xref: /dflybsd-src/sys/vfs/hammer/hammer_btree.c (revision 4e8e707f19cc6258586032c9a167fabc7d18619b)
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 /*
36  * HAMMER B-Tree index
37  *
38  * HAMMER implements a modified B+Tree.  In documentation this will
39  * simply be refered to as the HAMMER B-Tree.  Basically a HAMMER B-Tree
40  * looks like a B+Tree (A B-Tree which stores its records only at the leafs
41  * of the tree), but adds two additional boundary elements which describe
42  * the left-most and right-most element a node is able to represent.  In
43  * otherwords, we have boundary elements at the two ends of a B-Tree node
44  * with no valid sub-tree pointer for the right-most element.
45  *
46  * A B-Tree internal node looks like this:
47  *
48  *	B N N N N N N B   <-- boundary and internal elements
49  *       S S S S S S S    <-- subtree pointers
50  *
51  * A B-Tree leaf node basically looks like this:
52  *
53  *	L L L L L L L L   <-- leaf elemenets
54  *
55  * The radix for an internal node is 1 less then a leaf but we get a
56  * number of significant benefits for our troubles.
57  * The left-hand boundary (B in the left) is integrated into the first
58  * element so it doesn't require 2 elements to accomodate boundaries.
59  *
60  * The big benefit to using a B-Tree containing boundary information
61  * is that it is possible to cache pointers into the middle of the tree
62  * and not have to start searches, insertions, OR deletions at the root
63  * node.   In particular, searches are able to progress in a definitive
64  * direction from any point in the tree without revisting nodes.  This
65  * greatly improves the efficiency of many operations, most especially
66  * record appends.
67  *
68  * B-Trees also make the stacking of trees fairly straightforward.
69  *
70  * INSERTIONS:  A search performed with the intention of doing
71  * an insert will guarantee that the terminal leaf node is not full by
72  * splitting full nodes.  Splits occur top-down during the dive down the
73  * B-Tree.
74  *
75  * DELETIONS: A deletion makes no attempt to proactively balance the
76  * tree and will recursively remove nodes that become empty.  If a
77  * deadlock occurs a deletion may not be able to remove an empty leaf.
78  * Deletions never allow internal nodes to become empty (that would blow
79  * up the boundaries).
80  */
81 #include "hammer.h"
82 #include <sys/buf.h>
83 #include <sys/buf2.h>
84 
85 static int btree_search(hammer_cursor_t cursor, int flags);
86 static int btree_split_internal(hammer_cursor_t cursor);
87 static int btree_split_leaf(hammer_cursor_t cursor);
88 static int btree_remove(hammer_cursor_t cursor);
89 static __inline int btree_node_is_full(hammer_node_ondisk_t node);
90 static __inline int btree_max_elements(u_int8_t type);
91 static int hammer_btree_mirror_propagate(hammer_cursor_t cursor,
92 			hammer_tid_t mirror_tid);
93 static void hammer_make_separator(hammer_base_elm_t key1,
94 			hammer_base_elm_t key2, hammer_base_elm_t dest);
95 static void hammer_cursor_mirror_filter(hammer_cursor_t cursor);
96 
97 /*
98  * Iterate records after a search.  The cursor is iterated forwards past
99  * the current record until a record matching the key-range requirements
100  * is found.  ENOENT is returned if the iteration goes past the ending
101  * key.
102  *
103  * The iteration is inclusive of key_beg and can be inclusive or exclusive
104  * of key_end depending on whether HAMMER_CURSOR_END_INCLUSIVE is set.
105  *
106  * When doing an as-of search (cursor->asof != 0), key_beg.create_tid
107  * may be modified by B-Tree functions.
108  *
109  * cursor->key_beg may or may not be modified by this function during
110  * the iteration.  XXX future - in case of an inverted lock we may have
111  * to reinitiate the lookup and set key_beg to properly pick up where we
112  * left off.
113  *
114  * If HAMMER_CURSOR_ITERATE_CHECK is set it is possible that the cursor
115  * was reverse indexed due to being moved to a parent while unlocked,
116  * and something else might have inserted an element outside the iteration
117  * range.  When this case occurs the iterator just keeps iterating until
118  * it gets back into the iteration range (instead of asserting).
119  *
120  * NOTE!  EDEADLK *CANNOT* be returned by this procedure.
121  */
122 int
123 hammer_btree_iterate(hammer_cursor_t cursor)
124 {
125 	hammer_node_ondisk_t node;
126 	hammer_btree_elm_t elm;
127 	hammer_mount_t hmp;
128 	int error = 0;
129 	int r;
130 	int s;
131 
132 	/*
133 	 * Skip past the current record
134 	 */
135 	hmp = cursor->trans->hmp;
136 	node = cursor->node->ondisk;
137 	if (node == NULL)
138 		return(ENOENT);
139 	if (cursor->index < node->count &&
140 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
141 		++cursor->index;
142 	}
143 
144 	/*
145 	 * HAMMER can wind up being cpu-bound.
146 	 */
147 	if (++hmp->check_yield > hammer_yield_check) {
148 		hmp->check_yield = 0;
149 		lwkt_user_yield();
150 	}
151 
152 
153 	/*
154 	 * Loop until an element is found or we are done.
155 	 */
156 	for (;;) {
157 		/*
158 		 * We iterate up the tree and then index over one element
159 		 * while we are at the last element in the current node.
160 		 *
161 		 * If we are at the root of the filesystem, cursor_up
162 		 * returns ENOENT.
163 		 *
164 		 * XXX this could be optimized by storing the information in
165 		 * the parent reference.
166 		 *
167 		 * XXX we can lose the node lock temporarily, this could mess
168 		 * up our scan.
169 		 */
170 		++hammer_stats_btree_iterations;
171 		hammer_flusher_clean_loose_ios(hmp);
172 
173 		if (cursor->index == node->count) {
174 			if (hammer_debug_btree) {
175 				kprintf("BRACKETU %016llx[%d] -> %016llx[%d] (td=%p)\n",
176 					(long long)cursor->node->node_offset,
177 					cursor->index,
178 					(long long)(cursor->parent ? cursor->parent->node_offset : -1),
179 					cursor->parent_index,
180 					curthread);
181 			}
182 			KKASSERT(cursor->parent == NULL || cursor->parent->ondisk->elms[cursor->parent_index].internal.subtree_offset == cursor->node->node_offset);
183 			error = hammer_cursor_up(cursor);
184 			if (error)
185 				break;
186 			/* reload stale pointer */
187 			node = cursor->node->ondisk;
188 			KKASSERT(cursor->index != node->count);
189 
190 			/*
191 			 * If we are reblocking we want to return internal
192 			 * nodes.  Note that the internal node will be
193 			 * returned multiple times, on each upward recursion
194 			 * from its children.  The caller selects which
195 			 * revisit it cares about (usually first or last only).
196 			 */
197 			if (cursor->flags & HAMMER_CURSOR_REBLOCKING) {
198 				cursor->flags |= HAMMER_CURSOR_ATEDISK;
199 				return(0);
200 			}
201 			++cursor->index;
202 			continue;
203 		}
204 
205 		/*
206 		 * Check internal or leaf element.  Determine if the record
207 		 * at the cursor has gone beyond the end of our range.
208 		 *
209 		 * We recurse down through internal nodes.
210 		 */
211 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
212 			elm = &node->elms[cursor->index];
213 
214 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
215 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
216 			if (hammer_debug_btree) {
217 				kprintf("BRACKETL %016llx[%d] %016llx %02x "
218 					"key=%016llx lo=%02x %d (td=%p)\n",
219 					(long long)cursor->node->node_offset,
220 					cursor->index,
221 					(long long)elm[0].internal.base.obj_id,
222 					elm[0].internal.base.rec_type,
223 					(long long)elm[0].internal.base.key,
224 					elm[0].internal.base.localization,
225 					r,
226 					curthread
227 				);
228 				kprintf("BRACKETR %016llx[%d] %016llx %02x "
229 					"key=%016llx lo=%02x %d\n",
230 					(long long)cursor->node->node_offset,
231 					cursor->index + 1,
232 					(long long)elm[1].internal.base.obj_id,
233 					elm[1].internal.base.rec_type,
234 					(long long)elm[1].internal.base.key,
235 					elm[1].internal.base.localization,
236 					s
237 				);
238 			}
239 
240 			if (r < 0) {
241 				error = ENOENT;
242 				break;
243 			}
244 			if (r == 0 && (cursor->flags &
245 				       HAMMER_CURSOR_END_INCLUSIVE) == 0) {
246 				error = ENOENT;
247 				break;
248 			}
249 
250 			/*
251 			 * Better not be zero
252 			 */
253 			KKASSERT(elm->internal.subtree_offset != 0);
254 
255 			if (s <= 0) {
256 				/*
257 				 * If running the mirror filter see if we
258 				 * can skip one or more entire sub-trees.
259 				 * If we can we return the internal node
260 				 * and the caller processes the skipped
261 				 * range (see mirror_read).
262 				 */
263 				if (cursor->flags &
264 				    HAMMER_CURSOR_MIRROR_FILTERED) {
265 					if (elm->internal.mirror_tid <
266 					    cursor->cmirror->mirror_tid) {
267 						hammer_cursor_mirror_filter(cursor);
268 						return(0);
269 					}
270 				}
271 			} else {
272 				/*
273 				 * Normally it would be impossible for the
274 				 * cursor to have gotten back-indexed,
275 				 * but it can happen if a node is deleted
276 				 * and the cursor is moved to its parent
277 				 * internal node.  ITERATE_CHECK will be set.
278 				 */
279 				KKASSERT(cursor->flags &
280 					 HAMMER_CURSOR_ITERATE_CHECK);
281 				kprintf("hammer_btree_iterate: "
282 					"DEBUG: Caught parent seek "
283 					"in internal iteration\n");
284 			}
285 
286 			error = hammer_cursor_down(cursor);
287 			if (error)
288 				break;
289 			KKASSERT(cursor->index == 0);
290 			/* reload stale pointer */
291 			node = cursor->node->ondisk;
292 			continue;
293 		} else {
294 			elm = &node->elms[cursor->index];
295 			r = hammer_btree_cmp(&cursor->key_end, &elm->base);
296 			if (hammer_debug_btree) {
297 				kprintf("ELEMENT  %016llx:%d %c %016llx %02x "
298 					"key=%016llx lo=%02x %d\n",
299 					(long long)cursor->node->node_offset,
300 					cursor->index,
301 					(elm[0].leaf.base.btype ?
302 					 elm[0].leaf.base.btype : '?'),
303 					(long long)elm[0].leaf.base.obj_id,
304 					elm[0].leaf.base.rec_type,
305 					(long long)elm[0].leaf.base.key,
306 					elm[0].leaf.base.localization,
307 					r
308 				);
309 			}
310 			if (r < 0) {
311 				error = ENOENT;
312 				break;
313 			}
314 
315 			/*
316 			 * We support both end-inclusive and
317 			 * end-exclusive searches.
318 			 */
319 			if (r == 0 &&
320 			   (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
321 				error = ENOENT;
322 				break;
323 			}
324 
325 			/*
326 			 * If ITERATE_CHECK is set an unlocked cursor may
327 			 * have been moved to a parent and the iterate can
328 			 * happen upon elements that are not in the requested
329 			 * range.
330 			 */
331 			if (cursor->flags & HAMMER_CURSOR_ITERATE_CHECK) {
332 				s = hammer_btree_cmp(&cursor->key_beg,
333 						     &elm->base);
334 				if (s > 0) {
335 					kprintf("hammer_btree_iterate: "
336 						"DEBUG: Caught parent seek "
337 						"in leaf iteration\n");
338 					++cursor->index;
339 					continue;
340 				}
341 			}
342 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
343 
344 			/*
345 			 * Return the element
346 			 */
347 			switch(elm->leaf.base.btype) {
348 			case HAMMER_BTREE_TYPE_RECORD:
349 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
350 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
351 					++cursor->index;
352 					continue;
353 				}
354 				error = 0;
355 				break;
356 			default:
357 				error = EINVAL;
358 				break;
359 			}
360 			if (error)
361 				break;
362 		}
363 
364 		/*
365 		 * Return entry
366 		 */
367 		if (hammer_debug_btree) {
368 			int i = cursor->index;
369 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
370 			kprintf("ITERATE  %p:%d %016llx %02x "
371 				"key=%016llx lo=%02x\n",
372 				cursor->node, i,
373 				(long long)elm->internal.base.obj_id,
374 				elm->internal.base.rec_type,
375 				(long long)elm->internal.base.key,
376 				elm->internal.base.localization
377 			);
378 		}
379 		return(0);
380 	}
381 	return(error);
382 }
383 
384 /*
385  * We hit an internal element that we could skip as part of a mirroring
386  * scan.  Calculate the entire range being skipped.
387  *
388  * It is important to include any gaps between the parent's left_bound
389  * and the node's left_bound, and same goes for the right side.
390  */
391 static void
392 hammer_cursor_mirror_filter(hammer_cursor_t cursor)
393 {
394 	struct hammer_cmirror *cmirror;
395 	hammer_node_ondisk_t ondisk;
396 	hammer_btree_elm_t elm;
397 
398 	ondisk = cursor->node->ondisk;
399 	cmirror = cursor->cmirror;
400 
401 	/*
402 	 * Calculate the skipped range
403 	 */
404 	elm = &ondisk->elms[cursor->index];
405 	if (cursor->index == 0)
406 		cmirror->skip_beg = *cursor->left_bound;
407 	else
408 		cmirror->skip_beg = elm->internal.base;
409 	while (cursor->index < ondisk->count) {
410 		if (elm->internal.mirror_tid >= cmirror->mirror_tid)
411 			break;
412 		++cursor->index;
413 		++elm;
414 	}
415 	if (cursor->index == ondisk->count)
416 		cmirror->skip_end = *cursor->right_bound;
417 	else
418 		cmirror->skip_end = elm->internal.base;
419 
420 	/*
421 	 * clip the returned result.
422 	 */
423 	if (hammer_btree_cmp(&cmirror->skip_beg, &cursor->key_beg) < 0)
424 		cmirror->skip_beg = cursor->key_beg;
425 	if (hammer_btree_cmp(&cmirror->skip_end, &cursor->key_end) > 0)
426 		cmirror->skip_end = cursor->key_end;
427 }
428 
429 /*
430  * Iterate in the reverse direction.  This is used by the pruning code to
431  * avoid overlapping records.
432  */
433 int
434 hammer_btree_iterate_reverse(hammer_cursor_t cursor)
435 {
436 	hammer_node_ondisk_t node;
437 	hammer_btree_elm_t elm;
438 	hammer_mount_t hmp;
439 	int error = 0;
440 	int r;
441 	int s;
442 
443 	/* mirror filtering not supported for reverse iteration */
444 	KKASSERT ((cursor->flags & HAMMER_CURSOR_MIRROR_FILTERED) == 0);
445 
446 	/*
447 	 * Skip past the current record.  For various reasons the cursor
448 	 * may end up set to -1 or set to point at the end of the current
449 	 * node.  These cases must be addressed.
