 
363 		/*
364 		 * Return entry
365 		 */
366 		if (hammer_debug_btree) {
367 			int i = cursor->index;
368 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
369 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
370 				cursor->node, i,
371 				(long long)elm->internal.base.obj_id,
372 				elm->internal.base.rec_type,
373 				(long long)elm->internal.base.key,
374 				elm->internal.base.localization
375 			);
376 		}
377 		return(0);
378 	}
379 	return(error);
380 }
381 
382 /*
383  * We hit an internal element that we could skip as part of a mirroring
384  * scan.  Calculate the entire range being skipped.
385  *
386  * It is important to include any gaps between the parent's left_bound
387  * and the node's left_bound, and same goes for the right side.
388  */
389 static void
390 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
391 {
392 	struct hammer_cmirror *cmirror;
393 	hammer_node_ondisk_t ondisk;
394 	hammer_btree_elm_t elm;
395 
396 	ondisk = cursor->node->ondisk;
397 	cmirror = cursor->cmirror;
398 
399 	/*
400 	 * Calculate the skipped range
401 	 */
402 	elm = &ondisk->elms[cursor->index];
403 	if (cursor->index == 0)
404 		cmirror->skip_beg = *cursor->left_bound;
405 	else
406 		cmirror->skip_beg = elm->internal.base;
407 	while (cursor->index < ondisk->count) {
408 		if (elm->internal.mirror_tid >= cmirror->mirror_tid)
409 			break;
410 		++cursor->index;
411 		++elm;
412 	}
413 	if (cursor->index == ondisk->count)
414 		cmirror->skip_end = *cursor->right_bound;
415 	else
416 		cmirror->skip_end = elm->internal.base;
417 
418 	/*
419 	 * clip the returned result.
420 	 */
421 	if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
422 		cmirror->skip_beg = cursor->key_beg;
423 	if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
424 		cmirror->skip_end = cursor->key_end;
425 }
426 
427 /*
428  * Iterate in the reverse direction.  This is used by the pruning code to
429  * avoid overlapping records.
430  */
431 int
432 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
433 {
434 	hammer_node_ondisk_t node;
435 	hammer_btree_elm_t elm;
436 	int error = 0;
437 	int r;
438 	int s;
439 
440 	/* mirror filtering not supported for reverse iteration */
441 	KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
442 
443 	/*
444 	 * Skip past the current record.  For various reasons the cursor
445 	 * may end up set to -1 or set to point at the end of the current
446 	 * node.  These cases must be addressed.
447 	 */
448 	node = cursor->node->ondisk;
449 	if (node == NULL)
450 		return(ENOENT);
451 	if (cursor->index != -1 &&
452 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
453 		--cursor->index;
454 	}
455 	if (cursor->index == cursor->node->ondisk->count)
456 		--cursor->index;
457 
458 	/*
459 	 * Loop until an element is found or we are done.
460 	 */
461 	for (;;) {
462 		++hammer_stats_btree_iterations;
463 		hammer_flusher_clean_loose_ios(cursor->trans->hmp);
464 
465 		/*
466 		 * We iterate up the tree and then index over one element
467 		 * while we are at the last element in the current node.
468 		 */
469 		if (cursor->index == -1) {
470 			error = hammer_cursor_up(cursor);
471 			if (error) {
472 				cursor->index = 0; /* sanity */
473 				break;
474 			}
475 			/* reload stale pointer */
476 			node = cursor->node->ondisk;
477 			KKASSERT(cursor->index != node->count);
478 			--cursor->index;
479 			continue;
480 		}
481 
482 		/*
483 		 * Check internal or leaf element.  Determine if the record
484 		 * at the cursor has gone beyond the end of our range.
485 		 *
486 		 * We recurse down through internal nodes.
487 		 */
488 		KKASSERT(cursor->index != node->count);
489 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
490 			elm = &node->elms[cursor->index];
491 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
492 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
493 			if (hammer_debug_btree) {
494 				kprintf("BRACKETL %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
495 					(long long)cursor->node->node_offset,
496 					cursor->index,
497 					(long long)elm[0].internal.base.obj_id,
498 					elm[0].internal.base.rec_type,
499 					(long long)elm[0].internal.base.key,
500 					elm[0].internal.base.localization,
501 					r
502 				);
503 				kprintf("BRACKETR %016llx[%d] %016llx %02x %016llx lo=%02x %d\n",
504 					(long long)cursor->node->node_offset,
505 					cursor->index + 1,
506 					(long long)elm[1].internal.base.obj_id,
507 					elm[1].internal.base.rec_type,
508 					(long long)elm[1].internal.base.key,
509 					elm[1].internal.base.localization,
510 					s
511 				);
512 			}
513 
514 			if (s >= 0) {
515 				error = ENOENT;
516 				break;
517 			}
518 
519 			/*
520 			 * It shouldn't be possible to be seeked past key_end,
521 			 * even if the cursor got moved to a parent.
522 			 */
523 			KKASSERT(r >= 0);
524 
525 			/*
526 			 * Better not be zero
527 			 */
528 			KKASSERT(elm->internal.subtree_offset != 0);
529 
530 			error = hammer_cursor_down(cursor);
531 			if (error)
532 				break;
533 			KKASSERT(cursor->index == 0);
534 			/* reload stale pointer */
535 			node = cursor->node->ondisk;
536 
537 			/* this can assign -1 if the leaf was empty */
538 			cursor->index = node->count - 1;
539 			continue;
540 		} else {
541 			elm = &node->elms[cursor->index];
542 			s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
543 			if (hammer_debug_btree) {
544 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x %016llx lo=%02x %d\n",
545 					(long long)cursor->node->node_offset,
546 					cursor->index,
547 					(elm[0].leaf.base.btype ?
548 					 elm[0].leaf.base.btype : '?'),
549 					(long long)elm[0].leaf.base.obj_id,
550 					elm[0].leaf.base.rec_type,
551 					(long long)elm[0].leaf.base.key,
552 					elm[0].leaf.base.localization,
553 					s
554 				);
555 			}
556 			if (s > 0) {
557 				error = ENOENT;
558 				break;
559 			}
560 
561 			/*
562 			 * It shouldn't be possible to be seeked past key_end,
563 			 * even if the cursor got moved to a parent.
564 			 */
565 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
566 
567 			/*
568 			 * Return the element
569 			 */
570 			switch(elm->leaf.base.btype) {
571 			case HAMMER_BTREE_TYPE_RECORD:
572 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
573 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
574 					--cursor->index;
575 					continue;
576 				}
577 				error = 0;
578 				break;
579 			default:
580 				error = EINVAL;
581 				break;
582 			}
583 			if (error)
584 				break;
585 		}
586 		/*
587 		 * node pointer invalid after loop
588 		 */
589 
590 		/*
591 		 * Return entry
592 		 */
593 		if (hammer_debug_btree) {
594 			int i = cursor->index;
595 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
596 			kprintf("ITERATE  %p:%d %016llx %02x %016llx lo=%02x\n",
597 				cursor->node, i,
598 				(long long)elm->internal.base.obj_id,
599 				elm->internal.base.rec_type,
600 				(long long)elm->internal.base.key,
601 				elm->internal.base.localization
602 			);
603 		}
604 		return(0);
605 	}
606 	return(error);
607 }
608 
609 /*
610  * Lookup cursor->key_beg.  0 is returned on success, ENOENT if the entry
611  * could not be found, EDEADLK if inserting and a retry is needed, and a
612  * fatal error otherwise.  When retrying, the caller must terminate the
613  * cursor and reinitialize it.  EDEADLK cannot be returned if not inserting.
614  *
615  * The cursor is suitably positioned for a deletion on success, and suitably
616  * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
617  * specified.
618  *
619  * The cursor may begin anywhere, the search will traverse the tree in
620  * either direction to locate the requested element.
621  *
622  * Most of the logic implementing historical searches is handled here.  We
623  * do an initial lookup with create_tid set to the asof TID.  Due to the
624  * way records are laid out, a backwards iteration may be required if
625  * ENOENT is returned to locate the historical record.  Here's the
626  * problem:
627  *
628  * create_tid:    10      15       20
629  *		     LEAF1   LEAF2
630  * records:         (11)        (18)
631  *
632  * Lets say we want to do a lookup AS-OF timestamp 17.  We will traverse
633  * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
634  * not visible and thus causes ENOENT to be returned.  We really need
635  * to check record 11 in LEAF1.  If it also fails then the search fails
636  * (e.g. it might represent the range 11-16 and thus still not match our
637  * AS-OF timestamp of 17).  Note that LEAF1 could be empty, requiring
638  * further iterations.
639  *
640  * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
641  * and the cursor->create_check TID if an iteration might be needed.
642  * In the above example create_check would be set to 14.
643  */
644 int
645 hammer_btree_lookup(hammer_cursor_t cursor)
646 {
647 	int error;
648 
649 	cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
650 	KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
651 		  cursor->trans->sync_lock_refs > 0);
652 	++hammer_stats_btree_lookups;
653 	if (cursor->flags & HAMMER_CURSOR_ASOF) {
654 		KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
655 		cursor->key_beg.create_tid = cursor->asof;
656 		for (;;) {
657 			cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
658 			error = btree_search(cursor, 0);
659 			if (error != ENOENT ||
660 			    (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
661 				/*
662 				 * Stop if no error.
663 				 * Stop if error other then ENOENT.
664 				 * Stop if ENOENT and not special case.
665 				 */
666 				break;
667 			}
668 			if (hammer_debug_btree) {
669 				kprintf("CREATE_CHECK %016llx\n",
670 					(long long)cursor->create_check);
671 			}
672 			cursor->key_beg.create_tid = cursor->create_check;
673 			/* loop */
674 		}
675 	} else {
676 		error = btree_search(cursor, 0);
677 	}
678 	if (error == 0)
679 		error = hammer_btree_extract(cursor, cursor->flags);
680 	return(error);
681 }
682 
683 /*
684  * Execute the logic required to start an iteration.  The first record
685  * located within the specified range is returned and iteration control
686  * flags are adjusted for successive hammer_btree_iterate() calls.
687  *
688  * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
689  * in a loop without worrying about it.  Higher-level merged searches will
690  * adjust the flag appropriately.
691  */
692 int
693 hammer_btree_first(hammer_cursor_t cursor)
694 {
695 	int error;
696 
697 	error = hammer_btree_lookup(cursor);
698 	if (error == ENOENT) {
699 		cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
700 		error = hammer_btree_iterate(cursor);
701 	}
702 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
703 	return(error);
704 }
705 
706 /*
707  * Similarly but for an iteration in the reverse direction.
708  *
709  * Set ATEDISK when iterating backwards to skip the current entry,
710  * which after an ENOENT lookup will be pointing beyond our end point.
711  *
712  * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
713  * in a loop without worrying about it.  Higher-level merged searches will
714  * adjust the flag appropriately.
715  */
716 int
717 hammer_btree_last(hammer_cursor_t cursor)
718 {
719 	struct hammer_base_elm save;
720 	int error;
721 
722 	save = cursor->key_beg;
723 	cursor->key_beg = cursor->key_end;
724 	error = hammer_btree_lookup(cursor);
725 	cursor->key_beg = save;
726 	if (error == ENOENT ||
727 	    (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
728 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
729 		error = hammer_btree_iterate_reverse(cursor);
730 	}
731 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
732 	return(error);
733 }
734 
735 /*
736  * Extract the record and/or data associated with the cursor's current
737  * position.  Any prior record or data stored in the cursor is replaced.
738  * The cursor must be positioned at a leaf node.
739  *
740  * NOTE: All extractions occur at the leaf of the B-Tree.
741  */
742 int
743 hammer_btree_extract(hammer_cursor_t cursor, int flags)
744 {
745 	hammer_node_ondisk_t node;
746 	hammer_btree_elm_t elm;
747 	hammer_off_t data_off;
748 	hammer_mount_t hmp;
749 	int32_t data_len;
750 	int error;
751 
752 	/*
753 	 * The case where the data reference resolves to the same buffer
754 	 * as the record reference must be handled.
755 	 */
756 	node = cursor->node->ondisk;
757 	elm = &node->elms[cursor->index];
758 	cursor->data = NULL;
759 	hmp = cursor->node->hmp;
760 
761 	/*
762 	 * There is nothing to extract for an internal element.