450 	 */
451 	node = cursor->node->ondisk;
452 	if (node == NULL)
453 		return(ENOENT);
454 	if (cursor->index != -1 &&
455 	    (cursor->flags & HAMMER_CURSOR_ATEDISK)) {
456 		--cursor->index;
457 	}
458 	if (cursor->index == cursor->node->ondisk->count)
459 		--cursor->index;
460 
461 	/*
462 	 * HAMMER can wind up being cpu-bound.
463 	 */
464 	hmp = cursor->trans->hmp;
465 	if (++hmp->check_yield > hammer_yield_check) {
466 		hmp->check_yield = 0;
467 		lwkt_user_yield();
468 	}
469 
470 	/*
471 	 * Loop until an element is found or we are done.
472 	 */
473 	for (;;) {
474 		++hammer_stats_btree_iterations;
475 		hammer_flusher_clean_loose_ios(hmp);
476 
477 		/*
478 		 * We iterate up the tree and then index over one element
479 		 * while we are at the last element in the current node.
480 		 */
481 		if (cursor->index == -1) {
482 			error = hammer_cursor_up(cursor);
483 			if (error) {
484 				cursor->index = 0; /* sanity */
485 				break;
486 			}
487 			/* reload stale pointer */
488 			node = cursor->node->ondisk;
489 			KKASSERT(cursor->index != node->count);
490 			--cursor->index;
491 			continue;
492 		}
493 
494 		/*
495 		 * Check internal or leaf element.  Determine if the record
496 		 * at the cursor has gone beyond the end of our range.
497 		 *
498 		 * We recurse down through internal nodes.
499 		 */
500 		KKASSERT(cursor->index != node->count);
501 		if (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
502 			elm = &node->elms[cursor->index];
503 
504 			r = hammer_btree_cmp(&cursor->key_end, &elm[0].base);
505 			s = hammer_btree_cmp(&cursor->key_beg, &elm[1].base);
506 			if (hammer_debug_btree) {
507 				kprintf("BRACKETL %016llx[%d] %016llx %02x "
508 					"key=%016llx lo=%02x %d (td=%p)\n",
509 					(long long)cursor->node->node_offset,
510 					cursor->index,
511 					(long long)elm[0].internal.base.obj_id,
512 					elm[0].internal.base.rec_type,
513 					(long long)elm[0].internal.base.key,
514 					elm[0].internal.base.localization,
515 					r,
516 					curthread
517 				);
518 				kprintf("BRACKETR %016llx[%d] %016llx %02x "
519 					"key=%016llx lo=%02x %d\n",
520 					(long long)cursor->node->node_offset,
521 					cursor->index + 1,
522 					(long long)elm[1].internal.base.obj_id,
523 					elm[1].internal.base.rec_type,
524 					(long long)elm[1].internal.base.key,
525 					elm[1].internal.base.localization,
526 					s
527 				);
528 			}
529 
530 			if (s >= 0) {
531 				error = ENOENT;
532 				break;
533 			}
534 
535 			/*
536 			 * It shouldn't be possible to be seeked past key_end,
537 			 * even if the cursor got moved to a parent.
538 			 */
539 			KKASSERT(r >= 0);
540 
541 			/*
542 			 * Better not be zero
543 			 */
544 			KKASSERT(elm->internal.subtree_offset != 0);
545 
546 			error = hammer_cursor_down(cursor);
547 			if (error)
548 				break;
549 			KKASSERT(cursor->index == 0);
550 			/* reload stale pointer */
551 			node = cursor->node->ondisk;
552 
553 			/* this can assign -1 if the leaf was empty */
554 			cursor->index = node->count - 1;
555 			continue;
556 		} else {
557 			elm = &node->elms[cursor->index];
558 			s = hammer_btree_cmp(&cursor->key_beg, &elm->base);
559 			if (hammer_debug_btree) {
560 				kprintf("ELEMENTR %016llx:%d %c %016llx %02x "
561 					"key=%016llx lo=%02x %d\n",
562 					(long long)cursor->node->node_offset,
563 					cursor->index,
564 					(elm[0].leaf.base.btype ?
565 					 elm[0].leaf.base.btype : '?'),
566 					(long long)elm[0].leaf.base.obj_id,
567 					elm[0].leaf.base.rec_type,
568 					(long long)elm[0].leaf.base.key,
569 					elm[0].leaf.base.localization,
570 					s
571 				);
572 			}
573 			if (s > 0) {
574 				error = ENOENT;
575 				break;
576 			}
577 
578 			/*
579 			 * It shouldn't be possible to be seeked past key_end,
580 			 * even if the cursor got moved to a parent.
581 			 */
582 			cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
583 
584 			/*
585 			 * Return the element
586 			 */
587 			switch(elm->leaf.base.btype) {
588 			case HAMMER_BTREE_TYPE_RECORD:
589 				if ((cursor->flags & HAMMER_CURSOR_ASOF) &&
590 				    hammer_btree_chkts(cursor->asof, &elm->base)) {
591 					--cursor->index;
592 					continue;
593 				}
594 				error = 0;
595 				break;
596 			default:
597 				error = EINVAL;
598 				break;
599 			}
600 			if (error)
601 				break;
602 		}
603 
604 		/*
605 		 * Return entry
606 		 */
607 		if (hammer_debug_btree) {
608 			int i = cursor->index;
609 			hammer_btree_elm_t elm = &cursor->node->ondisk->elms[i];
610 			kprintf("ITERATER %p:%d %016llx %02x "
611 				"key=%016llx lo=%02x\n",
612 				cursor->node, i,
613 				(long long)elm->internal.base.obj_id,
614 				elm->internal.base.rec_type,
615 				(long long)elm->internal.base.key,
616 				elm->internal.base.localization
617 			);
618 		}
619 		return(0);
620 	}
621 	return(error);
622 }
623 
624 /*
625  * Lookup cursor->key_beg.  0 is returned on success, ENOENT if the entry
626  * could not be found, EDEADLK if inserting and a retry is needed, and a
627  * fatal error otherwise.  When retrying, the caller must terminate the
628  * cursor and reinitialize it.  EDEADLK cannot be returned if not inserting.
629  *
630  * The cursor is suitably positioned for a deletion on success, and suitably
631  * positioned for an insertion on ENOENT if HAMMER_CURSOR_INSERT was
632  * specified.
633  *
634  * The cursor may begin anywhere, the search will traverse the tree in
635  * either direction to locate the requested element.
636  *
637  * Most of the logic implementing historical searches is handled here.  We
638  * do an initial lookup with create_tid set to the asof TID.  Due to the
639  * way records are laid out, a backwards iteration may be required if
640  * ENOENT is returned to locate the historical record.  Here's the
641  * problem:
642  *
643  * create_tid:    10      15       20
644  *		     LEAF1   LEAF2
645  * records:         (11)        (18)
646  *
647  * Lets say we want to do a lookup AS-OF timestamp 17.  We will traverse
648  * LEAF2 but the only record in LEAF2 has a create_tid of 18, which is
649  * not visible and thus causes ENOENT to be returned.  We really need
650  * to check record 11 in LEAF1.  If it also fails then the search fails
651  * (e.g. it might represent the range 11-16 and thus still not match our
652  * AS-OF timestamp of 17).  Note that LEAF1 could be empty, requiring
653  * further iterations.
654  *
655  * If this case occurs btree_search() will set HAMMER_CURSOR_CREATE_CHECK
656  * and the cursor->create_check TID if an iteration might be needed.
657  * In the above example create_check would be set to 14.
658  */
659 int
660 hammer_btree_lookup(hammer_cursor_t cursor)
661 {
662 	int error;
663 
664 	cursor->flags &= ~HAMMER_CURSOR_ITERATE_CHECK;
665 	KKASSERT ((cursor->flags & HAMMER_CURSOR_INSERT) == 0 ||
666 		  cursor->trans->sync_lock_refs > 0);
667 	++hammer_stats_btree_lookups;
668 	if (cursor->flags & HAMMER_CURSOR_ASOF) {
669 		KKASSERT((cursor->flags & HAMMER_CURSOR_INSERT) == 0);
670 		cursor->key_beg.create_tid = cursor->asof;
671 		for (;;) {
672 			cursor->flags &= ~HAMMER_CURSOR_CREATE_CHECK;
673 			error = btree_search(cursor, 0);
674 			if (error != ENOENT ||
675 			    (cursor->flags & HAMMER_CURSOR_CREATE_CHECK) == 0) {
676 				/*
677 				 * Stop if no error.
678 				 * Stop if error other then ENOENT.
679 				 * Stop if ENOENT and not special case.
680 				 */
681 				break;
682 			}
683 			if (hammer_debug_btree) {
684 				kprintf("CREATE_CHECK %016llx\n",
685 					(long long)cursor->create_check);
686 			}
687 			cursor->key_beg.create_tid = cursor->create_check;
688 			/* loop */
689 		}
690 	} else {
691 		error = btree_search(cursor, 0);
692 	}
693 	if (error == 0)
694 		error = hammer_btree_extract(cursor, cursor->flags);
695 	return(error);
696 }
697 
698 /*
699  * Execute the logic required to start an iteration.  The first record
700  * located within the specified range is returned and iteration control
701  * flags are adjusted for successive hammer_btree_iterate() calls.
702  *
703  * Set ATEDISK so a low-level caller can call btree_first/btree_iterate
704  * in a loop without worrying about it.  Higher-level merged searches will
705  * adjust the flag appropriately.
706  */
707 int
708 hammer_btree_first(hammer_cursor_t cursor)
709 {
710 	int error;
711 
712 	error = hammer_btree_lookup(cursor);
713 	if (error == ENOENT) {
714 		cursor->flags &= ~HAMMER_CURSOR_ATEDISK;
715 		error = hammer_btree_iterate(cursor);
716 	}
717 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
718 	return(error);
719 }
720 
721 /*
722  * Similarly but for an iteration in the reverse direction.
723  *
724  * Set ATEDISK when iterating backwards to skip the current entry,
725  * which after an ENOENT lookup will be pointing beyond our end point.
726  *
727  * Set ATEDISK so a low-level caller can call btree_last/btree_iterate_reverse
728  * in a loop without worrying about it.  Higher-level merged searches will
729  * adjust the flag appropriately.
730  */
731 int
732 hammer_btree_last(hammer_cursor_t cursor)
733 {
734 	struct hammer_base_elm save;
735 	int error;
736 
737 	save = cursor->key_beg;
738 	cursor->key_beg = cursor->key_end;
739 	error = hammer_btree_lookup(cursor);
740 	cursor->key_beg = save;
741 	if (error == ENOENT ||
742 	    (cursor->flags & HAMMER_CURSOR_END_INCLUSIVE) == 0) {
743 		cursor->flags |= HAMMER_CURSOR_ATEDISK;
744 		error = hammer_btree_iterate_reverse(cursor);
745 	}
746 	cursor->flags |= HAMMER_CURSOR_ATEDISK;
747 	return(error);
748 }
749 
750 /*
751  * Extract the record and/or data associated with the cursor's current
752  * position.  Any prior record or data stored in the cursor is replaced.
753  *
754  * NOTE: All extractions occur at the leaf of the B-Tree.
755  */
756 int
757 hammer_btree_extract(hammer_cursor_t cursor, int flags)
758 {
759 	hammer_node_ondisk_t node;
760 	hammer_btree_elm_t elm;
761 	hammer_off_t data_off;
762 	hammer_mount_t hmp;
763 	int32_t data_len;
764 	int error;
765 
766 	/*
767 	 * The case where the data reference resolves to the same buffer
768 	 * as the record reference must be handled.
769 	 */
770 	node = cursor->node->ondisk;
771 	elm = &node->elms[cursor->index];
772 	cursor->data = NULL;
773 	hmp = cursor->node->hmp;
774 
775 	/*
776 	 * There is nothing to extract for an internal element.
777 	 */
778 	if (node->type == HAMMER_BTREE_TYPE_INTERNAL)
779 		return(EINVAL);
780 
781 	/*
782 	 * Only record types have data.
783 	 */
784 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
785 	cursor->leaf = &elm->leaf;
786 
787 	if ((flags & HAMMER_CURSOR_GET_DATA) == 0)
788 		return(0);
789 	if (elm->leaf.base.btype != HAMMER_BTREE_TYPE_RECORD)
790 		return(0);
791 	data_off = elm->leaf.data_offset;
792 	data_len = elm->leaf.data_len;
793 	if (data_off == 0)
794 		return(0);
795 
796 	/*
797 	 * Load the data
798 	 */
799 	KKASSERT(data_len >= 0 && data_len <= HAMMER_XBUFSIZE);
800 	cursor->data = hammer_bread_ext(hmp, data_off, data_len,
801 					&error, &cursor->data_buffer);
802 
803 	/*
804 	 * Mark the data buffer as not being meta-data if it isn't
805 	 * meta-data (sometimes bulk data is accessed via a volume
806 	 * block device).
807 	 */
808 	if (error == 0) {
809 		switch(elm->leaf.base.rec_type) {
810 		case HAMMER_RECTYPE_DATA:
811 		case HAMMER_RECTYPE_DB:
812 			if ((data_off & HAMMER_ZONE_LARGE_DATA) == 0)
813 				break;
814 			if (hammer_double_buffer == 0 ||
815 			    (cursor->flags & HAMMER_CURSOR_NOSWAPCACHE)) {
816 				hammer_io_notmeta(cursor->data_buffer);
817 			}
818 			break;
819 		default:
820 			break;
821 		}
822 	}
823 
824 	/*
825 	 * Deal with CRC errors on the extracted data.
826 	 */
827 	if (error == 0 &&
828 	    hammer_crc_test_leaf(cursor->data, &elm->leaf) == 0) {
829 		kprintf("CRC DATA @ %016llx/%d FAILED\n",
830 			(long long)elm->leaf.data_offset, elm->leaf.data_len);
831 		if (hammer_debug_critical)
832 			Debugger("CRC FAILED: DATA");
833 		if (cursor->trans->flags & HAMMER_TRANSF_CRCDOM)
834 			error = EDOM;	/* less critical (mirroring) */
835 		else
836 			error = EIO;	/* critical */
837 	}
838 	return(error);
839 }
840 
841 
842 /*
843  * Insert a leaf element into the B-Tree at the current cursor position.
844  * The cursor is positioned such that the element at and beyond the cursor
845  * are shifted to make room for the new record.
846  *
847  * The caller must call hammer_btree_lookup() with the HAMMER_CURSOR_INSERT
848  * flag set and that call must return ENOENT before this function can be
849  * called. ENOSPC is returned if there is no room to insert a new record.