763 	 */
764 	if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
765 		return(EINVAL);
766 
767 	/*
768 	 * Only record types have data.
769 	 */
770 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
771 	cursor->leaf = &elm->leaf;
772 
773 	if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
774 		return(0);
775 	if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
776 		return(0);
777 	data_off = elm->leaf.data_offset;
778 	data_len = elm->leaf.data_len;
779 	if (data_off == 0)
780 		return(0);
781 
782 	/*
783 	 * Load the data
784 	 */
785 	KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
786 	cursor->data = hammer_bread_ext(hmp, data_off, data_len,
787 					&error, &cursor->data_buffer);
788 
789 	/*
790 	 * Mark the data buffer as not being meta-data if it isn't
791 	 * meta-data (sometimes bulk data is accessed via a volume
792 	 * block device).
793 	 */
794 	if (error == 0) {
795 		switch(elm->leaf.base.rec_type) {
796 		case HAMMER_RECTYPE_DATA:
797 		case HAMMER_RECTYPE_DB:
798 			hammer_io_notmeta(cursor->data_buffer);
799 			break;
800 		default:
801 			break;
802 		}
803 	}
804 
805 	/*
806 	 * Deal with CRC errors on the extracted data.
807 	 */
808 	if (error == 0 &&
809 	    hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
810 		kprintf("CRC DATA @ %016llx/%d FAILED\n",
811 			(long long)elm->leaf.data_offset, elm->leaf.data_len);
812 		if (hammer_debug_critical)
813 			Debugger("CRC FAILED: DATA");
814 		if (cursor->trans->flags & HAMMER_TRANSF_CRCDOM)
815 			error = EDOM;	/* less critical (mirroring) */
816 		else
817 			error = EIO;	/* critical */
818 	}
819 	return(error);
820 }
821 
822 
823 /*
824  * Insert a leaf element into the B-Tree at the current cursor position.
825  * The cursor is positioned such that the element at and beyond the cursor
826  * are shifted to make room for the new record.
827  *
828  * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
829  * flag set and that call must return ENOENT before this function can be
830  * called.
831  *
832  * The caller may depend on the cursor's exclusive lock after return to
833  * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
834  *
835  * ENOSPC is returned if there is no room to insert a new record.
836  */
837 int
838 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
839 		    int *doprop)
840 {
841 	hammer_node_ondisk_t node;
842 	int i;
843 	int error;
844 
845 	*doprop = 0;
846 	if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
847 		return(error);
848 	++hammer_stats_btree_inserts;
849 
850 	/*
851 	 * Insert the element at the leaf node and update the count in the
852 	 * parent.  It is possible for parent to be NULL, indicating that
853 	 * the filesystem's ROOT B-Tree node is a leaf itself, which is
854 	 * possible.  The root inode can never be deleted so the leaf should
855 	 * never be empty.
856 	 *
857 	 * Remember that the right-hand boundary is not included in the
858 	 * count.
859 	 */
860 	hammer_modify_node_all(cursor->trans, cursor->node);
861 	node = cursor->node->ondisk;
862 	i = cursor->index;
863 	KKASSERT(elm->base.btype != 0);
864 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
865 	KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
866 	if (i != node->count) {
867 		bcopy(&node->elms[i], &node->elms[i+1],
868 		      (node->count - i) * sizeof(*elm));
869 	}
870 	node->elms[i].leaf = *elm;
871 	++node->count;
872 	hammer_cursor_inserted_element(cursor->node, i);
873 
874 	/*
875 	 * Update the leaf node's aggregate mirror_tid for mirroring
876 	 * support.
877 	 */
878 	if (node->mirror_tid < elm->base.delete_tid) {
879 		node->mirror_tid = elm->base.delete_tid;
880 		*doprop = 1;
881 	}
882 	if (node->mirror_tid < elm->base.create_tid) {
883 		node->mirror_tid = elm->base.create_tid;
884 		*doprop = 1;
885 	}
886 	hammer_modify_node_done(cursor->node);
887 
888 	/*
889 	 * Debugging sanity checks.
890 	 */
891 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
892 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
893 	if (i) {
894 		KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
895 	}
896 	if (i != node->count - 1)
897 		KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
898 
899 	return(0);
900 }
901 
902 /*
903  * Delete a record from the B-Tree at the current cursor position.
904  * The cursor is positioned such that the current element is the one
905  * to be deleted.
906  *
907  * On return the cursor will be positioned after the deleted element and
908  * MAY point to an internal node.  It will be suitable for the continuation
909  * of an iteration but not for an insertion or deletion.
910  *
911  * Deletions will attempt to partially rebalance the B-Tree in an upward
912  * direction, but will terminate rather then deadlock.  Empty internal nodes
913  * are never allowed by a deletion which deadlocks may end up giving us an
914  * empty leaf.  The pruner will clean up and rebalance the tree.
915  *
916  * This function can return EDEADLK, requiring the caller to retry the
917  * operation after clearing the deadlock.
918  */
919 int
920 hammer_btree_delete(hammer_cursor_t cursor)
921 {
922 	hammer_node_ondisk_t ondisk;
923 	hammer_node_t node;
924 	hammer_node_t parent;
925 	int error;
926 	int i;
927 
928 	KKASSERT (cursor->trans->sync_lock_refs > 0);
929 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
930 		return(error);
931 	++hammer_stats_btree_deletes;
932 
933 	/*
934 	 * Delete the element from the leaf node.
935 	 *
936 	 * Remember that leaf nodes do not have boundaries.
937 	 */
938 	node = cursor->node;
939 	ondisk = node->ondisk;
940 	i = cursor->index;
941 
942 	KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
943 	KKASSERT(i >= 0 && i < ondisk->count);
944 	hammer_modify_node_all(cursor->trans, node);
945 	if (i + 1 != ondisk->count) {
946 		bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
947 		      (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
948 	}
949 	--ondisk->count;
950 	hammer_modify_node_done(node);
951 	hammer_cursor_deleted_element(node, i);
952 
953 	/*
954 	 * Validate local parent
955 	 */
956 	if (ondisk->parent) {
957 		parent = cursor->parent;
958 
959 		KKASSERT(parent != NULL);
960 		KKASSERT(parent->node_offset == ondisk->parent);
961 	}
962 
963 	/*
964 	 * If the leaf becomes empty it must be detached from the parent,
965 	 * potentially recursing through to the filesystem root.
966 	 *
967 	 * This may reposition the cursor at one of the parent's of the
968 	 * current node.
969 	 *
970 	 * Ignore deadlock errors, that simply means that btree_remove
971 	 * was unable to recurse and had to leave us with an empty leaf.
972 	 */
973 	KKASSERT(cursor->index <= ondisk->count);
974 	if (ondisk->count == 0) {
975 		error = btree_remove(cursor);
976 		if (error == EDEADLK)
977 			error = 0;
978 	} else {
979 		error = 0;
980 	}
981 	KKASSERT(cursor->parent == NULL ||
982 		 cursor->parent_index < cursor->parent->ondisk->count);
983 	return(error);
984 }
985 
986 /*
987  * PRIMAY B-TREE SEARCH SUPPORT PROCEDURE
988  *
989  * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
990  *
991  * The search can begin ANYWHERE in the B-Tree.  As a first step the search
992  * iterates up the tree as necessary to properly position itself prior to
993  * actually doing the sarch.
994  *
995  * INSERTIONS: The search will split full nodes and leaves on its way down
996  * and guarentee that the leaf it ends up on is not full.  If we run out
997  * of space the search continues to the leaf (to position the cursor for
998  * the spike), but ENOSPC is returned.
999  *
1000  * The search is only guarenteed to end up on a leaf if an error code of 0
1001  * is returned, or if inserting and an error code of ENOENT is returned.
1002  * Otherwise it can stop at an internal node.  On success a search returns
1003  * a leaf node.
1004  *
1005  * COMPLEXITY WARNING!  This is the core B-Tree search code for the entire
1006  * filesystem, and it is not simple code.  Please note the following facts:
1007  *
1008  * - Internal node recursions have a boundary on the left AND right.  The
1009  *   right boundary is non-inclusive.  The create_tid is a generic part
1010  *   of the key for internal nodes.
1011  *
1012  * - Leaf nodes contain terminal elements only now.
1013  *
1014  * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
1015  *   historical search.  ASOF and INSERT are mutually exclusive.  When
1016  *   doing an as-of lookup btree_search() checks for a right-edge boundary
1017  *   case.  If while recursing down the left-edge differs from the key
1018  *   by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
1019  *   with cursor->create_check.  This is used by btree_lookup() to iterate.
1020  *   The iteration backwards because as-of searches can wind up going
1021  *   down the wrong branch of the B-Tree.
1022  */
1023 static
1024 int
1025 btree_search(hammer_cursor_t cursor, int flags)
1026 {
1027 	hammer_node_ondisk_t node;
1028 	hammer_btree_elm_t elm;
1029 	int error;
1030 	int enospc = 0;
1031 	int i;
1032 	int r;
1033 	int s;
1034 
1035 	flags |= cursor->flags;
1036 	++hammer_stats_btree_searches;
1037 
1038 	if (hammer_debug_btree) {
1039 		kprintf("SEARCH   %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td = %p)\n",
1040 			(long long)cursor->node->node_offset,
1041 			cursor->index,
1042 			(long long)cursor->key_beg.obj_id,
1043 			cursor->key_beg.rec_type,
1044 			(long long)cursor->key_beg.key,
1045 			(long long)cursor->key_beg.create_tid,
1046 			cursor->key_beg.localization,
1047 			curthread
1048 		);
1049 		if (cursor->parent)
1050 		    kprintf("SEARCHP %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
1051 			(long long)cursor->parent->node_offset,
1052 			cursor->parent_index,
1053 			(long long)cursor->left_bound->obj_id,
1054 			(long long)cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
1055 			(long long)cursor->right_bound->obj_id,
1056 			(long long)cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
1057 			cursor->left_bound,
1058 			&cursor->parent->ondisk->elms[cursor->parent_index],
1059 			cursor->right_bound,
1060 			&cursor->parent->ondisk->elms[cursor->parent_index+1]
1061 		    );
1062 	}
1063 
1064 	/*
1065 	 * Move our cursor up the tree until we find a node whos range covers
1066 	 * the key we are trying to locate.
1067 	 *
1068 	 * The left bound is inclusive, the right bound is non-inclusive.
1069 	 * It is ok to cursor up too far.
1070 	 */
1071 	for (;;) {
1072 		r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
1073 		s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
1074 		if (r >= 0 && s < 0)
1075 			break;
1076 		KKASSERT(cursor->parent);
1077 		++hammer_stats_btree_iterations;
1078 		error = hammer_cursor_up(cursor);
1079 		if (error)
1080 			goto done;
1081 	}
1082 
1083 	/*
1084 	 * The delete-checks below are based on node, not parent.  Set the
1085 	 * initial delete-check based on the parent.
1086 	 */
1087 	if (r == 1) {
1088 		KKASSERT(cursor->left_bound->create_tid != 1);
1089 		cursor->create_check = cursor->left_bound->create_tid - 1;
1090 		cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1091 	}
1092 
1093 	/*
1094 	 * We better have ended up with a node somewhere.
1095 	 */
1096 	KKASSERT(cursor->node != NULL);
1097 
1098 	/*
1099 	 * If we are inserting we can't start at a full node if the parent
1100 	 * is also full (because there is no way to split the node),
1101 	 * continue running up the tree until the requirement is satisfied
1102 	 * or we hit the root of the filesystem.
1103 	 *
1104 	 * (If inserting we aren't doing an as-of search so we don't have
1105 	 *  to worry about create_check).
1106 	 */
1107 	while ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1108 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
1109 			if (btree_node_is_full(cursor->node->ondisk) == 0)
1110 				break;
1111 		} else {
1112 			if (btree_node_is_full(cursor->node->ondisk) ==0)
1113 				break;
1114 		}
1115 		if (cursor->node->ondisk->parent == 0 ||
1116 		    cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1117 			break;
1118 		}
1119 		++hammer_stats_btree_iterations;
1120 		error = hammer_cursor_up(cursor);
1121 		/* node may have become stale */
1122 		if (error)
1123 			goto done;
1124 	}
1125 
1126 	/*
1127 	 * Push down through internal nodes to locate the requested key.
1128 	 */
1129 	node = cursor->node->ondisk;
1130 	while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1131 		/*
1132 		 * Scan the node to find the subtree index to push down into.
1133 		 * We go one-past, then back-up.
1134 		 *
1135 		 * We must proactively remove deleted elements which may
1136 		 * have been left over from a deadlocked btree_remove().
1137 		 *
1138 		 * The left and right boundaries are included in the loop
1139 		 * in order to detect edge cases.
1140 		 *
1141 		 * If the separator only differs by create_tid (r == 1)
1142 		 * and we are doing an as-of search, we may end up going
1143 		 * down a branch to the left of the one containing the
1144 		 * desired key.  This requires numerous special cases.
1145 		 */
1146 		++hammer_stats_btree_iterations;
1147 		if (hammer_debug_btree) {
1148 			kprintf("SEARCH-I %016llx count=%d\n",
1149 				(long long)cursor->node->node_offset,
1150 				node->count);
1151 		}
1152 
1153 		/*
1154 		 * Try to shortcut the search before dropping into the
1155 		 * linear loop.  Locate the first node where r <= 1.
1156 		 */
1157 		i = hammer_btree_search_node(&cursor->key_beg, node);
1158 		while (i <= node->count) {
1159 			++hammer_stats_btree_elements;
1160 			elm = &node->elms[i];
1161 			r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1162 			if (hammer_debug_btree > 2) {
1163 				kprintf(" IELM %p %d r=%d\n",
1164 					&node->elms[i], i, r);
1165 			}
1166 			if (r < 0)
1167 				break;
1168 			if (r == 1) {
1169 				KKASSERT(elm->base.create_tid != 1);
1170 				cursor->create_check = elm->base.create_tid - 1;
1171 				cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1172 			}
1173 			++i;
1174 		}
1175 		if (hammer_debug_btree) {
1176 			kprintf("SEARCH-I preI=%d/%d r=%d\n",
1177 				i, node->count, r);
1178 		}
1179 
1180 		/*
1181 		 * These cases occur when the parent's idea of the boundary
1182 		 * is wider then the child's idea of the boundary, and
1183 		 * require special handling.  If not inserting we can
1184 		 * terminate the search early for these cases but the
1185 		 * child's boundaries cannot be unconditionally modified.
1186 		 */
1187 		if (i == 0) {
1188 			/*
1189 			 * If i == 0 the search terminated to the LEFT of the
1190 			 * left_boundary but to the RIGHT of the parent's left
1191 			 * boundary.
1192 			 */
1193 			u_int8_t save;
1194 
1195 			elm = &node->elms[0];
1196 
1197 			/*
1198 			 * If we aren't inserting we can stop here.
1199 			 */
1200 			if ((flags & (HAMMER_CURSOR_INSERT |
1201 				      HAMMER_CURSOR_PRUNING)) == 0) {
1202 				cursor->index = 0;
1203 				return(ENOENT);
1204 			}
1205 
1206 			/*
1207 			 * Correct a left-hand boundary mismatch.
1208 			 *
1209 			 * We can only do this if we can upgrade the lock,
1210 			 * and synchronized as a background cursor (i.e.
1211 			 * inserting or pruning).
1212 			 *
1213 			 * WARNING: We can only do this if inserting, i.e.
1214 			 * we are running on the backend.
1215 			 */
1216 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1217 				return(error);
1218 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1219 			hammer_modify_node_field(cursor->trans, cursor->node,
1220 						 elms[0]);
1221 			save = node->elms[0].base.btype;
1222 			node->elms[0].base = *cursor->left_bound;
1223 			node->elms[0].base.btype = save;
1224 			hammer_modify_node_done(cursor->node);
1225 		} else if (i == node->count + 1) {
1226 			/*
1227 			 * If i == node->count + 1 the search terminated to
1228 			 * the RIGHT of the right boundary but to the LEFT
1229 			 * of the parent's right boundary.  If we aren't
1230 			 * inserting we can stop here.
1231 			 *
1232 			 * Note that the last element in this case is
1233 			 * elms[i-2] prior to adjustments to 'i'.
1234 			 */
1235 			--i;
1236 			if ((flags & (HAMMER_CURSOR_INSERT |
1237 				      HAMMER_CURSOR_PRUNING)) == 0) {
1238 				cursor->index = i;
1239 				return (ENOENT);
1240 			}
1241 
1242 			/*
1243 			 * Correct a right-hand boundary mismatch.
1244 			 * (actual push-down record is i-2 prior to
1245 			 * adjustments to i).
1246 			 *
1247 			 * We can only do this if we can upgrade the lock,
1248 			 * and synchronized as a background cursor (i.e.
1249 			 * inserting or pruning).
1250 			 *
1251 			 * WARNING: We can only do this if inserting, i.e.
1252 			 * we are running on the backend.
1253 			 */
1254 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1255 				return(error);
1256 			elm = &node->elms[i];
1257 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1258 			hammer_modify_node(cursor->trans, cursor->node,
1259 					   &elm->base, sizeof(elm->base));
1260 			elm->base = *cursor->right_bound;
1261 			hammer_modify_node_done(cursor->node);
1262 			--i;
1263 		} else {
1264 			/*
1265 			 * The push-down index is now i - 1.  If we had
1266 			 * terminated on the right boundary this will point
1267 			 * us at the last element.
1268 			 */
1269 			--i;
1270 		}
1271 		cursor->index = i;
1272 		elm = &node->elms[i];
1273 
1274 		if (hammer_debug_btree) {
1275 			kprintf("RESULT-I %016llx[%d] %016llx %02x "
1276 				"key=%016llx cre=%016llx lo=%02x\n",
1277 				(long long)cursor->node->node_offset,
1278 				i,
1279 				(long long)elm->internal.base.obj_id,
1280 				elm->internal.base.rec_type,
1281 				(long long)elm->internal.base.key,
1282 				(long long)elm->internal.base.create_tid,
1283 				elm->internal.base.localization
1284 			);
1285 		}
1286 
1287 		/*
1288 		 * We better have a valid subtree offset.
1289 		 */
1290 		KKASSERT(elm->internal.subtree_offset != 0);
1291 
1292 		/*
1293 		 * Handle insertion and deletion requirements.
1294 		 *
1295 		 * If inserting split full nodes.  The split code will
1296 		 * adjust cursor->node and cursor->index if the current
1297 		 * index winds up in the new node.
1298 		 *
1299 		 * If inserting and a left or right edge case was detected,
1300 		 * we cannot correct the left or right boundary and must
1301 		 * prepend and append an empty leaf node in order to make
1302 		 * the boundary correction.
1303 		 *
1304 		 * If we run out of space we set enospc and continue on
1305 		 * to a leaf to provide the spike code with a good point
1306 		 * of entry.
1307 		 */
1308 		if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1309 			if (btree_node_is_full(node)) {
1310 				error = btree_split_internal(cursor);
1311 				if (error) {
1312 					if (error != ENOSPC)
1313 						goto done;
1314 					enospc = 1;
1315 				}
1316 				/*
1317 				 * reload stale pointers
1318 				 */
1319 				i = cursor->index;
1320 				node = cursor->node->ondisk;
1321 			}
1322 		}
1323 
1324 		/*
1325 		 * Push down (push into new node, existing node becomes
1326 		 * the parent) and continue the search.
1327 		 */
1328 		error = hammer_cursor_down(cursor);
1329 		/* node may have become stale */
1330 		if (error)
1331 			goto done;
1332 		node = cursor->node->ondisk;
1333 	}
1334 
1335 	/*
1336 	 * We are at a leaf, do a linear search of the key array.
1337 	 *
1338 	 * On success the index is set to the matching element and 0
1339 	 * is returned.
1340 	 *
1341 	 * On failure the index is set to the insertion point and ENOENT
1342 	 * is returned.
1343 	 *
1344 	 * Boundaries are not stored in leaf nodes, so the index can wind
1345 	 * up to the left of element 0 (index == 0) or past the end of
1346 	 * the array (index == node->count).  It is also possible that the
1347 	 * leaf might be empty.
1348 	 */
1349 	++hammer_stats_btree_iterations;
1350 	KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1351 	KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1352 	if (hammer_debug_btree) {
1353 		kprintf("SEARCH-L %016llx count=%d\n",
1354 			(long long)cursor->node->node_offset,
1355 			node->count);
1356 	}
1357 
1358 	/*
1359 	 * Try to shortcut the search before dropping into the
1360 	 * linear loop.  Locate the first node where r <= 1.
1361 	 */
1362 	i = hammer_btree_search_node(&cursor->key_beg, node);
1363 	while (i < node->count) {
1364 		++hammer_stats_btree_elements;
1365 		elm = &node->elms[i];
1366 
1367 		r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1368 
1369 		if (hammer_debug_btree > 1)
1370 			kprintf("  ELM %p %d r=%d\n", &node->elms[i], i, r);
1371 
1372 		/*
1373 		 * We are at a record element.  Stop if we've flipped past
1374 		 * key_beg, not counting the create_tid test.  Allow the
1375 		 * r == 1 case (key_beg > element but differs only by its
1376 		 * create_tid) to fall through to the AS-OF check.
1377 		 */
1378 		KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1379 
1380 		if (r < 0)
1381 			goto failed;
1382 		if (r > 1) {
1383 			++i;
1384 			continue;
1385 		}
1386 
1387 		/*
1388 		 * Check our as-of timestamp against the element.
1389 		 */
1390 		if (flags & HAMMER_CURSOR_ASOF) {
1391 			if (hammer_btree_chkts(cursor->asof,
1392 					       &node->elms[i].base) != 0) {
1393 				++i;
1394 				continue;
1395 			}
1396 			/* success */
1397 		} else {
1398 			if (r > 0) {	/* can only be +1 */
1399 				++i;
1400 				continue;
1401 			}
1402 			/* success */
1403 		}
1404 		cursor->index = i;
1405 		error = 0;
1406 		if (hammer_debug_btree) {
1407 			kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1408 				(long long)cursor->node->node_offset, i);
1409 		}
1410 		goto done;
1411 	}
1412 
1413 	/*
1414 	 * The search of the leaf node failed.  i is the insertion point.
1415 	 */
1416 failed:
1417 	if (hammer_debug_btree) {
1418 		kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1419 			(long long)cursor->node->node_offset, i);
1420 	}
1421 
1422 	/*
1423 	 * No exact match was found, i is now at the insertion point.
1424 	 *
1425 	 * If inserting split a full leaf before returning.  This
1426 	 * may have the side effect of adjusting cursor->node and
1427 	 * cursor->index.
1428 	 */
1429 	cursor->index = i;
1430 	if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1431 	     btree_node_is_full(node)) {
1432 		error = btree_split_leaf(cursor);
1433 		if (error) {
1434 			if (error != ENOSPC)
1435 				goto done;
1436 			enospc = 1;
1437 		}
1438 		/*
1439 		 * reload stale pointers
1440 		 */
1441 		/* NOT USED
1442 		i = cursor->index;
1443 		node = &cursor->node->internal;
1444 		*/
1445 	}
1446 
1447 	/*
1448 	 * We reached a leaf but did not find the key we were looking for.
1449 	 * If this is an insert we will be properly positioned for an insert
1450 	 * (ENOENT) or spike (ENOSPC) operation.
1451 	 */
1452 	error = enospc ? ENOSPC : ENOENT;
1453 done:
1454 	return(error);
1455 }
1456 
1457 /*
1458  * Heuristical search for the first element whos comparison is <= 1.  May
1459  * return an index whos compare result is > 1 but may only return an index
1460  * whos compare result is <= 1 if it is the first element with that result.