850  *
851  * The caller may depend on the cursor's exclusive lock after return to
852  * interlock frontend visibility (see HAMMER_RECF_CONVERT_DELETE).
853  */
854 int
855 hammer_btree_insert(hammer_cursor_t cursor, hammer_btree_leaf_elm_t elm,
856 		    int *doprop)
857 {
858 	hammer_node_ondisk_t node;
859 	int i;
860 	int error;
861 
862 	*doprop = 0;
863 	if ((error = hammer_cursor_upgrade_node(cursor)) != 0)
864 		return(error);
865 	++hammer_stats_btree_inserts;
866 
867 	/*
868 	 * Insert the element at the leaf node and update the count in the
869 	 * parent.  It is possible for parent to be NULL, indicating that
870 	 * the filesystem's ROOT B-Tree node is a leaf itself, which is
871 	 * possible.  The root inode can never be deleted so the leaf should
872 	 * never be empty.
873 	 *
874 	 * Remember that leaf nodes do not have boundaries.
875 	 */
876 	hammer_modify_node_all(cursor->trans, cursor->node);
877 	node = cursor->node->ondisk;
878 	i = cursor->index;
879 	KKASSERT(elm->base.btype != 0);
880 	KKASSERT(node->type == HAMMER_BTREE_TYPE_LEAF);
881 	KKASSERT(node->count < HAMMER_BTREE_LEAF_ELMS);
882 	if (i != node->count) {
883 		bcopy(&node->elms[i], &node->elms[i+1],
884 		      (node->count - i) * sizeof(*elm));
885 	}
886 	node->elms[i].leaf = *elm;
887 	++node->count;
888 	hammer_cursor_inserted_element(cursor->node, i);
889 
890 	/*
891 	 * Update the leaf node's aggregate mirror_tid for mirroring
892 	 * support.
893 	 */
894 	if (node->mirror_tid < elm->base.delete_tid) {
895 		node->mirror_tid = elm->base.delete_tid;
896 		*doprop = 1;
897 	}
898 	if (node->mirror_tid < elm->base.create_tid) {
899 		node->mirror_tid = elm->base.create_tid;
900 		*doprop = 1;
901 	}
902 	hammer_modify_node_done(cursor->node);
903 
904 	/*
905 	 * Debugging sanity checks.
906 	 */
907 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->base) <= 0);
908 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->base) > 0);
909 	if (i) {
910 		KKASSERT(hammer_btree_cmp(&node->elms[i-1].leaf.base, &elm->base) < 0);
911 	}
912 	if (i != node->count - 1)
913 		KKASSERT(hammer_btree_cmp(&node->elms[i+1].leaf.base, &elm->base) > 0);
914 
915 	return(0);
916 }
917 
918 /*
919  * Delete a record from the B-Tree at the current cursor position.
920  * The cursor is positioned such that the current element is the one
921  * to be deleted.
922  *
923  * On return the cursor will be positioned after the deleted element and
924  * MAY point to an internal node.  It will be suitable for the continuation
925  * of an iteration but not for an insertion or deletion.
926  *
927  * Deletions will attempt to partially rebalance the B-Tree in an upward
928  * direction, but will terminate rather then deadlock.  Empty internal nodes
929  * are never allowed by a deletion which deadlocks may end up giving us an
930  * empty leaf.  The pruner will clean up and rebalance the tree.
931  *
932  * This function can return EDEADLK, requiring the caller to retry the
933  * operation after clearing the deadlock.
934  */
935 int
936 hammer_btree_delete(hammer_cursor_t cursor)
937 {
938 	hammer_node_ondisk_t ondisk;
939 	hammer_node_t node;
940 	hammer_node_t parent __debugvar;
941 	int error;
942 	int i;
943 
944 	KKASSERT (cursor->trans->sync_lock_refs > 0);
945 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
946 		return(error);
947 	++hammer_stats_btree_deletes;
948 
949 	/*
950 	 * Delete the element from the leaf node.
951 	 *
952 	 * Remember that leaf nodes do not have boundaries.
953 	 */
954 	node = cursor->node;
955 	ondisk = node->ondisk;
956 	i = cursor->index;
957 
958 	KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_LEAF);
959 	KKASSERT(i >= 0 && i < ondisk->count);
960 	hammer_modify_node_all(cursor->trans, node);
961 	if (i + 1 != ondisk->count) {
962 		bcopy(&ondisk->elms[i+1], &ondisk->elms[i],
963 		      (ondisk->count - i - 1) * sizeof(ondisk->elms[0]));
964 	}
965 	--ondisk->count;
966 	hammer_modify_node_done(node);
967 	hammer_cursor_deleted_element(node, i);
968 
969 	/*
970 	 * Validate local parent
971 	 */
972 	if (ondisk->parent) {
973 		parent = cursor->parent;
974 
975 		KKASSERT(parent != NULL);
976 		KKASSERT(parent->node_offset == ondisk->parent);
977 	}
978 
979 	/*
980 	 * If the leaf becomes empty it must be detached from the parent,
981 	 * potentially recursing through to the filesystem root.
982 	 *
983 	 * This may reposition the cursor at one of the parent's of the
984 	 * current node.
985 	 *
986 	 * Ignore deadlock errors, that simply means that btree_remove
987 	 * was unable to recurse and had to leave us with an empty leaf.
988 	 */
989 	KKASSERT(cursor->index <= ondisk->count);
990 	if (ondisk->count == 0) {
991 		error = btree_remove(cursor);
992 		if (error == EDEADLK)
993 			error = 0;
994 	} else {
995 		error = 0;
996 	}
997 	KKASSERT(cursor->parent == NULL ||
998 		 cursor->parent_index < cursor->parent->ondisk->count);
999 	return(error);
1000 }
1001 
1002 /*
1003  * PRIMARY B-TREE SEARCH SUPPORT PROCEDURE
1004  *
1005  * Search the filesystem B-Tree for cursor->key_beg, return the matching node.
1006  *
1007  * The search can begin ANYWHERE in the B-Tree.  As a first step the search
1008  * iterates up the tree as necessary to properly position itself prior to
1009  * actually doing the sarch.
1010  *
1011  * INSERTIONS: The search will split full nodes and leaves on its way down
1012  * and guarentee that the leaf it ends up on is not full.  If we run out
1013  * of space the search continues to the leaf, but ENOSPC is returned.
1014  *
1015  * The search is only guarenteed to end up on a leaf if an error code of 0
1016  * is returned, or if inserting and an error code of ENOENT is returned.
1017  * Otherwise it can stop at an internal node.  On success a search returns
1018  * a leaf node.
1019  *
1020  * COMPLEXITY WARNING!  This is the core B-Tree search code for the entire
1021  * filesystem, and it is not simple code.  Please note the following facts:
1022  *
1023  * - Internal node recursions have a boundary on the left AND right.  The
1024  *   right boundary is non-inclusive.  The create_tid is a generic part
1025  *   of the key for internal nodes.
1026  *
1027  * - Filesystem lookups typically set HAMMER_CURSOR_ASOF, indicating a
1028  *   historical search.  ASOF and INSERT are mutually exclusive.  When
1029  *   doing an as-of lookup btree_search() checks for a right-edge boundary
1030  *   case.  If while recursing down the left-edge differs from the key
1031  *   by ONLY its create_tid, HAMMER_CURSOR_CREATE_CHECK is set along
1032  *   with cursor->create_check.  This is used by btree_lookup() to iterate.
1033  *   The iteration backwards because as-of searches can wind up going
1034  *   down the wrong branch of the B-Tree.
1035  */
1036 static
1037 int
1038 btree_search(hammer_cursor_t cursor, int flags)
1039 {
1040 	hammer_node_ondisk_t node;
1041 	hammer_btree_elm_t elm;
1042 	int error;
1043 	int enospc = 0;
1044 	int i;
1045 	int r;
1046 	int s;
1047 
1048 	flags |= cursor->flags;
1049 	++hammer_stats_btree_searches;
1050 
1051 	if (hammer_debug_btree) {
1052 		kprintf("SEARCH   %016llx[%d] %016llx %02x key=%016llx cre=%016llx lo=%02x (td=%p)\n",
1053 			(long long)cursor->node->node_offset,
1054 			cursor->index,
1055 			(long long)cursor->key_beg.obj_id,
1056 			cursor->key_beg.rec_type,
1057 			(long long)cursor->key_beg.key,
1058 			(long long)cursor->key_beg.create_tid,
1059 			cursor->key_beg.localization,
1060 			curthread
1061 		);
1062 		if (cursor->parent)
1063 		    kprintf("SEARCHP  %016llx[%d] (%016llx/%016llx %016llx/%016llx) (%p/%p %p/%p)\n",
1064 			(long long)cursor->parent->node_offset,
1065 			cursor->parent_index,
1066 			(long long)cursor->left_bound->obj_id,
1067 			(long long)cursor->parent->ondisk->elms[cursor->parent_index].internal.base.obj_id,
1068 			(long long)cursor->right_bound->obj_id,
1069 			(long long)cursor->parent->ondisk->elms[cursor->parent_index+1].internal.base.obj_id,
1070 			cursor->left_bound,
1071 			&cursor->parent->ondisk->elms[cursor->parent_index],
1072 			cursor->right_bound,
1073 			&cursor->parent->ondisk->elms[cursor->parent_index+1]
1074 		    );
1075 	}
1076 
1077 	/*
1078 	 * Move our cursor up the tree until we find a node whos range covers
1079 	 * the key we are trying to locate.
1080 	 *
1081 	 * The left bound is inclusive, the right bound is non-inclusive.
1082 	 * It is ok to cursor up too far.
1083 	 */
1084 	for (;;) {
1085 		r = hammer_btree_cmp(&cursor->key_beg, cursor->left_bound);
1086 		s = hammer_btree_cmp(&cursor->key_beg, cursor->right_bound);
1087 		if (r >= 0 && s < 0)
1088 			break;
1089 		KKASSERT(cursor->parent);
1090 		++hammer_stats_btree_iterations;
1091 		error = hammer_cursor_up(cursor);
1092 		if (error)
1093 			goto done;
1094 	}
1095 
1096 	/*
1097 	 * The delete-checks below are based on node, not parent.  Set the
1098 	 * initial delete-check based on the parent.
1099 	 */
1100 	if (r == 1) {
1101 		KKASSERT(cursor->left_bound->create_tid != 1);
1102 		cursor->create_check = cursor->left_bound->create_tid - 1;
1103 		cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1104 	}
1105 
1106 	/*
1107 	 * We better have ended up with a node somewhere.
1108 	 */
1109 	KKASSERT(cursor->node != NULL);
1110 
1111 	/*
1112 	 * If we are inserting we can't start at a full node if the parent
1113 	 * is also full (because there is no way to split the node),
1114 	 * continue running up the tree until the requirement is satisfied
1115 	 * or we hit the root of the filesystem.
1116 	 *
1117 	 * (If inserting we aren't doing an as-of search so we don't have
1118 	 *  to worry about create_check).
1119 	 */
1120 	while (flags & HAMMER_CURSOR_INSERT) {
1121 		if (btree_node_is_full(cursor->node->ondisk) == 0)
1122 			break;
1123 		if (cursor->node->ondisk->parent == 0 ||
1124 		    cursor->parent->ondisk->count != HAMMER_BTREE_INT_ELMS) {
1125 			break;
1126 		}
1127 		++hammer_stats_btree_iterations;
1128 		error = hammer_cursor_up(cursor);
1129 		/* node may have become stale */
1130 		if (error)
1131 			goto done;
1132 	}
1133 
1134 	/*
1135 	 * Push down through internal nodes to locate the requested key.
1136 	 */
1137 	node = cursor->node->ondisk;
1138 	while (node->type == HAMMER_BTREE_TYPE_INTERNAL) {
1139 		/*
1140 		 * Scan the node to find the subtree index to push down into.
1141 		 * We go one-past, then back-up.
1142 		 *
1143 		 * We must proactively remove deleted elements which may
1144 		 * have been left over from a deadlocked btree_remove().
1145 		 *
1146 		 * The left and right boundaries are included in the loop
1147 		 * in order to detect edge cases.
1148 		 *
1149 		 * If the separator only differs by create_tid (r == 1)
1150 		 * and we are doing an as-of search, we may end up going
1151 		 * down a branch to the left of the one containing the
1152 		 * desired key.  This requires numerous special cases.
1153 		 */
1154 		++hammer_stats_btree_iterations;
1155 		if (hammer_debug_btree) {
1156 			kprintf("SEARCH-I %016llx count=%d\n",
1157 				(long long)cursor->node->node_offset,
1158 				node->count);
1159 		}
1160 
1161 		/*
1162 		 * Try to shortcut the search before dropping into the
1163 		 * linear loop.  Locate the first node where r <= 1.
1164 		 */
1165 		i = hammer_btree_search_node(&cursor->key_beg, node);
1166 		while (i <= node->count) {
1167 			++hammer_stats_btree_elements;
1168 			elm = &node->elms[i];
1169 			r = hammer_btree_cmp(&cursor->key_beg, &elm->base);
1170 			if (hammer_debug_btree > 2) {
1171 				kprintf(" IELM %p %d r=%d\n",
1172 					&node->elms[i], i, r);
1173 			}
1174 			if (r < 0)
1175 				break;
1176 			if (r == 1) {
1177 				KKASSERT(elm->base.create_tid != 1);
1178 				cursor->create_check = elm->base.create_tid - 1;
1179 				cursor->flags |= HAMMER_CURSOR_CREATE_CHECK;
1180 			}
1181 			++i;
1182 		}
1183 		if (hammer_debug_btree) {
1184 			kprintf("SEARCH-I preI=%d/%d r=%d\n",
1185 				i, node->count, r);
1186 		}
1187 
1188 		/*
1189 		 * These cases occur when the parent's idea of the boundary
1190 		 * is wider then the child's idea of the boundary, and
1191 		 * require special handling.  If not inserting we can
1192 		 * terminate the search early for these cases but the
1193 		 * child's boundaries cannot be unconditionally modified.
1194 		 */
1195 		if (i == 0) {
1196 			/*
1197 			 * If i == 0 the search terminated to the LEFT of the
1198 			 * left_boundary but to the RIGHT of the parent's left
1199 			 * boundary.
1200 			 */
1201 			u_int8_t save;
1202 
1203 			elm = &node->elms[0];
1204 
1205 			/*
1206 			 * If we aren't inserting we can stop here.
1207 			 */
1208 			if ((flags & (HAMMER_CURSOR_INSERT |
1209 				      HAMMER_CURSOR_PRUNING)) == 0) {
1210 				cursor->index = 0;
1211 				return(ENOENT);
1212 			}
1213 
1214 			/*
1215 			 * Correct a left-hand boundary mismatch.