1461  */
1462 int
1463 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1464 {
1465 	int b;
1466 	int s;
1467 	int i;
1468 	int r;
1469 
1470 	/*
1471 	 * Don't bother if the node does not have very many elements
1472 	 */
1473 	b = 0;
1474 	s = node->count;
1475 	while (s - b > 4) {
1476 		i = b + (s - b) / 2;
1477 		++hammer_stats_btree_elements;
1478 		r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1479 		if (r <= 1) {
1480 			s = i;
1481 		} else {
1482 			b = i;
1483 		}
1484 	}
1485 	return(b);
1486 }
1487 
1488 
1489 /************************************************************************
1490  *			   SPLITTING AND MERGING 			*
1491  ************************************************************************
1492  *
1493  * These routines do all the dirty work required to split and merge nodes.
1494  */
1495 
1496 /*
1497  * Split an internal node into two nodes and move the separator at the split
1498  * point to the parent.
1499  *
1500  * (cursor->node, cursor->index) indicates the element the caller intends
1501  * to push into.  We will adjust node and index if that element winds
1502  * up in the split node.
1503  *
1504  * If we are at the root of the filesystem a new root must be created with
1505  * two elements, one pointing to the original root and one pointing to the
1506  * newly allocated split node.
1507  */
1508 static
1509 int
1510 btree_split_internal(hammer_cursor_t cursor)
1511 {
1512 	hammer_node_ondisk_t ondisk;
1513 	hammer_node_t node;
1514 	hammer_node_t parent;
1515 	hammer_node_t new_node;
1516 	hammer_btree_elm_t elm;
1517 	hammer_btree_elm_t parent_elm;
1518 	struct hammer_node_lock lockroot;
1519 	hammer_mount_t hmp = cursor->trans->hmp;
1520 	hammer_off_t hint;
1521 	int parent_index;
1522 	int made_root;
1523 	int split;
1524 	int error;
1525 	int i;
1526 	const int esize = sizeof(*elm);
1527 
1528 	hammer_node_lock_init(&lockroot, cursor->node);
1529 	error = hammer_btree_lock_children(cursor, 1, &lockroot, NULL);
1530 	if (error)
1531 		goto done;
1532 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1533 		goto done;
1534 	++hammer_stats_btree_splits;
1535 
1536 	/*
1537 	 * Calculate the split point.  If the insertion point is at the
1538 	 * end of the leaf we adjust the split point significantly to the
1539 	 * right to try to optimize node fill and flag it.  If we hit
1540 	 * that same leaf again our heuristic failed and we don't try
1541 	 * to optimize node fill (it could lead to a degenerate case).
1542 	 */
1543 	node = cursor->node;
1544 	ondisk = node->ondisk;
1545 	KKASSERT(ondisk->count > 4);
1546 	if (cursor->index == ondisk->count &&
1547 	    (node->flags & HAMMER_NODE_NONLINEAR) == 0) {
1548 		split = (ondisk->count + 1) * 3 / 4;
1549 		node->flags |= HAMMER_NODE_NONLINEAR;
1550 	} else {
1551 		/*
1552 		 * We are splitting but elms[split] will be promoted to
1553 		 * the parent, leaving the right hand node with one less
1554 		 * element.  If the insertion point will be on the
1555 		 * left-hand side adjust the split point to give the
1556 		 * right hand side one additional node.
1557 		 */
1558 		split = (ondisk->count + 1) / 2;
1559 		if (cursor->index <= split)
1560 			--split;
1561 	}
1562 
1563 	/*
1564 	 * If we are at the root of the filesystem, create a new root node
1565 	 * with 1 element and split normally.  Avoid making major
1566 	 * modifications until we know the whole operation will work.
1567 	 */
1568 	if (ondisk->parent == 0) {
1569 		parent = hammer_alloc_btree(cursor->trans, node->node_offset,
1570 					    &error);
1571 		if (parent == NULL)
1572 			goto done;
1573 		hammer_lock_ex(&parent->lock);
1574 		hammer_modify_node_noundo(cursor->trans, parent);
1575 		ondisk = parent->ondisk;
1576 		ondisk->count = 1;
1577 		ondisk->parent = 0;
1578 		ondisk->mirror_tid = node->ondisk->mirror_tid;
1579 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1580 		ondisk->elms[0].base = hmp->root_btree_beg;
1581 		ondisk->elms[0].base.btype = node->ondisk->type;
1582 		ondisk->elms[0].internal.subtree_offset = node->node_offset;
1583 		ondisk->elms[1].base = hmp->root_btree_end;
1584 		hammer_modify_node_done(parent);
1585 		/* ondisk->elms[1].base.btype - not used */
1586 		made_root = 1;
1587 		parent_index = 0;	/* index of current node in parent */
1588 	} else {
1589 		made_root = 0;
1590 		parent = cursor->parent;
1591 		parent_index = cursor->parent_index;
1592 	}
1593 
1594 	/*
1595 	 * Calculate a hint for the allocation of the new B-Tree node.
1596 	 * The most likely expansion is coming from the insertion point
1597 	 * at cursor->index, so try to localize the allocation of our
1598 	 * new node to accomodate that sub-tree.
1599 	 *
1600 	 * Use the right-most sub-tree when expandinging on the right edge.
1601 	 * This is a very common case when copying a directory tree.
1602 	 */
1603 	if (cursor->index == ondisk->count)
1604 		hint = ondisk->elms[cursor->index - 1].internal.subtree_offset;
1605 	else
1606 		hint = ondisk->elms[cursor->index].internal.subtree_offset;
1607 
1608 	/*
1609 	 * Split node into new_node at the split point.
1610 	 *
1611 	 *  B O O O P N N B	<-- P = node->elms[split] (index 4)
1612 	 *   0 1 2 3 4 5 6	<-- subtree indices
1613 	 *
1614 	 *       x x P x x
1615 	 *        s S S s
1616 	 *         /   \
1617 	 *  B O O O B    B N N B	<--- inner boundary points are 'P'
1618 	 *   0 1 2 3      4 5 6
1619 	 */
1620 	new_node = hammer_alloc_btree(cursor->trans, hint, &error);
1621 	if (new_node == NULL) {
1622 		if (made_root) {
1623 			hammer_unlock(&parent->lock);
1624 			hammer_delete_node(cursor->trans, parent);
1625 			hammer_rel_node(parent);
1626 		}
1627 		goto done;
1628 	}
1629 	hammer_lock_ex(&new_node->lock);
1630 
1631 	/*
1632 	 * Create the new node.  P becomes the left-hand boundary in the
1633 	 * new node.  Copy the right-hand boundary as well.
1634 	 *
1635 	 * elm is the new separator.
1636 	 */
1637 	hammer_modify_node_noundo(cursor->trans, new_node);
1638 	hammer_modify_node_all(cursor->trans, node);
1639 	ondisk = node->ondisk;
1640 	elm = &ondisk->elms[split];
1641 	bcopy(elm, &new_node->ondisk->elms[0],
1642 	      (ondisk->count - split + 1) * esize);
1643 	new_node->ondisk->count = ondisk->count - split;
1644 	new_node->ondisk->parent = parent->node_offset;
1645 	new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1646 	new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1647 	KKASSERT(ondisk->type == new_node->ondisk->type);
1648 	hammer_cursor_split_node(node, new_node, split);
1649 
1650 	/*
1651 	 * Cleanup the original node.  Elm (P) becomes the new boundary,
1652 	 * its subtree_offset was moved to the new node.  If we had created
1653 	 * a new root its parent pointer may have changed.
1654 	 */
1655 	elm->internal.subtree_offset = 0;
1656 	ondisk->count = split;
1657 
1658 	/*
1659 	 * Insert the separator into the parent, fixup the parent's
1660 	 * reference to the original node, and reference the new node.
1661 	 * The separator is P.
1662 	 *
1663 	 * Remember that base.count does not include the right-hand boundary.
1664 	 */
1665 	hammer_modify_node_all(cursor->trans, parent);
1666 	ondisk = parent->ondisk;
1667 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1668 	parent_elm = &ondisk->elms[parent_index+1];
1669 	bcopy(parent_elm, parent_elm + 1,
1670 	      (ondisk->count - parent_index) * esize);
1671 	parent_elm->internal.base = elm->base;	/* separator P */
1672 	parent_elm->internal.base.btype = new_node->ondisk->type;
1673 	parent_elm->internal.subtree_offset = new_node->node_offset;
1674 	parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1675 	++ondisk->count;
1676 	hammer_modify_node_done(parent);
1677 	hammer_cursor_inserted_element(parent, parent_index + 1);
1678 
1679 	/*
1680 	 * The children of new_node need their parent pointer set to new_node.
1681 	 * The children have already been locked by
1682 	 * hammer_btree_lock_children().
1683 	 */
1684 	for (i = 0; i < new_node->ondisk->count; ++i) {
1685 		elm = &new_node->ondisk->elms[i];
1686 		error = btree_set_parent(cursor->trans, new_node, elm);
1687 		if (error) {
1688 			panic("btree_split_internal: btree-fixup problem");
1689 		}
1690 	}
1691 	hammer_modify_node_done(new_node);
1692 
1693 	/*
1694 	 * The filesystem's root B-Tree pointer may have to be updated.
1695 	 */
1696 	if (made_root) {
1697 		hammer_volume_t volume;
1698 
1699 		volume = hammer_get_root_volume(hmp, &error);
1700 		KKASSERT(error == 0);
1701 
1702 		hammer_modify_volume_field(cursor->trans, volume,
1703 					   vol0_btree_root);
1704 		volume->ondisk->vol0_btree_root = parent->node_offset;
1705 		hammer_modify_volume_done(volume);
1706 		node->ondisk->parent = parent->node_offset;
1707 		if (cursor->parent) {
1708 			hammer_unlock(&cursor->parent->lock);
1709 			hammer_rel_node(cursor->parent);
1710 		}
1711 		cursor->parent = parent;	/* lock'd and ref'd */
1712 		hammer_rel_volume(volume, 0);
1713 	}
1714 	hammer_modify_node_done(node);
1715 
1716 	/*
1717 	 * Ok, now adjust the cursor depending on which element the original
1718 	 * index was pointing at.  If we are >= the split point the push node
1719 	 * is now in the new node.
1720 	 *
1721 	 * NOTE: If we are at the split point itself we cannot stay with the
1722 	 * original node because the push index will point at the right-hand
1723 	 * boundary, which is illegal.
1724 	 *
1725 	 * NOTE: The cursor's parent or parent_index must be adjusted for
1726 	 * the case where a new parent (new root) was created, and the case
1727 	 * where the cursor is now pointing at the split node.
1728 	 */
1729 	if (cursor->index >= split) {
1730 		cursor->parent_index = parent_index + 1;
1731 		cursor->index -= split;
1732 		hammer_unlock(&cursor->node->lock);
1733 		hammer_rel_node(cursor->node);
1734 		cursor->node = new_node;	/* locked and ref'd */
1735 	} else {
1736 		cursor->parent_index = parent_index;
1737 		hammer_unlock(&new_node->lock);
1738 		hammer_rel_node(new_node);
1739 	}
1740 
1741 	/*
1742 	 * Fixup left and right bounds
1743 	 */
1744 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1745 	cursor->left_bound = &parent_elm[0].internal.base;
1746 	cursor->right_bound = &parent_elm[1].internal.base;
1747 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1748 		 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1749 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1750 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1751 
1752 done:
1753 	hammer_btree_unlock_children(cursor->trans->hmp, &lockroot, NULL);
1754 	hammer_cursor_downgrade(cursor);
1755 	return (error);
1756 }
1757 
1758 /*
1759  * Same as the above, but splits a full leaf node.
1760  *
1761  * This function
1762  */
1763 static
1764 int
1765 btree_split_leaf(hammer_cursor_t cursor)
1766 {
1767 	hammer_node_ondisk_t ondisk;
1768 	hammer_node_t parent;
1769 	hammer_node_t leaf;
1770 	hammer_mount_t hmp;
1771 	hammer_node_t new_leaf;
1772 	hammer_btree_elm_t elm;
1773 	hammer_btree_elm_t parent_elm;
1774 	hammer_base_elm_t mid_boundary;
1775 	hammer_off_t hint;
1776 	int parent_index;
1777 	int made_root;
1778 	int split;
1779 	int error;
1780 	const size_t esize = sizeof(*elm);
1781 
1782 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1783 		return(error);
1784 	++hammer_stats_btree_splits;
1785 
1786 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1787 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1788 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1789 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1790 
1791 	/*
1792 	 * Calculate the split point.  If the insertion point is at the
1793 	 * end of the leaf we adjust the split point significantly to the
1794 	 * right to try to optimize node fill and flag it.  If we hit
1795 	 * that same leaf again our heuristic failed and we don't try
1796 	 * to optimize node fill (it could lead to a degenerate case).
1797 	 *
1798 	 * Spikes are made up of two leaf elements which cannot be
1799 	 * safely split.
1800 	 */
1801 	leaf = cursor->node;
1802 	ondisk = leaf->ondisk;
1803 	KKASSERT(ondisk->count > 4);
1804 	if (cursor->index == ondisk->count &&
1805 	    (leaf->flags & HAMMER_NODE_NONLINEAR) == 0) {
1806 		split = (ondisk->count + 1) * 3 / 4;
1807 		leaf->flags |= HAMMER_NODE_NONLINEAR;
1808 	} else {
1809 		split = (ondisk->count + 1) / 2;
1810 	}
1811 
1812 #if 0
1813 	/*
1814 	 * If the insertion point is at the split point shift the
1815 	 * split point left so we don't have to worry about
1816 	 */
1817 	if (cursor->index == split)
1818 		--split;
1819 #endif
1820 	KKASSERT(split > 0 && split < ondisk->count);
1821 
1822 	error = 0;
1823 	hmp = leaf->hmp;
1824 
1825 	elm = &ondisk->elms[split];
1826 
1827 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1828 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1829 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1830 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1831 
1832 	/*
1833 	 * If we are at the root of the tree, create a new root node with
1834 	 * 1 element and split normally.  Avoid making major modifications
1835 	 * until we know the whole operation will work.
1836 	 */
1837 	if (ondisk->parent == 0) {
1838 		parent = hammer_alloc_btree(cursor->trans, leaf->node_offset,
1839 					    &error);
1840 		if (parent == NULL)
1841 			goto done;
1842 		hammer_lock_ex(&parent->lock);
1843 		hammer_modify_node_noundo(cursor->trans, parent);
1844 		ondisk = parent->ondisk;
1845 		ondisk->count = 1;
1846 		ondisk->parent = 0;
1847 		ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1848 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1849 		ondisk->elms[0].base = hmp->root_btree_beg;
1850 		ondisk->elms[0].base.btype = leaf->ondisk->type;
1851 		ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1852 		ondisk->elms[1].base = hmp->root_btree_end;
1853 		/* ondisk->elms[1].base.btype = not used */
1854 		hammer_modify_node_done(parent);
1855 		made_root = 1;
1856 		parent_index = 0;	/* insertion point in parent */
1857 	} else {
1858 		made_root = 0;
1859 		parent = cursor->parent;
1860 		parent_index = cursor->parent_index;
1861 	}
1862 
1863 	/*
1864 	 * Calculate a hint for the allocation of the new B-Tree leaf node.
1865 	 * For now just try to localize it within the same bigblock as
1866 	 * the current leaf.
1867 	 *
1868 	 * If the insertion point is at the end of the leaf we recognize a
1869 	 * likely append sequence of some sort (data, meta-data, inodes,
1870 	 * whatever).  Set the hint to zero to allocate out of linear space
1871 	 * instead of trying to completely fill previously hinted space.
1872 	 *
1873 	 * This also sets the stage for recursive splits to localize using
1874 	 * the new space.
1875 	 */
1876 	ondisk = leaf->ondisk;
1877 	if (cursor->index == ondisk->count)
1878 		hint = 0;
1879 	else
1880 		hint = leaf->node_offset;
1881 
1882 	/*
1883 	 * Split leaf into new_leaf at the split point.  Select a separator
1884 	 * value in-between the two leafs but with a bent towards the right
1885 	 * leaf since comparisons use an 'elm >= separator' inequality.
1886 	 *
1887 	 *  L L L L L L L L
1888 	 *
1889 	 *       x x P x x
1890 	 *        s S S s
1891 	 *         /   \
1892 	 *  L L L L     L L L L
1893 	 */
1894 	new_leaf = hammer_alloc_btree(cursor->trans, hint, &error);
1895 	if (new_leaf == NULL) {
1896 		if (made_root) {
1897 			hammer_unlock(&parent->lock);
1898 			hammer_delete_node(cursor->trans, parent);
1899 			hammer_rel_node(parent);
1900 		}
1901 		goto done;
1902 	}
1903 	hammer_lock_ex(&new_leaf->lock);
1904 
1905 	/*
1906 	 * Create the new node and copy the leaf elements from the split
1907 	 * point on to the new node.
1908 	 */
1909 	hammer_modify_node_all(cursor->trans, leaf);
1910 	hammer_modify_node_noundo(cursor->trans, new_leaf);
1911 	ondisk = leaf->ondisk;
1912 	elm = &ondisk->elms[split];
1913 	bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1914 	new_leaf->ondisk->count = ondisk->count - split;
1915 	new_leaf->ondisk->parent = parent->node_offset;
1916 	new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1917 	new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1918 	KKASSERT(ondisk->type == new_leaf->ondisk->type);
1919 	hammer_modify_node_done(new_leaf);
1920 	hammer_cursor_split_node(leaf, new_leaf, split);
1921 
1922 	/*
1923 	 * Cleanup the original node.  Because this is a leaf node and
1924 	 * leaf nodes do not have a right-hand boundary, there
1925 	 * aren't any special edge cases to clean up.  We just fixup the
1926 	 * count.
1927 	 */
1928 	ondisk->count = split;
1929 
1930 	/*
1931 	 * Insert the separator into the parent, fixup the parent's
1932 	 * reference to the original node, and reference the new node.
1933 	 * The separator is P.
1934 	 *
1935 	 * Remember that base.count does not include the right-hand boundary.
1936 	 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1937 	 */
1938 	hammer_modify_node_all(cursor->trans, parent);
1939 	ondisk = parent->ondisk;
1940 	KKASSERT(split != 0);
1941 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1942 	parent_elm = &ondisk->elms[parent_index+1];
1943 	bcopy(parent_elm, parent_elm + 1,
1944 	      (ondisk->count - parent_index) * esize);
1945 
1946 	hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1947 	parent_elm->internal.base.btype = new_leaf->ondisk->type;
1948 	parent_elm->internal.subtree_offset = new_leaf->node_offset;
1949 	parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1950 	mid_boundary = &parent_elm->base;
1951 	++ondisk->count;
1952 	hammer_modify_node_done(parent);
1953 	hammer_cursor_inserted_element(parent, parent_index + 1);
1954 
1955 	/*
1956 	 * The filesystem's root B-Tree pointer may have to be updated.
1957 	 */
1958 	if (made_root) {
1959 		hammer_volume_t volume;
1960 
1961 		volume = hammer_get_root_volume(hmp, &error);
1962 		KKASSERT(error == 0);
1963 
1964 		hammer_modify_volume_field(cursor->trans, volume,
1965 					   vol0_btree_root);
1966 		volume->ondisk->vol0_btree_root = parent->node_offset;
1967 		hammer_modify_volume_done(volume);
1968 		leaf->ondisk->parent = parent->node_offset;
1969 		if (cursor->parent) {
1970 			hammer_unlock(&cursor->parent->lock);
1971 			hammer_rel_node(cursor->parent);
1972 		}
1973 		cursor->parent = parent;	/* lock'd and ref'd */
1974 		hammer_rel_volume(volume, 0);
1975 	}
1976 	hammer_modify_node_done(leaf);
1977 
1978 	/*
1979 	 * Ok, now adjust the cursor depending on which element the original
1980 	 * index was pointing at.  If we are >= the split point the push node
1981 	 * is now in the new node.
1982 	 *
1983 	 * NOTE: If we are at the split point itself we need to select the
1984 	 * old or new node based on where key_beg's insertion point will be.
1985 	 * If we pick the wrong side the inserted element will wind up in
1986 	 * the wrong leaf node and outside that node's bounds.
1987 	 */
1988 	if (cursor->index > split ||
1989 	    (cursor->index == split &&
1990 	     hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1991 		cursor->parent_index = parent_index + 1;
1992 		cursor->index -= split;
1993 		hammer_unlock(&cursor->node->lock);
1994 		hammer_rel_node(cursor->node);
1995 		cursor->node = new_leaf;
1996 	} else {
1997 		cursor->parent_index = parent_index;
1998 		hammer_unlock(&new_leaf->lock);
1999 		hammer_rel_node(new_leaf);
2000 	}
2001 
2002 	/*
2003 	 * Fixup left and right bounds
2004 	 */
2005 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
2006 	cursor->left_bound = &parent_elm[0].internal.base;
2007 	cursor->right_bound = &parent_elm[1].internal.base;
2008 
2009 	/*
2010 	 * Assert that the bounds are correct.
2011 	 */
2012 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
2013 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
2014 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
2015 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
2016 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
2017 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
2018 
2019 done:
2020 	hammer_cursor_downgrade(cursor);
2021 	return (error);
2022 }
2023 
2024 #if 0
2025 
2026 /*
2027  * Recursively correct the right-hand boundary's create_tid to (tid) as
2028  * long as the rest of the key matches.  We have to recurse upward in
2029  * the tree as well as down the left side of each parent's right node.
2030  *
2031  * Return EDEADLK if we were only partially successful, forcing the caller
2032  * to try again.  The original cursor is not modified.  This routine can
2033  * also fail with EDEADLK if it is forced to throw away a portion of its
2034  * record history.
2035  *
2036  * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
2037  */
2038 struct hammer_rhb {
2039 	TAILQ_ENTRY(hammer_rhb) entry;
2040 	hammer_node_t	node;
2041 	int		index;
2042 };
2043 
2044 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
2045 
2046 int
2047 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
2048 {
2049 	struct hammer_mount *hmp;
2050 	struct hammer_rhb_list rhb_list;
2051 	hammer_base_elm_t elm;
2052 	hammer_node_t orig_node;
2053 	struct hammer_rhb *rhb;
2054 	int orig_index;
2055 	int error;
2056 
2057 	TAILQ_INIT(&rhb_list);
2058 	hmp = cursor->trans->hmp;
2059 
2060 	/*
2061 	 * Save our position so we can restore it on return.  This also
2062 	 * gives us a stable 'elm'.
2063 	 */
2064 	orig_node = cursor->node;
2065 	hammer_ref_node(orig_node);
2066 	hammer_lock_sh(&orig_node->lock);
2067 	orig_index = cursor->index;
2068 	elm = &orig_node->ondisk->elms[orig_index].base;
2069 
2070 	/*
2071 	 * Now build a list of parents going up, allocating a rhb
2072 	 * structure for each one.
2073 	 */
2074 	while (cursor->parent) {
2075 		/*
2076 		 * Stop if we no longer have any right-bounds to fix up
2077 		 */
2078 		if (elm->obj_id != cursor->right_bound->obj_id ||
2079 		    elm->rec_type != cursor->right_bound->rec_type ||
2080 		    elm->key != cursor->right_bound->key) {
2081 			break;
2082 		}
2083 
2084 		/*
2085 		 * Stop if the right-hand bound's create_tid does not
2086 		 * need to be corrected.
2087 		 */
2088 		if (cursor->right_bound->create_tid >= tid)
2089 			break;
2090 
2091 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2092 		rhb->node = cursor->parent;
2093 		rhb->index = cursor->parent_index;
2094 		hammer_ref_node(rhb->node);
2095 		hammer_lock_sh(&rhb->node->lock);
2096 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2097 
2098 		hammer_cursor_up(cursor);
2099 	}
2100 
2101 	/*
2102 	 * now safely adjust the right hand bound for each rhb.  This may
2103 	 * also require taking the right side of the tree and iterating down
2104 	 * ITS left side.
2105 	 */
2106 	error = 0;
2107 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2108 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2109 		if (error)
2110 			break;
2111 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2112 		hammer_unlock(&rhb->node->lock);
2113 		hammer_rel_node(rhb->node);
2114 		kfree(rhb, hmp->m_misc);
2115 
2116 		switch (cursor->node->ondisk->type) {
2117 		case HAMMER_BTREE_TYPE_INTERNAL:
2118 			/*
2119 			 * Right-boundary for parent at internal node
2120 			 * is one element to the right of the element whos
2121 			 * right boundary needs adjusting.  We must then
2122 			 * traverse down the left side correcting any left
2123 			 * bounds (which may now be too far to the left).