1216 			 *
1217 			 * We can only do this if we can upgrade the lock,
1218 			 * and synchronized as a background cursor (i.e.
1219 			 * inserting or pruning).
1220 			 *
1221 			 * WARNING: We can only do this if inserting, i.e.
1222 			 * we are running on the backend.
1223 			 */
1224 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1225 				return(error);
1226 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1227 			hammer_modify_node_field(cursor->trans, cursor->node,
1228 						 elms[0]);
1229 			save = node->elms[0].base.btype;
1230 			node->elms[0].base = *cursor->left_bound;
1231 			node->elms[0].base.btype = save;
1232 			hammer_modify_node_done(cursor->node);
1233 		} else if (i == node->count + 1) {
1234 			/*
1235 			 * If i == node->count + 1 the search terminated to
1236 			 * the RIGHT of the right boundary but to the LEFT
1237 			 * of the parent's right boundary.  If we aren't
1238 			 * inserting we can stop here.
1239 			 *
1240 			 * Note that the last element in this case is
1241 			 * elms[i-2] prior to adjustments to 'i'.
1242 			 */
1243 			--i;
1244 			if ((flags & (HAMMER_CURSOR_INSERT |
1245 				      HAMMER_CURSOR_PRUNING)) == 0) {
1246 				cursor->index = i;
1247 				return (ENOENT);
1248 			}
1249 
1250 			/*
1251 			 * Correct a right-hand boundary mismatch.
1252 			 * (actual push-down record is i-2 prior to
1253 			 * adjustments to i).
1254 			 *
1255 			 * We can only do this if we can upgrade the lock,
1256 			 * and synchronized as a background cursor (i.e.
1257 			 * inserting or pruning).
1258 			 *
1259 			 * WARNING: We can only do this if inserting, i.e.
1260 			 * we are running on the backend.
1261 			 */
1262 			if ((error = hammer_cursor_upgrade(cursor)) != 0)
1263 				return(error);
1264 			elm = &node->elms[i];
1265 			KKASSERT(cursor->flags & HAMMER_CURSOR_BACKEND);
1266 			hammer_modify_node(cursor->trans, cursor->node,
1267 					   &elm->base, sizeof(elm->base));
1268 			elm->base = *cursor->right_bound;
1269 			hammer_modify_node_done(cursor->node);
1270 			--i;
1271 		} else {
1272 			/*
1273 			 * The push-down index is now i - 1.  If we had
1274 			 * terminated on the right boundary this will point
1275 			 * us at the last element.
1276 			 */
1277 			--i;
1278 		}
1279 		cursor->index = i;
1280 		elm = &node->elms[i];
1281 
1282 		if (hammer_debug_btree) {
1283 			kprintf("RESULT-I %016llx[%d] %016llx %02x "
1284 				"key=%016llx cre=%016llx lo=%02x\n",
1285 				(long long)cursor->node->node_offset,
1286 				i,
1287 				(long long)elm->internal.base.obj_id,
1288 				elm->internal.base.rec_type,
1289 				(long long)elm->internal.base.key,
1290 				(long long)elm->internal.base.create_tid,
1291 				elm->internal.base.localization
1292 			);
1293 		}
1294 
1295 		/*
1296 		 * We better have a valid subtree offset.
1297 		 */
1298 		KKASSERT(elm->internal.subtree_offset != 0);
1299 
1300 		/*
1301 		 * Handle insertion and deletion requirements.
1302 		 *
1303 		 * If inserting split full nodes.  The split code will
1304 		 * adjust cursor->node and cursor->index if the current
1305 		 * index winds up in the new node.
1306 		 *
1307 		 * If inserting and a left or right edge case was detected,
1308 		 * we cannot correct the left or right boundary and must
1309 		 * prepend and append an empty leaf node in order to make
1310 		 * the boundary correction.
1311 		 *
1312 		 * If we run out of space we set enospc but continue on
1313 		 * to a leaf.
1314 		 */
1315 		if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0) {
1316 			if (btree_node_is_full(node)) {
1317 				error = btree_split_internal(cursor);
1318 				if (error) {
1319 					if (error != ENOSPC)
1320 						goto done;
1321 					enospc = 1;
1322 				}
1323 				/*
1324 				 * reload stale pointers
1325 				 */
1326 				i = cursor->index;
1327 				node = cursor->node->ondisk;
1328 			}
1329 		}
1330 
1331 		/*
1332 		 * Push down (push into new node, existing node becomes
1333 		 * the parent) and continue the search.
1334 		 */
1335 		error = hammer_cursor_down(cursor);
1336 		/* node may have become stale */
1337 		if (error)
1338 			goto done;
1339 		node = cursor->node->ondisk;
1340 	}
1341 
1342 	/*
1343 	 * We are at a leaf, do a linear search of the key array.
1344 	 *
1345 	 * On success the index is set to the matching element and 0
1346 	 * is returned.
1347 	 *
1348 	 * On failure the index is set to the insertion point and ENOENT
1349 	 * is returned.
1350 	 *
1351 	 * Boundaries are not stored in leaf nodes, so the index can wind
1352 	 * up to the left of element 0 (index == 0) or past the end of
1353 	 * the array (index == node->count).  It is also possible that the
1354 	 * leaf might be empty.
1355 	 */
1356 	++hammer_stats_btree_iterations;
1357 	KKASSERT (node->type == HAMMER_BTREE_TYPE_LEAF);
1358 	KKASSERT(node->count <= HAMMER_BTREE_LEAF_ELMS);
1359 	if (hammer_debug_btree) {
1360 		kprintf("SEARCH-L %016llx count=%d\n",
1361 			(long long)cursor->node->node_offset,
1362 			node->count);
1363 	}
1364 
1365 	/*
1366 	 * Try to shortcut the search before dropping into the
1367 	 * linear loop.  Locate the first node where r <= 1.
1368 	 */
1369 	i = hammer_btree_search_node(&cursor->key_beg, node);
1370 	while (i < node->count) {
1371 		++hammer_stats_btree_elements;
1372 		elm = &node->elms[i];
1373 
1374 		r = hammer_btree_cmp(&cursor->key_beg, &elm->leaf.base);
1375 
1376 		if (hammer_debug_btree > 1)
1377 			kprintf("  ELM %p %d r=%d\n", &node->elms[i], i, r);
1378 
1379 		/*
1380 		 * We are at a record element.  Stop if we've flipped past
1381 		 * key_beg, not counting the create_tid test.  Allow the
1382 		 * r == 1 case (key_beg > element but differs only by its
1383 		 * create_tid) to fall through to the AS-OF check.
1384 		 */
1385 		KKASSERT (elm->leaf.base.btype == HAMMER_BTREE_TYPE_RECORD);
1386 
1387 		if (r < 0)
1388 			goto failed;
1389 		if (r > 1) {
1390 			++i;
1391 			continue;
1392 		}
1393 
1394 		/*
1395 		 * Check our as-of timestamp against the element.
1396 		 */
1397 		if (flags & HAMMER_CURSOR_ASOF) {
1398 			if (hammer_btree_chkts(cursor->asof,
1399 					       &node->elms[i].base) != 0) {
1400 				++i;
1401 				continue;
1402 			}
1403 			/* success */
1404 		} else {
1405 			if (r > 0) {	/* can only be +1 */
1406 				++i;
1407 				continue;
1408 			}
1409 			/* success */
1410 		}
1411 		cursor->index = i;
1412 		error = 0;
1413 		if (hammer_debug_btree) {
1414 			kprintf("RESULT-L %016llx[%d] (SUCCESS)\n",
1415 				(long long)cursor->node->node_offset, i);
1416 		}
1417 		goto done;
1418 	}
1419 
1420 	/*
1421 	 * The search of the leaf node failed.  i is the insertion point.
1422 	 */
1423 failed:
1424 	if (hammer_debug_btree) {
1425 		kprintf("RESULT-L %016llx[%d] (FAILED)\n",
1426 			(long long)cursor->node->node_offset, i);
1427 	}
1428 
1429 	/*
1430 	 * No exact match was found, i is now at the insertion point.
1431 	 *
1432 	 * If inserting split a full leaf before returning.  This
1433 	 * may have the side effect of adjusting cursor->node and
1434 	 * cursor->index.
1435 	 */
1436 	cursor->index = i;
1437 	if ((flags & HAMMER_CURSOR_INSERT) && enospc == 0 &&
1438 	     btree_node_is_full(node)) {
1439 		error = btree_split_leaf(cursor);
1440 		if (error) {
1441 			if (error != ENOSPC)
1442 				goto done;
1443 			enospc = 1;
1444 		}
1445 		/*
1446 		 * reload stale pointers
1447 		 */
1448 		/* NOT USED
1449 		i = cursor->index;
1450 		node = &cursor->node->internal;
1451 		*/
1452 	}
1453 
1454 	/*
1455 	 * We reached a leaf but did not find the key we were looking for.
1456 	 * If this is an insert we will be properly positioned for an insert
1457 	 * (ENOENT) or unable to insert (ENOSPC).
1458 	 */
1459 	error = enospc ? ENOSPC : ENOENT;
1460 done:
1461 	return(error);
1462 }
1463 
1464 /*
1465  * Heuristical search for the first element whos comparison is <= 1.  May
1466  * return an index whos compare result is > 1 but may only return an index
1467  * whos compare result is <= 1 if it is the first element with that result.
1468  */
1469 int
1470 hammer_btree_search_node(hammer_base_elm_t elm, hammer_node_ondisk_t node)
1471 {
1472 	int b;
1473 	int s;
1474 	int i;
1475 	int r;
1476 
1477 	/*
1478 	 * Don't bother if the node does not have very many elements
1479 	 */
1480 	b = 0;
1481 	s = node->count;
1482 	while (s - b > 4) {
1483 		i = b + (s - b) / 2;
1484 		++hammer_stats_btree_elements;
1485 		r = hammer_btree_cmp(elm, &node->elms[i].leaf.base);
1486 		if (r <= 1) {
1487 			s = i;
1488 		} else {
1489 			b = i;
1490 		}
1491 	}
1492 	return(b);
1493 }
1494 
1495 
1496 /************************************************************************
1497  *			   SPLITTING AND MERGING 			*
1498  ************************************************************************
1499  *
1500  * These routines do all the dirty work required to split and merge nodes.
1501  */
1502 
1503 /*
1504  * Split an internal node into two nodes and move the separator at the split
1505  * point to the parent.
1506  *
1507  * (cursor->node, cursor->index) indicates the element the caller intends
1508  * to push into.  We will adjust node and index if that element winds
1509  * up in the split node.
1510  *
1511  * If we are at the root of the filesystem a new root must be created with
1512  * two elements, one pointing to the original root and one pointing to the
1513  * newly allocated split node.
1514  */
1515 static
1516 int
1517 btree_split_internal(hammer_cursor_t cursor)
1518 {
1519 	hammer_node_ondisk_t ondisk;
1520 	hammer_node_t node;
1521 	hammer_node_t parent;
1522 	hammer_node_t new_node;
1523 	hammer_btree_elm_t elm;
1524 	hammer_btree_elm_t parent_elm;
1525 	struct hammer_node_lock lockroot;
1526 	hammer_mount_t hmp = cursor->trans->hmp;
1527 	int parent_index;
1528 	int made_root;
1529 	int split;
1530 	int error;
1531 	int i;
1532 	const int esize = sizeof(*elm);
1533 
1534 	hammer_node_lock_init(&lockroot, cursor->node);
1535 	error = hammer_btree_lock_children(cursor, 1, &lockroot, NULL);
1536 	if (error)
1537 		goto done;
1538 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1539 		goto done;
1540 	++hammer_stats_btree_splits;
1541 
1542 	/*
1543 	 * Calculate the split point.  If the insertion point is at the
1544 	 * end of the leaf we adjust the split point significantly to the
1545 	 * right to try to optimize node fill and flag it.  If we hit
1546 	 * that same leaf again our heuristic failed and we don't try
1547 	 * to optimize node fill (it could lead to a degenerate case).
1548 	 */
1549 	node = cursor->node;
1550 	ondisk = node->ondisk;
1551 	KKASSERT(ondisk->count > 4);
1552 	if (cursor->index == ondisk->count &&
1553 	    (node->flags & HAMMER_NODE_NONLINEAR) == 0) {
1554 		split = (ondisk->count + 1) * 3 / 4;
1555 		node->flags |= HAMMER_NODE_NONLINEAR;
1556 	} else {
1557 		/*
1558 		 * We are splitting but elms[split] will be promoted to
1559 		 * the parent, leaving the right hand node with one less
1560 		 * element.  If the insertion point will be on the
1561 		 * left-hand side adjust the split point to give the
1562 		 * right hand side one additional node.
1563 		 */
1564 		split = (ondisk->count + 1) / 2;
1565 		if (cursor->index <= split)
1566 			--split;
1567 	}
1568 
1569 	/*
1570 	 * If we are at the root of the filesystem, create a new root node
1571 	 * with 1 element and split normally.  Avoid making major
1572 	 * modifications until we know the whole operation will work.
1573 	 */
1574 	if (ondisk->parent == 0) {
1575 		parent = hammer_alloc_btree(cursor->trans, 0, &error);
1576 		if (parent == NULL)
1577 			goto done;
1578 		hammer_lock_ex(&parent->lock);
1579 		hammer_modify_node_noundo(cursor->trans, parent);
1580 		ondisk = parent->ondisk;
1581 		ondisk->count = 1;
1582 		ondisk->parent = 0;
1583 		ondisk->mirror_tid = node->ondisk->mirror_tid;
1584 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1585 		ondisk->elms[0].base = hmp->root_btree_beg;
1586 		ondisk->elms[0].base.btype = node->ondisk->type;
1587 		ondisk->elms[0].internal.subtree_offset = node->node_offset;
1588 		ondisk->elms[0].internal.mirror_tid = ondisk->mirror_tid;
1589 		ondisk->elms[1].base = hmp->root_btree_end;
1590 		hammer_modify_node_done(parent);
1591 		/* ondisk->elms[1].base.btype - not used */
1592 		made_root = 1;
1593 		parent_index = 0;	/* index of current node in parent */
1594 	} else {
1595 		made_root = 0;
1596 		parent = cursor->parent;
1597 		parent_index = cursor->parent_index;
1598 	}
1599 
1600 	/*
1601 	 * Split node into new_node at the split point.
1602 	 *
1603 	 *  B O O O P N N B	<-- P = node->elms[split] (index 4)
1604 	 *   0 1 2 3 4 5 6	<-- subtree indices
1605 	 *
1606 	 *       x x P x x
1607 	 *        s S S s
1608 	 *         /   \
1609 	 *  B O O O B    B N N B	<--- inner boundary points are 'P'
1610 	 *   0 1 2 3      4 5 6
1611 	 */
1612 	new_node = hammer_alloc_btree(cursor->trans, 0, &error);
1613 	if (new_node == NULL) {
1614 		if (made_root) {
1615 			hammer_unlock(&parent->lock);
1616 			hammer_delete_node(cursor->trans, parent);
1617 			hammer_rel_node(parent);
1618 		}
1619 		goto done;
1620 	}
1621 	hammer_lock_ex(&new_node->lock);
1622 
1623 	/*
1624 	 * Create the new node.  P becomes the left-hand boundary in the
1625 	 * new node.  Copy the right-hand boundary as well.
1626 	 *
1627 	 * elm is the new separator.
1628 	 */
1629 	hammer_modify_node_noundo(cursor->trans, new_node);
1630 	hammer_modify_node_all(cursor->trans, node);
1631 	ondisk = node->ondisk;
1632 	elm = &ondisk->elms[split];
1633 	bcopy(elm, &new_node->ondisk->elms[0],
1634 	      (ondisk->count - split + 1) * esize);
1635 	new_node->ondisk->count = ondisk->count - split;
1636 	new_node->ondisk->parent = parent->node_offset;
1637 	new_node->ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1638 	new_node->ondisk->mirror_tid = ondisk->mirror_tid;
1639 	KKASSERT(ondisk->type == new_node->ondisk->type);
1640 	hammer_cursor_split_node(node, new_node, split);
1641 
1642 	/*
1643 	 * Cleanup the original node.  Elm (P) becomes the new boundary,
1644 	 * its subtree_offset was moved to the new node.  If we had created
1645 	 * a new root its parent pointer may have changed.
1646 	 */
1647 	elm->internal.subtree_offset = 0;
1648 	ondisk->count = split;
1649 
1650 	/*
1651 	 * Insert the separator into the parent, fixup the parent's
1652 	 * reference to the original node, and reference the new node.
1653 	 * The separator is P.
1654 	 *
1655 	 * Remember that base.count does not include the right-hand boundary.
1656 	 */
1657 	hammer_modify_node_all(cursor->trans, parent);
1658 	ondisk = parent->ondisk;
1659 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1660 	parent_elm = &ondisk->elms[parent_index+1];
1661 	bcopy(parent_elm, parent_elm + 1,
1662 	      (ondisk->count - parent_index) * esize);
1663 	parent_elm->internal.base = elm->base;	/* separator P */
1664 	parent_elm->internal.base.btype = new_node->ondisk->type;
1665 	parent_elm->internal.subtree_offset = new_node->node_offset;
1666 	parent_elm->internal.mirror_tid = new_node->ondisk->mirror_tid;
1667 	++ondisk->count;
1668 	hammer_modify_node_done(parent);
1669 	hammer_cursor_inserted_element(parent, parent_index + 1);
1670 
1671 	/*
1672 	 * The children of new_node need their parent pointer set to new_node.
1673 	 * The children have already been locked by
1674 	 * hammer_btree_lock_children().
1675 	 */
1676 	for (i = 0; i < new_node->ondisk->count; ++i) {
1677 		elm = &new_node->ondisk->elms[i];
1678 		error = btree_set_parent(cursor->trans, new_node, elm);
1679 		if (error) {
1680 			panic("btree_split_internal: btree-fixup problem");
1681 		}
1682 	}
1683 	hammer_modify_node_done(new_node);
1684 
1685 	/*
1686 	 * The filesystem's root B-Tree pointer may have to be updated.
1687 	 */
1688 	if (made_root) {
1689 		hammer_volume_t volume;
1690 
1691 		volume = hammer_get_root_volume(hmp, &error);
1692 		KKASSERT(error == 0);
1693 
1694 		hammer_modify_volume_field(cursor->trans, volume,
1695 					   vol0_btree_root);
1696 		volume->ondisk->vol0_btree_root = parent->node_offset;
1697 		hammer_modify_volume_done(volume);
1698 		node->ondisk->parent = parent->node_offset;
1699 		if (cursor->parent) {
1700 			hammer_unlock(&cursor->parent->lock);
1701 			hammer_rel_node(cursor->parent);
1702 		}
1703 		cursor->parent = parent;	/* lock'd and ref'd */
1704 		hammer_rel_volume(volume, 0);
1705 	}
1706 	hammer_modify_node_done(node);
1707 
1708 	/*
1709 	 * Ok, now adjust the cursor depending on which element the original
1710 	 * index was pointing at.  If we are >= the split point the push node
1711 	 * is now in the new node.
1712 	 *
1713 	 * NOTE: If we are at the split point itself we cannot stay with the
1714 	 * original node because the push index will point at the right-hand
1715 	 * boundary, which is illegal.
1716 	 *
1717 	 * NOTE: The cursor's parent or parent_index must be adjusted for
1718 	 * the case where a new parent (new root) was created, and the case
1719 	 * where the cursor is now pointing at the split node.
1720 	 */
1721 	if (cursor->index >= split) {
1722 		cursor->parent_index = parent_index + 1;
1723 		cursor->index -= split;
1724 		hammer_unlock(&cursor->node->lock);
1725 		hammer_rel_node(cursor->node);
1726 		cursor->node = new_node;	/* locked and ref'd */
1727 	} else {
1728 		cursor->parent_index = parent_index;
1729 		hammer_unlock(&new_node->lock);
1730 		hammer_rel_node(new_node);
1731 	}
1732 
1733 	/*
1734 	 * Fixup left and right bounds
1735 	 */
1736 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1737 	cursor->left_bound = &parent_elm[0].internal.base;
1738 	cursor->right_bound = &parent_elm[1].internal.base;
1739 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1740 		 &cursor->node->ondisk->elms[0].internal.base) <= 0);
1741 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1742 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count].internal.base) >= 0);
1743 
1744 done:
1745 	hammer_btree_unlock_children(cursor->trans->hmp, &lockroot, NULL);
1746 	hammer_cursor_downgrade(cursor);
1747 	return (error);
1748 }
1749 
1750 /*
1751  * Same as the above, but splits a full leaf node.
1752  */
1753 static
1754 int
1755 btree_split_leaf(hammer_cursor_t cursor)
1756 {
1757 	hammer_node_ondisk_t ondisk;
1758 	hammer_node_t parent;
1759 	hammer_node_t leaf;
1760 	hammer_mount_t hmp;
1761 	hammer_node_t new_leaf;
1762 	hammer_btree_elm_t elm;
1763 	hammer_btree_elm_t parent_elm;
1764 	hammer_base_elm_t mid_boundary;
1765 	int parent_index;
1766 	int made_root;
1767 	int split;
1768 	int error;
1769 	const size_t esize = sizeof(*elm);
1770 
1771 	if ((error = hammer_cursor_upgrade(cursor)) != 0)
1772 		return(error);
1773 	++hammer_stats_btree_splits;
1774 
1775 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1776 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1777 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1778 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1779 
1780 	/*
1781 	 * Calculate the split point.  If the insertion point is at the
1782 	 * end of the leaf we adjust the split point significantly to the
1783 	 * right to try to optimize node fill and flag it.  If we hit
1784 	 * that same leaf again our heuristic failed and we don't try
1785 	 * to optimize node fill (it could lead to a degenerate case).
1786 	 */
1787 	leaf = cursor->node;
1788 	ondisk = leaf->ondisk;
1789 	KKASSERT(ondisk->count > 4);
1790 	if (cursor->index == ondisk->count &&
1791 	    (leaf->flags & HAMMER_NODE_NONLINEAR) == 0) {
1792 		split = (ondisk->count + 1) * 3 / 4;
1793 		leaf->flags |= HAMMER_NODE_NONLINEAR;
1794 	} else {
1795 		split = (ondisk->count + 1) / 2;
1796 	}
1797 
1798 #if 0
1799 	/*
1800 	 * If the insertion point is at the split point shift the
1801 	 * split point left so we don't have to worry about
1802 	 */
1803 	if (cursor->index == split)
1804 		--split;
1805 #endif
1806 	KKASSERT(split > 0 && split < ondisk->count);
1807 
1808 	error = 0;
1809 	hmp = leaf->hmp;
1810 
1811 	elm = &ondisk->elms[split];
1812 
1813 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm[-1].leaf.base) <= 0);
1814 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &elm->leaf.base) <= 0);
1815 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm->leaf.base) > 0);
1816 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &elm[1].leaf.base) > 0);
1817 
1818 	/*
1819 	 * If we are at the root of the tree, create a new root node with
1820 	 * 1 element and split normally.  Avoid making major modifications
1821 	 * until we know the whole operation will work.
1822 	 */
1823 	if (ondisk->parent == 0) {
1824 		parent = hammer_alloc_btree(cursor->trans, 0, &error);
1825 		if (parent == NULL)
1826 			goto done;
1827 		hammer_lock_ex(&parent->lock);
1828 		hammer_modify_node_noundo(cursor->trans, parent);
1829 		ondisk = parent->ondisk;
1830 		ondisk->count = 1;
1831 		ondisk->parent = 0;
1832 		ondisk->mirror_tid = leaf->ondisk->mirror_tid;
1833 		ondisk->type = HAMMER_BTREE_TYPE_INTERNAL;
1834 		ondisk->elms[0].base = hmp->root_btree_beg;
1835 		ondisk->elms[0].base.btype = leaf->ondisk->type;
1836 		ondisk->elms[0].internal.subtree_offset = leaf->node_offset;
1837 		ondisk->elms[0].internal.mirror_tid = ondisk->mirror_tid;
1838 		ondisk->elms[1].base = hmp->root_btree_end;
1839 		/* ondisk->elms[1].base.btype = not used */
1840 		hammer_modify_node_done(parent);
1841 		made_root = 1;
1842 		parent_index = 0;	/* insertion point in parent */
1843 	} else {
1844 		made_root = 0;
1845 		parent = cursor->parent;
1846 		parent_index = cursor->parent_index;
1847 	}
1848 
1849 	/*
1850 	 * Split leaf into new_leaf at the split point.  Select a separator
1851 	 * value in-between the two leafs but with a bent towards the right
1852 	 * leaf since comparisons use an 'elm >= separator' inequality.
1853 	 *
1854 	 *  L L L L L L L L
1855 	 *
1856 	 *       x x P x x
1857 	 *        s S S s
1858 	 *         /   \
1859 	 *  L L L L     L L L L
1860 	 */
1861 	new_leaf = hammer_alloc_btree(cursor->trans, 0, &error);
1862 	if (new_leaf == NULL) {
1863 		if (made_root) {
1864 			hammer_unlock(&parent->lock);
1865 			hammer_delete_node(cursor->trans, parent);
1866 			hammer_rel_node(parent);
1867 		}
1868 		goto done;
1869 	}
1870 	hammer_lock_ex(&new_leaf->lock);
1871 
1872 	/*
1873 	 * Create the new node and copy the leaf elements from the split
1874 	 * point on to the new node.
1875 	 */
1876 	hammer_modify_node_all(cursor->trans, leaf);
1877 	hammer_modify_node_noundo(cursor->trans, new_leaf);
1878 	ondisk = leaf->ondisk;
1879 	elm = &ondisk->elms[split];
1880 	bcopy(elm, &new_leaf->ondisk->elms[0], (ondisk->count - split) * esize);
1881 	new_leaf->ondisk->count = ondisk->count - split;
1882 	new_leaf->ondisk->parent = parent->node_offset;
1883 	new_leaf->ondisk->type = HAMMER_BTREE_TYPE_LEAF;
1884 	new_leaf->ondisk->mirror_tid = ondisk->mirror_tid;
1885 	KKASSERT(ondisk->type == new_leaf->ondisk->type);
1886 	hammer_modify_node_done(new_leaf);
1887 	hammer_cursor_split_node(leaf, new_leaf, split);
1888 
1889 	/*
1890 	 * Cleanup the original node.  Because this is a leaf node and
1891 	 * leaf nodes do not have a right-hand boundary, there
1892 	 * aren't any special edge cases to clean up.  We just fixup the
1893 	 * count.
1894 	 */
1895 	ondisk->count = split;
1896 
1897 	/*
1898 	 * Insert the separator into the parent, fixup the parent's
1899 	 * reference to the original node, and reference the new node.
1900 	 * The separator is P.
1901 	 *
1902 	 * Remember that base.count does not include the right-hand boundary.
1903 	 * We are copying parent_index+1 to parent_index+2, not +0 to +1.
1904 	 */
1905 	hammer_modify_node_all(cursor->trans, parent);
1906 	ondisk = parent->ondisk;
1907 	KKASSERT(split != 0);
1908 	KKASSERT(ondisk->count != HAMMER_BTREE_INT_ELMS);
1909 	parent_elm = &ondisk->elms[parent_index+1];
1910 	bcopy(parent_elm, parent_elm + 1,
1911 	      (ondisk->count - parent_index) * esize);
1912 
1913 	hammer_make_separator(&elm[-1].base, &elm[0].base, &parent_elm->base);
1914 	parent_elm->internal.base.btype = new_leaf->ondisk->type;
1915 	parent_elm->internal.subtree_offset = new_leaf->node_offset;
1916 	parent_elm->internal.mirror_tid = new_leaf->ondisk->mirror_tid;
1917 	mid_boundary = &parent_elm->base;
1918 	++ondisk->count;
1919 	hammer_modify_node_done(parent);
1920 	hammer_cursor_inserted_element(parent, parent_index + 1);
1921 
1922 	/*
1923 	 * The filesystem's root B-Tree pointer may have to be updated.
1924 	 */
1925 	if (made_root) {
1926 		hammer_volume_t volume;
1927 
1928 		volume = hammer_get_root_volume(hmp, &error);
1929 		KKASSERT(error == 0);
1930 
1931 		hammer_modify_volume_field(cursor->trans, volume,
1932 					   vol0_btree_root);
1933 		volume->ondisk->vol0_btree_root = parent->node_offset;
1934 		hammer_modify_volume_done(volume);
1935 		leaf->ondisk->parent = parent->node_offset;
1936 		if (cursor->parent) {
1937 			hammer_unlock(&cursor->parent->lock);
1938 			hammer_rel_node(cursor->parent);
1939 		}
1940 		cursor->parent = parent;	/* lock'd and ref'd */
1941 		hammer_rel_volume(volume, 0);
1942 	}
1943 	hammer_modify_node_done(leaf);
1944 
1945 	/*
1946 	 * Ok, now adjust the cursor depending on which element the original
1947 	 * index was pointing at.  If we are >= the split point the push node
1948 	 * is now in the new node.
1949 	 *
1950 	 * NOTE: If we are at the split point itself we need to select the
1951 	 * old or new node based on where key_beg's insertion point will be.
1952 	 * If we pick the wrong side the inserted element will wind up in
1953 	 * the wrong leaf node and outside that node's bounds.