2124 			 */
2125 			++cursor->index;
2126 			error = hammer_btree_correct_lhb(cursor, tid);
2127 			break;
2128 		default:
2129 			panic("hammer_btree_correct_rhb(): Bad node type");
2130 			error = EINVAL;
2131 			break;
2132 		}
2133 	}
2134 
2135 	/*
2136 	 * Cleanup
2137 	 */
2138 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2139 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2140 		hammer_unlock(&rhb->node->lock);
2141 		hammer_rel_node(rhb->node);
2142 		kfree(rhb, hmp->m_misc);
2143 	}
2144 	error = hammer_cursor_seek(cursor, orig_node, orig_index);
2145 	hammer_unlock(&orig_node->lock);
2146 	hammer_rel_node(orig_node);
2147 	return (error);
2148 }
2149 
2150 /*
2151  * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
2152  * bound going downward starting at the current cursor position.
2153  *
2154  * This function does not restore the cursor after use.
2155  */
2156 int
2157 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
2158 {
2159 	struct hammer_rhb_list rhb_list;
2160 	hammer_base_elm_t elm;
2161 	hammer_base_elm_t cmp;
2162 	struct hammer_rhb *rhb;
2163 	struct hammer_mount *hmp;
2164 	int error;
2165 
2166 	TAILQ_INIT(&rhb_list);
2167 	hmp = cursor->trans->hmp;
2168 
2169 	cmp = &cursor->node->ondisk->elms[cursor->index].base;
2170 
2171 	/*
2172 	 * Record the node and traverse down the left-hand side for all
2173 	 * matching records needing a boundary correction.
2174 	 */
2175 	error = 0;
2176 	for (;;) {
2177 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2178 		rhb->node = cursor->node;
2179 		rhb->index = cursor->index;
2180 		hammer_ref_node(rhb->node);
2181 		hammer_lock_sh(&rhb->node->lock);
2182 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2183 
2184 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2185 			/*
2186 			 * Nothing to traverse down if we are at the right
2187 			 * boundary of an internal node.
2188 			 */
2189 			if (cursor->index == cursor->node->ondisk->count)
2190 				break;
2191 		} else {
2192 			elm = &cursor->node->ondisk->elms[cursor->index].base;
2193 			if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2194 				break;
2195 			panic("Illegal leaf record type %02x", elm->btype);
2196 		}
2197 		error = hammer_cursor_down(cursor);
2198 		if (error)
2199 			break;
2200 
2201 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2202 		if (elm->obj_id != cmp->obj_id ||
2203 		    elm->rec_type != cmp->rec_type ||
2204 		    elm->key != cmp->key) {
2205 			break;
2206 		}
2207 		if (elm->create_tid >= tid)
2208 			break;
2209 
2210 	}
2211 
2212 	/*
2213 	 * Now we can safely adjust the left-hand boundary from the bottom-up.
2214 	 * The last element we remove from the list is the caller's right hand
2215 	 * boundary, which must also be adjusted.
2216 	 */
2217 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2218 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2219 		if (error)
2220 			break;
2221 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2222 		hammer_unlock(&rhb->node->lock);
2223 		hammer_rel_node(rhb->node);
2224 		kfree(rhb, hmp->m_misc);
2225 
2226 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2227 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2228 			hammer_modify_node(cursor->trans, cursor->node,
2229 					   &elm->create_tid,
2230 					   sizeof(elm->create_tid));
2231 			elm->create_tid = tid;
2232 			hammer_modify_node_done(cursor->node);
2233 		} else {
2234 			panic("hammer_btree_correct_lhb(): Bad element type");
2235 		}
2236 	}
2237 
2238 	/*
2239 	 * Cleanup
2240 	 */
2241 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2242 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2243 		hammer_unlock(&rhb->node->lock);
2244 		hammer_rel_node(rhb->node);
2245 		kfree(rhb, hmp->m_misc);
2246 	}
2247 	return (error);
2248 }
2249 
2250 #endif
2251 
2252 /*
2253  * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2254  * (cursor->node).  Returns 0 on success, EDEADLK if we could not complete
2255  * the operation due to a deadlock, or some other error.
2256  *
2257  * This routine is initially called with an empty leaf and may be
2258  * recursively called with single-element internal nodes.
2259  *
2260  * It should also be noted that when removing empty leaves we must be sure
2261  * to test and update mirror_tid because another thread may have deadlocked
2262  * against us (or someone) trying to propagate it up and cannot retry once
2263  * the node has been deleted.
2264  *
2265  * On return the cursor may end up pointing to an internal node, suitable
2266  * for further iteration but not for an immediate insertion or deletion.
2267  */
2268 static int
2269 btree_remove(hammer_cursor_t cursor)
2270 {
2271 	hammer_node_ondisk_t ondisk;
2272 	hammer_btree_elm_t elm;
2273 	hammer_node_t node;
2274 	hammer_node_t parent;
2275 	const int esize = sizeof(*elm);
2276 	int error;
2277 
2278 	node = cursor->node;
2279 
2280 	/*
2281 	 * When deleting the root of the filesystem convert it to
2282 	 * an empty leaf node.  Internal nodes cannot be empty.
2283 	 */
2284 	ondisk = node->ondisk;
2285 	if (ondisk->parent == 0) {
2286 		KKASSERT(cursor->parent == NULL);
2287 		hammer_modify_node_all(cursor->trans, node);
2288 		KKASSERT(ondisk == node->ondisk);
2289 		ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2290 		ondisk->count = 0;
2291 		hammer_modify_node_done(node);
2292 		cursor->index = 0;
2293 		return(0);
2294 	}
2295 
2296 	parent = cursor->parent;
2297 
2298 	/*
2299 	 * Attempt to remove the parent's reference to the child.  If the
2300 	 * parent would become empty we have to recurse.  If we fail we
2301 	 * leave the parent pointing to an empty leaf node.
2302 	 *
2303 	 * We have to recurse successfully before we can delete the internal
2304 	 * node as it is illegal to have empty internal nodes.  Even though
2305 	 * the operation may be aborted we must still fixup any unlocked
2306 	 * cursors as if we had deleted the element prior to recursing
2307 	 * (by calling hammer_cursor_deleted_element()) so those cursors
2308 	 * are properly forced up the chain by the recursion.
2309 	 */
2310 	if (parent->ondisk->count == 1) {
2311 		/*
2312 		 * This special cursor_up_locked() call leaves the original
2313 		 * node exclusively locked and referenced, leaves the
2314 		 * original parent locked (as the new node), and locks the
2315 		 * new parent.  It can return EDEADLK.
2316 		 *
2317 		 * We cannot call hammer_cursor_removed_node() until we are
2318 		 * actually able to remove the node.  If we did then tracked
2319 		 * cursors in the middle of iterations could be repointed
2320 		 * to a parent node.  If this occurs they could end up
2321 		 * scanning newly inserted records into the node (that could
2322 		 * not be deleted) when they push down again.
2323 		 *
2324 		 * Due to the way the recursion works the final parent is left
2325 		 * in cursor->parent after the recursion returns.  Each
2326 		 * layer on the way back up is thus able to call
2327 		 * hammer_cursor_removed_node() and 'jump' the node up to
2328 		 * the (same) final parent.
2329 		 *
2330 		 * NOTE!  The local variable 'parent' is invalid after we
2331 		 *	  call hammer_cursor_up_locked().
2332 		 */
2333 		error = hammer_cursor_up_locked(cursor);
2334 		parent = NULL;
2335 
2336 		if (error == 0) {
2337 			hammer_cursor_deleted_element(cursor->node, 0);
2338 			error = btree_remove(cursor);
2339 			if (error == 0) {
2340 				KKASSERT(node != cursor->node);
2341 				hammer_cursor_removed_node(
2342 					node, cursor->node,
2343 					cursor->index);
2344 				hammer_modify_node_all(cursor->trans, node);
2345 				ondisk = node->ondisk;
2346 				ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2347 				ondisk->count = 0;
2348 				hammer_modify_node_done(node);
2349 				hammer_flush_node(node, 0);
2350 				hammer_delete_node(cursor->trans, node);
2351 			} else {
2352 				/*
2353 				 * Defer parent removal because we could not
2354 				 * get the lock, just let the leaf remain
2355 				 * empty.
2356 				 */
2357 				/**/
2358 			}
2359 			hammer_unlock(&node->lock);
2360 			hammer_rel_node(node);
2361 		} else {
2362 			/*
2363 			 * Defer parent removal because we could not
2364 			 * get the lock, just let the leaf remain
2365 			 * empty.
2366 			 */
2367 			/**/
2368 		}
2369 	} else {
2370 		KKASSERT(parent->ondisk->count > 1);
2371 
2372 		hammer_modify_node_all(cursor->trans, parent);
2373 		ondisk = parent->ondisk;
2374 		KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2375 
2376 		elm = &ondisk->elms[cursor->parent_index];
2377 		KKASSERT(elm->internal.subtree_offset == node->node_offset);
2378 		KKASSERT(ondisk->count > 0);
2379 
2380 		/*
2381 		 * We must retain the highest mirror_tid.  The deleted
2382 		 * range is now encompassed by the element to the left.
2383 		 * If we are already at the left edge the new left edge
2384 		 * inherits mirror_tid.
2385 		 *
2386 		 * Note that bounds of the parent to our parent may create
2387 		 * a gap to the left of our left-most node or to the right
2388 		 * of our right-most node.  The gap is silently included
2389 		 * in the mirror_tid's area of effect from the point of view
2390 		 * of the scan.
2391 		 */
2392 		if (cursor->parent_index) {
2393 			if (elm[-1].internal.mirror_tid <
2394 			    elm[0].internal.mirror_tid) {
2395 				elm[-1].internal.mirror_tid =
2396 				    elm[0].internal.mirror_tid;
2397 			}
2398 		} else {
2399 			if (elm[1].internal.mirror_tid <
2400 			    elm[0].internal.mirror_tid) {
2401 				elm[1].internal.mirror_tid =
2402 				    elm[0].internal.mirror_tid;
2403 			}
2404 		}
2405 
2406 		/*
2407 		 * Delete the subtree reference in the parent.  Include
2408 		 * boundary element at end.
2409 		 */
2410 		bcopy(&elm[1], &elm[0],
2411 		      (ondisk->count - cursor->parent_index) * esize);
2412 		--ondisk->count;
2413 		hammer_modify_node_done(parent);
2414 		hammer_cursor_removed_node(node, parent, cursor->parent_index);
2415 		hammer_cursor_deleted_element(parent, cursor->parent_index);
2416 		hammer_flush_node(node, 0);
2417 		hammer_delete_node(cursor->trans, node);
2418 
2419 		/*
2420 		 * cursor->node is invalid, cursor up to make the cursor
2421 		 * valid again.  We have to flag the condition in case
2422 		 * another thread wiggles an insertion in during an
2423 		 * iteration.
2424 		 */
2425 		cursor->flags |= HAMMER_CURSOR_ITERATE_CHECK;
2426 		error = hammer_cursor_up(cursor);
2427 	}
2428 	return (error);
2429 }
2430 
2431 /*
2432  * Propagate cursor->trans->tid up the B-Tree starting at the current
2433  * cursor position using pseudofs info gleaned from the passed inode.
2434  *
2435  * The passed inode has no relationship to the cursor position other
2436  * then being in the same pseudofs as the insertion or deletion we
2437  * are propagating the mirror_tid for.
2438  *
2439  * WARNING!  Because we push and pop the passed cursor, it may be
2440  *	     modified by other B-Tree operations while it is unlocked
2441  *	     and things like the node & leaf pointers, and indexes might
2442  *	     change.
2443  */
2444 void
2445 hammer_btree_do_propagation(hammer_cursor_t cursor,
2446 			    hammer_pseudofs_inmem_t pfsm,
2447 			    hammer_btree_leaf_elm_t leaf)
2448 {
2449 	hammer_cursor_t ncursor;
2450 	hammer_tid_t mirror_tid;
2451 	int error;
2452 
2453 	/*
2454 	 * We do not propagate a mirror_tid if the filesystem was mounted
2455 	 * in no-mirror mode.