1954 	 */
1955 	if (cursor->index > split ||
1956 	    (cursor->index == split &&
1957 	     hammer_btree_cmp(&cursor->key_beg, mid_boundary) >= 0)) {
1958 		cursor->parent_index = parent_index + 1;
1959 		cursor->index -= split;
1960 		hammer_unlock(&cursor->node->lock);
1961 		hammer_rel_node(cursor->node);
1962 		cursor->node = new_leaf;
1963 	} else {
1964 		cursor->parent_index = parent_index;
1965 		hammer_unlock(&new_leaf->lock);
1966 		hammer_rel_node(new_leaf);
1967 	}
1968 
1969 	/*
1970 	 * Fixup left and right bounds
1971 	 */
1972 	parent_elm = &parent->ondisk->elms[cursor->parent_index];
1973 	cursor->left_bound = &parent_elm[0].internal.base;
1974 	cursor->right_bound = &parent_elm[1].internal.base;
1975 
1976 	/*
1977 	 * Assert that the bounds are correct.
1978 	 */
1979 	KKASSERT(hammer_btree_cmp(cursor->left_bound,
1980 		 &cursor->node->ondisk->elms[0].leaf.base) <= 0);
1981 	KKASSERT(hammer_btree_cmp(cursor->right_bound,
1982 		 &cursor->node->ondisk->elms[cursor->node->ondisk->count-1].leaf.base) > 0);
1983 	KKASSERT(hammer_btree_cmp(cursor->left_bound, &cursor->key_beg) <= 0);
1984 	KKASSERT(hammer_btree_cmp(cursor->right_bound, &cursor->key_beg) > 0);
1985 
1986 done:
1987 	hammer_cursor_downgrade(cursor);
1988 	return (error);
1989 }
1990 
1991 #if 0
1992 
1993 /*
1994  * Recursively correct the right-hand boundary's create_tid to (tid) as
1995  * long as the rest of the key matches.  We have to recurse upward in
1996  * the tree as well as down the left side of each parent's right node.
1997  *
1998  * Return EDEADLK if we were only partially successful, forcing the caller
1999  * to try again.  The original cursor is not modified.  This routine can
2000  * also fail with EDEADLK if it is forced to throw away a portion of its
2001  * record history.
2002  *
2003  * The caller must pass a downgraded cursor to us (otherwise we can't dup it).
2004  */
2005 struct hammer_rhb {
2006 	TAILQ_ENTRY(hammer_rhb) entry;
2007 	hammer_node_t	node;
2008 	int		index;
2009 };
2010 
2011 TAILQ_HEAD(hammer_rhb_list, hammer_rhb);
2012 
2013 int
2014 hammer_btree_correct_rhb(hammer_cursor_t cursor, hammer_tid_t tid)
2015 {
2016 	struct hammer_mount *hmp;
2017 	struct hammer_rhb_list rhb_list;
2018 	hammer_base_elm_t elm;
2019 	hammer_node_t orig_node;
2020 	struct hammer_rhb *rhb;
2021 	int orig_index;
2022 	int error;
2023 
2024 	TAILQ_INIT(&rhb_list);
2025 	hmp = cursor->trans->hmp;
2026 
2027 	/*
2028 	 * Save our position so we can restore it on return.  This also
2029 	 * gives us a stable 'elm'.
2030 	 */
2031 	orig_node = cursor->node;
2032 	hammer_ref_node(orig_node);
2033 	hammer_lock_sh(&orig_node->lock);
2034 	orig_index = cursor->index;
2035 	elm = &orig_node->ondisk->elms[orig_index].base;
2036 
2037 	/*
2038 	 * Now build a list of parents going up, allocating a rhb
2039 	 * structure for each one.
2040 	 */
2041 	while (cursor->parent) {
2042 		/*
2043 		 * Stop if we no longer have any right-bounds to fix up
2044 		 */
2045 		if (elm->obj_id != cursor->right_bound->obj_id ||
2046 		    elm->rec_type != cursor->right_bound->rec_type ||
2047 		    elm->key != cursor->right_bound->key) {
2048 			break;
2049 		}
2050 
2051 		/*
2052 		 * Stop if the right-hand bound's create_tid does not
2053 		 * need to be corrected.
2054 		 */
2055 		if (cursor->right_bound->create_tid >= tid)
2056 			break;
2057 
2058 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2059 		rhb->node = cursor->parent;
2060 		rhb->index = cursor->parent_index;
2061 		hammer_ref_node(rhb->node);
2062 		hammer_lock_sh(&rhb->node->lock);
2063 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2064 
2065 		hammer_cursor_up(cursor);
2066 	}
2067 
2068 	/*
2069 	 * now safely adjust the right hand bound for each rhb.  This may
2070 	 * also require taking the right side of the tree and iterating down
2071 	 * ITS left side.
2072 	 */
2073 	error = 0;
2074 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2075 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2076 		if (error)
2077 			break;
2078 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2079 		hammer_unlock(&rhb->node->lock);
2080 		hammer_rel_node(rhb->node);
2081 		kfree(rhb, hmp->m_misc);
2082 
2083 		switch (cursor->node->ondisk->type) {
2084 		case HAMMER_BTREE_TYPE_INTERNAL:
2085 			/*
2086 			 * Right-boundary for parent at internal node
2087 			 * is one element to the right of the element whos
2088 			 * right boundary needs adjusting.  We must then
2089 			 * traverse down the left side correcting any left
2090 			 * bounds (which may now be too far to the left).
2091 			 */
2092 			++cursor->index;
2093 			error = hammer_btree_correct_lhb(cursor, tid);
2094 			break;
2095 		default:
2096 			panic("hammer_btree_correct_rhb(): Bad node type");
2097 			error = EINVAL;
2098 			break;
2099 		}
2100 	}
2101 
2102 	/*
2103 	 * Cleanup
2104 	 */
2105 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2106 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2107 		hammer_unlock(&rhb->node->lock);
2108 		hammer_rel_node(rhb->node);
2109 		kfree(rhb, hmp->m_misc);
2110 	}
2111 	error = hammer_cursor_seek(cursor, orig_node, orig_index);
2112 	hammer_unlock(&orig_node->lock);
2113 	hammer_rel_node(orig_node);
2114 	return (error);
2115 }
2116 
2117 /*
2118  * Similar to rhb (in fact, rhb calls lhb), but corrects the left hand
2119  * bound going downward starting at the current cursor position.
2120  *
2121  * This function does not restore the cursor after use.
2122  */
2123 int
2124 hammer_btree_correct_lhb(hammer_cursor_t cursor, hammer_tid_t tid)
2125 {
2126 	struct hammer_rhb_list rhb_list;
2127 	hammer_base_elm_t elm;
2128 	hammer_base_elm_t cmp;
2129 	struct hammer_rhb *rhb;
2130 	struct hammer_mount *hmp;
2131 	int error;
2132 
2133 	TAILQ_INIT(&rhb_list);
2134 	hmp = cursor->trans->hmp;
2135 
2136 	cmp = &cursor->node->ondisk->elms[cursor->index].base;
2137 
2138 	/*
2139 	 * Record the node and traverse down the left-hand side for all
2140 	 * matching records needing a boundary correction.
2141 	 */
2142 	error = 0;
2143 	for (;;) {
2144 		rhb = kmalloc(sizeof(*rhb), hmp->m_misc, M_WAITOK|M_ZERO);
2145 		rhb->node = cursor->node;
2146 		rhb->index = cursor->index;
2147 		hammer_ref_node(rhb->node);
2148 		hammer_lock_sh(&rhb->node->lock);
2149 		TAILQ_INSERT_HEAD(&rhb_list, rhb, entry);
2150 
2151 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2152 			/*
2153 			 * Nothing to traverse down if we are at the right
2154 			 * boundary of an internal node.
2155 			 */
2156 			if (cursor->index == cursor->node->ondisk->count)
2157 				break;
2158 		} else {
2159 			elm = &cursor->node->ondisk->elms[cursor->index].base;
2160 			if (elm->btype == HAMMER_BTREE_TYPE_RECORD)
2161 				break;
2162 			panic("Illegal leaf record type %02x", elm->btype);
2163 		}
2164 		error = hammer_cursor_down(cursor);
2165 		if (error)
2166 			break;
2167 
2168 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2169 		if (elm->obj_id != cmp->obj_id ||
2170 		    elm->rec_type != cmp->rec_type ||
2171 		    elm->key != cmp->key) {
2172 			break;
2173 		}
2174 		if (elm->create_tid >= tid)
2175 			break;
2176 
2177 	}
2178 
2179 	/*
2180 	 * Now we can safely adjust the left-hand boundary from the bottom-up.
2181 	 * The last element we remove from the list is the caller's right hand
2182 	 * boundary, which must also be adjusted.
2183 	 */
2184 	while (error == 0 && (rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2185 		error = hammer_cursor_seek(cursor, rhb->node, rhb->index);
2186 		if (error)
2187 			break;
2188 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2189 		hammer_unlock(&rhb->node->lock);
2190 		hammer_rel_node(rhb->node);
2191 		kfree(rhb, hmp->m_misc);
2192 
2193 		elm = &cursor->node->ondisk->elms[cursor->index].base;
2194 		if (cursor->node->ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
2195 			hammer_modify_node(cursor->trans, cursor->node,
2196 					   &elm->create_tid,
2197 					   sizeof(elm->create_tid));
2198 			elm->create_tid = tid;
2199 			hammer_modify_node_done(cursor->node);
2200 		} else {
2201 			panic("hammer_btree_correct_lhb(): Bad element type");
2202 		}
2203 	}
2204 
2205 	/*
2206 	 * Cleanup
2207 	 */
2208 	while ((rhb = TAILQ_FIRST(&rhb_list)) != NULL) {
2209 		TAILQ_REMOVE(&rhb_list, rhb, entry);
2210 		hammer_unlock(&rhb->node->lock);
2211 		hammer_rel_node(rhb->node);
2212 		kfree(rhb, hmp->m_misc);
2213 	}
2214 	return (error);
2215 }
2216 
2217 #endif
2218 
2219 /*
2220  * Attempt to remove the locked, empty or want-to-be-empty B-Tree node at
2221  * (cursor->node).  Returns 0 on success, EDEADLK if we could not complete
2222  * the operation due to a deadlock, or some other error.
2223  *
2224  * This routine is initially called with an empty leaf and may be
2225  * recursively called with single-element internal nodes.
2226  *
2227  * It should also be noted that when removing empty leaves we must be sure
2228  * to test and update mirror_tid because another thread may have deadlocked
2229  * against us (or someone) trying to propagate it up and cannot retry once
2230  * the node has been deleted.
2231  *
2232  * On return the cursor may end up pointing to an internal node, suitable
2233  * for further iteration but not for an immediate insertion or deletion.
2234  */
2235 static int
2236 btree_remove(hammer_cursor_t cursor)
2237 {
2238 	hammer_node_ondisk_t ondisk;
2239 	hammer_btree_elm_t elm;
2240 	hammer_node_t node;
2241 	hammer_node_t parent;
2242 	const int esize = sizeof(*elm);
2243 	int error;
2244 
2245 	node = cursor->node;
2246 
2247 	/*
2248 	 * When deleting the root of the filesystem convert it to
2249 	 * an empty leaf node.  Internal nodes cannot be empty.
2250 	 */
2251 	ondisk = node->ondisk;
2252 	if (ondisk->parent == 0) {
2253 		KKASSERT(cursor->parent == NULL);
2254 		hammer_modify_node_all(cursor->trans, node);
2255 		KKASSERT(ondisk == node->ondisk);
2256 		ondisk->type = HAMMER_BTREE_TYPE_LEAF;
2257 		ondisk->count = 0;
2258 		hammer_modify_node_done(node);
2259 		cursor->index = 0;
2260 		return(0);
2261 	}
2262 
2263 	parent = cursor->parent;
2264 
2265 	/*
2266 	 * Attempt to remove the parent's reference to the child.  If the
2267 	 * parent would become empty we have to recurse.  If we fail we
2268 	 * leave the parent pointing to an empty leaf node.
2269 	 *
2270 	 * We have to recurse successfully before we can delete the internal
2271 	 * node as it is illegal to have empty internal nodes.  Even though
2272 	 * the operation may be aborted we must still fixup any unlocked
2273 	 * cursors as if we had deleted the element prior to recursing
2274 	 * (by calling hammer_cursor_deleted_element()) so those cursors
2275 	 * are properly forced up the chain by the recursion.
2276 	 */
2277 	if (parent->ondisk->count == 1) {
2278 		/*
2279 		 * This special cursor_up_locked() call leaves the original
2280 		 * node exclusively locked and referenced, leaves the
2281 		 * original parent locked (as the new node), and locks the
2282 		 * new parent.  It can return EDEADLK.
2283 		 *
2284 		 * We cannot call hammer_cursor_removed_node() until we are
2285 		 * actually able to remove the node.  If we did then tracked
2286 		 * cursors in the middle of iterations could be repointed
2287 		 * to a parent node.  If this occurs they could end up
2288 		 * scanning newly inserted records into the node (that could
2289 		 * not be deleted) when they push down again.
2290 		 *
2291 		 * Due to the way the recursion works the final parent is left
2292 		 * in cursor->parent after the recursion returns.  Each
2293 		 * layer on the way back up is thus able to call
2294 		 * hammer_cursor_removed_node() and 'jump' the node up to
2295 		 * the (same) final parent.
2296 		 *
2297 		 * NOTE!  The local variable 'parent' is invalid after we
2298 		 *	  call hammer_cursor_up_locked().
2299 		 */
2300 		error = hammer_cursor_up_locked(cursor);
2301 		parent = NULL;
2302 
2303 		if (error == 0) {
2304 			hammer_cursor_deleted_element(cursor->node, 0);
2305 			error = btree_remove(cursor);
2306 			if (error == 0) {
2307 				KKASSERT(node != cursor->node);
2308 				hammer_cursor_removed_node(
2309 					node, cursor->node,
2310 					cursor->index);
2311 				hammer_modify_node_all(cursor->trans, node);
2312 				ondisk = node->ondisk;
2313 				ondisk->type = HAMMER_BTREE_TYPE_DELETED;
2314 				ondisk->count = 0;
2315 				hammer_modify_node_done(node);
2316 				hammer_flush_node(node, 0);
2317 				hammer_delete_node(cursor->trans, node);
2318 			} else {
2319 				/*
2320 				 * Defer parent removal because we could not
2321 				 * get the lock, just let the leaf remain
2322 				 * empty.
2323 				 */
2324 				/**/
2325 			}
2326 			hammer_unlock(&node->lock);
2327 			hammer_rel_node(node);
2328 		} else {
2329 			/*
2330 			 * Defer parent removal because we could not
2331 			 * get the lock, just let the leaf remain
2332 			 * empty.
2333 			 */
2334 			/**/
2335 		}
2336 	} else {
2337 		KKASSERT(parent->ondisk->count > 1);
2338 
2339 		hammer_modify_node_all(cursor->trans, parent);
2340 		ondisk = parent->ondisk;
2341 		KKASSERT(ondisk->type == HAMMER_BTREE_TYPE_INTERNAL);
2342 
2343 		elm = &ondisk->elms[cursor->parent_index];
2344 		KKASSERT(elm->internal.subtree_offset == node->node_offset);
2345 		KKASSERT(ondisk->count > 0);
2346 
2347 		/*
2348 		 * We must retain the highest mirror_tid.  The deleted
2349 		 * range is now encompassed by the element to the left.
2350 		 * If we are already at the left edge the new left edge
2351 		 * inherits mirror_tid.
2352 		 *
2353 		 * Note that bounds of the parent to our parent may create
2354 		 * a gap to the left of our left-most node or to the right
2355 		 * of our right-most node.  The gap is silently included
2356 		 * in the mirror_tid's area of effect from the point of view
2357 		 * of the scan.
2358 		 */
2359 		if (cursor->parent_index) {
2360 			if (elm[-1].internal.mirror_tid <
2361 			    elm[0].internal.mirror_tid) {
2362 				elm[-1].internal.mirror_tid =
2363 				    elm[0].internal.mirror_tid;
2364 			}
2365 		} else {
2366 			if (elm[1].internal.mirror_tid <
2367 			    elm[0].internal.mirror_tid) {
2368 				elm[1].internal.mirror_tid =
2369 				    elm[0].internal.mirror_tid;
2370 			}
2371 		}
2372 
2373 		/*
2374 		 * Delete the subtree reference in the parent.  Include
2375 		 * boundary element at end.
2376 		 */
2377 		bcopy(&elm[1], &elm[0],
2378 		      (ondisk->count - cursor->parent_index) * esize);
2379 		--ondisk->count;
2380 		hammer_modify_node_done(parent);
2381 		hammer_cursor_removed_node(node, parent, cursor->parent_index);
2382 		hammer_cursor_deleted_element(parent, cursor->parent_index);
2383 		hammer_flush_node(node, 0);
2384 		hammer_delete_node(cursor->trans, node);
2385 
2386 		/*
2387 		 * cursor->node is invalid, cursor up to make the cursor
2388 		 * valid again.  We have to flag the condition in case
2389 		 * another thread wiggles an insertion in during an
2390 		 * iteration.
2391 		 */
2392 		cursor->flags |= HAMMER_CURSOR_ITERATE_CHECK;
2393 		error = hammer_cursor_up(cursor);
2394 	}
2395 	return (error);
2396 }
2397 
2398 /*
2399  * Propagate cursor->trans->tid up the B-Tree starting at the current
2400  * cursor position using pseudofs info gleaned from the passed inode.
2401  *
2402  * The passed inode has no relationship to the cursor position other
2403  * then being in the same pseudofs as the insertion or deletion we
2404  * are propagating the mirror_tid for.
2405  *
2406  * WARNING!  Because we push and pop the passed cursor, it may be
2407  *	     modified by other B-Tree operations while it is unlocked
2408  *	     and things like the node & leaf pointers, and indexes might
2409  *	     change.
2410  */
2411 void
2412 hammer_btree_do_propagation(hammer_cursor_t cursor,
2413 			    hammer_pseudofs_inmem_t pfsm,
2414 			    hammer_btree_leaf_elm_t leaf)
2415 {
2416 	hammer_cursor_t ncursor;
2417 	hammer_tid_t mirror_tid;
2418 	int error __debugvar;
2419 
2420 	/*
2421 	 * We do not propagate a mirror_tid if the filesystem was mounted
2422 	 * in no-mirror mode.
2423 	 */
2424 	if (cursor->trans->hmp->master_id < 0)
2425 		return;
2426 
2427 	/*
2428 	 * This is a bit of a hack because we cannot deadlock or return
2429 	 * EDEADLK here.  The related operation has already completed and
2430 	 * we must propagate the mirror_tid now regardless.
2431 	 *
2432 	 * Generate a new cursor which inherits the original's locks and
2433 	 * unlock the original.  Use the new cursor to propagate the
2434 	 * mirror_tid.  Then clean up the new cursor and reacquire locks
2435 	 * on the original.
2436 	 *
2437 	 * hammer_dup_cursor() cannot dup locks.  The dup inherits the
2438 	 * original's locks and the original is tracked and must be
2439 	 * re-locked.
2440 	 */
2441 	mirror_tid = cursor->node->ondisk->mirror_tid;
2442 	KKASSERT(mirror_tid != 0);
2443 	ncursor = hammer_push_cursor(cursor);
2444 	error = hammer_btree_mirror_propagate(ncursor, mirror_tid);
2445 	KKASSERT(error == 0);
2446 	hammer_pop_cursor(cursor, ncursor);
2447 	/* WARNING: cursor's leaf pointer may change after pop */
2448 }
2449 
2450 
2451 /*
2452  * Propagate a mirror TID update upwards through the B-Tree to the root.
2453  *
2454  * A locked internal node must be passed in.  The node will remain locked
2455  * on return.
2456  *
2457  * This function syncs mirror_tid at the specified internal node's element,
2458  * adjusts the node's aggregation mirror_tid, and then recurses upwards.
2459  */
2460 static int
2461 hammer_btree_mirror_propagate(hammer_cursor_t cursor, hammer_tid_t mirror_tid)
2462 {
2463 	hammer_btree_internal_elm_t elm;
2464 	hammer_node_t node;
2465 	int error;
2466 
2467 	for (;;) {
2468 		error = hammer_cursor_up(cursor);
2469 		if (error == 0)
2470 			error = hammer_cursor_upgrade(cursor);
2471 
2472 		/*
2473 		 * We can ignore HAMMER_CURSOR_ITERATE_CHECK, the
2474 		 * cursor will still be properly positioned for
2475 		 * mirror propagation, just not for iterations.
2476 		 */
2477 		while (error == EDEADLK) {
2478 			hammer_recover_cursor(cursor);
2479 			error = hammer_cursor_upgrade(cursor);
2480 		}
2481 		if (error)
2482 			break;
2483 
2484 		/*
2485 		 * If the cursor deadlocked it could end up at a leaf
2486 		 * after we lost the lock.
2487 		 */
2488 		node = cursor->node;
2489 		if (node->ondisk->type != HAMMER_BTREE_TYPE_INTERNAL)
2490 			continue;
2491 
2492 		/*
2493 		 * Adjust the node's element
2494 		 */
2495 		elm = &node->ondisk->elms[cursor->index].internal;
2496 		if (elm->mirror_tid >= mirror_tid)
2497 			break;
2498 		hammer_modify_node(cursor->trans, node, &elm->mirror_tid,
2499 				   sizeof(elm->mirror_tid));
2500 		elm->mirror_tid = mirror_tid;
2501 		hammer_modify_node_done(node);
2502 		if (hammer_debug_general & 0x0002) {
2503 			kprintf("mirror_propagate: propagate "
2504 				"%016llx @%016llx:%d\n",
2505 				(long long)mirror_tid,
2506 				(long long)node->node_offset,
2507 				cursor->index);
2508 		}
2509 
2510 
2511 		/*
2512 		 * Adjust the node's mirror_tid aggregator
2513 		 */
2514 		if (node->ondisk->mirror_tid >= mirror_tid)
2515 			return(0);
2516 		hammer_modify_node_field(cursor->trans, node, mirror_tid);
2517 		node->ondisk->mirror_tid = mirror_tid;
2518 		hammer_modify_node_done(node);
2519 		if (hammer_debug_general & 0x0002) {
2520 			kprintf("mirror_propagate: propagate "
2521 				"%016llx @%016llx\n",
2522 				(long long)mirror_tid,
2523 				(long long)node->node_offset);
2524 		}
2525 	}
2526 	if (error == ENOENT)
2527 		error = 0;
2528 	return(error);
2529 }
2530 
2531 hammer_node_t
2532 hammer_btree_get_parent(hammer_transaction_t trans, hammer_node_t node,
2533 			int *parent_indexp, int *errorp, int try_exclusive)
2534 {
2535 	hammer_node_t parent;
2536 	hammer_btree_elm_t elm;
2537 	int i;
2538 
2539 	/*
2540 	 * Get the node
2541 	 */
2542 	parent = hammer_get_node(trans, node->ondisk->parent, 0, errorp);
2543 	if (*errorp) {
2544 		KKASSERT(parent == NULL);
2545 		return(NULL);
2546 	}
2547 	KKASSERT ((parent->flags & HAMMER_NODE_DELETED) == 0);
2548 
2549 	/*
2550 	 * Lock the node
2551 	 */
2552 	if (try_exclusive) {
2553 		if (hammer_lock_ex_try(&parent->lock)) {
2554 			hammer_rel_node(parent);
2555 			*errorp = EDEADLK;
2556 			return(NULL);
2557 		}
2558 	} else {
2559 		hammer_lock_sh(&parent->lock);
2560 	}
2561 
2562 	/*
2563 	 * Figure out which element in the parent is pointing to the
2564 	 * child.
2565 	 */
2566 	if (node->ondisk->count) {
2567 		i = hammer_btree_search_node(&node->ondisk->elms[0].base,
2568 					     parent->ondisk);
2569 	} else {
2570 		i = 0;
2571 	}
2572 	while (i < parent->ondisk->count) {
2573 		elm = &parent->ondisk->elms[i];
2574 		if (elm->internal.subtree_offset == node->node_offset)
2575 			break;
2576 		++i;
2577 	}
2578 	if (i == parent->ondisk->count) {
2579 		hammer_unlock(&parent->lock);
2580 		panic("Bad B-Tree link: parent %p node %p", parent, node);
2581 	}
2582 	*parent_indexp = i;
2583 	KKASSERT(*errorp == 0);
2584 	return(parent);
2585 }
2586 
2587 /*
2588  * The element (elm) has been moved to a new internal node (node).
2589  *
2590  * If the element represents a pointer to an internal node that node's
2591  * parent must be adjusted to the element's new location.
2592  *
2593  * XXX deadlock potential here with our exclusive locks
2594  */
2595 int
2596 btree_set_parent(hammer_transaction_t trans, hammer_node_t node,
2597 		 hammer_btree_elm_t elm)
2598 {
2599 	hammer_node_t child;
2600 	int error;
2601 
2602 	error = 0;
2603 
2604 	switch(elm->base.btype) {
2605 	case HAMMER_BTREE_TYPE_INTERNAL:
2606 	case HAMMER_BTREE_TYPE_LEAF:
2607 		child = hammer_get_node(trans, elm->internal.subtree_offset,
2608 					0, &error);
2609 		if (error == 0) {
2610 			hammer_modify_node_field(trans, child, parent);
2611 			child->ondisk->parent = node->node_offset;
2612 			hammer_modify_node_done(child);
2613 			hammer_rel_node(child);
2614 		}
2615 		break;
2616 	default:
2617 		break;
2618 	}
2619 	return(error);
2620 }
2621 
2622 /*
2623  * Initialize the root of a recursive B-Tree node lock list structure.
2624  */
2625 void
2626 hammer_node_lock_init(hammer_node_lock_t parent, hammer_node_t node)
2627 {
2628 	TAILQ_INIT(&parent->list);
2629 	parent->parent = NULL;
2630 	parent->node = node;
2631 	parent->index = -1;
2632 	parent->count = node->ondisk->count;
2633 	parent->copy = NULL;
2634 	parent->flags = 0;
2635 }
2636 
2637 /*
2638  * Initialize a cache of hammer_node_lock's including space allocated
2639  * for node copies.
2640  *
2641  * This is used by the rebalancing code to preallocate the copy space
2642  * for ~4096 B-Tree nodes (16MB of data) prior to acquiring any HAMMER
2643  * locks, otherwise we can blow out the pageout daemon's emergency
2644  * reserve and deadlock it.
2645  *
2646  * NOTE: HAMMER_NODE_LOCK_LCACHE is not set on items cached in the lcache.
2647  *	 The flag is set when the item is pulled off the cache for use.
2648  */
2649 void
2650 hammer_btree_lcache_init(hammer_mount_t hmp, hammer_node_lock_t lcache,
2651 			 int depth)
2652 {
2653 	hammer_node_lock_t item;
2654 	int count;
2655 
2656 	for (count = 1; depth; --depth)
2657 		count *= HAMMER_BTREE_LEAF_ELMS;
2658 	bzero(lcache, sizeof(*lcache));
2659 	TAILQ_INIT(&lcache->list);
2660 	while (count) {
2661 		item = kmalloc(sizeof(*item), hmp->m_misc, M_WAITOK|M_ZERO);
2662 		item->copy = kmalloc(sizeof(*item->copy),
2663 				     hmp->m_misc, M_WAITOK);
2664 		TAILQ_INIT(&item->list);
2665 		TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2666 		--count;
2667 	}
2668 }
2669 
2670 void
2671 hammer_btree_lcache_free(hammer_mount_t hmp, hammer_node_lock_t lcache)
2672 {
2673 	hammer_node_lock_t item;
2674 
2675 	while ((item = TAILQ_FIRST(&lcache->list)) != NULL) {
2676 		TAILQ_REMOVE(&lcache->list, item, entry);
2677 		KKASSERT(item->copy);
2678 		KKASSERT(TAILQ_EMPTY(&item->list));
2679 		kfree(item->copy, hmp->m_misc);
2680 		kfree(item, hmp->m_misc);
2681 	}
2682 	KKASSERT(lcache->copy == NULL);
2683 }
2684 
2685 /*
2686  * Exclusively lock all the children of node.  This is used by the split
2687  * code to prevent anyone from accessing the children of a cursor node
2688  * while we fix-up its parent offset.
2689  *
2690  * If we don't lock the children we can really mess up cursors which block
2691  * trying to cursor-up into our node.
2692  *
2693  * On failure EDEADLK (or some other error) is returned.  If a deadlock
2694  * error is returned the cursor is adjusted to block on termination.
2695  *
2696  * The caller is responsible for managing parent->node, the root's node
2697  * is usually aliased from a cursor.
2698  */
2699 int
2700 hammer_btree_lock_children(hammer_cursor_t cursor, int depth,
2701 			   hammer_node_lock_t parent,
2702 			   hammer_node_lock_t lcache)
2703 {
2704 	hammer_node_t node;
2705 	hammer_node_lock_t item;
2706 	hammer_node_ondisk_t ondisk;
2707 	hammer_btree_elm_t elm;
2708 	hammer_node_t child;
2709 	struct hammer_mount *hmp;
2710 	int error;
2711 	int i;
2712 
2713 	node = parent->node;
2714 	ondisk = node->ondisk;
2715 	error = 0;
2716 	hmp = cursor->trans->hmp;
2717 
2718 	/*
2719 	 * We really do not want to block on I/O with exclusive locks held,
2720 	 * pre-get the children before trying to lock the mess.  This is
2721 	 * only done one-level deep for now.