2456 	 */
2457 	if (cursor->trans->hmp->master_id < 0)
2458 		return;
2459 
2460 	/*
2461 	 * This is a bit of a hack because we cannot deadlock or return
2462 	 * EDEADLK here.  The related operation has already completed and
2463 	 * we must propagate the mirror_tid now regardless.
2464 	 *
2465 	 * Generate a new cursor which inherits the original's locks and
2466 	 * unlock the original.  Use the new cursor to propagate the
2467 	 * mirror_tid.  Then clean up the new cursor and reacquire locks
2468 	 * on the original.
2469 	 *
2470 	 * hammer_dup_cursor() cannot dup locks.  The dup inherits the
2471 	 * original's locks and the original is tracked and must be
2472 	 * re-locked.
2473 	 */
2474 	mirror_tid = cursor->node->ondisk->mirror_tid;
2475 	KKASSERT(mirror_tid != 0);
2476 	ncursor = hammer_push_cursor(cursor);
2477 	error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2478 	KKASSERT(error == 0);
2479 	hammer_pop_cursor(cursor, ncursor);
2480 	/* WARNING: cursor's leaf pointer may change after pop */
2481 }
2482 
2483 
2484 /*
2485  * Propagate a mirror TID update upwards through the B-Tree to the root.
2486  *
2487  * A locked internal node must be passed in.  The node will remain locked
2488  * on return.
2489  *
2490  * This function syncs mirror_tid at the specified internal node's element,
2491  * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2492  */
2493 static int
2494 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2495 {
2496 	hammer_btree_internal_elm_t elm;
2497 	hammer_node_t node;
2498 	int error;
2499 
2500 	for (;;) {
2501 		error = hammer_cursor_up(cursor);
2502 		if (error == 0)
2503 			error = hammer_cursor_upgrade(cursor);
2504 
2505 		/*
2506 		 * We can ignore HAMMER_CURSOR_ITERATE_CHECK, the
2507 		 * cursor will still be properly positioned for
2508 		 * mirror propagation, just not for iterations.
2509 		 */
2510 		while (error == EDEADLK) {
2511 			hammer_recover_cursor(cursor);
2512 			error = hammer_cursor_upgrade(cursor);
2513 		}
2514 		if (error)
2515 			break;
2516 
2517 		/*
2518 		 * If the cursor deadlocked it could end up at a leaf
2519 		 * after we lost the lock.
2520 		 */
2521 		node = cursor->node;
2522 		if (node->ondisk->type != HAMMER_BTREE_TYPE_INTERNAL)
2523 			continue;
2524 
2525 		/*
2526 		 * Adjust the node's element
2527 		 */
2528 		elm = &node->ondisk->elms[cursor->index].internal;
2529 		if (elm->mirror_tid >= mirror_tid)
2530 			break;
2531 		hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2532 				   sizeof(elm->mirror_tid));
2533 		elm->mirror_tid = mirror_tid;
2534 		hammer_modify_node_done(node);
2535 		if (hammer_debug_general & 0x0002) {
2536 			kprintf("mirror_propagate: propagate "
2537 				"%016llx @%016llx:%d\n",
2538 				(long long)mirror_tid,
2539 				(long long)node->node_offset,
2540 				cursor->index);
2541 		}
2542 
2543 
2544 		/*
2545 		 * Adjust the node's mirror_tid aggregator
2546 		 */
2547 		if (node->ondisk->mirror_tid >= mirror_tid)
2548 			return(0);
2549 		hammer_modify_node_field(cursor->trans, node, mirror_tid);
2550 		node->ondisk->mirror_tid = mirror_tid;
2551 		hammer_modify_node_done(node);
2552 		if (hammer_debug_general & 0x0002) {
2553 			kprintf("mirror_propagate: propagate "
2554 				"%016llx @%016llx\n",
2555 				(long long)mirror_tid,
2556 				(long long)node->node_offset);
2557 		}
2558 	}
2559 	if (error == ENOENT)
2560 		error = 0;
2561 	return(error);
2562 }
2563 
2564 hammer_node_t
2565 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
2566 			int *parent_indexp, int *errorp, int try_exclusive)
2567 {
2568 	hammer_node_t parent;
2569 	hammer_btree_elm_t elm;
2570 	int i;
2571 
2572 	/*
2573 	 * Get the node
2574 	 */
2575 	parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
2576 	if (*errorp) {
2577 		KKASSERT(parent == NULL);
2578 		return(NULL);
2579 	}
2580 	KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2581 
2582 	/*
2583 	 * Lock the node
2584 	 */
2585 	if (try_exclusive) {
2586 		if (hammer_lock_ex_try(&parent->lock)) {
2587 			hammer_rel_node(parent);
2588 			*errorp = EDEADLK;
2589 			return(NULL);
2590 		}
2591 	} else {
2592 		hammer_lock_sh(&parent->lock);
2593 	}
2594 
2595 	/*
2596 	 * Figure out which element in the parent is pointing to the
2597 	 * child.
2598 	 */
2599 	if (node->ondisk->count) {
2600 		i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2601 					     parent->ondisk);
2602 	} else {
2603 		i = 0;
2604 	}
2605 	while (i < parent->ondisk->count) {
2606 		elm = &parent->ondisk->elms[i];
2607 		if (elm->internal.subtree_offset == node->node_offset)
2608 			break;
2609 		++i;
2610 	}
2611 	if (i == parent->ondisk->count) {
2612 		hammer_unlock(&parent->lock);
2613 		panic("Bad B-Tree link: parent %p node %p\n", parent, node);
2614 	}
2615 	*parent_indexp = i;
2616 	KKASSERT(*errorp == 0);
2617 	return(parent);
2618 }
2619 
2620 /*
2621  * The element (elm) has been moved to a new internal node (node).
2622  *
2623  * If the element represents a pointer to an internal node that node's
2624  * parent must be adjusted to the element's new location.
2625  *
2626  * XXX deadlock potential here with our exclusive locks
2627  */
2628 int
2629 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2630 		 hammer_btree_elm_t elm)
2631 {
2632 	hammer_node_t child;
2633 	int error;
2634 
2635 	error = 0;
2636 
2637 	switch(elm->base.btype) {
2638 	case HAMMER_BTREE_TYPE_INTERNAL:
2639 	case HAMMER_BTREE_TYPE_LEAF:
2640 		child = hammer_get_node(trans, elm->internal.subtree_offset,
2641 					0, &error);
2642 		if (error == 0) {
2643 			hammer_modify_node_field(trans, child, parent);
2644 			child->ondisk->parent = node->node_offset;
2645 			hammer_modify_node_done(child);
2646 			hammer_rel_node(child);
2647 		}
2648 		break;
2649 	default:
2650 		break;
2651 	}
2652 	return(error);
2653 }
2654 
2655 /*
2656  * Initialize the root of a recursive B-Tree node lock list structure.
2657  */
2658 void
2659 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
2660 {
2661 	TAILQ_INIT(&parent->list);
2662 	parent->parent = NULL;
2663 	parent->node = node;
2664 	parent->index = -1;
2665 	parent->count = node->ondisk->count;
2666 	parent->copy = NULL;
2667 	parent->flags = 0;
2668 }
2669 
2670 /*
2671  * Initialize a cache of hammer_node_lock's including space allocated
2672  * for node copies.
2673  *
2674  * This is used by the rebalancing code to preallocate the copy space
2675  * for ~4096 B-Tree nodes (16MB of data) prior to acquiring any HAMMER
2676  * locks, otherwise we can blow out the pageout daemon's emergency
2677  * reserve and deadlock it.
2678  *
2679  * NOTE: HAMMER_NODE_LOCK_LCACHE is not set on items cached in the lcache.
2680  *	 The flag is set when the item is pulled off the cache for use.
2681  */
2682 void
2683 hammer_btree_lcache_init(hammer_mount_t hmp, hammer_node_lock_t lcache,
2684 			 int depth)
2685 {
2686 	hammer_node_lock_t item;
2687 	int count;
2688 
2689 	for (count = 1; depth; --depth)
2690 		count *= HAMMER_BTREE_LEAF_ELMS;
2691 	bzero(lcache, sizeof(*lcache));
2692 	TAILQ_INIT(&lcache->list);
2693 	while (count) {
2694 		item = kmalloc(sizeof(*item), hmp->m_misc, M_WAITOK|M_ZERO);
2695 		item->copy = kmalloc(sizeof(*item->copy),
2696 				     hmp->m_misc, M_WAITOK);
2697 		TAILQ_INIT(&item->list);
2698 		TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2699 		--count;
2700 	}
2701 }
2702 
2703 void
2704 hammer_btree_lcache_free(hammer_mount_t hmp, hammer_node_lock_t lcache)
2705 {
2706 	hammer_node_lock_t item;
2707 
2708 	while ((item = TAILQ_FIRST(&lcache->list)) != NULL) {
2709 		TAILQ_REMOVE(&lcache->list, item, entry);
2710 		KKASSERT(item->copy);
2711 		KKASSERT(TAILQ_EMPTY(&item->list));
2712 		kfree(item->copy, hmp->m_misc);
2713 		kfree(item, hmp->m_misc);
2714 	}
2715 	KKASSERT(lcache->copy == NULL);
2716 }
2717 
2718 /*
2719  * Exclusively lock all the children of node.  This is used by the split
2720  * code to prevent anyone from accessing the children of a cursor node
2721  * while we fix-up its parent offset.
2722  *
2723  * If we don't lock the children we can really mess up cursors which block
2724  * trying to cursor-up into our node.
2725  *
2726  * On failure EDEADLK (or some other error) is returned.  If a deadlock
2727  * error is returned the cursor is adjusted to block on termination.
2728  *
2729  * The caller is responsible for managing parent->node, the root's node
2730  * is usually aliased from a cursor.
2731  */
2732 int
2733 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
2734 			   hammer_node_lock_t parent,
2735 			   hammer_node_lock_t lcache)
2736 {
2737 	hammer_node_t node;
2738 	hammer_node_lock_t item;
2739 	hammer_node_ondisk_t ondisk;
2740 	hammer_btree_elm_t elm;
2741 	hammer_node_t child;
2742 	struct hammer_mount *hmp;
2743 	int error;
2744 	int i;
2745 
2746 	node = parent->node;
2747 	ondisk = node->ondisk;
2748 	error = 0;
2749 	hmp = cursor->trans->hmp;
2750 
2751 	/*
2752 	 * We really do not want to block on I/O with exclusive locks held,
2753 	 * pre-get the children before trying to lock the mess.  This is
2754 	 * only done one-level deep for now.
2755 	 */
2756 	for (i = 0; i < ondisk->count; ++i) {
2757 		++hammer_stats_btree_elements;
2758 		elm = &ondisk->elms[i];
2759 		if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2760 		    elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2761 			continue;
2762 		}
2763 		child = hammer_get_node(cursor->trans,
2764 					elm->internal.subtree_offset,
2765 					0, &error);
2766 		if (child)
2767 			hammer_rel_node(child);
2768 	}
2769 
2770 	/*
2771 	 * Do it for real
2772 	 */
2773 	for (i = 0; error == 0 && i < ondisk->count; ++i) {
2774 		++hammer_stats_btree_elements;
2775 		elm = &ondisk->elms[i];
2776 
2777 		switch(elm->base.btype) {
2778 		case HAMMER_BTREE_TYPE_INTERNAL:
2779 		case HAMMER_BTREE_TYPE_LEAF:
2780 			KKASSERT(elm->internal.subtree_offset != 0);
2781 			child = hammer_get_node(cursor->trans,
2782 						elm->internal.subtree_offset,
2783 						0, &error);
2784 			break;
2785 		default:
2786 			child = NULL;
2787 			break;
2788 		}
2789 		if (child) {
2790 			if (hammer_lock_ex_try(&child->lock) != 0) {
2791 				if (cursor->deadlk_node == NULL) {
2792 					cursor->deadlk_node = child;
2793 					hammer_ref_node(cursor->deadlk_node);
2794 				}
2795 				error = EDEADLK;
2796 				hammer_rel_node(child);
2797 			} else {
2798 				if (lcache) {
2799 					item = TAILQ_FIRST(&lcache->list);
2800 					KKASSERT(item != NULL);
2801 					item->flags |= HAMMER_NODE_LOCK_LCACHE;
2802 					TAILQ_REMOVE(&lcache->list,
2803 						     item, entry);
2804 				} else {
2805 					item = kmalloc(sizeof(*item),
2806 						       hmp->m_misc,
2807 						       M_WAITOK|M_ZERO);
2808 					TAILQ_INIT(&item->list);
2809 				}
2810 
2811 				TAILQ_INSERT_TAIL(&parent->list, item, entry);
2812 				item->parent = parent;
2813 				item->node = child;
2814 				item->index = i;
2815 				item->count = child->ondisk->count;
2816 
2817 				/*
2818 				 * Recurse (used by the rebalancing code)
2819 				 */
2820 				if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
2821 					error = hammer_btree_lock_children(
2822 							cursor,
2823 							depth - 1,
2824 							item,
2825 							lcache);
2826 				}
2827 			}
2828 		}
2829 	}
2830 	if (error)
2831 		hammer_btree_unlock_children(hmp, parent, lcache);
2832 	return(error);
2833 }
2834 
2835 /*
2836  * Create an in-memory copy of all B-Tree nodes listed, recursively,
2837  * including the parent.