2722 	 */
2723 	for (i = 0; i < ondisk->count; ++i) {
2724 		++hammer_stats_btree_elements;
2725 		elm = &ondisk->elms[i];
2726 		if (elm->base.btype != HAMMER_BTREE_TYPE_LEAF &&
2727 		    elm->base.btype != HAMMER_BTREE_TYPE_INTERNAL) {
2728 			continue;
2729 		}
2730 		child = hammer_get_node(cursor->trans,
2731 					elm->internal.subtree_offset,
2732 					0, &error);
2733 		if (child)
2734 			hammer_rel_node(child);
2735 	}
2736 
2737 	/*
2738 	 * Do it for real
2739 	 */
2740 	for (i = 0; error == 0 && i < ondisk->count; ++i) {
2741 		++hammer_stats_btree_elements;
2742 		elm = &ondisk->elms[i];
2743 
2744 		switch(elm->base.btype) {
2745 		case HAMMER_BTREE_TYPE_INTERNAL:
2746 		case HAMMER_BTREE_TYPE_LEAF:
2747 			KKASSERT(elm->internal.subtree_offset != 0);
2748 			child = hammer_get_node(cursor->trans,
2749 						elm->internal.subtree_offset,
2750 						0, &error);
2751 			break;
2752 		default:
2753 			child = NULL;
2754 			break;
2755 		}
2756 		if (child) {
2757 			if (hammer_lock_ex_try(&child->lock) != 0) {
2758 				if (cursor->deadlk_node == NULL) {
2759 					cursor->deadlk_node = child;
2760 					hammer_ref_node(cursor->deadlk_node);
2761 				}
2762 				error = EDEADLK;
2763 				hammer_rel_node(child);
2764 			} else {
2765 				if (lcache) {
2766 					item = TAILQ_FIRST(&lcache->list);
2767 					KKASSERT(item != NULL);
2768 					item->flags |= HAMMER_NODE_LOCK_LCACHE;
2769 					TAILQ_REMOVE(&lcache->list,
2770 						     item, entry);
2771 				} else {
2772 					item = kmalloc(sizeof(*item),
2773 						       hmp->m_misc,
2774 						       M_WAITOK|M_ZERO);
2775 					TAILQ_INIT(&item->list);
2776 				}
2777 
2778 				TAILQ_INSERT_TAIL(&parent->list, item, entry);
2779 				item->parent = parent;
2780 				item->node = child;
2781 				item->index = i;
2782 				item->count = child->ondisk->count;
2783 
2784 				/*
2785 				 * Recurse (used by the rebalancing code)
2786 				 */
2787 				if (depth > 1 && elm->base.btype == HAMMER_BTREE_TYPE_INTERNAL) {
2788 					error = hammer_btree_lock_children(
2789 							cursor,
2790 							depth - 1,
2791 							item,
2792 							lcache);
2793 				}
2794 			}
2795 		}
2796 	}
2797 	if (error)
2798 		hammer_btree_unlock_children(hmp, parent, lcache);
2799 	return(error);
2800 }
2801 
2802 /*
2803  * Create an in-memory copy of all B-Tree nodes listed, recursively,
2804  * including the parent.
2805  */
2806 void
2807 hammer_btree_lock_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2808 {
2809 	hammer_mount_t hmp = cursor->trans->hmp;
2810 	hammer_node_lock_t item;
2811 
2812 	if (parent->copy == NULL) {
2813 		KKASSERT((parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0);
2814 		parent->copy = kmalloc(sizeof(*parent->copy),
2815 				       hmp->m_misc, M_WAITOK);
2816 	}
2817 	KKASSERT((parent->flags & HAMMER_NODE_LOCK_UPDATED) == 0);
2818 	*parent->copy = *parent->node->ondisk;
2819 	TAILQ_FOREACH(item, &parent->list, entry) {
2820 		hammer_btree_lock_copy(cursor, item);
2821 	}
2822 }
2823 
2824 /*
2825  * Recursively sync modified copies to the media.
2826  */
2827 int
2828 hammer_btree_sync_copy(hammer_cursor_t cursor, hammer_node_lock_t parent)
2829 {
2830 	hammer_node_lock_t item;
2831 	int count = 0;
2832 
2833 	if (parent->flags & HAMMER_NODE_LOCK_UPDATED) {
2834 		++count;
2835 		hammer_modify_node_all(cursor->trans, parent->node);
2836 		*parent->node->ondisk = *parent->copy;
2837                 hammer_modify_node_done(parent->node);
2838 		if (parent->copy->type == HAMMER_BTREE_TYPE_DELETED) {
2839 			hammer_flush_node(parent->node, 0);
2840 			hammer_delete_node(cursor->trans, parent->node);
2841 		}
2842 	}
2843 	TAILQ_FOREACH(item, &parent->list, entry) {
2844 		count += hammer_btree_sync_copy(cursor, item);
2845 	}
2846 	return(count);
2847 }
2848 
2849 /*
2850  * Release previously obtained node locks.  The caller is responsible for
2851  * cleaning up parent->node itself (its usually just aliased from a cursor),
2852  * but this function will take care of the copies.
2853  *
2854  * NOTE: The root node is not placed in the lcache and node->copy is not
2855  *	 deallocated when lcache != NULL.
2856  */
2857 void
2858 hammer_btree_unlock_children(hammer_mount_t hmp, hammer_node_lock_t parent,
2859 			     hammer_node_lock_t lcache)
2860 {
2861 	hammer_node_lock_t item;
2862 	hammer_node_ondisk_t copy;
2863 
2864 	while ((item = TAILQ_FIRST(&parent->list)) != NULL) {
2865 		TAILQ_REMOVE(&parent->list, item, entry);
2866 		hammer_btree_unlock_children(hmp, item, lcache);
2867 		hammer_unlock(&item->node->lock);
2868 		hammer_rel_node(item->node);
2869 		if (lcache) {
2870 			/*
2871 			 * NOTE: When placing the item back in the lcache
2872 			 *	 the flag is cleared by the bzero().
2873 			 *	 Remaining fields are cleared as a safety
2874 			 *	 measure.
2875 			 */
2876 			KKASSERT(item->flags & HAMMER_NODE_LOCK_LCACHE);
2877 			KKASSERT(TAILQ_EMPTY(&item->list));
2878 			copy = item->copy;
2879 			bzero(item, sizeof(*item));
2880 			TAILQ_INIT(&item->list);
2881 			item->copy = copy;
2882 			if (copy)
2883 				bzero(copy, sizeof(*copy));
2884 			TAILQ_INSERT_TAIL(&lcache->list, item, entry);
2885 		} else {
2886 			kfree(item, hmp->m_misc);
2887 		}
2888 	}
2889 	if (parent->copy && (parent->flags & HAMMER_NODE_LOCK_LCACHE) == 0) {
2890 		kfree(parent->copy, hmp->m_misc);
2891 		parent->copy = NULL;	/* safety */
2892 	}
2893 }
2894 
2895 /************************************************************************
2896  *			   MISCELLANIOUS SUPPORT 			*
2897  ************************************************************************/
2898 
2899 /*
2900  * Compare two B-Tree elements, return -N, 0, or +N (e.g. similar to strcmp).
2901  *
2902  * Note that for this particular function a return value of -1, 0, or +1
2903  * can denote a match if create_tid is otherwise discounted.  A create_tid
2904  * of zero is considered to be 'infinity' in comparisons.
2905  *
2906  * See also hammer_rec_rb_compare() and hammer_rec_cmp() in hammer_object.c.
2907  */
2908 int
2909 hammer_btree_cmp(hammer_base_elm_t key1, hammer_base_elm_t key2)
2910 {
2911 	if (key1->localization < key2->localization)
2912 		return(-5);
2913 	if (key1->localization > key2->localization)
2914 		return(5);
2915 
2916 	if (key1->obj_id < key2->obj_id)
2917 		return(-4);
2918 	if (key1->obj_id > key2->obj_id)
2919 		return(4);
2920 
2921 	if (key1->rec_type < key2->rec_type)
2922 		return(-3);
2923 	if (key1->rec_type > key2->rec_type)
2924 		return(3);
2925 
2926 	if (key1->key < key2->key)
2927 		return(-2);
2928 	if (key1->key > key2->key)
2929 		return(2);
2930 
2931 	/*
2932 	 * A create_tid of zero indicates a record which is undeletable
2933 	 * and must be considered to have a value of positive infinity.
2934 	 */
2935 	if (key1->create_tid == 0) {
2936 		if (key2->create_tid == 0)
2937 			return(0);
2938 		return(1);
2939 	}
2940 	if (key2->create_tid == 0)
2941 		return(-1);
2942 	if (key1->create_tid < key2->create_tid)
2943 		return(-1);
2944 	if (key1->create_tid > key2->create_tid)
2945 		return(1);
2946 	return(0);
2947 }
2948 
2949 /*
2950  * Test a timestamp against an element to determine whether the
2951  * element is visible.  A timestamp of 0 means 'infinity'.
2952  */
2953 int
2954 hammer_btree_chkts(hammer_tid_t asof, hammer_base_elm_t base)
2955 {
2956 	if (asof == 0) {
2957 		if (base->delete_tid)
2958 			return(1);
2959 		return(0);
2960 	}
2961 	if (asof < base->create_tid)
2962 		return(-1);
2963 	if (base->delete_tid && asof >= base->delete_tid)
2964 		return(1);
2965 	return(0);
2966 }
2967 
2968 /*
2969  * Create a separator half way inbetween key1 and key2.  For fields just
2970  * one unit apart, the separator will match key2.  key1 is on the left-hand
2971  * side and key2 is on the right-hand side.
2972  *
2973  * key2 must be >= the separator.  It is ok for the separator to match key2.
2974  *
2975  * NOTE: Even if key1 does not match key2, the separator may wind up matching
2976  * key2.
2977  *
2978  * NOTE: It might be beneficial to just scrap this whole mess and just
2979  * set the separator to key2.
2980  */
2981 #define MAKE_SEPARATOR(key1, key2, dest, field)	\
2982 	dest->field = key1->field + ((key2->field - key1->field + 1) >> 1);
2983 
2984 static void
2985 hammer_make_separator(hammer_base_elm_t key1, hammer_base_elm_t key2,
2986 		      hammer_base_elm_t dest)
2987 {
2988 	bzero(dest, sizeof(*dest));
2989 
2990 	dest->rec_type = key2->rec_type;
2991 	dest->key = key2->key;
2992 	dest->obj_id = key2->obj_id;
2993 	dest->create_tid = key2->create_tid;
2994 
2995 	MAKE_SEPARATOR(key1, key2, dest, localization);
2996 	if (key1->localization == key2->localization) {
2997 		MAKE_SEPARATOR(key1, key2, dest, obj_id);
2998 		if (key1->obj_id == key2->obj_id) {
2999 			MAKE_SEPARATOR(key1, key2, dest, rec_type);
3000 			if (key1->rec_type == key2->rec_type) {
3001 				MAKE_SEPARATOR(key1, key2, dest, key);
3002 				/*
3003 				 * Don't bother creating a separator for
3004 				 * create_tid, which also conveniently avoids
3005 				 * having to handle the create_tid == 0
3006 				 * (infinity) case.  Just leave create_tid
3007 				 * set to key2.
3008 				 *
3009 				 * Worst case, dest matches key2 exactly,
3010 				 * which is acceptable.
3011 				 */
3012 			}
3013 		}
3014 	}
3015 }
3016 
3017 #undef MAKE_SEPARATOR
3018 
3019 /*
3020  * Return whether a generic internal or leaf node is full
3021  */
3022 static __inline
3023 int
3024 btree_node_is_full(hammer_node_ondisk_t node)
3025 {
3026 	return(btree_max_elements(node->type) == node->count);
3027 }
3028 
3029 static __inline
3030 int
3031 btree_max_elements(u_int8_t type)
3032 {
3033 	if (type == HAMMER_BTREE_TYPE_LEAF)
3034 		return(HAMMER_BTREE_LEAF_ELMS);
3035 	if (type == HAMMER_BTREE_TYPE_INTERNAL)
3036 		return(HAMMER_BTREE_INT_ELMS);
3037 	panic("btree_max_elements: bad type %d", type);
3038 }
3039 
3040 void
3041 hammer_print_btree_node(hammer_node_ondisk_t ondisk)
3042 {
3043 	hammer_btree_elm_t elm;
3044 	int i;
3045 
3046 	kprintf("node %p count=%d parent=%016llx type=%c\n",
3047 		ondisk, ondisk->count,
3048 		(long long)ondisk->parent, ondisk->type);
3049 
3050 	/*
3051 	 * Dump both boundary elements if an internal node
3052 	 */
3053 	if (ondisk->type == HAMMER_BTREE_TYPE_INTERNAL) {
3054 		for (i = 0; i <= ondisk->count; ++i) {
3055 			elm = &ondisk->elms[i];
3056 			hammer_print_btree_elm(elm, ondisk->type, i);
3057 		}
3058 	} else {
3059 		for (i = 0; i < ondisk->count; ++i) {
3060 			elm = &ondisk->elms[i];
3061 			hammer_print_btree_elm(elm, ondisk->type, i);
3062 		}
3063 	}
3064 }
3065 
3066 void
3067 hammer_print_btree_elm(hammer_btree_elm_t elm, u_int8_t type, int i)
3068 {
3069 	kprintf("  %2d", i);
3070 	kprintf("\tobj_id       = %016llx\n", (long long)elm->base.obj_id);
3071 	kprintf("\tkey          = %016llx\n", (long long)elm->base.key);
3072 	kprintf("\tcreate_tid   = %016llx\n", (long long)elm->base.create_tid);
3073 	kprintf("\tdelete_tid   = %016llx\n", (long long)elm->base.delete_tid);
3074 	kprintf("\trec_type     = %04x\n", elm->base.rec_type);
3075 	kprintf("\tobj_type     = %02x\n", elm->base.obj_type);
3076 	kprintf("\tbtype 	= %02x (%c)\n",
3077 		elm->base.btype,
3078 		(elm->base.btype ? elm->base.btype : '?'));
3079 	kprintf("\tlocalization	= %02x\n", elm->base.localization);
3080 
3081 	switch(type) {
3082 	case HAMMER_BTREE_TYPE_INTERNAL:
3083 		kprintf("\tsubtree_off  = %016llx\n",
3084 			(long long)elm->internal.subtree_offset);
3085 		break;
3086 	case HAMMER_BTREE_TYPE_RECORD:
3087 		kprintf("\tdata_offset  = %016llx\n",
3088 			(long long)elm->leaf.data_offset);
3089 		kprintf("\tdata_len     = %08x\n", elm->leaf.data_len);
3090 		kprintf("\tdata_crc     = %08x\n", elm->leaf.data_crc);
3091 		break;
3092 	}
3093 }
3094