2838  */
2839 void
2840 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2841 {
2842 	hammer_mount_t hmp = cursor->trans->hmp;
2843 	hammer_node_lock_t item;
2844 
2845 	if (parent->copy == NULL) {
2846 		KKASSERT((parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0);
2847 		parent->copy = kmalloc(sizeof(*parent->copy),
2848 				       hmp->m_misc, M_WAITOK);
2849 	}
2850 	KKASSERT((parent->flags & HAMMER_NODE_LOCK_UPDATED) == 0);
2851 	*parent->copy = *parent->node->ondisk;
2852 	TAILQ_FOREACH(item, &parent->list, entry) {
2853 		hammer_btree_lock_copy(cursor, item);
2854 	}
2855 }
2856 
2857 /*
2858  * Recursively sync modified copies to the media.
2859  */
2860 int
2861 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2862 {
2863 	hammer_node_lock_t item;
2864 	int count = 0;
2865 
2866 	if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
2867 		++count;
2868 		hammer_modify_node_all(cursor->trans, parent->node);
2869 		*parent->node->ondisk = *parent->copy;
2870                 hammer_modify_node_done(parent->node);
2871 		if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
2872 			hammer_flush_node(parent->node, 0);
2873 			hammer_delete_node(cursor->trans, parent->node);
2874 		}
2875 	}
2876 	TAILQ_FOREACH(item, &parent->list, entry) {
2877 		count += hammer_btree_sync_copy(cursor, item);
2878 	}
2879 	return(count);
2880 }
2881 
2882 /*
2883  * Release previously obtained node locks.  The caller is responsible for
2884  * cleaning up parent->node itself (its usually just aliased from a cursor),
2885  * but this function will take care of the copies.
2886  *
2887  * NOTE: The root node is not placed in the lcache and node->copy is not
2888  *	 deallocated when lcache != NULL.
2889  */
2890 void
2891 hammer_btree_unlock_children(hammer_mount_t hmp, hammer_node_lock_t parent,
2892 			     hammer_node_lock_t lcache)
2893 {
2894 	hammer_node_lock_t item;
2895 	hammer_node_ondisk_t copy;
2896 
2897 	while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
2898 		TAILQ_REMOVE(&parent->list, item, entry);
2899 		hammer_btree_unlock_children(hmp, item, lcache);
2900 		hammer_unlock(&item->node->lock);
2901 		hammer_rel_node(item->node);
2902 		if (lcache) {
2903 			/*
2904 			 * NOTE: When placing the item back in the lcache
2905 			 *	 the flag is cleared by the bzero().
2906 			 *	 Remaining fields are cleared as a safety
2907 			 *	 measure.
2908 			 */
2909 			KKASSERT(item->flags & HAMMER_NODE_LOCK_LCACHE);
2910 			KKASSERT(TAILQ_EMPTY(&item->list));
2911 			copy = item->copy;
2912 			bzero(item, sizeof(*item));
2913 			TAILQ_INIT(&item->list);
2914 			item->copy = copy;
2915 			if (copy)
2916 				bzero(copy, sizeof(*copy));
2917 			TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2918 		} else {
2919 			kfree(item, hmp->m_misc);
2920 		}
2921 	}
2922 	if (parent->copy && (parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0) {
2923 		kfree(parent->copy, hmp->m_misc);
2924 		parent->copy = NULL;	/* safety */
2925 	}
2926 }
2927 
2928 /************************************************************************
2929  *			   MISCELLANIOUS SUPPORT 			*
2930  ************************************************************************/
2931 
2932 /*
2933  * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2934  *
2935  * Note that for this particular function a return value of -1, 0, or +1
2936  * can denote a match if create_tid is otherwise discounted.  A create_tid
2937  * of zero is considered to be 'infinity' in comparisons.
2938  *
2939  * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2940  */
2941 int
2942 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2943 {
2944 	if (key1->localization < key2->localization)
2945 		return(-5);
2946 	if (key1->localization > key2->localization)
2947 		return(5);
2948 
2949 	if (key1->obj_id < key2->obj_id)
2950 		return(-4);
2951 	if (key1->obj_id > key2->obj_id)
2952 		return(4);
2953 
2954 	if (key1->rec_type < key2->rec_type)
2955 		return(-3);
2956 	if (key1->rec_type > key2->rec_type)
2957 		return(3);
2958 
2959 	if (key1->key < key2->key)
2960 		return(-2);
2961 	if (key1->key > key2->key)
2962 		return(2);
2963 
2964 	/*
2965 	 * A create_tid of zero indicates a record which is undeletable
2966 	 * and must be considered to have a value of positive infinity.
2967 	 */
2968 	if (key1->create_tid == 0) {
2969 		if (key2->create_tid == 0)
2970 			return(0);
2971 		return(1);
2972 	}
2973 	if (key2->create_tid == 0)
2974 		return(-1);
2975 	if (key1->create_tid < key2->create_tid)
2976 		return(-1);
2977 	if (key1->create_tid > key2->create_tid)
2978 		return(1);
2979 	return(0);
2980 }
2981 
2982 /*
2983  * Test a timestamp against an element to determine whether the
2984  * element is visible.  A timestamp of 0 means 'infinity'.
2985  */
2986 int
2987 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2988 {
2989 	if (asof == 0) {
2990 		if (base->delete_tid)
2991 			return(1);
2992 		return(0);
2993 	}
2994 	if (asof < base->create_tid)
2995 		return(-1);
2996 	if (base->delete_tid && asof >= base->delete_tid)
2997 		return(1);
2998 	return(0);
2999 }
3000 
3001 /*
3002  * Create a separator half way inbetween key1 and key2.  For fields just
3003  * one unit apart, the separator will match key2.  key1 is on the left-hand
3004  * side and key2 is on the right-hand side.
3005  *
3006  * key2 must be >= the separator.  It is ok for the separator to match key2.
3007  *
3008  * NOTE: Even if key1 does not match key2, the separator may wind up matching
3009  * key2.
3010  *
3011  * NOTE: It might be beneficial to just scrap this whole mess and just
3012  * set the separator to key2.
3013  */
3014 #define MAKE_SEPARATOR(key1, key2, dest, field)	\
3015 	dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
3016 
3017 static void
3018 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
3019 		      hammer_base_elm_t dest)
3020 {
3021 	bzero(dest, sizeof(*dest));
3022 
3023 	dest->rec_type = key2->rec_type;
3024 	dest->key = key2->key;
3025 	dest->obj_id = key2->obj_id;
3026 	dest->create_tid = key2->create_tid;
3027 
3028 	MAKE_SEPARATOR(key1, key2, dest, localization);
3029 	if (key1->localization == key2->localization) {
3030 		MAKE_SEPARATOR(key1, key2, dest, obj_id);
3031 		if (key1->obj_id == key2->obj_id) {
3032 			MAKE_SEPARATOR(key1, key2, dest, rec_type);
3033 			if (key1->rec_type == key2->rec_type) {
3034 				MAKE_SEPARATOR(key1, key2, dest, key);
3035 				/*
3036 				 * Don't bother creating a separator for
3037 				 * create_tid, which also conveniently avoids
3038 				 * having to handle the create_tid == 0
3039 				 * (infinity) case.  Just leave create_tid
3040 				 * set to key2.
3041 				 *
3042 				 * Worst case, dest matches key2 exactly,
3043 				 * which is acceptable.
3044 				 */
3045 			}
3046 		}
3047 	}
3048 }
3049 
3050 #undef MAKE_SEPARATOR
3051 
3052 /*
3053  * Return whether a generic internal or leaf node is full
3054  */
3055 static int
3056 btree_node_is_full(hammer_node_ondisk_t node)
3057 {
3058 	switch(node->type) {
3059 	case HAMMER_BTREE_TYPE_INTERNAL:
3060 		if (node->count == HAMMER_BTREE_INT_ELMS)
3061 			return(1);
3062 		break;
3063 	case HAMMER_BTREE_TYPE_LEAF:
3064 		if (node->count == HAMMER_BTREE_LEAF_ELMS)
3065 			return(1);
3066 		break;
3067 	default:
3068 		panic("illegal btree subtype");
3069 	}
3070 	return(0);
3071 }
3072 
3073 #if 0
3074 static int
3075 btree_max_elements(u_int8_t type)
3076 {
3077 	if (type == HAMMER_BTREE_TYPE_LEAF)
3078 		return(HAMMER_BTREE_LEAF_ELMS);
3079 	if (type == HAMMER_BTREE_TYPE_INTERNAL)
3080 		return(HAMMER_BTREE_INT_ELMS);
3081 	panic("btree_max_elements: bad type %d\n", type);
3082 }
3083 #endif
3084 
3085 void
3086 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
3087 {
3088 	hammer_btree_elm_t elm;
3089 	int i;
3090 
3091 	kprintf("node %p count=%d parent=%016llx type=%c\n",
3092 		ondisk, ondisk->count,
3093 		(long long)ondisk->parent, ondisk->type);
3094 
3095 	/*
3096 	 * Dump both boundary elements if an internal node
3097 	 */
3098 	if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
3099 		for (i = 0; i <= ondisk->count; ++i) {
3100 			elm = &ondisk->elms[i];
3101 			hammer_print_btree_elm(elm, ondisk->type, i);
3102 		}
3103 	} else {
3104 		for (i = 0; i < ondisk->count; ++i) {
3105 			elm = &ondisk->elms[i];
3106 			hammer_print_btree_elm(elm, ondisk->type, i);
3107 		}
3108 	}
3109 }
3110 
3111 void
3112 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
3113 {
3114 	kprintf("  %2d", i);
3115 	kprintf("\tobj_id       = %016llx\n", (long long)elm->base.obj_id);
3116 	kprintf("\tkey          = %016llx\n", (long long)elm->base.key);
3117 	kprintf("\tcreate_tid   = %016llx\n", (long long)elm->base.create_tid);
3118 	kprintf("\tdelete_tid   = %016llx\n", (long long)elm->base.delete_tid);
3119 	kprintf("\trec_type     = %04x\n", elm->base.rec_type);
3120 	kprintf("\tobj_type     = %02x\n", elm->base.obj_type);
3121 	kprintf("\tbtype 	= %02x (%c)\n",
3122 		elm->base.btype,
3123 		(elm->base.btype ? elm->base.btype : '?'));
3124 	kprintf("\tlocalization	= %02x\n", elm->base.localization);
3125 
3126 	switch(type) {
3127 	case HAMMER_BTREE_TYPE_INTERNAL:
3128 		kprintf("\tsubtree_off  = %016llx\n",
3129 			(long long)elm->internal.subtree_offset);
3130 		break;
3131 	case HAMMER_BTREE_TYPE_RECORD:
3132 		kprintf("\tdata_offset  = %016llx\n",
3133 			(long long)elm->leaf.data_offset);
3134 		kprintf("\tdata_len     = %08x\n", elm->leaf.data_len);
3135 		kprintf("\tdata_crc     = %08x\n", elm->leaf.data_crc);
3136 		break;
3137 	}
3138 }
3139